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ABSTRACT

Bimetallic Silver Catalysts for the Reformate-Assisted Selective Catalytic Reduction
of NOx

by

Richard C. Ezike

Chair: Levi T. Thompson, Jr.

The objective in this dissertation was to investigate a strategy to improve the low-

temperature performance of Ag/Al2O3 for hydrocarbon selective catalytic reduction

of NOx, or HC-SCR. The overall goal was to determine a set of conditions that would

make an active Ag/Al2O3 catalyst between 200-400°C. Two approaches were studied.

The first approach was to add H2 into the reactant stream. The presence of H2 has

been shown to reduce the light-off reaction temperature for Ag/Al2O3 nearly 200°C.

The second approach was to impregnate Pd, Pt, or Rh (platinum group metals, or

PGMs) onto the Ag/Al2O3 catalyst. Pd, Pt, and Rh are active for NOx at 400°C and

lower, so it was believed that the addition of these metals could interact with the Ag

active sites and make them more active below 400°C. Specifically, the two approaches

were combined to maximize the low-temperature catalytic performance.

A series of bimetallic catalysts were synthesized and a full factorial design exper-

imental design was conducted to determine the conditions in which the low tempera-

ture performance of the Ag/Al2O3 catalyst for HC-SCR would be maximized. These

factors included (1) HC/NOx ratio; (2) H2/CO ratio; (3) second metal loading; (4)

xiii



second metal type; and (5) temperature. The NOx conversion and N2 selectivity gen-

erally decreased as the loading of the second metal increased. The NOx conversion

was affected by second metal type specifically at a temperature of 300°C, in which

the order of performance was Pd < Pt < Rh. In response to the detrimental effect

of second metal loading, the loading order was switched. The loading order indepen-

dently did not significantly affect the NOx conversion or N2 selectivity. However, the

loading order did affect NOx conversion and N2 selectivity performance with regard

to Pd. The NOx conversion improved by 6% and the N2 selectivity by 12% when the

Pd precursor was added before the Ag precursor.

It was hypothesized that the detrimental effect of the second metal on the NOx

conversion was caused by the unselective combustion of the C3H6 to CO2. When the

loading of the second metal was increased, the combustion of the C3H6 increased to

100%, yet the conversions to NOx decreased. With regard to the N2 selectivity, the

platinum group metal catalysts are known to produce N2O. It was believed that the

PGMs did not interact with the Ag significantly. Therefore, the catalytic surface was

populated with separate domains of Ag and PGM sites. In regards to the loading

order, the interaction between Ag and the second metal type was significant due to

the presence of Pd on the surface. The NOx conversion and N2 selectivity improved

when Pd was added before Ag. Pd is known to be miscible with Ag, and therein,

it was believed that the extent of alloying changed, resulting in improved conversion

and selectivity.

In summary, the addition of the PGMs did not improve the NOx conversion or

N2 selectivity even in the presence of H2. The presence of the PGMs enhanced the

unselective combustion of the hydrocarbon to CO2 and increased production of N2O

on the catalyst surface, inhibiting both the conversion and selectivity. Switching the

loading order resulted in an improvement for the Pd bimetallic catalysts.

xiv



CHAPTER I

Introduction

1.1 Summary

This chapter provides an overall introduction in the field of catalytic reduction of

nitrogen oxides, or NOx, from mobile sources. First, the reasons for diesel exhaust

aftertreatment and the shortcomings that exist with the current technologies are

discussed. Next, the advantages and disadvantages of the technologies that have

been investigated to date for reduction of NOx are described. Hydrocarbon selective

catalytic reduction of NOx (HC-SCR) is the technology of greatest interest, and

the case for further research into HC-SCR is explained. Bimetallic catalysts have

been utilized for a number of chemical reactions, and the relevance in HC-SCR is

introduced. In conclusion, the scope of the thesis is described and each chapter of

the thesis is briefly summarized.

1.2 Vehicle Exhaust Treatment

According to the emissions inventory taken by the U.S. EPA in 2008, 58% of the

total NOx emissions released into the atmosphere in 2008 originated from mobile

sources (see Figure 1.1) [1].

When NOx and volatile organic compounds mix in the atmosphere, they react

1



Figure 1.1: Man-made emissions of NOx produced in 2008. Data taken from
http://www.epa.gov/airtrends/2010/report/airpollution.pdf.

with sunlight to produce photochemical smog (which consists of airborne particulate

matter and ground-level ozone). The presence of photochemical smog is common in

urban areas and contributes to problems such as emphysema, asthma, bronchitis, and

shortness of breath [2]. The production of NOx occurs in all types of engines, but is

most prevalent in the operation of diesel engines.

Diesel engines operate under lean conditions (air-to-fuel ratios above the stoi-

chiometric ratio of 14.7:1 observed in an internal-combustion spark-ignition gasoline

engine) and have better fuel efficiencies compared to the internal combustion engines.

However, the excess air also increases the concentration of emitted NOx from the

engine tailpipe. For gasoline engines, NOx is reduced using a three-way catalytic

converter (TWC). These converters use a combination of Pt, Pd, and Rh to remove

hydrocarbons, CO, and NOx [3]. TWCs are efficient in the removal of these pollutants

between 400-800°C at which these reactions readily proceed [4]. However, TWCs can-

not be used in a lean environment because the net oxidizing condition of the exhaust

severely inhibits NOx reduction.

In addition to the inability of TWCs to reduce NOx in diesel engines, legislation

2



also drives the development of technologies to reduce NOx. The U.S. Environmental

Protection Agency (EPA) set new NOx emission standards that were phased into

effect from 2004-2009. In 2010, the California Air Resources Board adopted new NOx

regulations that call for a fleet average requirement of 0.03 g/mile of total NOx and

non-methane organic gases (NMOG) by the year 2022. The total would consist of

0.01 grams of NMOG and 0.02 grams of NOx [5]. The EPA currently does not have

any proposed updates in NOx emission standards past the 2009 model year, but it is

possible that when the next update is announced, it will be based on the new CARB

standards. Figure 1.2 shows the change in the EPA NOx standards from 1975 to

2009 and the CARB standard for 2022. Updating to the 2009 standard from the 1999

standard required a 77% reduction in NOx. The new CARB standard will require an

additional 72% reduction in NOx. The need to meet these new stringent regulations

has sparked investigations of several technologies for NOx reduction, of which some

will be discussed in this chapter. These technologies include NOx decomposition,

NOx storage-reduction, selective catalytic reduction of NOx with urea, and selective

catalytic reduction of NOx with hydrocarbons [6].

1.3 Technologies for NOx Reduction

1.3.1 NOx Decomposition

Although the decomposition of NOx to N2 and O2 would be the most direct route

to convert NOx because the method does not require a reductant, the thermodynamic

barriers and the low turnover frequencies make the method unfeasible for commercial

application. The Cu/ZSM-5 catalyst was initially considered an attractive candidate

for catalyzing NOx decomposition. Iwamoto et al. analyzed the ability of Cu/ZSM-

5 to directly decompose NO using a concentration of 1000 ppm NO balanced with

He. They observed that light-off for NO decomposition occurred 300°C and that
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Figure 1.2: Change in EPA NOx emission standards from 1975-2009 and percentage
reductions from the previous standard. The CARB standard for the year
2022 is also listed, although the EPA has not officially adopted any new
standards past the 2009 model year. The CARB standard is to be phased
in between the 2014 and 2022 vehicle model years. Taken from the U.S.
EPA Federal Register No. 65.

Cu/ZSM-5 achieved a 25% maximum conversion of NO at 500°C [7]. However, the

presence of SO2 deactivated the catalyst. When 220 ppm of SO2 was introduced into

the system, the catalyst deactivated completely after 40 minutes of reaction time.

The catalyst could be regenerated by introducing He at 700°C [7]. They suggested

that the reduction in activity was due to the competition of adsorption sites between

SO2 and NO [7, 8]. In response, Ishihara et al. synthesized a La0.7Ba0.3Mn0.8In0.2O3

catalyst and found that the catalyst was active for NOx decomposition in the presence

of H2O, SO2, and O2; however, the temperatures tested were at 800°C and higher [9],

which is much higher than the temperature range for commercial diesel exhaust. In

addition, the O2 concentration in diesel exhaust is too high for NOx decomposition

to be an effective solution because thermodynamically, the oxidation of NO to NO2

is significantly more favorable than its decomposition to N2. Therein, significantly

more NO2 would be formed than N2, as concluded by Goralski and Schneider using

free-energy minimization calculations [10].
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1.3.2 NOx Storage-Reduction

NOx storage-reduction catalysis (NSR), or lean NOx trapping, is another possible

method of reducing NOx [11–13]. Figure 1.3 depicts a schematic of NSR [14]. The

catalyst functions in lean and rich conditions. Under lean conditions, the NOx is

adsorbed on the surface of a catalyst containing Pt and BaO supported on γ-Al2O3.

The role of Pt is to oxidize NO to NO2 while the BaO stores the NOx as BaNO3.

Under rich conditions (less than the stoichiometric air-to-fuel ratio of 14.7 maintained

in internal combustion engines), the stored NOx is reduced to N2 and desorbs from

the catalyst. The Pt is reduced using H2, CO, and the hydrocarbons in the exhaust

and fuel, resulting in the regeneration of the trap.

The most common NO adsorption pathway is called the nitrate route. In this

pathway, NO is first oxidized to NO2, then the NO2 is adsorbed onto the catalyst

surface via disproportion, resulting in the formation of nitrates (NO3
−) [15, 16]. Nova

et al. suggested a two-step parallel process for adsorption in which the NO oxidizes

to NO2 and subsequently disproportionates to form nitrates or is oxidized in the

presence of O2 to form adsorbed nitrite species, which are then oxidized to nitrates

[17]. The oxidization to the adsorbed nitrites was dependent on the coupling of Pt

and Ba sites. The nitrite process occurs due to the activation of oxygen by Pt, which

in turn transfers to the Ba sites [18]. For reduction, it was proposed that the nitrate

species decomposes into NO, which is then dissociated by the reduced metal [19].

NH3 is also formed in the process due to the reaction of H2 with decomposed NO or

by hydrolysis of isocyanate (NCO) [20].

Several problems exist with NSR catalysts. The NSR catalyst is deactivated by

SO2 [21]. When NO is oxidized under lean conditions, undesirable SO2 oxidation

can occur and form BaSO4. BaSO4 is more stable than BaNO3 on Pt and blocks

the reaction with NOx on the metal [22]. In addition, SO2 can compete with NOx

for adsorption sites, reducing the efficiency of the reduction [23]. The deactivation

5



Figure 1.3: Schematic mechanism of NOx storage reduction using over a Pt-BaO/γ-
Al2O3 catalyst.

is more likely to occur under rich conditions as compared to lean conditions. The

deactivation is attributed to the formation of PtS species [23]. Another issue is

thermal deactivation. The NSR catalyst is at its optimum efficiency near 350°C, but

as temperatures increase to around 600°C, the Pt begins to sinter. Therefore, fewer

sites are available for NO and O2 to adsorb and react and the rate of key catalytic

steps, such as the oxidation of NO, decreases. Furthermore, the catalyst is subject

to sintering [24]. Another problem is that at low temperatures, outlet hydrocarbon

concentration at cold start is an issue. The concentrations could be reduced by placing

a pre-turbo oxidation catalyst in the NSR system [5].

1.3.3 Selective Catalytic Reduction(SCR)

1.3.3.1 SCR with NH3/Urea

The selective catalytic reduction with NH3 is another means to reduce NOx. This

method has been widely used for the reduction of NOx from stationary sources since

the 1970s [25]. Common catalysts for this reaction include V2O5, WO3, and MoO3

[26]. However, NH3 cannot directly be used as a selective reductant on a diesel- or

lean-burn engine-powered vehicle. In gaseous phase, NH3 is corrosive, toxic, and is
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difficult to handle [27]. Furthermore, slip and corrosion prevent NH3 from being used

directly [6]. As an alternative, urea is used because it is a benign chemical that can

be stored safely on-board and can be hydrolyzed to make NH3 [26]. For heavy-duty

trucks and bus engines, urea is the choice reductant for meeting Euro IV and Euro V

NOx limits [26].

However, there are some notable drawbacks with the use of NH3/urea as a re-

ductant. Several side reactions occur during urea-SCR, leading to the formation of

undesired products such as N2O, NO, NH4NO3, NH4NO2, and NH4HSO4 [28]. At low

temperatures (100-200°C), ammonium nitrate can form and deposit in the pores of

the catalyst, causing temporary deactivation [25]. Another notable drawback is that

urea freezes at -10°C, which makes SCR difficult to conduct at temperatures typical

of winter and cold climates [29]. Also at low temperatures, the high hydrocarbon

concentration can poison sites on the catalysts. These hydrocarbons form carbona-

ceous deposits, which can only be removed by oxidizing that catalyst in air at high

temperatures [25]. Because diesel engines work in highly transient conditions, the

issues that occur at low temperatures are a significant barrier. Sulfur can also act as

a catalyst poison. Sulfur in diesel fuel is a source for the formation of SO2 and SO3 in

a highly oxidizing environment. Ammonium sulfates can form when SO3 reacts with

NH3, which can irreversibly foul the catalyst [25]. Finally, SCR technology with urea

presents enforcement issues in the United States in that (1) urea must be ensured

to be available along with diesel fuel throughout the current distribution network

and that (2) urea has to be timely replenished, which is a responsibility to EPA is

concerned to place on drivers [25].

1.3.3.2 HC-SCR

An alternative strategy for meeting NOx emission regulations that does not exhibit

the difficulties of the aforementioned NOx reduction methods is Hydrocarbon Selective
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Catalytic Reduction, or HC-SCR. The equations below display the reaction using

propylene (C3H6) as the reductant:

4NO + 2C3H6 + 7O2 ⇒ 2N2 (desired product) + 6CO2 + 6H2O

2NO + C3H6 + 4O2 ⇒ N2O (undesired product) + 3CO2 + 3H2O

This method requires the introduction of excess hydrocarbons into the exhaust

to reduce the NOx, as the concentration of total hydrocarbons from diesel exhaust is

not enough to reduce the NOx at an acceptable level. Therefore, the hydrocarbons

would have to originate from the unburned fuel in the vehicle. However, because

the source of the hydrocarbons comes from the fuel, there is no need for an extra

reductant-containing tank to be installed on board, which is required for urea-SCR.

N2 is the primary desired product; however, the formation of undesired N2O may also

occur. Minimizing the amount of N2O formed is important because N2O has a global

warming potential 270 times that of CO2 [30].

A variety of catalysts have been tested for HC-SCR, such as zeolites [31–34] and

supported metal oxides using both base metals (such as Fe and Co) and platinum

group metals such as Pd, Pt, and Rh [35–39]. Zeolites are characterized by high

activities for NOx reduction to with wide reaction temperature windows [6]. The type

of zeolite has a significant effect on the activity. For example, when comparing zeolites

impregnated with Ni, Mosqueda-Jimenez et al. observed that Ni/ZSM-5 exhibited

higher activity for NOx reduction compared with Ni/MOR and Ni/MCM-22. They

attributed the improvement of NOx reduction on Ni/ZSM-5 to the high concentration

of acid sites on the Ni/ZSM-5 when using propane as the reductant. With propane,

the amount of olefin available on the catalyst surface is limited during NO reduction

and, therefore, it reacts more efficiently with the adsorbed nitrites and nitrates to

form N2 [40]. However, when using propylene, the acid sites caused the formation of

carbonaceous deposits on the catalyst surface, resulting in deactivation [41]. The main
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factor inhibiting the widespread use of zeolites for commercial applications is their

low hydrothermal stability. The reduction of the activity is caused by the competitive

adsorption of H2O, reducing the ability of the reactant gases to reach the active site

for reaction [6]. This loss can be reversible; however, irreversible deactivation can

also occur when the metal ions are removed from the ion-exchange zeolite sites or

if crystallites begin to form in the zeolite pores [42]. Although catalysts have been

proposed that are less susceptible to hydrothermal breakdown, much more research

needs to be done in order to bring zeolites to market.

Base metal catalysts typically have high selectivities to N2, but low NOx con-

versions, especially at low temperatures. One of the most promising materials is

Ag/γ-Al2O3 due to its high activity and selectivity to N2. Miyadera was the first to

report on Ag/γ-Al2O3 for NOx reduction [43]. The extent of activity and selectivity

is dependent on a number of factors such as reductant type and preparation method.

The activity can vary among different reductants. As carbon number increases, the

NOx reduction activity for Ag/γ-Al2O3 has been reported to shift to lower tempera-

tures [44]. Shimizu et al. also observed that the inhibitive effect of H2O on HC-SCR

is lessened as carbon number is increased. For propane and n-butane, the presence

of H2O inhibited the reaction over Ag/γ-Al2O3. However, the effect was mitigated

when using n-hexane as a reductant. Furthermore, they observed a slight promotion

of the activity in the presence of H2O when using n-octane [44]. The use of alcohols

as reductants have resulted in improved low temperature activity compared to un-

saturated and saturated hydrocarbons. Zhu et al. observed a 20% improvement in

the NOx reduction activity in the presence of SO2 when using methanol as a reduc-

tant. Furthermore, the temperature at which the maximum conversion was achieved

shifted from approximately 250°C (at a maximum conversion of 60%) to 350°C (at a

maximum conversion of 80%) [45]. Using ethanol as a reductant, Miyadera observed

conversions between 80% and 85% over Ag/γ-Al2O3 at temperatures between 200
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Figure 1.4: Simplified reaction scheme of the SCR of NOx with C3H6 over oxide cat-
alysts with species that are likely to be involved. It was proposed that
the formation of N2 occurs through the transformation of oxidized and
reduced nitrogen species, which are in the gray-shaded circle.

and 400°C [43]. A significant issue with ethanol is the formation of nonselective side

products in the reaction. Sumiya et al. attempted to reduce NOx with ethanol in

the presence of H2O and SO2. They observed the formation of CH3CHO, CO, C3H6,

C2H4, C2H2 and CH4 along with NH3 and N2O [46].

A number of reaction pathways have been proposed for NOx reduction over

Ag/Al2O3 [39, 47–50]. Figure 1.4 displays the most widely accepted pathway this

catalyst and other base metal catalysts [4]. Under lean environments, the excess O2

plays an important role. The proposed first step is the formation of adsorbed hydro-

carbon species onto the surface sites, followed by adsorption of NO onto a surface site

to form ad-NOx species.
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Most researchers have reported that O2 participates in the oxidation of NO and

hydrocarbons to form various reaction intermediates [4, 25]. O2 may also help to

prevent coking of the surface by removing hydrocarbons that can bind strongly to

the surface and block active sites. The adsorbed NOx, acetates, and O2 react to form

various organo-nitro and organo-nitrito species on the surface and in the gas phase

[39, 50, 51]. These species further react to produce cyanates (R-CN), isocyanates

(R-NCO), amines (R-NH2), and NH3 that are adsorbed on the surface and further

react to form N2 [4].

Platinum group metal based catalysts are generally characterized as having high

activities for NOx reduction at temperatures below 300°C, but produce significant

amounts of N2O, resulting in low selectivities to N2 [4]. Pd. Pt, Rh, and Ir all

have displayed activity for the reduction of NOx on a variety of supports [32]. Burch

and Millington tested Pd/Al2O3, Pt/Al2O3, and Rh/Al2O3 at a 1% weight loading

to compare differences in the activity of the metal catalysts at similar conditions.

Pd/Al2O3 attained a maximum NOx conversion of 25% with a full width half maxi-

mum (FWHM) temperature window from 225-275°C, Pt/Al2O3 attained a maximum

NOx conversion of 60% with a FWHM temperature window from 250-300°C, and

Rh/Al2O3 attained a maximum NOx conversion of 30% with a FWHM temperature

window from 325-400°C [38].

The dissociation-reduction pathway was proposed for platinum group metal cat-

alysts by Burch and Millington and is the generally accepted pathway over platinum

group metals [52]. This pathway is displayed in the following equations below, where

Z represents a surface adsorption site on the PGM [52]:

NO(g) + Z = NO(ads)

NO(ads) + 2Z = N(ads) + O(ads)

N(ads) + N(ads) = N2(g)
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NO(ads) + N(ads) = N2O(g)

O2(g) + 2Z = 2O(ads)

CxHy(g) + nZ = CxHy(ads)

CxHy(ads) + (2x + 1
2
y)O(ads) = xCO2(g) +

1
2
yH2O(g)

The first step involves the adsorption of NO on the surface of the catalyst, followed

by the dissociation of NO into adsorbed N and O species. Two adsorbed N atoms

can form N2 or an adsorbed N atom can react with an adsorbed, non-dissociated NO

to form N2O. The hydrocarbon reduces the platinum group metal sites by removing

adsorbed oxygen species on the surface. This reduction is important because the

dissociation of NO happens on the reduced metallic sites.

Selective catalytic reduction of NOx with hydrocarbons appears to be a promising

method to achieve the reductions in NOx emissions needed to meet future standards.

Nevertheless, issues remain that have to be addressed. The extra hydrocarbon needs

to be injected into the exhaust aftertreatment system to achieve the reduction. This

would require rerouting fuel typically used for powering the engine. This rerout-

ing results in a fuel penalty and a reduction in the fuel economy. In addition, the

Ag/Al2O3 catalyst has shortcomings. Miyadera reported that the Ag/Al2O3 catalyst

displayed negligible activity at temperatures below 400°C [43]. The lack of activity

is of concern because the temperature of diesel exhaust is between 150-400°C [53].

Theinnoi et al. concluded that the primary causes for the lack of low-temperature

performance were that Ag/Al2O3 self-poisons by forming stable surface nitrates and

that gas-phase hydrocarbons can produce carbonaceous species that block active sites

[54]. Furthermore, Ag/Al2O3 can be inhibited by sulfur species, although it is much

more resistant than the Pt/BaO/γ-Al2O3 catalyst for NOx storage reduction [54].
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Figure 1.5: Effect of H2 on the SCR of NOx with n-octane. The experiment was
conducted with a total flow rate of 276 cm3/minute using 266 mg of
catalyst. The inlet concentration was as follows: 720 ppm NO, 4340 ppm
C3H6 (as C1), 4.3% O2, 7.2% H2O, He balance.

1.3.3.3 Reformate-Assisted HC-SCR

In response to the difficulties reported by Miyadera, Satokawa et al. proposed

that NOx conversion on Ag/Al2O3 could be promoted by the addition of H2. The

added H2 improved the tolerance of the catalyst to sulfur and H2O and widened the

temperature window at which NOx reduction occurred [55, 56]. According to Burch

et al., the temperature at which the reduction of NOx began to occur decreased

from 400°C to 200°C when H2 was added as shown in Figure 1.5 [57]. The effect

of the reduction of the light-off temperature has been observed for when both non-

oxygenated and oxygenated hydrocarbons have been used as reductants [58].

Satokawa et al. and Shibata et al. suggested two reasons for the H2 effect.

Satokawa et al. believed that the presence of H2 resulted in higher concentrations of

isocyanate surface species, which are believed to be key intermediates in the reaction

mechanism with H2 [59]. Shibata et al. postulated that H2 promoted oxidation of the

hydrocarbon to form surface-bound acetates. Because Shibata et al. proposed that
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the formation of the acetates is viewed as the rate-determining step in HC-SCR in

the absence of H2, they believed the acetates were key intermediates in the reaction

mechanism [60]. In addition to the two reasons above, Breen et al. and Kannisto et

al. also suggested that H2 removed strongly adsorbed nitrate species that poisoned

the Ag/Al2O3 catalyst [61, 62].

When H2 is added, certain reaction steps in the reaction pathway for Ag/Al2O3 are

enhanced. Figure 1.6 displays the H2-enhanced reaction pathway [25]. The adsorption

of NO and hydrocarbons to the catalytic surface and the formation of organo-nitro and

organo-nitrito species are enhanced by the presence of H2. The rate-determining step,

which is proposed to be the formation of isocyanate, is also accelerated in the presence

of H2. The increased rate of formation of isocyanate results in the promotion of the

production of NH3, eventually leading to an increase in the rate of N2 production.

Hydrocarbon selective catalytic reduction of NOx with Ag/Al2O3 appears to be

the most promising of the currently studied technologies. HC-SCR does not require

any extra tank for a reductant, which is a requirement for NH3-SCR. Furthermore,

H2-assisted HC-SCR with Ag/Al2O3 appears to be more resistant to sulfur and does

not require to use of expensive precious metals. However, some key challenges need

to be addressed before the system can be implemented commercially. The need for

H2 requires the installation of a reformer, and therein more study is required to

determine how the reformer will fit into the aftertreatment system. In addition,

complete conversion of NOx is not achieved until 250°C even in the presence of H2

[57] and the low-temperature conversion is dependent on the H2 concentration. It is

desired that the H2 concentration required should be as minimal as possible. Since

diesel exhaust is between 150-400°C, more research is required to determine how to

maximize conversion in this temperature range.
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Figure 1.6: Proposed reaction scheme of NOx reduction over Ag/Al2O3 with H2. H2

accelerates the adsorption of gas-phase NO and C3H6 onto the surface
and the activation of adsorbed NO to more reactive NO2, which can
be adsorbed on the surface or in gas phase. In turn, the formation of
N-containing species, specifically isocyanate (R-NCO), is enhanced, re-
sulting in improved NOx performance.
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1.4 Bimetallic Catalysts for HC-SCR of NOx

The performance of a catalyst for a given reaction depends on many factors,

including the surface chemistry. Most catalysts consists of some active species, such

as a metal that is impregnated onto a high surface area support. By adding multiple

metallic components on the surface, the performance of a catalyst for a reaction

can be greatly altered [63–66]. Transition metal catalysts have garnered interest

because many pairs can form alloys over large composition ranges [67]. The surface

of a bimetallic catalyst can significantly vary based on a number of factors, such as

atomic size, surface energies, and temperature [68, 69].

There have been a number of studies for HC-SCR of NOx using multi-metallic

catalysts, particularly with combinations of Ag and PGMs [70–73]. Sato et al. added

0.05% Rh onto a previously prepared 4% Ag catalyst. They observed an increase in

the conversion of NOx to N2 between 250-400°C, reaching a maximum of 50% at 300°C

[70]. Wang et al. added small amounts of Pd, Pt and Au (0.01% and 0.05%) to a

5% Ag/Al2O3 catalyst under the following conditions: 800 ppm NO, 1714 ppm C3H6,

10% O2, 10% H2O, balanced with N2. The addition of 0.01% Pd and Pt resulted in an

increase in the NOx conversion between 300°C and 400°C. However, the improvement

was negligible in this temperature range. Furthermore, the conversions did not exceed

20% until 350°C [71].

1.5 Scope of Thesis

This thesis describes an effort to improve the low temperature activity of Ag/Al2O3

by (1) adding H2 to the diesel exhaust mixture and (2) adding Pd, Pt, or Rh onto the

Ag/Al2O3 surface, with the goal of developing a highly active and selective catalyst

for the HC-SCR of NOx at temperatures between 200-400°C. The objectives of the

research were to
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• develop active and selective bimetallic catalysts for NOx reduction;

• define effects of H2 and PGMs on the activity and selectivity of Ag/Al2O3, and;

• examine the effect of impregnation order on NOx reduction performance.

An extensive screening experiment was conducted to determine factors that af-

fected the NOx conversion. After these effects were identified, various characterization

techniques were employed in an effort to explain these effects.

Chapter 2 describes the experimental tools utilized in the catalyst screening and

characterization. Chapter 3 introduces the experimental design and presents the

results for the screening experiments. Chapter 4 discusses the identified factors of

interest - loading and loading order - in greater detail using various characterization

techniques, such as temperature-programmed reduction, H2 chemisorption, and O2

chemisorption. Finally, Chapter 5 summarizes the major conclusions resulting from

the research and outlines possible directions for future work.
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CHAPTER II

Experimental Techniques

2.1 Summary

This chapter provides a detailed description of the experimental techniques used

in this thesis and the underlying principles that govern their operation. First, the

method used to synthesize the monometallic and bimetallic catalysts is described.

Next, the various characterization tools that were employed in this work are intro-

duced and explained in detail. Furthermore, a description of the reactor used to test

the catalysts is introduced. Finally, a description of the design of experiments (DOE)

is explained.

2.2 Introduction

The goal of research described in this dissertation was to explore the possibility of

generating a highly active and selective catalyst for the HC-SCR of NOx at temper-

atures between 200°C and 400°C by employing two approaches: (1) adding H2 into

the reactant stream, and (2) adding a platinum group metal (Pd, Pt, or Rh) onto

Ag/Al2O3. The following objectives of the research were to:

• prepare monometallic and bimetallic catalysts for NOx reduction;
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• define effects of H2 and the presence of platinum group metals on the activity

and selectivity of Ag/Al2O3, and;

• examine the effect of impregnation order on NOx reduction performance over

Ag/Al2O3.

The first objective was achieved using dry impregnation to prepare the cata-

lysts and the catalysts were characterized using nitrogen physisorption method for

surface area, inductively coupled plasma-optical emission spectroscopy (ICP-OES)

for elemental analysis, x-ray diffraction (XRD) for crystalline structure, and pulse

chemisorption experiments to determine metal site density. The second and third

objectives required a comprehensive analysis of a number of possible conditions that

could be important in defining the effects of H2, PGMs, and impregnation order on

NOx reduction and N2 selectivity. Any experiment of this complexity can be best

analyzed by using DOE, or design of experiments. DOE allows one to analyze a num-

ber of factors simultaneously to determine what conditions most affect the activity

and/or selectivity.

2.3 Catalysis Synthesis

Ag, Pt, Pd, and Rh were supported on γ-Al2O3 using an impregnation technique.

The support material was commercial γ-Al2O3 powder (3 µm flakes, 99.97% purity,

80-120 m2/g BET surface area, Alfa Aesar). The flakes were compressed under 4000

psi in a Carver Model 4350-L compressor to cylindrical blocks of about 1 cm3 in

volume before being crushed and sieved to particle sizes of 125-250 µm. Before

impregnation, the support material was calcined in 90 cm3/minute of dry-grade air

in a horizontal quartz tube furnace at 600°C for 3 hours.

The metals were impregnated onto surfaces of the support using the dry impreg-

nation technique [1, 2]. Just enough precursor solution is used to fill the total pore
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volume of the support, which is measured using nitrogen physisorption and was calcu-

lated to be 0.383 cm3/g. The solutions were prepared by dissolving a metal precursor

in water. The metal precursors were AgNO3 (Johnson Matthey), Pt(NH3)4(NO3)2

(Johnson Matthey), Pd(NH3)4(NO3)2 (10% solution, Sigma-Aldrich), and Rh(NO3)3

(Johnson Matthey) for Ag, Pt, Pd, and Rh respectively. The precursor solution vol-

ume was adjusted to fill the support pore volume of 0.383 cm3. After impregnation,

the solution was allowed to diffuse into the support for 1 hour, then the catalysts

were dried in a Fisher Scientific vacuum oven at a pressure of -30 mm Hg at 100°C

for 8-12 hours and subsequently calcined at 600°C for 3 hours in 90 cm3/minute of

dry-grade air. The time and temperature were chosen based on previous work [3, 4];

these calcination parameters were shown to maximize the activity of bimetallic Ag-Pt

group metal NOx catalysts.

The bimetallic catalysts were prepared using sequential dry impregnation. The

Ag metal precursor solution was impregnated before the Pd, Pt, or Rh precursor

solutions. After each step the catalysts were dried in a Fisher Scientific vacuum oven

at a pressure of -30 mm Hg at 100°C for 8-12 hours and subsequently calcined at

600°C for 3 hours in 90 cm3/minute of dry-grade air.

2.4 Surface Area

Nanostructured catalysts consist of micropores, mesopores, and macropores. Mi-

croporous materials have average pore diameters less than 2 nm, mesoporous mate-

rials between 2 and 50 nm, and macroporous materials above 50 nm. N2 cooled to

temperatures of 77 K is often used as a probe molecule, at which physical adsorption

occurs on the total surface of the catalyst [5]. Adsorbed N2 is recorded as a function

of the partial pressure of N2 producing an adsorption isotherm. Depending on the

average pore size diameter of the support, the isotherm can vary significantly [5].

The surface area can be calculated using the Brunauer, Emmett, and Teller, or
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BET method. For adsorption at a free surface, the BET equation is given as [5]:

P

V (Po − P )
=

1

VmC
+

(C − 1)P

VmCPo

(2.1)

where V is the volume of adsorbed gas at equilibrium pressure P, Vm is the volume

of a monolayer coverage of adsorbed gas, Po is the vapor pressure of the probe gas

in its condensed state at the adsorption temperature, and C is a constant related to

the enthalpy change in the first layer ∆H1 and heat of condensation of the adsorbate

∆Hc. The equation for C is given as [5]:

C = exp[(∆H1 −∆Hc)/RT ] (2.2)

A strong linear relationship is usually observed when P
V (Po−P )

is plotted as a func-

tion of the relative pressure P
Po

. The monolayer volume is determined from the slope

C−1
C
Vm. The intercept 1

Vm
C is divided by the weight of the sample to determine the

surface area (m2/gram). The determination is valid for ranges of the relative pressure

from 0.05 to 0.3 [5]. The surface areas and average pore radii were measured using

a Micromeritics ASAP 2010 instrument. Prior to these measurements, the catalysts

were degassed at 200°C for 3 hours under 5 µm Hg of vacuum. Approximately 100

mg of catalyst was used for each run.

2.5 Elemental Analysis

The metal loading was determined via inductively coupled plasma-optical emission

spectrometry, or ICP-OES [6]. In ICP-OES, a hot plasma breaks down compounds

into atoms and ions. The atoms and ions inside the plasma are excited to emit
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Table 2.1: Wavelengths utilized during elemental loading analysis with ICP-OES.
Two wavelengths were used to examine each element for reproducibility
purposes.

Element Wavelength 1 (nm) Wavelength 2 (nm)
Ag 328.068 338.289
Pd 340.458 360.955
Pt 214.424 217.468
Rh 249.078 343.488

electromagnetic radiation in the form of light. The light is resolved through diffractive

optics, and a detector measures the intensity of the light. An element can be identified

from a specific wavelength resolved through the optics, and the intensity can be

directly correlated with the element’s concentration [6]. Multiple elements can be

measured simultaneously. Samples can be liquids, solids or gases. Solid samples are

typically dissolved in acids such as HCl, HF, or HNO3. The degree of dissolution

depends on factors such as the type of sample, time, and temperature. ICP-OES is

useful over a large concentration working range, from µg/L up to g/L.

Metal loadings were calculated using an Agilent Technologies axial 710-ES series

ICP-OES instrument.Prior to analysis, the instrument was calibrated with standard

solutions of Ag (1005 ± 3 µg/mL), Pd (1005 ± 5 µg/mL), Pt (1000 ± 3 µg/mL), and

Rh (999 ± 3 µg/mL)(Inorganic Ventures). First, the powder samples were dissolved

in 3 mL of a 1:1:1 volumetric mixture of deionized H2O, HF, and HNO3. Then

the samples were sonicated for 1 hour at a temperature of 55°C. The samples were

introduced into the ICP using peristaltic pumping and collected using an autosampler.

Table 2.1 lists the wavelengths chosen in the analysis. Two wavelengths were used to

examine each element for reproducibility purposes.
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2.6 Thermal Sorption Spectroscopy Methods

2.6.1 Temperature Programmed Reduction

Temperature programmed reduction (TPR) experiments were employed to study

the reduction of catalysts. The reduction temperatures are important because the

active site can vary depending on the oxidation state of the metal. In TPR, a H2-

containing stream is passed over a metal oxide, which is reduced into its metallic state

when exposed to elevated temperatures. Depending on the metal oxide, a peak will

be generated at a specific temperature corresponding to the reduction of the oxide.

The temperature at which the reduction of a metal occurs is essential to know for

the method of pulse chemisorption, for the metal oxide needs to be reduced before

doing any adsorbate probing. In the case of bimetallic catalysts, TPR possibly helps

to understand the effect of one metal on the reducibility of the other. The area under

the peak can be integrated to give the total H2 consumed from the reduction of the

metal oxide. Experiments were conducted using a Micromeritics ASAP 2910 sorption

analyzer. Figure 2.1 shows a schematic of the 2910 system used for TPR. For the

experiments, approximately 150 milligrams of the catalyst was loaded into a quartz

U-tube reactor and heated from 25 °C to 500°C at a rate of 40°C/min in a mixture of

10% H2/Ar flowing at 90 mL/min. H2 consumption was monitored using a thermal

conductivity detector (TCD). A cold trap placed before the TCD was used to remove

water from the exit stream.

2.6.2 Chemisorption

Chemisorption measures the number of metallic sites on the surface of a catalyst

by pulsing an adsorbate gas - such as H2, O2, CO, or N2O - over a catalytic surface

until all sites are occupied by the adsorbate. Depending on the uptake of gas, the

active surface area, percent metal dispersion, and active metal particle size can be
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Figure 2.1: Schematic of the Micromeritics Autochem 2910. Taken from the Au-
toChem 2910 manual.
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calculated. The catalysts must be reduced before chemisorption. A fraction of the

metal may still be in an unreduced state, thus it is important to confirm that the

metal is completely reduced [1, 5].

Dynamic pulse chemisorption is a common technique employed to measure the

metal site density in a catalyst. In this method, the reduced catalyst is exposed

to pulses of adsorbate gas from a calibrated loop in a flow of an inert carrier gas

at atmospheric pressure. The quantity of gas not adsorbed is measured by TCD

(thermal conductivity detector). The first few pulses may be completely adsorbed by

the sample and no change in the TCD detector signal will be observed. As the sample

approaches saturation, peaks representing concentrations of non-adsorbed molecules

appear. When saturation occurs, each injected gas volume emerges from the sample

apparatus unchanged and peaks become constant in area. The number of molecules

chemisorbed is the difference between the total amount of gas injected and the total

amount of the gas that did not adsorb on the active sites. The quantity of each pulse

is determined by a fixed-volume loop connected to an electronically controlled valve.

For the platinum group metals (Pd, Pt, and Rh), H2 was used as the adsorbate

gas, whereas for Ag, O2 was used. H2 does not adsorb on Ag [7–10]. The adsorption

temperature for O2 was 170°C. This temperature was selected because effective re-

moval of O2 occurs without sintering the metal [11, 12]. Samples (approximately 150

mg) were first oxidized in air at 600°C for 1 hour, degassed in a inert gas at 600°C

for 30 minutes, reduced in a mixture of 10% H2/Ar at 250°C for 2 hours, degassed

in an inert gas at 300°C for 30 minutes, and cooled to the desired temperature. Pt

and Rh measurements were taken at ambient temperature, and Pd measurements

were taken at 70°C. This temperature was selected to avoid formation of palladium

hydride [13, 14]. Then 20-30 pulses of 10% H2/Ar or 1% O2/He were passed over the

catalyst until saturation was reached. The loop size used was 300 µL.
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2.7 X-Ray Diffraction

X-ray diffraction (XRD) is used to identify bulk crystalline phases and to estimate

particle sizes of crystalline materials. X-rays are emitted from a source to the sample.

These x-rays undergo scattering with a set of incident angles when they make contact

with the sample, and those angles are unique for a particular crystallographic struc-

ture. From the scattering, a pattern of the intensity as a function of the scattering

angle is obtained, and can be compared to known patterns to identify crystal struc-

tures of elements. Via the Scherrer equation, the pattern can obtain mean particle

sizes [5]:

dc =
Kλ

B cos θ
(2.3)

where dc is the diameter of the crystallite, K is a constant, B is the breadth of the

diffraction peak, λ is the wavelength of the incident x-rays, and θ is the angle of the

diffraction peak.

The measurements were conducted using a Rigaku Miniflex DMAX-B diffractome-

ter with a Cu-Kα radiation source, operated at 40 kV and 100 mA. Patterns were

recorded in the θ range from 20o to 90o at 4θ/minute. JADE software (version 9) was

used to interpret the patterns.

2.8 Reaction Rate System Setup

The HC-SCR experiments were carried out using a Altimara Instruments CeleroTM

high-throughput screening reactor system with 8 parallel flow-through reactor wells

(Figure 2.2). The catalyst was loaded into each reactor well using two swabs of quartz

wool surrounding the material. The 8 reactors were inserted into a stainless steel re-

actor block that held the reactor wells. The temperature of each reactor well was
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controlled by a band heater surrounding the reactor block. There were two ther-

mocouples; one was inserted into the bottom of the reactor block while another was

inserted between the band heater and the reactor block. The maximum rated temper-

ature of the heating block was 550°C. All lines before and after the reactor block were

heated to 200°C via an oven to ensure vaporization of H2O. Five mass flow controllers,

one rotameter (for O2) and one high-pressure liquid chromatograph (HPLC) pump

were used to control the gas and liquid flow rates. The flow distribution across the

reactor wells was controlled by pressure drop over independent capillaries of 500 µm

diameter. An 8-way Valco selection valve was used to select which reactor well was to

be analyzed. To remove H2O, the gas outlet stream flowed through a stainless steel

condenser held at 0°C and an A+ Corporation Genie membrane filter before going

into a Thermo Scientific 42C-High Level NOx analyzer and an Agilent Technologies

CP-4900 micro-gas chromatograph. The H2O traps were required to prevent H2O

from damaging the components in the analytical instruments.

The 42C-High Level NOx analyzer has the ability to measure NO and NO2 sep-

arately. Figure 2.3 displays the analyzer schematic. A gas sample from the testing

system is directed into the reaction chamber inside the analyzer, where chemilumi-

nescence is used to measure concentrations. For NO analysis, the NO reacts with

ozone to produce NO2, excited NO2
∗, and O2. The ozone is produced by an ozonator

device located inside the analyzer. The air is dried by a desiccant trap before entering

the analyzer. A vacuum pump is used to draw in air for the ozonator. The excited

NO2
∗ molecules instantaneously revert to ground level NO2, and the resulting light

emission from the grounding is directly proportional to the NO concentration in the

feed stream. A photomultiplier (PMT) tube, at a temperature of -3°C, measures the

intensity of the emitted light. For determination of the NOx (NO + NO2) concen-

tration, the sample gas containing both molecules is directed to an internal converter

catalyst (T = 625°C) where the NO2 is reduced to NO. The NO-only sample gas is
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Figure 2.3: Schematic of the Model 42C High Level NOx Analyzer. Provided by
Thermo Fisher Scientific.

analyzed by the chemiluminescence method. The NOx concentration is determined

by the difference in the NOx and NO concentrations.

The column modules inside the micro-GC were a MolSieve 5A Plot (MS) with

argon as the carrier gas (column temperature = 100°C) and a PoraPLOT Q (PPQ)

with helium as the carrier gas (column temperature = 40°C). The MS column was used

to quantify H2, O2, N2, and CO, and the PPQ column was used to quantify CO2, N2O,

and C3H6. Analysis of a sample took 4 minutes. The system was fully automated

using Impressionist Software developed by AltamiraTM Technologies, allowing for

time-on-stream data collection. The flow rates of the wells were measured before

each run. Depending on the well flow rate, the catalyst weight was in the range of

50-70 mg in order to maintain a gas hourly space velocity of 60000 hr−1. The reaction

was conducted at reaction temperatures of 200°C, 300°C, and 400°C using simulated

diesel exhaust feed. The total flow rate through the system was 600 ml/min. The NOx

analyzer and micro-GC were calibrated to the simulated diesel exhaust concentrations

before each run. The catalysts were re-oxidized at 400°C for 30 minutes before each
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run to remove any carbonaceous species from the catalysts.

2.9 Experimental Design

Design of Experiments (DOE) methods enable the identification of variables that

influence characteristics of interest in a process. Through DOE, one can systemati-

cally test the effect of a dependent variable, called a response, by varying the levels

of an independent variable, called a factor. This approach can yield important infor-

mation about the performance of a process. One such design is the factorial design.

Factorial designs are divided into full and fractional designs. In a full design, every

combination of factor and level is tested. For example, in a design with 4 factors with

3 levels each, a total of 34 = 81 total treatments are carried out. In the full factorial

design, all effects (one, two, three and four-factor) can be calculated. In a fractional

factorial design, a specific fraction of the full design is conducted. The fraction elim-

inates the ability to calculate higher-order interactions, specifically above two [15].

These higher-order interactions are typically lumped into the calculation of the error

because they are assumed to be negligible [16].

If time and resources permit, the full factorial design is the most desirable plan to

follow. These experiments can be designed and analyzed using a number of software

packages, such as MINITABTM and SPSSTM . Assume a nk design with k factors and

n levels. A combination of factor levels is called a run. The total number of runs

would be nk. Table 2.2 displays a planning matrix with two factors and two levels.

The notation (+, -) is used to represent the two factor levels. Two key properties in

a design are balance and orthogonality. Balance means that each factor level appears

in the same number of runs, and orthogonality means that two factors have all their

level combinations appear in the same number of runs [15].

When the data collection for the factorial experiment is completed, main and

interaction effects can be calculated. A main effect is the influence of one factor on the
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Table 2.2: A sample full factorial planning matrix with two factors and two levels.
Experiment Factor A Factor B

1 + +
2 + -
3 - +
4 - -

response, whereas an interaction effect is the combined and simultaneous influence of

two or more factors on the response. Both main and interaction effects can be plotted

graphically.

An analysis of variance (ANOVA) can be done to test for statistical significance

of the main and interaction effects on the response. The ANOVA tests if a null

hypothesis Ho is rejected. The p-value is used to test the statistical significance of

a hypothesis. In statistics, A p-value of 0.05 signifies a 95% confidence interval; the

data in a set would make the null hypothesis true 5% of the time if at this value.

Other p-values may also be used depending on the desired accuracy of the analysis.

If the p-value is below the desired confidence interval, then Ho is rejected and the

alternate hypothesis Ha is accepted, i.e. the effect is significant on the response. The

mean square coefficients can be used to rank the influence of the main and interaction

effects on the response. The mean square coefficients is the quotient of the residual

sum of square and the degrees of freedom. The residual sum of squares is a measure

of the discrepancy between the data and an estimation model. Therefore, if the sum

of squares for a factor is large, then a significant amount of the variance (deviation)

in the model can be explained by the influence of the factor, and therein the factor

affects the behavior of the response significantly. The degrees of freedom for a main

effect is (n-1), where n is the number of levels for the factor related to the main

effect. The degrees of freedom for an interaction effect is the product of the degrees

of freedom for each individual main effect.

The factorial method for the DOE analysis employed five factors: HC/NOx ratio,
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H2/CO ratio, second metal loading, second metal type, and reaction temperature.

The hydrocarbon to inlet NOx ratio (HC/NOx) is the ratio of the concentration of

hydrocarbon on a carbon atom basis to the inlet NOx concentration. The H2/CO

ratio is the ratio of the concentration of H2 to the concentration of inlet CO. The

second metal loading is the amount of additional Pd, Pt, or Rh impregnated onto

the Ag/Al2O3 catalyst. Each factor was tested at three different levels for a total of

243 independent treatments. The data was analyzed using the MINITABTM software

package to identify which factors were most significant in affecting the NOx conversion

and N2 selectivity. The p-value was used to determine effect significance. The p-value

is used in a significance test to assess the hypothesis’ validity. A p-value target of

0.05 was used; any main or interaction factor that had a p-value of 0.05 or less was

statistically significant. The mean squares were used to rank the influence of the

factors on the responses. MINITABTM was also utilized to generate main effect and

interaction effect plots.
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CHAPTER III

Synthesis and Performance Evaluation

Silver-Based Catalysts for the Reformate-Assisted

Selective Catalytic Reduction of NOx

3.1 Summary

The development of better performing catalysts for the hydrocarbon selective

catalytic reduction of NOx is a major challenge in the advancement of exhaust af-

tertreatment systems in diesel and lean-burn gasoline engines. A significant number

of studies have focused on low-loading Ag/Al2O3 catalysts, which are active for the

reduction of NOx and are selective to N2. However, the catalysts are active only at

temperatures above 400°C if using propylene as a reductant [1]. Therefore, we studied

the effects of (1) adding H2 to the exhaust environment, and (2) adding a second metal

- specifically platinum group metals - along with the Ag. A full factorial experimen-

tal design was conducted to screen catalysts and determine which factors affect the

NOx conversion and N2 selectivity. Five factors were studied: HC/NOx ratio, H2/CO

ratio, second metal loading, second metal type, and reaction temperature. For the

NOx conversion and N2 selectivity, all five main effects were statistically significant

with p values ≤ 0.05. Increasing the loading of the second metal inhibited the NOx

conversion and N2 selectivity. Pd bimetallic catalysts performed marginally worse for
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NOx reduction compared to Pt and Rh bimetallic catalysts and significantly worse for

N2 selectivity. The effect of impregnation order was also studied. The impregnation

order had two levels - Ag-loaded first and Ag-loaded second. The impregnation order

by itself did not have any significant effect on the NOx conversion and N2 selectivity.

However, when interacting with second metal type, it was observed that for the Pd

bimetallic catalysts, the NOx conversion and N2 selectivity were significantly affected

by the impregnation order.

3.2 Introduction

Hydrocarbon Selective Catalytic Reduction (HC-SCR) of NOx is a catalytic pro-

cess in which NOx is reduced to N2 by a hydrocarbon reductant [2]. Since the tailpipe

concentration of hydrocarbons from a diesel engine is not sufficient enough to reduce

NOx, some fuel has to be rerouted from the engine to the exhaust aftertreatment sys-

tem. HC-SCR is important for reducing NOx emissions from mobile sources such as

diesel and lean-burn gasoline cars. Ag/Al2O3 is one of the most researched catalysts

for HC-SCR [3–5]. However, Ag/Al2O3 does not exhibit significant activity or selec-

tivity to N2 below 400°C when using propylene as a reductant [3, 6]. The addition

of H2 improves the performance for NOx reduction by reducing the light-off temper-

ature [7]. Factors that can affect the extent of conversion include H2 concentration,

the presence of H2O and/or CO, and catalyst loading.

Platinum group metals, such as Pd, Pt, and Rh, have displayed activity for HC-

SCR below 400°C. Burch and Millington tested Pd/Al2O3, Pt/Al2O3, and Rh/Al2O3

at 1% weight loading. Pd/Al2O3 attained a maximum NOx conversion of 25%

with a full width half maximum (FWHM) temperature window from 225°C - 275°C,

Pt/Al2O3 attained a maximum NOx conversion of 60% with a FWHM temperature

window from 250°C - 300°C, and Rh/Al2O3 attained a maximum NOx conversion of

30% with a FWHM temperature window from 325°C - 400°C [8]. In addition, Pd, Pt,
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and Rh have been proven to reduce NOx in the presence of H2, CO, or both H2 and

CO [9–11]. Accordingly, it is hypothesized that the addition of platinum group metals

to the surface of Ag/Al2O3 would lower the light-off temperature and increase low-

temperature activitiy for NOx reduction. This work focuses on combining the NOx

light-off improvement observed with the presence of H2 with the low-temperature per-

formance of the platinum group metals to formulate a bimetallic Ag-based catalyst

that will improve the NOx conversion at temperatures below 400°C.

In this chapter, a design of experiments (DOE) was used to quantify the effects of

several factors on the NOx reduction performance. The factors studied were HC/NOx

ratio, H2/CO ratio, second metal loading, second metal type, and reaction temper-

ature. The dependent variables, or responses, of interest were NOx conversion and

N2 selectivity. An analysis of variance (ANOVA) was conducted to determine signifi-

cant effects, and main effect and interaction effects plots were generated to assess the

magnitude of the effect changes. The influence of the factors on the responses was

ranked using the mean square error generated by the ANOVA.

3.3 Experimental

3.3.1 Catalyst Synthesis

Catalysts consisting of Ag, Pt, Pd, and Rh were supported on a commercial

γ-Al2O3 powder purchased from Alfa Aesar (3 µm flakes, 99.99% purity, 80-120

m2/g surface area). The metals were loaded onto the surface of the support using

a dry impregnation technique [12, 13]. The metal precursors were AgNO3 (John-

son Matthey), Pt(NH3)4(NO3)2 (Johnson Matthey), Pd(NH3)4(NO3)2 (10% solution,

Sigma-Aldrich), and Rh(NO3)3 (Johnson Matthey). The metal precursors were dis-

solved in H2O and impregnated onto the support. After impregnation, the monometal-

lic catalysts were dried at a pressure of -30 mm Hg at 100°C for 8-12 hours and sub-
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sequently calcined at 600°C for 3 hours in 90 cm3/minute of dry grade air. For the

bimetallic catalysts, the Ag metal precursor solution was impregnated before Pd, Pt,

or Rh. After each impregnation step the catalysts were dried overnight at a pressure

of -30 mm Hg at 100°C for 8-12 hours and then calcined at 600°C for 3 hours in 90

cm3/minute of dry grade air.

3.3.2 Catalyst Characterization

3.3.2.1 Surface Areas

The catalyst surface areas were measured via N2 physisorption using a Micromerit-

ics ASAP 2010 instrument. Prior to these measurements, the catalysts were degassed

at 200°C for 3 hours until the sample pressure achieved 5 µm Hg. Approximately 100

mg of catalyst was used for each run.

3.3.2.2 Elemental Analysis

The metal content was measured using an Agilent Technologies axial 710-ES se-

ries ICP analyzer. Prior to analysis, the instrument was calibrated with standard

solutions of Ag (1005 ± 3 µg/mL), Pd (1005 ± 5 µg/mL), Pt (1000 ± 3 µg/mL),

and Rh (999 ± 3 µg/mL)(Inorganic Ventures). The samples were dissolved in 3 mL

of a 1:1:1 volumetric mixture of deionized H2O, 49% HF, and concentrated HNO3.

Then the samples were sonicated for 1 hour at a temperature of 55°C. The dissolved

samples were introduced into the ICP using peristaltic pumping and collected using

an autosampler.

3.3.2.3 X-Ray Diffraction

Bulk structures of the catalysts were characterized using powder X-ray diffraction

(XRD). XRD measurements were conducted using a Rigaku Miniflex DMAX-B ro-

tating anode diffractometer with a Cu-Kα radiation source, operated at 40 kV and
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100 mA. The powder samples were mounted on glass slides using double-side tape.

XRD patterns were recorded over diffraction angles (2θ) range from 20o to 90o at

4θ/minute. A multifunction software, JADE (version 9), was used to interpret the

patterns.

3.3.3 Conversion Measurements

3.3.3.1 Calculations

Catalytic activity measurements were performed using a CeleroTM high-throughput

screening reactor system (Altamira Instruments) with 8 parallel flow-through reac-

tor wells made of stainless steel. The catalyst was supported in each reactor well

with quartz wool (Waite Glass Inc.). The 8 reactors were inserted into a stainless

steel block. The temperature of each reactor well was controlled by a band heater

surrounding the reactor block. An 8-way Valco selection valve was used to select

which reactor well was to be measured. To remove water, the gas outlet stream

passed through a stainless steel condenser held at 0°C and an A+ Corporation Genie

membrane filter before going into a Thermo Scientific 42C-High Level NOx analyzer

and an Agilent Technologies CP-4900 micro-gas chromatograph. The condenser and

Genie filter were required to prevent H2O from damaging the gas phase analyzers.

The column modules inside the micro-GC were a MolSieve 5A with Ar as the carrier

gas (operation temperature = 100°C) and a PoraPLOT Q with he as the carrier gas

(operation temperature = 40°C). The MolSieve column quantified H2, O2, N2, and

CO, and the PoraPLOT Q column quantified CO2, N2O, and C3H6. Analyses of the

gas mixtures were performed every 4 minutes. The system was fully automated using

ImpressionistTM software.

The gas space velocity was 60000 hr−1. This gas space velocity is within the range

of commercial systems, as the space velocity range of testing for the FTP-75 Federal

Test Cycle for emission certification of light-duty vehicles made after 2000 is between
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10000 - 120000 hr−1 [14]. The flow rates of the wells were measured before each run.

Depending on the well flow rate, the catalyst weight was in the range of 50-70 mg.

The reaction was conducted at reaction temperatures of 200°C, 300°C, and 400°C

using a simulated diesel exhaust feed that consisted of 600 ppm NO, 800 ppm CO,

3200 ppm H2, 1800 ppm C3H6, 4% CO2, 10% O2, and 4% H2O, with Ar as the balance

gas. The total flow rate through the system was 600 ml/min. The NOx analyzer and

micro-GC were calibrated to the simulated diesel exhaust concentrations before each

run. The catalysts were re-oxidized at 400°C for 30 minutes before each run to remove

any carbonaceous species from the catalysts.

The HC-SCR performance of the catalyst was reported as conversions to NOx

and selectivity to N2. The equations used to calculate the NOx conversion and N2

selectivity are displayed below.

Conversion = (
NOxin −NOxout

NOxin
)× 100 (3.1)

Selectivity = (
NOxin −NOxout −N2Oout

NOxin −NOxout
)× 100 (3.2)

3.3.3.2 Factors and Levels for DOE analysis

The factorial method for the DOE analysis employed five factors: HC/NOx ratio,

H2/CO ratio, second metal loading, second metal type, and reaction temperature.

The hydrocarbon to inlet NOx ratio (HC/NOx) is the ratio of the concentration of

hydrocarbon on a carbon atom basis to the inlet NOx concentration. The H2/CO

ratio is the ratio of the concentration of H2 to the concentration of inlet CO. The

second metal loading is the amount of additional Pd, Pt, or Rh impregnated onto the
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Table 3.1: Components in the simulated diesel exhaust with constant concentrations.
Component Concentration

NO 600 ppm
CO 800 ppm
CO2 4%
H2O 4%
O2 10%
Ar balance

Ag/Al2O3 catalyst. Each factor was tested at three different levels for a total of 243

independent observations. The concentrations of NO, CO, CO2, H2O, and O2 were

held constant. The concentrations are displayed in Table 3.1.

Table 3.2 lists the factors and levels tested in the experimental design. The

HC/NOx ratio was tested at 3:1, 6:1, and 9:1. Equivalent HC/NOx ratios have

been tested in literature for HC-SCR on Ag/Al2O3 catalysts [15]. In this range,

Ag/Al2O3 is highly active for NOx conversion and selective to N2. The H2/CO ratio

was investigated at ratios of 0:1, 2:1, and 4:1. Conducting tests without H2 (the 0:1

H2/CO ratio) was done for the purpose of elucidating the promoting effect of H2 with

Ag/Al2O3 and to investigate the effect of CO by itself as a possible reductant. The

selection of the H2/CO ratios of 2:1 and 4:1 were based on a typical reformate stream

that produces a stoichiometric excess of H2 compared to CO. The concentrations of

H2 and hydrocarbon are listed in Table 3.3.

The second metals employed were Pd, Pt, and Rh. These metals were chosen

because they have demonstrated to be active for SCR with hydrocarbons, H2, and/or

CO [10, 16–18]. The loading levels tested were 0%, 1%, and 10%. The values are

calculated based on the amount of Ag atoms contained in a 2% Ag/Al2O3 catalyst,

which was calculated to be 1.1 × 1020 atoms and is accepted as the ideal loading for

HC-SCR by dry impregnation methods [19]. For example, a loading of 1% Pt means

that the value of 1% of 1.1 × 1020 - or 1.1 × 1018 - of additional atoms of Pt were

added onto the 2% Ag/Al2O3 catalyst. In this work, the 1% loading is referred to

48



Table 3.2: Factors and levels employed in the full factorial analysis.
Factors Level 1 Level 2 Level 3

HC/NOx Ratio 3 6 9
H2/CO Ratio 0 2 4

Second Metal Loading 0% 1% 10%
Second Metal Type Pd Pt Rh

Reaction Temperature (°C) 200 300 400

Table 3.3: H2 and C3H6 concentrations at the tested HC/NOx and H2/CO ratios.
H2 C3H6

0 ppm (0:1) 600 ppm (3:1)
1600 ppm (2:1) 1200 ppm (6:1)
3200 ppm (4:1) 1800 ppm (9:1)

as the low-loading level and the 10% loading is referred to as the high-loading level.

The catalysts were tested at 200°C, 300°C, and 400°C. The lower temperature resides

within the range of diesel exhaust where Ag/Al2O3 exhibits low to negligible activity

[6].

The data was analyzed using the MINITABTM software package to identify which

factors were most significant in affecting the NOx conversion and N2 selectivity. The

p-value was used to determine effect significance. The p-value is used in a significance

test to assess the hypothesis’ validity. A p-value target of 0.05 was used; any main or

interaction factor that had a p-value of 0.05 or less was statistically significant. The

mean squares were used to rank the influence of the factors on the responses. The

mean square is the quotient of the residual sum of square and the degrees of freedom.

The residual sum of squares is a measure of the discrepancy between the data and

an estimation model. Therefore, if the sum of squares for a factor is large, then a

significant amount of the variance (deviation) in the model can be explained by the

influence of the factor, and therein the factor affects the behavior of the response

significantly.
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3.4 Results and Discussion

3.4.1 Surface Areas and Elemental Analysis

Table 3.4 lists the BET surface areas and actual metal loadings for the tested

catalysts. Impregnation of the metal precursor did not result in a significant change

in the overall surface area, and the areas were identical within error for all impregnated

catalysts. Ag loadings varied between 1.3-2.1%, with a target value of 2%. Platinum

group metal content was typically 50-60% of the target loading.

3.4.2 Structure Characterization

Figure 3.1 shows the diffraction patterns of all tested catalysts. The presence of

γ-Al2O3 is visible with peaks at 39°, 46°, and 67°. Any peaks corresponding to the

metal were not visible, indicating that the metal particles were likely well dispersed

on the support.

3.4.3 Conversions/Selectivities of Tested Catalysts

3.4.3.1 HC-SCR of NOx Activity for Monometallic Catalysts

The blank reactors in the Celero and the Al2O3 support were inactive under all

tested conditions. Figure 3.2 shows the NOx conversion as a function of tempera-

ture for the Ag/Al2O3 and monometallic platinum group metal catalysts. The PGM

catalysts were not as active for NOx conversion compared to Ag/Al2O3. The cata-

lysts were not significantly active at 200°C. At 300°C, the NOx conversion activity of

Ag/Al2O3 increased to 92% and to 97% at 400°C. At low loadings, there is no dif-

ference in NOx conversion between the monometallic catalysts at 200°C and 300°C.

At 400°C, the NOx conversion improved over all the PGM catalysts, and the Rh cat-

alyst exhibited the greatest increase to 50% conversion. At high loadings at 200°C,

the NOx conversion mirrors the performance at low loadings. At 300°C, both the
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Figure 3.1: X-ray diffraction patterns for the catalysts studied in this work. (1)
Ag/Al2O3, (2) Ag-1% Pd/Al2O3, (3) Ag-1% Pt/Al2O3, (4) Ag-1%
Rh/Al2O3, (5) Ag-10% Pd/Al2O3, (6) Ag-10% Pt/Al2O3, (7) Ag-10%
Rh/Al2O3. The dotted lines correspond to the major peaks obtained in
the γ-Al2O3 support.
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Pd and Pt catalysts achieved their maximum NOx conversions (32% and 52%, re-

spectively) before decreasing to 13% and 35% at 400°C. The conversion over the Rh

catalyst continued increasing from 14% at 300°C to 40% at 400°C. The NOx con-

version profiles over the Pd and Pt catalysts exhibited volcano-like behavior, which

can be viewed as the competition between two oxidation reactions in which either

molecular O2 or adsorbed oxygen atoms occurring from the dissociation of NO is the

source of oxygen that oxidizes the hydrocarbon [1]. At temperatures above 300°C,

where the peak in NOx conversion occurs, molecular O2 is the main source and the

hydrocarbon reductant is consumed unproductively to CO2. At temperatures below

300°C, the source of oxygen is from the adsorbed oxygen atoms occurring from the

dissociation of NO. The reaction in which NOx is converted to N2 or N2O over plat-

inum group metal catalysts was suggested to occur on a reduced surface [1]. Burch

and Millington also observed this volcano-like trend over a 1% Rh/Al2O3 catalyst.

However, the peak NOx conversion temperature for a Rh/Al2O3 was observed to be

50-100°C higher than Pd or Pt. Since the NOx conversion over the Rh/Al2O3 catalyst

tested in this study continues to increase with increasing temperature, it is possible

that the maximum NOx conversion for Rh/Al2O3 may occur at a temperature above

400°C [8].

Figure 3.3 displays the effect of increasing loading on N2 selectivity over the

monometallic catalysts as a function of temperature. Ag/Al2O3 exhibited high selec-

tivity to N2 across the entire temperature range of interest, from 90% at 200°C to 99%

at 400°C. The low-loading platinum group metal catalysts exhibited decreasing selec-

tivity to N2 as temperature increased. The high-loading Pd and Pt catalysts showed

high selectivity (although negligible NOx conversion) at 200°C before decreasing sig-

nificantly to 77% and 70%, respectively, at 300°C. The selectivity increased to 92%

and 95%, respectively, at 400°C. The high-loading Rh catalyst achieved the lowest se-

lectivity to N2 compared to the other PGM metal catalysts, reaching 90% selectivity
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Figure 3.2: Effect of metal loading on NOx conversion for the monometallic catalysts
supported on γ-Al2O3. The feed consisted of 600 ppm NO, 800 ppm CO,
3200 ppm H2, 1800 ppm C3H6, 4% CO2, 10% O2, and 4% H2O, with Ar
as the balance gas.

at 400°C.

Figure 3.4 displays the effect of increasing loading on C3H6 conversion. The con-

version of C3H6 was less than 5% across all the catalysts at 200°C. Since activation

of the hydrocarbon is required to initiate NOx reduction, the low conversion of C3H6

is related to the low conversion of NOx. At 300°C, C3H6 reacted over the Ag/Al2O3

and high-loading catalysts. The C3H6 is completely consumed at 300°C over the 10%

Pd and 10% Pt catalysts. Consequently, the NOx conversion decreased at 300°C over

these catalysts because there is no reductant left to initiate NOx reduction on the

surface of the catalyst. In comparison, the C3H6 conversion over the 10% Rh catalyst

is 13%. For all the catalysts except Ag/Al2O3 and 10% Rh, the C3H6 is completely

consumed at 400°C.
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Figure 3.3: Effect of metal loading on N2 selectivity for the monometallic catalyst
supported on γ-Al2O3.The feed consisted of 600 ppm NO, 800 ppm CO,
3200 ppm H2, 1800 ppm C3H6, 4% CO2, 10% O2, and 4% H2O, with Ar
as the balance gas.

Figure 3.4: Effect of metal loading on C3H6 conversion for the monometallic catalysts
supported on γ-Al2O3. The feed consisted of 600 ppm NO, 800 ppm CO,
3200 ppm H2, 1800 ppm C3H6, 4% CO2, 10% O2, and 4% H2O, with Ar
as the balance gas.
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3.4.3.2 HC-SCR Activity for Bimetallic Catalysts

The monometallic platinum group metal catalysts exhibited lower performance for

NOx conversion compared with Ag/Al2O3. Nevertheless, having both platinum group

metal and Ag on the surface may result in improved performance for NOx conver-

sion. Based on this hypothesis, bimetallic catalysts were prepared through sequential

dry impregnation, with the Ag precursor added before the platinum group metal

precursor. Figure 3.5 illustrates the NOx conversion performance for the bimetallic

catalysts. At 200°C, the NOx conversion over Ag/Al2O3 was 18%, and addition of 1%

atomic loading of the platinum group metal onto the Ag/Al2O3 did not modify the

NOx conversion appreciably. The addition of 10% metal loading resulted in a decrease

of about 7% over the Pt bimetallic catalyst at 200°C, but the conversions over the

Pd and Rh bimetallic catalysts did not change significantly. At 300°C, the conversion

over Ag/Al2O3 increased to 92%. Addition of 1% of the platinum group resulted in

a slight increase in the conversion. This behavior was also observed by Wang et al.

[20]. Addition of 10% of the platinum group metal resulted in a 10% decrease for the

Pt and Rh bimetallic catalysts, but the conversion over the Pd bimetallic catalyst

decreased nearly 60%. As described by Burch and Millington, Pd/Al2O3 has the most

narrow temperature window and smallest maximum conversion of the three platinum

group metals studied in this work [21]. It is possible that complete combustion of

the C3H6 occurred at a much earlier temperature for Pd compared to Pt and Rh.

Assuming that the platinum group metals did not interact with Ag, this behavior

may explain the greater decrease in the NOx conversion over the 10% Pd bimetallic

catalyst compared with the Pt and Rh bimetallic catalysts. At 400°C, Ag/Al2O3, the

Ag-1% Pd/Al2O3, and the Ag-1% Pt/Al2O3 maintain their activity. However, when

1% Rh is added, the conversion decreases to 69%. It is likely that the Rh became

active for combustion at this temperature and began to unselectively consume C3H6.

At 10% platinum group metal loading, the conversions for all the bimetallic catalysts
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Figure 3.5: Effect of second metal loading on NOx conversion for the bimetallic cata-
lysts supported on γ-Al2O3. The feed consisted of 600 ppm NO, 800 ppm
CO, 3200 ppm H2, 1800 ppm C3H6, 4% CO2, 10% O2, and 4% H2O, with
Ar as the balance gas.

significantly decreased. The detrimental effect may be due to site blocking of the

Ag or to an increased extent of unselective combustion of C3H6 due to the increased

amount of metal on the surface.

Figure 3.6 illustrates the N2 selectivity for the bimetallic catalysts. At 200°C,

Ag/Al2O3 achieved 91% selectivity to N2. Addition a second metal resulted in a

slight increase in the selectivity. As temperature increased, the selectivity increased

over the Ag/Al2O3 and the 1% bimetallic catalysts. However, when the loading of the

platinum group metal was increased to 10%, the selectivity decreased. For platinum

group metals, the greatest extent of N2O formation happens between the FWHM

temperature range for the NOx conversion. Burch and Millington determined that

for a 1% Rh/Al2O3, the range is in between 325°C - 400°C. In this temperature range,

the extent of NO dissociation on the surface is at a minimum. The non-dissociated

NO reacts with adsorbed N-atoms to form N2O which then desorbs from the surface

[8].
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Figure 3.6: Effect of second metal loading on N2 selectivity for the bimetallic catalysts
supported on γ-Al2O3. The feed consisted of 600 ppm NO, 800 ppm CO,
3200 ppm H2, 1800 ppm C3H6, 4% CO2, 10% O2, and 4% H2O, with Ar
as the balance gas.

Figure 3.7: Illustration for the normalization of factor values.

3.4.4 Analysis of Experimental Design

3.4.4.1 NOx Conversion

A 35 full factorial design was conducted and analyzed with the factors and levels

listed in Table 3.2. The levels for the HC/NOx ratio, H2/CO ratio, second metal

loading, and reaction temperature were normalized by dividing all factor levels by

the largest factor level. Figure 3.7 illustrates the normalized factor level values used

in this work. Tables 3.5, 3.6, 3.7, and 3.8 list the actual and normalized factor level

values. The response values were normalized from 0 to 1.

The main effect plot and p-values for NOx conversion are shown in Figure 3.8.
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Table 3.5: Actual and normalized HC/NOx ratio level values.
Actual Values Normalized Values

3 0.33
6 0.66
9 1.00

Table 3.6: Actual and normalized H2/CO ratio level values.
Actual Values Normalized Values

0 0.00
2 0.50
4 1.00

Table 3.7: Actual and normalized second metal loading level values.
Actual Values Normalized Values

0% 0.00
1% 0.10
10% 1.00

Table 3.8: Actual and normalized reaction temperature level values.
Actual Values Normalized Values

200°C 0.50
300°C 0.75
400°C 1.00
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Figure 3.8: Main Effects for NOx conversion. The standard error on the points is 1.3
units.

Based on the p-values, all the effects were significant. The trends showed that in-

creasing HC/NOx ratio, H2/CO ratio, and reaction temperature all improved the NOx

conversion. However, the effect of second metal loading resulted in a detrimental ef-

fect on NOx conversion, especially at high loadings. Also, the Pd bimetallic catalysts

on average performed slightly worse than the Pt and Rh bimetallic catalysts. Burch

and Millington observed that of the three platinum group metals, Pd was the least

active for NOx conversion [8]. Comparison of the Ag/Al2O3 and low-loading bimetal-

lic catalysts yielded some notable results. Multiple papers have stated that a small

amount of Pt improved the NOx conversion [20, 22]. It was hypothesized that the

overall NOx conversion over Ag/Al2O3 would improve when platinum group metals

were added to the surface because platinum group metals can reduce NOx using H2

and CO. This behavior was not observed in this study, as the NOx conversion at high

loadings decreased over all the bimetallic catalysts.
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To illustrate other possible factors’ influences on the second metal loading, the

plots for significant interactions involving second metal loading are shown in Fig-

ure 3.9. The interactions of second metal loading with the HC/NOx ratio and H2/CO

ratio showed that regardless of the amount of hydrocarbon or H2, the NOx conversion

decreased with increasing loading. The most notable interactions are observed with

the second metal type and reaction temperature. For the Pd and Pt bimetallic cat-

alysts, the NOx conversion did not change significantly at low loadings. However, at

high loadings, the NOx conversion decreased by approximately 30% for Pd and 20%

for Pt. For the Rh bimetallic catalysts, the NOx conversion decreased with the pres-

ence of the metal. However, the NOx and C3H6 conversions at low and high loadings

were identical. Hence on average, the decrease in NOx conversion due to the second

metal loading is observed on the Pd and Pt bimetallic catalysts. Concerning tem-

perature, the NOx conversion at 200°C was nearly identical at all loadings. However,

at 300°C and 400°C, the NOx conversion was significantly less at the high loadings

compared to low loadings. In summary, the detrimental effect of NOx conversion due

to second metal loading is observed at temperatures of 300°C and higher over Pd and

Pt bimetallic catalysts.

Concerning the factor of second metal type, the second metal loading and re-

action temperature interactions were significant. The interactions are depicted in

Figure 3.10. The interaction between the second metal type and reaction temper-

ature showed that there is a significant difference in the NOx conversion at 300°C.

The average NOx conversions over the Pd, Pt, and Rh bimetallic catalysts were 42%,

49%, and 54% respectively.

Table 3.9 displays the mean squares and p-values for NOx conversion. The higher

the value of the mean square, the more variance can be explained by the factor.

Therein, the factor is responsible for a larger deviation from the proposed model.

The reaction temperature and H2/CO ratio were the most influential main effects,
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Figure 3.9: Significant interaction effects involving second metal loading for NOx con-
version. The standard error on the points is 2.3 units.
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Figure 3.10: Significant interaction effects involving second metal type for NOx con-
version. The standard error on the points is 2.3 units.
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Table 3.9: Significant factors and mean squares coefficients for NOx conversion. The
R-squared value was 0.9, suggesting the variance was well-captured by the
main effects and 2-factor interaction effects.

Effect Mean Square Coefficients P-value
Temperature 31990 0.000
H2/CO Ratio 16020 0.000
H2/CO Ratio*Temperature 5855 0.000
Second Metal Loading 5802 0.000
HC/NOx Ratio 5116 0.000
Second Metal Loading*Temperature 1811 0.000
HC/NOx Ratio*Temperature 1697 0.000
Second Metal Loading*Second Metal Type 1055 0.000
HC/NOx Ratio*Second Metal Loading 615.2 0.000
H2/CO Ratio*Second Metal Loading 567.1 0.000
HC/NOx Ratio*H2/CO Ratio 469.4 0.001
Second Metal Type 379.9 0.022
HC/NOx Ratio*Second Metal Type 305.9 0.016

and the interaction between reaction temperature and the H2/CO ratio was the most

influential interaction effect.

3.4.4.2 N2 Selectivity

The main effect plot and p-values for N2 selectivity are shown in Figure 3.11.

Like the NOx conversion, the presence of H2 is required for the reaction to occur at

lower temperatures. Thus, when the reaction begins, N2 is produced. The presence

of the platinum group metals on Ag/Al2O3 results in a similar trend. Concerning the

second metal loading, the data shows that an increase in the platinum group metal

concentration results in an increase in the N2O formation, and therefore a decrease

in the N2 selectivity.

Figure 3.12 shows the significant interactions for N2 selectivity related to second

metal loading and second metal type. For Pd and Pt bimetallic catalysts, as the

second metal loading increases, the selectivity to N2 decreases. This decrease is

likely due to the formation of N2O caused by the presence of the platinum group

metals. The Rh bimetallic catalysts behave differently in that the selectivity increases

64



Figure 3.11: Main Effects for N2 selectivity. The standard error on the points is 2.1
units.

dramatically at high loadings. This increase may be due to the observation that the

Rh bimetallic catalysts are slightly more active for NOx conversion compared to Pd

and Pt bimetallic catalysts. The slight increase in activity is only observed at 200°C.

The increase in NOx conversion over the Rh bimetallic catalysts likely corresponds

with the increase in selectivity to N2 as shown in the interaction between metal type

and reaction temperature.

Table 3.10 displays the mean squares and ANOVA p-values for N2 selectivity.

Similarly to the NOx conversion, the reaction temperature and the H2/CO ratio were

the most influential main effects, and the interaction between reaction temperature

and H2/CO ratio was the most influential interaction effect.

3.4.5 Loading Order

3.4.5.1 Introduction

Because of the observed lack of improvement in the performance of the tested cat-

alysts for NOx reduction, the effect of loading order was studied. It was believed that
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Figure 3.12: Significant interaction effects involving metal loading and metal type for
N2 selectivity. The standard error on the points is 3.6 units.
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Table 3.10: Significant factors and mean squares coefficients for N2 selectivity. The
R-squared value was 0.86, suggesting the variance was well-captured by
the main effects and 2-factor interaction effects.

Effect Mean Square Coefficients P-value
Temperature 22750 0.000
H2/CO Ratio 12310 0.000
H2/CO Ratio*Temperature 7899 0.000
Second Metal Type 3517 0.000
Second Metal Loading*Second Metal Type 3145 0.000
H2/CO Ratio*Second Metal Loading 2300 0.000
Second Metal Loading 1888 0.001
HC/NOx Ratio*Temperature 1697 0.000
HC/NOx Ratio*Second Metal Type 1127 0.001
HC/NOx Ratio 1037 0.014
HC/NOx Ratio*Second Metal Loading 696.9 0.000
HC/NOx Ratio*H2/CO Ratio 602.6 0.001

by adding the Ag precursor after the platinum group metal precursor, the catalysts

formed would consist of a surface with more exposed Ag surface atoms. Therein, the

extent of NOx reduction would likely be enhanced. Sato et al. added small amounts

of Rh to a Ag/Al2O3 catalyst and studied the effect of the order. They found that

impregnating the Ag after the Rh improved NOx reduction compared to adding Ag

first [23]. They attributed this effect to the presence of larger amounts of Ag clusters,

which were the catalytic active species responsible for the formation of isocyanate

species (-NCO), one of the key reaction intermediates in the NOx reduction mech-

anism. Shu et al. studied the effect of loading order for bimetallic Pt-Ni mixtures

for hydrogenation activity and selectivity. They used the disproportionation activity

of cyclohexene and the hydrogenation selectivity of acetylene in ethylene as probe

reactions to compare the effect of the impregnation sequence. The bimetallic Pt/Ni

catalysts showed significantly higher activity toward the disproportionation of cyclo-

hexene than either Pt/Al2O3 or Ni/Al2O3. The effect varied as the metal ratio of

Pt to Ni changed [24]. Ren et al. studied the effect of the addition of Zn on the

catalytic activity of a Co/HZSM-5 catalyst for the SCR of NOx with CH4. They
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found that when Co was added first, the activity improved compared to when Zn was

added first. However, the selectivity increased when the orders were switched. The

co-impregnation method was better than both sequential impregnations [25]. These

studies illustrate the complexity of the development of a highly active catalyst due

to preparation methods.

The platinum group metal was loaded onto the support before adding the Ag metal

precursor. Between each impregnation the samples were dried in a Fisher Scientific

vacuum oven at a pressure of -30 mm Hg at 100°C for 8-12 hours and calcined in

90 cm3/minute of dry-grade air in a horizontal quartz tube furnace at 600°C for 3

hours.. An ANOVA analysis was performed in which the loading order was added

as an extra factor in addition to the other five factors employed in the full factorial

analysis described previously.

3.4.5.2 Surface Area/Elemental Analysis

Table 3.11 shows the BET surface areas and metal loadings for the Ag second-

loaded catalysts. Surface areas and elemental loadings were very similar among the

catalysts and to their Ag-first counterparts.

3.4.6 Crystalline Structure

Figure 3.13 shows the diffraction patterns for the Ag-second loaded catalysts.

Similar to the Ag-first loaded catalysts, the presence of γ-Al2O3 was visible with

peaks at 39°, 46°, and 67°. Any peaks corresponding to the metal were not present,

indicating that the metal particles were likely again well dispersed on the support.

3.4.6.1 NOx Conversion

The effect of loading order on the conversion of NOx is shown in the main effect

plot displayed in Figure 3.14. The average NOx conversion for the Ag-first loaded
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Figure 3.13: X-ray diffraction patterns for the Ag-second loaded catalysts. (1)
Ag/Al2O3, (2) 1% Pd-Ag/Al2O3, (3) 1% Pt-Ag/Al2O3, (4) 1% Rh-
Ag/Al2O3, (5) 10% Pd-Ag/Al2O3, (6) 10% Pt-Ag/Al2O3, (7) 10% Rh-
Ag/Al2O3. The dotted lines correspond to the major peaks obtained in
the γ-Al2O3 support.

70



Figure 3.14: Main effect of loading order for NOx conversion. The standard error on
the points is 1.1 units.

catalysts was 32%, whereas the average NOx conversion for the Ag-second loaded

catalysts was 34%. The error was ± 1%, indicating that the conversion was the same

regardless of the order of loading. This observation is also reflected in the ANOVA

analysis, in which the p-value was 0.198, indicating that loading order itself was not a

significant factor in affecting the NOx conversion. However, the interaction between

loading order and the second metal type was significant, as shown in Figure 3.15.

The p-value was 0.023, indicating significance. The NOx conversion performance of

the Pt and Rh bimetallic catalysts did not vary with loading order. However, there

was a significant increase in the NOx conversion for the Pd bimetallic catalysts when

Ag was loaded second.

3.4.6.2 N2 Selectivity

The trends in N2 selectivity follow the trends seen in the NOx conversion. The

effect of loading order on the selectivity to N2 is shown in the main effect plot displayed

in Figure 3.16. The average N2 selectivity for the Ag-first loaded catalysts was 82%,
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Figure 3.15: Interaction effect of NOx conversion for loading order and second metal
type. The standard error on the points is 1.8 units.

whereas the average N2 selectivity for the Ag-second loaded catalysts was 83%. The

error was ± 2%, indicating that the selectivity was the same regardless of the order

of loading. The p-value was 0.639, indicating that loading order itself was not a

significant factor in affecting the N2 selectivity. The interaction between loading order

and the metal type was significant, as shown in Figure 3.17. The p-value was 0.044,

indicating significance. The N2 selectivity performance of the Pt and Rh bimetallic

catalysts did not vary with loading order. However, there was a significant increase

in the N2 selectivity for the Pd bimetallic catalysts when Ag was loaded second.

3.5 Conclusions

Five factors - HC/NOx ratio, H2/CO ratio, second metal loading, second metal

type, and reaction temperature - were studied to determine the effects on NOx con-

version and N2 selectivity. All main effects were statistically significant for NOx

conversion and N2 selectivity. It was demonstrated that the addition of the platinum
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Figure 3.16: Main effect of loading order for N2 selectivity. The standard error on
the points is 1.9 units.

Figure 3.17: Interaction effect of N2 selectivity for loading order and second metal
type. The standard error on the points is 3.2 units.
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group metal did not improve NOx conversion or N2 selectivity, contrary to the original

hypothesis. Secondly, the second metal type was significant for NOx conversion and

N2 selectivity. The Pd bimetallic catalysts performed worse than Pt and Rh bimetal-

lic catalysts. For the N2 selectivity, the Rh bimetallic catalysts performed better than

the Pt and Pd bimetallic catalysts on average. All main effects were statistically sig-

nificant for NOx conversion and N2 selectivity. In response to the detrimental effect

by the second metal loading, the order of metal loading was reversed, in which the Ag

metal precursor was added after the platinum group metal precursor. It was observed

that the loading order alone did not have a significant effect on the NOx conversion or

N2 selectivity. However, the interaction between the second metal type and loading

order was significant for both NOx conversion or N2 selectivity. The Pd bimetallic

catalyst behavior was the primary influence. The NOx conversion and N2 selectivity

over the Pd bimetallic catalysts greatly improved when the Pd metal precursor was

added first.
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CHAPTER IV

Characterization of Silver-Based Catalysts for the

Reformate-Assisted Selective Catalytic Reduction

of NOx

4.1 Summary

In the previous chapter, a full factorial design was conducted to determine the

effect of HC/NOx ratio, H2/CO ratio, second metal loading, second metal type, and

reaction temperature on the NOx conversion and N2 selectivity. The effect of load-

ing order was also analyzed. Increasing the second metal loading inhibited the NOx

conversion and N2 selectivity. The NOx conversion and N2 selectivity were differ-

ent between the platinum group metals. The NOx conversion over the Pd bimetallic

catalysts was marginally worse compared to the Pt and Rh bimetallic catalysts. In

contrast, the Pd bimetallic catalysts were significantly worse for N2 selectivity. Load-

ing order was a significant factor for the Pd bimetallic catalysts. The NOx conversion

and N2 selectivity performances improved when the Pd precursor was added before

the Ag precursor. In this chapter, the observed trends are explained using various

characterization techniques such as TPR and chemisorption of H2 and O2.
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4.2 Introduction

It was hypothesized that NOx reduction over Ag/Al2O3 could be improved at

temperatures below 400°C by combining two modifications: (1) adding H2 to the ex-

haust mixture and (2) impregnating Pd, Pt, or Rh onto the Ag/Al2O3. The presence

of H2 results in a significant decrease in the temperature at which the hydrocarbon

reductant begins to react. Therein, the reaction NOx begins to react at the same

temperature [1–4]. Pd, Pt, and Rh-supported catalysts have exhibited activity for

lean NOx reduction on a number of supports [5–8]. Unlike Ag/Al2O3 without H2,

the platinum group metals are active below 400°C [5]. However, these metals also

produce significant amounts of N2O. Nevertheless, literature exists that details the

improvement in NOx reduction when a small amount of a platinum group metal is

applied onto an Ag/Al2O3 catalyst [9, 10]. The improvement is minuscule however,

and was only observed at temperatures above 400°C.

4.3 Experimental

4.3.1 Catalyst Characterization

For TPR experiments, approximately 150 mg of the catalyst was loaded into a U-

tube reactor and heated from 25°C to 500°C at 40°C/min in a mixture of 10% H2/Ar

flowing at 90 mL/min. H2 consumption was monitored using a thermal conductivity

detector (TCD). For chemisorption, approximately 150 mg of the catalyst was first

oxidized in air at 600°C for 1 hour, reduced in a mixture of 10% H2/Ar at 250°C for

2 hours, degassed in an inert gas at 300°C for 30 minutes, and cooled to the desired

temperature. Measurements for the Pt and Rh bimetallic catalysts were taken at

ambient temperature, and Pd bimetallic catalytic measurements were taken at 70°C.

This temperature was selected to avoid formation of Pd hydride [11, 12]. 20-30 pulses

of 10% H2/Ar or 1% O2/He were then pulsed onto the catalyst surface until saturation
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was reached. The loop size used was 300 µL.

4.4 Effect of Loading

4.4.1 NOx Conversion

The detrimental effect on NOx conversion with increasing second metal loading

is possibly due to (1) the onset of the unselective combustion of the C3H6 to CO2,

and/or (2) site blocking of Ag sites by the noble metals. Figure 4.1 displays the

NOx and C3H6 conversions for Ag/Al2O3 and the bimetallic catalysts at 300°C. The

conversion of NOx over Ag/Al2O3 was 90%, with nearly 60% of the C3H6 being uti-

lized. At high loadings, the extent of conversion to C3H6 increased to 100%, yet the

NOx conversion decreased significantly compared to Ag/Al2O3 and the low-loading

catalysts. The behavior indicated that as the second metal loading was increased, un-

selective combustion of the C3H6 to CO2 became dominant. Once the C3H6 reductant

was used up, the NOx conversion subsequently began to decline.

Another potential cause of the detrimental effect of second metal loading on NOx

conversion is site blocking. Because the noble metals were loaded after the Ag, some of

the Ag sites could be covered by the noble metals. Chemisorption of O2 was conducted

to probe the surface of the catalysts. Table 4.1 lists the O2 uptakes and dispersions

for the bimetallic catalysts. The dispersion of Ag on the Ag/Al2O3 catalyst was not

high, possibly due to the low surface area of the Al2O3 support. The presence of

the noble metal did not result in a significant change in the O2 uptake of the Ag.

This observation signified that although there may be some covering of the Ag by

noble metals, the significance of the effect was very small compared to the unselective

combustion of C3H6.

The detrimental effect of second metal loading on NOx conversion was not uniform

across all the catalysts, as was shown in the interaction plots in Chapter 3. At low
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Figure 4.1: NOx and C3H6 conversion for Ag/Al2O3 and the bimetallic catalysts. The
HC/NOx ratio and H2/CO ratio are listed. The inlet H2 concentration is
3200 ppm and the inlet C3H6 concentration is 1800 ppm. (1) Ag/Al2O3,
(2) Ag-1% Pd/Al2O3, (3) Ag-1% Pt/Al2O3, (4) Ag-1% Rh/Al2O3, (5)
Ag-10% Pd/Al2O3, (6) Ag-10% Pt/Al2O3, (7) Ag-10% Rh/Al2O3.

Table 4.1: O2 uptakes and theoretical Ag dispersions for the Ag/Al2O3 and Ag-first
bimetallic catalysts.
Catalyst O2 uptake (µmol/g) Theoretical Ag Dispersion (%)

Ag/Al2O3 2 ± 1 2
Ag-10% Pd/Al2O3 1 ± 0 1
Ag-10% Pt/Al2O3 1 ± 0 2
Ag-10% Rh/Al2O3 3 ± 1 4
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loadings, the Pd and Pt bimetallic catalysts performed similarly to the Ag/Al2O3. To

attempt to explain these observations, interaction plots of loading with the HC/NOx

ratio, H2/CO ratio, and reaction temperature were made with the data points from

the loading levels of 0% (Ag/Al2O3) and 1% second metal loading. Figure 4.2 displays

the plots for the Pd bimetallic catalysts. The largest change in the NOx conversion

was observed when comparing the Ag/Al2O3 to the low loading Pd bimetallic cat-

alysts at 400°C. At this temperature, the conversion increased from 57% to 67%

when a small amount of Pd was added onto the Ag/Al2O3 catalyst. The Ag/Al2O3

performed better at 200°C, but the overall NOx conversion was negligible at this

temperature. The same plots were developed to compare Ag/Al2O3 to the 1% Pt

bimetallic catalysts and are shown in Figure 4.3. For all interactions, there were no

significant differences between the Ag/Al2O3 and low loading Pt bimetallic catalysts.

This behavior was also observed by Wang et al. in their study of HC-SCR using Ag-

noble metal bimetallic catalysts. Although the most significant improvements were

observed at temperatures above 400°C for the Pd bimetallic catalyst (they did not

observe the same improvement for the Pt), they observed modest improvement in the

NOx conversion for both Pd and Pt bimetallic catlaysts between 200°C and 400°C. In

this study, the presence of H2 improved the overall NOx conversions between all the

catalysts between 200°C and 400°C. Wang et al. attributed the improvement of the

NOx conversion to the formation of a surface enolic species through the partial oxi-

dation of C3H6 catalyzed by the platingum group metal. The species is very reactive

for the formation of surface nitrates (NO3
−) which form the isocyanate intermediate

(-NCO). The formation isocyanate is widely accepted as the rate-determing step in

the mechanism for NOx reduction over Ag/Al2O3 [9].

At high loadings, the NOx conversions over the Pd and Pt bimetallic catalysts

decreased significantly compared to Ag/Al2O3. As shown in Figure 4.1, the C3H6

is completely converted to CO2 and the NOx conversion consequently declined over
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Figure 4.2: Interaction plots of the pure Ag and 1% Pd bimetallic catalysts for NOx

conversion for HC/NOx ratio, H2/CO ratio, and reaction temperature
with second metal loading.
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Figure 4.3: Interaction plots of the pure Ag and 1% Pt bimetallic catalysts for NOx

conversion for HC/NOx ratio, H2/CO ratio, and reaction temperature
with second metal loading.
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these catalysts. This decline is observed at 300°C and 400°C; the NOx conversion was

negligible over all the catalysts at 200°C.

Unlike the Pd and Pt bimetallic catalysts, the NOx conversion performance for

the Rh bimetallic catalysts was similar at both the low and high loadings. The

presence of the Rh resulted in a decrease in the NOx conversion when compared with

Ag/Al2O3 alone. The similarity in NOx conversion performance may be related to

the dispersion of the Rh on the surface. A study by Hecker and Breneman compared

various loadings of Rh on SiO2 for the reduction of NOx on CO. Two of the catalysts

studied had weight loadings of 0.04% and 0.2%. The loadings of the catalysts were

the two smallest amounts studied and are close to the actual measured loadings of

the low and high-loading catalysts in this study. They found that the two catalysts

had the same activity for NOx reduction. They postulated, based on conclusions

from Boudart et al. that as the weight loading of the Rh increased, the number

of nearest neighbor sites increased, therein decreasing the activation energy of the

rate-determining step for NOx reduction [13, 14].

It was also observed that the NOx conversion over the high-loading bimetallic

catalysts reached a maximum at 300°C, before stagnating or decreasing at 400°C.

The behavior is characteristic of the platinum group metals for which the conversion

goes through a maximum as reaction temperature is increased. According to Obuchi

et al., the Pd is the least active of the three metals, achieving a maximum conversion

of 10% at 250°C. Pt and Rh achieve a maximum conversion of 50% at 250°C and

300°C, respectively. At temperatures below the peak NOx conversion temperature,

the oxidation of the hydrocarbon does not occur at a substantial rate. The O2 is able

to react with the hydrocarbon and NOx to form the partially oxidized hydrocarbon

species which initiate the NOx reduction. Above the peak temperature, the complete

oxidation of the hydrocarbon proceeds too quickly and the formation of the partially

oxidized hydrocarbons is minimized [15].
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Table 4.2: H2 uptakes and metal dispersions for the Ag-first bimetallic catalysts.
Catalyst H2 uptake (µmol/g) Noble Metal Dispersion (%)

Ag-10% Pd/Al2O3 2 ± 1 16
Ag-10% Pt/Al2O3 1 ± 0 18
Ag-10% Rh/Al2O3 4 ± 1 37

4.4.2 N2 Selectivity

The decrease in selectivity to N2 due to the second metal loading is related to

the amount of metal on the surface. Platinum group metals are known for producing

significant amounts of N2O [15, 16]. As the loading is increased, more of the PGM is

exposed on the surface and the properties of the bimetallic catalysts begin to exhibit

behavior similar to the PGMs.

4.5 Effect of Metal Type

4.5.1 NOx Conversion

In the factorial analysis, the metal type was a significant factor in the NOx con-

version. The main effect plot of NOx conversion for second metal type showed that

the Pd bimetallic catalysts were slightly less active than the Pt or Rh bimetallic cat-

alysts. The significance was observed in the interaction of second metal type with

reaction temperature. There is no difference in NOx conversion between the metals

at 200°C and 400°C. However, at 300°C, the average NOx conversion over the Pd

bimetallics was 6% less than the Pt bimetallic catalysts and 10% less than the Rh

bimetallic catalysts. It is hypothesized that the decrease in the Pd bimetallic catalyst

performance is due to the reduced dispersion of the Pd compared with Pt and Rh.

Table 4.2 displays the H2 uptake for the Ag-first bimetallic catalysts. Pd bimetallic

catalysts had the lowest dispersion of the three noble metals. Typically as the disper-

sion decreases, the particle size increases. The larger Pd particles possibly blocked

some Ag sites and also therefore reduced the conversion.
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4.5.2 N2 Selectivity

The second metal type was significant for N2 selectivity. According to the main

effect plot, the ranking of metal type for selectivity was Rh > Pt > Pd. The rank-

ing is maintained for the bimetallic catalysts at low loadings. However, there was

a significant increase in the N2 selectivity for Rh bimetallic catalysts at high load-

ings. The increase was observed in the interaction between metal type and reaction

temperature. The Rh bimetallic catalysts performed much better than the Pt or Pd

bimetallic catalysts at 200°C. However, the conversion to NOx was less than 10% at

this temperature, therein the overall improvement in N2 selectivity was offset by the

negligible conversion to NOx for Rh bimetallic catalysts.

4.6 Effect of Loading Order

For NOx conversion and N2 selectivity, the main effect of loading order was not

a significant factor. However, the interaction between second metal type and loading

order was significant as a result of the behavior of the Pd bimetallic catalyst. When

the Pd precursor was added before the Ag precursor, the NOx conversion increased

by 7% and the N2 selectivity increased by 12%. There was no change in the NOx

conversion or N2 selectivity for the Pt or Rh bimetallic catalysts.

The improvement in the NOx conversion and N2 selectivity when Pd is added

before Ag may have indicated that some modification on the surface occurred. A

number of papers have studied Ag-Pd bimetallic catalysts, particularly for ethylene

epoxidation and detail the ability of Pd to alloy with Ag [17–20]. Although the phase

diagram shown in Figure 4.4 depicts that Pd should alloy with Ag at temperatures of

900°C and above [21], Pd has shown to interact electronically with Ag at the nanoscale

level. However, alloying can not explain the positive effect in the NOx conversion and

N2 selectivity when Pd is added first. Shu et al. proposed a possible explanation
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Figure 4.4: The phase diagram for Ag and Pd. The ”‘L”’ signifies the aqueous phase.

for the improvement. They studied the effect of loading order on the hydrogenation

activity of Pt/Ni catalysts. They observed that when the Pt was added first, the

hydrogenation activity improved significantly compared to when Ni was added first.

They used EXAFS to verify the formation of Pt-Ni bimetallic bonds when Pt was

added first. The resulting interaction produced a modified active site that was more

active for the target reaction [22]. Since Ag and Pd are known to interact, adding

Pd first may increase the extent of interaction between the Pd and Ag, which in

turn improves the NOx conversion and N2 selectivity. Pt and Rh will not alloy with

Ag through impregnation preparation methods [23] as shown in Figure 4.5 [24] and

Figure 4.6 [25]. The inability of Pt and Rh to alloy corroborates the theory that the

exposed surface on Ag-Pt and Ag-Rh bimetallic catalysts is similar independent of

the loading order, and therein the NOx conversion and N2 selectivity do not change.

To understand the nature of the surface, the surface energies of the individual

metals need to be known. Vitos et al. conducted an extensive theoretical study to
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Figure 4.5: The phase diagram for Ag and Pt.

Figure 4.6: The phase diagram for Ag and Rh.
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Table 4.3: Surface energies of the metals on the (111) crystal surface.
Metal Surface Energies (J/m2)

Ag 1.172
Pd 1.920
Pt 2.299
Rh 2.472

determine the surface energies of over 60 different metals [26]. Between two metals,

the one with the lower the surface energy will migrate the surface. Table 4.3 displays

the surface energies for Ag, Pd, Pt, and Rh for the (111) surface [26]. As observed,

the Ag has the lowest surface energy, and will therefore tend the rise to the surface.

This behavior was confirmed by a number of authors such as Jaatinen et al., who

used density functional theory (DFT) calculations to show that Pd lies 14 picometers

(0.14 Angstroms) below the surface Ag atoms in the case of the (111) surface [17].

4.6.1 Temperature Programmed Reduction

Temperature programmed reduction (TPR) was used to determine the reduction

temperatures for chemisorption. Figure 4.7 shows the H2 TPR profiles for Pd-based

catalysts. For Al2O3, a single peak is observed at 350°C, corresponding to weakly

physisorbed O2 being removed from the surface of the support. For Ag/Al2O3, a

consumption peak is observed at 250°C. This peak is attributable to the reduction of

Ag2O [3]. This peak is convoluted with the Al2O3 reduction peak. At low loadings, it

was difficult to see consumption of H2. For the 10% Pd catalyst, a broad yet small H2

consumption peak was observed at about 110-120°C corresponding to the reduction

of PdO to Pd [27, 28]. For the bimetallic catalysst, the reduction behavior changed

significantly. The absence of the peak attributed to the reduction of Ag2O in the Ag-

10% Pd sample implies that H2 may have spilled over from reduced Pd to Ag2O during

the reduction of PdO [29]. The peak profiles changed significantly with loading order.

For Ag-1% Pd and Ag-10% Pd, there was no visible Ag reduction peak. However,
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Figure 4.7: H2 TPR profiles for Pd-based catalysts.(1) Al2O3, (2) Ag/Al2O3, (3)
1% Pd/Al2O3, (4) Ag-1% Pd/Al2O3, (5) 1% Pd-Ag/Al2O3, (6) 10%
Pd/Al2O3, (7) Ag-10% Pd/Al2O3, (8) 10% Pd-Ag/Al2O3.

with 1% Pd-Ag and 10% Pd-Ag, a peak was observed around 250°C. The TPR shows

that loading order did affect the exposed surface for the Pd bimetallic catalysts, as

the Ag2O reduction was significantly larger. The nature of the surface explains the

behavior seen in the NOx conversion and N2 selectivity interaction effects between

second metal type and loading order in which switching the loading order resulted in

a 7% increase in the NOx conversion and 12% increase in the N2 selectivity.

Figure 4.8 shows the H2 TPR profiles for Pt-based catalysts. For 1% Pt, no peaks

are observed, likely because of the low concentration of the metal. The peak attributed

to Ag2O reduction is the only peak observable on the Ag-1% Pt catalyst. For 10% Pt,

a broad, but small H2 consumption peak was observed at about 180°C corresponding
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Figure 4.8: H2 TPR profiles for Pt-based catalysts.(1) Al2O3, (2) Ag/Al2O3, (3) 1%
Pt/Al2O3, (4) Ag-1% Pt/Al2O3, (5) 1% Pt-Ag/Al2O3, (6) 10% Pt/Al2O3,
(7) Ag-10% Pt/Al2O3, (8) 10% Pt-Ag/Al2O3.

to the reduction of PtO2 [30]. On Ag-10% Pt, a convoluted peak, probably due to a

combination of the reduction of PtO2 and Ag2O, was noted at 210°C. The presence

of the Pt decreased the temperature at which the Ag reduces, implying that the Pt

promoted the reducibility of Ag2O to metallic Ag. Reversing the loading order did

not appear to change the peak profiles of the Pt bimetallic catalysts, which also may

explain why the NOx conversion and N2 selectivity remained unchanged.

Figure 4.9 shows the H2 TPR profiles for Rh-based catalysts. For 1% Rh, no

peaks are observed, due to the low concentration of the metal. When Ag is added,

the only peak present is related to the reduction of Ag2O to Ag. For 10% Rh, there is

a sharp H2 consumption peak at 120°C, corresponding with the reduction of Rh2O3

[31]. The profile for the Ag-10% Rh displays that the presence of the Rh shifted the
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Figure 4.9: H2 TPR profiles for Rh-based catalysts.(1) Al2O3, (2) Ag/Al2O3, (3)
1% Rh/Al2O3, (4) Ag-1% Rh/Al2O3, (5) 1% Rh-Ag/Al2O3, (6) 10%
Rh/Al2O3, (7) Ag-10% Rh/Al2O3, (8) 10% Rh-Ag/Al2O3.

reduction of Ag2O to 230°C. This same shift was also observed for the 10% Rh-Ag

catalyst. The shift showed that the presence of the Rh helped to reduce the Ag at

a slightly lower temperature. However, the change in the Ag reduction temperature

did not result in a significant change to the NOx conversion or N2 selectivity.

4.6.2 Chemisorption

Based on the TPR results, all catalysts were pretreated by reduction at 250°C

in 10% H2/Ar before being exposed to the chemisorbate gas. A stoichiometry of

O/Ag = 1 was assumed [32] and a stoichometry of H/Pd, H/Pt, and H/Rh = 1

was assumed. Table 4.4 shows the H2 uptakes and metal dispersions for the Ag-first

and Ag-second bimetallic catalysts. Experiments with Al2O3 and Ag indicated that
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Table 4.4: H2 uptakes and metal dispersions for the Ag-first and Ag-second bimetallic
catalysts.
Catalyst H2 uptake (µmol/g) Noble Metal Dispersion (%)

Ag/Al2O3 - -
Ag-10% Pd/Al2O3 2 ± 1 16
10% Pd-Ag/Al2O3 6 ± 1 42
Ag-10% Pt/Al2O3 1 ± 0 18
10% Pt-Ag/Al2O3 1 ± 0 18
Ag-10% Rh/Al2O3 4 ± 1 37
10% Rh-Ag/Al2O3 9 ± 1 79

Table 4.5: O2 uptakes and metal dispersions for the Ag-first and Ag-second bimetallic
catalysts.
Catalyst O2 uptake (µmol/g) Theoretical Ag Dispersion (%)

Ag/Al2O3 2 ± 1 2
Ag-10% Pd/Al2O3 1 ± 0 1
10% Pd-Ag/Al2O3 6 ± 1 9
Ag-10% Pt/Al2O3 1 ± 0 2
10% Pt-Ag/Al2O3 2 ± 1 3
Ag-10% Rh/Al2O3 3 ± 1 4
10% Rh-Ag/Al2O3 3 ± 1 4

neither the support nor the Ag surface sites chemisorbed H2 under the conditions

employed. Except for Pt, switching the order had a positive impact on the surface

noble metal density. This indicated that there was surface promotion of the Pd and

Rh by the Ag through the formation of a Pd-Ag solid solution or an Ag-rich Rh alloy.

Yuvaraj et al. observed the formation of Rh-Ag alloys [33]. Table 4.5 shows the O2

uptakes and metal dispersions for the Ag-first and Ag-second bimetallic catalysts.

O2 chemisorption showed that switching the order of loading helped to promote the

surface dispersion of Ag, particularly with the Pd bimetallic catalysts. This promotion

of the Ag can possibly be attributed to the ability of Pd to interact electronically with

Ag. Pt and Rh have been shown not to interact with Ag, and therefore the metals

are likely oriented in separate domains.
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4.7 Conclusions

The effects of loading, platinum group metal type, and loading order on the NOx

conversion and N2 selectivity were described. The detrimental effect on NOx con-

version and N2 selectivity due to increasing second metal loading was caused by

the increased extent of the unselective combustion of C3H6. Pd bimetallic catalysts

performed slightly worse than the Pt or Rh bimetallic catalysts. The difference in per-

formance was observed at 300°C and at high loadings. H2 chemisorption experiments

showed that the noble metal dispersion of Pd was the smallest compared to Pt and

Rh. The low dispersion resulted in larger particles on the surface of the Ag/Al2O3,

possibly blocking Ag sites and enhancing the unselective combustion of the C3H6 to

CO2. The loading order was reversed, with the platinum group metal impregnated

first. As a main effect, the loading order was not significant in affecting the NOx

conversion. However, the interaction of loading order with the metal type was signifi-

cant. The NOx conversion and N2 selectivity over the Pt and Rh bimetallic catalysts

were similar regardless of the loading order, but Pd bimetallic catalysts displayed a

significantly larger conversion to NOx and selectivity to N2 when Ag was added sec-

ond. The improvement was attributed to the significant increase in dispersion of the

Ag when it was added after the Pd and possibly by electronic interactions between

the Pd and Ag.
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CHAPTER V

Conclusions and Future Work

5.1 Summary

The reduction of vehicle exhaust emissions is of primary concern in the field of

pollution reduction, particularly for NOx emissions from diesel engines. Increasingly

stringent emissions standards set by the U.S. Environmental Protection Agency and

the desire to reduce photochemical smog has made the development of technologies for

NOx reduction a key focus in the catalysis community. Many technologies have been

researched such as NOx decomposition, NOx storage reduction, selective catalytic

reduction with urea, and selective catalytic reduction with hydrocarbons (HC-SCR).

Each technology has advantages and disadvantages. Hydrocarbon selective catalytic

reduction of NOx is one of the most promising methods. Ag/Al2O3 has been one of the

most researched catalysts for this reaction due to its high activity for NOx reduction

and high selectivity to N2. However, the catalyst is not active below 400°C [1]. The

addition of H2 to the exhaust system has shown to reduce the temperature at which

NOx starts to react by nearly 150-200°C, depending on the concentration of H2 [2]. In

addition, Pd, Pt, and Rh have demonstrated NOx reduction activity at temperatures

below 400°C [3]. In this work a full factorial analysis was conducted with five factors

and three levels. Using MINITABTM software, the data was analyzed to determine

factor significance on the NOx conversion and N2 selectivity. In addition, the order of
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metal loading was studied. In this chapter the major conclusions stated in this thesis

are outlined and discussion of possible future directions is presented.

5.2 General Conclusions

Increasing the second metal loading affected the NOx conversion detrimentally.

The effect of the loading was unexpected as multiple papers have stated that a small

amount of noble metal can improve the NOx conversion [4, 5]. It was believed that

the overall NOx conversion would have been improved with the ability of platinum

group metals to reduce NOx using H2 and CO, but this trend was not observed in

this dissertation. It was hypothesized that the unselective combustion of C3H6 to

CO2 was enhanced by the presence of the platinum group metal. This trend was

displayed by analyzing the NOx and C3H6 conversions with respect to second metal

loading. Unlike the bimetallic catalysts at low loadings, which exhibited high activity

to NOx and did not completely combust C3H6, the high-loading catalysts completely

exhausted the C3H6, and the NOx conversion subsequently decreased. O2 chemisorp-

tion was also used to measure the Ag dispersion. The dispersions decreased when the

platinum group metal was added, but the change was not significant. Therefore, it

was concluded that the unselective combustion of the C3H6 was the primary cause

of the reduction in the conversion of NOx due to second metal loading. There were

also significant interactions that involved the second metal loading, particularly with

reaction temperature and second metal type. The decrease in conversion of NOx

due to the increase of the second metal loading was observed at 300°C and above

at high loadings. The behavior observed in the interaction was also attributed to

the unselective combustion of C3H6 as well. Concerning the second metal type, at

low loadings, the Pd and Pt bimetallic catalysts performed similarly to Ag/Al2O3

whereas the Rh bimetallic catalysts did not perform as well. At high loadings, the

NOx conversions of the Pd and Pt bimetallic catalysts dropped significantly while the
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NOx conversion over the Rh bimetallic catalysts increased, although not to the same

level as the Ag/Al2O3.

The selectivity to N2 also decreased as the second metal loading was increased.

The decrease was observed in the performance of the Pd and Pt bimetallic catalysts.

At low loadings, although the Pd and Pt bimetallic catalysts had similar NOx ac-

tivities to Ag/Al2O3, they produced more N2O. At high loadings, the extent of N2O

formation increased, resulting in a further decrease in the selectivity to N2. The

same decrease in selectivity was observed for Rh, although not as significant. The

behavior changes significantly at high loadings, where the Rh bimetallic catalyst dis-

played a higher average N2 selectivity than Ag/Al2O3. However, the improvement

was observed only at 200°C, at which the NOx conversion was less than 10%.

The loading order was also studied, in which Ag was impregnated after the Pd,

Pt, or Rh. The surface areas and metal loadings were similar to the Ag-first catalysts.

For NOx conversion and N2 selectivity, the main effect of loading order by itself was

not significant. However, the interaction between second metal type and the loading

order was significant, as the Pd bimetallic catalysts performed worse than the Pt and

Rh bimetallic catalysts when Ag was added first. When Ag was added after the Pd,

the NOx conversion and N2 selectivity significantly improved. When comparing the

bimetallic catalysts when Ag was added second compared to Ag added first, the O2

uptake increased significantly, indicating the surface was populated with more Ag

atoms. The extra exposed Ag results in a higher NOx conversion and N2 selectivity

over the Ag secondly-loaded Pd bimetallic catalysts.

5.3 Future Research Directions

The presence of the platinum group metal on the surface of the Ag/Al2O3 did not

improve HC-SCR of NOx conversion due to unselective combustion of the C3H6 to

CO2 as the loading increases. In addition, the second metal type was a significant
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factor with the Pd bimetallic catalysts performing worse that the Pt or Rh bimetallic

catalysts. For the N2 selectivity, the increase in PGM loading also resulted in a

significant decrease in the selectivity. The Rh bimetallic catalysts performed better

than the Pd or Pt bimetallic catalysts, but the improvement was seen only at 200°C

where the NOx conversion was negligible. Loading order was only significant for the

Pd bimetallic catalysts, in which loading Pd first improved the NOx conversion and

N2 selectivity compared with loading Ag first.

Because the PGMs appeared to hinder the NOx conversion and N2 selectivity, one

suggestion is the modify the preparation method. The metals can be co-impregnated

instead of sequentially impregnated; a number of papers focusing on bimetallic cat-

alysts have stated that co-impregnating the two metals possibly improves the inter-

action between the two metals. Another suggestion is to explore the addition of base

metals instead of platinum group metals. Like Ag, base metals have high selectiv-

ity to N2 but low NOx activity at low temperatures. Investigating the possibility

of electronic interactions occurring between the Ag and the base metals that could

potentially modify the nature of the active site and possibly improve the performance

of the Ag/Al2O3 catalyst would be of some interest to study. Quantifying the uti-

lization of the hydrocarbon is also important to study, as doing so would be helpful

to know how much of the hydrocarbon participated in the reduction of NOx and how

much was unselectively combusted to CO2. Furthermore, the behavior observed with

respect to loading order on the Pd bimetallic catalysts should be analyzed using EX-

AFS to determine any electronic interaction that could be occurring between the Pd

and Ag.

In addition, real-time characterization of the intermediates is important to under-

stand the mechanistic behavior for these catalysts under the tested conditions. Al-

though there is general consensus on the mechanisms for base and PGMs, the possibil-

ity of the involvement of both mechanisms is worth investigating. In-situ DRIFTS can
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characterize the intermediates on the catalyst surface at specific times and tempera-

tures. Future experiments over the high-loading bimetallic catalysts should be con-

ducted at 300°C to explain possible reasons for the different performances. Moreover,

conducting NO temperature-programmed desorption (TPD) experiments at 300°C

could provide more insight into the differences between the bimetallic catalysts. In

addition, utilizing transient techniques such as temporal analysis of products (TAP)

or isotopic labeling could provide real-time monitoring of the intermediates and prod-

ucts that would provide a better understanding of the surface behavior. Finally, any

desired formulation must be able to tolerate real-world conditions, and one of the

most damaging molecules to the metals in a mobile exhaust aftertreatment system

is SO2. For example, Xie et al. found that the presence of SO2 inhibited the NOx

conversion over Ag-Pd/Al2O3 [6]. Investigating and discovering conditions that will

strengthen the tolerance of the catalysts to the presence of SO2 will enhance the

possibility of developing new formulations that are active for NOx and selective to

N2.
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