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ABSTRACT 

 
 

Early detection is the best defense which could significantly improve the cancer 

survival rate in several cancers including melanoma and pancreatic cancer. A promising 

approach to discover biomarkers for early detection involves using the humoral immune 

response against tumor proteins. Together with advances in proteomics, in particular a 

high throughput protein microarray platform, humoral immune response studies have 

enabled a breakthrough in developing global screening of the highly complex plasma 

proteome for biomarkers for early detection. In this dissertation, we attempt to integrate 

proteomics and bioinformatics approaches to analyze signals from protein microarray 

data for the reliable identification of differentially expressed proteins under different 

biological conditions. First, we present a study comparing outlier-based to traditional 

mean-based approaches in differential expression analysis with applications in protein 

microarray data in heterogeneous diseases. Our investigation uses a glycoproteomics 

dataset from a melanoma study, an original simulation-based approach to benchmarking, 

and a new data visualization technique to assess the potential for methods that explicitly 

target heterogeneous patterns of differential expression to give improved performance 

relative to traditional approaches based on group-wise comparison of means. Results 

include identifications of 1 significant feature using outlier statistics and 15 significant 

features using t-statistics from a melanoma dataset of 43 samples and 47 features. Next, 

we apply the outlier strategy to a protein microarray dataset from a pancreatic cancer 
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study with sera from 37 pancreatic cancers, 24 chronic pancreatitis and 23 normal to 

identify protein biomarkers that are differentially expressed in only a subset of cancer 

samples. Three protein markers exhibiting outlier patterns exclusive to cancer sera and no 

outliers in normal sera are identified by mass spectrometry and confirmed by a follow-up 

study with an independent dataset. The next study presents the application of a label-free 

quantitation approach for measuring changes in protein abundance level associated with 

phosphorylation, a major mechanism of tumorigenesis. Results include identifications of 

differentially expressed post-translational modified proteins such as phosphorylated 

lamin-A/C, isoforms-A and GTPase-activating protein binding protein-1 in pancreatic 

cancer. Together, this dissertation contributes two approaches to biomarker discovery 

using protein microarrays and the humoral immune response and LC-MS/MS and label-

free quantitation. 
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CHAPTER 1  
 

INTRODUCTION 
 

1.1 CANCER BIOMARKERS 

Cancer is responsible for 25% of all deaths in the United States (US) and is second 

only to cardiovascular disease as the leading cause of death. One in three people in the 

US will develop cancer during their lifetimes[1]. These noteworthy cancer statistics are 

taken from the American Cancer Society (ACS) which recommends prevention and early 

detection as the best weapons against cancer. The crucial importance of early detection 

cannot be stressed enough, exemplified by a 90/10 survival curve often observed in 

ovarian cancer[2]. If ovarian tumors are discovered in early stage, the survival rate after 

diagnosis is almost 90% by means of surgery. Meanwhile, the survival rate sharply drops 

to 10% if the tumors are discovered in later stages when the cancers are well established 

and already metastasizing. In fact, it is a major goal of the National Cancer Institute 

(NCI) in initiating the Early Detection Research Network (EDRN) to bring together 

dozens of institutions to help evaluate new ways of testing cancer in its earliest stages[3].  

For years, scientists have turned to tumor markers, which are substances found in 

abnormal amounts in the blood, urine or tissues of cancer patients, as the key to early 

detection, diagnosis and management of several types of cancers. The most well studied 

tumor marker is the p53 protein whose detection in serum correlates strongly with cancer 

as demonstrated by DeLeo et al. [4]. Other tumor markers such as NY-ESO-1[5], 
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her2/neu[6] and TA90[7] have been shown to reflect the stage (extent) of neuroblastoma, 

breast AND ovarian and melanoma, respectively. Tumor marker levels may be measured 

before treatment to help physicians estimate the stage of diseases and plan the appropriate 

therapy or after treatment to assess the patient response to therapy. To date, scientists 

have identified a number of tumor markers for several types of cancer with the help of 

recent advances in proteomics technologies[8]. For example, a novel proteomics 

technology called Nucleic Acid Protein Programmable Array (NAPPA) has recently been 

employed for identifying a potential panel of 28 autoantibody biomarkers for the early 

detection of breast cancer[9]. Although tumor markers for every type of cancer are not 

yet identified, five clinical trials have moved forward to test and validate biomarkers for 

early detection of liver, bladder, lung, mesothelioma and prostate cancer as a result of 

EDRN’s work[10].  

Body fluids such as sera and plasma are rich sources of cancer biomarkers since 

cancer cells are known to secrete tumor specific proteins into the blood. Several protein 

based cancer biomarkers are detected from sera or plasma of cancer patients. 

Unfortunately, those biomarkers are usually low abundance proteins whose concentration 

is at the lower end of the abundance range of known plasma proteins (spanning nine 

orders of magnitude)[11]. Moreover, blood serum is a complex system where the top 

three major protein constituents of serum including albumin, immunoglobulins and 

fibrinogens make up 82% of the total serum proteins, leaving only 1% to be regulatory 

proteins that could be candidates for cancer biomarkers [12].  Therefore, mining the 

plasma proteome for biomarkers is still a grand challenge in cancer research [13]. 
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1.2 HUMORAL IMMUNE RESPONSE  

Human immunity is defined by complex system of biological structures and 

processes designed to prevent diseases by detecting and killing pathogens and tumor cells 

within the body[14]. There are two arms of the immune system, innate immune and 

adaptive immune, and each arm has both humoral and cellular components. The humoral 

immune response is so named because it involves substances called antibodies found in 

the humors (body fluid). These antibodies are produced by white blood cells called B 

cells. When encountering foreign pathogens, B cells differentiate into plasma cells which 

can secrete antibodies to bind and destroy the pathogens. Antibodies are an important part 

of immunotherapy as a preferred treatment to certain cancers when standard cancer 

therapies, including chemotherapy and radiotherapy, are not effective. Antibody based 

vaccines have been successfully used in clinical studies for treatment of melanomas [15] 

and other diseases such as HIV[16]. Moreover, antibodies are an important class of 

biomarker for cancers, autoimmune and other diseases[17]. They are readily accessible in 

biological fluids such as serum, plasma, tears and saliva. They are remarkably stable with 

long half-lives in complex solution, such as human serum or plasma and are detectable by 

simple and rapid assays. More importantly, antibodies usually appear as soon as the 

antigens are present and because of the high specificity between antibody-antigen 

recognition, autoantibodies biomarkers can serve as reliable predictors of cancers, 

autoimmune and other diseases.  

Not only does the humoral immune response protect our body from pathogens, it 

also guards against other diseases such as cancer. The connection between humoral 

immune response and cancer has a long and complex history beginning in 1909 with a 
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German immunologist Paul Ehrlich who won the Nobel Prize in physiology. He was the 

first scientist to propose that the human immune system can identify and eliminate 

nascent tumor cells. About 50 years later, Lewis Thomas and Frank MacFarlane Burnet 

continued Ehrlich’s work and coined the term “immunosurveillance,” which described 

the human immune system as a continuous monitoring process to alert against 

transformed tumor cells. However, the concept remained controversial due to the lack of 

supporting experimental evidence until a publication in Nature by Robert Schreiber and 

Lloyd Old in 2001 entitled “IFN-gamma and lymphocytes prevent primary tumor 

development and shape tumor immunogenicity”[18]. Using genetically engineered mice, 

Schreiber and Old unambiguously proved that the immune response can not only  prevent 

tumors from developing but also plays a role in changing tumor behavior. Consequently, 

they came up with the concept of “immunoediting” which included this new role of 

immune response and in effect extended the concept of “immunosurveillance”. Similar 

studies led to significant advances in the field of tumor immunotherapy by taking 

advantage of the immune response in cancer detection and treatment.    

Ample evidence exists for tumor antigens eliciting humoral immunity for cancers at 

a very early stage when there are still no recognizable symptoms. Identification of tumor 

antigens that are expressed at the early stage of cancer and could drive the humoral 

response, therefore, leads to a simple non-invasive detection strategy [19]. Many cancer 

biomarker studies have identified a variety of tumor antigens in the serum of cancer 

patients that binds to specific autoantibodies and triggers the humoral response [4, 8, 20-

21]. A number of these tumor antigens are being validated in clinical settings and some 

are promising candidates for antibody based cancer vaccines[9]. Examples of popular 
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identified antigens are Cyclin B1, LAMR1 and p53 [19]. The greatest success so far is 

the identification of antibody based humoral immunity targeting cancer stem-like cells 

and tumor initiating cells in vitro, based on which antibody therapies are also efficient in 

vivo [20].  

The humoral immune response is a promising approach to fight against cancer 

because of several remarkable characteristics of antibodies which make them wonderful 

diagnostic and prognostic markers of disease [22].  Antibodies usually recognize tumor 

antigens as soon as they are present; are easily detected in human body fluids and persist 

a long time after infection or immunization. Diagnosis of cancer at an early stage is the 

most effective solution to improve the patient survival rate. However, early stage tumors 

are usually small and low abundance in protein concentration, making it difficult to detect 

by traditional approaches (e.g. using mass spectrometry). The advantage of using 

humoral response is that once there is a humoral immunity that can recognize the tumor 

antigens, even a limited amount of antigen can trigger a biological amplification of 

associated antibodies, which can be easily detected. In addition, humoral immune 

response provides not only an active defense against infection, but also a passive memory 

to store the information about a pathogen.   

Harnessing the humoral immune response to tumor antigen is still in the early stage 

of development. An autoantibody test with high sensitivity and high specificity in 

directing against certain cancer types is in development. Thus far, applications of 

humoral immune response are primarily targeted to distinguish early stage from advanced 

stage cancer. The potential of humoral immune response to cancer is large, however, and 

may include: identification of cancer biomarkers for diagnosis, classification and 
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monitoring of response, determination of the impact of response on cancer progression 

and elucidation of mechanisms for immunotherapy development [23].      

Several challenges must be overcome to explore the full potential of humoral 

immune response as a detection method for early cancers. One set of challenges arises 

from the inherent complexity of the cancer proteome. Proteins in the cancer proteome 

have a vast dynamic range, exceeding 1010 orders of magnitude, coupled with a plethora 

of isoforms and disease heterogeneity [13]. Moreover, many reliable cancer biomarkers 

are low abundance proteins and their concentrations are usually elevated only in 

advanced forms of disease [8]. Given that the humoral immune response is 

heterogeneous, in part because two individuals with the same cancer types may generate 

humoral immune responses to two different antigens, a panel of tumor associated 

antigens is needed for a robust test. Thus, validation of biomarkers discovered from 

several independent studies is critical for the selection of the best combination of markers 

[13].  The challenge that remains is how to reliably use autoantibodies for detecting 

cancer, especially in early stage when clinical appearance has not occurred [23]. 

 

1.3 PROTEOMICS APPROACHES IN HUMORAL IMMUNE RESPONSE 

Despite recent advances in proteomics and microarray technology, the application 

of cancer proteomics to tumor immunology is still in its infancy due to limited 

understanding of the complex array of interaction involved in the immune response to 

cancer. Promising proteomics techniques have allowed the identification of tumor 

antigens and antibodies on a proteome-wide basis, such as cell fractionation, protein 

microarrays, nanospray mass spectrometry, and protein expression profiling of tumors in 
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vivo [23]. The three mainstream proteomics technologies being used to study humoral 

immune response in cancer are serological expression cloning (SEREX), serological 

proteome analysis (SERPA) and protein microarrays[24]. 

One of the first to adopt serological analysis to study humoral immune response, 

serological expression cloning (SEREX) uses cancer patient sera as probes against tumor 

antigens derived from tumor cells or tumor cell lysates to discover novel autoantigens. 

SEREX is unique in that it uses patients’ autologous tumors as mRNA sources and a 

prokaryotic system (e.g. E.coli) for the expression of recombinant proteins to identify 

antigens that react with autoantibodies present in the autologous patient serum. It has 

been used to successfully identify novel tumor biomarkers in several cancers including 

NY-ESO-1 protein in squamous cell carcinoma[25], CAGE-1 in lung cancer[26] and 

GLEA1, GLEA2 and PHF3 in glioblastoma[27]. Many of these tumor biomarkers are 

documented in the Cancer Immunome Database[28] at http://ludwig-

sun5.unil.ch/CancerImmunomeDB/. Unfortunately, SEREX has many disadvantages 

such as the cDNA library preparation is both time consuming and laborious, the use of 

autologous serum and tissues from the same patient yields many false positive detection 

and the use of a prokaryotics system prevents detection of antigens with specific post 

translational modifications[24]. 

A second proteomics approach to study humoral immune response is serological 

proteome analysis (SERPA) which is also based on serological analysis. In principle, 

SERPA combines two conventional proteomics approaches, namely, two dimensional gel 

electrophoresis (2-DE) to separate a complex mixture of proteins extracted from cell 

cultures or tumors and western blotting to detect immunogenic proteins in comparative 

http://ludwig-sun5.unil.ch/CancerImmunomeDB/�
http://ludwig-sun5.unil.ch/CancerImmunomeDB/�
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analysis using sera from the two populations (healthy and cancer)[24]. Compared with 

SEREX, SERPA is less time consuming and less laborious as it does not require 

preparation of a cDNA library for the extracted mRNA from tumor. In addition, SERPA 

is better suited for the detection of possible post translational modification and protein 

isoforms. However, SERPA has one drawback due to the detection limit of 2-DE. Low 

abundance proteins, transmembrane proteins which are hydrophobic and insoluble and 

proteins with extreme isoelectric points are usually difficult to detect by 2-DE. Recent 

advances in mass spectrometry technology with more sensitivity and specificity are 

replacing 2-DE for identification of immunogenic proteins.  

A third proteomics technology used for the identification of tumor antigens 

involves combinatorial phage display. This powerful approach relies on the use of 

bacteriophages to display the antigens that binds to one of the autoantibodies in patient 

serum. Rather than immunoblotting as with SEREX and SERPA, phage display 

expressing tumor antigens are screened and amplified by a process called “bio-spanning,” 

which involves successive rounds of immunoprecipitation of phage libraries using patient 

serum. Bio-spanning enables rapid detection of tumor antigens and requires only a 

minute amount of serum. Phage display technology was used successfully to identify 

several tumor antigens in cancers including prostate cancer[29] and breast cancer[30]. 

Due to the use of a bacteria system, however, phage surface display suffers from the 

same drawback as SEREX does: lack of mammalian post translational modifications. In 

addition, antigens expressed by phage display may not be in the native conformation and 

each selected phage clone must be individually sequenced, therefore increasing the time 

and labor cost[23].  
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1.4 HIGH THROUGHPUT PROTEIN MICROARRAY 

High throughput protein microarray has emerged as the most promising proteomics 

technology to harness the humoral immune response for biomarker discovery. 

Characterized by unique features such as high throughput, miniaturized and capable of 

parallel analysis, protein microarray has become an invaluable and indispensable 

platform for global analysis of the proteome[31]. Publications involving the use of 

protein microarray technology have increased 15-fold from only 10 articles in 2000 to 

152 articles in 2011 (obtained through a simple PubMed search for the term “protein 

microarray” in the title or abstract. Several excellent reviews on protein microarray 

technology were recently published [32-35]. 

Protein microarrays, also known as protein chips, are a miniaturized, parallel assay 

system containing small amounts of purified proteins in high density array format[31]. 

Arrays can be made by fixing a membrane on a microscopic glass slide surface using a 

standard contact or a noncontact microarray printer. While contact printing mechanisms 

are more robust and cheaper, non-contact printers are much more reproducible and 

reliable in scientific studies[36]. Depending on the types of applications, a variety of slide 

surfaces can be used including the popular choices: nitrocellulose, gel-coated, aldehyde- 

and epoxy-derivatized glass surfaces. A typical microarray is the size of a microscopic 

slide and can contain hundreds to many thousands of spots depending on the array format 

and arrayed protein spots diameter. Each spot can contain a set of “bait” molecules 

ranging from antibodies, cell or phage lysates, recombinant proteins or peptides, drugs, or 

nucleic acids[35]. The array is hybridized with either a probe (labeled antibody or ligand) 
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or an unknown biological sample such as a cell lysate or serum sample. The reaction 

signals between the probe and the target are usually measured and recorded by 

fluorescent or radioisotope labeling.   

The field of protein microarray is under rapid development in a variety of 

applications to systems biology. There are four major types of protein microarrays: 1) 

proteome microarrays 2) antibody microarrays 3) reverse phase microarrays and 4) lectin 

microarrays. Each type of microarray is capable of global and high throughput analysis 

for systems biology. Proteome microarrays, as the name suggests, contain the majority or 

all of the open reading frame coded proteins of an organism. It is mainly used for 

unbiased global discovery study. There are two main classes of proteome microarrays: 

traditional protein expression based and in vitro transcription and translation (IVTT) 

based. Expression based proteome microarrays from organisms such as human[37], 

yeast[38] and Escherichia coli[39] have been developed for discovery based expression 

profiling. As compared with the expression based proteome microarrays, IVTT based 

proteome microarrays are less expensive and simpler to fabricate without the need of 

protein purification and expression. Therefore, IVTT based microarrays are widely used 

in serum biomarker studies. For example, an IVTT based approach termed NAPPA 

(Nucleic Acid Programmable Protein Microarray)[40] used to track the humoral response 

in proteome scale and successfully identified a potential panel of 28 autoantibody 

biomarkers for the early detection of breast cancer[9].  

Before proteome microarrays introduction, antibody microarrays and reverse phase 

microarrays were the two main uses of protein array technology for proteome discovery 

and clinical diagnostics[31]. Antibody microarrays are a type of forward phase arrays in 
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which multiple antibodies are arrayed on glass or membrane surfaces. Each array is then 

processed with one test sample to see if the test sample has proteins reactive with all the 

arrayed antibodies. Test samples are usually sera, plasma or cellular lysates for humoral 

immune response profiling in disease related studies. For example, in a study of LoVo 

colon carcinoma cells, Sreekumar et al. [41] created a high density antibody microarray 

with 146 distinct antibodies and were able to obtain proteins differentially expressed in 

colon carcinoma and also involved in radiation-induced up-regulation of apoptotic 

regulators. The main difficulty with antibody microarray is the limited availability of 

antibodies with high specificity and affinity. Haab et al. [42] reported that only 20% of 

the antibodies available are specific enough to use in an antibody microarray. One of the 

long term goals of The Human Proteome Atlas Project is to have a validated specific 

antibody for each protein in the human proteome by 2014[31]. Despite the challenges, 

many commercial antibody arrays are available and the growing list includes RayBiotech 

for cytokine detection, Kineuxs for phosphorylation event monitoring and Clontech with 

its Ab Microarray 500/507 system[32]. Together, these academic and industrial antibody 

microarrays advanced the field of biomarker discovery in human plasma proteome. 

In contrast with antibody microarrays, reverse phase microarrays allow test samples 

such as recombinant proteins or natural proteins extracted from cellular lysates to print 

directly on the slides. As a result, thousands of samples can be analyzed simultaneously. 

The reverse phase microarray is hybridized with a single specific antibody to detect 

protein expression across many samples. While the antibody microarray has better 

specificity, reverse phase microarrays are more robust, more sensitive and higher 

throughput. In addition, since reverse phase microarrays are utilizing cell lysates, they 
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provide information for the analysis of protein post translational modifications. The most 

successful use of reverse phase microarrays is in early screening tests in cancer patients. 

For examples, Paweletz et al. [43] used reverse phase microarrays in the study of the 

progression of prostate tumors and discovered an association between significant 

increases in phosphorylated Akt levels and tumor development, resulting in biomarker 

candidates for early detection of prostate cancers. The biggest challenge in reverse phase 

microarray is the lack of a standard protocol. There are still several different types of 

array platforms and in each platform, there are different protein contents. As a result, data 

from different laboratories are challenging to compare and interpret. In addition, the high 

throughput nature of protein microarrays generates an enormous amount of data that has 

to be both analyzed by bioinformatics tools and validated by statistical analyses. 

 

1.5 BIOINFORMATICS APPROACHES IN HUMORAL IMMUNE RESPONSE  

With the advent of multiplex, high throughput technologies in the “omics” world, 

researchers are beginning to appreciate a systematic multi-omics research method which 

can provide a detailed picture of complex disease processes. This multi-omics strategy 

provides an information-intensive approach to understand the many layers involved in 

producing the phenotype of a complex disease, and ultimately play an important role in a 

holistic understanding of the mechanism underlying the disease phenotype. Now, with 

the large amount of data available to researchers, the need for developing bioinformatics 

tools to synthesize, store, understand and translate biological data into clinical application 

is well recognized. Bioinformatics, being an interdisciplinary subject, successfully 

integrated “omics” technologies such as genomics, proteomics and much more. An 
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example of this integration is how several bioinformatics techniques and methods in 

differential expression analysis can be applied to both genomics and proteomics data, in 

particular DNA microarray and protein microarray. In fact, in a study of characteristics of 

expression profiles of protein microarray in humoral immune response, it has been shown 

that the noise models, normalization, variance estimation and differential expression 

analysis techniques from DNA microarray data analysis can be applied to protein 

microarrays[21]. The remaining challenge is to identify which of these DNA microarray 

analyses are relevant and where and when to adapt them to protein microarray 

analyses[44].    

1.5.1 Normalization 

Normalization is a preprocessing step in the standard microarray data analysis 

pipeline and involves minimizing technical variation introduced during the experimental 

process[45].  Although protein microarrays do share some mechanistic aspects with the 

traditional DNA microarrays, they are quite different in several other respects. One 

noteworthy example is that unlike DNA microarrays, printed spots (features) in protein 

microarrays usually do not contain equal amount of proteins from spot to spot. As a 

result, differences in measured intensity between spots in protein microarrays may not 

reflect biological activities but rather an aspect of microarray construction; hence the 

need for normalization to the total amount of protein per spots[44] which can be obtained 

by hybridizing a protein microarray with a labeled universal protein marker such as 

Sypro Ruby Blot staining (Molecular Probes, Eugene, OR, USA)[46]. 

Another popular alternative for intensity normalization is the so called variance 

stabilizing normalization (vsn) which involves glog2 (generalized logarithm) 
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transformation, a variant of log transformation which can make the variance 

approximately independent of the mean intensity [47]. Vsn normalization has been 

widely used in protein microarrays to remove heteroskedasticity of intensity data [48-49]. 

Sundaresh et al. [21] have applied this method to the malaria dataset and found that the 

correlation between standard deviation and mean intensity after vsn treatment (r=-0.07) is 

much lower than those before vsn treatment (r=0.86). In another study, Luevano et al. 

[49] have claimed that the vsn method can also remove non-specific noise effects and 

effectively calibrate the data; therefore, it is a recommended preprocessing method for 

downstream statistical analyses.   

1.5.2 Differential expression analysis 

Differential expression analysis is used in both clinical genomics and proteomics 

research to identify genes or proteins that are differentially expressed between two 

biological conditions. A traditional approach for data analysis uses a comparison of 

means such as Student’s t-statistics to compare the expression level of two groups, e.g. a 

normal “healthy” group and a disease group, or disease groups with different degrees of 

severity. To perform the analysis, a statistic is computed for each molecular feature (e.g. 

a gene or a protein), and the ensemble of such statistics is assessed using a statistical 

framework such as type-I/type-II error rates, sensitivity/specificity, or false discovery 

rates. This traditional mean-based approach and its variation have been widely used in 

numerous studies to successfully identify gene changes in microarray data [50-52]. In the 

context of protein microarray, Sundaresh et al. [21] demonstrated that approaches based 

on Student t-test such as Bayes regularized t-test or Cyber-T [53], can also be used to 

identify significantly expressed antigens targeted by immune responses in malaria. In 
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another protein microarray study, Zhong et al. [54] used Student t-test to successfully 

identify multiple  non–small cell lung cancer–associated antibodies.   

Another modified differential expression analysis recently raised in popularity is 

based on differential outlier analysis. The underlying assumption of this outlier-based 

approach is that in heterogeneous diseases such as cancers, only a subset of high risk 

samples exhibit altered expression of a particular protein[55]. A number of methods have 

been developed to detect so-called “cancer outlier genes” or genes expressed in only a 

subset of cancer samples. Methods for cancer outlier profile analysis include the COPA 

approach of Tomlins et al.[56], the outlier sum (OS) test[55], the outlier robust t-test[57], 

the MOST method[58], the LSOSS method[59], distribution based outlier-sum 

statistics[60] and others. The overall goal of this thesis is to focus on the challenge of 

analyzing protein microarray data by exploring the potential impact of adapting 

standardized analysis techniques from DNA microarray.     

 

1.6 DISSERTATION OUTLINE 

In this dissertation, we attempt to integrate proteomics and bioinformatics 

approaches to analyze signals from protein microarray data for the reliable identification 

of differentially expressed proteins under different biological conditions. In Chapter 2, 

we present a study comparing outlier-based to traditional mean-based approach in 

differential expression analysis with applications in protein microarray data in 

heterogeneous diseases. Our investigation uses a glycoproteomics dataset from a 

melanoma study, an original simulation-based approach to benchmarking and a new data 

visualization technique to assess the potential for methods that explicitly target 
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heterogeneous patterns of differential expression to give improved performance relative 

to traditional approaches based on group-wise comparison of means. In Chapter 3, we 

apply the outlier strategy to a protein microarray dataset from pancreatic cancer study 

with 37 pancreatic cancer sera, 24 chronic pancreatitis sera and 23 normal sera to identify 

protein biomarkers that are differentially expressed in only a subset of cancer samples. 

Three protein markers which exhibit outlier patterns exclusive to cancer sera and no 

outliers in normal sera are identified by mass spectrometry and confirmed by a follow up 

study with an independent dataset. Chapters 4 presents the application of a label-free 

quantitation approach for measuring changes in protein abundance level associated with 

phosphorylation and glycosylation respectively. Results are the identifications of 

differentially expressed post translational modified proteins such as phosphorylated lamin 

A/C, isoform A and GTPase activating protein binding protein 1 in pancreatic cancer. 

Chapter 5 summarizes overal conclusions from the study and presents ideas for future 

studies. 
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CHAPTER 2  
 

OUTLIER-BASED DIFFERENTIAL EXPRESSION ANALYSIS IN 
PROTEOMICS STUDIES 

 

2.1 INTRODUCTION 

Differential expression analysis is a mainstay of clinical genomics and proteomics 

research and is used to identify genes or proteins that are differentially expressed between 

two conditions. A traditional approach for data analysis uses a comparison of means such 

as Student’s t-statistic to compare the expression level of two groups, e.g. a normal 

“healthy” group and a disease group, or disease groups with different degrees of severity. 

To perform the analysis, a statistic is computed for each molecular feature (e.g. a protein), 

and the ensemble of such statistics is assessed using a statistical framework such as type-

I/type-II error rates, sensitivity/specificity, or false discovery rates. 

Statistics based on mean values, such as Student's t-statistic, perform well when all 

samples in a group share a common mean, with approximately symmetric variation 

around the mean.  We consider this a “homogeneous situation”. In heterogeneous 

diseases such as some forms of cancer including breast [61], lung [62], prostate [63] and 

melanoma cancer [64], only a subset of the high risk samples exhibit altered expression 

of a particular protein, resulting in a skewed distribution. While such skew will shift the 

mean to some degree, the sample mean may not be the most effective way to identify 

such a pattern. Moreover, a differentially expressed feature could be up-regulated in some 

samples, down-regulated in other samples and normally-expressed in others. In this 
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scenario, the mean expression of this gene or protein could be similar among groups and 

thus will not be detected using any mean-based approach. 

One way to account for this heterogeneity and to improve the detection of 

differentially expressed genes or proteins is to adopt a modified differential expression 

statistic that it is more sensitive to heterogeneous patterns of differential expression. To 

this end, a number of methods have been developed to detect so-called “cancer outlier 

genes” or genes expressed in only a subset of cancer samples.  Methods for cancer outlier 

profile analysis include the COPA approach of Tomlins et al. [56], the outlier sum (OS) 

test [55], the outlier robust t-test [57], the MOST method [58], the LSOSS method [59], 

distribution based outlier-sum statistics [60] and others. Compared to the traditional t-

statistic, outlier-based methods have the potential to detect a greater number of 

differentially-expressed genes in heterogeneous data sets, at a lower false discovery rate. 

However these methods are less powerful than approaches based on t-statistics when the 

differential expression is present throughout the distribution, or is concentrated in the 

center of the distribution, as opposed to being concentrated in the tails. Figure 2-1 

illustrates this difference by showing quantile functions corresponding to two 

distributions that are different at all quantile values (Figure 2-1a), and quantile functions 

corresponding to two distributions that differ only in the upper quantiles, or in the right 

tail (Figure 2-1b). 

Focusing on the OS approach to outlier analysis, we used three complementary 

approaches to better understand the circumstances in which outlier-based differential 

expression approaches have the potential to outperform traditional approaches based on 

mean differences (such as Student's t-statistic). First, we used a simulation strategy in 
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which the strength of the outlier-pattern of differential expression and the strength of 

differential expression in the center of the distribution can be independently varied. This 

allowed us to identify the transition point where the outlier pattern is sufficiently strong 

for the outlier-based methods to perform best. We then explored a graphical diagnostic 

that summarizes the patterns of differential expression in a dataset. This diagnostic can be 

used to reveal the relative amounts of outlier-like versus “central” differential expression 

in a dataset. Finally, we used a proteomics dataset of serum samples from melanoma 

patients [65] to contrast the evidence for differential expression obtained using outlier-

based versus mean-based approaches to differential expression analysis.   

Our simulation studies suggest that approaches based on means are most powerful 

when the differential expression is strongest in the center of the distribution, or is equally 

strong at all quantile points. The outlier-based approaches are most powerful when the 

differential expression is concentrated in the tails of the distribution.  Applying our 

graphical diagnostic to the melanoma data set revealed protein fractions that are 

differentially expressed primarily in the distribution centers, and protein fractions that are 

primarily differentially expressed in the distribution tails. However, even the latter 

proteins still showed shifted mean values, and in this moderate-sized dataset, the outlier 

approach did not identify any differential expression that was not also captured by the t-

statistics (at a fixed significance level). However, inspection of distribution patterns did 

reveal an outlier-like pattern in several of the differentially expressed proteins, which 

may aid in understanding their mechanistic roles, or help to better define their utility as 

biomarkers. 
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2.2 MATERIALS AND METHODS 

2.2.1 Outlier sum 

The outlier sum (OS) statistic is intended to detect a difference between two 

statistical distributions that is concentrated in one or both tails of the distributions.  In 

terms of data, the difference in the tails results in the presence of “outliers” in one of the 

two sets of samples being compared.  Outlier sum analysis contrasts a reference set of 

samples to a second set of samples in which outliers may be present. The reference set 

can be chosen as the one corresponding to lower risk subjects (e.g., subjects who are 

healthy, have benign lesions, or have slowly progressing disease), with outliers assessed 

in the contrasting higher risk group.  Alternatively, we can consider the reference set to 

be the higher risk set, based on the idea that the greater part of the low-risk set may 

already be moving toward a more adverse state, with a smaller fraction of the low-risk set 

(the outliers) not having yet made this transition. 

For a given molecular feature, an outlier is defined as an observed value that is 

greater than the 75th percentile plus the interquartile range (IQR), or less than the 25th 

percentile minus the IQR. A high OS score means that either a large number of outliers is 

present (in the non-reference set relative to the reference set), or that a few strong outliers 

are present. The outlier score for molecular feature i is defined as max(|Wi|, |Wi’|), where: 
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Note that x’ij denotes normalized expression value of molecular feature i in sample j, C2 

denotes the non-reference set in which we are assessing for outlier samples, q25(i), q75(i), 

and IQR(i) represent, respectively, the 25th percentile, the 75th percentile, and the 

interquartile range for molecular feature i. 

2.2.2 Simulation study 

Previous simulation studies evaluating outlier-based differential expression methods 

have used Gaussian mixtures [55, 60, 66], or t-distributions [60] to produce synthetic data 

with outlier-type patterns of differential expression. To understand the operating 

characteristics of outlier-based differential expression analysis in more detail, we used a 

simulation approach in which the strength of differential expression in the tails and the 

strength of differential expression in the center of the distribution can be independently 

varied. 

Our simulation studies are defined in terms of the quantile function Q(p) of the 

distribution of expression values. The defining property of the quantile function is that a 

value drawn from the distribution has probability p of being less than or equal to Q(p).  

The simplest form of differential expression is a constant shift of the quantile function, 

shifting all quantiles, as well as the mean, by the same amount (Figure 2-1a). To produce 

outlier-like differential expression (Figure 2-1b), we shifted the quantile function with a 

“hinge function” of the form H(p; k, k0) = k*(p-p0)*I(p>=p0), where I() is the indicator 

function that is equal to one when p>=p0 and zero otherwise. The slope parameter k 

controls how strongly H deviates from a constant function. When we compare a quantile 

function Q1(p) to a hinge-shifted quantile function Q2(p) = Q1(p) + H(p; k, k0), we find 

that the quantiles agree up to the p0
th quantile, but the quantiles for p>p0 are greater under 
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Q2 compared to Q1. This represents an ideal setting for outlier-based analysis, with the 

advantage becoming stronger as the slope parameter k increases. We note that this 

construction maintains continuity of the quantile function, consistent with proteomics and 

genomics data that we have observed. 

To aid in interpretation of the simulation studies, all comparisons were made under a 

fixed value for Cohen's-d effect size [67-68]. We make two types of comparisons – one in 

which Q1(p) and Q2(p) are constant shifts of each other (i.e. Q2(p) = Q1(p) + k), and one 

in which Q2(p) and Q1(p) are shifted by a hinge function. In the former case, the value of 

Cohen's d is fixed by setting the value of k. In the latter case, the value of Cohen's d is 

fixed by adjusting the values of p0 for a given value of k. Since Cohen's d can be fixed by 

varying only the parameter p0 of the hinge function, the slope parameter was available for 

us to change to control the strength of the outlier pattern.  This gives us the ability to 

independently control the differential expression at the center of the distribution and in 

the tail of the distribution. In all our simulations, we used a normal distribution to 

determine the baseline quantile function Q1(p), but note that Q2(p) is not normal in the 

hinge-shifted case. 

For each type of data distribution, we compared the power of the t-statistic and 

outlier sum approaches for detecting differential expression at the conventional type-I 

error rate of 0.05. This was done for various sample sizes (N=50, 100, 200) and Cohen’s-

d effect sizes (0, 0.1, 0.2, 0.3, 0.4). The power for detecting differential expression using 

t-statistics under normal populations for Q1 and Q2 was based on the normal 

approximation to the power function. All other power results were obtained using 

simulation. Specifically, the power of the outlier sum approach was estimated as the 
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proportion of simulation runs that reject the null hypothesis of no differential expression 

at the given significance level (0.05). Since the outlier sum statistic does not have a 

tractable null distribution, simulation under Q(p) was used to determine the decision 

threshold. We used 1000 replications for all simulation studies. 

2.2.3 Graphical diagnostics 

To summarize the pattern of differential expression in the ith protein, we considered 

the difference Di = Qi1 – Qi2  between the estimated quantile functions Qi1 and Qi2, for the 

two groups of samples being compared. For a fixed grid of probability points, the 

difference in quantile functions Di  was constructed for each protein, and summarized 

using principal components analysis (PCA). PCA captures the most important directions 

of variation in the Di, relative to their mean.   

For example, a constant principal component corresponds to constant translation 

between the quantile functions, producing equal levels of differential expression at all 

quantiles. A linearly increasing principal component corresponds to differential 

expression that changes linearly across the quantiles. In practice, these principal 

components are interpreted relative to the mean value of D, as demonstrated in the 

analysis of the melanoma data below. The proportion of variance explained by a given 

principal component indicates the extent to which a particular form of differential 

expression is present in a dataset. This in turn can be related to differences in statistical 

power for detecting differentially expressed proteins.   

2.2.4 Case study: melanoma dataset 

In melanoma, metastasis to sentinel lymph nodes signals a more advanced stage of 

melanoma, and sentinel lymph node biopsy is common for its prognostic value. A 
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melanoma dataset was used to explore the utility of serum autoantibodies as biomarkers 

to distinguish between “node-negative” and “node-positive” melanoma as described by 

Liu et al. [65]. Node-positive status indicates metastasis to a sentinel lymph node, while 

node-negative status indicates the absence of metastasis, and thus an earlier stage of 

cancer. The dataset consisted of 43 serum samples from patients with melanoma - 26 

from node-negative melanoma and 17 from node-positive melanoma. Using methods 

described by Liu et al. [65], a panel of 47 glycoprotein fractions was extracted from a 

melanoma cell line to bind to (and enable detection of ) autoantibodies in the patient 

serum samples. The dataset was presented as a matrix of signal intensity data with 43 

columns corresponding to serum samples and 47 rows corresponding to cell line-derived 

protein fractions. We applied our graphical procedure to this dataset, and calculated t-

statistics and OS statistics for each of the 47 glycoprotein fractions. 

 

2.3 RESULTS 

Figure 2-2 shows the results of power analysis based on simulation, in the setting 

where Q2 and Q1 are shifted relative to each other (or equivalently, D is constant). In this 

setting, the differential expression is homogeneous in that all quantiles, and the mean 

value, differ by the same amount.  The Student t-method provides greater power than the 

OS method for all effect sizes and sample sizes considered. 

Figure 2-3 shows selected results for the setting where Q1 and Q2 differ by a hinge 

function. The slope parameter k is plotted on the horizontal axis, and reflects the degree 

to which the differential expression is concentrated in the distribution tails. We thus 
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expect that the OS method will perform relatively well compared to the Student-t method 

as this parameter increases. The effect size indicated in each plot is Cohen's d. 

The powers of both the OS and Student-t methods increase with increasing effect 

size. When the effect size is small, the OS method outperforms the Student-t method for 

all tested values of the slope (k), but when the power is somewhat greater, the Student-t 

method performs better for smaller values of the slope parameter. The first row of Figure 

2-3 shows that when no differential expression is present, both methods maintain the 

correct type-I error rate. Taken together, Figures 2-2 and 2-3 indicate that when the data 

distribution is approximately homogeneous, the Student t-method outperforms the OS 

method. But when heterogeneity is present and the differential expression is stronger in 

the tails, the OS method can outperform the Student t-method. For a fixed level of 

strength of the outlier pattern (represented by the slope parameter k), the OS method 

performs increasingly better relative to the Student t-method as the power increases, 

either due to a larger sample size, or a larger effect size. 

We applied our graphical diagnostic procedure to the melanoma dataset to capture 

the major patterns of differential expression in the 47 glycoprotein fractions.  For each 

fraction, the estimated quantile differences Di between the node-positive group and the 

node-negative group were constructed using the eleven deciles (i.e. 0, 0.1, 0.2 … 1) as 

probability points. 

Figure 2-4 shows the results of applying principal components analysis to the Di 

vectors.  The mean value of Di (across the 47 fractions) is shown as the broken line in 

both plots.  The solid curves show the mean plus two different multiples of the first 

principal component (left plot) and of the second principal component (right plot).  The 
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multiples used in the plots were the 5th and 95th percentiles of the corresponding principal 

component scores.  These two dominant principal components explain 61% and 22% of 

the variance, respectively. The variation resulting from the dominant PC is approximately 

a vertical translation of the quantile function, in which all quantiles are shifted by roughly 

the same amount, but the slope is unaffected. The variation resulting from the second PC 

primarily affects the slope of the quantile function, shifting the pattern of differential 

expression from the center of the distribution to the tails. Thus we find that an outlier 

pattern of differential expression may play a role in these data, but it is not as prominent 

as a simple shifting pattern. 

We next considered how the Student-t and OS statistics relate to patterns of 

differences in the quantile functions. The center panel of Figure 2-5 shows a scatterplot 

of the t-statistics and OS statistics in the 47 protein fractions.  The two statistics are 

weakly positively correlated, but there are numerous fractions where one statistic is large 

while the other is not. Thus the statistics are capturing partially overlapping information, 

with the potential for either statistic to capture information that is complementary to the 

other. 

The five panels of Figure 2-5 surrounding the central scatterplot show examples of 

quantile functions corresponding to five of the 47 fractions. When the Student t statistic is 

large but the OS statistic is close to zero, as in fractions 14 and 23, the pattern of 

differential expression is approximately a translation.  When the OS statistic is large, the 

pattern of differential expression is more hinge-like, as in fractions 19 and 39.  When 

both statistics are small (e.g. fraction 5), there is no differential expression of any type.  

These plots show that the OS and t-statistics are capturing complementary patterns of 
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differential expression, and that protein fractions showing both of these complementary 

patterns can be found in this data set. 

Finally, we assessed the statistical evidence for differential expression in each 

fraction using the Student t-statistic and the OS statistic. Nominal p-values (not adjusted 

for multiple comparisons) were obtained using permutation analysis with 1000 

permutation replications.  We found 15 fractions to have nominal significance using the t-

statistic, and 1 fraction to have nominal significance using the OS statistic.  All fractions 

that were significant under the OS statistic were also significant under the t-statistic, 

indicating that in this dataset, the OS approach was unable to uniquely identify any 

significant fractions. We noted that the OS statistic p-values were non-monotonic 

functions of the OS statistic magnitudes, which can be explained by the strong 

dependence of the OS statistic's sampling distribution on the overall shape of the 

distribution, including the shape of the tails. In contrast, the t-statistic p-values were 

perfectly monotone in the t-statistic magnitudes. 

 

2.4 DISCUSSION AND CONCLUSIONS 

A standard model of cancer holds that cancer-related pathways are activated by 

expression of oncogenes [69-70]. However, changes in oncogene expression levels, and 

of their targets are not universal among individuals with the same cancer [61, 71]. This 

heterogeneity complicates efforts to identify cancer biomarkers for general use. For this 

and other reasons, regulatory agencies like the Food and Drug Administration often 

consider cancer biomarker assays as “high-risk”, and the regulatory path for biomarker-

based diagnostic and prognostic tests is directed by this risk classification. Regulatory 
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approval of cancer diagnostic devices requires a deep understanding of the device's 

operating characteristics, especially in terms of false negative and false positive results. 

The presence of heterogeneity as explored here complicates efforts to understand these 

operating characteristics. 

Here we have illustrated that when power considerations are favorable, the OS 

statistic has improved power relative to the Student t-statistic for identifying patterns of 

differential expression that are concentrated in one or both tails of a distribution.  When 

the pattern of differential expression is present to an approximately equal degree at all 

quantiles of the distribution, or is concentrated in the center of the distribution, 

approaches based on means, like the Student t-statistic, can be more powerful than the OS 

approach.  The potential advantage of the OS approach depends on the sample sizes and 

effect sizes being such that the t-statistic dominates the OS statistic only for a small range 

of strongly symmetric distributions. Using our graphical diagnostic approach, and 

inspecting the test results for the melanoma data set, it seems that power considerations 

for the melanoma data favor more traditional mean-based approaches.  A further 

complicating factor for use of the OS statistic is the appearance of non-monotonic 

patterns between the test statistic magnitudes and the corresponding p-values. 

Nevertheless, by inspecting the pattern of differential expression in the protein fractions 

identified using Students t-statistic, we were able to identify several protein fractions 

showing a prominent hinge-like pattern of differential expression. 

While outlier-based analysis approaches offer the potential to extract useful 

information from studies that yield minimal interesting results from conventional 

methods, these biomarkers are by definition limited in their predictive power in an 
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unselected population. As illustrated in the melanoma study, even markers that are 

identified using traditional approaches like the Student t-method may turn out to have a 

heterogeneous pattern of differential expression. Thus, we anticipate that while outlier-

oriented statistics like the OS statistic may play a useful role, especially in larger studies, 

another important consequence of these efforts will result from the more widespread 

adoption of methods to characterize the detailed pattern of differential expression of 

candidate biomarkers identified through traditional approaches.     
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Figure 2-1: Quantile functions of illustrating differential expression with a constant shift 
of all quantiles (a) and with outlier-like differential expression that is present only in the 
right tail (b). 

 
 
 

 

Figure 2-2: Power for Student t analysis and outlier sum analysis for homogeneous data. 
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Figure 2-3: Power for Student t analysis and outlier sum analysis for heterogeneous data 
(rows 2 and 3) and for equally distributed data (row 1).  
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Figure 2-4: The mean of the quantile function difference Di over the 47 protein fractions 
is shown (broken line), along with plots of the mean plus two different multiples of the 
first principal component (left) and the second principal component (right). 

  



33 
 

 

Figure 2-5: Scatterplot of OS statistic values (vertical axis) against t-statistic values 
(horizontal axis).  Surrounding the central scatterplot are five examples of estimated 
quantile functions for the expression values of specific protein fractions. 
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CHAPTER 3  
 

THE IDENTIFICATION OF AUTOANTIBODIES IN PANCREATIC 
CANCER PATIENT SERA USING A NATURALLY FRACTIONATED 

PANC-1 CELL LINE1

 
 

3.1 INTRODUCTION 

Pancreatic adenocarcinoma is the 4th leading cause of cancer-related death in the 

United States [1]. Patients with pancreatic ductal adenocarcinoma (PDAC) have one of 

the poorest survival rates of any cancers. According to the American Cancer Society, for 

all stages of pancreatic cancer combined, the one-year relative survival rate is 20%, and 

the five-year rate is 4% [1]. These low-survival rates result from the failure to diagnose 

PDAC at an early stage when the possibility of a curative resection still exists. This is due 

to a variety of factors including the inaccessible location of the pancreas deep in the 

abdomen, late-presenting clinical manifestations (e.g., weight loss, or abdominal pain), 

and the early development of metastasis. Fewer than 10% of patients' tumors are confined 

to the pancreas when in most cases, diagnosis of 80% to 90% of PDAC cases are too late 

for surgical procedures to have a positive outcome[72]. Unfortunately there are not any 

available diagnostic tools that allow for detection of early stage pancreatic cancer. 

Although there has been an effort to find protein markers in serum, none have shown 

sufficient sensitivity and specificity for early diagnosis. This includes the commonly used 

                                                 
1 Reprinted from Li, C., H.-Y. Kim, H. Vuong, T. Patwa, M. Pal, R.E. Brand, D.M. Simeone and D.M. 
Lubman; The identification of auto-antibodies in pancreatic cancer patient sera using a naturally 
fractionated Panc-1 cell line. Copyright (2010), with permission from IOS Press. 
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CA 19-9 test [73-74] which may be significantly increased in pancreatitis in addition to 

pancreatic cancer, and is not reliably elevated in early stage cancer. 

There remains a need for the discovery of innovative serological biomarkers that 

effectively improve diagnosis and prognosis of human cancer. Antibody responses 

associated with the occurrence and progression of solid tumors have been identified in 

multiple cancer types [75-77]. The underlying mechanism of the auto-immune response is 

still not fully understood [78]. However, the known molecular changes that can induce 

auto-immune response include proteins expressed at an aberrant level, mutated gene 

products, and isoforms of proteins with abnormal post-translational modifications (PTMs) 

[79-81]. The immunogenic proteins are often found to be intracellular proteins whose 

functions are linked to the onset and growth of malignant tumors, such as oncoproteins 

HER-2/Neu and c-MYC [82-84] and tumor suppression proteins such as p53 [85]. 

Although research has suggested strong correlation between the presence of some 

autoantibodies and the process of tumorigenesis, the frequency of the appearance of 

autoantibodies in cancer patients varies i.e. elevated level of a specific autoantibody is 

always present in a variable subset of patients [76].  A mutation in the p53 gene elicits an 

autoimmune response in 4-30% of patients in several types of cancer [85]. Around 30% of 

patients with lung adenocarcinoma exhibit a humoral response to glycosylated annexins I 

and/or II whereas none of the noncancerous standards exhibit such a response [86]. In 

PDAC, autoantibodies to DEAD-box protein 48 were observed in 33.3% of pancreatic 

patient sera, while none of the patients with benign disease and healthy controls showed 

reactivity against the antigen [87]. MUC1 [88-89], p53 [90] and Rad51 [89] have also 

shown restricted immune reactivity in a subset of cancer samples. The typical frequency 
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of the detection of a particular autoantibody in a cancer type is 10-20% and may not be 

sufficient when used as a biomarker individually, but may be combined as a panel for 

improved performance [91-93]. 

Adding new cancer specific autoantigens to the existing biomarker repertoire is the 

impetus of developing new analytical and statistical techniques for auto-immune response 

studies. There are several approaches currently available for the identification of auto-

antigens.  One is targeting specific proteins or gene products known for their roles in 

cancer including p53, c-myc, and erB-2 [94]. This method only provides limited 

candidates for biomarkers. Recombinant protein microarrays produced from cDNA 

expression libraries has been used as a comprehensive antigen substrate to profile the 

autoimmune reactivity; however, it is unable to profile posttranslational modification 

(PTM) dependent antibody-antigen interactions [76]. The development of proteomic 

separation and identification techniques has benefited the discovery of autoantibody 

biomarkers, where proteins from tissue or cell lines are fractionated by gel or liquid based 

multidimensional separations, while maintaining the natural PTMs. 

In this chapter, we present our use of liquid fractionation methods to produce 

microarrays for the humoral response experiment against a Panc-1 pancreatic cancer cell 

line. The methods involve separating intact proteins from cell lysates using two 

dimensions. A total cell fractionation can be performed using chromatofocusing 

separation in the first dimension where the proteins are fractionated according to pI.  Each 

fraction is then separated in a second dimension by nonporous silica RP HPLC [95]. 

Using this method, isolated proteins in the liquid phase can be collected for spotting on 

coated glass slides [96]. The protein spots are probed for their humoral response by 
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exposing them to sera from cancer, chronic pancreatitis patients, and normal individuals. 

This method offers a means for comprehensive proteomic analysis of proteins from large 

numbers of purified proteins as expressed in cancer cells while maintaining their PTMs 

that are often critical to the humoral response [97]. The method can produce arrays with 

over a thousand spots and can produce large numbers of slides for testing the response 

against a large number of patients. 

In order to account for the fact that a specific autoantibody is more often found in 

only a subset of the patients with the corresponding tumor, we attempt to apply two 

statistical methods, Wilcoxon rank-sum test and outlier-sum statistics [98], to find 

potential markers that show different types of immune reactivity patterns. Based on our 

results we perform a confirmation study of 5 potential markers for pancreatic cancer 

against recombinant proteins on a microarray-based format against samples from 

pancreatic cancer, pancreatitis, type 2 diabetes and normal controls. For three of the five 

proteins, a substantial number of samples from the cancer group show higher reactivity 

than the non-cancer samples. 

 

3.2 EXPERIMENTAL SECTION 

3.2.1 Chemicals 

Methanol, acetonitrile, urea, thiourea, iminodiacetic acid, dithiothreitol (DTT), n-

octyl-D-glucopyranoside (OG), glycerol, bis-tris, Trifluoroacetic acid (TFA), and PMSF 

(Phenylmethanesulfonyl fluoride) were purchased from Sigma (St. Louis, MO). Water 

was purified using a Milli-Q water filtration system (Millipore Inc., Bedford, MA) and all 

solvents were HPLC grade unless otherwise specified. Reagents were used in the purest 
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form commercially available. Polybuffer 74 and polybuffer 96 were purchased from GE 

Healthcare Bio-Sciences Corp. (Piscataway, NJ). 1x PBS and ultra pure DNase/RNase-

free distilled water were obtained from Invitrogen (Carlsbad, CA). 

3.2.2 Serum samples 

As a discovery set, 86 serum samples were obtained at the time of diagnosis 

following informed consent using IRB-approved guidelines. Sera were obtained from 

patients with a confirmed diagnosis of pancreatic adenocarcinoma in the 

Multidisciplinary Pancreatic Tumor clinic at the University of Michigan Hospital. 

Inclusion criteria for the study included patients with a confirmed diagnosis of pancreatic 

cancer, the ability to provide written informed consent and the ability to provide 40 ml of 

blood. Exclusion criteria included inability to provide informed consent, patients actively 

undergoing chemotherapy or radiation therapy for pancreatic cancer and patients with 

other malignancies diagnosed or treated within the last 5 years. Sera were also obtained 

from patients with chronic pancreatitis who were seen in the Gastroenterology Clinic at 

University of Michigan Medical Center and from control healthy individuals collected at 

the University of Michigan under the auspices of the Early Detection Research Network 

(EDRN). Some pancreatic cancer samples were obtained under IRB approval from 

University of Pittsburg Medical Center and process similarly following EDRN guidelines. 

The mean age of the tumor group was 65.4 years (range 54-74 years) and the chronic 

pancreatitis group was 54 years (range 45-65 years). The sera from the normal subject 

group and the tumor group were similar in age and sex. The chronic pancreatitis group 

was sampled when there were no symptoms of acute flare of their diseases. All sera were 

processed using identical procedures. The samples were permitted to sit at room 
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temperature for a minimum of 30 minutes and a maximum of 60 minutes to allow the clot 

to form in the red top tubes, and then centrifuged at 1,300 x g at 4oC for 20 minutes. The 

serum was removed, transferred to polypropylene, capped tubes in 1 ml aliquots, and 

frozen. The frozen samples were stored at -70oC until assayed. All serum samples were 

labeled with a unique identifier to protect the confidentiality of the patient. None of the 

samples were thawed more than twice before analysis. In addition to the discovery set, 

another set of samples with no overlap with the discovery set was used in the 

confirmation experiment. The demographic and clinical information of the samples in the 

confirmation set are shown in Table 3-1. 

3.2.3 Cell culture 

The Panc-1 PDAC cell line was cultured in Dulbecco’s modified Eagle medium 

supplemented with 10% fetal bovine serum, 100 units/mL penicillin and 100 units /mL 

streptomycin (Invitrogen, Carlsbad, CA). Upon reaching 80% confidence, the cells were 

washed twice in 10mL 1X PBS containing 4mM Na3VO4, 10mM NaF and one half of a 

protease inhibitor cocktail tablet. The sample was then solubilized in 300ul lysis buffer 

consisting of 7M urea, 2M thiourea, 100mM DTT, 0.5% biolyte ampholyte 3-10, 2% OG, 

4mM Na3VO4, 10mM NaF and 1mM PMSF at room temperature for 30min, followed by 

centrifugation at 35000 rpm at 4oC for 1 hour. The supernatant was stored at -80°C until 

further use. 

3.2.4 Chromatofocusing (CF) 

Prior to CF, a PD10 column (Amersham Biosciences) was used to exchange the 

cell lysate from the lysis buffer solution to the CF buffer solution according to the 

manufacturer’s protocols. The start buffer consisted of 6M Urea, 0.2% OG, 25mM bis-
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tris. The elution buffer solution was composed of 6M urea, 0.2% OG, and a 10 fold 

dilution of polybuffer 96 and polybuffer 74 in a ratio of 3:7. The pH of both buffer 

solutions (7.9, 4.0) was adjusted with saturated iminodiacetic acid. A CF column (weak 

anion exchange HPCF-1D prep column, 250mm x 4.6mm ID, Eprogen, Darien, IL) was 

preequilibrated with the start buffer solution and 13mg of the cell lysate was injected into 

the CF column with multiple injections. Fractionation was started after switching elution 

buffer and a stable baseline achieved. The pH fractions were collected in 0.3 pH intervals 

and pH was monitored using a flow-through on-line pH probe. UV absorption was 

recorded at 280 nm. When a pH of 4.0 was reached, elution buffer solution was switched 

to a 1M NaCl solution to wash the column followed by isopropanol to elute out strongly 

bound proteins from the column. The collected fractions were stored at -80°C. 

3.2.5 Reverse Phase HPLC Separation 

An ODS-1 (8 x 33 mm) column (Eprogen, Inc.) was used to separate the pH 

fractions of the Panc-1 cell line after CF. Solvent A was 0.1% TFA in water and solvent 

B was 0.1% TFA in acetonitrile. The gradient was run from 5% to 15% B in 1 minute, 15% 

to 25% in 2 minutes, 25% to 31% in 2 minutes, 31% to 45% in 10 minutes, 41% to 47% 

in 6 minutes, 47% to 67% in 4 minutes, 67% to 100% B in 3 minutes, and reduced to 5% 

B in 1 minute after maintaining 100% B for 1 minute. The flow rate was 1 mL/min and 

the column temperature was 65°C. UV absorption was monitored at 214 nm. The 

fractions were collected in 96-well plates and stored at -80°C. 

3.2.6 Protein Microarrays  

Approximately 30% of the total sample of the fractionated Panc-1 proteins 

obtained using 2D separation were transferred into 96-well printing plates (Bio-Rad) and 
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lypholized to dryness. The fractions were reconstituted in printing buffer which was 

composed of 62.5mM Tris-HCl (pH 6.8), 1% w/v sodium dodecyl sulfate (SDS), 5% w/v 

dithiothreitol (DTT) and 1% glycerol in 1X phosphate buffered saline (PBS). 

Reconstituted fractions in the printing plate were placed in a shaker overnight at 4°C. The 

fractions from the printing plate were spotted onto nitrocellulose slides using a non-

contact piezoelectric printer (Nano-PlotterTM NP2.1 GeSiM). Each spot contained 2.5nL 

of liquid of ~450µm diameter and the distance between spots was 600µm. Printed slides 

were dried on the printer deck overnight and stored in a refrigerator desiccated at 4°C if 

the slides were not used immediately. 

3.2.7 Hybridization of slides 

The printed slides were blocked in a solution of 1% BSA in PBS-T (0.1%) 

overnight. Each serum sample was diluted 1:400 in probe buffer which consisted of 1% 

BSA, 0.5mM DTT, 5mM magnesium chloride, 0.05% Triton X-100 and 5% glycerol in 

1X PBS. The slides were hybridized in diluted serum for 2 hours using a mini-rotator at 

4°C. After hybridization, slides were washed five times using probe buffer for 5 minutes 

each time, and then rehybridized with goat anti-human IgG conjugated with Alexafluor 

647 (1µg/mL, Invitrogen, Calsbad, CA) for 1 hour at 4°C. The slides were washed five 

times again with probe buffer for 5 minutes each and dried. All slides were scanned using 

an Axon 4000B microarray scanner (Axon Instruments Inc., Foster City, CA). 

3.2.8 Data acquisition and analysis 

3.2.8.1 LC-MS/MS  

The residual two-thirds of the sample in 96-well plates which was not used in 

microarray experiments were dried down to approximately 10µL and mixed with 10% 



42 
 

(v/v) ammonium bicarbonate, 10% (v/v) DTT, and 1:50 ratio (v/v) TPCK-treated trypsin 

(Promega, Madison, WI). The solution was incubated at 37°C overnight and the tryptic 

digestion was terminated by addition of 2.5% (v/v) of TFA. The digested peptide mixture 

was analyzed by nano-flow reverse-phase LC/MS/MS using the LTQ mass spectrometer 

with a nano-spray ESI ion source (Thermo, San Jose, CA). The samples were separated 

using a (0.1 x 150mm) capillary reverse phase column (Michrom Bioresources, Auburn, 

CA) with a flow rate of 5ul/min. An acetonitrile:water gradient method was used, starting 

with 5% acetonitrile which was ramped to 60% in 25 minutes and to 90% in another 5 

minutes. Both solvent A (water) and B (acetonitrile) contained 0.3% formic acid. The 

electrospray voltage was 2.6kV, with a capillary temperature of 200°C and a capillary 

voltage of 4kV. The normalized collision energy was set at 35% for MS/MS. The MS/MS 

spectra obtained were analyzed using the Sequest feature of Bioworks 3.1 SR1, allowing 

only one missed cleavage during Swiss-Prot human protein database searching. To 

further validate data obtained from Sequest, Protein ProphetTM and Peptide ProphetTM 

software modified in house was used to provide a confidence level in identification of 

95%. Since there might be more than one protein in a protein spot on the microarray slide, 

we compared proteins identified in adjacent fractions. If the spot that responded to the 

humoral response was unique and did not have an adjacent spot that lit up then the 

highest scoring protein based on LC/MS/MS analysis and Protein ProphetTM and Peptide 

ProphetTM was considered as the most likely identification. If more than one protein was 

identified in the spot, we performed mass spectrometry analysis on the adjacent spots. If 

the proteins were identified in the adjacent spots that did not respond then they were 

likely not to be the protein with the humoral response in our unique spot. However, if 
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adjacent spots also showed a humoral response then the protein present in all spots was 

considered as the most likely candidate. 

3.3.8.2 Statistical Analysis 

GenePix 6.0 software was used to grid all spots to determine the fluorescent 

intensities at wavelength 635nm and median local background intensities for each spot. 

Background subtracted intensities of the spots were taken into analysis if the foreground 

intensity was at least twice the background intensity (i.e. signal to noise ratio is greater 

than 2). The signal intensities from all the slides were normalized to minimize 

experimental slide-to-slide variation. The data for each individual sample in the columns 

was centered by the median and scaled by the interquartile range (IQR). Two types of 

statistical analysis were applied to the normalized data in search of biomarkers with up-

regulated response in the cancer samples compared to the normal and pancreatitis 

samples. The non-parametric Wilcoxon rank-sum test was employed to identify fractions 

showing a universally increased reactivity in the cancer samples. The outlier-sum test 

was performed to select the fractions that react with only a subset of the samples in the 

cancer group. 

3.2.8.3 Wilcoxon rank-sum test 

Two pairwise Wilcoxon rank-sum tests were performed between cancer versus 

normal and cancer versus pancreatitis. The fractions with the lowest p-value and minimal 

correlation were combined in Receiver Operation Characteristic (ROC) analyses to 

determine their sensitivity and specificity in differentiating the sample groups. The 

Wilcoxon rank-sum tests and the ROC analyses are programmed in R. 

 3.2.8.4 Heatmap 
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The fractions with a p-value less than 0.02 in Wilcoxon rank-sum tests were 

clustered and shown in heatmaps. The p<0.02 threshold was determined to have proper 

numbers of fractions to show in the heatmaps. The heatmaps and dendrograms were 

drawn in R. 

3.2.8.5 Outlier-sum statistics (OS) 

The dataset was first standardized for each fraction by subsequently subtracting 

the median and dividing the median absolute deviation (MAD).  The 75% quartile (q(75)) 

plus the interquartile range (q(75)+IQR) was used as a threshold. The data points beyond 

this threshold were defined as the outliers. The outlier-sum statistic is the sum of the 

values of these data points in the cancer groups.  Fractions with outlier-sum statistics 

ranked top 5% and no outliers in the normal groups were considered to be differential. 

The overlapping fractions found in the pairwise comparisons between cancer/normal and 

cancer/pancreatitis were presented in a bar graph form (Figure 3-1) (made in R with 

COPA package). 

3.2.8.6 Confirmation Using Recombinant Proteins 

Recombinant proteins were purchased from Abnova Corporation (Taiwan) and 

Genway Biotech Inc., (San Diego, CA). The concentration of each recombinant protein 

was 10ug/mL. A piezoelectric non-contact printer (Nano-PlotterTM NP2.1, GeSIM) was 

used to print all the recombinant protein arrays on ultra thin nitrocellulose slides (PATH 

slides, GenTel Bioscience). Each spotting event which resulted in 500 pL of solution 

being deposited was programmed to occur 5 times per spot to ensure that 2.5 nL of 

solution was deposited on each spot. Each recombinant protein was printed in triplicate 

and 14 identical blocks were printed on each slide. The slides were washed three times 
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with 0.1% Tween in PBS buffer (PBS-T 0.1) and then blocked with 1% bovine serum 

albumin (Roche) in PBS-T 0.1 for one hour. The blocked slides were dried by 

centrifugation and inserted into a SIMplex (GenTel Bioscience) multi-array device which 

divided each of the slides by 16 wells. The wells separated the neighboring blocks and 

prevented cross contamination. Serum samples were diluted ten times with PBS-T 0.1 

containing 0.1% Brij. One hundred microliters of each diluted sample was applied to the 

recombinant protein arrays and the hybridization was performed in a humidified chamber 

for one hour. The 165 samples from different groups were perfectly balanced on each 

slide to eliminate bias from block-to-block variation and slide-to-slide variation. Two 

blocks on each of the slides were hybridized with two specific samples and used as 

control blocks for data normalization. The slides were then rinsed three times to remove 

unbound proteins. One ug/mL goat anti-human IgG conjugated with Alexafluor647 

(Invitrogen, Carlsbad, CA) solution was used for detection. After a second one-hour 

hybridization with anti-human IgG, the slides were washed and dried again, then scanned 

with a microarray scanner (Axon 4000A). The program Genepix Pro 6.0 was used to 

extract the numerical data. The signals from different slides were normalized with the 

averaged signal of the control blocks on each slide. 

 

3.3 RESULTS AND DISCUSSION 

The proteins from Panc-1 human pancreatic ductal adenocarcinoma (PDAC) cell 

line were used as bait to study the humoral response in pancreatic cancer since the Panc-1 

cell line is a good representative sample of human pancreatic cancer [99]. The overall 

analytical work flow is illustrated in Figure 3-2. The solubilized protein solution 
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extracted from Panc-1 cell line was fractionated using 2-D liquid separation methods as 

described consisting of chromatofocusing in the first dimension followed by nonporous 

reversed phase HPLC where intact proteins were collected as the final products. Fraction 

collection was performed where liquid eluent from each chromatographic peak was 

collected into 96-well plates. Each collected protein fraction was separated into two parts 

for further work. One portion was used for spotting the microarray plates and the other 

portion was used for protein identification based on LC-MS/MS. There were 1052 

protein peaks obtained over a pH range of 8.0-4.0 spotted using the microarray device 

onto each nitrocellulose coated glass slide. Each slide was hybridized against a patient 

serum sample where the humoral response was profiled in 37 cancer serum samples, 24 

pancreatitis serum samples, and 23 normal controls. Statistical analysis including non-

parametric Wilcoxon rank-sum tests and outlier-sum statistics were then performed over 

this sample set to determine which proteins provided a significant response to patient sera. 

For the selection of identified proteins, a confirmation study using a second independent 

set of 168 serum samples was performed where five recombinant proteins were arrayed 

on nitrocellulose slides and probed with serum from a separate cohort of normal, 

pancreatitis, type 2 diabetes, and pancreatic cancer patients. 

3.3.1 Microarray Result of Humoral Response 

The heterogeneity of humoral response has been displayed in a substantial 

percentage of patients with increased antibody expression to disease related antigens, 

where only a subset of patients has an autoimmune response to a particular antigen. We 

herein assume that autoimmune markers show either an increased level of reactivity 

against most of the patient sera or an outlier pattern that exclusively appear in the cancer 
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group. Two statistical methods, Wilcoxon rank-sum test and outlier-sum test, were 

applied to the dataset to search fractions for autoantibody response. 

3.3.2 Statistical Analysis 

Rather than traditional t-test, Wilcoxon rank-sum test is preferred in several 

previous humoral response studies because the dataset do not always fit a Gaussian 

distribution. The test generates a list of fractions with significantly greater intensities in 

the cancer group (p-value set at <0.02) in the pairwise comparisons in cancer versus 

normal and cancer versus pancreatitis. Twenty nine fractions are selected in the 

cancer/normal pair and only seventeen pass the threshold in the cancer/pancreatitis pair. 

Figure 3-3 shows two heatmaps of these fractions after they are clustered using a 

hierarchical clustering algorithm. The clustering tree is added on top of the heatmaps. In 

the first heatmap/dendrogram, 65% (24 out of 37) of the cancer samples and only 17% (4 

out of 23) normal samples are clustered on the left side with more blue bands which 

indicate increased reactivity with serum. Similarly, the left side of the second 

heatmap/dendrogram includes 70% (26 out of 37) of the cancer samples and 29% (7 out 

of 24) of pancreatitis samples. Most of the samples are clustered with their own groups 

while a portion of the samples are not. Several reasons can be taken into account for this 

result. The incorrectly clustered cancer samples may not contain the antibodies to some 

particular antigens in the Panc-1 cell line. Additionally, the non-cancer samples that 

incorrectly clustered with the majority of the cancer samples may be reactive to the co-

eluted proteins in some fractions containing cancer related antigens. 

In a 2-dimensional separation, a protein often appears in two or more subsequent 

fractions rather than one because of the limited chromatographic resolution and the post-
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column diffusion. In Figure 3-3, it is worth noting that the fractions in the heatmap are 

often accompanied by their adjacent fractions (red circled) e.g. 7B1-7B3 and 4E4-4E11. 

The consecutive bands with a smooth reactivity profile are better candidates for further 

investigation and confer important information for protein identification. 

The result of the Wilcoxon rank-sum tests can be transformed to a ROC curve 

which estimates the ability of the selected biomarkers to distinguish cancers from non-

cancers. For each ROC curve, an area under the curve (AUC) value is reported, where 1.0 

represents perfect separation of one group from the other and 0.5 represents a completely 

random result or no separation. In both cancer versus normal and cancer versus 

pancreatitis categories, the top-ranked fractions in Wilcoxon rank-sum tests exhibit AUC 

values of 0.70-0.72. To improve the AUC value, we combined the top three fractions 

with the lowest correlations in ROC analyses so as to avoid combining neighboring 

fractions. The AUC values of the ROC curves (Figure 3-4) for the three combined 

fractions are 0.813 and 0.792 for cancer versus normal and cancer versus pancreatitis 

respectively. 

3.3.3 Outlier-sum statistics 

Recently, outlier-based statistical methods, such as cancer outlier profile analysis 

(COPA) [100] and outlier sum (OS) [98] have been proposed as methods for searching 

cancer related genes with microarray techniques. The outlier-based analysis is able to 

detect a small number of significantly upregulated signals from microarray data in the 

disease group while the signal from the majority may not necessarily change. Since the 

majority of cancers have heterogeneous activation for different individuals, it appears that 

the application of this method using the “subset” idea where some cancers respond to the 
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humoral response and others do not respond may result in an improved performance for 

microarray data. Of the two outlier-based methods, COPA identifies pairs of biomarkers 

with mutually exclusive upregulated samples because it was designed to search for gene 

activation with a mutually exclusive mechanism, while the protein biomarkers in this 

work may not have the same feature. OS identifies outliers in a similar manner as COPA, 

but it calculates an outlier score for each individual. Therefore, OS is the preferred 

method in this study. 

After OS analysis was applied to the dataset, we found 9 fractions (listed in Table 

3-2) that ranked in the top 5% in both of the comparisons of cancer/normal and 

cancer/pancreatitis. The reactivity profiles for the top 3 fractions are shown in bar graphs 

in Figure 3-1. It shows that only subsets of the cancer group show increased reactivity 

against these fractions, while the signals from the other samples remain the same. The 

signals of subsets with increased reactivity in the cancer group are much higher than the 

range of the non-cancer groups, which remain close to the baseline. Such an outlier 

pattern for these fractions suggests that they may contain proteins that are only 

immunogenic for a subgroup of the cancer samples and not immunogenic for all the non-

cancer samples.  In clinical application, these fractions can provide information for 

accurate diagnosis as the immunogenic cancer samples distinguish themselves with a 

high signal. 

The results from Wilcoxon rank-sum test and outlier-sum test are compared, 

where the lists of marker fractions do not overlap. We are more interested in the 

candidates given by OS test as these fractions exhibiting an outlier pattern exclusively in 

the cancer group would be more useful in diagnosis. The list of candidate fractions from 
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the OS test are thus identified with mass spectrometry and their identifications and 

performance were confirmed with the recombinant protein arrays. 

3.3.4 Mass Spectrometry Identification 

LC-MS/MS is used to identify the proteins in candidate fractions and their 

adjacent fractions. As expected, multiple proteins are identified in each of the fractions. 

The identified proteins are screened based on an assumption that their reactivity profile 

should be consistent with their appearance in the neighboring fractions. The resulting 

protein IDs are listed in Table 3-2 for each of the fractions. 

3.3.5 Biomarker confirmation 

Due to the large number of fractions from the 2-dimension separation, a set of 

only 84 serum samples was used to search for the fractions that could be potential 

biomarkers, where a larger set is usually required for confident biomarker discovery. It is 

also necessary to confirm the protein IDs identified for the candidate fractions. To 

confirm these potential markers, recombinant proteins were tested with a different sample 

set. Five commercially available recombinant proteins were selected for the confirmation 

experiment with 48 samples from the cancer group, 40 samples from pancreatitis group, 

40 samples from normal group, and 37 samples from diabetes group. Type 2 diabetes 

samples are included since some pancreatic patients also develop this condition which 

might be responsible for the autoimmune reactivity. 

In order to measure the autoantibody response that is elicited against the 

recombinant proteins correctly, care must be taken to avoid saturating the signal. Hence, 

the serum must be diluted sufficiently so that the amount of available autoantibody in the 

serum is lower than the binding capacity of the specific recombinant protein.  Therefore, 
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a saturation curve was made using different dilutions of serum to hybridize against 

identical blocks of the recombinant proteins.  The result of the saturation test showed that 

with ten-fold dilution, the recombinant proteins were not saturated and yielded a 

signal/background ratio of >5.  Higher or lower dilution resulted in partial saturation or 

decreased signal intensity.  A ten-fold dilution factor was therefore used in the current 

pre-confirmation experiment using recombinant proteins. The microarray data 

(background subtracted) was also adjusted by the average signal of control blocks on 

each slide and standardized for each recombinant protein. 

In Figure 3-5, we show the plot of the distribution of the reactivity for each of the 

recombinant proteins against the sera. The recombinant protein that produces the best 

result is phosphoglycerate kinase 1 (PGK1), where 10 outliers out of 48 total samples are 

observed in the cancer group, while no outlier is present in the other three non-cancer 

groups. PGK1 protein is a kinase in the glycolytic pathway and can be up-regulated by 

HIF-1α in the cellular response to hypoxia to provide energy for tumor cell proliferation 

[101]. Genomics-based studies have found that it acts as a suppressor of proangiogenic 

factor such as VEGF and triggers metastasis due to its effect on the increased expression 

level of β-catenin, chemokine CXCR4 and CXCL12 [102-104]. At the protein level, 

PGK-1 has been found overexpressed in pancreatic cancer tissue versus adjacent controls 

and also elevated significantly in the sera of pancreatic cancer patients (19% strongly up-

regulated, 50% weakly-moderately up-regulated) [105]. The performance of PGK-1 in 

the confirmation experiment using recombinant protein indicates that a lower percentage 

of patients elicit auto-response.  In a future study, it would be interesting to see whether 
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there is a correlation between serum level of PGK-1 and autoantibody level and how the 

production of antibody affects the development of the cancer. 

For both malate dehydrogenase (MDH1) and ADP-ribosylation factor interacting 

protein 2 (ARFIP2), there are 4 such outliers in the cancer group. The absence of outliers 

in the non-cancer group indicates that these 3 recombinant proteins are exclusively 

antigenic in cancer sera and could be tumor-associated. In Table 3-3, the performance of 

these 3 biomarkers used together to distinguish cancer is estimated. A cutoff equal to the 

highest signal in a certain non-cancer group is applied to define the reactive samples in 

the cancer group. The 3 recombinant proteins together distinguish more than 40% of the 

cancer samples from the normal and diabetes group, while only 29.2% from the 

pancreatitis group. 

For annexin A2 (ANXA2), the cancer group only has one outlier that is above all 

the other groups. This is not consistent with the OS analysis which showed differential 

humoral response in the fraction where ANXA2 was identified in pancreatic cancer sera. 

It could be due to the use of the recombinant proteins, which may lack the required PTMs 

to induce a humoral response or the protein may not be in a form to induce a humoral 

response [88]. Also, since multiple proteins are identified in the fraction, the protein that 

is responsible for the observed humoral response may not be ANXA2. Heterogeneous 

nuclear ribonucleoprotein A2 (HNRPA2) produced a more unexpected result in the 

confirmation experiment where it showed a universal increase in the reactivity against 

diabetes samples, while the signals of the other three groups remained at the same level. 
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3.4 CONCLUSION 

We have presented a study of the cancer-related humoral response on pancreatic 

adenocarcinoma using 2-dimensional separation and protein microarray techniques. After 

analyzing the data with two statistical tests, the fractions showing outlier patterns in 

outlier sum test were chosen for identification of the proteins and confirmation using 

recombinant proteins. In the confirmation experiment, 20.8% of the cancer samples 

demonstrated strongly elevated reactivity for PGK-1, while no proteins in the non-cancer 

groups were found to react. This result suggests that the autoantibody level of PGK-1 in 

the serum is useful as a diagnostic biomarker indicating the presence of cancer. Future 

study of the correlation between the protein level and autoantibody level of PGK-1 in 

cancer patients may provide a better understanding of the role of PGK-1 in cancer 

development. 
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Table 3-1: Demographic and clinical characteristics of the samples used in the experiment. 
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Table 3-2: List of differentiated fractions picked by OS analysis in both pairwise 
comparison between cancer versus normal and cancer versus pancreatitis. Information 
about the identified proteins in these fractions is also included. 

Fraction Access 
Number 

Protein Name Fraction 
pH 

MW Seq 
Cov % 

Theoretical 
pI 

Unique 
peptides 

1B1 P62847 40S ribosomal 
protein S24 

7.9-7.6 15414 28.59 10.79 3 

1F11 P00558 Phosphoglycerate 
kinase 1 

7.9-7.6 44587 18.21 8.3 5 

1F6 Q15369 Transcription 
elongation factor B 
polypeptide 1 

7.9-7.6 12466 17.74 4.74 2 

3E5 P04406 Glyceraldehyde-3-
phosphate 
dehydrogenase 

7.0-6.7 35900 18.97 8.58 4 

4D6 Q9Y6N5 Sulfide quinine 
oxidoreductase 
mitochondrial 
precursor 

6.7-6.4 49929 11.62 9.18 4 

5G2 Q06830 Peroxiredoxin 1 
(Thioredoxin 
peroxidase 2) 

6.1-5.8 22097 29.35 8.27 6 

8C3 O95881 Thioredoxin 
domain containing 
protein 12 
precursor 

4.9-4.6 19194 37.98 5.25 5 

9A9 Q99729 Heterogeneous 
nuclear 
ribonucleoprotein 
A/B 

4.6-4.3 36590 9.15 9.04 3 

11D5 Q8NC51 Plasminogen 
activator inhibitor 
1 RNA-binding 
protein 

IPA 
wash 

44539 18.43 8.66 5 
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Table 3-3: Numbers of samples with reactivity above the cutoff (cutoff=highest signal in 
the non-cancer group) against recombinant proteins in the cancer group compared to 3 
non-cancer groups. The numbers in the parentheses are the percentage of the positive 
reactors in the cancer category i.e. sensitivity at 100% specificity. 
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Figure 3-1: Colored bar graphs of three fractions found responded exclusively to some 
cancer sera in both pairwise comparisons between cancer versus normal and cancer 
versus pancreatitis.  The y-axis is the normalized microarray signal for each sample.  

(Reprinted from Li et al. The identification of auto-antibodies in pancreatic cancer patient 
sera using a naturally fractionated Panc-1 cell line. Copyright (2010), with permission 
from IOS Press) 
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Figure 3-2: Flowchart of the experiment. 

(Reprinted from Li et al. The identification of auto-antibodies in pancreatic cancer patient 
sera using a naturally fractionated Panc-1 cell line. Copyright (2010), with permission 
from IOS Press) 
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A) Cancer versus normal 

 
B) Cancer versus pancreatitis  

 
 
Figure 3-3: Heatmap with dendrogram of the microarray data. The colors of the bands 
indicate the normalized intensities of the microarray signal of the fractions. A total of 46 
fractions with a p-value less than 0.02 in the pairwise comparisons using Wilcoxon rank-
sum tests are shown in the heatmaps. The fractions appearing with their adjacent ones are 
red-circled. ((Reprinted from Li et al. The identification of auto-antibodies in pancreatic 
cancer patient sera using a naturally fractionated Panc-1 cell line. Copyright (2010), with 
permission from IOS Press)  
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Figure 3-4: Combined ROC curves for the top-ranked fractions with lowest correlations 
in the Wilcoxon rank-sum tests a) cancer versus normal; b) cancer versus pancreatitis. 

(Reprinted from Li et al. The identification of auto-antibodies in pancreatic cancer patient 
sera using a naturally fractionated Panc-1 cell line. Copyright (2010), with permission 
from IOS Press) 
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Figure 3-5: Distribution of the level of reactivity of five biomarker candidates examined 
in the confirmation experiment. The y axis represents the normalized fluorescent 
intensities of the autoantibody capture by the five recombinant proteins. The x axis 
represents 4 different disease groups: cancer, normal, pancreatitis and type 2 diabetes.  

(Reprinted from Li et al. The identification of auto-antibodies in pancreatic cancer patient 
sera using a naturally fractionated Panc-1 cell line. Copyright (2010), with permission 
from IOS Press) 
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CHAPTER 4  
 

A COMPARATIVE PHOSPHOPROTEOMIC ANALYSIS OF A HUMAN 
TUMOR METASTASIS MODEL USING A LABEL-FREE QUANTITATIVE 

APPROACH2

 
 

4.1 INTRODUCTION 

Breast cancer is by far the most frequent cancer of women, with an estimated 

192,370 new cases and 40,170 deaths in the United States in 2009[72].  The majority of 

cancer mortality is attributed to metastasis, which is the spread of tumor cells to a 

secondary site such as bone, lung, and liver. The multistep nature of metastasis poses 

difficulties in both design and interpretation of experiments to unveil the mechanisms 

causing the process. Studies on excised fixed human tissues are complicated by the 

variance of genetic background between individuals and by the cellular heterogeneity of a 

complex tissue mass [106]. Through in vivo selection of monoclonal cultures of the 

MDA-MB-435 breast tumor cell line we were able to characterize a pair of subclones (M-

4A4 and NM-2C5) which differ in their ability to complete the metastatic process [107-

109]. When orthotopically inoculated into athymic mice, both cell lines form primary 

tumors, but only M-4A4 is capable of metastasis to the lungs and lymph nodes. These 

cell lines constitute a valuable model for the study of cancer metastasis.  

                                                 
2 Reprinted from Xie, X., S. Feng, H. Vuong, Y. Liu, S. Goodison, et al. (2010) A comparative 
phosphoproteomic analysis of a human tumor metastasis model using a label free quantitative approach. 
Electrophoresis. 31(11): 1842-1852. Copyright (2010), with permission from John Wiley and Sons 
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M-4A4 and NM-2C5 have been extensively compared using gene and protein 

expression analysis identifying a panel of differentially expressed genes and protein [106-

108, 110-111]. However, because protein phosphorylation-mediated signaling networks 

regulate much of the cellular response to external stimuli, and dysregulation in these 

networks has been linked to multiple disease states including cancer [112], similar studies 

at the phosphoprotein level may add valuable biological insight to inhibit the metastatic 

process.  

Although significant advances have been made over the past decade to enable the 

analysis and quantification of cellular protein phosphorylation events, comprehensive 

quantitative analysis of the phosphoproteome is still lacking. Several mass spectrometry 

(MS) -based quantification methods have been implemented for phosphoproteomics, 

including stable-isotope labeling through chemical modification of peptides with, for 

example, isobaric tags for relative and absolute quantitation (iTRAQ) [113] and stable-

isotope labeling of amino acids in cell culture (SILAC) [114]. The well known limitations 

of label based-methods include increased complexity of the experimental protocols and 

the high cost of reagents.  

In recent years, label-free quantitation methods have received increased attention as 

promising alternatives that automatically avoid some of the disadvantages of using stable 

isotope labeling methods. One approach is based on calculating extracted ion 

chromatogram ratios of peptides from separate LC-MS experiments and often includes an 

additional normalization step. Furthermore, the simple and straightforward spectral 

counting approach, in which total numbers of acquired MS/MS (MS2) spectra assigned to 

peptides are used as a read-out, transforms the frequency by which a peptide is identified 
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into a measure for peptide abundance. Spectral counts of peptides associated with a 

protein are then averaged into a protein abundance index [115]. This approach was 

recently employed as a semi-quantitative measure of phosphoprotein abundance [116-

117]. Although conceptually simple, recent studies have demonstrated that spectral 

counting can be as sensitive as ion peak intensities in terms of detection range while 

retaining linearity [118].  

Despite published examples of using spectral counting in quantitative 

phosphoproteomics, there are still challenges. In a relatively large-scale phosphorylation 

study, especially for phosphoserine and phosphothreonine, there is frequent and often 

overwhelming domination of phosphorylation-specific neutral losses (NL) in MS2 

spectra. These peaks reduce the intensity of backbone b- and y-type ions that are critical 

for both phosphopeptide identification and precise site localization. To address this issue, 

a new data-dependent neutral loss (DDNL) MS/MS/MS (MS3) method that consists of 

additional fragmentation of the product of the precursor neutral loss in the form of a MS3 

scan has been introduced. This approach (MS2 + MS3 scan) has now been widely 

adopted for phosphorylation identification analysis and is especially used on low mass 

accuracy mass spectrometers [119-120]. However, this strategy requires additional cycle 

time on the instrument and therefore reduces the number of spectra that can be measured 

in the same amount of time, so that the spectral counting method is often employed using 

the MS2-only scan. Sequence and phosphorylation site assignments are often manually 

validated for the phosphopeptides reported by the MS2 scan, where spectra are checked 

for the presence of neutral loss peak(s), coverage of the phosphorylation site by b- and y- 
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ions and alternative phosphorylation sites in the sequence matching the same spectrum 

[121]. This process is time-consuming and laborious. 

In this chapter, we present a survey of phosphorylation profiles for an isogenic pair 

of human breast cancer cell lines and describe a general integrated framework for 

quantifying enriched phosphoproteins in the two cell lines by combining automatic 

validation of the MS2 + MS3 scan for phosphopeptide identification, with a subsequent 

MS2-only scan for spectral counting. The regulated phosphorylated peptides and sites 

identified by MS2 scan were validated by the MS2 + MS3 neutral loss method. 

Application of the label-free approach to this source material revealed a panel of 

differentially expressed phosphoproteins which implicate specific signaling pathways as 

being associated with distinct cellular phenotypes. 

 

4.2 MATERIALS AND METHODS  

4.2.1 Materials 

Titanium dioxide (TiO2) (3µm, 300Å) and zirconium dioxide (ZrO2) (3µm, 300Å) 

were purchased from Glygen (Glygen, Columbia, MD). Protease inhibitor cocktail and 

phosphatase inhibitor cocktail were from Roche (Roche, Nutley, NJ). Sequencing grade 

modified trypsin was from Promega (Promega, Madison, WI). All other chemicals were 

from Sigma (Sigma, St. Louis, MO). 

4.2.2 Cell culture 

Human tumor cell lines M-4A4 and NM-2C5 were derived from the tumor cell 

line MDA-MB-435 as described previously [107-108]. Cell lines were maintained as 

subconfluent monolayer cultures in RPMI 1640 medium (Gibco-BRL, New York, NY) 
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supplemented with 10% fetal calf serum at 37°C under 5% CO2 / 95% air. Cell lines were 

maintained in parallel cultures and harvested using non-trypsin cell dissociation as 

cultures reached ∼75% confluency. Harvested cells were washed once in serum-free 

media and immediately snap-frozen in liquid nitrogen.  

4.2.3 Enrichment of phosphopeptides 

TiO2 and ZrO2 particles were pretreated with 30% ACN, 0.1% TFA and 50% 

ACN, 10% acetic acid (HAC) respectively by vortex for 15 min. After centrifuging at 25, 

000 g for 5 min, the supernatant was discarded. The pellet was then treated with 100% 

ACN. Then TiO2 and ZrO2 beads were diluted as 20 mg/mL in 30% ACN, 0.1% TFA and 

50% ACN, 10% HAC separately.   

To make cell extracts, a lysis buffer (7 M urea, 2 M thiourea, 10% glycerol, 2% n-

octyl G-D-glucopyranoside (OG), 100 mM DTT, protease inhibitor cocktail, phosphatase 

inhibitor cocktail) was directly added to frozen cell pellets and the lysates were vibrated 

at room temperature for 1 hr. Cellular debris and other insoluble materials were removed 

by centrifuging the mixture at 80, 000 g for 1 hr. After measuring protein concentration 

in each lysate, proteins were digested with trypsin with a ratio of 50/1 (w/w) overnight at 

37°C.  

For enrichment with TiO2, 100 µg tryptic digest of the lysate was incubated with 

50 µL TiO2 beads (20 mg/mL). After incubation for 30 min with vibration, the TiO2 

beads were first washed with 300 µL 50% ACN, 6% TFA solution, followed by 300 µL 

30% ACN, 0.1% TFA solution twice. The bound peptides were eluted with 100 µL 10% 

NH4OH. After centrifugation, the supernatant was collected and lyophilized to dryness. 
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For enrichment with ZrO2, 100 µg protein digests were diluted with 50% ACN, 

10% HAC. The sample solution was mixed with 50 µL ZrO2 beads suspension (20 

mg/mL). The protocol for preparation of standard protein mixture digest was the same as 

the one used with TiO2. The resulting solution was incubated for 30 min at room 

temperature. Then the ZrO2 beads were firstly washed with 300 µL 50% ACN, 10% 

HAC solution, followed by two washes with 300 µL 10% HAC. The trapped 

phosphopeptides on ZrO2 beads were eluted using 100 µL NH4OH under sonication for 

20 min. After centrifugation, the supernatant was collected and lyophilized to dryness. 

4.2.4 Mass spectrometry 

Dry peptides were suspended in 0.1% formic acid and loaded for LC-MS/MS 

analysis in a LTQ mass spectrometer. The nano-RPLC column (Nano Trap Column 5 µm 

200Å Magic C18AQ 100 µm × 150 mm, Michrom Bioresources, Auburn, CA) was 

directly coupled to a LTQ linear IT MS from Thermo Scientific with a nanospray source. 

The LTQ instrument was operated in positive ion mode. The scan range of each full MS 

scan was m/z 400–2000. ACN gradients of 5–35% for 70 min at a flow rate 300 nL/min 

were applied for the separation of phosphopeptides. For the detection, the MS was set as 

a full scan followed by three data dependent MS2 events. For MS2 + MS3 scan, a 

subsequent MS3 event was triggered upon detection when a neutral loss of -49 or -32.7 

(loss of H3PO4 for the +2 and +3 charged ions, respectively) was detected among the top 

10 most intense ions in MS2. A dynamic exclusion window was applied which prevented 

the same m/z from being selected for 1 min after its acquisition. This entire LC-MSn 

system was controlled under Xcalibur software 2.0 (Thermo Scientific, Waltham, MA).  
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The MS2 and MS3 spectra were searched using SEQUEST (v0.27) against human 

IPI database v3.49 with the following parameters: peptide mass tolerance, 1.5 Da; MS2 

and MS3 fragment ion mass tolerance, 1.4 Da; enzyme set as trypsin and allowance up to 

two missed cleavages; no static modification; dynamic modifications were methionine 

oxidation (+16 Da), phosphorylation on serine, threonine, and tyrosine (+80 Da); for 

MS3 data, besides the above modifications, variable modifications of -18 Da (elimination 

of phosphoric acid) on serine and threonine residues were also selected.  

4.2.5 MS2 + MS3 scan data analysis  

Enriched phosphopeptides were identified with automatic cross-validation of MS2 

and MS3 spectra using the method of Jiang and coworkers [122]. Because the charge 

state of the precursor ion cannot be determined with low mass accuracy MS, more than 

one DTA file with different precursor charge states (commonly 2+ and 3+, respectively) 

were exported for one tandem spectrum. By combining MS2 spectra and corresponding 

neutral loss MS3, charge states of precursor ions can be determined from the m/z value of 

neutral loss: -49 indicated +2 charged precursor ions, while -32.7 was for +3 charged ions. 

Only a DTA spectrum with neutral loss peak of at least 50% of the base peak in intensity 

was considered. After removal of MS2/MS3 pairs with incorrect charge states, MS2 with 

no MS3, and MS2/MS3 pairs with neutral loss intensity less than 50% of the base peak in 

MS2 spectrum, the remaining MS2 and MS3 DTA spectra with specific precursor charge 

states were searched against the database, respectively. The top 10 hit peptides from a 

database search for a spectrum were considered. Then peptide identifications from a pair 

of spectra (MS2 and its corresponding MS3) were combined. Only peptides which were 

identified from both of the spectra (MS2 and MS3) were retained. The matched peptide 
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in a spectra pair with the highest Xcorr’s score was defined as the top matched peptide 

for the spectra pair and selected for filter afterward.  

For the determination of phosphorylation sites, Tscore was introduced as the sum 

of MS2 and MS3 PTM scores with the definition as -10 logP(total). For the 

phosphopeptide with two or more phosphorylation sites, Tscores of all candidate 

sequences with different phosphorylation site combinations for this phosphopeptide were 

calculated. Then the Tscore of a given site was computed by summing the Tscores of all 

candidate sequences containing this site. Phosphorylation sites with top n (equal to the 

number of possible phosphorylation sites) Tscores were considered as the most likely 

phosphorylation site localizations [122]. 

4.2.6 Spectral counting analysis 

We counted the number of spectra observed for each peptide sequence in a mass 

spectrometry run [123]. To calculate a protein spectrum count, we summed the numbers 

for all of the peptides assigned to each protein in that run. We found this approach 

preferable to other methods such as parent ion peak height because it allowed us to 

simplify the analysis by combining all sites on a given protein [116]. Then we applied a 

normalized spectral abundance factor (NSAF) approach [124] to quantify phosphoprotein 

expression profiles. This approach, taking protein length as a normalization method, is an 

improvement over spectral counting methods in which protein abundance is 

quantitatively estimated based on the number of spectra acquired by MS2-only scan. The 

NSAF approach has at least the same, or better, capability to capture a wide dynamic 

range of protein expression ratios, and it can also identify significantly expressed proteins 

via simple statistical tests, such as the t-test, to compare the mean protein intensities of 
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two or more samples. The use of the t-test is applicable in this approach because it has 

been shown that the log transformation of the NSAF value is normally distributed. In 

addition, the NSAF approach has comparable sensitivity in identifying differentially 

expressed proteins as other approaches based on protein ratios.  

After MS2-only scan analysis, the RAW data file was processed using SEQUEST 

and validated by Trans-Proteomic Pipeline (TPP). Spectral count data was then extracted 

from xml files using an in-house Perl script and output into Microsoft Excel files. In 

order to calculate the NSAF value, we applied the formula 

 

where Spc is the number of spectral count, and L is the length in amino acid for kth 

protein. The NSAF value was then natural log-transformed and subjected to independent 

two sample t-test using Microsoft Excel. A t-test p value of less than 0.05 was used to 

identify significant differentially expressed phosphoproteins.  

4.2.7 Western blotting 

Western blotting was performed using established methods [125] to confirm the 

phosphoprotein expression of isoform A of Lamin-A/C (LMNA, phospho Ser22) and Ras 

GTPase-activating protein-binding protein 1 (G3BP1, phospho Ser232). Briefly, equal 

amounts of isolated proteins from M-4A4 and NM-2C5 cell lysates were separated by 12% 

SDS-PAGE and then transferred to PVDF membrane using Transblot (Bio-Rad). After 

blocking for 1 h, the membrane was probed with rabbit polyclonal antibody against 

human phospho Lamin-A/C (Cell Signaling Technology, Boston, MA) or phospho 

G3BP1 (Abcam, Cambridge, MA) diluted in 1:1000 overnight. After incubation with 
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peroxidase-conjugated goat anti-rabbit IgG secondary antibody (Abcam) for 1 h, 

immunoblots were visualized with an enhanced chemiluminescent method kit (GE 

Healthcare, Piscataway, NJ). Densitometric analysis was performed.  

 

4.3 RESULTS 

Our phosphorylation profiling approach combined phosphopeptide enrichment 

using TiO2 and ZrO2 particles, multistage MS for phosphopeptide identification, and 

label-free spectral counting for quantitation. Extracted proteins from the human breast 

cancer cell lines M-4A4 and NM-2C5 were digested with trypsin, and the 

phosphopeptides were enriched on TiO2 or ZrO2 particles. The resulting peptide mixtures 

were analyzed by online LTQ linear IT MS with two consecutive stages of fragmentation. 

Automatic cross-validation by combining consecutive stage mass spectrometry data and 

the target-decoy database searching strategy was used to identify phosphopeptides. 

Quantitation of phosphoproteins in the two cell lines was achieved by the spectral 

counting method, with MS2-only scan implemented successively after each MS2 + MS3 

scan. Sequence and site assignments were validated with the MS2 + MS3 neutral loss 

method. Western blotting was used to validate the altered expression of differentially 

expressed phosphoproteins (Figure 4-1).  

4.3.1 Phosphoproteome 

To provide adequate coverage of the phosphoproteome, six replicates of MS2 + 

MS3 scans for each sample were analyzed. More than 6,700 phosphopeptides were 

detected in 24 LC MS analyses. The six MS runs had very similar counts of identified 

phosphopeptide, as shown in Figure 4-2A.  Only the peptides detected 3 or more times 
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within 6 replicates were considered for further analysis. After filtering with the criteria 

Rank’m = 1, ∆Cn’m ≥ 0.1, and the Xcorr’s  ≥ 3.7, our analysis identified 425 

phosphorylation sites on 160 unique proteins with a FDR less than 3% using the 

described stringent criteria in the two cell line samples. Of these, 65 sites (15.3%) had not 

been reported in the PhosphoSite Plus database as of September, 2009 (Supplemental 

material table 1). The representative MS2 and MS3 spectra of identified peptide 

VLGpSEGEEEDEALpSPAK assigned to protein DNA ligase 1 is shown in Figure 4-3.  

In the M-4A4 cell line, 328 phosphorylated sites on 263 unique phosphopeptides 

were identified, and in the NM-2C5 cell line 345 phosphorylated sites on 264 unique 

phosphopeptides were identified (Figure 4-2B). Of these, we determined the distribution 

between individually identified sites to be 284 phosphoserine (pS), 43 phosphothreonine 

(pT), and 1 phosphotyrosine (pY) sites in M-4A4 cells and 297 pS, 46 pT, and 2 pY sites 

in NM-2C5 cells. In the Hunter and Sefton classic study using phosphoamino acid 

analysis, a relative abundance of 90%, 10%, and 0.05% for pS , pT, and pY was observed 

in proliferative, non-cancerous human cells [126]. The distribution of pS, pT, and pY 

sites was 86.6%, 13.1%, and 0.3% for M-4A4 cells and 86.1%, 13.3%, and 0.6% for NM-

2C5 cells, a distribution markedly similar to the estimated phosphorylated amino acid 

content in the previous study (Figure 4-2C).  

We observed phosphorylation sites on a wide variety of proteins. Figure 4-2D 

shows a Gene Ontology (GO) analysis of the phosphoproteome of M-4A4 and NM-2C5 

cell lines. Almost half of the phosphorylation events occurred on nuclear proteins, 

whereas only one-third of all proteins in the IPI database are assigned as nuclear by GO 

[127], indicating that phosphorylation in these cells preferentially occurs in nuclear 
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proteins. As expected, proteins annotated as extracellular were significantly 

underrepresented in the phosphoproteome. In addition, proteins annotated as 

mitochondrial by GO were underrepresented, as were plasma membrane proteins. 

TiO2 and ZrO2 have often been used to enrich phosphopeptides because of their 

strong interaction between phosphate groups on target molecules. We found that these 

two enrichment methods were complementary in identifying phosphopeptides, with fifty 

to sixty percent of identical phosphopeptides being enriched by both TiO2 and ZrO2 

(Figure 4-4A).  Moreover, more selective isolation of singly-phosphorylated peptides was 

observed with ZrO2 compared to TiO2, whereas TiO2 preferentially enriched multiply-

phosphorylated peptides (Figure 4-4B).  

4.3.2 Quantitative phosphoproteomics  

While MS3 scans followed by each MS2 scan will interfere with the spectral 

counting of peptides, we developed an approach to address this problem whereby one 

MS2-only scan is run successively after each MS2 + MS3 scan of the same sample with 

different sample injections and different method files. MS2-only scans in each sample 

were run 6 times. Hierarchical clustering analysis was employed to evaluate 

reproducibility between the 6 MS2-only scans. Correlation factors calculated using the 

spectral count of peptides showed very similar results between different MS2-only scans 

in the same sample, thus, the spectral count method is applicable in label-free shotgun 

proteomics (Figure 4-5). The spectral count was generated from MS2 raw data after TPP 

analysis. Only the peptides detected for 3 or more times in six MS2 runs for each sample 

were further analyzed. After normalization for protein length, the changed ratios and p 

value calculated by Student’s t-test for each protein were recorded. As a result, 33 
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regulated proteins were identified with a p value less than 0.05 from the two enrichment 

methods. 

Peptide sequence and site assignments reported from MS2-only scan were 

validated by a MS2 + MS3 neutral loss method. Only the proteins identified both from 

MS2-only scans and MS2 +MS3 scans were retained for further analysis. After validation, 

over 70 phosphorylated sites on 27 proteins were found to be differentially expressed, 

and 3 of them were present in both of the enrichment experiments with the same change 

trend. These included neuroblast differentiation-associated protein (AHAK), myosin-IXb, 

and protein NDRG1. Among the proteins we observed, 16 proteins were expressed at 

higher levels and 11 proteins were underexpressed in M-4A4 cells compared with NM-

2C5 cells. The up-regulated protein group included lamin A/C, G3BP1, protein NDRG1, 

and myosin-IXb, and the down-regulated group included AHNAK, eukaryotic translation 

initiation factor 5B (EIF5B), serine/threonine-protein kinase 10 (STK10), and 

prostaglandin E synthase 3 (PTGES3). To provide the foundation of integrating MS2 + 

MS3 scans and MS2-only scans, we showed that the neutral loss peak for the peptide 

AEEDEILNRpSPR assigned to the protein calnexin was detected from both the MS2-

only scan (Figure 4-6A) and the MS2 + MS3 scan (Figure 4-6B and 6C). Nevertheless, 

for the remaining 6 proteins which were not validated by the MS2 + MS3 neutral loss 

method, we discovered the neutral loss peak neither from MS2-only scans nor MS2 + 

MS3 scans. Furthermore, we evaluated the recurrence of the peptide AEEDEILNRpSPR 

in different MS2 + MS3 and MS2-only scans in the same sample. The very similar 

retention time of this peptide in 3 different MS2 + MS3 scans and 3 different MS2-only 

scans strongly supports the utility of this integrated quantitative method (Figure 4-7).  
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Although an increasing number of phospho-specific antibodies are emerging, the 

availability is still limited. We found 2 commercially available phospho-specific 

antibodies for proteinsfrom our list of differentially expressed proteins. We used these 

antibodies in Western blotting to verify the spectral counting quantification of LMNA 

and G3BP1 Good agreement between the two methods was achieved (Figure 4-8). 

 

4.4 DISCUSSION 

In this study, we have developed a novel strategy to identify 425 phosphorylation 

sites on 160 unique proteins with a FDR less than 3% in isogenic human breast cancer 

cell lines M-4A4 and NM-2C5. The approach uses TiO2 and ZrO2 particle enrichment of 

phosphopeptides and automatic validation by combining consecutive stage mass 

spectrometry data and target-decoy database searching. We have demonstrated the 

comparative application of the strategy by identifying 27 phosphoproteins that were 

deemed to be differentially expressed in the tumor metastasis model through spectral 

counting with cross-confirmation of MS2 + MS3 and MS2-only scans.  

Although spectral counting approaches have been employed for the quantitative 

measure of phosphoprotein abundance by several groups, especially for differential 

profiling of phosphotyrosine-containing proteins in cancer tissues and cells [116], a 

generalizable quantitative spectral counting method for enriched phosphoprotein analysis 

including phosphoserine and phosphothreonine-containing proteins has been lacking. A 

remaining challenge is that MS2-only scans are often used to implement spectral 

counting in label-free quantitative proteomics. Many large-scale phosphorylation studies 

rely solely on MS2 scan and report error rates < 1% FDR. In those cases, data filtering is 
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accomplished by using high mass accuracy data for the precursors and/or higher cutoff 

values on scores derived from searching algorithms. However, for low mass accuracy 

mass spectrometers, the manual or automatic validation using the combination of MS2 

and MS3 scan is often undertaken to assure accurate peptide and phosphorylation site 

assignment [120, 122, 128]. These reports indicate that cross-validation of phophopeptide 

assignment by MS2 and MS3 scans result in the high confidence in identification [120]. 

Therefore, we developed an integrated quantitative method combining spectral counting 

of MS2-only scans and phosphopeptide identification achieved with MS2 + MS3 scans. 

The phosphopeptide sequence and site assignments reported from MS2-only scans were 

validated by the MS2 + MS3 neutral loss method. Only those proteins identified by both 

MS2 + MS3 scans and with a p value less than 0.05 in statistical analysis with spectral 

counts, after normalization in MS2-only scans, can be considered for further analysis. 

Finally, 27 phosphoproteins met the criteria out of 33 proteins, where the latter group was 

found to have a p value less than 0.05 by MS2-only scan. The pitfall of this approach is 

that the stringent criterion might fail to detect peptides for which MS3 are not triggered 

because of low intensity (or absent) neutral loss fragment ions, such as phosphotyrosine-

containing peptides. 

In this study, we used the integrated strategy to identify 27 phosphoproteins that 

were differentially expressed in human cells with distinct metastatic phenotypes. Of these, 

16 were up-regulated and 11 were down-regulated in metastatic M-4A4 cells relative to 

non-metastatic NM-2C5 cells. The expression change of LMNA and G3BP1 reported 

from spectral counting was validated with good agreement by Western blotting. Using 

the Ingenuity Pathways Analysis (IPA) we observed that the majority of the differentially 
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expressed proteins were highly interconnected and belong to two major intracellular 

signaling pathways.  

Twelve of the 27 identified phosphoproteins were revealed to be interconnected 

through one signaling pathway (Figure 4-9A). LMNA and G3BP1 are involved in this 

pathway. They are all connected, directly or indirectly through 3 signaling hub proteins, 

v-myc myelocytomatosis viral oncogene homolog (c-myc), interferon gamma (IFNG), 

and retinoic acid, a signal molecule involved in cellular differentiation and response to 

extracellular stimuli. These factors are well-known to influence the behavior of breast 

cancer cells through multiple mechanisms, including progression [129], inflammation 

[130], proliferation, and apoptosis [131]. In another regulatory pathway, another 13 of the 

identified phosphoproteins are interconnected directly, or indirectly, through hepatocyte 

nuclear factor 4 alpha (HNF4A) or transforming growth factor beta 1 (TGFB1) , a 

signaling molecule that controls proliferation, differentiation, and other functions in many 

cell types (Figure 4-9B). The interconnection between proteins identified in this study 

with known cancer-associated factors implies a role for these proteins in cancer 

progression or metastasis. 

Lamins are components of the nuclear lamina, a fibrous layer on the 

nucleoplasmic side of the inner nuclear membrane, which is thought to provide a 

framework for the nuclear envelope and may also interact with chromatin. Functional 

analysis of phosphorylation sites in human lamin A indicates the phosphorylation of T19 

(Threonine), S22, S403, and S404 in controlling lamin disassembly, nuclear transport and 

assembly [132]. In a pathogenesis study, lamin A phosphorylation was reported to be 

associated with myoblast activation and involved in the pathogenic mechanism of Emery-
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Dreifuss muscular dystrophy and limb girdle muscular dystrophy 1B [133]. Furthermore, 

studies have demonstrated that lamin A Ser404 is a nuclear target of Akt phosphorylation 

in C2C12 cells and implicated Akt phosphorylation of lamin A in the correct function of 

the nuclear lamina (Figure 4-9A) [134]. The irregularity of the nuclear envelope, whose 

framework is supported by lamin, has been observed to significantly correlate with lymph 

node metastases in breast cancers [135]. These findings suggest that the phosphorylation 

of LMNA might play a role in the decoration of the nuclear envelope in the cancer cell 

during metastasis.  

G3BP1 is an hnRNA-binding protein and an element of the Ras signal 

transduction pathway. It is a DNA-unwinding enzyme which can unwind partial 

RNA/DNA and RNA/RNA duplexes in an ATP-dependent fashion. It binds specifically 

to the Ras-GTPase-activating protein by associating with its SH3 domain. In quiescent 

cells, G3BP1 is hyperphosphorylated on serine residues, and this modification is essential 

for its activity.  G3BP1 harbors a phosphorylation-dependent RNase activity which 

specifically cleaves the 3’-untranslated region of human c-myc mRNA (Figure 4-9A) 

[136]. C-myc is a multifunctional oncogene and it plays a role in cycle progression, 

apoptosis and cellular transformation. Its overexpression is found during progression and 

distant metastasis of hormone-treated breast cancer [137]. It is possible that 

(de)phosphorylation of G3BP1 regulates interaction with c-myc, supporting a role for 

differential phosphorylation of this protein in the metastatic process. In addition, the 

growth factor heregulin beta 1 stimulation of breast cancer cells promotes 

phosphorylation of G3BP1 and increased the association of G3BP1 with GTPase-

activating protein, again suggesting a role for G3BP1 in cancer progression [138].  
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4.5 CONCLUSION 

This study describes a novel comparative phosphorylation strategy and application 

of this analysis to a human cell line model of tumor metastasis. The model consists of a 

pair of monoclonal cell lines derived from the same tumor source, but that have opposite 

metastatic propensity in murine xenograft models. LC-MS/MS based spectral counting 

analysis leads to the reliable identification of altered phosphorylation events in cells of 

distinct phenotype. This label-free, relative quantification of the phosphoproteome of 

complex samples enabled us to find new connections between the ability of cancer cells 

to establish metastasis in distant organs and altered expression levels of specific 

phosphorylated proteins. Biological interpretation of our data suggests that the 

phosphorylation of isoform A of lamin A/C and GTPase activating protein binding 

protein 1 may be involved in the metastatic behavior of human breast caner. Further 

investigations using this strategy hold promise for elucidating mechanisms involved in 

tumor progression and identifying novel therapeutic targets for potentially ameliorating 

the fatal spread of disease. 
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Figure 4-1: Schematic diagram illustrating the label-free quantitative analytical approach 
for protein phosphorylation profiling. Extracted proteins from human breast cancer cell 
lines, malignant M-4A4 and non-malignant NM-2C5, were digested with trypsin. 
Phosphopeptide mixtures with TiO2 and ZrO2 particles were analyzed by LC-MS/MS. 
Phosphopeptides were identified by automatic cross-validation of the MS2 + MS3 scan. 
Quantification of phosphoprotein expression in the tumor metastasis model was 
implemented by spectral counting with the MS2-only spectra. Then peptide sequence and 
site assignments were validated by MS2 + MS3 neutral loss method. The altered 
expression of selected phosphoproteins reported from spectral counting was validated by 
Western blotting. Reprinted from Xie et al. (2010) A comparative phosphoproteomic 
analysis of a human tumor metastasis model using a label free quantitative approach. 
Electrophoresis. 31(11): 1842-1852. Copyright (2010), with permission from John Wiley 
and Sons) 
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Figure 4-2: A. Summary of the phosphopeptide identification counts for M-4A4 or NM-
2C5 cell lines with TiO2 or ZrO2 enrichment methods in six MS2 + MS3 replicate runs. 
B. Identified unique phosphopeptides and phosphorylation sites from 6 replicates of MS2 
+ MS3 scans in the M-4A4 and NM-2C5 cell lines; C. Distribution of phosphorylated 
sites by amino acid; D. Gene ontology analysis on cellular component of unique 
phosphoproteins. Reprinted from Xie et al. (2010) A comparative phosphoproteomic 
analysis of a human tumor metastasis model using a label free quantitative approach. 
Electrophoresis. 31(11): 1842-1852. Copyright (2010), with permission from John Wiley 
and Sons.  
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Figure 4-3: Representative spectra of a phosphorylated peptide identified by automatic 
cross-validation of MS2 and MS3 data-dependent neutral loss method. A. MS/MS 
spectrum of doubly charged and doubly phosphorylated peptide VLGpSEGEEEDEAL 
pSPAK assigned to protein DNA ligase 1. The peak at m/z 910.6 represents the doubly 
charged form of the selected precursor ion at m/z 959.8 with loss of one H3PO4 group, 
and at m/z 862.7 with loss of two H3PO4 groups. B. MS/MS/MS spectrum for the 
fragment ion at m/z 910.6 corresponding to neutral loss of the H3PO4 group. The peak at 
m/z 862.5 represents the doubly charged form of m/z 910.6 after loss of the H3PO4 group. 
Reprinted from Xie et al. (2010) A comparative phosphoproteomic analysis of a human 
tumor metastasis model using a label free quantitative approach. Electrophoresis. 31(11): 
1842-1852. Copyright (2010), with permission from John Wiley and Sons.  
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Figure 4-4: A. Overlap between phosphopeptide enrichment methods on the level of 
identified unique phosphopeptides in the M-4A4 and NM-2C5 cell lines. Around 50% of 
the unique phosphopeptides identified from the TiO2 method also identified in the ZrO2 
method; B. Distribution of singly (1), doubly (2), triply (3) and quadruply (4) 
phosphorylated peptides. Reprinted from Xie et al. (2010) A comparative 
phosphoproteomic analysis of a human tumor metastasis model using a label free 
quantitative approach. Electrophoresis. 31(11): 1842-1852. Copyright (2010), with 
permission from John Wiley and Sons. 
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Figure 4-5: Hierarchical clustering of 6 MS2-only scans in the M-4A4 or NM-2C5 cells 
with TiO2 or ZrO2 particle enrichment. After MS2-only scan analysis, the RAW data file 
was processed using SEQUEST and validated by TPP. Spectral count data was then 
extracted from xml files. Correlation factors were calculated with spectral count of 
proteins. Reprinted from Xie et al. (2010) A comparative phosphoproteomic analysis of a 
human tumor metastasis model using a label free quantitative approach. Electrophoresis. 
31(11): 1842-1852. Copyright (2010), with permission from John Wiley and Sons. 
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Figure 4-6: Representative spectra of singly phosphorylated peptide AEEDEILNRpSPR 
assigned to protein calnexin (CANX) identified in MS2-only scan (A) and in MS2 + MS3 
scan (B and C). A. In MS2-only scan, MS/MS spectrum shows that the peak at m/z 706.1 
represents the doubly charged form of the selected precursor ion at m/z 754.4 with loss of 
one H3PO4 group. C.  In MS2 + MS3 scan, MS/MS/MS spectrum for the fragment ion at 
m/z 706.1 corresponding to neutral loss of the H3PO4 group. Reprinted from Xie et al. 
(2010) A comparative phosphoproteomic analysis of a human tumor metastasis model 
using a label free quantitative approach. Electrophoresis. 31(11): 1842-1852. Copyright 
(2010), with permission from John Wiley and Sons. 
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Figure 4-7: Recurrence of the same peptide in different MS2-only and MS2 + MS3 scans 
in the same sample. Shown is the precursor ion m/z and retention time (RT) of one 
identified peptide AEEDEILNRpSPR in 3 different MS2-only scans (A, B, C) and 3 
different MS2 + MS3 scans (D,E,F) in the NM-2C5 cells enriched with ZrO2. The very 
similar retention time strongly supports the utility of integrated quantitative method. The 
arrow indicates the spectrum where the peptide was identified. Reprinted from Xie et al. 
(2010) A comparative phosphoproteomic analysis of a human tumor metastasis model 
using a label free quantitative approach. Electrophoresis. 31(11): 1842-1852. Copyright 
(2010), with permission from John Wiley and Sons. 
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Figure 4-8: Western blotting analysis of the expression of phosphoproteins LMNA and 
G3BP1 in M-4A4 and NM-2C5 cell lines. Show right is a comparison of the six 
replicates of spectral counts of phosphoproteins identified by MS/MS with the 
immunoblotting. Reprinted from Xie et al. (2010) A comparative phosphoproteomic 
analysis of a human tumor metastasis model using a label free quantitative approach. 
Electrophoresis. 31(11): 1842-1852. Copyright (2010), with permission from John Wiley 
and Sons 
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Figure 4-9: Pathway network models 1 (A) and 2 (B). A solid line indicates direct 
interaction; a dashed line indicates indirect interaction; a line without arrowhead indicates 
binding; an arrow from protein A to protein B indicates A acts on B. Node shapes are 
indicative: triangle, kinase; diamond, enzyme; hexagon, translation regulator; trapezoid, 
transporter; oval (horizontal),  transcription regulator; oval (vertical), transmembrane 
receptor. Proteins identified in this screen are marked in shadow. Reprinted from Xie et al. 
(2010) A comparative phosphoproteomic analysis of a human tumor metastasis model 
using a label free quantitative approach. Electrophoresis. 31(11): 1842-1852. Copyright 
(2010), with permission from John Wiley and Sons. 

  



89 
 

CHAPTER 5  

CONCLUSION AND FUTURE STUDY 

 

5.1 CONCLUSION 
 

This dissertation describes an attempt to integrate proteomics and bioinformatics 

approaches to mine the human proteome for biomarkers for early detection of cancer. The 

high complexity of human serum proteome, which is comprised of approximately 

100,000 proteins whose concentrations span over 12 orders of magnitude, makes the 

identification of low abundant biomarkers a major challenge. Several studies have 

demonstrated that the humoral immune response is the most promising approach to 

discover potential serum biomarkers for the diagnosis and prognosis of early stage 

cancers. Moreover, it is part of an ongoing national effort by the National Cancer Institute 

which has brought together many institutions through its Early Detection Research 

Network program to develop and discover promising biomarkers and technologies for 

early detection of cancer.          

Two main proteomics approaches are described in the dissertation to identify 

novel biomarkers in cancers. The first approach involves the use of a natural liquid-based 

protein microarray platform to study the humoral immune response against tumor 

antigens in melanoma and pancreatic cancer as described in chapter 2 and 3 respectively. 

My primary contribution to this dissertation is the statistical analysis of data generated 

from this protein microarray approach. We presented in Chapter 2 a study comparing 
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outlier based to traditional mean based approaches in differential expression analysis with 

applications in protein microarray data in heterogeneous diseases. In this chapter, my 

work described an attempt to identify differentially expressed proteins as potential 

biomarkers for cancer early detection. My work demonstrated that an outlier-based 

approach to differential expression analysis is an alternative approach to the traditional 

mean-based approach such as the Student t-test. The outlier based approach could be used 

to analyze the humoral immune response data which is commonly regarded as 

“heterogeneous” data, i.e. the differential expression is concentrated in the tail regions of 

the data distribution instead of spreading throughout the distribution. In a simulation 

based testing of performance between the outlier sum test and Student t-test, we showed 

that the outlier based analysis has improved power for detection of differentially 

expressed proteins in the humoral immune response studies that have small sample size, 

small effect size and large deviation from the normal distribution. While outlier-based 

approaches offer the potential to extract useful information from studies that yield 

minimally interesting results from conventional methods, these biomarkers are by 

definition limited in their predictive power in an unselected population. As illustrated in 

the melanoma study, even markers that are identified using traditional approaches such as 

the Student t-method may turn out to have a heterogeneous pattern of differential 

expression. Thus, we anticipate that while outlier-oriented statistics like the OS statistic 

may play a useful role, especially in larger studies, another important consequence of 

these efforts will result from the more widespread adoption of methods to characterize 

the detailed pattern of differential expression of candidate biomarkers identified through 

traditional approaches.   
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Chapter 3 of the dissertation presents a study harnessing the potential of humoral 

immune response to identify antoantibody-based biomarkers for the early detection of 

pancreatic cancers. The dataset is obtained from the protein microarray experiment and 

contains signal intensities of more than 1000 protein fractions extracted and fractionated 

from a Panc-1 cell line. In this chapter, my work demonstrated the utility of the outlier 

based approach to differential expression analysis using a large proteomics dataset from a 

study of humoral immune response in pancreatic cancer versus pancreatitis and normal 

controls. Here, our group used 2D-liquid separation and protein microarray with my 

evaluation of two statistical analyses including the Wilcoxon rank sum test and outlier 

sum test to identify proteins that elicited a differential humoral response pattern between 

different clinical groups that could be used for further validation. My work combined 

these two methods together to identify the differentially expressed proteins with 

improved detection power. I was able to demonstrate how combining the outlier-based 

approach (e.g. outlier sum test) and the mean-based approach (e.g. Wilcoxon rank sum 

test) represent a more satisfactory data analysis approach than each approach alone in 

addressing the difficult data analysis question of how to extract information from 

heterogeneous response data for biomarker discovery. This idea is not related to meta-

analysis in which multiple results of the same question or parameter from several 

independent (or at least weakly dependent) studies are combined to achieve a higher 

statistical power to detect an effect than in a single study. However, it can be argued that 

the strongly dependent results from my combined statistical approach would improve the 

detection power as well as statistical confidence in the context of biomarker discovery.  
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In chapter 3, the rationale for using a non-parametric test such as Wilcoxon rank 

sum test is that we do not know for certain the underlying distribution of the humoral 

immune response data (e.g. the intensity readouts from the binding between antigens and 

auto-antibodies). Compared to the parametric tests such as t-test and F-test, non-

parametric test only assumes a bare minimum on the underlying data model, namely the 

observations are independent and the variable under study has underlying continuity. An 

advantage of using non-parametric tests is that the conclusions are more generalized than 

those inferred from parametric tests. However, the pitfall of non-parametric tests is in 

term of statistical power, parametric tests are superior, precisely because of the strength 

of their assumptions. In chapter 3, the combined statistical analyses of Wilcoxon rank 

sum test and outlier sum test yielded a total of 9 potential protein biomarkers that can 

distinguish pancreatic cancer from non-cancer. Based on my analysis, our group chose 5 

recombinant proteins for further validation using an independent sample set and 

confirmed that 3 out of 5 recombinant proteins had significant differential expression in 

pancreatic cancer versus non-cancer. Further work will require experiments with early 

stage  cancer  sera  which  currently  are  not  available  in  sufficient  numbers  for  these 

experiments.  Also,  further  work  on  the  use  of  truncated  or  modified  forms  of  

these proteins may provide an improved response. In addition, as larger numbers of 

samples are collected, larger validation sets can be run to test the validity of these 

potential targets for biomarker response. On the bioinformatics analysis side, it may be 

interesting to extend the usability of outlier based analysis to other types of mass 

spectrometry data such as spectral count data. For example, outlier test may be used to 
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identify outlying peptides with abnormal spectral counts. These peptides are then 

excluded from protein abundance calculation.  

The second approach to identify biomarkers described in the dissertation is based 

on liquid chromatography mass spectrometry (LC-MS/MS). Compared with the humoral 

immune response approach, this approach has the advantages of investigating a variety of 

post-translational modifications including phosphorylation which has been shown to be a 

major mechanism in tumorigenesis. In the MS-based approach, two different model cell 

lines are analyzed using a liquid based mass spectrometry (LC-MS/MS) coupled with two 

dimensional separation of protein fractions based on their pI and hydrophobicity. Then, a 

label-free, spectral count method was applied for the quantitation of specific proteins to 

identify differentially expressed proteins with respect to the cellular phenotype. In 

chapter 4, we used a comparative MS-based approach to survey phosphorylation profiles 

for an isogenic pair of human breast cancer cell lines. We also described a general 

integrated framework for quantifying enriched phosphoproteins in the two cell lines by 

combining automatic validation of the MS2+MS3 scan for phosphopeptide identification, 

with a subsequent MS2-only scan for spectral counting. My specific contribution to this 

project is the spectral counting analysis on MS-MS (MS2) data. Label-free quantitation 

methods using spectral count have received increased attention as promising alternatives 

that avoid some of the disadvantages of using stable isotope labeling methods.  A 

difficult data analysis question related with phosphoproteins quantitation involved 

identification of significant changes in abundance level as many phosphoproteins are low 

abundance proteins, often have less than 10 spectral counts. For example, a two-fold 

change from 1 to 2 spectra will be less convincing to be a significant change than a two-
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fold change from 10 to 20 spectra. To the best of our knowledge, there is no satisfactory 

statistical approach for this challenge yet. In this chapter, my work evaluated a label free 

quantitative analysis to determine the expression level changes of phosphoproteins 

involved in the metastasis of breast cancer. Specifically, my work described the 

enhancement of spectral counting as a quantitative proteomics tools in low abundance 

phosphoproteins as cancer biomarkers using standard approaches such as NSAF 

(normalized spectral abundance factor)[139]. The spectral count quantitative approach 

successfully identified 27 phosphoproteins as being differentially expressed with respect 

to tumor cell phenotype. In addition, our group showed that there is good agreement 

between the spectral counting quantification and Western blotting in two commercially 

available phospho-specific antibodies for 2 differentially expressed phosphoproteins 

(LMNA and G3BP1). Taken together, my work demonstrated the effectiveness of NSAF 

as a quantitative method for low abundance phosphoproteins as cancer biomarkers.  

Collectively, our results represent an exploration of bioinformatics and 

proteomics approaches in biomarker discovery in early detection of cancers. Along with a 

list of potential biomarkers discovered in melanoma, pancreatic and breast cancer, our 

results provide new insight into disease pathogenesis and biomarker identification. 

Specifically, our results demonstrate great potential of the humoral immune response in 

tackling the early cancer detection challenges.   

  

5.2 FUTURE STUDY 
 

The ultimate goals of cancer early detection require methods with high sensitivity, 

dynamic range, throughput and multiplexing capability to mine the complex human 
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plasma/serum proteome for potential biomarkers. To accelerate the process from 

biomarker discovery to pre-validation, an integrated approach combining the power of 

proteomics and bioinformatics is needed. My research foci are biomarker discovery using 

approaches in bioinformatics and proteomics to harness the potential of humoral immune 

response. Therefore, the future study will focus on biomarker validation using a larger 

independent patient cohort. However, a challenge in biomarker discovery in proteomics 

study is the dependence on the availability of clinical samples as most cancer samples are 

rare and difficult to obtain. Therefore, we will use the resource and support from a large 

collaborative network such as the Early Detection Research Network which is critical for 

this endeavor.  

 As specified per the Early Detection Research Network (EDRN), acceptable 

cancer biomarkers are judged based on criteria such as high sensitivity and specificity, 

ability to obtain from non-invasive methods, reliability and repeatability in testing, and 

high predictive value for clinical disease. In the next step, we will develop statistical 

approaches to measure the predictive value such as ROC (receiver operating curve) 

analyses. Following the use of ROC analyses for measuring predictive power of 

biomarkers in distinguishing cancer samples to non-cancer samples compared with 

existing predictors, we will begin collecting clinical data to validate predictive 

biomarkers in early detection cases. These steps are corresponding to phase 2 and 3 of the 

EDRN’s 5 phase approach to biomarker development for early detection.  

 As demonstrated in the recombinant protein validation experiment in chapter 3, 

one area of difficulty in humoral response experiments is the low signal intensity that is 

often present in the arrays. While differential responses are observed for certain potential 
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cancer protein markers the response overall is not remarkably high. This weak response 

could be a result of protein immobilization on the slide which renders the protein unable 

to move about such that binding sites are blocked from reagent molecules. It may be 

interesting to investigate whether reducing the protein size by chemical means may 

facilitate exposure of these binding sites thereby enhancing the overall sensitivity of the 

humoral response experiments.   

 Our understanding of the underlying mechasisms of humoral immuner response 

and its role in cancer are still limited yet it is critical to the development of mechanism 

specific therapeutic immunotherapy strategies.  The level of complexity of the potentially 

relevant biological pathways in the immune response to cancer is too high to be easily 

understood without intelligent integration of multiple levels of biological information. 

Although the central dogma of molecular biology states that proteins are closer to actual 

biological functions of cells than mRNAs or DNAs[140], proteomics only represents one 

aspect of cancer biomarkers in addition to genetic biomarkers, and changes in the 

transcriptome do not always correlate with protein expression or activity[141-142]. 

Therefore, integrating gene expression data (transcriptome) with protein (proteome) and 

metabolites (metabolome) will provide a more complete picture of humoral immune 

response in cancer. 
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