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ABSTRACT 

 

             Head and neck squamous cell carcinomas contain a sub-population of 

highly tumorigenic cells that exhibit self-renewal and multipotency. These cells 

can be isolated from primary head and neck squamous cell carcinomas using 

Aldehyde Dehydrogenase (ALDH) activity and CD44 expression, and have been 

named head and neck cancer stem cells (HNCSC). It has been proposed that the 

HNCSC are the “drivers” of head and neck tumor progression, and therefore 

have to be eliminated to achieve cancer cure. However, little is known about 

mechanisms underlying the survival and self-renewal of HNCSC. The hypothesis 

underlying this dissertation is that head and neck cancer stem cells (i.e. 

ALDH+CD44+) are localized in the perivascular niche and depend on endothelial 

cell-secreted factors for their survival and self-renewal. 

Here, we observed that HNCSC are found in close proximity to blood 

vessels in primary head and neck squamous cell carcinomas. Endothelial cell-

secreted factors promoted the proliferation, self-renewal and survival of HNCSC 

in vitro, as evidenced by the increase in number of orospheres (i.e. non-adherent 

colonies of cells) formed in soft agar or ultra-low attachment plates. In vivo, 

selective ablation of tumor endothelial cells caused a marked decrease in the 

fraction of HNCSC suggesting that cancer stem cells depend on intact 

perivascular niches for their survival. 
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In our search for a possible mechanism to explain the dependency of 

HNCSC on endothelial cells, we observed that cancer stem cells have a 

constitutively active IL-6R/STAT3 pathway, while tumor endothelial cells secrete 

high levels of IL-6. Inhibition of endothelial cell IL-6 caused a decrease in the 

self-renewal and tumorigenicity of the HNCSC. Notably, a humanized antibody to 

IL-6R delayed tumor initiation and decreased the survival of HNCSC in vivo. 

Collectively, these results unveil the endothelial cell-secreted factors as critical 

regulators of HNCSC survival and self-renewal, and suggest that patients with 

head and neck cancer might benefit from targeted therapies against cancer stem 

cells.  
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CHAPTER I 

 

INTRODUCTION 

 

 

Cancer Cell Biology: Clonal vs Cancer Stem Cell 

          Tumors are not insular masses of proliferating cells (Hanahan and 

Weinberg, 2000). Instead, a tumor can be seen as an “organ” composed of 

transformed cells that interact with stromal cells within the tumor 

microenvironment (Figure. 1.1). The understanding of cancer as a complex 

tissue where tumor cells rely on interactions with stromal cells to progress 

towards malignancy and overcome host defenses has been solidified by 

extensive research in the last decade (Hanahan and Weinberg, 2011). 

Collectively, this work suggested that not all tumor cells are equal. Indeed, 

malignant cells with different tumorigenic potential have been found in many 

tumor types. The possibility of identifying those cells with higher tumorigenic 

potential, and selectively eliminating them, is the clinical rationale underlying this 

work. 

          According to the stochastic hypothesis, tumor cells are homogeneous, i.e. 

every cancer cell has equal propensity to initiate and propagate tumors and 

metastasize. In effect, it means that there is no selectivity between the cancer 

cells in a tissue; each cell has the same potential to initiate tumors. The 
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heterogeneity in tumors is explained by spontaneous shifts in cell phenotypes 

(Albers et al., 2011). However, emerging evidence from a variety of tumors 

suggests an alternative explanation called the “cancer stem cell” hypothesis. It 

states that the tumor tissue has a distinct hierarchy of cells and only a small sub-

population of cells within the tumor is capable of initiating cancers. These are 

called cancer stem cells or “tumor-initiating cells” (Reya et al., 2001). The bulk of 

the tumor tissue, however, is composed of rapidly proliferating cells called transit-

amplifying cells and post-mitotic differentiated cells, which do not contribute to 

tumor initiation. These cells are derived from the cancer stem cells by 

differentiation but do not cause tumor initiation by itself.   

          Following these two alternate models of study, extensive work has been 

done to understand them in different tumors. Recently, it was demonstrated in 

melanomas that about 25% of unselected melanoma cells were able to create 

tumors in immunocompromised mice, suggestive of a more stochastic model 

(Quintana et al., 2008). However, in recent literature, evidence to the contrary 

has been seen. CD271positive cells in melanomas were able to create tumors 

more likely than the negative cells supporting the cancer stem cell hypothesis 

(Civenni et al., 2011). In another independent study, CXCR6+ cells created more 

aggressive tumors than not (Taghizadeh et al., 2010). This suggests the 

existence of primitive melanoma cells capable of phenotypic plasticity, self-

renewal and immune evasion (Girouard and Murphy, 2011). A number of 

features of HNSCC can also be explained using the stochastic model. The 

existence of large pre-neoplastic areas beyond the surgical margins results in 
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local recurrences and secondary cancers which are explained by the stochastic 

model (Albers et al., 2011). On the other hand, the heterogeneity seen in the 

head and neck cancers and distant metastasis supports the cancer stem cell 

hypothesis (Prince et al., 2007; Chen et al., 2009). 

          One of the earliest studies exploring the tumorigenic potential of cells 

showed that a single tumor cell from one mouse generated a tumor in a 

secondary recipient mouse (Furth and Kahn, 1937). The idea of tumor-initiating 

cells was further explored in leukemia where low numbers of leukemic cells 

generated tumors in mice (Hewitt et al., 1958; Bonnet et al., 1997). The tumors 

generated in these studies were heterogeneous with a hierarchical organization 

suggestive of cells with varying degrees of tumorigenicity. Importantly, a study 

involving the labeling of mouse squamous cell carcinoma cells with tritiated 

thymidine showed that undifferentiated malignant cells are capable of generating 

non-tumorigenic keratinocytes (Pierce et al., 1971). These results suggested that 

not all progeny of malignant cells is tumorigenic. Further support for the presence 

of a small sub-population of cells with higher tumorigenic potential came from 

studies which reported that only 1-4% of lymphoma cells formed colonies in 

spleen, and only about 0.02-0.1% of solid tumor cells formed colonies 

(Hamburger et al., 1977).  

          In the late 1970’s however, the focus of cancer biology shifted to the 

concept of clonal evolution as mutations in oncogenes and tumor suppressors 

were found to cause human cancers. Tumor cell populations were considered 

genetically unstable and acquisitions of genetic mutations created human 
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malignancies. The step-wise genetic mutations that certain genes acquired in 

colon cancer was well documented by the Vogelstein laboratory (Fearon et al., 

1990). However, in the early nineties, technological advances allowed for studies 

that again suggested a hierarchy of tumorigenic potential of tumor cells. Such 

studies were facilitated with the advent of technologies such as the Fluorescence 

Activated Cell Sorting system (FACS), which enabled researchers to study 

specific cell surface markers in individual cells and use these markers to sort pre-

determined sub-populations of cells. For example, FACS helped in identifying 

that leukemic engraftment was possible only with CD34+CD38- expressing cells 

(Bonnet et al., 1997). Xenograft assays further demonstrated that only one in a 

million cells was capable of initiating tumors in acute myeloid leukemia (Lapidot 

et al., 1994). Notably, the hierarchical concept and the step-wise concept are not 

mutually exclusive. Rather, these two theories may have a different impact in 

different stages of tumor progression.  

Cancer Stem Cell Hypothesis 

          It is well known that most human tissues (e.g. brain, skin, and intestine) 

contain stem cells (Blainpain et al., 2004; Vries et al., 2010). The cancer stem 

cell hypothesis is fundamentally based on the application of stem cell concepts 

derived from embryogenesis to understanding of the tumorigenic process. The 

following are key features of the cancer stem cell hypothesis: “(1) only a small 

fraction of the cancer cells within a tumor have tumorigenic potential when 

transplanted into immunodeficient mice; (2) the cancer stem cell sub-population 

can be separated from the other cancer cells by distinctive surface markers; (3) 



5 
 

tumors resulting from the cancer stem cells contain the mixed tumorigenic and 

non-tumorigenic cells of the original tumor; and (4) the cancer stem cell sub-

population can be serially transplanted through multiple generations, indicating 

that it is a self-renewing population” (Prince and Ailles, 2008). Therefore, cancer 

stem cells are capable of self-renewal and differentiating into other distinctive 

cells that make up the tumor mass (Reya et al., 2001).  

          The fundamental concept underlying the cancer stem cell hypothesis is 

that not all tumor cells in a cancer are equal. Indeed, in a landmark publication, 

Clarke’s laboratory showed that breast tumors were heterogeneous and as few 

as 100 CD44+CD24-/low cells isolated from primary breast cancers were capable 

of initiating tumors, whereas tens of thousands of phenotypically different cells 

did not (Al-Hajj et al., 2003). An important observation of this study was that the 

resulting xenografts had distinct sub-populations of cells reproducing the 

heterogeneity of the original tumors (suggestive of the multipotency of the tumor-

initiating cells), and consistently expressed specific cell surface markers that 

were used to identify the cancer stem cells (indicative of self-renewal capability of 

these cells). In recent years, head and neck squamous cell carcinomas have 

been studied in great detail to identify whether it abides by the cancer stem cell 

hypothesis or the stochastic model. Such knowledge has major implications to 

cancer therapy, as will be discussed later. 
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Head and neck squamous cell carcinomas 

          The immense cancer mortality rate worldwide requires that strategies be 

developed to detect cancers earlier, understand better, treat more effectively and 

prevent recurrences. Head and neck squamous cell carcinoma (HNSCC) ranks 

sixth worldwide for cancer-related mortality, with estimated 500,000 new cases 

diagnosed every year (Vermorken et al., 2007). More than 30,000 new cases of 

head and neck cancers are diagnosed in the United States alone (Jemal et al., 

2007). This includes malignant lesions in the oral cavity, larynx and pharynx. For 

the past several decades the mainstay of treatment for HNSCC has been surgery 

and radiation. Though the standard therapy cures significant number of patients 

with Stage I disease, more than 23% develop secondary primaries, relapse and 

die (Larson et al., 1990). For more advanced stages of the disease, the survival 

rate has not improved significantly in the last couple of decades. The use of 

platinum based therapy has improved local control of the disease, but the 

incidence of distant metastases appears to be in the rise in recent years 

(Forastiere, 2008; Sano et al., 2007). It is possible that cancer stem cells 

participate in the processes that lead to resistance to therapy and the 

establishment of distant metastases. 

          Several risk factors have been associated with the development of 

HNSCC. The most common among them are carcinogen exposure, tobacco use, 

oral hygiene and family history. Tobacco, however, is the single most common 

risk factor for HNSCC (Brennan et al., 1995, Ho et al., 1997, Zhang et al., 2000). 

Alcohol consumption as a risk factor is most commonly seen to be amplifying the 
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effects of tobacco in a synergistic manner (Talamini et al., 2002). In recent years, 

the role of human papillomavirus as a causative agent in HNSCC has increased 

tremendously (Gillison et al., 2000, Mork et al., 2001, Herroro et al., 2003).   

          The initiation and progression of head and neck cancers has been thought 

for a long time to be an effect of acquisition of various genetic and epigenetic 

alterations (Califano et al., 1996). In fact, 40 – 60% of patients with HNSCC 

present with a mutation of the p53 gene (Hollstein et al., 1991, Poeta et al., 

2007). In more recent years, the epidermal growth factor receptor (EGFR) has 

been found to be highly expressed in more than 95% of HNSCC and has been 

associated with poorer prognosis (Kalyanakrishna and Grandis, 2006). These 

genetic alterations led credence to the clonal evolution or stochastic hypothesis 

in HNSCC until recently.  

Cancer stem cells in head and neck tumors 

          In a landmark publication, Prince and collaborators (2007) unveiled the 

presence of highly tumorigenic, stem-like cells, in HNSCC. They analyzed 

HNSCC using FACS sorting for expression of CD44, and were able to generate 

tumors with as few as 5×103 cells of CD44+ cells whereas higher numbers of 

CD44- cells failed to create tumors. They were also able to show that the 

resultant xenografts were heterogeneous (Prince et al., 2007). These data lend 

support to the concept that HNSCC follows the cancer stem cell hypothesis, 

where sub-populations of cancer cells have significantly higher tumorigenic 

potential than others.  
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Identification of cancer stem cells in head and neck tumors 

          Identification and isolation of cancer stem cells constitutes a major 

experimental challenge. Researchers attempt to isolate these cells by identifying 

properties that distinguish stem cells from their differentiated progeny and from 

stromal cells. These properties include the efflux of vital dyes by multidrug 

transporters (e.g. ABC transporters), enzymatic functions (e.g. Aldehyde 

Dehydrogenase activity), the sphere forming capacity in low attachment 

conditions, and the expression of cell surface antigens.  

          Prince et al. (2007) demonstrated that CD44 serves as a cancer stem cell 

marker in HNSCC. CD44, a cell surface glycoprotein functions as receptor for 

hyaluronic acid, is involved in cell adhesion and migration (Gao et al., 2011). 20 

out of 30 implantations of CD44+ cells were able to create tumors in 

immunodeficient mice, whereas only one of 40 implantations of CD44-cells 

generated tumors (Prince et al., 2007). Following this work, several independent 

groups confirmed that CD44 either alone or in combination has the properties of 

cancer stem cell marker and being a tumor initiator (Baumann et al., 2010; 

Chikamatsu et al., 2011). Emerging literature is revealing a role for CD44 in 

tumor metastasis. Indeed, it has been described that certain forms of CD44 (i.e. 

v3, v6, v10) are associated with tumor progression and metastatic spread of 

HNSCC (Wang et al., 2009). It has also been shown that CD44+ cells express 

high levels of Bmi-1 (Prince et al., 2007), a self-renewal protein found in 

embryonic stem cells (Bracken et al., 2006).  
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           The transmembrane glycoprotein CD133 has also been investigated as a 

putative marker for cancer stem cells (Wu et al., 2009). CD133 or Prominin-1 

originally found on neuroepithelial stem cells in mice, was first isolated in humans 

from the hematopoietic stem cells by a monoclonal antibody recognizing a 

specific epitope called the AC133 (Shmelkov et al., 2005). In some HNSCC cell 

lines (e.g. hep-2), CD133+ cells were found to have increased clonality, i.e. the 

ability to form clones of cells from a single cell in suspension, when compared to 

CD133-cells (Zhou et al., 2007). Oral cancer-enriched cells from cell lines and 

primary tumors were found to have an increased expression of CD133 and 

displayed increased migration, and tumorigenicity (Chiou et al., 2008). In fact, 

correlation of Oct-4, Nanog and CD133 status showed a poorer prognosis of oral 

cancer patients with increased CD133 expression (Chiou et al., 2008). Recently, 

CD133+ cells were found to possess increased clonogenicity, invasiveness and 

tumorigenicity as compared to CD133- cells along with resistance to paclitaxel 

(Zhang et al., 2010).   

          Aldehyde Dehydrogenase (ALDH) is an intracellular enzyme that is 

involved in converting retinol to retinoic acid (Sobreira et al., 2011). In cancer, 

ALDH+ cells were initially identified in breast and brain (Ginestier et al., 2007; 

Rasper et al., 2010). In these tumors, ALDH+ cells were characterized as highly 

tumorigenic cells that can self-renew, which are hallmarks of cancer stem cells. 

In HNSCC, ALDH enriches for cancer stem cells and is involved in epithelial to 

mesenchymal transition (EMT) (Chen et al., 2009). Interestingly, a recent report 
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demonstrated that as few as 500 ALDH+ cells were able to create tumors unlike 

the ALDH- cells (Clay et al., 2010).  

          The ability of cells to actively pump out dyes like the Hoechst 33342 by the 

ATP-binding cassette transporter (ABC) has also been used to identify cells with 

increased longevity. As stem cells and cancer stem cells can remain quiescent 

for long terms, it has been used to identify potential cancer stem cells. Side 

population cells in HNSCC have been shown to increase clonality and 

tumorigenic potential (Zhang et al., 2009). 

 

Stem cell niche 

          Physiological stem cells and cancer stem cells depend on their immediate 

microenvironment or niche for their survival and function (Borovski et al., 2011). 

The niche provides cues that regulate proliferative and self-renewal signals 

thereby helping cancer stem cells maintain their undifferentiated state (Kuhn and 

Tuan, 2010). The non-epithelial stromal cells, inflammatory cells, and the 

vasculature have been proposed as key components of the niche that support 

and sustain cancer stem cells (Fuchs et al., 2004). Based on this knowledge, 

cancer stem cells are being targeted for therapy using their niche. Recently, it 

was shown that hematopietic stem cell niche could be targeted for metastatic 

bone tumors (Shiozawa et al., 2011).  
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 In HNSCC, studies are required to elucidate the existing niches. 

Endothelial cells present in the perivascular niche provide critical survival and 

self-renewal cues for cancer stem cells in glioblastomas (Calabrese et al., 2007).  

Therapeutic implications and significance of cancer stem cells in HNSCC 

          The cancer stem cell hypothesis has significant implications in the 

management of patients with cancer. It tells us that tumor tissue is 

heterogeneous and that the sub-population of cancer stem cells is primarily 

responsible for tumor initiation. It also implies that the bulk of the tumor tissue 

might be relatively innocuous compared to the highly tumorigenic cancer stem 

cells. Importantly, cancer stem cells tend to be very resilient and resistant to 

conventional therapies (chemotherapy and radiation therapy) that are targeted at 

highly proliferative cells (Chikamatsu et al., 2011). It has been postulated that 

cancer stem cells can remain quiescent for extended periods of time, and 

therefore escape from conventional treatment protocols. However, these cells 

have the potential to become activated, differentiate and proliferate leading to the 

establishment of local recurrences or distant metastases.  

          In Figure 1.2, we propose a hypothetical model for the response of 

HNSCC to different therapeutic strategies. HNSCC is represented as a complex 

tissue where the cancer stem cells constitute a relatively small number of cells 

that are capable of undergoing self-renewal and differentiating into a complex 

and heterogeneous tumor. Conventional chemotherapeutic drugs are successful 

in de-bulking the tumor. However, it is proposed that slow-growing cancer stem 
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cells evade conventional therapies and, with passage of time, these cells are 

activated and regenerate tumors locally or at distant sites (Figure 1.2A). This 

might explain the relatively high recurrence rates in patients with HNSCC. On the 

other hand, targeting of the cancer stem cells either directly (Figure 1.2B) or via 

their niche (Figure 1.2C) could lead to a more definitive cure, as the cancer stem 

cells are the putative drivers of recurrence and metastatic spread. An emerging 

concept is the combined use of conventional chemotherapy and cancer stem 

cell-targeted therapy. This drug combination is appealing since such strategy 

could potentially allow for tumor de-bulking (with conventional drugs) and 

prevention of recurrence/metastases (cancer stem cell-targeted drugs).  

          Extensive work is being done to understand the molecular mechanisms 

that might be playing a role in the pathobiology of cancer stem cells but not in 

normal cells, which would allow specific targeting of pathological cells. One such 

target could be Bmi-1, present in high levels in cancer stem cells (Hayry et al., 

2010). Several other signaling pathways (e.g. Wnt, PTEN, Notch, Hedgehog) are 

also currently being explored as potential therapeutic targets (Pannuti et al., 

2010; Takahashi-Yanaga and Kahn 2010; Takazaki et al., 2011). Various 

laboratories are isolating cancer stem cells and performing gene array analyses 

to understand how cancer stem cells might be differentially regulated compared 

to the rest of the tissue. Certain early studies suggest the role of micro-RNA like 

the Let7, Micro-RNA-200 in cancer stem cells to be an important player (Lo et al., 

2011; Yu et al., 2011). The ability to selectively target cancer stem cells, while 
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sparing normal stem cells, will be critical for the future application of the cancer 

stem cell therapy in the clinic.  

          Another important conceptual strategy for targeted elimination of cancer 

stem cells is through the disruption of their supportive niche. In glioblastoma 

models, the use of anti-angiogenic therapies correlated with a decrease in cancer 

stem cell fraction (Calabrese et al., 2007). Collectively, these results demonstrate 

that by interfering with the cancer stem cell microenvironment (i.e. the niche); 

one can compromise the ability of these cells to survive and/or to behave as a 

stem cell. These data suggest that therapies like anti-angiogenic agents might 

have the unexpected, yet most welcome, effect of decreasing the presence of 

highly tumorigenic cancer stem cells. However, recent evidence demonstrated 

that anti-angiogenic therapy (especially anti-VEGF based therapy) causes a 

malignant progression of tumors resulting in increased tumors and metastasis 

due to increased tumor cell infiltration (Paez-Ribes et al., 2009; Keunen et al., 

2011). More studies are thereby necessary to understand and develop specific 

targeting molecules against cancer stem cells. 

Challenges facing head and neck cancer stem cell research 

          One of the biggest challenges in cancer stem cell research has been 

development of methods for culture, expansion, and analyses of undifferentiated 

cancer cells in vitro. The property of surviving in suspension (anchorage 

independence) has been used for this purpose (Jensen and Parmar, 2006). The 

method of enriching for cancer stem cells using sphere generation under low 



14 
 

attachment conditions has been proposed and used in various cancer models 

like the breast, neural and prostate (Dontu et al., 2003, Pastrana et al., 2011). In 

this case, putative cancer stem cells are cultured either in a matrix-based assay 

like soft agar or in low attachment plates.  

          Despite intense research in the area of cancer stem cell biology in recent 

years, the understanding of the impact of cancer stem cells to the pathobiology of 

HNSCC is still quite primitive. One of the reasons for this is the need to perform 

most studies with primary HNSCC specimens, which are difficult to obtain. There 

is still controversy over the existence of cancer stem cells in cell lines, despite 

the fact that independent reports have shown cancer stem-like cells in cell lines 

(Harper et al., 2007; Gammon et al., 2011). In addition, the expansion of cancer 

stem cells is frequently performed in vivo, which is time consuming and 

expensive. However, existing in vitro methods offer limited capacity for expansion 

of cancer cells in an undifferentiated state. It has become clear that the 

development of improved methods for isolation and expansion of head and neck 

cancer stem cells is imperative for the acceleration of the pace of discovery in 

this area. 

Statement of purpose 

          More than half a million new cases of HNSCC are diagnosed every year 

world-wide. Despite extensive research, the 5-year survival rate for these 

patients has been low and has not significantly improved over the last couple of 

decades. The discovery of a small sub-population of cells that possess 
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exquisitely high tumorigenic potential, associated with the possibility of identifying 

these cancer stem cells in clinical settings, provides a new conceptual target for 

cancer therapy. It is well known that a frequent cause of failure of conventional 

therapy in HNSCC is the high incidence of local recurrence and distant 

metastasis. Notably, it has been hypothesized that conventional therapies do not 

eliminate the slow growing cancer stem cells, which appear to be the “drivers” of 

tumor recurrence and metastases. Therefore, the recent observation that 

HNSCC follows the cancer stem cell hypothesis suggests that targeted 

elimination of these tumor-initiating cells might prevent tumor regrowth and 

distant disease. However, little is known about the cancer stem cells in HNSCC. 

The role of the niche and possible mechanisms by which the niche can promote 

the survival of the cancer stem cells in HNSCC has been completely unexplored. 

The overall goal of our study was to further characterize the existence of cancer 

stem cells in HNSCC, and the micro-environments it exists in. Emphasis was laid 

on trying to understand possible molecular mechanisms which might promote the 

survival of the cancer stem cells for possible therapeutics.  

           In this dissertation, we try to establish ALDH+CD44+ cells as cancer stem 

cells in HNSCC with increased tumorigenicity and self-renewal and develop in 

vitro assays to study them in Chapter II. We tested the tumorigenicity of these 

cells and explore the possible micro-environments or niches that they reside in 

HNSCC.   The observation that the endothelial cells promoted active proliferation 

and survival of the cancer stem cells in Chapter III led us to explore the signaling 

pathway in this interaction. We studied using gene silencing techniques and 
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transgenic mouse models, the role of the inflammatory cytokine, IL-6 in the 

interaction between the endothelial cells and the head and neck cancer stem 

cells. More specifically, we were able to demonstrate that perturbation of the IL-

6-IL-6R signaling pathway with a humanized antibody delayed the tumorigenicity 

of the head and neck cancer stem cells by decreasing their survival in Chapter 

IV.  

Hypothesis 

The central hypothesis addressed in this dissertation is that head and 

neck cancer stem cells exist in vascular niches and that endothelial cell initiated 

signaling pathways promote the self-renewal and tumorigenicity of the cancer 

stem cells in head and neck cancers. 

 

Specific Aims 

The following specific aims were addressed to answer the central hypothesis: 

- Specific Aim 1: To develop novel in vitro “Orosphere assays” to study 

and propagate head and neck cancer stem cells i.e., ALDH+CD44+cells 

(Chapter II). 

- Specific Aim 2: To identify a peri-vascular niche and to study the effects 

of endothelial cell-initiated signaling on the survival and self-renewal of 

head and neck cancer stem cells (Chapter III). 
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- Specific Aim 3: To study the effect of endothelial cell initiated IL-6 

signaling on the self-renewal, survival and tumorigenicity of cancer stem 

cells (Chapter IV) 
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Figure 1.1. Cancer tissue is a complex “organ”. The tumor tissue 
microenvironment is composed of a variety of cells including tumor cells, cancer 
stem cells, inflammatory cells, cancer-associated fibroblasts along with blood 
vessels. The cancer stem cells are rare cells found primarily in the invasive edge 
of tumors in supportive niches.  
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Figure 1.2. Possible implications of the cancer stem cell hypothesis to 
therapy. (A), Conventional chemotherapy targets primarily the highly proliferative 
cells that constitute the bulk of the tumor. With suitable microenvironments, the 
cancer stem cells proliferate and the tumor recurs. (B), Direct cancer stem cell 
targeting or (C), indirect cancer stem cell targeting via disruption of (e.g.) their 
perivascular niche can potentially eliminate cancer stem cells. Ablation of the 
stem cells may inhibit the regeneration of the tumor and ultimately result in tumor 
regression.   
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CHAPTER II 

 

OROSPHERE ASSAY: A METHOD FOR PROPAGATION OF HEAD AND 
NECK CANCER STEM CELLS 

 
 

Abstract 

 

Recent evidence suggests that head and neck squamous cell carcinomas 

(HNSCC) harbor a small sub-population of highly tumorigenic cells, named 

cancer stem cells. A limiting factor in cancer stem cell research is the intrinsic 

difficulty of expanding cells in an undifferentiated state in vitro. Here, we describe 

the development of the orosphere assay, a method for the study of putative head 

and neck cancer stem cells. An orosphere is defined as a non-adherent colony of 

cells sorted from primary HNSCC or from HNSCC cell lines and cultured in 3-D 

soft agar or ultra-low attachment plates. Aldehyde dehydrogenase (ALDH) 

activity and CD44 expression were used here as stem cell markers. This assay 

allowed for the propagation of head and neck cancer cells that retained stemness 

and self-renewal. The orosphere assay is well suited for studies designed to 

understand the pathobiology of head and neck cancer stem cells. 
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Introduction 

The cancer stem cell hypothesis provides a plausible mechanism for 

tumor recurrence and metastatic spread (Mimeault et al., 2010). According to the 

cancer stem cell hypothesis, a small sub-population of cancer cells is highly 

tumorigenic, capable of self-renewal and multipotency (Reya et al., 2001). Cells 

with such features may constitute the “drivers” of the tumorigenic process. If this 

hypothesis were indeed true for head and neck squamous cell carcinomas 

(HNSCC), selective targeting of these cancer stem cells would be essential to 

improve patient outcomes. Following the discovery of cancer stem cells in 

HNSCC (Prince et al., 2007), investigators throughout the world have begun 

studies to understand the pathobiology of these cells. The development and 

optimization of a method for in vitro expansion of head and neck cancer stem 

cells in an undifferentiated state would be beneficial for the progress of research 

in this area, and hopefully will accelerate the process of developing improved 

treatment modalities for HNSCC. 

Two cardinal properties of stem cells allow for their identification and 

purification: A) Self-renewal, i.e. the ability of stem cells to self-perpetuate; and 

B) Multipotency, i.e. the ability of cells to undergo differentiation and generate the 

complex cellular components observed in a tissue/organ or in cancer (Rudland et 

al., 1998, Weissman 2000, Morrison et al., 1997). It is possible to maintain 

human head and neck cancer stem cells in an undifferentiated state by serially 

passaging them in vivo, in immuno-deficient mice (Prince et al., 2007).  However, 

this strategy is time consuming and expensive. Furthermore, it is difficult to 
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perform mechanistic studies of signaling pathways involved in the biology of 

cancer stem cells exclusively in animal models. A third property of stem cells, i.e. 

the ability to form spheres and grow under low attachment conditions (Dontu et 

al., 2005), inspired the development of in vitro assays for the study of normal and 

cancer stem cells. 

Exploiting the fact that stem cells possess anchorage independence, i.e. 

the ability to survive and proliferate in suspension cultures unlike the non-stem 

cells (Reynolds and Weiss, 1996, Dontu et al., 2003), adherent-free culture 

conditions have been proposed as basis for in vitro assays for propagation of 

cancer stem cells. Suspension cultures have been utilized as a method to study 

stem cell properties in several tumor types, including those of the breast and 

brain (Reynolds and Weiss, 1992, Dontu et al., 2003, Hemmati et al., 2003). 

Most of these suspension cultures are done in 3-dimensional structures, such as 

soft agar matrices or dishes coated with fibronectin or matrigel (Miskon et al., 

2010, Stenberg et al., 2011, Denning et al., 2006). These strategies allow for 

stem cell expansion and proliferation making them a valuable assay for self-

renewal. However, the setup of these cultures is technically challenging, and the 

intrinsic difficulty associated with the retrieval of these cells from their matrix 

makes this method not ideal when mechanistic studies involving serial 

passaging, flow cytometry or gene expression analyses, are required. In an 

attempt to address such issues, the culture of cells in low-attachment plates has 

been proposed as an alternative strategy to deprive cells from anchorage, while 
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facilitating their retrieval of cells for further analysis (Deleyrolle et al., 2009, Dev 

et al., 2009, Zhang et al., 2011). 

Fluorescence Activated Cell Sorting (FACS) and magnetic bead sorting 

are common approaches for the identification and isolation of putative stem cells 

(McLelland et al., 2011, de Wynter et al., 1995). Using FACS, we observed that 

the fraction of putative cancer stem cells in primary HNSCC is small (Chapter III). 

Here, we describe a method for the propagation of head and neck cancer stem 

cells named the orosphere assay. The name reflects the fact that this method 

was optimized for studies of stem cells sorted from tumors or cell lines derived 

from the oral cavity and head and neck region. This method enables the 

expansion of cancer stem cells in an undifferentiated state by culturing them in 

ultra-low attachment plates or in 3-D soft agar matrices. The use of ultra-low 

attachment plates allowed for serial passaging of cells (i.e. demonstration of self-

renewal), and for the retrieval of cells for mechanistic studies.  
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Materials and methods 

Sorting and culture of head and neck cancer stem cells 

Head and neck squamous cell carcinoma cells (UM-SCC-74A, UM-SCC-

74B; gift from Dr. Carey, University of Michigan) were cultured in Dulbecco’s 

Modified Eagle Medium (DMEM; Invitrogen; Grand Island, NY, USA), 10% fetal 

bovine serum, 100 U/ml penicillin, 100 μg/ml streptomycin. The identity of the 

tumor cell lines was confirmed by genotyping at the University of Michigan DNA 

sequencing core facility. Alternatively, putative cancer stem cells were isolated 

from a primary tumor, as described. Briefly, informed consent was obtained from 

an 81-year old female patient prior to surgical removal of a squamous cell 

carcinoma from the floor of the mouth. The specimen was cut into small pieces, 

minced until they passed through a 25 ml pipette tip, and suspended in a 9:1 

solution of DMEM-F12 (Hyclone, Waltham, MA, USA) containing collagenase 

and hyaluronidase (Stem Cell Technologies; Vancouver, BC, Canada). The 

mixture was incubated at 370C for one hour and passed through a 10-ml pipette 

every 15 minutes for mechanical dissociation. Cells were filtered through a 40-

μm nylon mesh (BD Falcon; Franklin Lakes, NJ, USA), washed with low glucose 

DMEM (Invitrogen) containing 10% FBS, and centrifuged at 800 rpm for 5 

minutes. Single cell suspensions obtained from primary specimens (as well as 

from HNSCC cell lines) were washed, counted, and re-suspended at 106 cells/ml 

PBS. The Aldefluor kit (Stem Cell Technologies) was used to identify cells with 

high ALDH activity. Briefly, cells were suspended in activated Aldefluor substrate 

(BAA) or in DEAB (specific ALDH inhibitor) for 45 minutes at 370C. Then, cells 
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were exposed to anti-CD44 antibody (clone G44-26BD; BD Pharmingen; Franklin 

Lakes, NJ, USA) and lineage markers eliminated (i.e. anti-CD2, CD3, CD10, 

CD16, CD18; BD Pharmingen). Viable cells are identified with 7-

Aminoactinomycin (7-AAD, BD Pharmingen). FACS (Fluorescence Activated Cell 

Sorting) sorted cells were cultured in low glucose DMEM (Invitrogen), 10% fetal 

bovine serum, and 100 U/ml Penicillin-streptomycin in low attachment conditions, 

as described below. Cells were defined as putative head and neck cancer stem 

cells (ALDH+CD44+) or control cells (ALDH-CD44-). To induce cell 

differentiation, FACS-sorted cells were cultured in regular tissue culture plates 

(BD Falcon). Studies were done in triplicate specimens per condition, and 

experiments were performed at least three independent times to verify 

reproducibility of the data.  

Orospheres in ultra-low attachment plates 

FACS-sorted cells (5x103 cells/well) were seeded in 6-well ultra-low 

attachment plates (Corning; New York, NY, USA) and cultured in low glucose 

DMEM, 10% fetal bovine serum and 100 U/ml Penicillin-streptomycin at 370C 

and 5% CO2. Orospheres were arbitrarily defined as a non-adherent colony of at 

least 25 cells. Orospheres can be mechanically dissociated into single cell 

suspensions and then re-seeded in new ultra-low attachment plates to generate 

secondary and tertiary orospheres (indicative of self-renewal).  

Orospheres in soft agar 

Alternatively, orospheres can be generated using low melting point 

agarose (Invitrogen). 6-well regular attachment plates (Fisher) were pre-coated 
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with a layer of 1.2% agarose mixed with equal volume of 2x DMEM (Invitrogen) 

to make an inert basal layer. This layer is solidified at room temperature for 30 

minutes. Then, 500 FACS-sorted cells/well were resuspended in 2x DMEM, 2.5% 

FBS, mixed with equal volumes of 0.6% agarose. After the second agarose layer 

gelifies at room temperature for 45 minutes, 500 µl low glucose DMEM 

(Invitrogen) is added onto the surface of the 3-dimensional matrix and cells are 

incubated at 370C thereafter. Usually the orospheres in soft agar are visualized 

after 7 days. Quantification of the number of orospheres/well is done under light 

microscopy. 

Immunocytochemistry 

For immunocytochemistry, 2x103 FACS-sorted cells/well were cultured in 

LabTek II Chamber Slide (Thermo Scientific; Rochester, NY, USA) for up to 7 

days. Antigen retrieval was performed using Dako Retrieval solution (S1699; 

Carpinteria, CA, USA) with gradual warming up from 400C to 980C within 40 

minutes. Slides were incubated in 3% hydrogen peroxidase for 10 minutes. 

Primary antibodies against Cytokeratin 17 (1:200; Abcam, ab2502; San 

Francisco, CA, USA) or Involucrin (1:200; Abcam ab27496) were incubated at 

40C overnight. Following a 20-minute incubation with appropriate secondary 

antibodies, the Romulin AEC Chromogen Kit (Biocare Medical; Concord, CA, 

USA) was used to visualize the proteins.  

Immunofluorescence and confocal imaging 

For confocal imaging, 2x103 FACS-sorted cells/well were seeded in a 24-

well ultra-low attachment plate for 3 days (Corning). Orospheres were fixed in 



37 
 

cold 10% buffered formalin (Fisher; Pittsburgh, PA, USA) for 30 minutes. For 

immunofluorescence, primary antibodies were pre-labeled with Alexafluor 488 or 

594 using Zenon labeling kit (Molecular Probes, Z25007, Z25102; Invitrogen). 

Primary antibodies, i.e. anti-ALDH1 (1:50; BD Biosciences, 61195; Franklin 

Lakes, NJ); CD44 (1:200; Abcam, ab51037) were added directly to the plate and 

incubated at 40C overnight. Orospheres were transferred to LabTek II 

Chambered Coverglass (Thermo Scientific) and mounted with Prolong Gold anti-

fade mounting medium with DAPI (Invitrogen). Confocal imaging was performed 

using Leica Inverted Confocal SP5X (Leica; Los Angeles, CA, USA). Post-

processing was done with NIH Image J software.  

Statistical analyses 

One-way ANOVA followed by appropriate post-hoc tests was performed 

using the SigmaStat 2.0 software (SPSS, Chicago, IL). Statistical significance 

was determined at P<0.05. 
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Results 

We show in Chapter III ALDH+CD44+ cells sorted from primary HNSCC 

exhibit self-renewal and are more tumorigenic than control ALDH-CD44- cells. 

Such features characterize the ALDH+CD44+ cells as putative head and neck 

cancer stem cells. Here, we describe the characterization and optimization of a 

method that was developed to propagate and to evaluate the stem cell properties 

of cells derived from primary head and neck tumors or from HNSCC cell lines. 

Single cell suspensions were prepared from freshly dissected human HNSCC, or 

from HNSCC cell lines. Cells were sorted for high/low ALDH activity (Aldefluor 

kit) and CD44 expression. A representative flow sorting of the head and neck 

cancer stem cells from a primary human HNSCC is shown in Figure 2.1, wherein 

the percentage of lineage-negative viable cancer stem cells (ALDH+CD44+) is 

0.97%, while the percentage of lineage-negative viable non-cancer stem cells 

(ALDH-CD44-) is 3.09%. After flow sorting, cells were cultured under low 

attachment conditions to form non-adherent spheres named orospheres. 

Orospheres were arbitrarily defined as non-adherent colonies of at least 25 cells. 

To generate these orospheres, we optimized conditions for HNSCC cells cultured 

either in ultra-low attachment plates or in soft agar 3-D matrices. While 

orospheres can be readily seen within 3 days in ultra-low attachment plates, it 

takes approximately 7 days to generate orospheres in soft agar (Figure 2.1B, 

2.1C). Notably, the orospheres shown here were generated either from cells 

sorted from a single primary human HNSCC (Figure 2.1B), or from a head and 

neck cancer cell line, i.e. UM-SCC-74A (Figure 2.1C). 
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To begin to understand the biology of the cells forming the orospheres, we 

cultured them for 3 days in ultra-low attachment plates and visualized the 

expression of the two stem cell markers used to sort the cells initially (ALDH1 

and CD44) by confocal microscopy (Figure 2.2A). To determine if the culture of 

putative cancer stem cells in low attachment represents a self-renewal method 

resulting in stem cell expansion, and not just an aggregation of stem-like cells, 

we seeded a single ALDH+CD44+ cell/well in 96-well ultra-low attachment plate 

and monitored its clonal expansion for 5 days (Figure 2.2B). We observed that a 

higher number of individual clones were formed by the putative cancer stem cells 

(ALDH+CD44+) when compared to control ALDH-CD44- cells (P<0.05). A clone 

was defined as a colony of at least 10 cells, starting from a single cell.  

To evaluate if the orosphere assay is a valid method for testing self-

renewal of head and neck cancer stem cells, we cultured orospheres generated 

from ALDH+CD44+ cells or control cells for 3 days under low attachment 

conditions. Then, the orospheres were mechanically dissociated and re-seeded 

as single cell suspension in new ultra-low attachment plates. This process was 

repeated serially to generate secondary and tertiary orospheres (Figure 2.2C). 

This experiment revealed two general trends: A) More orospheres were 

generated from the ALDH+CD44+ than from the control cells over time, 

demonstrating the self-renewal of the putative cancer stem cells. And, B) A 

progressive decrease in the overall number of orospheres was observed 

between the primary and the tertiary passage.  



40 
 

We wanted to ascertain that suspension culture in low attachment plates 

was the reason for the continued enrichment of cancer stem cells, and that 

ALDH+CD44+ cells do retain their stemness over time. We therefore cultured 

ALDH+CD44+ cells in regular attachment conditions or in ultra-low attachment 

plates. FACS analysis revealed the maintenance of an increased percentage of 

ALDH+CD44+ cells when culturing in ultra-low attachment conditions as 

compared to regular attachment plates (Figure 2.2D). The reverse experiment 

was performed to evaluate if the same putative head and neck cancer stem cells 

(ALDH+CD44+) would lose their stemness and differentiate when cultured in 

regular attachment plates. This analysis was performed by immunostaining for 

Cytokeratin 17 (an epithelial cell marker) and Involucrin (a differentiated cell 

marker) (Aragaki et al., 2010, Balasubramanian et al., 2007). We observed that 

on Day 0, the ALDH+CD44+ cells were more spherical and expressed high 

levels of Cytokeratin 17 and low levels of Involucrin (Figure 2.3A, 2.3B). By Day 

7, the ALDH+CD44+ cells became more elongated and reversed the expression 

levels of Cytokeratin 17 and Involucrin. 
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Discussion 

The orosphere assay is conceptually derived from suspension cultures 

developed to study normal or cancer stem cells from tissues such as the brain, 

breast, or prostate (Reynolds and Weiss, 1992, Dontu et al., 2003, Reynolds et 

al., 2006, Guzman-Ramirez et al., 2009). Pioneer work from Reynolds and Weiss 

demonstrated that cells dissected from the striatum of the adult mouse brain 

could be cultured as free-floating spheres and exhibited stem cell properties 

(Reynolds and Weiss, 1992, Reynolds et al., 2009). The Wicha laboratory 

characterized human mammary stem/progenitor cells from reduction 

mammoplasties based on their anchorage independence and survival in low 

attachment plates (Dontu et al., 2003). These seminal findings provided the 

conceptual framework for the development of sphere-based assays as a means 

to propagate cancer stem cells in an undifferentiated state in vitro. Here, we 

describe a method in which putative cancer stem cells are sorted from 

heterogeneous HNSCC primary tumors or from established HNSCC cell lines. 

These putative cancer stem cells differentiate under regular attachment 

conditions and generate heterogeneous tumor cell monolayers within a few days. 

On the other hand, the same cells cultured in low attachment conditions are 

capable of retaining stem-like cell properties (Figure 2.4). Notably, the method 

described here is clearly inspired by the existing protocols from other tumor 

types, but was optimized for use in head and neck tumor models. 

One of the critical challenges facing stem cell studies is the definition of 

markers that discriminate highly tumorigenic cells (cancer stem cells) from cells 
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that possess low tumorigenic potential. Mounting evidence suggests that stem 

cell markers are tumor-specific, and that CD44, CD133, and ALDH are emerging 

as useful markers in HNSCC. Seminal work from the Prince laboratory used 

CD44 expression as a marker for the identification of a sub-population of highly 

tumorigenic stem cells in primary HNSCC (Prince et al., 2007). More recently, it 

was shown that CD44+ cells sorted from a HNSCC cell line cultured in uncoated 

dishes formed tumor spheres that were resistant to chemotherapeutic drugs 

(Okomato et al., 2009). CD133, a transmembrane glycoprotein, is considered a 

putative marker for cancer stem cells in head and neck tumors. CD133 positive 

cells sorted from HNSCC cell lines or primary tumors showed enhanced clonality 

and tumorigenicity when compared to control cells (Zhou et al., 2007, Chiou et 

al., 2008, Zhang et al., 2010). Alternatively, ALDH activity, which was initially 

characterized as a useful stem cell marker in breast cancer (Ginestier et al., 

2007), was also validated in head and neck tumor models (Chen et al., 2009, 

Clay et al., 2010). Of note, since most markers are expressed in both normal and 

pathologic stem cells, it is plausible that the combination of markers may 

enhance one’s ability to identify cancer stem cells from complex primary tumor 

tissues. Indeed, it has been recently observed that the combination of ALDH 

activity and CD44 expression further discriminates a small sub-population (<3%) 

of cells in primary HNSCC that exhibit stem-like properties and are highly 

tumorigenic. 

As with most methods, the orosphere assay has its inherent limitations, as 

follows: A) The overall number of orospheres decreases upon serial passaging; 
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and B) The percentage of ALDH+CD44+ cells is higher in ultra-low attachment 

plates than in regular culture plates, but it decreases over time. Collectively, 

these findings suggest that there might be a certain degree of cell differentiation 

even in low attachment conditions in vitro. Although these limitations can be 

overcome by expanding cancer stem cells in vivo, (Prince et al., 2007) such 

strategy makes the process of propagating cells in an undifferentiated state labor 

and animal intensive, and expensive. While the “orosphere” assay has the 

advantages of being technically simple, reproducible, and relatively inexpensive, 

one must remain mindful of the limitations of the assay and interpret the results 

with caution. Ideally, the orosphere assay should be used for cell and molecular 

biology studies that are verified in appropriate animal models. 

We described here the protocols for generating orospheres in either soft 

agar 3-D matrices or in ultra-low attachment plates. Careful consideration should 

be given to the advantages and disadvantages of each method, before selecting 

the best approach for a specific experimental question. The soft agar method is 

more time consuming. One has to pre-coat the plate with a layer of agarose, wait 

for its gelification, apply a second layer containing both agarose and cells, wait 

again, and finally cover the 3-D gel with culture medium. Along the same lines, it 

takes about 7 days to generate orospheres in soft agar, while it takes only 3 days 

in ultra-low attachment plates. In addition, the soft agar approach does not allow 

for retrieval of the cells for mechanistic studies (e.g. flow cytometry, gene 

expression analyses) or for serial passage studies (e.g. to evaluate self-renewal 

properties). As a potential advantage though, the soft agar assay tends to be a 
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more rigorous testing of stem cell properties. We observed that non-cancer stem 

cells do not survive well under these conditions and do not readily form 

orospheres. On the other hand, the culture of undifferentiated cells in ultra-low 

attachment plates is simpler, since there is no need for coating and gelification 

steps. This culture condition is highly suitable for the retrieval of cells for serial 

passage or for mechanistic studies. Knowing the pros and cons of both strategies 

should direct the decision process towards selecting the soft agar or the ultra-low 

attachment approach. 

The field of cancer stem cell biology has attracted much attention in recent 

years due to the discovery that these cells may drive the progression of certain 

tumor types, including HNSCC. As such, the emergence of targeted therapy 

against cancer stem cells could have a significant impact on the survival of head 

and neck cancer patients. We believe that the development and characterization 

of methods to propagate and study the behavior of cancer stem cells in vitro may 

ultimately contribute to the discovery of mechanism-based therapies for head 

and neck squamous cell carcinoma. 
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Figure 2.1. In vitro propagation of putative head and neck cancer stem cells 
in orospheres. (A) Representative flow cytometry sorting of putative cancer 
stem cells from a primary human head and neck squamous cell carcinoma. 
Shortly after surgery, single cell suspensions were prepared by digestion of the 
tumor specimen with collagenase and hyaluronidase. Viable cells (P1) were 
isolated using 7AAD and are gated for positivity (after eliminating lineage cells) to 
ALDH (P5), using DEAB (ALDH inhibitor) as reference. ALDH-negative cells are 
found in P6. The cells were then gated against CD44 in sequence to select 
ALDH+CD44+Lin- (P7=0.97%) and ALDH-CD44-Lin- (P8=3.09%). (B,C) 
Representative photomicrographs of orospheres arising from ALDH+CD44+ and 
ALDH-CD44- cells sorted from a primary HNSCC and UM-SCC-74A and cultured 
either in ultra-low attachment plates (B) or in 3-D soft agar matrices (C).  
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Figure 2.2. Characterization of stem cell properties of orospheres. (A) 
Confocal microscopy of an orosphere generated from the UM-SCC-74B cell line 
and stained for the stem cell markers ALDH1 (green) and CD44 (red), along with 
nuclei staining with DAPI (blue). (B) Graph depicting the number of clones arising 
from one individual cancer stem cell (ALDH+CD44+) or non-cancer stem cell 
(ALDH-CD44-) per well of a 96-well ultra low attachment plate. (C) Graph 
depicting the number of orospheres generated from serial passage assays that 
evaluate self-renewal of putative cancer stem cells (ALDH+CD44+) or control 
cells (ALDH-CD44-). (D) Graph depicting the percentage of ALDH+CD44+ cells 
(FACS) over time when cultured in regular attachment or ultra-low attachment 
conditions. 
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Figure 2.3. Characterization of the differentiation of ALDH+CD44+ cells 
cultured in regular attachment plates. (A) Representative photomicrographs of 
Cytokeratin 17 and Involucrin immunostaining of ALDH+CD44+ cells cultured 
under regular attachment conditions for one week. (B) Graph depicting the 
percentage of cells cultured in regular attachment plates and that stained positive 
for Cytokeratin 17 or Involucrin over time.  
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Figure 2.4. Diagram illustrating the in vitro propagation of putative head 
and neck cancer stem cells using the orosphere assay. Single cell 
suspensions are prepared from head and neck squamous cell carcinomas and 
sorted for stem cell markers, such as ALDH and CD44. The putative cancer stem 
cells can be serially passaged and expanded in ultra-low attachment conditions 
using the orosphere assay. Alternatively, these cells can be differentiated when 
cultured in regular attachment conditions generating a heterogeneous cancer cell 
line. 
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CHAPTER III 

 

ENDOTHELIAL CELL-INITIATED SIGNALING PROMOTES THE SURVIVAL 
AND SELF-RENEWAL OF CANCER STEM CELLS 

 

 

Abstract 

 

Recent studies have demonstrated that cancer stem cells play an 

important role in the pathobiology of head and neck squamous cell carcinomas 

(HNSCC). However, little is known about functional interactions between head 

and neck cancer stem-like cells (CSC) and surrounding stromal cells. Here, we 

used Aldehyde Dehydrogenase activity and CD44 expression to sort putative 

stem cells from primary human HNSCC. Implantation of 1,000 CSC 

(ALDH+CD44+Lin-) led to tumors in 13 (out of 15) mice, while 10,000 non-cancer 

stem cells (NCSC; ALDH-CD44-Lin-) resulted in 2 tumors in 15 mice. These data 

demonstrated that ALDH and CD44 select a sub-population of cells that are 

highly tumorigenic. The ability to self-renew was confirmed by the observation 

that ALDH+CD44+Lin- cells sorted from human HNSCC formed more spheroids 

(orospheres) in 3-D agarose matrices or ultra-low attachment plates than controls 

and were serially passaged in vivo. We observed that approximately 80% of the 

CSC was located in close proximity (within 100-μm radius) of blood vessels in 

human tumors, suggesting the existence of perivascular niches in HNSCC. In 
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vitro studies demonstrated that endothelial cell-secreted factors promoted self-

renewal of CSC, as demonstrated by the up-regulation of Bmi-1 expression and 

the increase in the number of orospheres as compared to controls. Notably, 

selective ablation of tumor-associated endothelial cells stably transduced with a 

caspase-based artificial death switch (iCaspase-9) caused a marked reduction in 

the fraction of CSC in xenograft tumors. Collectively, these data demonstrated 

that endothelial cell-initiated signaling enhances the survival and self-renewal of 

head and neck cancer stem cells. 
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Introduction 

Head and neck squamous cell carcinoma (HNSCC) is the sixth most 

prevalent cancer type, accounting for more than 500,000 new cases each year in 

the world (Chin et al., 2006). The integration of platinum-based chemotherapy to 

the curative management of HNSCC resulted in an improvement in the control of 

local-regional disease and enhanced organ preservation (Forastiere, 2008). 

However, as the control of local-regional disease improved, the incidence of 

distant metastatic disease has risen (Gendel et al., 2003, Sano et al., 2007). As a 

result, the overall survival rate for patients with HNSCC has not improved 

significantly over the last 30 years and continues to be one of the lowest among 

the major cancer types. This clinical observation suggests that by creating a non-

favorable local environment for head and neck tumor cells with current therapies, 

these cells acquire a more aggressive phenotype leading to distant metastasis. 

Better understanding of the pathobiology of HNSCC is urgently needed for the 

development of more effective therapies. 

Cancer stem cells (CSC) constitute a sub-population of cells that are 

multi-potent, self-renewing, and capable of generating the entire heterogeneous 

population seen in tumors (Reya et al., 2001, Tu et al., 2009, Setoguchi et al., 

2004, Gupta et al., 2009). Cancer stem cells are believed to “drive” 

tumorigenesis of some cancer types, including breast and head and neck tumors 

(Prince et al., 2007, Cho et al., 2008, Shackleton et al., 2009). This implies that 

the successful growth of a metastasis of tumors that follow the cancer stem cell 

model requires that at least one cancer stem cell resists to therapy (Hill et al., 
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2009). Notably, cancer stem cells are slow-dividing cells that are capable of 

resisting to current therapies for cancer (Hermann et al., 2010).  

Stem cells and cancer stem cells are frequently found in unique 

microenvironments called the “niche” (Fuchs et al., 2004, Moore et al., 2006). 

Cell-to-cell interactions through direct contact or secreted factors support the 

survival and maintain the stemness of stem cells in cancer and in normal tissues 

(Lobo et al., 2007). Perivascular niches have been identified in neural stem cells 

(Shen et al., 2004, Sugiyama et al., 2006, Veeravagu et al., 2008) and neural 

tumors (Calabrese et al., 2007). However, it is not known if the stem cells of head 

and neck tumors are localized in close proximity to blood vessels and depend on 

interactions with the cellular components of vascular niches for their survival and 

stemness.  

Head and neck cancer stem cells were first identified using CD44 (Prince 

et al., 2007), a marker of stem cells in epithelial tumors (Al-Hajj et al., 2003, Li et 

al., 2007). Aldehyde Dehydrogenase (ALDH), an enzyme found to be highly 

active in stem cells of various origins (Corti et al., 2006, Ginestier et al., 2007, 

Huang et al., 2009), was recently used to identify stem cells in HNSCC (Chen et 

al., 2009). Here, we utilized ALDH1 and CD44 to identify a sub-population of 

cells that exhibit several properties of cancer stem cells, including self-renewal 

and capacity to regenerate heterogeneous tumors. Analysis of human HNSCC 

demonstrated that the majority of the cancer stem cells are located in close 

proximity to blood vessels. Using 3-D models in vitro, we showed that endothelial 

cell-secreted factors promote proliferation and self-renewal of HNCSC along with 
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increased expression levels of Bmi-1. Notably, selective ablation of tumor-

associated endothelial cells with a caspase-based artificial death switch resulted 

in a significant decrease in the number of cancer stem cells in vivo. Collectively, 

these data unveil the functional interdependency of cancer stem cells and 

vascular endothelial cells in head and neck tumors, and show proof-of-principle 

evidence that therapeutic targeting of tumor blood vessels reduces the number of 

CSC.  
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Materials and Methods 

Cell Culture 

Head and neck squamous cell carcinoma cell lines (UM-SCC-1, UM-SCC-

74A, UM-SCC-74B, UM-SCC-17A, UM-SCC-17B, UM-SCC-11B; gift from Dr. 

Carey, University of Michigan) were cultured in Dulbecco’s Modified Eagle 

Medium (DMEM), 10% fetal bovine serum, 100 U/ml penicillin, 100 μg/ml 

streptomycin (Invitrogen; Grand Island, NY, USA) and human dermal 

microvascular endothelial cells (HDMEC; Cambrex, Walkersville, MD) in 

endothelial cell growth medium-2 (EGM2-MV; Lonza, Walkersville, MD, USA). 

FACS sorted cells were cultured in low glucose DMEM, 10% fetal bovine serum 

(Invitrogen) and 100 U/ml Penicillin-streptomycin (Invitrogen) or 100 U/ml 

Antibiotic Antimycotic Solution (AAA) (Sigma; St. Louis, MO, USA) in ultra-low 

attachment plates (Corning; New York, NY, USA). Conditioned Medium (CM) 

from HDMEC was collected in serum free DMEM from 24-hour cultures. HDMEC 

stably transduced with iCaspase-9 (HDMEC-iCaspase-9) were generated as 

described (Nör et al., 2002). The identity of all tumor cell lines was confirmed by 

genotyping at the University of Michigan DNA sequencing core facility. 

Head and neck cancer stem cell sorting  

Informed consent was obtained from patients undergoing surgery for 

removal of HNSCC. The tumors were obtained within 30 minutes post-surgery 

and transported in DMEM Low Glucose, 10%FBS, AAA to 40C immediately.  

Within 12 hours, the tumors were cut into small pieces and minced with a sterile 
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scalpel until they could pass through a 25 ml pipette tip. They were suspended in 

a 9:1 solution of DMEM-F12 (Hyclone, Waltham, MA) containing collagenase and 

hyaluronidase (Stem Cell Technologies; Vancouver, BC, Canada). The mixture 

was incubated at 370C for one hour and passed through a 10-ml pipette every 15 

minutes for mechanical dissociation. Cells were filtered through a 40-μm nylon 

mesh (BD Falcon; Franklin Lakes, NJ, USA), washed with low glucose DMEM 

containing 10% FBS, and centrifuged at 800 rpm for 5 minutes. Single cell 

suspensions obtained from primary specimens (as well as from cell lines or 

xenografts) were washed, counted, and re-suspended at 1×106cells/ml PBS. The 

Aldefluor kit (Stem Cell Technologies) was used to identify cells with high ALDH 

activity. Briefly, cells were suspended with activated Aldefluor substrate (BAA) or 

the negative control (DEAB, a specific ALDH inhibitor) for 45 minutes at 370C. 

Then, cells were exposed to anti-CD44 (clone G44-26BD; BD Pharmingen; 

Franklin Lakes, NJ, USA) and lineage markers (i.e. anti-CD2, CD3, CD10, CD16, 

CD18; BD Pharmingen). The sorted cells were cultured overnight and either 

implanted in mice or set up for in vitro experiments. Mouse cells were identified 

using anti-H2Kd antibody (BD Biosciences; Franklin Lakes, NJ, USA) and 

eliminated. Anti-CD31 (Biolegend; San Diego, CA, USA), anti-HA (Sigma) and 7-

Aminoactinomycin (7-AAD, BD Pharmingen) were used in selected experiments. 

Propidium iodide staining followed by flow cytometry was used for the 

identification of apoptotic cells (i.e. sub-G0/G1 cells). Here and throughout this 

manuscript, studies were done in triplicate specimens per condition and time 

point, and three experiments were performed to verify reproducibility of the data.  
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Confocal Microscopy   

Frozen sections were treated with peroxidase (Dako, CA) and the antigen 

retrieval solution (Dako) was used for 45 minutes at 90•C. The anti-ALDH1 (BD 

Biosciences), CD44 (Abcam, Cambridge, MA, USA) and Factor VIII 

(Neomarkers; Fremont, CA, USA) were pre-labeled with Alexafluor 488 or 594 as 

described using the Zenon labeling kit (Invitrogen) and confocal imaging was 

performed using Zeiss confocal (Carl Zeiss; Thornwood, NY, USA). Z–stacked 

images of 8 individual images were generated. The deconvolution was done 

using Autoquant (Media Cybernetics; Bethesda, MD, USA) and the 3-D 

reconstruction completed using the Imaris Software (Bitplane AG; Zurich, 

Switzerland).  

Colony formation assay and orospheres 

Colony formation assays were performed in 3-D suspension cultures, as 

described (Ginestier et al., 2007, Dontu et al., 2003). Orospheres (i.e. spheroids 

of HNSCC-derived cells) were generated from 5x103 cells cultured in triplicate in 

ultra-low attachment plates (Corning). Alternatively, cells were mixed with 0.3% 

agarose and layered on plates that were pre-coated with a layer of 0.6% 

agarose. Cells were maintained in low glucose DMEM containing or not 

conditioned medium from HDMEC at a ratio of 3:1. Orospheres generated in 

ultra-low attachment plates were mechanically dissociated into single cell 

suspensions and replated to generate secondary and tertiary cultures.  
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SCID mouse model of human tumor angiogenesis  

Xenograft tumors vascularized with functional human microvessels were 

generated in severe combined immunodeficient (SCID) mice (CB 17 SCID, 

Taconic; Germantown, NY, USA), as described (Nör et al., 2001). Briefly, 1,000 

CSC (ALDH+CD44+Lin-) or 10,000 NCSC (ALDH-CD44-Lin-) were seeded with 

HDMEC for a total of 1x106 cells in poly-(L-lactic) acid (PLLA; Medisorb, Nicosia, 

Cyprus) biodegradable scaffolds. Bilateral scaffolds were implanted 

subcutaneously in the dorsum of each mouse. Mice were monitored daily for 

tumor growth for 6 months or until the volume of the tumor reached 0.85 cm3. 

Alternatively, mice received scaffolds containing 9.99x105 HDMEC-iCaspase-9 

and 1x103 CSC, or controls. 24 days after transplantation of the scaffolds, mice 

received daily intra-peritoneal injections of 2 mg/kg AP20187 (ARIAD; 

Cambridge, MA, USA) for 4 days to activate iCaspase-9 and selectively ablate 

tumor blood vessels, as described (Nor et al., 2002).  

Immunohistochemistry 

Immunostaining for ALDH1 (BD Biosciences, 61195, 1:100), Factor VIII 

(Neomarkers, 1:500), pancytokeratin (Dako, clone A E1/E3 3515; 1:500) was 

performed, and DAB or AEC substrate was used to develop the color. Factor VIII 

and ALDH1 quantification was done in 6 random areas of 6 sections in 8 

individual tumors in a 400X magnification. The ALDH1-positive cells of all 

sections were added and expressed as a percentage for each patient and the 
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average of the 8 patients was calculated. Isotype matched immunoglobulins were 

used as negative controls.  

Proliferation Assays  

For proliferation experiments, 2x103 cells (ALDH+CD44+ and ALDH-

CD44-) were cultured in 24-well ultra-low attachment plates and treated with 

control or endothelial cell (HDMEC) conditioned medium every 2 days for a 

week. WST-1 (Roche) reagent was added, incubated for 2 hours and read off the 

spectrophotometer (Genious; Tecan). Results were normalized against initial 

plating density. Experiments were done in triplicate wells per condition, and each 

graph is representative of three independent experiments.  

Western Blots  

40,000 ALDH+CD44+ or ALDH-CD44- cells were plated in 6-well ultra-low 

attachment plates, serum starved overnight, and treated with endothelial cell 

conditioned medium (CM) for 0-24 hours. Western blots were performed with 

rabbit anti-human Bmi-1 (Millipore, 05-637) or mouse anti-human caspase-9 

(Cayman Laboratory).  

Generation of HDMEC-icaspase9-HA cells 

These cells were generated, as described (Nör et al., 2002).  Briefly, 

HDMEC was transduced with either iCaspase-9 (HA tagged) or LXSN (empty 

retroviral vector control) and selected for G418 for a minimum of 2 weeks. 

Expression of iCaspase-9 was checked with Western Blots as described above.  
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Statistical Analyses 

T-test or one-way ANOVA followed by post-hoc analyses was performed 

using the SigmaStat 2.0 software (SPSS, Chicago, IL). Statistical significance 

was determined at P < 0.001 (unless otherwise specified). 
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Results 

ALDH+CD44+Lin- cells retrieved from primary head and neck squamous 

cell carcinomas are highly tumorigenic. CD44 was used as the marker for 

stem cells in the study that demonstrated the existence of stem cells in head and 

neck squamous cell carcinomas (Prince et al., 2007). However, a relatively large 

proportion of cells were found to be positive for CD44 in that study. Here, we 

tested the combined use of ALDH activity and CD44 expression in different 

combinations to identify cells that have a cancer stem-like phenotype (Figure 

3.1A) and ALDH+CD44+ cells were more stem like. Confocal microscopy of 

ALDH-positive cells (green) was seen to co-localize with some of the CD44 (red) 

cells in a primary HNSCC patient (Figure 3.1 B). The efficacy of tumor take was 

compared when putative CSC cells (ALDH+CD44+Lin-) or non-CSC cells 

(ALDH-CD44-Lin-) were implanted in immuno-deficient mice (Figure 3.2A). 

Single cell suspensions were prepared from 4 different patients with primary 

human head and neck squamous cell carcinomas immediately after surgical 

resection (Table 3.1). Viable cells were selected with 7-AAD (P1) and then gated 

in sequence for ALDH activity and CD44 expression, after elimination of lineage 

(Lin) cells (Figure. 3.2A). We observed that 1.78% of the cells were 

ALDH+CD44+Lin- (putative CSC) and 8.7% were ALDH-CD44-Lin- (NCSC) in a 

representative tumor (HN 10) (Figure. 3.2A, Table 3.1). To evaluate the 

tumorigenicity of these cells, 1,000 ALDH+CD44+Lin- or 10,000 ALDH-CD44-

Lin- (10-fold more cells) were co-implanted with human endothelial cells to 

generate human xenograft tumors vascularized with human blood vessels in 
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immuno-deficient mice, as described (Nor et al., 2001). 13/15 implants generated 

palpable tumors (tumors that are bigger than the scaffold volume), in the 

ALDH+CD44+Lin- group as compared to 2/15 of the ALDH-CD44-Lin- group, 

demonstrating that the combination of ALDH and CD44 allowed for selection of a 

highly tumorigenic sub-population of cells (Figure 3.2B). To evaluate their 

capacity of self-renewal, viable tumor xenografts were retrieved at six months or 

when their volume reached 850 mm3, processed into single cell suspensions, 

and serially transplanted to other mice. All implants containing ALDH+CD44+Lin- 

cells generated secondary tumors, whereas none of the implants containing 

ALDH-CD44-Lin- cells generated tumors (Figure 3.2B). The tumor volumes of the 

primary and secondary xenografts generated with ALDH+CD44+Lin- cells was 

higher than with the ALDH-CD44-Lin- cells (p < 0.001) at the end of the 

experimental period (Figure 3.2C). Notably, the fraction of the putative CSC 

(ALDH+CD44+Lin-) in the primary and secondary xenografts remained low and 

comparable to the fraction of these cells in the primary human tumors (Figure 

3.2D). This observation along with the fact that the primary xenografts on 

digestion yielded both ALDH+CD44+ cells and ALDH-CD44- cells as well as the 

heterogeneity of tumors and being capable of being serially implanted into 

generating secondary xenografts indicated that the ALDH+CD44+Lin- cells 

exhibit features of multipotency.  

Xenografts generated with ALDH+CD44+Lin- cells resemble the primary 

tumors. The histological organization of the primary and secondary xenograft 

tumors generated from the ALDH+CD44+Lin- cells was comparable to the 
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primary tumor from which these cells were retrieved (Figure 3.3A). In contrast, 

most of the implants seeded with ALDH-CD44-Lin- did not generate tumors. And, 

in the few instances (2 out of 15 implants) that tumors were generated from these 

cells, they were structurally disorganized and had smaller tumor islands as 

compared to xenografts generated from ALDH+CD44+Lin- cells (Figure 3.3A). 

The epithelial origin of the tumor xenografts was confirmed by positive 

immunostaining for pancytokeratin (Figure 3.3B). Analysis of the localization of 

the stem-like cells (ALDH-positive; arrows) within these xenografts revealed that 

the majority of these cells were found within 100-µm of blood vessels (Figure 

3.3C,D). This observation led us to a more in depth analysis of the localization of 

stem-like cells in primary tumors.  

Head and neck cancer stem-like cells exhibit perivascular localization. In 

oral mucosa, the small sub-population of ALDH-positive cells was found primarily 

in the basal layer of the squamous epithelium (Figure 3.4A), the expected 

localization of stem cells in this tissue. In HNSCC, the ALDH-positive cells were 

seen in tumor islands, in close proximity to blood vessels (Figure 3.4A). To 

assess the relative percentage of potential stem cells in oral mucosa and 

HNSCC, we prepared single cell suspensions and sorted them for ALDH and 

CD44. The average proportion of ALDH+CD44+ was 0.2% (0.2%, 0.43%, 

0.316%) average in oral mucosa and 2.62% in HNSCC (2.86%, 3.15%, 1.85%) 

(from 3 different patients). Confocal microscopy and 3-D image reconstruction 

were used to evaluate the spatial relationship between ALDH-positive cells and 

blood vessels in 8 patients with HNSCC (Figure 3.4B-D). An area with 100-μm 
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radius around each blood vessel was selected as representative of the 

“perivascular” area, since this is the approximate area of diffusion of oxygen and 

nutrients around vessels (Janssen et al., 2002). We observed that the majority of 

the CSC (i.e. approximately 80%) was found in the perivascular area in human 

HNSCC (Figure 3.4D).  

Endothelial cell-derived growth factor milieu promotes proliferation, 

survival, and self-renewal of HNCSC. To understand whether endothelial cell-

secreted factors have a direct functional effect on HNCSC, we studied the effect 

of endothelial cell conditioned medium on proliferation, survival and self-renewal 

of ALDH+CD44+ selected from a panel of established head and neck tumor cell 

lines in vitro. The proliferation of both, ALDH+CD44+ and ALDH-CD44- cells 

cultured in low attachment conditions was enhanced by exposure to endothelial 

cell conditioned medium (Figure 3.5A). The increase in cell numbers may also be 

attributed to an enhancement in survival mediated by the endothelial cell-derived 

factors (Figure 3.5B).  

Due to the difficulty in obtaining primary HNSCC, we performed a series of 

in vitro experiments using an established panel of cell lines (Table 3.2). To 

evaluate the self-renewal potential of CSC, we plated them in agarose and 

observed the formation of colonies in a three-dimensional culture condition 

(Figure 3.8). We observed the formation of sphere-like colonies developed from 

single cells (Figure 3.6A and B), using a method inspired by the work on 

“mammospheres” (Dontu et al., 2003). These colonies derived from head and 

neck tumor stem-like cells were named “orospheres”. The number of colonies 
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generated from ALDH+CD44+ cells was greater than ALDH-CD44- cells (P < 

0.001), using cells sorted from three established HNSCC cell lines, i.e. UM-SCC-

17A, UM-SCC-1 and UM-SCC-74A (Figure 3.6A). To evaluate the behavior of 

these cells over time, the orospheres were dissociated and passed twice. While 

the overall number of orospheres decreased over time, the ALDH+CD44+ group 

persistently presented higher number of orospheres than the control group over 

three serial passages in vitro (Figure 3.6B). Notably, ALDH+CD44+ cells strongly 

express the marker of self-renewal Bmi-1, as compared to control ALDH-CD44- 

cells (Figure 3.6C). In the same experiment, we observed that endothelial-cell 

secreted factors enhances expression of Bmi-1 in ALDH+CD44+ cells over time, 

indicating an inductive effect of these factors on the self-renewal properties of the 

CSC (Figure 3.6C).  

          To understand the effect of endothelial cells on self-renewal of stem cells, 

and to ensure comparability of these established cell lines with primary samples, 

we isolated ALDH+CD44+Lin- cells from primary HNSCC, and performed the 

orosphere assay with primary cells. A 3-fold increase in the number of 

orospheres was observed in the group treated with endothelial cell conditioned 

medium (P < 0.001), as compared to untreated controls (Figure 3.7A). These 

results were verified in experiments performed with 6 additional head and neck 

tumor cell lines (Figure 3.7B; Figure 3.8). Notably, the inductive effect of 

endothelial cell-secreted factors on the number of orospheres generated from 

ALDH+CD44+ cells was maintained during 3 serial passages in vitro (Figure 

3.7C).  
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Selective ablation of blood vessels reduces the proportion of cancer stem 

cells. A critical question that remained unanswered was if the effects of 

endothelial cells on the survival and self-renewal of head and neck tumor stem 

cells was also observable in vivo. To address this question, we utilized two 

complementary approaches. Firstly, serial dilutions (i.e. 1000, 100, 10 and 1 

ALDH+CD44+Lin- cells;) from a primary HNSCC, were prepared, seeded in the 

scaffolds with or without HDMEC, and implanted in the subcutaneous space of 

immunodeficient mice. Co-implantation of endothelial cells and CSC resulted in 

larger tumors than implantation of CSC by themselves (Figure 3.10). Secondly, 

endothelial cells were stably transduced with a caspase-based artificial death 

switch (iCaspase-9) (Figure 3.9A). This unique approach allows for selective 

elimination of endothelial cells transduced with iCaspase-9 upon activation by the 

dimerizer drug AP20187 and ablation of tumor vasculature in vivo (Nor et al., 

2002, Dong et al., 2007). Here, we showed that treatment with AP20187 induces 

apoptosis of HDMEC-iCaspase-9, but not untransduced cells (i.e. ALDH+CD44+ 

cells) (Figure 3.9B). As expected, AP20187-induced apoptosis of the iCaspase-

9-transduced endothelial cells resulted in a significant reduction in the 

microvessel density of tumors retrieved from mice injected with AP20187, as 

compared to vehicle-treated controls (Figure 3.9C). Notably, the proportion of 

ALDH+CD44+Lin- cells within the xenograft tumors was significantly reduced 

when endothelial cells were selectively ablated by activation of iCaspase-9, as 

compared to vehicle-treated controls (Figure 3.9D).  
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Discussion 

The poor survival and high recurrence rates in patients with HNSCC 

demand a re-assessment of the pathobiology of these cancers. Here, we showed 

that head and neck cancer stem cells reside in perivascular niches. Notably, we 

observed that endothelial cell-secreted factors have a major impact on the self-

renewal and survival of cancer stem cells. These data suggest that therapeutic 

targeting of the tumor endothelium may reduce the rate of head and neck tumor 

recurrence and metastasis by decreasing the proportion of cancer stem cells.  

Prince and colleagues (2007) reported that CD44+ cells from primary 

HNSCC exhibit a cancer stem-cell phenotype, and are capable of initiating 

tumors at low numbers (Prince et  al., 2007). ALDH1 has been recently described 

as a putative marker for CSC in head and neck tumors (Chen et  al., 2009). Here, 

we demonstrate that the combination of ALDH1 and CD44 selects a sub-

population of cells with properties of cancer stem cells than if used as single 

markers. One thousand ALDH+CD44+ cells were capable of initiating tumors 

much more efficiently than 10,000 ALDH-CD44- cells. ALDH+CD44+ cells could 

also be transplanted serially and generated secondary xenografts, evidencing the 

self-renewal nature of these cells. It is noteworthy that although control ALDH-

CD44- cells formed a few primary xenografts (2 out of 15), we did not observe 

any tumor being formed from the serial transplantation experiments with these 

cells. The two tumors generated from ALDH-CD44- cells could be due to the 

existence of a few progenitor cells with the capability of tumor initiation or 

possible inaccuracy of FACS sorting. Moreover, the histology of the xenografts 
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obtained from the ALDH+CD44+ cells resembled that of primary tumors. These 

findings confirmed that the xenografts were of human epithelial origin and 

supported the hypothesis that ALDH+CD44+ cells have a behavior that is 

consistent with the behavior of cancer stem cells.  

We observed that ALDH-positive cells are found primarily in the basal 

layer of the oral epithelium, where stem cells of the skin have been traditionally 

found (Fuchs et al., 2004, Blanpain et al., 2004). In contrast, in the HNSCC the 

ALDH-positive cells have a more disperse localization within the tumor 

microenvironment. Of note, the ALDH-positive cells were consistently localized 

within close proximity of blood vessels. The close association of cancer stem 

cells and blood vessels has earlier been documented in the nervous system and 

that these vascular niches helped in the maintenance of stem cells and cancer 

stem cells (Shen et al., 2004, Calabrese et al., 2007, Shen et al., 2008). 

However, such association has not been reported yet for head and neck tumors.  

The cancer stem cells are believed to escape current therapies like 

radiation and chemotherapy and possibly lead to recurrences in various cancers. 

Thereby, identifying and targeting cancer stem cells or their niches might be a 

novel therapeutic strategy in the clinic (Okamoto et al., 2009). However, to be 

able to target the cancer stem cells or their niches, we have to understand its 

pathobiology, identify their niches and their effects on the cancer stem cells. 

Endothelial cells have been implicated in the self-renewal and survival of neural 

cancer stem cells (Calabrese et al., 2007). Studies in hematopoietic stem cells 

suggest that the vascular niche can promote cell survival signals (Sugiyama et 
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al., 2006), which could make them resistant to chemotherapies. Other groups 

have studied the effects of endothelial cell survival and self-renewal on cancer 

stem cells in neural tumors (Calabrese et al., 2007, Folkins et al., 2007). Anti-

angiogenic agents (e.g. bevacizumab) have been shown to mediate depletion in 

the cancer stem cells in models of gliomas and medulloblastomas. Here, we 

used a unique experimental approach to selectively eliminate tumor-associated 

endothelial cells and evaluate the effect on the stem cell compartment. Unlike 

previous experimental strategies that were based on anti-angiogenic drugs, the 

approach used here eliminates the risk of a direct effect of the drug on the 

viability or stemness of the tumor stem cells. In our strategy, in 4 days, we saw a 

significant reduction in the CSCs%, suggesting that the endothelial cells play a 

direct role in the survival of the cancer stem cells. Our experiments revealed that 

selective ablation of tumor-associated blood vessels are sufficient to decrease 

the proportion of head and neck tumor stem cells in vivo.  

Our work demonstrates that endothelial cells initiate signaling events that 

enhance the survival and self-renewal of stem cells in head and neck tumors. In 

addition, the data presented here supports the concept that head and neck 

cancer indeed follows the cancer stem cell hypothesis, since implantation of few 

cells consistently gives rise to tumors that can be serially passaged in vivo. 

Collectively, these data suggest that therapeutic strategies that include anti-

angiogenic agents might have the benefit of reducing the proportion of cancer 

stem cells in head and neck tumors. These results might translate into lower 

recurrence rates and better survival of head and neck cancer patients. 
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Figure 3.1.  ALDH+CD44+ cells have a purer sub-population of cells 
exhibiting cancer stem like cells. (A), Graph depicting the quantification of the 
relative number of colonies/well arising from ALDH+CD44+, ALDH+CD44-, 
ALDH-CD44+ and ALDH-CD44- cells treated with endothelial cell conditioned 
medium (CM) or unconditioned medium for one week.  (B), Confocal microscopy 
of human HNSCC immunostained for ALDH1 (green), CD44 (red) and DAPI for 
the nuclei. The overlay image shows the predominant co-localization of the 
ALDH positive (green) and CD44-positive cells  

A 

B 
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Table 3.1.  Table depicting the characteristics of the HNSCC. The patients in 
Figure 1 and their relative CSC% (ALDH+CD44+) and NCSC% (ALDH-CD44-). 
The table also illustrates the individual primary and secondary xenografts 
generated out of the total number of implants from each of the HNSCC by 
implanting 1,000 CSC or 10, 000 NCSC. N/A indicates no implantation was done 
due to lack of cells post-sorting. 
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Figure 3.2. Combination of ALDH and CD44 selects highly tumorigenic 
cells. (A), Schematic representation of the approach for testing tumorigenic 
potential of cells. ALDH+CD44+Lin- cells were isolated from HNSCC and serially 
transplanted into immunodeficient mice to generate primary and secondary 
xenografts. Representative flow cytometry: Viable cells (P1) are isolated from a 
head and neck squamous cell patient (HN 10) using 7AAD and are gated for 
positivity to ALDH (P6), using DEAB (ALDH inhibitor). ALDH-negative cells in P5. 
ALDH+CD44+Lin- (P8=1.78%) and ALDH-CD44-Lin- (P7=8.7%). (B), Graph 
depicting the volume of primary and secondary xenografts. (C), Graph depicting 
the xenograft tumors (primary and secondary) obtained by implantation of 1,000 
ALDH+CD44+Lin- or 10,000 ALDH-CD44-Lin- cells selected from human 
HNSCC (n=15). (D), Graph depicting the percentage of putative head and neck 
cancer stem cells (ALDH+CD44+Lin-) in primary tumors, primary and secondary 
xenografts 
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Figure 3.3. Head and neck cancer stem-like cells generate xenografts with 
histological features that closely resemble those primary tumors. (A), 
Photomicrographs of a representative primary tumor (HN10), and respective 
primary and secondary xenograft originated by the transplantation of 
ALDH+CD44+Lin- cells (HE staining). Control tissues generated by the 
implantation of ALDH-CD44-Lin- cells. (B), Expression of pancytokeratin in the 
primary tumor, respective primary and secondary xenograft, and IgG control 
group. (C), Representative photomicrographs of ALDH1 immunostaining of 
primary tumors and respective xenografts (Arrows depict ALDH1 positive cells 
present in spatial relationship to blood vessels. (D), Graph depicting the 
percentage of ALDH1 positive cells found within a 100-μm radius of blood 
vessels in the primary tumors and xenografts generated by the transplantation of 
ALDH+CD44+Lin- cells. 
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Figure 3.4. Head and neck cancer stem-like cells are localized in close 
proximity to blood vessels. (A), Representative photomicrographs of tissue 
sections stained with HE or immunostained for ALDH1 in human HNSCC and 
control oral mucosa (identified by arrows). (B), Confocal microscopy of human 
HNSCC immunostained for ALDH1 (green) and Factor VIII (red) for localization 
of blood vessels. The overlay image shows the perivascular localization of the 
ALDH-positive cells. (C), 3-D reconstruction of the image in B,d showing the 
proximity between ALDH-positive cells (green) and blood vessels (red). (D), 
Graph depicting ALDH-positive cells found within 100-μm radius of blood vessels 
in 6 random areas of 6 different sections taken together and expressed as a 
percentage for each individual patient and the average of 8 individual HNSCC 
patients are shown. 
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Figure 3.5. Endothelial cell Conditioned Medium promotes proliferation and 
prevents apoptosis of head and neck cancer stem cells. (A), Graph depicting 
the effect of endothelial cell conditioned medium (EC CM) on the proliferation of 
ALDH+CD44+ and ALDH-CD44- cells. (B), Graph depicting the percentage of 
apoptotic cells when ALDH+CD44+ or ALDH-CD44- cells are exposed to the 
conditioned medium from endothelial cells (EC CM) for one week. 
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Table 3.2 Table showing the various cell lines used in the study, their origin 

and their relative cancer stem cells. CSC% (ALDH+CD44+) and NCSC% 

(ALDH-CD44-). 
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Figure 3.6. ALDH and CD44 select for a sub-population of cells that exhibit 
self-renewal properties in vitro. (A), Representative photomicrographs of 
colonies (orospheres) arising from ALDH+CD44+ and ALDH-CD44- cells sorted 
from UM-SCC-74A and grown in 3-D agarose matrices. Graph depicts the 
quantification of the number of colonies arising from cancer stem-like cells (CSC; 
ALDH+CD44+) or non-cancer stem cells (NCSC; ALDH-CD44-) sorted from 
three HNSCC cell lines (UM-SCC-17A, UM-SCC-1, UM-SCC-74A) and cultured 
in 3-D agarose matrices. (B), Representative photomicrographs of orospheres 
arising from ALDH+CD44+ and ALDH-CD44- cells sorted from UM-SCC-74A and 
grown in ultra-low attachment plates. Graph depicting the number of orospheres 
from serial passage assays that evaluate self-renewal of CSC (ALDH+CD44+) 
and NCSC (ALDH-CD44-) cells in vitro. Asterisk depicts P < 0.001. (C), Western 
blot depicting the expression of Bmi-1 in CSC (ALDH+CD44+) and NCSC 
(ALDH-CD44-) cells treated with endothelial cell conditioned medium (EC CM). 
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Figure 3.7. Endothelial cell-derived factors promote proliferation and self-
renewal of head and neck cancer stem-like cells. (A), Photomicrographs of 
representative colonies arising from ALDH+CD44+Lin- cells sorted from a human 
HNSCC and grown in 3-D Agarose matrices. Cells were treated with endothelial 
cell conditioned medium (CM) or unconditioned control medium (CT) for one 
week. Asterisk depicts P < 0.001. (B), Time course experiment depicting the 
number of orospheres arising from CSC (ALDH+CD44+) and NCSC (ALDH-
CD44-) cells treated or not with endothelial cell conditioned medium (CM) over a 
period of 4 weeks. (C), Photomicrographs of representative colonies arising from 
ALDH+CD44+Lin- cells sorted from UM-SCC-74A cells and cultured in ultra-low 
attachment plates. Cells were treated with endothelial cell conditioned medium 
(CM) or unconditioned control medium (CT). Graph depicting primary, secondary 
and tertiary orospheres arising from ALDH+CD44+ treated with endothelial cell 
conditioned medium (CM) or control medium (CT). Asterisk depicts P < 0.05. 
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Figure 3.8. Endothelial Cell Conditioned Medium promotes self-renewal of 
head and neck cancer stem-like cells. (A), Schematic drawing of the colony 
formation assay in 3-D agarose matrices. (B), Graphs depicting the quantification 
of the relative number of colonies/well arising from ALDH+CD44+ (CSC) and 
ALDH-CD44- (NCSC) cells treated with endothelial cell conditioned medium 
(CM) or unconditioned medium for four weeks. Four head and neck squamous 
cell carcinoma cell lines were used to verify the reproducibility of results, i.e. UM-
SCC-11B, UM-SCC-1, UM-SCC-17A and UM-SCC-17B. 
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Figure 3.9. Selective ablation of tumor-associated endothelial cells 
decreases the number of head and neck cancer stem-like cells. (A), Western 
blot showing 4 clones of HDMEC stably transduced with the caspase-based 
artificial death switch iCaspase9. Clone “d” was selected for remaining 
experiments depicted in this figure. (B), Graph depicting the proportion of 
apoptotic cells when HDMEC-iCaspase-9 or ALDH+CD44+ cells are exposed to 
the dimerizer drug AP20187.  (C), Graph depicting the tumor microvessel density 
of xenografts generated by the co-transplantation of HDMEC-iCaspase-9 and 
ALDH+CD44+ cells in immunodeficient mice. Mice were injected with AP20187 
to activate Caspase-9 and selectively eliminate the xenograft tumor blood 
vessels. (D), Graph depicting the percentage of ALDH+CD44+ cells in the 
AP20187-treated tumors compared to vehicle treated controls. Asterisk depicts P 
< 0.005. 
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Figure 3.10. Endothelial cells enhance the tumorigenic potential of head 
and neck cancer stem cells. Graph depicting the volume of tumor generated by 
the transplantation of 1-1,000 head and neck cancer stem cells 
(ALDH+CD44+Lin-) from a primary HNSCC (HN 18) with or without endothelial 
cells (HDMEC). Asterisk depicts P < 0.001. 
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CHAPTER IV 

 

ENDOTHELIAL CELL-INITIATED IL-6 SIGNALING  
PROMOTES SELF-RENEWAL, SURVIVAL AND TUMOR INITIATION  

OF CANCER STEM CELLS 
 

 

Abstract 

 

Head and neck squamous cell carcinomas display cellular heterogeneity 

with ALDH+CD44+ cells exhibiting cancer stem-like properties. ALDH+CD44+ 

cells were recently found to exist in vascular niches and that endothelial cells 

promoted their self-renewal and survival. However, molecular mechanisms 

underlying the endothelial cell-cancer stem interaction have been largely 

unknown. Here, we report that endothelial cells expressed higher IL-6 levels than 

the adjacent tumor cells in primary head and neck squamous cell carcinomas 

(HNSCC), and observed that the cancer stem cells preferentially express IL-6R 

and phosphorylated-STAT3. Targeting endothelial cell secreted IL-6 by either 

neutralizing antibody or gene silencing (using shRNA) strategies decreased the 

sphere forming capacity and the invasive potential of the ALDH+CD44+ cells. 

Endothelial cells stably expressing shRNA-IL-6 decreased tumorigenicity and 

tumor growth in vivo. Tumor initiation and growth was significantly decreased in 

the absence of IL-6 in the tumor micro-environment as seen in transgenic mouse 

models. Interrupting IL-6 signaling by means of a humanized IL-6R antibody 
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resulted in delayed tumor initiation and decreased the survival of head and neck 

cancer stem cells in vivo. Collectively, these data indicate that IL-6/IL-6R 

represents a potential therapeutic target for head and neck cancer stem cells.  
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Introduction 

Head and neck squamous cell carcinomas, like many other human 

carcinomas may be driven by a population of cells called the cancer stem cells; 

possessing stem cell properties of self-renewal and differentiation (Prince et al., 

2007, Chen et al., 2009, Hermann et al., 2010). There is evidence in recent years 

that these cancer stem cells could possibly participate in the processes that lead 

to resistance to therapy and the establishment of distant metastases (Kakarala et 

al., 2008, Chen et al., 2010) resulting in poor patient survival (Al-Swiahb et al., 

2010). Recently, CD44+ cells were shown to have increased tumorigenicity and 

self-renewal properties in HNSCC (Prince et al., 2007). Aldehyde 

Dehydrogenase I, a cancer stem cell marker identified in various tissues of origin 

like the brain, breast and colon (Corti et al., 2006, Ginestier et al., 2007, Huang et 

al., 2009), was recently used to identify stem cells in HNSCC (Chen et al., 2009, 

Krishnamurthy et al., 2010). These ALDH+CD44+ cells expressed the stem cell 

properties of self-renewal and increased tumorigenicity (Krishnamurthy et al., 

2010) and were found to be radio-resistant (Chen et al., 2010).  

Stem cells and cancer stem cells of various tissues have been found to 

reside in the basal layer of the tissues (Tumbar et al., 2004, Kopan et al., 1989) 

and have been found to be dependent on the tumor microenvironment for their 

growth and survival (Lobo et al., 2007, Polyak et al., 2009, Parmar et al., 2011). 

Recently, peri-vascular niches have been identified in neural stem cells (Shen et 

al., 2004, Sugiyama et al., 2006, Veeravagu et al., 2008) and neural tumors 

(Calabrese et al., 2007). In HNSCC, we identified a peri-vascular niche and 
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demonstrated that endothelial cell secreted factors promote survival and self-

renewal of head and neck cancer stem cells in vitro and in vivo (Krishnamurthy et 

al., 2010). Anti-angiogenic therapy thus was an attractive cancer stem-cell based 

therapy for head and neck cancers. However, recent evidence suggested that 

anti-angiogenic therapy (especially anti-VEGF based therapy) could lead to 

higher numbers of tumor cell infiltration thereby causing a malignant progression 

of tumors and increased metastasis, (Paez-Ribes et al., 2009; Keunen et al., 

2011). This therefore, suggested a more targeted study needs to be done on 

possible molecular pathways contributing to cancer stem cell survival and self-

renewal. 

The inflammatory cytokine, Interleukin-6 (IL-6) has been found to play a 

pivotal role in the mediation of interaction in cancer stem cells and their micro-

environment in numerous tissues including the breast and brain (Sansone et al., 

2007, Wang et al., 2009, Liu et al., 2011, Marotta et al., 2011). The IL-6 ligand 

receptors, IL-6R and gp130, have been found to have aberrant expression levels 

in glial cancer stem cells (Wang et al., 2009). In tumors like lung 

adenocarcinomas, glioblastomas and head and neck cancers, IL-6 expression 

levels and its downstream activation target of signal transducer and activator of 

transcription 3 (STAT3) has been found to be highly expressed (Gao et al., 2007, 

Seethala et al., 2008). Moreover, increased serum IL-6 levels have been co-

related with tumor recurrences and poorer patient prognosis in HNSCC in a 

longitudinal cohort study (Duffy et al., 2008). Additionally, STAT3 has been found 

to be constitutively active in HNSCC and inhibition of STAT3 by various inhibitors 



95 
 

like Erlotinib or Cucurbitacin I has been found to decrease tumorigenesis in 

squamous cell carcinomas (Leeman-Neill et al., 2011, Chen et al., 2010). 

However, the specific role of IL-6 signaling is unknown in head and neck cancer 

stem cells.  

In this study, we unveil a paracrine pathway (IL-6-IL6R-STAT3 pathway) 

for the head and neck cancer stem cells via their niche (the perivascular niche) 

which promotes self-renewal and tumor initiation in HNSCC. Using Laser capture 

microdissection technique, we establish the relative IL-6 levels in the tumor 

endothelial cells and tumor cells in HNSCC primary patients. We demonstrate 

using neutralizing antibodies and shRNA strategies that endothelial cell-initiated 

IL-6 promotes self-renewal and invasion in vitro and tumor initiation in vivo and 

corroborate this using IL6-/- mice studies. Finally, using a humanized anti-IL6R 

antibody, we propose a novel molecular targeting therapy for head and neck 

cancer stem cells as an adjunct with current therapy to potentially delay or 

prevent recurrences in HNSCC. 
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Materials and Methods 

 Cell Culture  

Head and neck squamous cell carcinoma cell lines (UM-SCC-74A, UM-

SCC-74B, UM-SCC-17B; gift from Dr. Carey, University of Michigan) were 

cultured in Dulbecco’s Modified Eagle Medium (DMEM), 10% fetal bovine serum, 

100 U/ml penicillin, 100 μg/ml streptomycin (Invitrogen; Grand Island, NY, USA) 

and human dermal micro vascular endothelial cells (HDMEC; Cambrex, 

Walkersville, MD) in endothelial cell growth medium-2 (EGM2-MV; Cambrex). 

The identity of tumor cell lines was confirmed by genotyping at the University of 

Michigan DNA sequencing core facility. FACS sorted cells were cultured in low 

glucose DMEM, 10% fetal bovine serum (Gibco, Invitrogen) and 100 U/ml 

Penicillin-streptomycin (Invitrogen) or 100 U/ml Antibiotic Antimycotic Solution 

(Sigma) in ultra-low attachment plates (Corning Inc; New York, NY, USA). 

Conditioned Medium (CM) from HDMEC was collected in serum free DMEM from 

24-hour cultures.  

Head and neck cancer stem cell sorting 

Informed consent was obtained from patients undergoing surgery for 

removal of HNSCC. All tumors were collected in accordance to the IRB 

protocols. The tumors obtained were cut and minced with a sterile scalpel until 

they could pass through a 25 ml pipette tip. They were suspended in a 9:1 

solution of DMEM-F12 (Hyclone, Waltham, MA) and Collagenase/Hyaluronidase 

(Stem Cell Technologies, Vancouver, BC, Canada). This mixture was then 

incubated at 370C for maximum of one hour and passed through a 10-ml pipette 
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every 15 minutes for mechanical dissociation. Cells were filtered through a 40-

μm nylon sieve (BD Falcon, NJ, USA), washed with low glucose complete DMEM 

and centrifuged at 800 rpm for 3 minutes. Single cell suspensions obtained from 

primary specimens (as well as from cell lines or xenografts) were washed, 

counted, and re-suspended at 1×106cells/ml PBS. The Aldefluor kit (Stem Cell 

Technologies) was used to identify cells with high ALDH activity. Briefly, cells 

were suspended with activated Aldefluor substrate (BAA) or the negative control 

(DEAB, a specific ALDH inhibitor) for 45 minutes at 370C. Then, cells were 

exposed to anti-CD44 (clone G44-26BD; Pharmingen, NJ, USA) and lineage 

markers (i.e. anti-CD2, CD3, CD10, CD16, CD18, CD31; BD Pharmingen). 

Mouse cells are identified using anti-H2Kd antibody (BD Biosciences, NJ, USA) 

and 7-Aminoactinomycin (7-AAD, BD Pharmingen) identified viable cells. Here 

and throughout this manuscript, studies were done in triplicate specimens per 

condition and three experiments were performed to verify reproducibility of the 

data.  

Stable Short Hairpin RNA Transduction  

Lentivirus expressing a short hairpin RNA (shRNA) construct for silencing 

IL-6 (Vector Core, University of Michigan) was generated in human 293T cells 

(human embryonic kidney cells) transfected using the Calcium Phosphate 

method, as described (Kaneko et al., 2006). Scrambled oligonucleotide 

sequence was used as control (shRNA-C). Supernatents were collected 48 hours 

after transfection and HDMEC cells were infected with it in a 1:1 dilution medium 

containing 4 µg/ml polybrene (Sigma-Aldrich, St. Louis, MO). Cells were selected 
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for 2 weeks and maintained in EGM2-MV supplemented with 1 µg/ml puromycin 

(InvivoGen, San Diego, CA). Down-regulation of IL-6 was confirmed by ELISA. 

Confocal Microscopy  

Paraffin tumor sections were deparaffinized in xylene and rehydrated in 

decreasing degrees of alcohols. Antigen retrieval was done using Dako Retrieval 

solution (Dako, CA) for 45 minutes at 980C. The anti-ALDH1 (BD Biosciences), 

anti-P-STAT3 (Santa Cruz 79993-R, CA), anti-IL6R and gp130 (abcam) were 

pre-labeled with Alexafluor 488 or 594 using the Zenon labeling kit (Invitrogen) 

and Confocal imaging was performed using Leica Inverted Confocal SP5X (Leica 

version 2.3.5; Los Angeles, CA). 

Immunohistochemistry 

Paraffin embedded sections were de-paraffinized in xylene and Antigen 

Retrieval was done using Dako antigen retrieval solution (Dako, CA). 

Immunostaining for ALDH1 (BD Biosciences, 61195, 1:100), IL-6 (abcam, 1:100), 

P-STAT3 (Santa Cruz, CA, 1:200), chromogenicity. Isotype matched 

immunoglobulins were used as negative controls.  

Orospheres 

Orospheres (i.e. spheroids of head and neck cancer-derived cells) were 

generated from FACS-sorted cells (5x103 cells/well) cultured in triplicate in low 

attachment plates (Corning Inc, NY,USA) (Krishnamurthy et al., 2010) and 

maintained in low glucose DMEM containing or not conditioned medium from 

HDMEC at a ratio of 3:1. Alternatively, cells were treated with HDMEC CM 

containing 0.4 µg/ml of anti-IL-6 (R&D Systems, Minneapolis, MN) or 10 µg/ml of 
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anti-IL-6R (Chugai Pharmaceuticals, Tokyo) or IgG isotype control or 20 ng/ml of 

rhIL-6. After 3 days, orospheres are visualized and quantified. 

SCID mouse model of human tumor angiogenesis  

Xenograft tumors vascularized with functional human microvessels were 

generated in severe combined immunodeficient (SCID) mice (CB17 SCID, 

Haslett, MI), as described (Nör et al., 2001). Briefly, 1,000 head and neck cancer 

stem cells (HNCSC- i.e., ALDH+CD44+Lin-) or 1,000 non-cancer stem cells 

(NCSC-ALDH-CD44-Lin-) were seeded with 5×105 cells of either HDMEC-

shRNA-C or HDMEC-shRNA-IL-6 in poly-(L-lactic) acid (PLLA; Medisorb) 

biodegradable scaffolds. Bilateral scaffolds were implanted subcutaneously in the 

dorsum of each mouse. Mice were monitored daily for tumor growth for the 

specified time periods in individual experiments. Alternatively, mice received 

scaffolds containing 5×105 HDMEC cells and 1×103 HNCSC or NCSCs. From 

Day 1, mice were treated with weekly intra-peritoneal injections of either 10 

mg/kg of humanized anti-IL-6R as described in Tsunenari et al., 1997, Shinriki et 

al., 2009 (Chugai Pharmaceuticals, Chuo-ku, Tokyo, Japan) or IgG. After 30 

days, mice were euthanized and tumors were retrieved, measured, weighed and 

processed. For the tumor evaluation of IL-6-/- immunodeficient mice, (a gift from 

Dr. Laurie McCauley, University of Michigan), WT and IL-6-/- mice were 

generated by standard homologous recombination techniques as described 

(Dalrymple et al., 1995, Dai et al., 2000). 
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Western Blots 

 40,000 ALDH+CD44+ or ALDH-CD44- cells from UM-SCC-74A, UM-

SCC-74B or primary head and neck cancer stem cells (HN-28) cells were plated 

in 6-well ultra-low attachment plates, serum starved overnight, and treated with 

endothelial cell conditioned medium (CM) or DMEM for the indicated time points. 

Alternatively, HNCSC and NCSC were exposed to HDMEC CM containing 0.4 

µg/ml of anti-IL-6 (R&D Systems, Minneapolis, MN) or 10 µg/ml of anti-IL-6R 

(Chugai Pharmaceuticals, Tokyo) or IgG isotype control. CM collected from 

HDMEC-shRNA-C or HDMEC-shRNA-IL-6 was used to treat the cells and 

western blots were performed. Primary antibodies were as follows: mouse anti-

human phospho-STAT3, rabbit anti-human STAT3, rabbit anti-human phospho-

ERK1/2, mouse anti-human ERK1/2 (Cell Signaling, Danvers, MA); rabbit anti-

human IL-6R (Santa Cruz), mouse anti-human gp130 (abcam, San Francisco, 

CA) and mouse anti-glyceraldehyde 3-phosphate dehydrogenase (Chemicon, 

Millipore, Billerca, MA). 

Enzyme-Linked Immunosorbent Assay  

Supernatents of triplicates of 24-hour endothelial or tumor cell cultures 

were collected and centrifuged to eliminate debris. IL-6 expression was 

determined using ELISA kits (Quantikine; R&D systems) according to the 

manufacturer’s instructions. Data was normalized by cell number. 

Invasion Assays  

HDMEC CM was pre-incubated with 0.4 µg/ml anti-IL-6 (R&D systems), or 

IgG control for 1 hour. 24-well companion plates (inserts) are pre-coated with 40 
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µl of 1:1 dilution of matrigel and serum free DMEM overnight. 400µl of HDMEC 

CM or CM from HDMEC-shRNA-C or HDMEC-shRNA-IL-6 was added to the 24-

well plates. ALDH+CD44+ and ALDH-CD44- cells (25×103 cells) were serum 

starved overnight, loaded onto the 8-µm pore sized cell culture inserts (Becton 

Dickinson, Franklin Lakes, NJ) having the matrigel layer. The cells are allowed to 

invade for 24 hours toward the stimulus like HDMEC CM. Unconditioned DMEM 

was used as control. Invaded cells were trysinized, collected and stained with 2 

µM Cell Tracker Green (Invitrogen) for one hour. Fluorescence was read at 

485/535 nm in a micro plate reader (Tecan, Salzburg, Austria). 

Laser Capture Microdissection 

A three step dissection procedure was done using a LCM microscope 

(Leica AS LMD; Leica Microsystems) with a pulsed 337 nm UV laser as 

described (Kaneko et al., 2007. Kaneko et al., 2009). Blood cells in the 

endothelial cells were excluded first. Then the endothelial cells lining the blood 

vessels were collected separately in a tube filled with TRIzol (Invitrogen) and 

immediately placed on ice. Then tumor cells adjacent to the blood vessels were 

collected in a different tube and quickly transported on ice to -800C. 

Reverse Transcription-Polymerase Chain Reaction (RT-PCR)  

Total RNA was extracted from the cells obtained by LCM or from the 

tumor cell line using TRIzol reagent (Invitrogen) and RNA was purified using 

RNAeasy Micro kit (Qiagen) as per the manufacturer’s instructions. The purity of 

the RNA was determined photometrically (Ultraspec 2000, Pharmacia Biotech, 

Germany). cDNA synthesis and PCR amplification were done in single tubes with 
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SuperScript one-step reverse transcription PCR (RT-PCR) and Platinum Taq kit 

(Invitrogen) using simultaneously a human IL-6 primer set and glyceraldehyde-3-

phosphate dehydrogenase (GAPDH) primer set. The sequence of the primers 

used here were as follows:  

IL-6, sense 5’-AAAGAGGCACTGGCAGAAAA-3’ and  

anti-sense 5’CAGGGGTGGTTATTGCATCT; and  

GAPDH, sense 5’-GACCCCTTCATTGACCTCAACT-3’, and  

antisense 5’-CACCACCTTCTTGATGTCATC-3’. 

 The PCR products were detected by standard agarose gels with 1.5% 

ethidium bromide. 

Statistical Analyses  

One-way ANOVA was performed using the SigmaStat 2.0 software 

(SPSS, Chicago, IL). Statistical significance was determined at *p<0.001 (unless 

otherwise specified). Statistics for the in vivo studies was performed by a 

Biostatistician with appropriate software as indicated.  
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Results 

A higher level of IL-6 mRNA is present in tumor associated endothelial cells 

than tumor cells. The identification of cell signaling pathways that promote 

cancer stem cell survival and self-renewal may lead to novel therapeutic targets 

for this specialized sub-population of cancer cells. The overall hypothesis 

underlying this study was to identify possible signaling molecules that might be 

integral to the interaction between head and neck cancer stem cells (HNCSC) 

and tumor associated endothelial cells.  

In a recent study, we identified that ALDH+CD44+Lin- cells had the 

properties of self-renewal, and tumorigenicity and were found spatially related to 

the tumor vasculature (Krishnamurthy et al., 2010). Selective ablation of the 

tumor associated endothelial cells using an inducible caspase system caused a 

decrease in the survival of ALDH+CD44+ cells in vivo. In recent years, there has 

been evidence of IL-6 promoting the self-renewal and survival of stem cells in 

breast and glial tissues (Sansone et al., 2007, Wang et al., 2009). However, the 

origin of the IL-6 in the IL-6-STAT3 pathway has been varied. In our study, we 

hypothesized that there might be a paracrine signaling of IL-6-STAT3 pathway 

initiated by the endothelial cells apart from a possible autocrine pathway which 

might be in existence. To test this, we performed laser capture microdissection 

as described (Kaneko et al., 2007, Kaneko et al., 2011) from 4 different primary 

HNSCC. The tumor cells and endothelial cells were collected separately and RT-

PCR analysis of these cells revealed a higher expression level of IL-6 mRNA in 

the tumor associated endothelial cells than the adjacent tumor cells (Figure 
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4.1A). We corroborated these findings in a head and neck cancer cell line, UM-

SCC-74A with primary endothelial cells (HDMEC) as well (Figure 4.1A). We also 

found statistically significant higher protein expression levels of IL-6 in primary 

endothelial cells compared to a panel of head and neck cancer cell lines, (UM-

SCC-74A, UM-SCC-74B, UM-SCC-17B) by ELISA (Figure 4.1B).  

Head and neck cancer stem cells express IL-6 receptors, IL-6R and gp130. 

To demonstrate the expression of IL-6R in cancer stem cells in primary 

HNSCC, we performed confocal imaging for co-localization of ALDH1 with IL-6R 

in 4 different patients and a representative image is shown (Figure 4.1C). Co-

localization of IL-6R (red) was seen only with ALDH1+ cells (green) 

demonstrating the relative expression of IL-6R in the ALDH1+ cells. The gp130+ 

cells were found both in ALDH1+ cells and ALDH1- cells in the primary HNSCC 

(Figure 4.1C). We also evaluated the expression of IL-6 receptors, IL-6R and 

gp130 in head and neck cancer cell lines, UM-SCC-74A and UM-SCC-74B 

(Figure 4.1D). Head and neck cancer stem cells, HNCSC; (i.e., 

ALDH+CD44+cells) expressed elevated levels of IL-6R than the parental cell line 

(unsorted cells) or the non-cancer stem cells (ALDH-CD44-). There was no 

significant difference in the gp130 levels between the cancer stem cells and non 

cancer stem cells.  

Endothelial cell-derived IL-6 promotes tumor initiation and growth in 

HNCSC. To evaluate specifically the role of endothelial cell initiated IL-6 events, 

we silenced the expression of IL-6 in primary endothelial cells (HDMEC) and 

confirmed the effectiveness of silencing IL-6 expression by ELISA (Figure 4.S.1). 
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To examine the role of endothelial cell derived IL-6 on tumor initiation of head 

and neck cancer stem cells in vivo, we isolated HNCSC (ALDH+CD44+Lin- cells) 

from 3 different patients of primary HNSCC (Patients 19, 20, 21) and implanted in 

immune-deficient mice with either 1,000 cells of HNCSC and 500,000 cells of 

HDMEC-shRNA-C or 1,000 cells of HNCSC and 500,000 of HDMEC-shRNA-IL-6 

(n=13) (Figure 4.2A). The tumor initiation graph demonstrated a significantly 

early initiation of tumors in the ALDH+CD44+Lin- +HDMEC-shRNA-C group than 

the ALDH+CD44+Lin- + HDMEC-shRNA-IL-6 group (Figure 4.2B). Tumor 

initiation was evaluated by both tumor palpability and the size of the scaffold to 

be greater than 75 mm3.  The tumor volumes of the individual mice demonstrate 

the earlier initiation and greater tumor volumes in the HDMEC-shRNA-C group 

compared to the xenografts generated from the HDMEC-shRNA-IL-6 group 

(Figure 4.2C). The assessment of the tumor volumes of the xenografts 

demonstrated that the tumor xenografts from the ALDH+CD44+Lin- + HDMEC-

shRNA-C group tumors initiated earlier and tumor volumes were greater than the 

HNCSC+HDMEC-shRNA-IL-6 group significantly until about 50 days of tumor 

implantation, after which the effect was decreased (Figure 4.2C). The average 

tumor volumes of the xenografts from the three different primary HNSCC in this 

study demonstrated a similar trend with the control group being significantly 

greater than the shRNA-IL-6 group at day 45 (Figure 4.2D). These studies 

suggested that endothelial cell secreted IL-6 actively promotes tumor initiation 

and tumor growth of head and neck cancer stem cells in vivo. 
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The frequency or density of cancer stem cells in a tissue has recently 

been suggested as a possible risk factor for poorer prognosis in patients 

(Neumeister et al., 2010). As a result, we wanted to study the effect of 

endothelial cell IL-6 on tumor initiation of different frequencies or numbers of 

cancer stem cells in the same genetic background (immunodeficient mice). We 

therefore implanted a serial dilution of 1000, 100 and 10 ALDH+CD44+Lin- cells 

from the same primary HNSCC (Patient 26) with either HDMEC-shRNA-C or 

HDMEC-shRNA-IL-6 cells. We also implanted scaffolds with no ALDH+CD44+ 

cells (0 cells) as negative controls. Tumor initiation or time to palpability of the 

individual groups (n=3) showed that greater the number of ALDH+CD44+cells, 

earlier is the initiation of tumors (Figure 4.3A). Nevertheless, tumors in the 

ALDH+CD44+cells + HDMEC-shRNA-C initiated tumors earlier than the 

HDMEC-shRNA-IL-6 group at the same density of cancer stem cells as seen in 

Figure 4.2 and no tumors were created in the 0 group as expected (Figure 4.3A). 

The overall trend for time to palpability was analyzed by eliminating the 0 group 

(as no tumors were initiated), and we found a significant delay in tumor initiation 

in the ALDH+CD44+Lin- + HDMEC-shRNA-IL-6 group (Figure 4.3B). The tumor 

volume over time demonstrates that ALDH+CD44+Lin- + HDMEC-shRNA-C 

group initiated tumors earlier and were greater in volume but the 

ALDH+CD44+Lin- + HDMEC-shRNA-IL-6 tumor xenografts gradually reached 

the control group by the end of the study (Figure 4.3C). The pair-wise statistical 

comparisons between different ALDH+CD44+ cell densities suggested greater 
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the initial numbers of cancer stem cells, greater the effect of IL-6 in promoting 

tumors (Figure 4.3D).  

IL-6 promotes survival of head and neck cancer stem cells in vivo. Our 

earlier studies demonstrated that endothelial cells in the vascular niche of the 

head and neck cancer stem cells promotes self-renewal and tumorigenicity of the 

ALDH+CD44+cells. Similar studies demonstrated that anti-angiogenic agents 

caused a decrease in the cancer stem cell survival in neural tissues (Calabrese 

et al., 2007). In our own work, we demonstrated that selective ablation of tumor 

endothelial cells caused a decrease in the cancer stem cell fraction 

(Krishnamurthy et al., 2010). To study if IL-6 might be a possible factor promoting 

survival of cancer stem cells in this interaction, we used our earlier strategy and 

implanted ALDH+CD44+Lin-cells from a primary HNSCC (Patient 22) with either 

HDMEC-shRNA-C or HDMEC-shRNA-IL-6 in immunodeficient mice for 30 days; 

n=3 (Figure 4.4A). The mice were euthanized by day 30 before host IL-6 could 

significantly contribute to the growth of the xenografts. The analysis of the cancer 

stem cell fraction revealed a significant decrease in the xenografts with the 

shRNA-IL-6 group (Figure 4.4B). Notably, there was an increase seen in the 

ALDH+CD44+ fraction of cells in the tumor xenografts arising from the control 

group suggesting there might be induction of self-renewal of the cancer stem 

cells in the presence of IL-6. We repeated this analysis with a head and neck 

cancer cell line, UM-SCC-74A, (n=6), wherein we observed that the control group 

initiated tumors earlier as expected (Figure 4.4C) and there was again a 
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significant decrease in the cancer stem cell fraction in the tumor xenografts of the 

HDMEC-shRNA-IL-6 group (Figure 4.4D).  

Our studies demonstrated that endothelial cell derived IL-6 promotes self-

renewal, survival and tumorigenicity of the cancer stem cells in vivo. However, 

the host-derived IL-6 was an important factor in this interaction. To address this 

key question, we generated tumor xenografts from ALDH+CD44+ and ALDH-

CD44- cells in WT type and IL-6-/- immunodeficient mice; a gift from Dr. 

McCauley, University of Michigan (Figure 4.4E). We observed that tumors from 

the ALDH+CD44+cells in the WT type mice were significantly greater in volume 

than the IL-6-/-mice at Day 120. On FACS analysis of the percent of the cancer 

stems, we observed a significantly decreased percent of ALDH+CD44+cells in 

the tumor xenografts from the IL-6-/- mice (Figure 4.4F). Taken together, our 

data suggests that IL-6 is an important molecule in the interaction of head and 

neck cancer stem cells with their micro-environment contributing to tumor 

initiation and growth. 

Head and neck cancer stem cells (ALDH+CD44+Lin- cells) co-relate with 

activated STAT3 pathway. The canonical IL-6 signal transduction pathway 

involves IL-6 ligand binding to the receptor IL-6R and to the common signal 

transducing receptor gp130. This activation propagates intracellular signaling of 

Janus kinases leading to the activation of STAT3. Activation of STAT3 has been 

related to self-renewal and stemness in various tissues including embryonic stem 

cells, intestinal stem cells and glioblastoma stem cells (Gao et al., 2007, Niwa et 

al., 1998, Matthews et al., 2011, Guryanova et al., 2011). To investigate the 
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possible relationship of activated STAT3 (p-STAT3) and head and neck cancer 

stem-like cells (ALDH+CD44+ cells) we analyzed by confocal imaging the spatial 

localization of ALDH1+ cells and phosphorylation of STAT3 in primary head and 

neck squamous cell carcinomas (HNSCC) (Figure 4.5A). DAPI was used to 

identify the nuclei and ALDH1+ cells were found to co-localize with p-STAT3 in 

primary HNSCC. Immunohistological examination of the tumor xenograft micro-

environment showed expression of ALDH1 and p-STAT3 around the tumor 

vasculature (Figure 4.5B, arrow indicates positive cells). We further compared 

the relative protein expression of p-STAT3, we isolated ALDH+CD44+Lin-cells 

and ALDH-CD44-Lin-cells from a primary HNSCC and evaluated the 

phosphorylation of STAT3 by Western Blot (Figure 4.5C). ALDH+CD44+ cells 

have an increased phosphorylation status compared to the ALDH-CD44- cells. 

Activation of the ERK pathway showed the reverse expression trend as expected 

since the ERK-MAPK pathway has been implicated in the differentiation of stem 

cells (Gu et al., 2011, Kim et al., 2011, Lin et al., 2010, Sakai et al., 2010). 

Similar phosphorylation pattern was seen in ALDH+CD44+ and ALDH-CD44- 

from the head and neck cancer cell line, UM-SCC-74A (Figure 4.5C).  To test 

whether endothelial cell secreted factors enhanced activation of STAT3; we 

exposed ALDH+CD44+ cells to serum-free endothelial cell CM (HDMEC) and 

analyzed the phosphorylation levels of STAT3 and ERK over time. We found that 

endothelial cell CM induced phosphorylation in ALDH+CD44+ cells suggesting 

that head and neck cancer stem cells have an activated STAT3 pathway which 

could be further induced by endothelial cell CM (Figure 4.5D).  
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Endothelial cell-derived IL-6 promotes self-renewal and invasion of HNCSC 

in vitro. To assess the functional role of endothelial cell secreted IL-6 on 

ALDH+CD44+ cells in vitro; we exposed the unsorted parental cancer cell line, 

UM-SCC-74A to endothelial cell CM either pre-treated with neutralizing antibody 

to IL-6 or IgG and measured the ALDH+CD44+ percent by flow cytometry (Figure 

4.6A). The quantification revealed that endothelial cell CM increased the cancer 

stem cell fraction which was reduced to parental levels in the presence of 

neutralizing antibody to IL-6 (Figure 4.6B). Treatment with rhIL-6 (20 ng/ml) also 

had an inductive effect on the percent of cancer stem cells, though to a lesser 

degree than endothelial cell CM (Figure 4.6B). This could possibly be due to 

additional factors in endothelial cell CM contributing to self-renewal or the 

possibility of CM containing more amounts of IL-6 than the rhIL-6 (20 ng/ml). The 

induction of phosphorylation of STAT3 by endothelial cell CM was decreased in 

the presence of neutralizing antibody to IL-6 (0.4 µg/ml) in the ALDH+CD44+ 

cells as seen by Western blot (Figure 4.6C). On generating orospheres from 

ALDH+CD44+ cells and ALDH-CD44- cells treated with endothelial cell CM with 

or without neutralizing antibody to IL-6 (Figure 4.6D), we observed greater 

number of orospheres arising from ALDH+CD44+ cells than from ALDH-CD44-

cells which was further induced on treatment with endothelial cell CM. 

Neutralizing IL-6 reversed this induction as seen in the graph (Figure 4.6E).  

The role of IL-6 on the self-renewal of ALDH+CD44+ cells was also tested 

using the Conditioned medium from the HDMEC-shRNA-IL-6 cells generated and 

used in the in vivo experiments. We also found an induction of the cancer stem 
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cell fraction of the parental cell line on treatment with the HDMEC-shRNA-C and 

HDMEC-shRNA-IL-6 CM (Figure 4.7A, 4.7B). The phosphorylation of STAT3 was 

also decreased on treatment with HDMEC-shRNA-IL-6 CM compared to 

HDMEC-shRNA-C CM (Figure 4.7C). We also analyzed the number of 

orospheres from the ALDH+CD44+ and ALDH-CD44- cells on treatment with the 

CM from the shRNA cells and observed similar trends of decreased self-renewal 

in the presence of shRNA-IL-6 CM group (Figure 4.7D). Taken together, these 

findings suggest that endothelial cell secreted IL-6 promotes self-renewal of head 

and neck cancer stem cells in vitro.  

Cancer stem cells being invasive and migratory are believed to cause 

secondary tumors (Biddle et al., 2011), and so we tested the invasive potential of 

ALDH+CD44+cells in the presence of HDMEC CM containing IL-6 and its 

absence in a transwell system coated with matrigel. The invasion assays 

revealed that the invasive potential of the ALDH+CD44+cells was inhibited in the 

presence of the neutralizing antibody to IL-6 or on treatment with HDMEC-

shRNA-IL-6 (Figure 4.S.2).  

Humanized IL-6R antibody decreases cancer stem cell survival and delays 

tumor initiation. Serum IL-6 levels have been shown to be an independent 

predictor of poor survival in head and neck squamous cell carcinoma patients 

(Duffy et al., 2008, Trikha et al., 2003, Hong et al., 2007, Chen et al., 1999). 

However, molecular targeting of IL-6 becomes challenging as individual patients 

have varying amounts of IL-6 and individualized therapy becomes necessary in 

the clinic. An alternative strategy to inhibit the IL-6-ligand initiated signaling would 
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be to target the IL-6R receptor and thereby prevent activation of STAT3. 

Tocilizumab is an FDA approved, humanized anti-human IL-6R antibody 

engineered by grafting the complementarily determining regions of a mouse anti-

human IL-6R into human IgG (Shinriki et al., 2009).  

The anti-IL-6R (10µg/ml) inhibited the induction of orospheres by the 

endothelial cell CM of HNCSC (Figure 4.8A) and decreased the phosphorylation 

of STAT3 in vitro (Figure 4.8B). To test the efficacy of inhibition of IL-6-IL-6R 

signaling on tumor initiation, we implanted ALDH+CD44+Lin- and ALDH-CD44-

Lin-cells from a primary HNSCC (Patient 34) with primary endothelial cells (n=6); 

and treated with IL-6R antibody (or IgG controls) from Day 1 post-implantation 

every week for four weeks intra-peritoneally at 10 mg/kg body weight (Figure 

4.8C). No significant weight reduction was observed in the mice during the 

course of this experiment (Figure 4.S.3). A hundred percent tumor initiation was 

observed in the IgG group (n=6), whereas only one tumor was created in the 

treatment group (IL-6R Ab) (Figure 4.8D). Tumor volumes at retrieval showed a 

greater volume in the IgG group compared to the treatment group (Figure 4.8E). 

Notably, there was a significant reduction in the cancer stem cell fraction 

(ALDH+CD44+Lin- cells) in the anti-IL-6R treated xenografts compared to the 

IgG control group (Figure 4.8F). 
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Discussion 

The poor survival and high recurrences in head and neck squamous cell 

carcinomas can be possibly explained by the cancer stem cell hypothesis. It was 

recently found in a prospective study of about 444 patients of HNSCC that high 

serum IL-6 levels was related with increased recurrences and poorer prognosis 

(Duffy et al., 2008). STAT3, a transcriptional factor activated by IL-6 has been 

found to be over-expressed in various tumors including HNSCC. Targeting 

cancer stem cells via the IL6/STAT3 pathway has been done in mammary 

tumors, lung adenocarcinomas and neural tumors (Sansone et al., 2007, Gao et 

al., 2007, Wang et al., 2009). The concept of IL-6 (an inflammatory stimulus), 

triggering a physiological mechanism of repair in the cancer tissue by stimulating 

proliferation and self-renewal of the cancer stem cells has been suggested 

(Sansone et al., 2007). 

In our earlier study, we demonstrated the sub-population of ALDH+CD44+ 

cells to be cancer stem-like in HNSCC (Krishnamurthy et al., 2010). We found 

that these cells exist in vascular niches and that tumor endothelial cell actively 

promoted self-renewal and survival of the cancer stem cells. In this study, we 

observed tumor endothelial cells synthesize greater amounts of IL-6 mRNA than 

the tumor cells (Figure 4.1). The protein expression of IL-6 is also greater in 

primary endothelial cells in comparison to a panel of head and neck squamous 

cell carcinoma cell lines. In fact, it was recently shown in Burkitt’s lymphoma, IL-6 

is secreted from thymic blood vessels in response to therapy and promotes the 

survival of Doxorubicin-resistant lymphoma cells (Gilbert and Hemann, 2010). 
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Work from lung carcinomas recently showed that endothelial cell secreted factors 

could regulate different aspects of cancer cell function such as invasion, 

proliferation and tumor growth in vivo (Franses et al., 2011).  

The activation of phosphorylation of STAT3 along with the presence of the 

IL-6R in the primary cancer stem cells demonstrated an active IL-6/IL-6R/STAT3 

pathway in the head and neck cancer stem cells. We observed active induction 

of self-renewal in the ALDH+CD44+cells via IL-6 from the endothelial cells in 

vitro which was significantly reduced in the presence of neutralizing antibody to 

IL-6. Though we observed an induction in the number of orospheres on treatment 

with rhIL-6, it was to a lesser degree than the induction by the endothelial cell 

conditioned medium. This suggests the possibility of other endothelial cell 

secreted factors that might contribute to the self-renewal of cancer stem cells. In 

fact, Interleukin-8 (CXCL-8) is a chemokine found in the cancer stem cells or its 

micro-environment and has been postulated as a therapeutic target for cancer 

stem cells in various tissues (Razmkhah et al., 2010, Ginestier et al., 2010, 

Hwang et al., 2011).  

In our study, we demonstrated that silencing the IL-6 gene in the 

endothelial cells alone resulted in a delay in the tumor initiation and growth of 

tumor xenografts arising from the ALDH+CD44+ cells (Figure 4.2). However, this 

effect was depreciated after 50 days which could possibly be explained by the 

host IL-6 contributing to the tumor environment. It is also a distinct possibility that 

the endothelial cells stably expressing shRNA-IL-6 clone had been lost and 

replaced by normal cells. Nonetheless, our studies demonstrated an important 
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role of IL-6 cells and its micro-environment composed of tumor endothelial cells. 

In our work, although we demonstrated the increased expression of IL-6 in the 

endothelial cells relative to the tumor cells (Figure 4.1); this does not preclude the 

possibility of an existing autocrine IL-6 pathway in the head and neck cancer 

stem cells. Moreover, we did not examine the relative IL-6 levels in the cancer 

stem cells compared to the non-cancer stem cells. In glioblastoma stem cells, the 

non cancer stem cells were found to have increased IL-6 expression levels than 

the cancer stem cells and were found to be the source of IL-6 signaling (Wang et 

al., 2009).  

The importance of IL-6 on tumor initiation, irrespective of its source was 

demonstrated in our work on the xenografts generated from the IL-6-/- immuno-

deficient mice (Figure 4.4). We observed the tumor growth over time for four 

months and still found a significant difference in tumor volumes between the WT 

type and the IL-6-/- mice unlike using the shRNA strategies wherein the effect is 

lost by 80 days. This demonstrates that IL-6 derived from different sources can 

potentially promote tumor initiation of cancer stem cells. Thereby, targeting IL-6 

signaling pathway could be beneficial to patients with squamous cell carcinomas. 

In fact, CNTO328, an anti-IL-6 chimeric monoclonal antibody is in clinical trials 

for refractory multiple myelomas and B-cell Non-Hodgkin’s lymphoma (van 

Zaanen et al., 1996, Voorhees et al., 2009). The fact that serum IL-6 levels has 

been related to increased tumor recurrences and poorer prognosis (Duffy et al., 

2008) and in our work we see an increased tumor initiation in the presence of IL-
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6, suggests that Interleukin-6 could also be a potential prognostic marker in 

patients with head and neck squamouc cell carcinomas.  

Tocilizumab (Actemra) is a humanized monoclonal antibody against IL-6R, 

recently approved by the FDA for use in autoimmune disorders. The use of anti-

IL-6R in our model delayed the tumor initiation by preventing the activation of 

STAT3 (Figure 4.8). Moreover, the analysis of the cancer stem cells in our 

xenografts showed a significant decrease in the Tocilizumab treatment group 

suggesting that inhibition of IL-6 signaling decreases the survival of the head and 

neck cancer stem cells. The in vitro invasion data (Figure 4.S.2) suggested that 

the invasive potential of the head and neck cancer stem cells is increased in the 

presence of IL-6 which could translate into metastasis in vivo. In fact, in a recent 

study, targeting STAT3 with Cucurbitacin I inhibited tumorigenicity and distant 

metastasis of head and neck cancer stem cells (Chen et al., 2010).  This might 

suggest a role of IL-6/STAT3 signaling in EMT transition of cells as seen in 

breast cancers (Sullivan et al., 2009). Although the complete mechanism of 

ALDH+CD44+ cells is still unclear, our data suggests that IL-6/STAT3 paracrine 

signaling with the micro-environment might possibly be involved with the tumor 

initiation and even progression of cancer stem cells  
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Figure 4.1. Analysis of IL-6 expression in tumor endothelial cells and IL-6R 
in head and neck cancer stem cells. (A) RT-PCR showing the mRNA 
expression of IL-6 in tumor cells compared to the tumor endothelial cells obtained 
by Laser Capture micro-dissection from primary HNSCC. Similar trend is 
observed in the expression of IL-6 in a head and neck cancer cell line, UM-SCC-
74A to primary endothelial cells (HDMEC). (B) Graph showing Interleukin-6 
levels in primary endothelial cells (HDMEC) compared to three different head and 
neck squamous cell carcinoma cell lines, UM-SCC-74A, UM-SCC-74B, UM-
SCC-17B obtained by ELISA. Data was normalized by cell number (*p<0.001). 
(C) Confocal microscopy of primary human HNSCC (patient 15) immunostained 
for ALDH1 (green) and IL-6R (red) or gp130 (red) and DAPI to identify nuclei. 
The overlay image shows the co-localization of the ALDH-positive cells with the 
IL-6R-positive cells. (D) Western Blot for IL-6R and gp130 in head and neck 
cancer stem-like cells (ALDH+CD44+cells) and non-cancer stem cells (ALDH-
CD44-cells) in HNSCC cell lines, UMSCC-74A and UM-SCC-74B. 
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Figure 4.2. Endothelial cell secreted IL-6 promotes tumor initiation and 
growth of head and neck cancer stem-like cells. (A) Schematic representation 
of the approach used for testing the role of endothelial cell secreted IL-6 on the 
tumorigenic potential of ALDH+CD44+ cells in primary tumors. ALDH+CD44+Lin-
cells were isolated from 3 different primary HNSCC and implanted in immuno-
deficient mice along with HDMEC-shRNA-C or HDMEC-shRNA-IL-6. (B) Graph 
shows the relative occurrence of time to palpability of tumors (i.e., the time at 
which tumors are initiated) in the ALDH+CD44+Lin- tumors with HDMEC-shRNA-
C or with HDMEC-shRNA-IL-6. (C) Graph shows the tumor volume of the 
individual mice (n=13) obtained by the implantation of ALDH+CD44+cells with 
HDMEC-shRNA-C or HDMEC-shRNA-IL-6. (D) Graph shows the relative tumor 
volumes of the two groups obtained from the three different patients at Day 45.  
*p<0.05. 
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Figure 4.3. Endothelial cell secreted IL-6 promotes tumor initiation of 
ALDH+CD44+cells relative to their cell numbers. (A) ALDH+CD44+Lin- cells 
were isolated from a primary HNSCC (Patient 26) and implanted in serial 
dilutions of 1000, 100, 10 or 0 cells along with 500,000 cells of HDMEC-shRNA-
C or HDMEC-shRNA-IL-6 in immunodeficient mice. Graph shows the relative 
occurrence of tumor initiation in the various individual groups. (B)  Tumors  
generated from ALDH+CD44+cells with HDMEC-shRNA-C or with HDMEC-
shRNA-IL-6 group irrespective of the ALDH+CD44+cell numbers was expressed 
as an overall tumor initiation graph after eliminating tumors that did not occur (0 
group). (C) Graph shows the tumor volume of the individual groups obtained by 
the implantation of ALDH+CD44+cells with HDMEC-shRNA-C or HDMEC-
shRNA-IL-6. (D) The pairwise statistics for the different frequencies of 
ALDH+CD44+cells (10,100, 1000) that created tumors was determined using the 
Bonferroni correction and established to be *p<0.0125. 
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Figure 4.4. Endothelial cell secreted IL-6 promotes survival and self-
renewal of head and neck cancer stem cells in vivo. (A), ALDH+CD44+Lin- 
cells isolated from a primary HNSCC (Patient 22) and implanted with HDMEC-
shRNA-C or HDMEC-shRNA-IL-6. (B) Tumors retrieved after 30 days and 
percentage of ALDH+CD44+ fraction is evaluated in primary tumors and 
xenografts. (C) Graph represents the tumor initiation of ALDH+CD44+cells from 
UM-SCC-74A, implanted with HDMEC-shRNA-C or HDMEC-shRNA-IL-6 (n=6) 
(D) percent of ALDH+CD44+cells in the xenografts compared to the parental cell 
line (E) Tumor volumes from ALDH+CD44+Lin- cells and ALDH-CD44-Lin- cells 
in WT type and IL-6-/- immunodeficient mice from a primary HNSCC (Patient 36). 
(F) Cancer stem fraction (ALDH+CD44+Lin-cells) in the tumor xenografts 
compared to the primary tumor. 
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Figure 4.5. Endothelial cell-derived factors activate STAT3 pathway in head 
and neck cancer stem-like cells (A) Single cell co-localization of head and 
neck cancer stem-like cells (ALDH1+) cell with phospho-STAT3 as visualized by 
confocal imaging in a primary HNSCC. DAPI identifies the nuclei and the merged 
image shows the co-localization of ALDH1 and P-STAT3. (B) Immunohistological 
representation of ALDH1+cells and p-STAT3+ in a peri-vascular localization 
(arrows) in tumor xenografts generated from primary ALDH+CD44+cells. (C) 
Baseline phosphorylation of STAT3 in head and neck cancer stem-like cells 
(ALDH+CD44+) compared to non-cancer stem-like cells (ALDH-CD44-) in a 
primary HNSCC (Patient 28); and a head and neck cancer cell line, UM-SCC-
74A. (D) Western blot for phosphorylated and total STAT3, ERK in 
ALDH+CD44+ cells on treatment with endothelial cell conditioned medium. 
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Figure 4.6. Endothelial cell secreted IL-6 signaling promotes self-renewal of 
head and neck cancer stem-like cells in vitro. (A) FACS analysis of UM-SCC-
74A cells treated with endothelial cell CM with or without neutralizing antibody to 
IL-6 for 48 hours. The quantification of triplicates of treatment is depicted in (B). 
(C) ALDH+CD44+ and ALDH-CD44- cells, serum starved and exposed to 
endothelial cell CM with and without neutralizing antibody to IL-6. 
Phosphorylation of STAT3 was detected by Western Blot. (D) photomicrographs 
of representative orospheres arising from ALDH+CD44+ and ALDH-CD44-cells 
and cultured under low attachment plates. Cells were treated with endothelial cell 
CM with and without neutralizing antibody to IL-6 and quantified in (E).  
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Figure 4.7. Effect of HDMEC-shRNA-IL-6 on self-renewal of head and neck 
cancer stem-like cells. (A) UM-SCC-74A treated with HDMEC-shRNA-C or 
HDMEC-shRNA-IL-6 CM for 48 hours and the cancer stem cell fraction is 
determined by FACS. The quantification is seen in (B). (C) ALDH+CD44+ and 
ALDH-CD44- cells were serum starved and exposed to HDMEC-shRNA-C or 
HDMEC-shRNA-IL-6 CM for 30 minutes. Phosphorylation of STAT3 was 
detected by Western Blot. (D) Orospheres arising from ALDH+CD44+ and 
ALDH-CD44- cells cultured under low attachment plates and treated with 
HDMEC-shRNA-C, HDMEC-shRNA-IL-6 or unconditioned DMEM and is 
quantified.   
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Figure 4.8. Tocilizumab or humanized anti-IL-6R antibody inhibits self-
renewal and tumor initiation of head and neck cancer stem cells in vitro 
and in vivo. (A) Graph represents the relative number of orospheres arising from 
ALDH+CD44+ and ALDH-CD44- cells in the presence and absence of anti-IL-6R 
(10µg/ml) with HDMEC CM. (B) represents the phosphorylation of STAT3 on 
treatment with anti-IL-6R (10µg/ml). (C) Scheme of the preventive regimen for 
tumor initiation of ALDH+CD44+Lin-cells and ALDH-CD44-Lin-cells from a 
primary HNSCC (Patient 34). Mice are treated every week IP with IgG or anti-IL-
6R for 4 weeks from Day 1. (D) Graph shows the time for tumor initiation in the 
IgG group and the anti-IL-6R treatment group in one month. (E) Represents the 
relative tumor volumes at retrieval in the individual groups and the cancer stem 
cell fraction (i.e., ALDH+CD44+Lin-cells) in (F). 
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Figure 4.S.1 ELISA for IL-6 expression in HDMEC transfected with shRNA-C 
or shRNA-IL-6. (A) HDMEC were transfected with shRNA-C or shRNA-IL-6 for 
48 hours and cells were selected for two weeks. Data is normalized by cell 
number.  
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Figure 4.S.2 Head and neck cancer stem cell invasion. (A) Head and neck 
cancer stem cell (ALDH+CD44+) invasion was evaluated in the presence of 
endothelial cell CM with or without neutralizing antibody to IL-6. (B) 
ALDH+CD44+ cell invasion was evaluated in the presence of HDMEC-shRNA-C, 
HDMEC-shRNA-IL-6 or unconditioned DMEM.  
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Figure 4.S.3 Comparable mice weights on treatment with anti-IL-6R. Graph 
shows the relative weights of the mice in the IgG group and the anti-IL-6R 
treatment group during the course of the study (30 days). 
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CHAPTER V 

 

CONCLUSION 

 

 

Head and neck squamous cell carcinomas contain a sub-population of 

highly tumorigenic cells that exhibit self-renewal and multipotency. These cells 

can be isolated from primary head and neck squamous cell carcinomas using 

Aldehyde Dehydrogenase (ALDH) activity and CD44 expression, and have been 

named head and neck cancer stem cells (HNCSC). It has been proposed that the 

HNCSC are the “drivers” of head and neck tumor progression, and therefore 

have to be eliminated to achieve cancer cure. However, little is known about 

mechanisms underlying the survival and self-renewal of HNCSC. The hypothesis 

underlying this dissertation is that head and neck cancer stem cells (i.e. 

ALDH+CD44+) are localized in the perivascular niche and depend on endothelial 

cell-secreted factors for their survival and self-renewal. 

Here, we observed that HNCSC are found in close proximity to blood 

vessels in primary head and neck squamous cell carcinomas. Endothelial cell-

secreted factors promoted the proliferation, self-renewal and survival of HNCSC 

in vitro, as evidenced by the increase number of orospheres (i.e. non-adherent 

colonies of cells) formed in soft agar or ultra-low attachment plates. In vivo, 
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selective ablation of tumor endothelial cells caused a marked decrease in the 

fraction of HNCSC suggesting that cancer stem cells depend on intact 

perivascular niches for their survival. 

In our search for a possible mechanism to explain the dependency of 

HNCSC on endothelial cells, we observed that cancer stem cells have a 

constitutively active IL-6R/STAT3 pathway, while tumor endothelial cells secrete 

high levels of IL-6. Inhibition of endothelial cell IL-6 caused a decrease in the 

self-renewal and tumorigenicity of the HNCSC. Notably, a humanized antibody to 

IL-6R delayed tumor initiation and decreased the survival of HNCSC in vivo. 

Collectively, these results unveil the endothelial cell-secreted factors as critical 

regulators of HNCSC survival and self-renewal, and suggest that patients with 

head and neck cancer might benefit from targeted therapies against cancer stem 

cells.  

Our understanding of the pathobiology of head and neck squamous cell 

carcinomas has been steadily increasing in the last couple of decades. Despite 

these various advances in prevention and treatment of HNSCC, the 5-year 

survival rate has not significantly increased. This poor prognosis is primarily due 

to the increased recurrences seen in head and neck cancers. The cancer stem 

cells, the sub-population of cells which are believed to be tumorigenic, are 

hypothesized to be responsible for the recurrences seen in cancers. With this 

perspective in mind, we wanted to explore the characteristics of the cancer stem 

cells in HNSCC and try to identify the micro-environment in which they exist. 

Little is known about the molecular mechanisms that distinguish the head and 
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neck cancer stem cells from the rest of the tumor cells. The identification of novel 

molecular mechanisms that regulate these cells would be critical in developing 

targeted therapy against head and neck cancer stem cells. 

In Chapter III, we demonstrated that ALDH+CD44+Lin- cells from primary 

HNSCC had a cancer stem-like phenotype. We demonstrated that only a 1000 

cells of the ALDH+CD44+ cells could generate tumors consistently compared to 

the 10,000 cells of the ALDH-CD44- cells. Moreover, the tumor xenografts we 

generated from the ALDH+CD44+ cells resembled the primary tumors 

histologically. We demonstrated their self-renewal and developed an assay to 

study and expand cancer stem cells in vitro which we termed the “orosphere 

assay” in Chapter II. These ALDH+CD44+ cells could also be differentiated to 

their parental cell line on culturing under regular attachment conditions thus 

satisfying the two tenets of making the ALDH+CD44+ cells as cancer stem cells 

in head and neck squamous cell carcinomas.  

Cancer stem cells are being targeted in various cancers today either in 

lieu of their altered genetic signature or due to their dependence on their micro-

environment or their niche. The cancer stem niche in HNSCC had not been 

identified. In Chapter III, we set out to identify a possible peri-vascular niche for 

the ALDH+CD44+ cells. In our study of the normal mucosa, we identified the 

stem cells (ALDH1+) cells to be found in the basal layer of the stratified 

epithelium as seen in the stem cells of the skin. However, in primary cancers we 

observed a spatial relationship of the ALDH1+cells to the vasculature. We 

observed that every ALDH1+ cell in 8 different patients with HNSCC was found 
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within a distance of 100 µm of a blood vessel. We were intrigued by this 

localization and decided to study the possible role of endothelial cells on the 

cancer stem cells. 

          One of the first things we decided to explore in the possible crosstalk 

between the endothelial cells and head and neck cancer stem cells was to study 

non-contact cell-cell interaction. As a result, we collected Conditioned media from 

endothelial cells and studied the effects of endothelial cell secreted factors on the 

cancer stem cells. We found that the factors from endothelial cell Conditioned 

medium had an induction in the expression of Bmi-1 and increased number of 

orospheres; demonstrative of self-renewal in the head and neck cancer stem 

cells. At this time, it was necessary to perform in vivo assays showing the 

importance of the endothelial cells in the tumorigenicity and the survival of the 

cancer stem cells. We addressed this by two independent strategies, we 

generated tumor xenografts from ALDH+CD44+ cells either in the presence or 

absence of the endothelial cells and we showed that the tumor growth is greater 

in the presence of endothelial cells. Alternatively, we generated tumor xenografts 

with endothelial cells transduced with an inducible caspase-9 which we could 

selectively induce apoptosis, and then examined the survival of the cancer stem 

cell fraction and saw that the loss of tumor endothelial cells decreased the 

survival of the cancer stem cell fraction. 

          In Chapter IV, we tried to dissect the endothelial-stem cell crosstalk and 

identify the possible factors in the endothelial cell CM which promoted the self-

renewal and survival of the head and neck cancer stem cells. In primary HNSCC, 
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we demonstrated the increased IL-6 mRNA expression in the tumor endothelial 

cells than tumor cells. We also observed that ALDH+CD44+ cells have an 

activated STAT3 pathway, a downstream target of IL-6. Using an antibody 

against IL-6 and shRNA-IL-6 approaches, we demonstrated that endothelial cell 

secreted IL-6 induced self-renewal of the ALDH+CD44+ cells. There was an 

increased tumorigenicity in the presence of IL-6 which was significantly lost or 

delayed in the absence of IL-6 as demonstrated by our transgenic mice (IL-6-/- 

mice and our shRNA-IL-6). We also observed a significant reduction of the 

cancer stem fraction (ALDH+CD44+) in the tumor xenografts suggesting the 

importance of IL-6 in maintenance of the cancer stem cells in vivo.  

          At this point, we were interested in developing an agent to interfere in the 

endothelial cell–cancer stem cell interaction to potentially translate as an 

adjuvant therapy to delay recurrences. With this long-term perspective, we used 

Tocilizumab, an FDA approved humanized anti-IL-6R antibody (Chugai 

Pharmaceuticals), in an in vivo study and showed that interfering with the IL-6 

signaling causes a delay in the tumor initiation and a concomitant decrease in the 

cancer stem cell fraction. In Figure 5.1, we propose a model that has been 

described in this dissertation. The cancer stem cells (ALDH+CD44+) in head and 

neck squamous cell carcinomas are found in a vascular niche. The endothelial 

cells secrete various factors which promote the self-renewal and survival and 

tumorigenicity of the cancer stem cells (Chapter III). One such molecule is the 

inflammatory cytokine IL-6. IL-6 secreted from the tumor endothelial cells bind to 

the cancer stem cells via IL-6R and activates STAT3. Self-renewal is induced as 
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a result of this, cancer stem cells increase in number, and tumor growth ensues. 

Interference of the IL-6/IL-6R signaling by either antibody against IL-6 or use of 

the anti-IL-6R antibody, caused a decrease in the survival of the cancer stem 

cells; loss of the tumor initiating cells and delay in tumor growth and recurrences. 

The specific conclusions of this dissertation are: 

1. ALDH+CD44+ cells are cancer stem-like cells in head and neck cancers. 

2. ALDH+CD44+cells exist in vascular niches and the endothelial cells 

secrete factors that promote their self-renewal and tumorigenicity. 

3. The orosphere assay might prove to be a valuable tool to study and 

expand cancer stem cells in vitro. 

4. Endothelial cell initiated IL-6/IL-6R/STAT3 pathway promotes self-renewal, 

survival and tumor initiation of the head and neck cancer stem cells in 

vivo.  

          In summary, our work demonstrates that endothelial cells play an integral 

role in the maintenance and survival of head and neck cancer stem cells. 

Targeting cancer stem cells either via their niche or by exploring the specific 

molecular mechanisms that regulate them would result in newer, better 

therapeutics benefiting patients with HNSCC. Though beyond the scope of this 

project, the concept of re-programming (differentiated cells re-acquiring the 

characteristics of stem cells) would also be an area that merits detailed study. In 

fact, the fact that ALDH-CD44-cells could induce limited tumorigenicity and scope 

of forming tumors would lend credence to this theory.  
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Figure 5.1. Illustrative representation of IL-6-IL-6R signaling in head and 
neck cancer stem cells. HNSCC is a heterogenous tissue with a few cancer 
stem cells (ALDH+CD44+). Tumor associated blood vessels provide a vascular 
niche and secrete factors including IL-6 which binds to IL-6R on the cancer stem 
cells. IL-6-IL-6R activates STAT3 pathway and results in self-renewal of 
ALDH+CD44+ cells and tumor growth. Inhibition of activation of IL-6 pathway 
either by antibodies to IL-6 or to IL-6R prevents the activation of the pathway, 
decreased survival and proliferation of the cancer stem cells and tumor initiation 
and volume decreased. 
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APPENDIX 

 

LIST OF PROTOCOLS 

 

 

1. Tumor Dissociation Protocol: for primary tumors and xenografts 

2. Head and neck cancer stem cell isolation via Fluorescence Activated Cell 

Sorting (FACS) for ALDH and CD44 

3. Suspension Cultures: 

A, Orospheres 

B, Colony Formation Assay 

4. Immunohistochemistry for ALDH1 

5. Cell localizations using Confocal Imaging for ALDH1, CD44, P-STAT3, IL-

6R, gp130 
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Tumor Dissociation Protocol 

Purpose: To obtain single cell suspensions of primary head and neck squamous 

cell carcinomas or tumor xenografts 

Materials Required: 

1. Dulbecco’s modified Eagle’s medium (DMEM, Invitrogen) with 10% Fetal 

Bovine Serum (FBS Gibco 10082; Invitrogen), 1% Antibiotic  Antimycotic 

Solution (AAA, Sigma A5955; St. Louis, MO) 

2. DMEM/F12 (no supplements, Hyclone, Waltham, MA) 

3. Collagenase /Hyaluronidase (Stem Cell Technologies 07912; Vancouver, 

BC, Canada) 

4. ACK Lysing Buffer (Gibco A10492) 

5. 40 μm nylon mesh or sieve (BD Falcon 352340; Franklin Lakes, NJ) 

General Instructions: 

Please use a disposable gown, mask, gloves while working with primary 

samples. 

Procedure: 

1. Obtain tumor specimens (primary samples from OR or xenografts from 

mice) and place it immediately in complete DMEM or transport media. 

             Note: This complete DMEM has 10% FBS and 1% AAA  

2. Pour off most of the media leaving about 5 ml with the sample. Wash the 

sample with the DMEM complete media, 3-4 times (essential with the 
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primary samples so that we can surface clean the samples for bacterial 

and fungal pathogens).  

      Note:  i) This is vital especially if we culture primary samples subsequently 

as it helps minimize contamination. 

                ii) Please do not vacuum out the media during washing, decant the 

old media and add fresh media to wash gently, this helps in preventing 

possible contamination and also minimizes cell lysis. 

3. Place tumor and 5 ml of the same complete media in a sterile petri dish.  

Note: 1. Do not use tissue culture dishes. 

Mince the tumor with sterile scalpel/razor blade until no large chunks are 

seen. The tumor pieces should pass through a 25ml pipette. 

Note: This is a critical step; chop the tumor in one direction to small pieces 

and then re-cross them in the opposite direction as minimally as possible. 

Use of too much force lyses the cells resulting in low number of viable cells. 

4. Place the minced tumor in a 50ml conical tube and fill up to 25-30 ml with 

plain DMEM/F12.  

Spin at 800 rpm, 4
.
C for 3 minutes to wash. 

5. Carefully decant media and place tumor pellet in the petri dish. 

6. Dilute 1 ml of 10X collagenase/Hyaluronidase in 9 ml DMEM/F12. Take 5 

ml of the solution. Wash the 50 ml tube with enzyme solution and pipette 

gently on the sample. Repeat with the final 5 ml of enzyme solution.  
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Note: this is done so that there are no tumor chunks/cells left in the tube. 

You can go down to about 6-7 ml of this solution to conserve the enzyme 

especially with tumor xenografts. 

7. Mix the tumor/enzyme solution well so that you have a homogenous 

mixture and place in the incubator at 37
.
C for 15 minutes. Remove from 

the incubator and pipette the entire mixture through a 25 ml pipette to 

mechanically dissociate tumor chunks. Repeat this every 15-20 minutes 

for a maximum of about 1 hour. As you observe tumor dissociation move 

from a 25 ml pipette down to a 10 ml pipette to ensure proper dissociation. 

       Note: i) Do not leave the tumor sample in collagenase more than an hour 

and 15 minutes as this becomes too traumatic to the cells and ensures poor 

cell viability. 

                ii) While mechanically dissociating using pipettes use a little 

pressure to suck in the tumor pieces and splash it down against the wall of 

the Petri dish for maximal dissociation. 

8. Place a 40 m sieve in a fresh 50 ml conical tube. Collect the tumor/single 

cell suspension and pipette into the sieve. If flow stops, place the pipette 

on the bottom of the sieve and “suck up” to create a vacuum to ensure 

flow through the sieve.  

[Note: To start or establish cell lines in vitro, place chunks of tumor pieces 

in a T-25 with appropriate medium with AAA. Change media daily to 

prevent contamination and observe]. 
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9. The filtrate has the single cell suspension. Neutralize the collagenase with 

FBS at approx. the ratio of 80-20% (to the filtrate solution say 8 ml add 2 

ml of FBS). Spin for 3 minutes at 800 rpm at 4
.
C. 

10. Observe the cell pellet after centrifugation. Decant neutralized enzyme 

mixture to obtain cell pellet.  

               Note: The cell pellet may not be visible especially in biopsy samples. 

So, decant the supernatant carefully to avoid losing the cancer cell suspension. 

11. Re-suspend the cell pellet in 5 ml of ACK lysing buffer for 1 minute for 

RBC cell lysis. Spin down at 800 rpm for 3 minutes.  

Note:  You will see a change in color of the cell pellet from pinkish to a 

clearer white. Continue with any protocol you are working with. 
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Head and neck cancer stem cell isolation via Fluorescence Activated 

Cell Sorting (FACS) for ALDH and CD44 

 

Materials Required: 

1. Aldefluor substrate and its inhibitor, DEAB (Aldefluor kit, Stem Cell 

Technologies, 01700; Vancouver, BC, Canada). 

2. CD44 antibody, conjugated with APC (BD Pharmingen, 559942; Franklin 

Lakes, NJ) 

3. IgG antibody conjugated with APC (BD Pharmingen, 550931) 

4. 7AAD (eBioscience, 00-6993-50; San Diego, CA) 

Procedure: 

1. Obtain single cell suspension from cell lines either by trypsinizing or 

digesting tumor specimens from patient/xenografts. 

2. Count the cells and distribute cells in Flow cytometry tubes (11 75 tubes) 

at 1 106 cells per tube in 1 ml of Aldefluor Buffer.  

Note:  i) You can go up to a maximum of 4-5 million cells for the same 

staining efficiency. I personally recommend using about 3- 3.5 million cells 

per tube. 

           ii) Cell count is very important for reproducible, consistent response 

of aldefluor  activity.  
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          iii) Aldefluor is very sensitive to light exposure, volume of buffer and 

temperature. 

        3. Label the flow cytometry tubes per condition along with controls as 

follows:  

                A. a Blank tube (only cells in PBS for negative control) 

                B. a 7AAD tube (for cell viability) 

                C. an IgG-APC tube (IgG control for CD44) 

                D. a DEAB tube (a negative inhibitor for Aldefluor substrate) Keep this 

tube empty no cells added. 

                E. Test tubes are labeled from T1, T2 and so on according to the 

number of cell availability and requirement.  

      4. In the tubes, add cells (3- 3.5 million cells) in Aldefluor buffer to all the 

tubes except the DEAB. Turn off the lights in the hood. 

5. Step-wise activation of Aldefluor: 

6. Add 5 l of DEAB solution to the DEAB tube and 5 l of the activated 

aldefluor substrate to T1. Transfer 0.5 ml of this activated solution with 

cells to the DEAB tube.  

Note: i) This is done in this order for the DEAB to be functional. Quick 

addition of the activated solution to the DEAB tube is important for 

inhibition. 
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         ii) All fluorochromes being light sensitive please work under dark 

conditions (no lights on in the hood).  

7. Add 5 l of activated Aldefluor substrate to the rest of the test tubes. 

Incubate the DEAB and the test tubes for about 45 minutes at 37
.
C 

covered in Aluminium foil (minimum time 30 minutes, do not exceed 1 

hour, best result is at 35-45 minutes) 

               Note:   Aldefluor is light sensitive, work in the dark, keep wrapped in 

aluminum foil. 

After the incubation, spin down the cells at 800 rpm for 5 minutes and re-

suspend the cell pellets in 1 ml of Aldefluor Buffer. 

Note: This step is important to terminate the activation of the aldefluor. 

8.  Add 5 l of CD44-APC antibody (1:50) to the test tubes and the DEAB 

tube and IgG to the control tube. Store on ice. 

9. Add the 7AAD to the test tubes and DEAB tube in the same ratio along 

with the 7AAD control tube. 

10. Keep all the tubes in ice, covered in Aluminium foil  

11. Collection tubes are labeled as (ALDH+CD44+) and ALDH-CD44- with 1 

ml of complete media (DMEM Low glucose, 10% FBS, 1% Penicillin 

Streptomycin). 

12. The cells are ready to be sorted now using FACS. The Aldefluor activity 

can be detected for a maximum of 24 hours. Store and transport samples 

for sorting in ice covered with Aluminium foil for best results. 
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General Instructions: 

1. For sorting of primary tumors, please use the Lineage specific cocktail to 

eliminate lineages.  

CD2  (BD Pharmingen, 555328; Franklin Lakes, NJ) – to detect T-cells 

and N-Killer cells 

CD3  (BD Pharmingen, 555334; Franklin Lakes, NJ)-   to detect T-

lymphocytes 

CD10 (BD Pharmingen, 555376; Franklin Lakes, NJ)-  to detect B-cells  

CD16 (BD Pharmingen, 555408; Franklin Lakes, NJ)-  to detect 

neutrophils, monocytes, macrophages 

CD18 (BD Pharmingen, 557528; Franklin Lakes, NJ)- to detect integrins 

associated with macrophages and lymphocytes 

Note: all these antibodies are pre-conjugated with PE-cy5 (1:50). They 

detect cells of the hematopoietic origin like T-cells, Natural Killer cells, 

monocyte-macrophages, B-cells, neutrophils which is eliminated.  Use 

about 3 µl/sample. 

2. During sorting of mouse xenografts, to eliminate mouse cells, please add 

to test tubes and to a separate color control tube for PE,  

anti H2kD Biotinylated (1:100); (BD Pharmingen, 553564; Franklin Lakes, 

NJ) and 

PE streptavidin (BD Pharmingen, 554061; Franklin Lakes, NJ).  

Use about 4 µl of each and wait for 10-15 minutes on ice between them. 
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3. To eliminate human endothelial cells from the xenografts use 5 µl of  

PE- CD31 (BD Pharmingen, 560983; Franklin Lakes, NJ) in test tubes and 

add a control tube as well. 

 

Contact Personnel: 

1. Ann Marie Deslauriers                             adeslaur@umich.edu 

2. Michael Pihalja                                         pihaljam@umich.edu 

3. Aaron Robida                                                 bida@umich.edu 
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Suspension Cultures: Orospheres 

 

Materials Required: 

1. Dulbecco’s modified Eagle’s medium Low Glucose (DMEM, Invitrogen) 

with 10% Fetal Bovine Serum (FBS Gibco 10082; Invitrogen), 1% 

Penicillin/Streptomycin or 1% Antibiotic  Antimycotic Solution for primary 

cultures(AAA, Sigma A5955; St. Louis, MO) 

2. Ultra-low attachment plates (Corning 3471; Corning NY) 

 

Procedure: 

1. FACS sorted cells (ALDH+CD44+ and ALDH-CD44-) are seeded as 

triplicates in 6 well Low attachment plates at about 5 103 cells/well in 2-3 

ml of media. 

Note: Use 3 ml if there is no treatment subsequently.  

If you want to treat the cells (for example, endothelial cell CM), suspend 

the cells in 2 ml of media, wait 6 hours in incubation and add 1 ml of 

treatment on top gently without disturbing the cells very much. 

2. Incubate at 37
.
C for 3 days, observe every day with minimal shaking to 

prevent dissociation of the forming spheres.   

3. Orospheres can be seen in 3 days under a light microscope or a phase 

contrast microscope. Orospheres can be quantified by counting the 
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number of spheres/well. Spheres which are smaller than (25-50 cells) are 

not counted. 

 

To generate secondary and tertiary orospheres,  

1. orospheres are dissociated mechanically using a pipette. 

2. Single cell suspensions are again counted and re-seeded in a new 6-well 

Low Attachment Plate 

3. Check under the microscope for thorough dissociation 

4. Observe after 3 days for secondary and tertiary orospheres. 

 

General Instructions: 

1. The time for sphere generation can be cell type specific. Some cell types 

form spheres earlier or later, the average being 2-5 days. 
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Suspension Cultures: Colony Formation Assay 

Materials Required: 

1. Ultrapure Low Melting point agarose (24-28
.
C)(Invitrogen 15517-022; 

Carlsbad, CA) 

2. 10X Minimum Essential Medium (MEM,  Gibco 11430; Invitrogen) 

3. 1X DMEM (no supplements) 

Procedure: 

1. Preparation of 2X DMEM , 2.5% FBS, 1% P/S to make up a volume of 50 

ml. 

a) 5.55 mL of 10X MEM 

b) 2.5 mL of FBS 

c) 1 mL of P/S 

d) 40.95 mL of 1X DMEM 

Mix all the above to obtain 2X DMEM complete media to use. 

2. Preparation of soft agarose plates 

a) Prepare 1.2% and 0.6% agarose solutions, sterilize and store them at 

room temperatures. 

b) Heat the agarose “gels” to melt them in the microwave. 

c) Keep the melted agarose gels in 37
.
C waterbath. 

d) Now, it is ready to use. 
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3. In a 6 well plate, to form the inert feeder layer, for each well, mix 1.5 mL of 

2X DMEM and 1.5 mL of melted 1.2% agarose (equal volumes are 

important). Leave the plates in the hood for 30-40 minutes in the hood for 

the agarose to gel.  

4. Add equal volumes of 2X DMEM (1.5 mL) and 0.6% agarose (1.5 mL) with 

the required cell suspension (approx. 500-5000 cells/well) and add it on to 

the solidified feeder layer. 

Note: the melted agarose should not be too hot when the cells are added 

to ensure cell viability. 

5. Leave the plates again in the hood for 30 minutes to one hour for the 

second layer to solidify. 

6. Add a layer of 1X DMEM on the surface (about 500 µl) to maintain 

moisture. Any treatments like Conditioned Medium can also be added to 

the surface.  

Note: Add treatment or fresh media of about 500 µl every 2-3 days. 

7. Observe the agarose under a light microscope for colonies; colonies 

usually appear in about a week’s time. 

8. The number of colonies in an entire well can be quantified in triplicates 

accordingly.  
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Immunohistochemistry for ALDH1 

Materials  Required: 

1. ALDH1 antibody (BD Biosciences, 61195; Franklin Lakes, NJ) 

2. Deparaffinizing materials (Xylene, Ethanol) 

3. Dako Retrieval Solution 10X (Dako S1699; Carpinteria, CA) 

4. Background Sniper – (Biocare Medical BS99H; Concord, CA) 

5. DAB/AEC Chromogen kits (DAB - DS854H; AEC - RAEC-810; Biocare 

Medical, Concord, CA) 

6. Secondary antibody MACH 3 (MP53G, MH53G, Biocare Medical, 

Concord, CA) 

Procedure: 

1. Bake paraffin embedded sections at 37
.
C for 30 minutes 

2. Bake slides at 59
.
C for 30 minutes. 

3. Xylene 100% - 10 minutes, 2 times. (Please do not change the order of 

the xylenes if being re-used.), check for complete removal of paraffin. 

4. Ethanol – 100% 5 minutes, 2 times 

5. Ethanol -  95% 3 minutes, 1 time 

6. Ethanol -  75% 5 dips 

7. Rinse the slides thoroughly for 5 minutes, 2 times in DDW. 

8. Wash in 1X PBS for 5 minutes. 
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9. Antigen Retrieval Solution: Immerse slides in Dako Retrieval Solution 1X 

solution in a water bath.  

Note: it helps to do slow heating from about 45
.
C – to a maximum of 98

.
C 

over a period of 40-45 minutes. Please do not let the tissue sections to 

boil. 

10. Let the slides cool at room temperature for 20-30 minutes.  

11. Rinse the slides in distilled water. 

12. Circle the tissues with a PAP pen to contain the reagents. 

13. To block for non-specific binding, incubate in 3% hydrogen peroxidase 

(prepared in methanol or PBS), for 6-8 minutes, once. 

14. Rinse the slides in PBS, 5 minutes. 

15. Background Sniper, incubate for 6-8 minutes, once.  

Note: not strictly necessary, use if the tissue sections have too much 

background). 

16. Wash slides with PBS, 5 minutes, twice. 

17. Incubate slides in primary antibody, ALDH1 (1:50) in PBS/diluent solutions 

overnight at 4
.
C.  

 Note: If tissue sections have a good staining, you can go up to 1:100 or 

1:200, but in most hard to stain tissue sections, 1:50 works best.  

18. The next day, wash slides in PBS, 2 times for 10 minutes, with gentle 

shaking. 
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19.  Secondary antibody: mouse probe (room temperature for 20 minutes). 

We use MACH 3 linker (MP530G) from Biocare medical. 

20. Wash 2 times, 10 minutes, in PBS with shaking. 

21.  Mouse-HRP polymer, room temperature for 20 minutes. We use MACH 3 

HRP polymer (MH530G) from Biocare Medical. 

22. Wash slides with PBS, twice 10 minutes, shaking. 

23. Color development (DAB or AEC) 

DAB substrate 1 ml + 1 drop DAB chromogen (Biocare Medical) 

AEC buffer 5 ml + 1 drop Solutions A, B, C (Romulin AEC kit, RAEC 810L) 

Note: AEC and DAB are carcinogenic, please be careful while handling 

them. 

24. Control the staining in the reaction, check for optimal staining in the 

microscope. Stop the reaction immersing the slides in DDW. 

25. Counterstain with Hematoxylin in quick dips and wash with flowing water 

for 15-20 minutes. 

26. Mount the slides with aqueous mounting media and cover with cover 

glass. 
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Preparation of slides for Confocal Imaging 

Materials Required: 

1. Zenon Alexafluor 488 (Molecular Probes, Z25102; Invitrogen) 

2. Zenon Alexafluor 594 (Molecular Probes, Z25007; Invitrogen) 

3. Prolong Gold labeling with DAPI- antifade (Invitrogen P36931) 

4. Deparaffinizing materials (Xylene, Ethanol) 

5. Dako Retrieval Solution 10X (Dako S1699; Carpinteria, CA) 

6. Background Sniper – (Biocare Medical BS99H; Concord, CA) 

7. Antibodies to proteins of interest 

ALDH1     (BD Biosciences, 61195; Franklin Lakes, NJ) 

CD44       (abcam, 51037; San Francisco, CA) 

P-STAT3 (santa cruz, 7993-R; Santa Cruz, CA) 

IL-6R       (abcam, 47173; San Francisco, CA) 

Gp130     (abcam, 59389; San Francisco, CA) 

Procedure: 

1. Bake paraffin embedded sections at 37
.
C for 30 minutes 

2. Bake slides at 59
.
C for 30 minutes. 

3. Xylene 100% - 10 minutes, 2 washes. (Please do not change the order of 

the xylenes if being re-used.), check for complete removal of paraffin. 

4. Ethanol – 100% 5 minutes, 2 washes 

5. Ethanol -  95% 3 minutes, 1 wash 
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6. Ethanol -  75% 5 dips 

7. Rinse the slides thoroughly for 5 minutes, 2 times 

8. Antigen Retrieval Solution: Immerse slides in Dako Retrieval Solution 1X 

solution in a water bath.  

Note: it helps to do slow heating from about 45
.
C – to a maximum of 95

.
-

98
.
C over a period of 40-45 minutes. Please do not let the tissue sections 

to boil. 

9. Let the slides cool at room temperature for 20-30 minutes.  

10. Rinse the slides in distilled water. 

11. To block for non-specific binding, wash in 3% hydrogen peroxidase 

(prepared in methanol and not water), for 6-8 minutes, once. 

12. Rinse the slides in PBS, 5 minutes. 

13. Background Sniper, wash for 6-8 minutes, once.  

Note: not strictly necessary, use if the tissue sections have too much 

background). 

14. Wash slides with PBS, 5 minutes, twice. 

15. Prepare the Zenon complex for labeling antibodies. 

a) Prepare 1 µg of the antibody of interest in PBS, (to approximately 10 µl 

of PBS). 

b) Add 5 µl of the Zenon human IgG labeling reagent A to the antibody 

solution. 
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Note:i) Please take care that if the antibody is mouse, the Zenon labeling is 

mouse as well 

        ii) For different antibodies, use different colors and species of Zenon. 

For example, ALDH1 is mouse antibody and CD44 is rabbit antibody. Use 

green mouse for ALDH1 and red rabbit for CD44 from the Zenon labeling 

kit. 

c) Incubate the mixture for 5 minutes in room temperature  

d) Add 5 µl of the appropriate Component B of the Zenon Labeling kit. 

e) Incubate the mixture for 5 minutes in room temperature.  

Note: The Zenon reagents are fluorochromes; light sensitive, cover the 

tube with aluminium foil during incubation. 

f) The complexes are ready to use. Use within 30 minutes. 

16. Dilute this mixture at the appropriate dilutions (for ALDH1, 1:50; CD44, 

1:200, P-STAT3, 1:200; IL-6R, 1:200, gp130, 1:200) in PBS or diluents 

and add it to the tissue sections. 

17. Cover the slides holder with Aluminium foil (the reagents are light 

sensitive) and incubate in 4
.
C overnight. 

18. The next day, wash the slides with PBS for 15 minutes three times. 

19. Mount the slides with Prolong Gold with DAPI and store in -20C until 

imaging. 
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General Instructions: 

1. The concentration of the antibody needs to be standardized for 

individual antibodies. 

2. Imaging needs to be done as soon as possible. 

3. Depending on the application, use the appropriate scope for confocal. 

For example, single cell co-localizations are best done with the Leica 

Inverted Microscope and the Z-stacking images to study several 

microns of thickness with the Zeiss confocal. 


