
Methods and Tools for Visual Analytics

by

Hao Zhou

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Statistics
(Statistics)

in The University of Michigan
2011

Doctoral Committee:

Professor George Michailidis, Chair
Professor Hosagrahar V. Jagadish
Associate Professor Kerby A Shedden
Associate Professor Ji Zhu



c⃝ Hao Zhou 2011

All Rights Reserved



To my parents

ii



ACKNOWLEDGEMENTS

First and foremost, I would like to thank my advisor, Professor George Michailidis.

He has unstintingly shared his fantastic excitement about, and knowledge of, statis-

tical methods and visual analytics. He has introduced me to these beautiful subjects.

In addition, he has kept me motivated throughout my graduate school years.

I have received generous support from Professor Hosagrahar V. Jagadish, who also

guided me to work on the visual analytic algebra project. Discussions with him and

his student, Anna A. Shaverdian, have substantially deepened my understanding of

the system design. All of these are crucial in shaping my thesis.

iii



TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

CHAPTER

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

II. Visual Analytic Algebra . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Graph Analysis . . . . . . . . . . . . . . . . . . . . 7
2.2.2 Graph Visualization Tools . . . . . . . . . . . . . . 8
2.2.3 Visual Analytic Frameworks . . . . . . . . . . . . . 8

2.3 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.1 Structure . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.2 Attributes . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.3 Composition Functions . . . . . . . . . . . . . . . . 10

2.4 Predicate Language . . . . . . . . . . . . . . . . . . . . . . . 11
2.4.1 Predicate . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4.2 Witness . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.3 Graph Matching Function . . . . . . . . . . . . . . 16

2.5 Operators and Important Functions . . . . . . . . . . . . . . 18
2.5.1 Selection . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5.2 Aggregation . . . . . . . . . . . . . . . . . . . . . . 21
2.5.3 Labeling function . . . . . . . . . . . . . . . . . . . 23
2.5.4 Visualization function . . . . . . . . . . . . . . . . . 26

2.6 Implementation Example in Cytoscape . . . . . . . . . . . . . 29

iv



2.6.1 Graph Model . . . . . . . . . . . . . . . . . . . . . . 29
2.6.2 Predicate Language . . . . . . . . . . . . . . . . . . 30
2.6.3 Selection . . . . . . . . . . . . . . . . . . . . . . . . 32
2.6.4 Aggregation . . . . . . . . . . . . . . . . . . . . . . 34

2.7 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.7.1 The Reproducibility Metric . . . . . . . . . . . . . . 36
2.7.2 Procedure . . . . . . . . . . . . . . . . . . . . . . . 37
2.7.3 Results and Analysis . . . . . . . . . . . . . . . . . 38

2.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

III. Querying Graphs with Uncertain Predicates . . . . . . . . . . 41

3.1 Introduction to Uncertainty model . . . . . . . . . . . . . . . 41
3.2 Uncertain Predicate Language . . . . . . . . . . . . . . . . . 42
3.3 Process of Turning an Uncertain Query to an Exact One . . . 42
3.4 Solution Generation . . . . . . . . . . . . . . . . . . . . . . . 45
3.5 Uncertainty Model for Complex Structural Predicates . . . . 48
3.6 Visual Analytic Work Process . . . . . . . . . . . . . . . . . . 56

3.6.1 Model for Composition of Operators . . . . . . . . . 56
3.6.2 Social Networking Application . . . . . . . . . . . . 58

3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

IV. Visualizing High Dimensional Data with Network Constraints 66

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.3 Network Penalized Matrix Decomposition Approach for Di-

mension Reduction Method . . . . . . . . . . . . . . . . . . . 69
4.3.1 Network Penalized Matrix Decomposition . . . . . . 69
4.3.2 Estimation and Algorithm . . . . . . . . . . . . . . 71
4.3.3 Illustration of the Network Penalized Singular Value

Decomposition . . . . . . . . . . . . . . . . . . . . . 73
4.4 Movie Rating Application . . . . . . . . . . . . . . . . . . . . 75
4.5 Actor/Actress Application . . . . . . . . . . . . . . . . . . . . 79
4.6 Gene Expression Application . . . . . . . . . . . . . . . . . . 84
4.7 Discussion and Future Work . . . . . . . . . . . . . . . . . . 87

V. Multi-task Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.1 Introduction Multi-task Learning . . . . . . . . . . . . . . . . 89
5.2 Multi-task Learning Model . . . . . . . . . . . . . . . . . . . 94

5.2.1 Weight Matrix . . . . . . . . . . . . . . . . . . . . . 95
5.2.2 Estimation . . . . . . . . . . . . . . . . . . . . . . . 97

5.3 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.3.1 Prediction Performance . . . . . . . . . . . . . . . . 100

v



5.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.5 Conclusions and Future Work . . . . . . . . . . . . . . . . . . 109

VI. Conclusion and Discussion of Future Work . . . . . . . . . . . 111

6.1 Network Data Analysis and Practical Tools . . . . . . . . . . 111
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

vi



LIST OF FIGURES

Figure

2.1 The figure shows a simple predicate corresponding to the cross-referencing
example. Conditions are placed upon the attributes on the nodes. It
is possible for one condition to reference the attribute on another node. 13

2.2 These graph structures satisfy the predicate shown in Figure 2.1.
They are two possible instantiations of the predicate. . . . . . . . . 13

2.3 The two predicates show similar graph structures. However, the fig-
ure on the left has an excluded edge between nodes 2 and 3. Figure
2.4 shows the result of this excluded edge on possible witnesses given
an input graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 The figure above is an input graph. Given the two predicates shown
in Figure 2.3 we describe the different witnesses existing in this input
graph. The sets of nodes which induce a witness to the excluded edge
predicate are: 1,2,3 and 2,4,3. The predicate without the excluded
edge results has more witnesses: 1,2,3; 1,2,4; 1,4,3; 2,4,3; and more.
Since there is an edge between node 1 and 4, this the witness 1,2,4
does not satisfy the predicate with the excluded edge. . . . . . . . . 14

2.5 The Graph Matching function takes two inputs: a graph and a pred-
icate. Given these inputs, the graph matching function will find wit-
nesses that satisfy the predicate within the input graph. . . . . . . . 17

vii



2.6 Given the inputs to the graph matching function shown in Figure 2.5,
the function will return three types of output. First there exists one
witness in the input graph. Second, a model witness is returned that
maintains the predicate structure. In this case, the model witness is
identical to the witness. But it is possible the witness contains an
edge between nodes 1 and 3 and still be a witness to the predicate.
The last structure returned is a mapping list for the witness to the
model witness. The mapping list is useful for the analyst to see how
the witness matches the predicate. The mapping list in this case is:
{1 → 6, 2 → 7, 3 → 8, 4 → 9} . . . . . . . . . . . . . . . . . . . . . . 17

2.7 Two input attributed graphs are displayed. If the predicate to the
set selection function is that the graph attribute, average degree, be
equal to 2, then the result from set selection is the input graph shown
on the left. The input graph shown on the right has an average degree
of 1.67. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.8 Given the two input graphs and the predicate shown above, the re-
sulting attributed graph after an element selection call is shown. The
input graph contains a witness for the predicate, namely the witness
induced by the node set (16,17,18,19). The input graph on the right
has no witness for the given predicate. The graph matching function
is called to determine if a witness exists in an input graph. . . . . . 19

2.9 An element aggregation by all structures is performed on the input
graph. The result is the blue nodes are merged into one group, and
the purple nodes into a second group. . . . . . . . . . . . . . . . . . 23

2.10 After an element aggregation by structure, the attributed graph be-
comes only three nodes. . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.11 The three aggregated nodes in the merged graph of Figure 2.10 point
to a model witness. The purpose of this model witness is the retain
the predicate structure, the reason for the aggregation, to understand
the analytical process. . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.12 A labeling function performed on the same input graph and predicate
from the element selection example, Figure 2.8 . . . . . . . . . . . . 26

2.13 A continuous color gradient mapping to node degree is set on the
phone data set from the VAST 2008 Challenge. . . . . . . . . . . . 29

viii



2.14 As part of our Visual Analytic Algebra, we define attributes as either
computed or intrinsic. To allow the user to modify the type of an
attribute we provide the following tab under the Control Panel. The
user can view the attribute labels for nodes, edges, and the graph.
To change the type from intrinsic to computed, the user can drag the
attribute label from one type to another. . . . . . . . . . . . . . . . 30

2.15 The main Cytoscape window is shown. There are three main com-
ponents to its design. The network panel displays the network. The
data panel displays node and edge specific attribute information. The
control panel has several tabs to perform different functions on the
network. One of these tabs is the network tab, that shows all the net-
works opened during a current Cytoscape analysis session. It allows
the user to switch between different networks by saving them under
different names. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.16 The plugin NetMatch allows a user to draw a query. In essence, a
query is a predicate. Attribute conditions are possible on nodes. . . 31

2.17 Using the NetMatch plugin, we show the result of matching the input
graph and the predicate shown in Figure 2.5. The image shown is a
witness found in the input graph. The Node column shows the map-
ping between the witness and the predicate. This figure is an example
implementation of the Predicate, Witness, and Graph Matching fea-
tures in the Visual Analytic Algebra. . . . . . . . . . . . . . . . . . 32

2.18 The Visual Analytic Graph Algebra Plugin also includes an Opera-
tors Tab in the Control Panel. Here the analyst can select a set of
networks, the predicate list, and the operator to apply to the graphs.
In this figure, the set selection Operator has been selected with the
Predicate from Figure 2.1. . . . . . . . . . . . . . . . . . . . . . . . 33

2.19 This figure shows an example implementation of set selection in Cy-
toscape. Once the ”Done” button has been clicked, the result of the
set selection is the set of graphs that satisfy the predicate are opened
and displayed in the Display Panel. In this figure, four graphs are
displayed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.20 This figure shows (1) the input graph, (2) the predicate, and (3) the
results from element selection. . . . . . . . . . . . . . . . . . . . . . 34

2.21 On the Operators Tab, the drop down menu shown has all of the
operators available for easy access for the analyst. . . . . . . . . . . 35

ix



2.22 A Cytoscape Aggregation by All Structures is performed on the input
graph shown on the left. . . . . . . . . . . . . . . . . . . . . . . . . 35

2.23 A Cytoscape Aggregation Per Structures is performed on the input
graph shown on the left. . . . . . . . . . . . . . . . . . . . . . . . . 35

2.24 The graph on the left is what the final graph after the analysis should
be. The graph on the right shows one of the graphs produced during
the user study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.25 Starting from the graph on the left, the graph on the right is created,
the summarized graph. . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1 Example to transform a categorical uncertain predicate into a set of
exact predicates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2 Example of edge certainty. Dash line stands for uncertain connections 44

3.3 Example of element selection based on an uncertain predicate α∗ in
blue. The numbers inside the node denote the id. The numbers
outside the node denote the age attribute’s value. The different col-
ors are used for visualization clarity. The pink represents input and
output graphs. The blue represents predicates. And the light green
represents witnesses. . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4 Example of element aggregation. . . . . . . . . . . . . . . . . . . . . 51

3.5 Example of joint element selection. The selection operator with un-
certain predicate α∗ AND β∗ is split into two. One split selection
has uncertain predicate α∗ and the other has uncertain predicate β∗ 53

3.6 This figure shows that we get the same outputs as the combined
uncertain predicate structure if we split the predicate structure into
α∗ and β∗ and perform two serial element selections. . . . . . . . . 53

x



3.7 This example shows a complicated uncertain predicate structure with
two attribute value uncertainties. Part A shows the uncertain predi-
cate and the attributed graph D. Part B shows the uncertain pred-
icate transform into a set of six exact predicates. Part C shows the
output from exact element selection. Finally, Part D shows the fi-
nal output with its operator distribution set. The numbers inside
the node denote the id. The numbers outside the node denote the
age attribute’s value. The different colors are used for visualization
clarity. The pink represents input and outputs graphs. The blue
represents predicates. And the light green represents outputs from
exact matching problems. . . . . . . . . . . . . . . . . . . . . . . . . 55

3.8 Example of a workflow of an analysis with usage of visualization
function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.9 This figure shows that the suspect criminal network structure for the
Flitter study. Dashlines stand for uncertain connections. . . . . . . 59

3.10 Overview of the Flitter network. . . . . . . . . . . . . . . . . . . . . 60

3.11 Workflow of Flitter study analytic process. . . . . . . . . . . . . . . 60

3.12 Two output graphs from the first selection component. Number in
each node is the user ID. The output probability for the upper graph
is 1

2
and the output probability for the lower graph is 1

3
, because of

the degree differences between two middleman, user 4994 and 4980. 63

4.1 A two-dimensional visual representation of penalty functions. . . . . 71

4.2 Network constraint of the synthetic data set. Color of the node rep-
resents its membership to a connected subgraph. . . . . . . . . . . . 73

4.3 Principal component analysis output for the synthetic data set (Top
Left). Linear discriminant analysis output for the synthetic data
set(Top Right) with overlapping nodes are 9 and 16. NPSVD outputs
with different network constraints (Bottom). . . . . . . . . . . . . . 74

4.4 Movie network contains 558 movies (nodes) from the year of 1916
to 2005. The color of nodes represents as type of each movie. Two
movies are connected, if they share at least one common category. . 76

4.5 Two dimensional PCA projection of movie ratings . . . . . . . . . . 77

4.6 Two dimensional network PSVD display of movie ratings . . . . . . 78

xi



4.7 Two dimensional PCA projection of a set of movie ratings . . . . . 78

4.8 Two dimensional PCA and network PSVD projections of a set of
movie ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.9 Scatterplot matrix for all seven variable in the star dataset. Black
nodes correspond to actors and red nodes correspond to actress in
the dataset. The seven variables are average number of votes, reviews
and critics, average ratings, average revenue from the first opening
weekend, average box-office gross and the total number of movie one
made between 1990 to 1995. . . . . . . . . . . . . . . . . . . . . . . 81

4.10 Network for all 18 stars. The wider the edge width implies more
frequent collaborations. . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.11 PCA output is constructed based only on the seven input variables,
while Network penalized SVD output is constructed based on both
characteristic and structural information . . . . . . . . . . . . . . . 83

4.12 Biological network contains two gene pathways. . . . . . . . . . . . 86

4.13 Two dimensional PCA projection of gene expression levels. . . . . . 86

4.14 Two dimensional NPSVD projection of gene pathway dataset. . . . 87

5.1 Box plot of testing errors over 200 cross validations. Red, green and
blue box plots are constructed based on testing errors from multi-
task, individual training and pooled methods. From the left column
to the right column, signal to noise ratio decreases. . . . . . . . . . 101

5.2 Bootstrapping results from both multi-task and individual methods
for some of estimated parameters. . . . . . . . . . . . . . . . . . . . 102

5.3 Box plot of testing errors over 200 cross validations under different
generalized signal to noise ratios. Red, green and blue box plots
are constructed based on testing errors from multi-task, individual
training and pooled methods. The estimated generalized signal to
noise ratios range from 5 to 50. . . . . . . . . . . . . . . . . . . . . 103

5.4 Box plot of testing errors over 200 cross validations from weight
with white noise simulation. Red, green and blue box plots are con-
structed based on testing errors from multi-task, individual training
and pooled methods. . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.5 Box plot of testing errors from 514 users over 50 cross validations. . 107

xii



5.6 Closer look at testing errors from 514 users for multi-task and indi-
vidual learning methods. . . . . . . . . . . . . . . . . . . . . . . . . 108

5.7 The edge weight distribution of movie preference network. . . . . . 108

5.8 Movie Preference Network, where nodes are users and edges are sim-
ilar movie preferences.From the top network to the bottom network,
we select edges with high similarity level. Node color stands for dif-
ferent age groups (below age 25 = yellow, 25- 35 age group = orange
, above 45 group = red). . . . . . . . . . . . . . . . . . . . . . . . . 110

xiii



ABSTRACT

Methods and Tools for Visual Analytics

by

Hao Zhou

Chair: George Michailidis

Technological advances have led to a proliferation of data characterized by a complex

structure; namely, high-dimensional attribute information complemented by relation-

ships between the objects or even the attributes.

Classical data mining techniques usually explore the attribute space, while net-

work analytic techniques focus on the relationships, usually expressed in the form

of a graph. However, visualization techniques offer the possibility to gain useful in-

sight through appropriate graphical displays coupled with data mining and network

analytic techniques.

In this thesis, we study various topics of the visual analytic process. Specifically,

in chapter 2, we propose a visual analytic algebra geared towards attributed graphs.

The algebra defines a universal language for graph data manipulations during the

visual analytic process and allows documentation and reproducibility. In chapter 3,

we extend the algebra framework to address the uncertain querying problem. The

algebra’s operators are illustrated on a number of synthetic and real data sets, im-

plemented in an existing visualization system (Cytoscape) and validated through a

small user study.

xiv



In chapter 4, we introduce a dimension reduction technique that through a reg-

ularization framework incorporates network information either on the objects or the

attributes. The technique is illustrated on a number of real world applications.

Finally, in the last part of the thesis, we present a multi-task generalized linear

model that improves the learning of a single task (problem) by utilizing information

from connected/similar tasks through a shared representation. We present an algo-

rithm for estimating the parameters of the problem efficiently and illustrate it on a

movie ratings data set.
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CHAPTER I

Introduction

As technology advances daily, demands for processing complex high dimensional

graphical data become increasingly needed in various fields. For example, in the study

of social computing network, network structure contains communication information

among user, while user logs provide addition characteristic information on the indi-

vidual level. Moreover, in many biology studies, researchers collect expression levels

for genes. The tested genes are often functionally related, while patients may be

blood-related in the study of inherited diseases.

In recent years, many studies have shown that a mixture of human and machine

intelligence can often be much more effective than either on alone. Since visualization

is the most intuitive and direct way of learning for data, visual analytic, which is the

science of analytic reasoning through visual interaction, has received a lot of attention

as evidenced by large number of tools and algorithms developed for this purpose.

In order to use these tools and algorithms, one often needs to go through a growing

body of literature on visual analytic systems. In addition, it is difficult to find precise

documentation for how a visualization was created to display results of a given study;

therefore, it creates limitation on replicating others’ work. Furthermore, many visual

analytic tools are centered on a particular type of application, such as biological data,

then there is no clear translation technique to replicate the tool’s benefits and function

1



for other applications. The underlying cause for all these problems is the lack of a

systematic method to design graph tools. There is no universal language that defines

the basic graph data manipulation actions in visual analytics.

In the second chapter of the thesis, we present a visual analytic graph algebraic

method to solve those problems. The visual analytic graph algebra is part of a frame-

work with the following components:(1) a formalized graph model, (2) an expressive

predicate language, and (3) an algebra with associated operators and functions. The

purpose of the operators is to manipulate the raw graph data during a visual analytic

process. The selection operator zooms into a region of interest. The aggregation op-

erator manipulates the data resolution with super nodes.The labeling function tracks

notable information collected during an analysis, which is useful during lengthy anal-

ysis. And finally, the Visual function incorporates the interactive aspect of visual

analytics in a work flow, which makes a visualization creation stage as flexible as the

data manipulation stage. The benefits of an algebra are now we can systematically

replicate,compare, and assess graph visual analytics. Thus, a visual analytic algebra

facilitates the production of graph information analysis. To show the practical us-

age of the algebra, we incorporate it into an existing graph analysis tool, Cytoscape.

Moreover, we demonstrate the uncertainty model on a synthetical data analysis. Fi-

nally, we conduct a user study to examine its effectiveness in visual analytic work

reproducibility.

In the third chapter, we propose an uncertain model based on the existing algebraic

framework to handle uncertainty in the querying workflow. It is constructed from a

user defined probability set based on the given uncertain query, where the probability

describes how well the given outputs capture the user’s target structure. Instead of

only dealing a single uncertain query analytic step, it provides the user a systematic

way of ranking all outputs for a multi-step visual analytic process.

Before applying any sophisticated statistical learning method to a visual analytic

2



process, one should always visualize the data to have a basic understanding of the

given information. There are many existing visualization methods, for example, Scat-

ter plot, Principle Component Analysis and many classification methods. Scatter plot

provides only 2-dimensional view of data at a time. It is often time consuming and

misleading, when one tries to work with high dimensional data. Principle component

analysis projects high dimensional data information into a low dimensional space by

maximizing sample variance. It often give a quick summarization of the high dimen-

sional information, however, it cannot capture any relationship among all observations

by PCA’s independent assumption. If the relationship among all observation can be

fully captured by a group label, many existing classification method can be used for

the visualization purpose. For example, linear discriminate analysis projects the high

dimensional data information into a low dimensional space while preserving between

group separations. When the relationships within the dataset become even more com-

plicated, which cannot be explained by a single grouping label, existing dimension

reduction methods fail to capture the entire complex data information. Some existing

visual analytic systems tries to solve this problem by introducing a user interactive

feature where one can visualize and work with multiple graphs at once; however, such

attempt is also problematic due to the physical limitation of the screen space.

In the fourth chapter of the thesis, we introduce a dimension reduction method

based on regular Singular Value Decomposition to address the problem of visualizing

complex high dimensional data structures containing information among observations

and multiple characteristics. Our approach is to incorporate network information by

using penalty functions. We put connected observations together and let them have

similar coordinates in the constructed low dimensional space. We demonstrate the

performance of the network penalized singular value decomposition method on both

synthetic data set and real world applications.

In the process of a visual analysis, we not only try to understand the underlying

3



relationship within the given information, but also predicate behaviors for the future

application. Existing machine learning methods are often used to solve the predi-

cation problem. Besides of observing a single high dimensional variable to describe

characteristic information for each node/object in the network, we obtain multiple

observations for each object, such as repeating measurements of the same object. In

usual machine learning setup, we treat all information on each node as an independent

task and build a leaner to understand the behavior for the single task. However, since

in our case, we have the information of relationship among all nodes, the additional

structure has been successfully used to improve the prediction model.

In the last chapter of the thesis, we introduce a multi-task machine learning

method based on existing generalized linear model. Instead of treating each node

or subject as a single independent learning task that was done by our predeces-

sors, our contribution is constructing a learning model for each task based on all

related/connected tasks. We demonstrate the performance of our model by compar-

ing the predication error rate between the generalized linear multi-task model to other

existing approaches on both synthetic dataset and real world applications. Last, we

adopt bootstrapping method for the statistical inference.
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CHAPTER II

Visual Analytic Algebra

2.1 Introduction

Visual Analytics is the science of analytical reasoning through visual interaction.

In recent years there has been growing interest in this field as people recognize that a

mix of human and machine intelligence can often be much more effective than either

one alone. Graphs are ubiquitous in many scientific fields: high-throughput “omic”

sciences use graphs to study pathways, computer networks use graphs to analyze

communications, and almost everyone is involved in the explosive growth of online

social networks. Graphs are also particularly amenable to visual representation.

It is no surprise that graph visual analytics has received a lot of attention as

evidenced by the large number of tools and algorithms developed for this purpose.

(See Related Work Section below). Using these tools and algorithms, there is also

a growing body of literature describing both visual analytics systems, as well as

problems successfully addressed through visual analytics. These systems can be very

informative, but usually constrain the reader in realizing their full value for several

reasons, listed below.

One problem is assessing the completeness of a tool’s exploration abilities. Science

has not put a bound on an analyst’s ability to explore graph data and produce

findings. But, if the basic functions to manipulate and represent data during the
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analysis is enumerated, then assessing which tool is ”better” in an exploration task

is possible because then the functions each tool offers can be compared.

Another problem is replication, an important tenet of science. For example, if one

tool is created for a biological application, there is no universal systematic way to

replicate it for other types of applications.

The underlying cause for these problems is the lack of a systematic method to

design graph tools. There is no common language that defines the basic graph data

manipulation actions in visual analytics. Towards this goal, we present a visual

analytic graph algebra to meet this void. The visual analytic graph algebra is part of

a framework with the following components: (1) a formalized graph model, (2) graph

data manipulation operations, and (3) an expressive predicate language.

The purpose of the operators is to manipulate the raw graph data before applying

a visualization scheme. The selection operator zooms into a region of interest. The

aggregation operator manipulates the data resolution with supernodes. The labeling

function tracks information, which is useful during lengthy analysis. And finally, the

visual function incorporates the interactive aspect of visual analytics in a work flow,

which makes visualization as flexible as the data manipulation stage.

The benefits of an algebra are that one can systematically replicate, compare,

and assess different graph visual analytics. Thus, a visual analytic algebra facilitates

the production of graph information analysis. Based on the existing algebra, we also

introduce an uncertainty model to handle queries. We propose a systematical ranking

of outputs for an analytic process.

Further to make the algebra suitable for application, we present an implementation

in Cytoscape (Collaboration (2006)), a graph visualization tool. This implementation

is one example of how to implement the algebra. We will test the algebra’s abilities

to replicate and share graph analysis through a user study.

The remainder of the chapter is structured as follows: We begin with a related
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work section, 2.2. Then we describe the graph model in 2.3. Then we present the

predicate language and operators from 2.4 through 2.5. Last, we demonstrate an

implementation of the algebra in Section 2.6 and present the user study in Section

2.7.

2.2 Related Work

Our work spans related areas in graph analysis and visualization. We briefly

survey selected recent works and relate them to the visual analytic graph algebra.

2.2.1 Graph Analysis

Several tools and methods have been created for analyzing graph data sets. One

method is to capture the local topology of a graph as a signature to aid exploration

of complex networks in Wong et al. (2006). Other works use semantic and struc-

tural abstractions to analyze social networks as in Henry et al. (2007). In regards to

interactive graph analysis, Tulip (2004) presents ways to select subgraphs and ma-

nipulate the graph to find interesting relationships. There are also systems, such as

in Auber et al. (2003), that investigate different layouts to display complex networks,

their nodes, edges, and attributes effectively for analysis. A key point to note is that

while there are several visual analytic tools for graph analysis, there is not a formal

foundation to develop these systems.

Often to make sense of raw data, aggregating nodes into supernodes and edges

helps visualize new patterns as stated in Holten (2006). We provide an aggregation

operator which maintains the hierarchy of the aggregated nodes through descriptive

attributes and edges to the original structure. The user decides which visualization

scheme to apply to this transformed data. At the data level, no information is lost

to an aggregate supernode.
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2.2.2 Graph Visualization Tools

There are several noteworthy visualization tools for data analysis. For example,

Cytoscape (Collaboration (2006)) is primarily designed for exploring biological net-

works. With a collection of user-community created plug-in tools, Cytoscape is able

to do graph querying on basic attribute values and creation of new graphs based on

selections. Other popular graphical analysis tools include Pajek (Batagelj and Mr-

var (2009)). Pajek provides several predefined metrics for nodes and edges. This

functionality is similar to our composition functions. Guess has a built in query lan-

guage into its graph visualization tool. Tableau by Hanrahan (2006) uses a structured

query language for data visualization of relational databases, cubes, and spreadsheets.

ZAME (Elmqvist et al. (2008a)) is a visualization tool for exploring graphs at a scale

of millions of nodes and edges. As pointed out above, our algebra incorporates the

functionality necessary to manipulate, reduce, and analyze the graph. Such opera-

tions can directly communicate with other visualization tools through visualization

operators to facilitate analysis of networks.

2.2.3 Visual Analytic Frameworks

Recently there has been attention to the incomplete visual taxonomy (Laramee

and Kosara (2007)) available to visual analysts. Also, there is a challenge in the

visual analytic community to develop frameworks and languages for visual analytic

systems, such as Heer et al. (2005), Schneidewind and Ziegler (2006), as well as build-

ing statistical analysis tools for visualization systems in Thomas and Cook (2005). A

number of approaches have been introduced to address the issue of coordinated mul-

tiple visualizations of data sets (Stasko et al. (2007), Weaver (2008)). Coordinated

view systems are independent to the visual analytic algebra. Our aim is to provide

a formal visual analytic model to manipulate graph representations combined with

interactive visualization techniques. Since the scope of visual analytics includes raw
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data manipulation, there needs to be a bridge between the data manipulation and

visualization steps.

2.3 Model

In this section we describe the attributed graph structure, the computed and

intrinsic attributes. We also define the compositional functions, which are used to

create computed attributes.

2.3.1 Structure

The central object of interest is an attributed graph, defined as D = [G,X],

where G = (V,E) denotes a graph with vertex set V ∈ V , edge set E, and attribute

structure X. Each node v ∈ V has a unique id attribute with a value assigned by an

id label function λ. For example,λ(V ) = i is a node whose id = i. Since the network

can be multi-edge, the edge set can be described with E ⊆ (V × V,N). Each edge

can be referenced uniquely by its incident nodes and the identification value (e.g.

ei,j,n = (vi, vj, n)). In the case of a simple network, we use ei,j.

The attribute structure X associated with graph G has three components: X =

[XV , XE, XG], where XV contains node attributes (e.g. in- and out-degree), XE edge

attributes (e.g. edge betweenness, direction) andXG graph attributes (e.g. diameter).

2.3.2 Attributes

Each attribute has a label, type, and a value. The label denotes the name of the

attribute. For example: color, last name, and age are example labels with possible

values green, Smith, and 42, respectively.

The attributes can be either an intrinsic or a computed type. Intrinsic attributes

are independent features that stay the same even if other features or the graph topol-

ogy changes. Intrinsic node attribute i can take value in R,N or any predefined value

9



sets. The same applies to edge and graph intrinsic attributes.

Computed attributes are features that change as a graph structure changes. We

give an example network to illustrate the structure of an attributed graph.

Example II.1. (Cell Phone Network) In the dataset from the VAST 2008 Challenge

in Grinstein et al. (2008), a node represents a cell phone and an edge represents a call

between two phones. This is a multi-edge directed network. The attributed graph for

this data set is: Dphones = {G = (V,E), X = (XV = Xphone id, XE = (Xdate, Xduration,

Xtower, Xdirection of call), XG = ())}.

The attributes in X are all intrinsic attributes describing features of their respec-

tive elements. The phone id is the cell phone’s unique identification number. The

edges have several attributes including the date, duration, cell phone tower, and the

direction in which the call was made. The direction attribute represents the directed

nature of this graph.

2.3.3 Composition Functions

To obtain computed attributes there exists a collection of composition functions

F . Since there is a variety of user-defined composition functions, we focus only on

their core requirements. A composition function must combine attributes from an

input set and generate uniquely named computed attributes output set. If a function

satisfies these requirements, we consider it in the class of composition functions.

For any f ∈ F , we can express it as f : Q|∗|×· · ·×Q|∗| → P |∗| with ∗ ∈ {V,E,G}

where Q can take a value in R,N or intrinsic attribute space S and P can take a

value in R,N, or any predefined value sets.

Without loss of generality, we list some composition functions.

• 0 or 1 indicator function is a composition function with Q = S and P ∈ {0, 1}.

• Numerical aggregation functions, such as sum, average, and min/max, over a
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collection of attributes are composition functions.

• A function of composition functions is also a composition function; therefore,

the class of composition functions is closed.

The following example shows how to construct a composition function to produce

degree as listed in Costa et al. (2007), which is a node computed attribute.

Example II.2. (Counting Function) Given a simple edge network, a possible set of

composition functions to compute the degree of a node, vi, given its neighbor list Lvi

is

COUNT(Lvi) =
∑

vj∈V 1{vj∈Lvi} summation over a list of indicator functions.

The neighbor list can be constructed based on graph information G = (V,E) where

Lvi = ∪j{vj|ei,j ∈ E}
∪

∪k{vk|ek,i ∈ E}. �

2.4 Predicate Language

A predicate is essentially a query description. It allows the analyst to specify the

structural and attribute conditions on the graph object she would like to manipulate.

The answer to a predicate is a witness. To find a witness in the graph, we use a graph

matching function, γ. These components of the predicate language are the basis for

graph manipulation and will be used as sub-functions and inputs to the graph algebra

operators.

2.4.1 Predicate

A necessary function in any analytical graph tool is the ability for an analyst

to express the graph structure she would like to further examine or manipulate. A

predicate is such structure; specifically, it is a graph structure with conditions on

attributes.
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Formally, a predicate tuple is p = (V,E,XV ,XE,XG, !E). The XV ,XE, and XG

terms in the predicate are condition lists on the attribute values in XV , XE, XG,

respectively. The form for a condition in XV is Xv.a.i op value where Xv.a.i is the

attribute a for node i ∈ V , and op is any relational operator. Similarly the form for a

condition in XE and XG is written as Xe.b,j op value and Xg.c op value, respectively,

where j ∈ E, b is an edge attribute, and c is a graph attribute.

The value is a constant or a reference to any attribute’s value, irrespective of the

attribute type (node, edge, or graph). Wildcards are allowed in value.

The form for a node attribute reference for attribute x on node k ∈ V is Xv.x.k.

Note that k is any node in V , k ̸= i, the node on which we place the condition. An

edge attribute reference for attribute y on edge j ∈ E is written as Xe.y.j. Finally,

a graph attribute reference for attribute z is written as Xg.z. The following is an

example predicate showing attribute conditions referencing other nodes.

Example II.3. (Cross-Referencing) To express the predicate shown in Figure 2.1

where a node with Phone id = 200 and degree = 40 has two neighbors. The

neighbors’ degree is described such that one has a higher degree than the other. The

predicate tuple is p = (V = (v1, v2, v3), E = (e1,2, e1,3), XV = ((Xv.degree.1 = 40),

(Xv.Phone id.1 = 200), (Xv.degree.3 > Xv.degree.2)), XE, XG, !E). �

In the tuple !E is the excluded edge list. An exclusion on edge e specifies that

e must not exist in the graph G. Furthermore, if G is defined on a “universe” G′,

then the excluded edge must also not exist in G′. What this universe should be is

usually clear in context, typically an initial input graph before any selections have

been applied. Where the universe is not clear, we will choose it to be the graph G

itself. Note that !E is subset of the complement of E.

Definition II.4. (Exclusion) Given predicate ρ = (V,E, XV , XE, XG, !E), and a

graph G = (VG, EG). If ei,j ∈!E then ei,j ̸∈ EG. Furthermore, in a closed universe U ,

∀S where G ⊆ S = (VS, ES) then ei,j ̸∈ ES. �
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Figure 2.1: The figure shows a simple predicate corresponding to the cross-referencing
example. Conditions are placed upon the attributes on the nodes. It is
possible for one condition to reference the attribute on another node.

Figure 2.2: These graph structures satisfy the predicate shown in Figure 2.1. They
are two possible instantiations of the predicate.

Multiple conditions on an attribute express ranges as the following example shows.

Example II.5. (Ranges) To express the range that node attribute a must be between

values x and y, we use the following conditions: {(Xv.a.i ≤ x), (Xv.a.i ≥ y)} ∈ XV . �

2.4.2 Witness

In the previous section we described how to define a predicate. A predicate can

be thought of as the object of a question. The actual realization of a predicate in an

input graph is called a witness.

Definition II.6. (Witness) Given an attributed graph D = [G = (V , E), X = (XV ,

XE, XG)] and a predicate p = (N,M , XN , XM ,XG, !M), D is a witness to p if there
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Figure 2.3: The two predicates show similar graph structures. However, the figure on
the left has an excluded edge between nodes 2 and 3. Figure 2.4 shows the
result of this excluded edge on possible witnesses given an input graph.

Figure 2.4: The figure above is an input graph. Given the two predicates shown in
Figure 2.3 we describe the different witnesses existing in this input graph.
The sets of nodes which induce a witness to the excluded edge predicate
are: 1,2,3 and 2,4,3. The predicate without the excluded edge results has
more witnesses: 1,2,3; 1,2,4; 1,4,3; 2,4,3; and more. Since there is an edge
between node 1 and 4, this the witness 1,2,4 does not satisfy the predicate
with the excluded edge.

is a bijection mapping function, fD,p, between the vertices in V and N such that,

• ei,j,k = ((vi, vj), k) ∈ E if and only if mi,j,l = ((ni, nj), l) ∈ M where vi =

fD,p(ni) and vj = fD,p(nj) and k = fD,p(l)

• ∀(Xn.i.x op value) ∈ XN , (Xv.fD,p(i).x op value) holds in D, where i ∈ N and x

is a node attribute label.

and an injection edge attribute assignment function, hD,p, between the edges E

and M such that ∀mi,j,k = ((ni, nj), k) ∈ M

• ∀(Xm.j.y op value) ∈ XM , (Xe.hD,p(j).y op value) holds in D, where j ∈ M and y

is an edge attribute label.

the conditions on XG, must be satisfied in XG,
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• ∀(Xg.z op value) ∈ XG, (Xg.z op value) holds in D, where z is a graph attribute

label.

and finally, if in a closed universe U , ∃ D′ = [G′ = (V ′, E ′), X ′ = (XV ′ , XE′ , XG′)]

such that D ⊆ D′

• if mi,j,k = ((ni, nj), k) ∈!E then e′i,j,w = ((v′i, v
′
j), w) ̸∈ E ′ where v′i = fD′,p(ni)

and v′j = fD′,p(nj). �

Both structural and attribute properties of D, and the predicate, p, must match

for D to be a witness of p. There must be a bijective mapping between the vertices

and edges in the predicate structure and the witness. In other words, there must be

an isomorphic matching between the node and edge identifications.

We show some examples of predicates, witnesses, and excluded edges.

Example II.7. (Witnesses) Figure 2.2 shows two example witnesses for the predicate

in Figure 2.1. Both satisfy the structural and attribute conditions although these

witnesses clearly are not identical graphs.

Example II.8. (Predicate with Excluded Edges) Figure 2.3 shows two predicates.

The predicate on the left has an excluded edge between nodes 2 and 3. This pred-

icate is written as p1 = (V = (v1, v2, v3), E = (e1,2, e1,3),XV ,XE,XG, !E = (e2,3).

Note that an edge is denoted with two indexes when the third one is not relevant.

The predicate on the right is a similar predicate but does not have an exclusion

between nodes 2 and 3. This predicate is written as p2 = (V = (v1, v2, v3), E =

(e1,2, e1,3),XV ,XE,XG, !E = ()). �

Example II.9. (Excluded Edges) The difference between predicates shown in Figure

2.3 can be seen by the supergraph in Figure 2.4. The nodes in the input graph that

induce witnesses to the predicate with an excluded edge are: {1, 2, 3} and {2, 4, 3}.

There are many more sets of nodes that induce witnesses to the predicate without
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the excluded edge. For example, a few are: {1, 2, 3}; {1, 2, 4}; {1, 4, 3}; and {2, 4, 3}.

Due to the edge between nodes 1 and 4, the subgraph induced by the set of nodes

{1, 2, 4} cannot be a witness to the predicate with the excluded edge. �

2.4.3 Graph Matching Function

The process of pairing a predicate to a witness is called graph matching. Graph

matching is a well-studied problem in graph analysis. In terms of Visual Analytics,

it is useful to see how a predicate matches a witness in an input graph. For example,

a predicate might have many witnesses in an input graph. How do these witnesses

compare to each other? Where are these witnesses in relation to each other in the

input graph? By knowing the details of how a witness matches a predicate, an analyst

can answer similar questions.

In this section we describe a graph matching function, γ. The specific graph

isomorphism algorithm can be replaced with any state-of-the-art algorithm. We focus

on the input and the outputs of the graph matching function.

Definition II.10. Given an attributed graph D and a predicate p, graph matching

γ outputs

• A list of witnesses found in D. In the case of duplicate witnesses, a single

arbitrary witness is returned from the duplicate set.

• A model witness X which is an attributed graph instantiation of the predicate’s

structure and attribute conditions.

• A set of mapping lists for each witness to X.

Often, the same set of nodes in the graph can match at multiple positions in a

structural predicate. This is trivially true when the condition applied at each node is

the same. In this case, every permutation of node matches is a “new” way to satisfy
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Figure 2.5: The Graph Matching function takes two inputs: a graph and a predicate.
Given these inputs, the graph matching function will find witnesses that
satisfy the predicate within the input graph.

Figure 2.6: Given the inputs to the graph matching function shown in Figure 2.5, the
function will return three types of output. First there exists one witness
in the input graph. Second, a model witness is returned that maintains
the predicate structure. In this case, the model witness is identical to the
witness. But it is possible the witness contains an edge between nodes 1
and 3 and still be a witness to the predicate. The last structure returned
is a mapping list for the witness to the model witness. The mapping list
is useful for the analyst to see how the witness matches the predicate.
The mapping list in this case is: {1 → 6, 2 → 7, 3 → 8, 4 → 9}

the given predicate. This can result in an unacceptably long list of matches. To avoid

this eventuality, we consider two witnesses to be duplicate if they comprise the same

set of nodes and edges, even if the matching to the structural pattern is different.

The mapping lists save how each witness satisfies the predicate.

Example II.11. (Gamma function) Given the two inputs to the graph matching

function shown in Figure 2.5, the matching function returns a single witness, a model

witness, and a mapping list of the witness to the model witness. The outputs are

shown in Figure 2.6.
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2.5 Operators and Important Functions

In order to formally define the basic manipulating step in visual analytics, we

introduce both selection and aggregation operators.

2.5.1 Selection

There are two selection methods that operate on sets of graphs: set and element

selection. Set selection reduces the number of graphs in a set. Element selection

reduces the nodes and edges in each graph.

2.5.1.1 Set Selection

Set selection filters a set of attributed graphs that do not have at least one witness

for the given predicate. For example, an analyst may start with a large collection of

graphs but she is only interested in the graphs with a diameter larger than 20. Set

selection is applied to focus on the interested set.

Definition II.12. (Set Selection) Given a collection of graphs and their attributes,

D, a set selection with predicate α, is σextract
set,α (D) = {D ∈ D|there exists a witness

in D for α}. As a subroutine, the graph matching γ function is called to determine

if any witness exists for each of the attributed graphs. �

Example II.13. Figure 2.7 shows a set of two attributed graphs. If we perform a

set selection with a predicate that the average degree of the input graph be equal to

2, the result will be the first attributed graph. Each node in the result has a degree

of 2. Since it is the only input graph that satisfies the predicate, it is the only graph

returned.
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Figure 2.7: Two input attributed graphs are displayed. If the predicate to the set
selection function is that the graph attribute, average degree, be equal to
2, then the result from set selection is the input graph shown on the left.
The input graph shown on the right has an average degree of 1.67.

Figure 2.8: Given the two input graphs and the predicate shown above, the resulting
attributed graph after an element selection call is shown. The input graph
contains a witness for the predicate, namely the witness induced by the
node set (16,17,18,19). The input graph on the right has no witness for
the given predicate. The graph matching function is called to determine
if a witness exists in an input graph.
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2.5.1.2 Element Selection

Similar to set selection, element selection zooms into points of interest. In this

case, nodes and edges within graphs are selected. For example, an analyst may have

several graphs but would like to only focus on the nodes with a degree greater than

5, in other words, remove all the other nodes. She would use element selection.

Given a set of attributed graphs and a predicate, element selection creates a new

attributed graph for each witness match found. Since a new attributed graph is

created, the previous computed attributes may not apply to the new topology of the

graph. Therefore, computed attributes are updated for the new attributed graphs.

Definition II.14. (Element Selection) Given a collection of attributed graphs, D, an

element selection with predicate α, is σselection
element,α(D) = ∪i{W ′

i} that satisfies

• Di = [Gi, Xi] ∈ D

• Wi = {Wi.α.1, · · · ,Wi.α.k} for k = number of witness of α on Di

where each Wi.α.j = [Gi.α.j, Xi.α.j] is the jth witness of α on Di.

The attributes in each witness, Wi.α.j, are as follows:

1. All graph attributes from Di carry through to Xi.α.j

2. All node and edge attributes in Di which are attributes of the nodes and edges

in Wi.α.j carry through to Xi.α.j

3. All computed attributes in Xi.α.j are updated �

Example II.15. Figure 2.8 shows two input graphs and a predicate. Element se-

lection returns all structures that match the given predicate structure. The only

attributed graph returned is from the input graph on the left. No witness for the

predicate exists in the input graph shown on the right.
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2.5.2 Aggregation

We use aggregation to reduce the complexity of a graph by combining structures

with similar patterns. These patterns are stated as a list of predicates.

Aggregation operates on both the set level and the element level. At the set

level, aggregation unions the attributed graphs together that satisfy a predicate. The

result is a new set of attributed graphs, one for each predicate. At the element level,

aggregation merges the nodes or attributes together that satisfy a predicate in the

list.

2.5.2.1 Set Aggregation

Set aggregation performs a union over the elements of the attributed graphs that

satisfy a given predicate. For each of the predicates, set aggregation checks each of

the n input graphs for at least one witness.

For the input graphs that satisfy the predicate, set aggregation will union their

elements (graph and attributes) and produce a single output for the predicate. The

aggregation performs as a union of a set of disjoint attributed graphs. The elements

of the inputs are given a new unique identification in the new outputs. Algorithm for

set aggregation pseudocode is listed in appendices.

Definition II.16. (Set Aggregation) Given a set of predicates, β = {β1, · · · , βm},

and a set of attributed graphs, D, set aggregation is defined as ϕset.β(D) = D′ =

{D′
1, · · · , D′

m
}. where each D′

i are the union input attributed graphs that satisfy

predicate βi.

Example II.17. Given a set of phone call networks, each representing a single

day (with a graph attribute XG,day = i), over a four day period, we wish to ag-

gregate days one to two and aggregate days three to four. In this case we call

ϕset.β({Dday1, Dday2, Dday3, Dday4}) where β is the predicate set with one predicate
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on days 1-2 and the other on days 3-4. This set aggregation produces the following

set {Ddays1−2, Ddays3−4} �

2.5.2.2 Element Aggregation

Element aggregation merges the nodes and edges of an attributed graph by groups.

The groups are described by a set of predicates. There are two types of groups: group

by structure or group by all structures.

In group by structure, element aggregation creates a new node with a unique id for

each witness found for each predicate. The new node represents a merged supernode.

The attributes of the new node are aggregated values of the nodes contained in the

witness. The supernode also maintains the connections to the model witness node

and to the nodes in the graph which the aggregated nodes connected to before being

combined into the supernode.

Group by all structure is similar to group by structure except supernode is not

created for each witness found. Instead, one supernode is created to represent all the

witnesses for a predicate.

Definition II.18. (Element Aggregation) For a given predicate list β= {β1, · · · , βm},

an attributed graph set D, element aggregation is defined as ϕelement.β.type(D) where

type is either by structure or by all structures. Element aggregation modifies the

input graphs into aggregated graphs is listed in appendices.

We show the difference between aggregation by structure and by all structures

with examples.

Example II.19. (Element aggregation by all structures) Figure 2.9 shows the effect

of an element aggregation on an input graph. The predicates we pass are α = {α1 =

{V = {V1}, Xv.color.1 = blue}, α2 = {V = {V1}, Xv.color.1 = purple}}.

After the aggregation, nodes 1, 2, and 4 are merged together, which is α1’s witness

group; and, nodes 0 and 3 are merged together, which is α2’s witness group. The
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Figure 2.9: An element aggregation by all structures is performed on the input graph.
The result is the blue nodes are merged into one group, and the purple
nodes into a second group.

computed attributes for the new merged nodes 7 and 8 are aggregated values from

their merged nodes. The attribute type determines how to aggregate the values. For

example, numbers may be averaged together.

Model witness nodes 9 and 5 are created to save the predicate match structure and

attribute conditions. Their purpose is to remind the analyst in the future why these

nodes were aggregated. There are directed edges from the supernodes to their respec-

tive model witnesses. This added attribute and structural information differentiates

a supernode from non-aggregated nodes. �

Example II.20. (Element aggregation by structure) In Figure 2.10 there is an input

graph containing three triangular structures. An element aggregation by structure

given the predicate shown will create three merged nodes. The two merged nodes that

are connected to each other result from the connection between two of the triangular

structures in the input graph. In the “after aggregation” picture, we can see the

merged triangular structures within the new nodes. Figure 2.11 shows how the merged

structures within the new nodes are stored. This is done by creating a model witness

for the predicate. The new nodes point to the model witness structure.

2.5.3 Labeling function

Just observing a network can lead to many mental notes. But for every observa-

tion, it is too cumbersome to open a new branch of analysis. In terms of our algebra,
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Figure 2.10: After an element aggregation by structure, the attributed graph becomes
only three nodes.

Figure 2.11: The three aggregated nodes in the merged graph of Figure 2.10 point
to a model witness. The purpose of this model witness is the retain the
predicate structure, the reason for the aggregation, to understand the
analytical process.
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we may prefer not to have to perform a selection and aggregation to create a new

graph. Sometimes, simply making a note on the current graph will suffice. Then as

analysis continues, these notes could be saved and easily tracked. The structure of

this “mental note” on a graph leads us to our next operator: Labeling.

Labeling does not create a new graph, but it creates structured attributes based

on a process similar to the element selection. The inputs to the labeling function are

a set of attributed graphs and a predicate.

As a result of labeling, the attributed graphs that contain a witness are modified

to include edges to a model witness (for the predicate). The model witness, similar

to element aggregation, is given a new group id. This group id is used to identify it

as an informational structure within the graph (not to be included in selections).

Below is a formal definition of labeling:

Definition II.21. (Labeling) Given a collection of n graphs and their attributes

D, and predicate α = (Vα,Eα,XVα , XEα , XGα), a labeling, σlabel
element,α(D) is: For each

attributed graph Di in D where there exists a witness for the predicate α,

1. Create the model witness structure X within Di

2. Label X’s nodes and edges with a unique group id (can be user defined)

3. For each witness Wj found in Di use the mapping lists to create directed edges

from the nodes in Wj to the nodes X. For the new edges created in Wj to X

create two attributes: one to denote that it is part of one witness structure and

another for the unique group id of this model witness.

�

Example II.22. In Figure 2.8, we show how to create new graphs based on an input

set and predicate after applying the element selection operator. Sometimes an analyst
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Figure 2.12: A labeling function performed on the same input graph and predicate
from the element selection example, Figure 2.8

does not want to continually create more networks, rather within an exist network

make notes and follow certain nodes of interest.

In Figure 2.12 we show how the labeling operator achieves this goal. Given the

same input graph set and predicate from Figure 2.8, the result of the labeling operator

is a model witness included into the graph (for the given predicate) and directed

edges between the matched components of the input graphs. The model witness is

not included in graph matching steps. �

2.5.4 Visualization function

Preceding sections dealt with graph data manipulation and management. In Vi-

sual Analytics, the visualization is a central step in relaying the results to the human

analyst. Therefore, to complete the Graph Visual Analytic Algebra, a visual operator

is needed to connect the data manipulation to the analyst. There are limitless vi-

sual encoding and rendering expressions. The challenge is to create a visual operator

without limiting possible visual expressions of information.

In an effort to make this a systematic process, we break down the components of

a visual function. A visual function, V , is described by an input predicate, a static

visualization output, and a visual rendering/encoding mechanism. In this section, we
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discuss the visual function and show an example of its use.

2.5.4.1 Visual function: Inputs, Visual Mechanism, and Outputs

The inputs to the visual function come from the graph data. Also, they can be

represented as predicate form. The output is a static visualization. The “between”

step, that we call the Visual Mechanism, processes data to produce the visualization

output.

The following are a couple examples of what could be a Visual Mechanism:

• Different layout options (force directed, circular, etc...) to display a graph

Michailidis (2006)

• Coloring nodes by a rainbow gradient based on their degree value

Anything that results in a change on a display is fair game for the Visual Mech-

anism. What exactly happens at this stage is a combination of computation and

visual encoding/rendering. The computational part is a set of composition functions

and attribute creations on the graph. The visual rendering and encoding depends on

software and hardware restrictions.

2.5.4.2 Cytoscape Visual Display

A common visualization to create is coloring nodes on a rainbow gradient to show

how an attribute value (in this case degree) varies on the graph. In this example, we

show how this visual task occurs within a visual function in Cytoscape.

The input to the visual function is the phone data set from the VAST 2008 Chal-

lenge ( Grinstein et al. (2008), Shaverdian et al. (2009b)). The visual output we want

to produce is a graph with its nodes colored based on their degree values.

The first step is to create the degree attribute on each node. We follow the

composition function technique from Example II.2 to create the degree attribute.

27



In Cytoscape, this visual task corresponds to selecting a continuous color mapping

on the degree attribute, Figure 2.13.A. Within the algebra, for each node we create

a color attribute with a value that maps to its color gradient (computed through a

mapping composition function). The algebra could create an attribute to characterize

all the visual encoding and rendering features, but to keep this example brief we only

mention the degree and color ones.

Next the visual encoding and rendering will produce the output. Since we cannot

bound the software and hardware possibilities for different tools, within the algebra

we note this as a Tool Specific step. This step can be filled in with formalisms

and languages that capture visual rendering specifics. Finally, the output layout is

produced, Figure 2.13.B. In summary, this visual task corresponds to the following

algebra:

1. Start: Vinput {PhoneDataSet1}

A visual function is called on PhoneDataSet1.

2. Dphones = {G = (V,E), X = (XV = Xphone id, Xdegree, Xcolor, XE = (Xdate,

Xduration, Xtower, Xdirection of call), XG = ())}

After the user selects a mapping of color to degree, this color value is stored

into Xcolor, a new node attribute.

3. V {Tool Specific}

A software process is run to produce the visualization output.

4. Complete: Voutput → Display

The visual function has completed with a display produced.

Setting a visual task into an algebra operator helps maintain the display infor-

mation. In isolation, it seems like we took a simple visual task that might take an

analyst a couple minutes to perform and turned it into a convoluted set of algebraic
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Figure 2.13: A continuous color gradient mapping to node degree is set on the phone
data set from the VAST 2008 Challenge.

expressions. But actually it becomes even more convoluted if there is no algebra to

track visual tasks. If several different visual tasks are completed to reach an analyt-

ical decision, it becomes difficult to replicate or verify the decision if the process is

not documented. Also without using an algebra, as we discussed in the Introduction,

comparing different tools and methods is difficult. Additionally, the visualization be-

comes more flexible. By breaking down the visualization task, we can change points

of the task, and mix and match with different methods. For example, we can rerun

this current example on a new graph by simply modifying the input.

2.6 Implementation Example in Cytoscape

In this section we utilize Cytoscape and various plugins to show how the theoretical

concepts presented in the algebra are realized in a practical analytical tool.

2.6.1 Graph Model

Currently we have described the graph model that is composed of the graph,

the attributes, and composition functions. Cytoscape already provides a lot of the

implementation to display the model. Figure 2.15 shows a Cytoscape display window

after some networks have been uploaded. The networks we have uploaded are from
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Figure 2.14: As part of our Visual Analytic Algebra, we define attributes as either
computed or intrinsic. To allow the user to modify the type of an at-
tribute we provide the following tab under the Control Panel. The user
can view the attribute labels for nodes, edges, and the graph. To change
the type from intrinsic to computed, the user can drag the attribute
label from one type to another.

the VAST 2008 Challenge Data Set. The left panel shows the Control Panel. The

Control Panel has several tabs.

We have installed two plugins, Visual Analytic Algebra and NetMatch. These

plugins have added extra tabs to this panel that we will introduce throughout the

paper. The Network Tab displays a list of network names. The Modify Attribute

Types Panel, shown in Figure 2.14, displays the attribute labels for graph, edges,

and nodes. In this panel, the type of the attribute can be switched from intrinsic to

computed type.

2.6.2 Predicate Language

Again we use Cytoscape to place a real analytical setting for some of the theoretical

ideas presented in the previous subsections.

We illustrate a predicate with the NetMatch Query Editor. Using NetMatch,

an analyst can draw a new predicate and place conditional values on its attributes.

Figure 2.16 displays the NetMatch Query Editor.

Next to produce a witness to the predicate, the analyst can click on the ”Pass
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Figure 2.15: The main Cytoscape window is shown. There are three main components
to its design. The network panel displays the network. The data panel
displays node and edge specific attribute information. The control panel
has several tabs to perform different functions on the network. One
of these tabs is the network tab, that shows all the networks opened
during a current Cytoscape analysis session. It allows the user to switch
between different networks by saving them under different names.

Figure 2.16: The plugin NetMatch allows a user to draw a query. In essence, a query
is a predicate. Attribute conditions are possible on nodes.

Query to NetMatch” button. This procedure will produce witnesses, as shown in

Figure 2.17. Each witness will be displayed on its own row. The columns indicate

the number of matches, the nodes that produced the match (corresponding to the

mapping list), and an image of the witness.
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Figure 2.17: Using the NetMatch plugin, we show the result of matching the input
graph and the predicate shown in Figure 2.5. The image shown is a
witness found in the input graph. The Node column shows the mapping
between the witness and the predicate. This figure is an example imple-
mentation of the Predicate, Witness, and Graph Matching features in
the Visual Analytic Algebra.

2.6.3 Selection

We implement a direct way to perform set and element selection in Cytoscape

through the Visual Analytic Graph Algebra Plugin. Under the Control Panel, the

Operators tab has options to select a set of networks, the predicate, and operator to

perform. Figure 2.18 this panel.

After a set selection has been applied on a set of the Phone Call Days data set from

the VAST 2008 Challenge, the results are shown in Figure 2.19. The networks that

satisfy the predicate are maximized and shown in the display panel. The networks

that do not satisfy the figure are minimized in the background of the display panel.

To do an element selection, we use the same Operator tab. Figure 2.20 shows (1)

the input graph, (2) the predicate, and (3) the results from element selection. As

with a set selection, the analyst needs to first specify an input graph and predicate.

Element selection then utilizes the graph matching function to produce results. Three

witnesses are found that match the predicate. The analyst can then create new

networks for the witnesses found by selecting the witness and checking ”Create a new

child network.” The match information can be saved for future use.

32



Figure 2.18: The Visual Analytic Graph Algebra Plugin also includes an Operators
Tab in the Control Panel. Here the analyst can select a set of networks,
the predicate list, and the operator to apply to the graphs. In this
figure, the set selection Operator has been selected with the Predicate
from Figure 2.1.

 

Figure 2.19: This figure shows an example implementation of set selection in Cy-
toscape. Once the ”Done” button has been clicked, the result of the set
selection is the set of graphs that satisfy the predicate are opened and
displayed in the Display Panel. In this figure, four graphs are displayed.
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Figure 2.20: This figure shows (1) the input graph, (2) the predicate, and (3) the
results from element selection.

2.6.4 Aggregation

In Cytoscape to do an aggregation, an analyst starts at the Operators tab. Figure

2.21 shows a complete list of the operator options available.

Under the hood, a set aggregation has the following components: a set selection,

followed by a union and update on the computed attributes. An element aggregation

creates new merged nodes within the graph. Figure 2.22 and Figure 2.23 are element

aggregations by all and per structures done in Cytoscape, respectively. We use the

same input and predicate as in Figure 2.10.

Since Figure 2.22 is an aggregation by all structures and all nodes in the input

graph are witnesses to the predicate, they become merged into a single supernode.

In Cytoscape the model witness is displayed within the supernode. This feature

helps distinguish supernodes from lower granularity nodes. Figure 2.23 has the same

aggregation by structure result as shown in Figure 2.10. In Cytoscape, the aggregated

graphs are created as ”child” graphs to the input graph. In the network tab, the child

graphs will be listed below their parent graph.
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Figure 2.21: On the Operators Tab, the drop down menu shown has all of the oper-
ators available for easy access for the analyst.

 

Figure 2.22: A Cytoscape Aggregation by All Structures is performed on the input
graph shown on the left.

 

Figure 2.23: A Cytoscape Aggregation Per Structures is performed on the input graph
shown on the left.
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2.7 Experiment

A central motivation for the graph algebra is to support reproducibility of analysis.

In this section, we evaluate this experimentally with a user study. First we define

reproducibility and how it can be measured given an experimental analysis.

2.7.1 The Reproducibility Metric

We measure reproducibility by comparing the similarity between the target and

the copy graph. The target graph is created when analyst A performs manipulations

on a start graph. The recorded manipulations of analyst A is the analysis used to

create the target graph.

When analyst B is given A’s analysis and the start graph, the graph she produces

by following the instructions is the copy graph. Since she cannot see the target graph,

her copy may have errors depending on how well she followed the instructions and

how well the analysis is written. Therefore, reproducibility reflects the ease for other

analysts to repeat an analysis on the same or different data sets.

We calculate reproducibility with the following metric:

Reproducibility =


T−M
T

Copy does not contain extra elements

0 Otherwise

where,

T = number of elements in the target graph

M = number of missing elements in copy graph

We calculate the total number of elements in the target graph by summing the

cardinality of the node and edge sets. The reproducibility metric is computed per

graph. A higher value is a better reproducibility. Figure 2.24 shows a target and copy

graph. The copy has 3 extra graph elements, namely, the circle and edges between

the square and the lower left circle. The reproducibility is equal to 0.
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Figure 2.24: The graph on the left is what the final graph after the analysis should
be. The graph on the right shows one of the graphs produced during the
user study.

2.7.2 Procedure

We test the reproducibility of an analysis reported in plain English versus in the

algebra. Since there is not a universal systematic language that defines the basic

graph data manipulation actions in visual analytics, English is usually used to share

results. So, we compare sharing an analysis in English versus the Visual Analytic

Graph Algebra.

The user study has two phases. In the first phase we show the start and summa-

rized graph to 10 different users. All users are graduate students at the University

of Michigan. Figure 2.25 shows the two graphs. The tasks involve only element-level

operators. Half of these users’ task is to write in English the set of transformations to

the start graph to create the target graph. This set of transformations is an English

analysis. The other users are given algebra operator training. Their task is to create

an algebraic analysis for the target graph.

After phase one, we have 5 analysis written in English and 5 analysis written in

the visual analytic algebra. In the second phase, we give one of these analyses and

the start graph to 10 different users. Their task is to read the analysis and perform

its transformations on the start graph. The users who are given an algebra analysis

are trained on the algebra operators. We compute the reproducibility metric on the

replicated graphs.
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Figure 2.25: Starting from the graph on the left, the graph on the right is created,
the summarized graph.

2.7.3 Results and Analysis

The study was performed using pen and paper. We chose a graph with less

than 10 nodes to make drawing and transforming the graph realistic for users. After

experimenting with several different graphs, we selected the graph pair shown in

Figure 2.25. We wanted users to quickly spot differences between the graphs without

writing extremely naive analysis.

The graph algebra will not likely be used directly by analysts. It is a universal

language between tools and methods that can be mapped to high level tool operations.

For example, in Cytoscape, creating a predicate is a drag-and-click process versus

writing a complete algebraic predicate tuple. Since the algebra implementation in

Cytoscape is within its early prototype stage, we want to separate noise from the

users’ system experiences from testing whether they are empowered or overwhelmed

by the algebra. So we bypass system tools in the user study to test the algebra with

pen and paper. In practice, the tool designer would need to be aware of the algebra

and how the tool operations map to the algebra operations.

The following is an example of an English analysis written: ”Start from the upper

left corner, delete the square and move diagonally down and delete the circle and

square and the circle again. Then take out the upper colored-in triangle and an

edge from the triangle to the circle.” The English analyses utilized node placement

and deletions in the directions. The algebra analyses were more specific: creating
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English Algebra
0.7 1
0.7 1
0.5 0.6
0.5 0.6
0 0

Table 2.1: This table shows the copy graphs’ reproducibility sorted from best to worst.

attributes, selections, aggregations. Users were trained on the algebra for 15 minutes.

They were all familiar with graphs and had previously taken a programming course.

We computed the reproducibility for the copy graphs, shown in Table 2.1. The al-

gebra has higher reproducibility in the copy graphs. Based on the p-value = 0.02573

from two sample t-test, the algebra group has statistically significant higher aver-

age score than the English group. These results are reasonable because the algebra

provides a precise language for the analysts.

2.8 Conclusions

In this study, we introduce a framework and the corresponding algebra for visual

analysis of graph based data sets. We provide a detailed description of its operators

and illustrated its use through an implementation in Cytoscape.

As already pointed out, the proposed algebra provides a rigorous workflow model

for understanding and documenting the visual analytics process that the users un-

dertake when exploring their data. However, as graphs become larger and the list of

their node and edge attribute grows, the need for fast responses to users’ selections

and manipulations of the data becomes more prevalent. The rigorous structure of

our visual algebra allows for optimizing the performance of its constituent operators,

while incorporating constraints imposed by visualization (e.g. screen size), thus ac-

celerating the visual exploration and discovery process. This constitutes a topic of

current research.
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Although we provide an expressive graph manipulation language through predi-

cates and operators, there are limitations to the language. For example, noisy and

incomplete data is a piece to any analytical problem. Expanding the algebra to

effectively handle these types of data is a promising future direction.
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CHAPTER III

Querying Graphs with Uncertain Predicates

3.1 Introduction to Uncertainty model

In many real world applications, a scientist may have some idea about what values

and structure she expects. But to manually track her uncertainty from the conception

of the uncertain sub-network query to the multiple results is a demanding task. This

management problem is even more confounding when there are multiple stages in

network analysis. At any point in the workflow, there may have been an uncertain

query. The analyst has to manually determine how likely a resulting graph represents

the queries she made over the whole workflow. One motivating application occurs

in social network intelligence. In the 2009 VAST Challenge (VAST (2009)), two

hypothetical social networks are described with uncertainty on degree, connectivity,

and attribute values. The challenge was to determine the more likely social network

based on the graphs returned by the different hypothetical social networks.

In this chapter, we provide a model for the uncertain predicate in a network query

setting. This model guides the user to define the uncertain query. Then it gener-

ates results, with ranking based on the user’s preferences. We build the uncertainty

querying over an existing visual analytic algebra. We show how the uncertainty on the

queries can be composed over an analysis workflow. Our uncertainty model follows

this basic outline: First a user inputs an uncertain query. Next the system expands
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this query into a set of exact queries representing the uncertain query. Then the

user places a probability on each exact query which notes how well the exact query

captures the uncertain query. The system then computes the graph manipulation

operation and probabilities for the results.

In the uncertain query problem we assume the graph itself is exact. The uncer-

tainty remains only at the query level. The rank value associated with the result of

an operator is saved as a computed graph attribute and denotes how well the out-

come describes the user’s uncertain query. However, this value does not introduce

uncertainty on the graph elements and attributes’ existence.

3.2 Uncertain Predicate Language

Based on our algebra framework, an exact predicate tuple is given by ρ= (V,E,XV ,

XE, XG, !E). We expand the predicate language to specify attributes and edges which

contain uncertainty.

For attribute uncertainty, the condition lists are modified to include an uncer-

tainty language. The condition lists, XV , XE , and XG, in the predicate can have

conditions now of the form ”attribute name ≈ value”, where ≈ denotes that there

exists uncertainty on this attribute. Similarly, edge existence uncertainty is denoted

with an ≈ prefix over an edge in the edge list, E. Now that we provide the user a way

to describe the uncertain attributes and connectivity, we can convert the uncertain

predicate to a set of exact predicates.

3.3 Process of Turning an Uncertain Query to an Exact One

Given an uncertain predicate, α∗, either the user or the system generates a set of

non-overlapping exact predicates, {α1, . . . , αj} that characterize the uncertain predi-

cate. For any αi and αj where i ̸= j in the exact predicate set, the non-overlapping
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condition strongly enforces that αi ̸= αj. If the system performs this mapping,

pre-defined substructure similarity measures can be used. In the case of numerical

attributes, Euclidean distances can be used, with a simple threshold dissimilarity.

Next the system requests the user to assign a probability to each element in this

set of exact predicates. This probability corresponds to how well the exact predicate

captures the uncertain predicate structure. We denote the probability set Ωα∗ =

{pα1 , · · · , pαj
} where pαi

is the probability for exact predicate αi with respect to

uncertain predicate α∗ based on the graph at the time. Each pi follows a Bernoulli

distribution with the probability of success equal to P (αi = α∗); therefore, each pαi

follows a complete disjoint distribution.
∑

i pαi
may not equal to one.

This procedure is illustrated below with the following examples.

Example III.1. Given an uncertain predicate α∗ = {V = v1, Xv1.age ≈ 4} and a

friendship network GD0 ∈ D0, a user is interested in selecting people (i.e. nodes) in

the network with age around 4. We can create a computed attribute for the range

of the age attributes. In this example the range of the age attributes is from 2 to 6.

The system returns a set of exact predicates within a distance. For example, if we

set the threshold distance as a quarter of the variable range, 1, the system will return

the following exact predicates:

α1 = {V = v1, Xv1.age = 3}

α2 = {V = v1, Xv1.age = 4}

α3 = {V = v1, Xv1.age = 5}

Based on this set, the user will define the probability set Ωα∗ = {pα1 , pα2 , pα3}

where pαi
= P (αi correctly describes α∗) and all pαi

s are independent from others.

Example III.2. Figure 3.1 shows a predicate with uncertainty on the node’s color

attribute and a graph G0. A set of exact predicates can be generated by using the
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≈ red

G0

Uncertain predicate:

{V= v1, Xv1.color ≈ red }

System suggests exact 

predicates:

{V= v1, Xv1.color = purple }

{V= v1, Xv1.color = red }

{V= v1, Xv1.color = orange }

User assigns probability:

{1/3, 1, 1/4 }

Figure 3.1: Example to transform a categorical uncertain predicate into a set of exact
predicates.

Figure 3.2: Example of edge certainty. Dash line stands for uncertain connections

G0’s overall color range.

Example III.3. Given an uncertain predicate β∗ = {{v1, v2, v3}, {e12, e23,≈ e13},xv1.age =

3}, there are two suggested exact predicates in the set: β1 as {{v1, v2, v3}, {e12, e23, e13},xv1.age =

3} (which suggests a fully connected graph), and β2 as {{v1, v2, v3}, {e12, e23},xv1.age =

3, !e13} (which suggests disconnected network) shown in Figure 3.2.

Instead of attaching confidence scores to the output graphs once they are returned,

we allow users to define the probabilities at an earlier stage. By defining probabilities

at the predicate level before the matching function is called, the user is given more

flexibility and control over the results. For example, the user can assign zero proba-

bility to unrelated exact predicates. This setup significantly improves the efficiency of

the system by limiting unnecessary matchings. If the user does not assign any prob-

ability values to the exact predicate set, the system will assume the same probability

value, one, to all exact predicate structures. It implies that all exact predicates in

the set can correctly capture the given uncertain predicate.
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Furthermore, by attaching probabilities to only a few exact predicates rather than

the entire possible output set for a given uncertain query, we can reduce the workload

for users in assigning probability values. Moreover, in order to further reduce the

computation complexity, the system can force either the size of the exact predicate

set or the number of output graphs to be below a predefined threshold.

3.4 Solution Generation

After we transform the uncertain predicate into a set of exact predicates with user

defined probabilities, we can solve the uncertain querying problem by performing the

operator on each exact non-overlapping predicate structure separately.

For each exact predicate, αi, we call the operator given the input graph Di. For

each of the output graphs, D′
j, we create an operator distribution set, ΩD′

j |Di
. By

construction, the length of the operator distribution list will equal to number of exact

predicates. If the system can discover at least one witness structure based on the exact

predicate αs in the output graph D′
j, the s

th term of the operator distribution set will

equal the user defined probability, pαs . On the other hand, if the system returns

an empty list after applying the operator based on predicate αt, the tth term of the

operator distribution set will equal zero. The zero/ fraction patterns in the operator

distribution presents a summarization of the outcome of each exact predicate given

the input graph.

Output graph structures depend on the operator along with its predicate con-

ditions and input graphs. Output graph probabilities need to reflect probability

information from all three components as well. The internal operator distribution set

carries probability information from both the operator and its predicate conditions,

while the probability distribution set, for each input graph, contains necessary prob-

ability information on the input graph set. In order to compute the output graph

probability, one needs to determine the output probability distribution set, the first
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sublist in the probability list. The construction of the output probability distribution

set is based on both the operator distribution set, ΩD′
j |Di

, and the input probability

distribution set, ΩDi
.

Definition III.4. The output graph probability distribution set is defined as the

tensor product of the user defined operator distribution set and the input probability

distribution set.

In mathematics, the tensor product is denoted as ⊗. It may be applied to vectors,

matrices. In this study, we are only interested in the tensor product of two vectors. For

example, the tensor product of vectors a⃗=(a1, a2) and b⃗=(b1, b2, b3) is a 6-dimensional

vector, (a1b1,a1b2, a1b3,a2b1, a2b2,a2b3). Based on the independence assumption among

exact predicate distributions, the output probability distribution lives in the product

space of the input probability distribution set and the operator distribution set. The

tensor product provides us the technique to keep track of the detailed probability

information for each output graph. Based on the output probability distribution set,

ΩD′
j |Di

, we can find output probabilities, PD′
j
, for each output graph.

Definition III.5. The output graph probability for an analytic step based on uncer-

tain predicate α∗ is defined as follows:

PD′
j

= 1− P (D′
j contain no witnesses for α∗)

= 1− P (no witness forα1) · · ·P (no witness for αk)

where P (no witness for αi) is one minus the ith term found in the output probability

distribution set,ΩD′
j
, based on definition.

Since all probabilities follow different independent distributions in the output

probability distribution set, we can break down the joint probability into a product

of multiple user defined probabilities. The probability of this particular output can
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be interpreted as the probability that an output contains at least one matching for

predicates α1 to αk. The detailed calculation will be further demonstrated in the

examples below.

Example III.6. This example describes Figure 5.1 which illustrates an element se-

lection operator, given an uncertain predicate on input graph D with a probability

list as {[a, b], [1− (1− a)(1− b)]}. The uncertain predicate is: α∗={V = {v1, v2, v3},

E = {e12, e23, e13}, Xv1.age ≈ 4}. An element selection given α∗ will return a triangle

structure of nodes where at least one node has age attribute ≈ 4. We detail the entire

element selection process given this uncertain predicate.

1. The system generates a set of exact predicates. The exact predicates are shown

in Figure 5.1 part B:

α1 = {{v1, v2, v3}, {e12, e23, e13}, Xv1.age = 3}

α2 = {{v1, v2, v3}, {e12, e23, e13}, Xv1.age = 4}

α3 = {{v1, v2, v3}, {e12, e23, e13}, Xv1.age = 5}

2. The user assigns probabilities for each of the exact predicates in part B. Ωα∗ =

{1
3
, 1, 1

2
}, where α∗ can be described by α1 and α3 correctly

1
3
and 1

2
of the time,

while α∗ can be captured by the condition listed in α2 completely.

3. Next, the element selection operator based on exact predicate is called three

times for each exact predicate. For each operator evaluation, the element selec-

tion operator returns output graphs. Since each of the output lists only satisfies

one exact predicate, the probability of the output list equals to the probability

of the exact predicate in this example. This step is shown in Figure 5.1 part C.

4. Finally, the operator distribution set is calculated for each output graph. We

perform a set union on the three output lists. In effect, output graphs with
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identical graph structure and node id’s are merged. Next we compute the op-

erator distribution set for each unique output graph. The operator distribution

set is shown in Figure 3.3 part D.

5. The output probability distribution set is updated for each output graph by

using the tensor product on the input probability distribution set [a, b] and the

operator distribution sets. The output probabilities are calculated as follows:

P (D′
1) = 1− (1− a

3
)

P (D′
2) = 1− (1− a

3
)(1− a

2
)(1− b

3
)(1− b

2
)

P (D′
3) = 1−

(1− a

3
)(1− a

2
)(1− a)(1− b

3
)(1− b

2
)(1− b)

Since all the output probabilities are constructed based on the probability distri-

bution set which corresponds to the correctness of capturing the uncertain query and

its input’s probability distribution set, we are able to compare all the outputs from

the same operator. In this example, the graph , D′
3, with the highest output probabil-

ity does the best job in capturing the users’ target structure in the element selection

step. Moreover, we treat the newly computed probability list for each output as a

computed graph attribute. The visual algebra stays closed, since both inputs and

outputs are defined to be the same type of objects, an attributed graph set.

3.5 Uncertainty Model for Complex Structural Predicates

In the previous sections, we introduced the uncertainty model to handle simple

uncertain predicates. In this section, we apply an operator on a complex uncertain

predicate. The complex structural uncertain predicate is an uncertain predicate which

contains more than one uncertainty, and it appears as a joint predicate with multiple
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Element selection based on α*  

Transform the uncertain predicate α* into exact 

predicates { α1, α2, α3 }

Outputs from element selection α1     

Outputs from element selection α2

Outputs from element selection α3

α1

α2

α3

Output graphs with their operator distribution set

Figure 3.3: Example of element selection based on an uncertain predicate α∗ in blue.
The numbers inside the node denote the id. The numbers outside the
node denote the age attribute’s value. The different colors are used for
visualization clarity. The pink represents input and output graphs. The
blue represents predicates. And the light green represents witnesses.

49



predicates combined with logical functions, such as AND and OR. Next, we would like

to simplify the complex structural predicate problem into a few operators based only

on simple predicates. This simplification will significantly reduce the user’s workload

for defining the probability distribution of the exact predicate set.

There exists no general solution to simplify the aggregation operator based on a

complex structural predicate into a few smaller fractional structures and still persevere

the same output, because aggregation operators, both element and set, may change

the structural information of the qualified outputs even before the usage of uncertain

querying model.

Example III.7. This example describes Figure 3.4 which illustrates an element ag-

gregation operator given a complex structure predicate on graph D. The complex

predicate list contains two exact predicates: α={α1 AND α2} where α1 = {v1,

Xv1.color = Red} is a red colored node, α2 = {{v1, v2, v3}, {e12, e23, e13}} is three

connected nodes. An element aggregation operator based on the complex predicate,

α, for the given D will return only one node as in Figure 3.4 output I, since we merge

all red nodes and triangular structures all together into the same group ,node v8 ,

defined by α1 and α2. However, if we simply transform the complex step into two

smaller steps, where we apply α2 first and α1 second. The system will return different

outputs as in Figure 3.4 output II, since we merge all red nodes in D to create a super

node, v9, in the first step will destroy the triangular structure on the left. As in figure

3.4, all newly created super nodes are pointed by nodes

On the other hand, selection operators based on a complex predicate list can be

broken into smaller fractions, while preserving the same outputs; therefore, we may

be able to simplify the complex structural uncertain selection problem under some

predefined assumptions. In the uncertainty model for a simple predicate, probabilities

of the final outputs from complex uncertain ones are still constructed from the output

probability distribution set. Since we are still only dealing with a single operator
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Figure 3.4: Example of element aggregation.

at this time, the operator distribution is still constructed based on the probability

distribution of the exact predicate set. By definition, a complex structural uncertain

predicate contains multiple uncertain variables, attributes or structures; hence, the

probability distribution of the exact predicate set will live in a multidimensional

space, one for each uncertain variable. In other words, the probability distribution of

the exact predicate set is a high dimensional joint probability for multiple uncertain

variables. Therefore, by providing additional assumptions for the high dimensional

probability distribution, we are able to break the high dimensional joint distribution

into smaller marginal or conditional independent probability distributions. Users will

be able to work only in the low dimensional space and consider the probability to

describe the behavior of one uncertain variable at a time.

If there exists some degree of dependence among uncertain variables within the

complex uncertain predicate, the high dimensional probability of the complex pred-

icate could be further broken into conditional independent components with some

constraints. For example, a user tries to select people with approximately high in-

come (I), college education level (E) and with high percentage of house ownership (O),

where three uncertain variables tend to be highly correlated, the user cannot simply

break the probability of exact predicates which describes the uncertain predicate into

to independent components. However, instead of using only the joint probability with
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three variables, P (I AND E AND O), the system can reduce the user’s workload by

allowing the conditional probabilities, P (E), P (I|E) and P (O|I). In this case, the

house ownership is independent from education level given income information, but

in order to keep the consistence over selection operators the defined conditional prob-

abilities needs to satisfy P (I AND E AND O) = P (E)P (I|E)P (O|I) constraint. The

reduction of the user’s workload can be easily explained in the follow situation. For

example, if for each of the uncertain variable, ≈ high income, ≈ college education level

and ≈high percentage of house ownership, can be transformed to three exact values,

such as ≈ college education level equals to Master degree(MA), Bachelor degree(BA)

and Associate degree(AA), the user needs to define probabilities for 27 elements in the

high dimensional case, but only 9 probability values in the conditional independent

case under the correct constraint.

If a complex uncertain predicate can be broken into smaller independent struc-

tures, the probability space of the complicated predicate is equal to the product space

of the probabilities of the smaller uncertain components,Ωα∗ANDβ∗=Ωα∗ ⊗ Ωβ∗. This

fact is supported by the independence between each uncertain predicate designed by

the user. By the commutative property of multiplication, we can reorder the com-

posed selections and preserve the same output probabilities. Figure 3.5 illustrates how

a composed element selection can be broken into two components. Since independent

selection step based on simple uncertain predicate can be reorder and still persevere

the same output with consistent output probability, we can pick the optimal selection

ordering to minimize the system computational complexity. This special property of

the selection operator presents the opportunity to use rewrite rules for optimization.

Example III.8. To illustrate the usage of the uncertainty querying method in the

independent case, we present the following example. The study has a complex un-

certain predicate with a triangle node structure with uncertainty on two attributes,

shown in Figure 3.7. We show the element selection process twice. The first time, we

52



G0 G1

G’

 !"!#$%&'

()*+),-./,0*

 !"!#$%&',+),
 !"!#$%&',0*

G’’

 !"!#$%&',0*  !"!#$%&',+),

Figure 3.5: Example of joint element selection. The selection operator with uncertain
predicate α∗ AND β∗ is split into two. One split selection has uncertain
predicate α∗ and the other has uncertain predicate β∗

d* α* β*

Outputs from element selection given α*

Outputs from element selection given β*

Figure 3.6: This figure shows that we get the same outputs as the combined uncertain
predicate structure if we split the predicate structure into α∗ and β∗ and
perform two serial element selections.

call element selection with the predicate δ∗ = {{v1, v2, v3}, {e12, e23, e13}, Xv1.age ≈ 4,

Xv3.age ≈ 6} shown in Figure 3.7. The second time, we call two element selections in a

serial fashion. The first with predicate α∗ = {{v1, v2, v3}, {e12, e23, e13}, Xv1.age ≈ 4};

and the second with predicate β∗ = {{v1, v2, v3}, {e12, e23, e13}, Xv3.age ≈ 6}(shown

in Figure 3.6). The latter, two element selection calls, will produce the same outputs

as the single element selection call with predicate δ∗.
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Figure 3.7 part A shows an attributed graph D with the input probability list as

{{1}, {1}}. This graph represents a social network of friends where nodes are people

and edges represent a friendship between two people. The numbers inside the nodes

represent an id; the numbers outside the node are the age attribute’s value. Graph

D has the identical graph structure we use in the examples throughout the paper.

A user would like to call an element selection σelement,δ∗(D), with the uncertain

predicate δ∗, shown in Figure 3.7 part A. The system generates a set of exact predi-

cates in Figure 3.7 part B,

δ1 = {{v1, v2, v3}, {e12, e23, e13}, Xv1.age = 3, Xv3.age = 6}

δ2 = {{v1, v2, v3}, {e12, e23, e13}, Xv1.age = 4, Xv3.age = 6}

δ3 = {{v1, v2, v3}, {e12, e23, e13}, Xv1.age = 5, Xv3.age = 6}

δ4 = {{v1, v2, v3}, {e12, e23, e13}, Xv1.age = 3, Xv3.age = 7}

δ5 = {{v1, v2, v3}, {e12, e23, e13}, Xv1.age = 4, Xv3.age = 7}

δ6 = {{v1, v2, v3}, {e12, e23, e13}, Xv1.age = 5, Xv3.age = 7}

and requests user to input 6 probabilities for exact predicates, Ωδ∗ = {1
3
, 1, 1

2
, 1
12
,

1
4
, 1

8
}, corresponding to the uncertain predicate. Using the process outlined in the

pervious section, element selection based on the exact predicates generates outputs

for each of the exact predicates shown in Figure 3.7 part C. For the input graph D,

we can only find witness for element selection based on δ1, δ3 and δ4. All other exact

matching procedures return an empty witness list after applying the graph matching

function γ. Finally, the system outputs the graphs and together with their probability

lists shown in Figure 3.7 part D. There are two final outputs with output probabilities,

P (D′
1) =

7
18

and P (D′
2) =

2
3
.

With this example, we now show if we decompose the complex uncertain pred-

icate to the following simple predicates: α∗ equals to {V = {v1,v2, v3}, E={e12,
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Element selection based on complex uncertain 

predicate d* Transform the uncertain predicated* into six exact 

predicates 

Outputs from element selection d1

Output from element selection d3

Output from element selection d4

No output for element selection d2, d5, d6.

Outputs with operator distribution sets

Figure 3.7: This example shows a complicated uncertain predicate structure with two
attribute value uncertainties. Part A shows the uncertain predicate and
the attributed graph D. Part B shows the uncertain predicate transform
into a set of six exact predicates. Part C shows the output from exact
element selection. Finally, Part D shows the final output with its operator
distribution set. The numbers inside the node denote the id. The numbers
outside the node denote the age attribute’s value. The different colors
are used for visualization clarity. The pink represents input and outputs
graphs. The blue represents predicates. And the light green represents
outputs from exact matching problems.
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e23,e13},Xv1.age ≈ 4} as in the pervious example and β∗ equals to {V = {v1,v2, v3},

E = {e12, e23, e13},Xv1.age ≈ 6}, and perform serial element selections, we receive

the same outputs with the same output probabilities as before. Figure 3.7 shows

an element selection with uncertain predicate α∗ called first and its outputs. Next,

an element selection with uncertain predicate β∗ is called. The outputs in Figure 3.7

part C and the outputs generated by β∗ (after α∗ is called) are the same. By applying

serial element selection over one complicated selection step, we effectively cut down

the user’s workload from defining a probability set Ωδ∗ which contains 6 probability

scores to construct two simple probability sets Ωα∗={1
3
, 1, 1

2
} and Ωβ∗={1, 1

4
}, where

Ωδ∗ = Ωα∗ ⊗ Ωβ∗ constrain ensure the consistences in output probabilities.

3.6 Visual Analytic Work Process

In real analysis applications, multiple operators are used to manipulate the input

graphs and produce final solutions. In other words, the final outputs often resulted

from composition of multiple operators, one for each analytic step. Since we have

defined an uncertainty querying model for a single operator step based on the existing

visual analytic algebra framework, we are going to expand the single step model to

handle the multi-step process.

3.6.1 Model for Composition of Operators

Before dealing with the construction of the uncertainty model to capture how

probabilities of multiple uncertain predicates are composed during an analysis di-

rectly, we first define the composition of operators. The composition of operators is

a composition process which often contains multiple operators to capture the users’

preferences during an analytic process. Since our uncertainty model is constructed

based on our existing visual analytic algebra framework, where we adopt existing vi-

sualization systems to help and guide data analysis, calling and utilizing visualization
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functions during the analysis is a key step during a visual analytic process. By the

default setting in most existing visualization system is that users will automatically

receive a new visual representation of the data after each manipulation; therefore,

we assume that all operator steps in the process are separated by the usage of the

visualization function, so all consecutive operators cannot be further merged or com-

bined into a single analytic step. In addition, because of using visualization functions

to provide users with new insight before each intermediated analytic step, we can

model the multi-operator process as independent steps, where the user defined oper-

ator distribution set based on uncertain predicates’ probability are independent. By

updating the graph probability distribution set, ΩG, after each single operation, we

keep tack of all the necessary probability information from all past uncertain querying

steps within the probability distribution set as a self-contained graph attribute.Based

on such construction, the final output graph probability will only depend on its input

graph’s probability from one step before and the user defined operator distributions

from the current analytic step. If all output graphs result from the same set of an-

alytic steps, we can rank all output structures based on their output probabilities,

which describe how well the given graphs fit the user’s target structure.

Figure 3.8 shows a example of composition of operator process that involves two

separate steps; an aggregation step, A1, and a selection step, S1. The probability

distribution set of A1 and S1 based on their uncertain predicates are independent.

According to the construction of the composition process, all graph probabilities in

the final output set D′′ are independent from graph probabilities in D given the D′s

probability information. The output graph probability will only depend the graph

probability distribution set from its input graph D′ and user imposed probabilities

based on the uncertain operator S1.

It is worth to mentioning that a single operator step is a special case of the

composition process which contains only one analytic step. In addition, the operator
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Figure 3.8: Example of a workflow of an analysis with usage of visualization function.

based on an exact predicate can be treated as a special case of the analytic process

based on an uncertain predicate with a probability distribution for the exact predicate

set to Ωpredicate = (1). Since there is no additional information on the probability list

for any initial input graphs, we assume each of the initial input graphs to have a

probability list of {{1}, {1}}.

3.6.2 Social Networking Application

In order to illustrate the usability of the uncertain predicate framework in a real

world setting, we employ the Flitter network as listed in VAST (2009),a synthetical

social computing tool such as Twitter, in this study. Moreover, we demonstrate

the effectiveness in reducing users’ workload of uncertain querying by dividing the

complex uncertain predicate into smaller simple uncertain predicates. Finally, we

compare the final outputs between our method to other existing methods.

The Flitter network contains over 6000 user IDs which are represented by nodes

in the network. For each user ID, we have information on its user name, city location

and size of the given location. There are 29876 edges in the network. An edge exists

between a pair of nodes (or two users), if there is at least one communication between

them. The goal of this study is to identify a possible criminal network based on a

list of given criteria. The suspect criminal network should have 6 members in total

with one employee, three handlers,one middleman and one group leader. Within their

circle, they should form a network structure listed as shown 3.9. The user is certain

about more connections among all members in the network except the relationship
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Figure 3.9: This figure shows that the suspect criminal network structure for the
Flitter study. Dashlines stand for uncertain connections.

Table 3.1: Summarization of given assumptions for Flitter network study. (* stands
for the uncertain requirement)

Name Assumptions
Employee A user with around 40 connections.*
Handler (3) Direct neighbor of employee.

A user with 30 to 40 connections.
Unknown connectivity among three handlers.*

Middleman Common neighbor of three handlers.
A user with around 4 connections.*

The group leader Direct neighbor of the middleman.
A user with over 100 connections.

among the three handlers, therefore, we use a dashline to denote such the uncertain

structures. In addition to the structural requirement for the criminal network, there

is a list of attribute assumptions for each of the criminal members. The detailed

assumptions are listed in Table 3.6.2. Based on the output network, we further study

the location distribution of the connections of all members in the network of suspects.

Figure 3.10 shows an overview of the given network in Cytoscape. At this stage, it is

hard to effectively visualize any useful information for the force directed layout.

There are two steps in the analysis of this problem such as in Figure 3.11. First, we

need select the suspected criminal network based on a uncertain query and visualiza-

tion function, then we can aggregate the network and study its neighbors’ distribution.

Therefore, we can divide the analytic process into two independent components due

to the usage of visualization function. We use the existing Cytoscape capability to
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Figure 3.10: Overview of the Flitter network.

Figure 3.11: Workflow of Flitter study analytic process.

visualize the data throughout the entire analysis.

By construction, since there exists no pervious knowledge about the input Flitter

network, we can assume that the initial input graph has a probability list given

by {{1}, {1}}. we The first independent component involves a complex structural

selection operator, which contains both attribute and structural uncertainty. Due

to the decomposition property of the selection operator, we can further break the

selection step into a few conditional independent components. We begin our first

analysis step by selecting all nodes with degree ≈ 40 and their neighbors up to the

7th consecutive steps, since we are interested in uncovering a network of size six and

its directed neighbors. In this step, we use an element selection operator, where we

select qualified nodes and use the labeling function to add an node attribute, Xv.label1 ,

for the target node with an ≈ 40 condition. With the user defined probability set

Ωα∗
1
= (1

3
, 1
2
,1,1

2
, 1
3
), we transform this uncertain predicate into a set of exact predicates

with degree equal to 38,39, 40, 41 and 42. Since the given assumption indicates the
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suspected employee should have around 40 connections, so the user defines higher

probabilities to predicates with degree requirements close to the given assumption,

and probability zero to any predicates with 3 degrees away from the given assumption.

As listed before, Ωα∗
1
is only a probability set. Each element of the defined probability

set follows an independent distribution which describes how well the exact predicate

structure captures the given target structure. After the first element selection step,

there are 26 output graphs with different output probabilities. By requiring user

input probabilities in the predicate step instead of the output step, we significantly

limit the user’s workload from attaching probability scores to all 26 outputs to only

define 5 different predicate requirements.

Based on the selected outputs and their updated probability lists, we are going to

select output graphs that contain 3 directed neighboring nodes of employees and with

degree between 30 to 40. Since the user believes that three handlers work in parallel

on separate cases, there are less likely to have connections than not connection at

all among them. Based on this assumption, the exact predicate set contain only

two exact predicates. They are α2.1 with no connection (P (α2.1) = 1), α2.2 with

only one connection(P (α2.2) =
1
2
). Ωα∗

2
=(P (α2.1), P (α2.2)) contains only conditional

probabilities, for example,P (α2.1) is the probability of no connections among all three

handlers given the selected employee from the previous step is a correct suspect.

Because the user applies the set selection operator here, one selects the entire qualified

graph instead of only the qualified elements. Moreover, we also use labeling function

to create a new node attribute for the selected handlers. At the end of this step, the

size of the output list is further reduced to 9 outputs and the probability attached to

each output is updated based on the input probability distributions and the current

operator distribution.

The next step is to select the middleman who is the common neighbor of 3 handlers

with degree ≈ 4. Similar to the first selection step, the exact predicate set contains
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predicates that have the same structural requirement, but different degrees ranged

from 2 to 6 with probability set Ωα∗
3
. In this step, the user picks the probability set Ωα∗

3

= (1,1 ,1, 1
2
, 1
3
), since one believes that the middle man is more likely to be less active

than a highly connected one. Once again, the user also uses set selection to obtain

outputs. The Ωα∗
3
set is conditional independent from Ωα∗

1
given Ωα∗

2
. By adopting

the conditional independent assumption amongst all consecutive analytic steps, our

framework effectively decreases the user’s workload in defining joint distributions for

the complex uncertain predicate.

The final step of the first independent component is to discover the leader of the

criminal network. Based on the given assumption, the group leader should be a highly

connected node with degree over 100. This step is a set selection operator based on

an exact predicate structure. The exact predicate query is treated as a special case of

the uncertainty problem in the analytic process with one exact predicate structure in

the set with probability one, therefore the operator distribution set for each output

in this step should be [1].

After all selection steps, only 2 outputs in Figure 3.12 are left with different output

probabilities based on the graph probability distribution sets as follows:

[1]⊗ [0, 0, 1, 0, 0]⊗ [1, 0]⊗ [0, 0, 0,
1

2
, 0]

[1]⊗ [0, 0, 1, 0, 0]⊗ [1, 0]⊗ [0, 0, 0, 0,
1

3
]

We rank all outputs based on their probabilities. The user can use visualization

function to further eliminate the size of output list if needed. Since there are only

two output graphs left in this study, we keep all of them for the next step.

Selection Step:

1. Element selection

α∗
1={{v1, . . . , v7},{e12, . . . , e67}, Xv1.degree ≈ 40}
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Figure 3.12: Two output graphs from the first selection component. Number in each
node is the user ID. The output probability for the upper graph is 1

2
and

the output probability for the lower graph is 1
3
, because of the degree

differences between two middleman, user 4994 and 4980.

Exact predicate set for α∗
1:

• α1.1={. . . , Xv1.degree = 38}

• . . .

• α1.5={. . . , Xv1.degree = 42}

with probability set Ωα∗
1
=(1

3
, 1
2
,1,1

2
, 1
3
).

2. Set selection

α∗
2={{v1, . . . , v4},

{e12, e13, e14,≈ e23,≈ e34},

Xv1.label1 =”Y”,Xv2−4.degree ∈ [30, 40]}

Exact predicate set for α∗
2:

• α2.1={{v1, . . . , v4},{e12, e13,e14},{!e23,!e34}, . . . }

• α2.2={{v1, . . . , v4},{e12, e13,e14, e23},!e34, . . . }

with Ωα∗
2
=(1, 1

2
).

3. Set selection

α∗
3={{v1, . . . , v4} ,{e14,e24, e34},
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Xv1−3.label2 = ”Y ”, Xv4.degree ≈ 4}

Exact predicate set for α∗
3:

• α3.1={. . . ,Xv4.degree = 1}

• . . .

• α3.6={. . . ,Xv4.degree = 6}

with Ωα∗
3
=(1, 1,1,1

2
, 1
3
).

4. Set selection

α4={{v1, v2}, e12, Xv1.label3=”Y ”,

Xv2.degree > 100}.

For the second part of the analysis, where one is interested to study the location

distributions of the suspect criminal network, the user can visualize directly of the

location distribution of neighbors for each of the members. In order to have a better

understanding of the overall distribution of all neighbors, we use element aggregation

operator to aggregate all members of the network together to a super node and call a

summary function to compute the location distribution of neighbors of the super node.

Since this step is constructed based on a exact predicate, the witness distribution stay

unchanged from the network structure to the super nodes. We compute a location

distribution of all neighbors.

3.7 Conclusions

In this chapter, we presented a probability model for uncertainty in queries. We

incorporate this model into a visual analytic algebra. We present multiple examples on

how it can be used. We also show the probability can be propagated in a workflow of

uncertain predicates. We would like to test this system with real users and situations
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to explore its benefits. There are still many areas of uncertainty in graphs to explore.

The next step would be to incorporate uncertain predicates to an uncertain graph

model. Another challenging problem is how to maintain the lineage of the different

uncertainty values created in a workflow.
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CHAPTER IV

Visualizing High Dimensional Data with Network

Constraints

4.1 Introduction

In recent years, effective and perceptually meaningful visualizations of high di-

mensional data is a topic that has received a lot of attention from the visualization

community. This is due to the abundance of such data sets in various application.

For example, in many biological settings, researchers routinely collect expression lev-

els for functional related genes (and/or proteins, metabolites) for a large number of

patients that belong to different groups (e.g. healthy, early disease stage, late disease

stage). Another example comes from marketing research, where data about users

preferences regarding specific products have been collected together with background

information (e.g. demographic characteristics, educational level and socio-economic

status)and social relations among users. It can be seen that the structural informa-

tion can be encoded in the form of a graph, with nodes corresponding to patients or

the product users and edges capturing their clinical similarity or social relationships,

respectively.

Techniques for visualing high-dimensional data, such as principal components,

multidimensional scaling and linear discriminant analysis (Jolliffe (2002); Borg and
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Groenen (1997); McLachlan (2004)) provide summaries of different aspects of the

data that lead to useful visual exploration. However, the additional information

regarding relationships encoded in the graph is not utilized. Similarly, a vast body

of literature has emerged on techniques for network visualization such as Viau et al.

(2010); Muelder and Ma (2008). Once again, node characteristics information (in the

form of data sets as explained above) is not received adequate attention in the network

visualization process. Hence, most of existing visualization techniques either focus

on the high dimensional data or on the network relationships, but do not seamlessly

integrate both in visual displays. As pointed out in Grammel et al. (2010), this can be

particularly problematic for visualization novices, because inadequate (or incomplete)

visual mappings can be misleading.

In this paper, we introduce a dimension reduction technique that aids in the

visualization of high-dimensional data, but in addition incorporates the structural

information available in the form of a network constraint. It is based on a penalized

decomposition of the data matrix, with the penalty encoding the network constraint.

This leads to a visual display that effectively contains both sources of information.

We present a fast algorithm to obtain the decomposition and show that it is easy to

implement in existing systems. Specifically, the matrix decomposition algorithm is

implemented in R (Hornik and Gebhardt (1998)), a free statistical computing platform

and network visualization in Cytoscape (Collaboration (2006)), a popular visualiza-

tion for biological data. The remainder of the paper is organized as follows: in Section

2, we briefly present related work. In Section 3, the proposed approach is introduced

and algorithmic issues discussed. Application to real data are given in Section 4 and

6. Last, some concluding remarks are drawn in Section 7.
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4.2 Related Work

Dimension reduction techniques lead to useful visual mappings that capture im-

portant features in high-dimensional data. One of the most popular ones, is principal

components analysis (PCA) (Jolliffe (2002)) that uses linear combinations of the fea-

tures (variables) in the data to construct a low (usually two or three dimensional)

subspace that is easy to visualize. The coefficients of the linear combination are

chosen to maximize data variance. In the presence of a priori assigned groups for

observations in the data set, linear discriminant analysis (LDA) (McLachlan (2004))

can also prove to be useful, since it projects the data onto a low dimensional subspace

that maximally separates the groups to emphasize their differences in the resulting

visual mapping. In many instances, these techniques are enhanced and combined with

other data mining techniques, such as clustering to further filter the results (Choo

et al. (2009); Oesterling et al. (2010)).

For data sets with a few dozen features, popular visualization techniques such as

parallel coordinates plots and scatterplot matrices can also prove some insightful in-

formation. In paper(Elmqvist et al. (2008b)), a new interactive strategy is presented

for exploring multidimensional data using scatterplot matrices. In Yuan et al. (2009),

more effective ways of displaying multidimensional data are introduced. In paper Ma

(2003) visual strategies for looking at time varying data are discussed. Some visual-

ization systems (e.g. MulteeSum Miriah Meyer and Pfister (2010) and FlowVizMenu

Viau et al. (2010)) link a number of visual displays that capture different aspects of

the data, which together along with the usage of differential coloring and plotting

symbols enhance the visual exploration.

Finally, there has been work on building an algebraic framework for supporting

visual analytics (Shaverdian et al. (2009a); Moustafa et al. (2011)), thus making

visualization a component of a more complex data mining and exploration pipeline.
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4.3 Network Penalized Matrix Decomposition Approach for

Dimension Reduction Method

4.3.1 Network Penalized Matrix Decomposition

Before we formally introduce our technique, let’s briefly go over the problem set-

ting first. We assume that data have been collected in a matrix X with n rows

corresponding to samples (observations) and p columns corresponding to features

(variables). Further, it is assumed that observed relationships among the samples

and the variables are encoded in graphs Gs and Gf , respectively. These graphs can

be mathematically represented by their adjacency matrices As of size n×n and Af of

size p× p, with non-negative entries that represent the strength of their relationships

between samples (and/or features).

The proposed technique builds upon the singular value decomposition of the data

matrix X. Formally, X can be written as X = UΛV ′, where U is a n × p ma-

trix containing the left-singular vectors, Λ is a p × p diagonal matrix containing the

singular values and V is a p × p matrix containing the right singular vectors, with

U ′U = I, V ′V = I. It is worth mention that the columns ui of U corresponds to

the eigenvectors of the matrix X ′X, while the columns vj of V corresponds to the

eigenvectors of X ′X. The Housholder-Young theorem (Gene H. Golub (1996)) states

that if we keep the k left and right singular vectors (Uk, V k) which are corresponding

to the largest k singular values (Λk), then the resulting matrix X̃ = UkΛkV k gives

the best k− rank approximation in the Frobenius norm (i.e. minX̃ ||X − X̃||2F ).

Our approach incorporates the network information through penalties on the left

and right singular vectors. Specifically, we want to minimize the following objective

function

min
U,Λ,V

∥ X − UΛV ′ ∥2F +δ1P1(U) + δ2P2(V )
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for some tuning parameters δ1 and δ2. The penalty function of observations takes

the form P (U) = U ′LsU , where Ls = I −D
−1/2
s AsD

−1/2
s is the normalized Laplacian

matrix of the graph Gs and Ds contains the row sums of the adjacency matrix As.

By the construction of Ls matrix, we can rewrite the constraint as u′Lsu =
∑

i,j(ui−

uj)
2 aij∑

ij aij
for a rank-1 estimation of u with aij ∈ As is the ij

th term in the adjacency

matrix of observations. It is easy to see that the network constraint pushes connected

low-degree nodes in the graph closer together, when projected to a Euclidean space.

The intuition behind our objective function is illustrated in the later section where

connected observations are placed closely together in the projected subspace obtained

from the network penalized singular value decomposition. Further, in the presence

of very high-dimensional data, one may want to create a sparse solution for the right

singular vectors by considering a constraint of the form P (V ) = ||V ||ℓ1 ,|| · ||1 denotes

the ℓ1 norm. The ℓ1 norm constraint sets many of elements in V equal to 0, thus

keep only the most ”significant” features in the reconstructed X̃ for the interpretation

propose. It is worth to point out that we can always left out the ℓ1 norm from the

penalty constraint functions for pure visualization problems. In cased of the absence

of additional network information. the Laplacian matrix can be set to zero matrix.

Then our network penalized SVD will only have ℓ1 norm penalty. The solution of the

given objective function will be the solution for sparse PCA.

After some simple algebraic manipulations, we can find the rank-one estimation

for the objective function for a fixed λ ∈ Λ by solving the following problem

max
u,v

u′Xv

Subject to u′Lsu ≤ c1

v′Lfv ≤ c2

or ||v||1 ≤ c2

u′u = 1 , v′v = 1
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C

Figure 4.1: A two-dimensional visual representation of penalty functions.

where u and v are n and p dimensional vectors.

In Figure 4.1 shows an illustration of the penalties. Specifically, the left panel

depicts the ∥v∥1 ≤ c2 and v′v = 1 constraints, while the right panel depicts the

u′Lsu ≤ c1 and normalization constraints. It can be seen that when c1 ≥ √
p, only

the normalization constraint (red) is active, while 1 ≤ c1 ≤
√
p the active constraint

becomes a diamond shape with four cutoff ends. Dependent on the direction of

u′X, the estimated v can be either on one of the constraints or their intersections.

The network constraint is controlled by the constant constraint value and the given

adjacency matrix As. When the weight between two connected components goes to

infinite, the constraint band will force the connected components to have the same

new coordinates in the low dimensional space.

4.3.2 Estimation and Algorithm

The optimization problem under consideration is a biconvex one (Witten et al.

(2009)). We can employ a block-relaxation algorithm (de Leeuw and Michailidis

(2000) ) to find the optimal u and v. First, we estimate u for a input v value based on

Newton’s method for nonlinear system of equation. Then, we solve for v for estimated

u. Since we use ℓ1 norm in the penalty function for sparsity, the constraint function is

not differentiable; therefore, we need to estimate v in a case by case fashion, which is

similar to the method listed in Tibshirani (1996). Finally, the value of λ (the singular
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value) is obtained by setting λ̂ = ûXv̂.

Algorithm 1: Rank-1 estimation

Input: X, initial v0 and constant constraint values c
Iterate until convergence:

• Estimate u for fixed v
minu − u′Xv̂, subject to u′Lsu ≤ c1 and u′u = 1

• Solve
minv − û′Xv, subject to v′Lfv ≤ c2 or ∥ v ∥1≤ c2 and v′v = 1

Compute λ = û′Xv̂
Output: û, v̂ and λ̂

We can solve the rank-k approximation problem, by repeatedly applying the rank-

1 algorithm 1 on the residual matrix X − X̃, where X̃ = λ̂ûv̂′ (see algorithm 2). Due

to the presence of the additional constraints, u1, · · · , uk are not orthogonal (and

similarly for the v’s). Note that in the absence of network constraints, we obtain the

sparse principal components solution. In many cases, when we have an equal degree

of confidence in both the high-dimensional data and the network constraints, one

can fix a constant c, with c1 = c
√
n and c2 = c

√
p, to obtain similar amounts of

penalization for u and v. In principle, the constants c1 and c2 can be chosen either

according to the degree of confidence on X and the constraints, or by data driven;

e.g. through cross-validation as applied to subsets of the data. If one wants to select

constant constraint values based on cross- validation method, he or she can randomly

select the ijth term of data matrix and treat it as the test set. The optimal constraint

values are select based on minimizing predication errors. The similar methods is also

adopted by Olga Troyanskaya et al. (2001)’s work.
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Algorithm 2: Compute rank-k approximation

Input: X
For i ∈ 1, 2, 3 · · · , k

• Compute rank-1 approximation: ûi, v̂i and λ̂i for X
i

• Find data matrix for rank i+ 1 estimation: X i+1 = X i − λ̂iûiv̂i
′.

Output: {û1, û2, · · · , ûk}, {v̂1, · · · , v̂k} and {λ̂1, · · · , λ̂k}

Figure 4.2: Network constraint of the synthetic data set. Color of the node represents
its membership to a connected subgraph.

4.3.3 Illustration of the Network Penalized Singular Value Decomposi-

tion

In order to demonstrate the effectiveness of the network penalized singular value

decomposition (NPSVD) approach in finding a suitable low-dimensional projection

of multidimensional data that incorporates a network constraint, we compare the

2-dimension visual representations from different dimension reduction methods on a

synthetic dataset. We employ only a limited numbers of observations for this study

to obtain a clear picture of the connectivity imposed by the network constraint on

the sample. In our example, we have a total of 20 observations and 10 features.

Each observation is generated according to a multivariate distribution with diagonal

covariance matrix. The network constraint is constructed at random and shown in

Figure 4.2. In order to visualize the results clearly, we assign the same color to all

observations within the same connected component.

The standard display of the output obtained from principal component analysis

that utilizes only the X data, is shown in the top left panel of Figure 4.3.The first

two principal components capture about 40% of the total variance in the data. The
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Figure 4.3: Principal component analysis output for the synthetic data set (Top Left).
Linear discriminant analysis output for the synthetic data set(Top Right)
with overlapping nodes are 9 and 16. NPSVD outputs with different
network constraints (Bottom).

observed clustering patterns in the center of the plot are dueto similarities among

those observations in X. Without cosidering any connectivity information, the con-

nect observation are drafting apart in the PCA output, for example, nodes 13, 7

and 12. In many applications, such as marketing study, freiendship which often can

be represented as connected nodes in the social network, will influence consumer’s

preferences; therefore we would like to place connected nodes together in the low

dimensional visual representations. In this case, PCA provides a misleading image of

the entire data information.

A different view of the data is obtained by employing linear discriminant analy-

sis, where we treat the connected components in the network as class labels (for a

total of four groups). The resulting two-dimensional representation shown in the top
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right panel of Figure 4.3 is driven by the grouping assignment, since the technique is

designed to maximize the between group separations and minimize the within group

distances; therefore, sometimes the low dimensional space is constructed based only

on a few original variables which provide a good group separations. It is easy to see

there is a clear separation among different colored nodes in Figure 4.3, however, this

image is constructed only based on two out off ten original features. So it is not very

informative in term of capturing the high dimensional data information. In addition,

by transforming the complex network information into group labels, we also suffer

from information loss.

In this example, we only impose a network constraint on the samples and leave

the features free. The resulting visual display of both the data and the network in-

formation is given in bottom of Figure 4.3. On the bottom left panel, the constant

constraint value c1 is smaller and hence the network constraint becomes more binding,

while in the bottom right panel the value c1 is fairly large and the display resembles

PCA outputs. Specifically, the connected observations, nodes 13, 7 and 12,come close

together as expected, and the same happens for all other tightly connected observa-

tions. In the extreme case, for a very small value of c1 the plot will only have four

points corresponding to the centers of the four connected components in the network.

This shows that one can obtain a succession of views of the data, with one extreme

being a visual representation of the information contained in the data matrix X and

another extreme displaying the clustering structure captured by the network. Tuning

the c1 constraint gives views that emphasize either the data X or the constraint Gs.

A similar result holds for constraints imposed on the features through Gf .

4.4 Movie Rating Application

We employ the NPSVD to a data set of movie ratings obtained from the IMDB

database. For each movie we have information about its title, year it was released,
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Figure 4.4: Movie network contains 558 movies (nodes) from the year of 1916 to
2005. The color of nodes represents as type of each movie. Two movies
are connected, if they share at least one common category.

length, budget, ratings and total number of votes received by raters. We examine

558 movies that can be categorized to Short Feature, Romance, Drama, Documen-

tary, Comedy, Animation and Action. Each movie can be assigned to more than

one categories. For example, Toy Story (I) is assigned to both the animation and

comedy categories, Braveheart is assigned to the action and drama categories, while

Crash is assigned to only the drama category. In total, we can assign all the 558

in 22 non-overlapping categories. The detailed distribution of movie types is given

in the Appendix. The network constraint is constructed based on the original seven

categories. Specifically, two movies are connected if they share at least one category.

For example, there exists no connection between Toy story (I) and Crash since they

share no common movie categories, whereas there exists an edge between Crash and

Braveheart since both are categorized as drama. The network is depicted in Figure

4.4, using a spring-embedding layout algorithm that utilizes edge weights. The edge

weights are constructed based on number of the common categories. To enhance

the visualization of the network constraint we also assigned different colors to the 22

non-overlapping categories we created. As expected, the network captures to a large

extent the similarities between the movies based on their genre. A set of network

statistics that describes the characteristics of the network are listed in table 4.4.
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Table 4.1: Network Summary
Network Statistics Quality

Nodes 558
Edges 90138

Average Transitivity 0.824
Range of Node Degree 3–539
Range of Edge Weight 0.143–0.428
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Figure 4.5: Two dimensional PCA projection of movie ratings

How does the view of the movies change when user ratings are employed? We

start by showing the information contained in the ratings using principal components

analysis (see Figure 4.5) and also adding the category information through coloring.

It can be seen that to a large extent users that rated high drama movies, rated low

comedy ones, since the drama movies (green) are mostly clustered on the left side

of the plot, while comedy movies on the right side. Further, there are movies with

similar ratings (overlapping in the plot) that belong to different genres. This should

be expected, since a good movie may receive good ratings irrespective of its genre,

and similarly for a bad one.

The visual display obtained from NPSV is given in Figure 4.6. The basic pattern

observed exhibits similarities with that obtained from principal components analysis.

However, the obtained solution exhibits a layering property; namely, romance and
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1. Apt pupil

2. Crash 

3. Hard rain

4. Deep rising 

5. Blues brothers 2000

6. Around the world in 80 days

7. The replacement killers 

8. Bad company

9. The big Lebowski

10. Primary colors

11. Lost in space 

12. City of angels

13. Firestorm

14. The Truman show

15. Man of the house

16. Chairman of the board 

17. The horse whisperer

18. Fall

19. Sleepover 

20. The man in the iron mask

21. The object of my affection

22. The English patient

23. Fargo 

24. Ransom

25. Tin cup

26. Mission: impossible

27. Happy Gilmore 

Figure 4.7: Two dimensional PCA projection of a set of movie ratings

drama movies (olive green) are close to the drama ones (green), followed by action

and drama movies (dark green) and so forth. Hence, the proposed technique through

the network constraint introduces a clustering effect on the movie ratings, while still

preserving the information available in the ratings.

In order to get a better understanding of the NPSVD solution we further examine
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Figure 4.8: Two dimensional PCA and network PSVD projections of a set of movie
ratings

twenty-seven popular movies. Figure 4.7 depicts their network connectivity and titles.

The visual displays obtained using principal components analysis an NPSVD are

shown in Figure 4.8. The principal components based visualization is fairly cluttered,

due to the similarities in the underlying movie ratings. On the other hand, the

NPSVD provides a more informative display, by separating similarly rated movies

according to their genre. In this case, the network constraint effectively increases the

visibility of the graph layout, while maintaining the rating information.

Overall, only the proposed network penalized matrix decomposition method ef-

fectively captures the two sources of information (data and network constraints).

Obviously, unreliable connectivity patterns may lead to distorted patterns and the

same can happen for highly noisy data.

4.5 Actor/Actress Application

Beside of dataset is constructed on each movie title, we also obtained a small

actor/actress dataset from the IMDB database to visualize the rating behavior from

a different aspect. There are total 18 stars in the dataset. For each star, we average

rating related and box-office related information of all movies during 1990 to 1995.
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Table 4.2: Number of total movies per star

Name Number of Movies Name Number of Movies Name Number of Movies
Kevin Bacon 10 Tom Cruise 5 Kevin Costner 9

Morgan Freeman 7 Tom Hanks 7 Dustin Hoffman 5
Jack Nicholson 6 Tim Robbins 10 John Travolta 6
Gary Oldman 11 Bruce Willis 15 Denzel Washington 10
Halle Berry 8 Nicole Kidman 8 Demi Moore 8
Julia Roberts 9 Meg Ryan 9 Meryl Streep 6

For example, in the given five year period, Tom Hanks took roles in total seven

movies. Some of them are more popular than others, such as Forrest Gump has both

high rating and worldwide gross; while others have a fewer number of votes and low

domestic gross. In order to take out some of the variation and look at the overall

performance of each star in the given time period, we average movie ratings, number

of votes, number of reviews and critics, revenue from the opening weekend (U.S.)

and total gross (U.S. or worldwide) from all his or her movies. In order to measure

each star’s productivity, we also obtain numbers of total movies one made during

the time period. The detail information on their total number of movies is listed in

table 4.5. Based on this dataset, they made around eight movies during the five-year

period on average. Bruce Willis and Denzel Washington are the most active stars

in the dataset. For most of well established stars, such as Dustin Hoffman and Jack

Nicholson, they are tended to select their movies more carefully. Among all seven

observed variables, all variables related to ratings (average number of votes, reviews

and critics, average ratings) are highly correlated, and all variables related to the

box-office (average revenue from the first opening weekend and box-office gross) are

also correlated. The strengths of correlation can be found in the scatterplot matrix,

Figure 4.9.

The obtained network is motivated by Six Degrees of Kevin Bacon game (Travers

and Milgram. (1969)). Two stars are connected, if they worked in the same movie.

Edges within the network are weighted by number of their collaborations. We have

mostly the famous stars in the business during the given time period. In addition,
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Figure 4.9: Scatterplot matrix for all seven variable in the star dataset. Black nodes
correspond to actors and red nodes correspond to actress in the dataset.
The seven variables are average number of votes, reviews and critics,
average ratings, average revenue from the first opening weekend, average
box-office gross and the total number of movie one made between 1990
to 1995.
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Figure 4.10: Network for all 18 stars. The wider the edge width implies more frequent
collaborations.

most of movies only offer a few important roles at once; therefore, most of stars only

worked once together. Only Tom Cruise / Nicole Kidman (the real life couple ), Tom

Hanks / Meg Ryan (the magical movie couple which grantees the box-office) and

Bruce Willis / John Travolta appeared in two movies together during the five-year

period. The detail structural information can be found in Figure 4.10. The wider the

edge width implies more frequent collaborations.

PCA output in Figure 4.11 is constructed based only on high dimensional data

information. According to their factor loadings, the first dimension captures only the

variables related to ratings, while the second dimension captures only the variables

related to profit and productivity. For example, most of actresses had low ratings,

while Morgan Freeman had the highest average rating during the given time period

because of popular movies, such as Unforgiven, Seven and The Shawshank Redemp-

tion. Because most of Tom Cruise’s films were released in cinemas worldwide, he

had an outstanding average box-office gross comparing to others. On the other hand,

Gary Oldman and Tim Robbins also took roles in many important films, however,

their high participation in less popular and low gross domesticate films out weight

their influential works in the overall average. Among the first two dimensions, it
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Figure 4.11: PCA output is constructed based only on the seven input variables, while
Network penalized SVD output is constructed based on both character-
istic and structural information

captures less than 70% of total variance in the dataset. However, there exists no

information on their connections.

As can be found in both scatter plot and PCA outputs, most of actresses have

lower ratings and make less revenues than their male coworkers because of limited

83



substantial female roles in the movie industry during the early 90’s. In addition,

during that time period, some of actresses,such as Julia Roberts and Halle Berry,

were still at the starting point of their careers, especially, Halle Berry only made

one TV series before the year 1990; therefore, ratings and revenues may not be the

only criteria for their overall rankings. We believe that working with other famous

movie stars in the business will improve their chances of getting recognition and

bring in more potentials for their future work. Based on such motivation, network

penalized SVD output which contains both characteristic and structural information

will provide us a more informative visual representation.

For this application, we didn’t obtain any relationship information on variables,

so we leave Lf equal to a zero matrix. Because of the ℓ1 norm constraint, the first

dimension of network penalized SVD captures all rating related and overall box-

office information except average revenue from opening weekend and total number of

produced movies. While the second dimension contains information from all variables

and with a bigger weight in front of average revenue from the opening weekend. The

two dimensional network PSVD output can be seen in Figure 4.11, Nicole Kidman’s

name stands out from other actresses because of her relationship with Tom Cruise. No

only the collaboration information help actresses to have more reasonable placements,

but also highly productive actor Tim Robbins is placed closer to other famous stars

because of his important role in The Shawshank Redemption with Morgan Freeman.

In contrast, he is placed far below the rest of the group in the PCA output since most

of his movies are only released domestically.

4.6 Gene Expression Application

In the study of gene expression level, statistical significant of each gene expression

level shifts under different experimental conditions is often assessed independently

with some multiple testing corrections. As stated in Shojaie and Michailidis (2009),
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such approach can be less sensitive in detecting gene expression level changes and also

lack meaningful biological interpretation. Genetics scientist (Ideker et al. (2001)) and

Statistician (Shojaie and Michailidis (2009)) tried to integrate gene interaction infor-

mation in different pathways, estimated correlations among genes together with the

expression level dataset to identify significant expression level shifts between differ-

ent experimental conditions. By incorporating additional network information, they

are able to build more robust tests in finding significant and meaningful biological

subnetworks and pathways.

Before applying any formal analyses, visualization is the first step of learning from

the data. Since existing visualization techniques lack the ability of incorporating net-

work information to the high dimensional data information to fully present the given

information, users often have a misleading perception of the data at the beginning of

analyses.

In this section, we demonstrate our network penalized SVD method on a small

biological network to solve the problem. The dataset is originally presented in

Ideker et al. (2001)’s work. The network contain 343 genes/nodes with 419 interac-

tions/edges. In this study, we only select a subnetwork which contain two important

gene pathways for a better visualization purpose. The resulting integrated physical-

interaction network is listed in Figure 4.12 which contains total 25 genes and 32

interactions. Each interaction can be either a protein’s physical interaction or gene

transcription. The red pathway is denoted as galactose utilization in the yeast Sac-

charomyces cerevisiae, whereas the blue pathway is denoted as amino acid synthesis.

The two pathways are connected through two genes (in yellow) with gene transcrip-

tions. For each of the tested genes, we have total 21 perturbations (observations) in

the expression level dataset.

PCA output is constructed based on only the expression level data set, Figure4.13.

The color of gene names is denoted by its pathway. It is easy to see that there is no
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Figure 4.12: Biological network contains two gene pathways.

Figure 4.13: Two dimensional PCA projection of gene expression levels.

consistent patterns of gene expressions within each pathway. The connected genes

may not have the similar gene expression levels.

On the other hand, we can find a better pathway separation in the network pe-

nalized SVD output, Figure 4.14. All 21 perturbations in the dataset are treated as

independent observations because they are expression levels under different experi-

mental conditions, so we have no additional structural information on the observa-

tions. Whereas, we have the structural information on features which is naturally
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Figure 4.14: Two dimensional NPSVD projection of gene pathway dataset.

inherited from the gene pathways. Since we use the normalized Laplacian matrix

which is constructed based on Gf for the network constraint on features, we tend to

push connected low degree genes together; therefore, all genes within the amino acid

synthesis pathway (blue) is placed closer than all members in galactose utilization

pathway (red). Moreover, this example also demonstrates that the natural network

constraint only pull directed connected genes together with appropriated tuning pa-

rameters. Similar to the PCA output, the outliers, GAL1 ,GAL10 and GAL7, are

still remained to be outliers in the network penalized SVD output.

4.7 Discussion and Future Work

In this study, we have introduced the network penalized singular value based ma-

trix decomposition that creates effective visualizations of high-dimensional data sets,

while incorporating constraints on the samples and/or the features. Through the

utilization of network constraint, we propose a very flexible and powerful visualiza-

tion technique in capturing complex relationships between observations or features.
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Not only for visualizing high dimensional network data, but our method can also be

used for visualizing any clustering outputs by transforming the simple class label into

disconnected network components. Appropriate tuning of the constraints is critical

in obtaining the most meaningful and insightful visual display of the data. For very

large data sets, a data driven approach for tuning the constraints may be most appro-

priate. We are currently exploring more complex penalties and also how simultaneous

penalties on both the samples and the features affect the visualization of the data.
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CHAPTER V

Multi-task Learning

5.1 Introduction Multi-task Learning

In a standard machine learning problem, the objective is to construct a learner

based on a training data set that predict responses based on future observations. In

particular, responses can either be a numerical or categorical variable from the same

source or population. Many models have been proposed to answer this prediction

problem, for example, regression techniques for numerical responses and classification

technique for categorical responses. Even in the case where the p > n, number of

variables is bigger than number of observations, penalization approaches, such as

LASSO and ridge regression, are adopted by various researchers.

In social and biological science, data is often collected from many sources. It is

difficult and expensive to collect a large number of observations for each source to

construct independent learners. On the other hand, due to heterogeneity within the

data set, one model for entire data collection may not provide good predications for

future observations. For example, in the study of Swallows population, consisting

of bird observation in 2006, the migration due to major seasonal shifts makes pre-

dicting swallows’ population based on the entire data set a poor approach. Another

application for multi-task learning can often be found in the medical studies. When

we try to study the treatment effects, data is collected from different hospitals. The

89



demographics of patients each hospital serves may be different. A hospital in Florida

may see an older patient population, on the other hand, urban hospitals may see a

poorer patient population which have had less access to health care. In this special

case, each month of the year or each hospital can be treated as a separate task. We

can learn each task on a single, isolated basis, but would it be better for the learner

to learn many similar things simultaneously? If the tasks can share what is learned,

the learner may find it is easier to learn the related tasks together.

The multi-task learning considers the problem where a task will be learned with

low predication error rates if it can utilize information from other related tasks during

learning experiments. First, we introduce the setup of the problem. Each task is

treated as a training set in a standard machine learning problem. We have L tasks

or samples, containing some common underlying relationships. For the ith task, we

have observations (xi
1, y

i
1), · · · , (xi

j, y
i
j), · · · , (xi

ni , yini) where xi
j = ( xi

j1, · · · , xi
jp) are

the predictors and yij is the response. In the supervised learning, the goal is to build

a learning model that accurately predict new yi values. For example, to model the

response yi in term of the predictors xi
1, · · · , xi

p alone, one may consider the linear

model such as,

yij = βi
0 + βi

1x
i
j1 + · · ·+ βi

px
i
jp + ϵij

where ϵij is an independent error term obeys some predefined distribution. In the

above example, we learn the ith task by only considering the ith training set. Usually,

we do not use information from other training sets, however, we would like to learn

each single task better by building a learning model based on entire related tasks,

Y i = f(X1, · · · , X i, · · · , XL) where X i is the covariant matrix of task i.

Multi-task learning has shown its advantage in many empirical studies, however,

the theoretical works on this subject is limited, see Baxter (2000); Ben-David and
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Schuller (2003). In Baxter’s theoretical work ( Baxter (2000)), he defines the relat-

edness in multi-task learning not as correlation among observations themselves, but

the internal representations or the optimal hypothesis space for different tasks, where

the common internal representation or the optimal hypothesis space can be captured

by model structure. Details in finding the optimal common hypothesis space from a

family of hypothesis spaces can be found in his work, he uses both Bayesian and in-

formation theory to demonstrate that learning multi-tasks within an environment of

related tasks produce improved generalizations than learning based on a single task.

By ” Extending VC dimension” for family of hypothesis spaces, he derives bounds on

improvements in average error rate for multi-task learning. Ben-David (Ben-David

and Schuller (2003)) provides a more formal condition for task relatedness and tighter

bounds on average error rates which capture a sub-domain of the problem. Instead

of defined the related tasks share similar model structure, he defines the related tasks

as samples from the similar distribution,transformations of each other. For example,

different sensors collect data for the same classification problem. Each sensor has

its own bias due to location. By using multi-task learning , he claims that one may

eliminate complex and time consuming database integration process by finding the

optimal learner based on multi-task learning method, where each database is treated

as one task in the multi-task setting.

Due to the lack of theoretical justification, many authors give more restricted

assumptions in relatedness. In general, researches assume that the related tasks must

share some common input features. The tasks that share more input features are

likely to be more related. For example, in the extreme case, we can always split one

large sample into two independent samples. There exist no correlations between two

tasks based on the independence assumption. Since both samples are from the same

population and living in the same parameter space, we will be able to find a better

learner by utilizing two tasks instead of any single training set alone.
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Over the last decades, multi-task learning has appeared in many literatures within

the machine learning field. Among those work, multi-task learning methods often

adopt the regularization approach. For example, see Obozinski et al. (2006, 2008);

Pontile et al. (2007); Argyriou et al. (2006); Obozinski et al. (2009); Argyriou et al.

(2008); Lounici et al. (2009); Chen et al. (2010). In particular, Jordan’s multi-task

feature selection method (Obozinski et al. (2006, 2008)) is an example of the regu-

larization approach. Jordan’s method extends the l1 regularization for single task

estimation to the Multi-task learning setting. Since Jordan assumes that all tasks

are based on the same covariant structure for a given multivariate observation, it

is expected that there exists a common underlying representation shared among all

classifiers. Feature selection improves the prediction accuracy and interpretation by

reducing irrelevant features within a data set. A model constructed using the l1

penalty by the LASSO procedure are typically sparse in the sense that only a few of

the parameters are non-zero. By fitting tasks independently under the l1 regulariza-

tion, we might risk the possibility of losing the common underlying structure among

all related tasks. Jordan’s Multi-task learning method enables us to find the common

feature space by penalizing the entire column of parameters at once. In his 2008

work (Obozinski et al. (2008)), he demonstrates the l1/l2 model carries all the reg-

ularization properties from ordinary LASSO regularization, and it gives substantial

improvements in some applications.

Beside adopting LASSO’s penalize strategy, many authors extend the Reproducing

Kernel Hilbert space method to the multi-task learning setting. Evgeniou (Evgeniou

and Pontil (2004)) proposed a multi-task learning method based on kernel based

learning, e.g. Support Vector Machines. He tries to capture the connections among

tasks by using a kernel function. Based on their 2004 work, Micchelli and Pontil ex-

tend the Reproducing Kernel Hilbert space approach into a more generalized setting.

They elaborate the special kernels with more details and real world examples in their
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later paper (Evgeniou and Pontil (2004)). In their latest work (Caponnetto et al.

(2008)), they complete vector value function kernel approach by deriving conditions

that ensure the universal property of the kernel.

Many existing multi-task methods are adopting Bayesian approaches, where a

prior probability model defines the relations amongst all tasks and model parameters

are jointly estimated, such as Bakker and Heskes (2003); Heskes (2000). In Bakker

approach, he chooses to model shared parameters through a join prior distribution

which can be learned from data. In the simplest case, he defines the task depends on

parameters following a prior distribution Ai ∼ N(Ai|m,Σ), so the join distribution of

data becomes P ((x, y), A|Λ) =
∏

P ((xi, yi)|Ai, w, σ)P (Ai|m,Σ) with σ as the vari-

ance of error term and W as the hidden weight of tasks. The prior distribution can

also be changed in order to model the clustering structures among all tasks. Further-

more, Zhang’s 2008 work (Zhang et al. (2008)) connects the latent variable model to

the multi-task learning setting following a hierarchical Bayesian approach.

It is worth pointing out that multi-task learning has also appeared in many statis-

tics literatures other than the pure machine learning field. Breiman and Friedman

(1997) propose the Curds & Whey method, where they solve the problem of predict-

ing multivariate responses in a linear regression model. When there exists obvious

grouping structure among tasks, hierarchial linear model approach many also used

by Raudenbush and Bryk (2002). For example, students are grouped in schools.

Hierarchical linear models capture this grouping structure by introducing indicator

variables.

Beside of machine learning and statistical related area, similar problem is studied

under the name of transfer learning by researchers from fields of eduction science (J.D.

et al. (1999)), linguistics (I.Kecskes and Papp (2000)), psychology (Anderson (1995))

and human-computer interaction (Olson and Olson (1990)). Instead of focusing on

improving prediction errors, they are interested in how individuals would transfer
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learning in one context to another context that shared similar characteristics more

formally how ”improvement in one mental function” could influence another related

one.

In the work we present in this paper, a multi-task model based on generalized

linear model is introduced as a possible solution to increase prediction accuracy while

verifying the correct relationship amount tasks. Unlike previous work which simply

assume the relationship structure amount tasks,the main feature of our model is the

construction and training procedure of a weight matrix that captures relationship

among tasks. The construction of weight matrix is studied rigorously on numbers of

synthetic dataset. Instead of uncovering the common sparsity structures for all given

tasks by applying penalty directly, we are interested in selecting and pulling only

the related tasks for learning the parameters by borrowing strengths among tasks,

when the feature space has a reasonable dimensionality and there exists complex

relationship among tasks. We show that information on association amount tasks

increases predication rate for each learner.

The rest of the paper is organized as follows. In Chapter 5.2, we introduce our new

method, the generalize linear multi-task learning model. We propose an algorithm to

effectively compute the solution for the model. In Chapter 5.3, we study the inference

step and demonstrate the importance of constructing a weight matrix. In Chapter

5.4, a movie rating prediction problem is presented as an application. At the end,

some concluding remarks are drawn in Chapter 5.5.

5.2 Multi-task Learning Model

In this work we deal with the multi-task learning problem with multiple tasks

sharing a common optimal hypothesis space, where the common space is captured by

the similarity in the observations.

We start by setting up the notation of the problem when we observe a total of l
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samples. For the kth task, we have observations (xk
1, y

k
1), · · · , (xk

j , y
k
j ), · · · , (xk

nk , y
k
nk)

where xk
j = (xk

j1, · · · , xk
jp) is a p-dimensional predictor and ykj is a response. The

underlying relationship between the predictors and responses within the same task

can be captured by an unknown vector βk, where cov (βk, βj) may not be zero for

some k ̸= j.

We try to estimate the optimal βk for each task k, by using information obtained

from related data sets. The relationship is either given based on background knowl-

edge of data sets or pre-computed based on a similarity measure Rl×l from available

observations. The details of computing the similarity measure is given in the fol-

lowing section. Based on a similarity measure, W ∈ Rl×l, we treat the multi-task

learning problem as a standard smoothing problem with weight matrix W . Instead

of smoothing over the space defined by observations, we use the information in W to

smooth over the space spanned by tasks. In this setting, we maximize log likelihood

function,

L =
l∑
k

l∑
i

wkiL
i(yi, βkxi)

a summation over all tasks with weights information W . Since the log likelihood is

constituted of independent components, maximizing the entire log likelihood function

can be solved by maximizing each independent component separately.

5.2.1 Weight Matrix

Let W denote the weight matrix containing information among all tasks. It is a

standardized weight matrix with row sums equal to one. Before standardization, each

element of the weight matrix wij is given either as a constant weight directly or as

an unknown constant based on observations. For example, the adjacency matrix of

an underlying social network structure can be treated as the smoothing matrix in the
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study of customer’s preferences, because friendship relations often have strong influ-

ence on personal preferences. Friendship often has high connectivity within groups

and lower connectivity between groups, which can be defined according to different

criteria; such as, socio-economic status or geographical location. Further, the weight

matrix, captures such relationship, will often have block structures to capture the

grouping structure within the social network. In contrast, if the weight matrix is not

given directly from the background of the data set, we will need to compute it based

on a similarity measure.

Because of the flexibility of the proposed model, the distance function can take

many forms. The procedure of defining a distance metric for construction of the weight

matrix among tasks is similar to finding the distance between pairs of observations.

Since there are many existing similarity measures for observations, we can define

the distance metric among tasks based on them. For example, one possible distance

metric between two tasks is the average similarity measure for all pairs of observations

between two samples. Based on the data sets, we can choose a similarity measure

by capturing the pairwise relationship. Let’s denote the similarity measure of choice

as S(xs
i , x

t
j) where xs

i ∈ T s and xt
j ∈ T t. s and t are indexes of different tasks;

therefore, we have wst = 1
N

∑
xs
i∈Ts,xt

j∈T t S(xs
i , x

t
j), where N equals to all possible

observation pairs between task s and t. This construction will borrow strength from

tasks following similar distributions.

Depend on the problem at hand, we can choose the type of similarity measures for

computing S(xs
i , x

t
j). For the simplest case, we can use Euclidian distances to capture

the similarity among tasks. However, when the number of tasks gets large, we would

like to have a sparse weight matrix. In order to uncover the sparsity pattern, we

impose some hard constraints, such as smoothing over a fixed number of neighbors, or

some soft constraints, such as a kernel function with tuning parameters. The optimal

tuning parameters can be obtained through cross validation on the prediction error
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rate. The optimal tuning parameter also provides insightful information on the true

underlying relationship among all tasks. Moreover, if one believes that true parameter

space can be partially uncovered by pre-fitted estimations from building individual

learners, the weight matrix can also be constructed based on pre-fitted estimations.

5.2.2 Estimation

We utilize generalized linear models to estimate underlying parameters by maxi-

mizing the following loss function:

L(β1, ·, βl) =
l∑

k=1

l∑
t

wkt

nt∑
i

[
(ytiγ

k
i − b(γk

i ))

τ 2
− c(yti , τ)] (5.1)

Since the log likelihood is the summation of independent components, maximizing the

entire log likelihood function can be solved by maximizing each independent compo-

nent separately. Adopting the generalized linear model notation, the link function,

g(µk
i ) = xk

i ′βk is consistent among all related tasks, which links together the mean

of responses, µk
i , and linear form of predictors, xk

i ′βk. The γk
i is a known function

of expectation of yki and τ is the normalize constant. For example, γk
i = µk

i and

τ = var(xk
i ) in the normal distribution case. The likelihood function for the kth task

is a weighted sum of l standard generalized linear models. Instead of assigning a

weight for each observation, we weight each task based on the underlying relation-

ships among tasks. In other words, we weight all observations the same within one

task.

To estimate the optimal βk that maximizes the log likelihood function, we need

to solve the normal equations, ∂L(βk)
∂βk = 0, for the log likelihood function. Since all k

normal equations maybe nonlinear in parameters, we employ the iterative reweighted

least squares method to solve the problem at hand. The iterative reweighted least
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squared method for a standard generalized linear model can be derived by using

Fisher’s scoring method (WIKIPEDIA (2011)). It takes the form βm+1 = βm +

(I(βm))−1 ∂l
∂β
|βm where βm is the parameter of interest at the mth step and I(βm) is

the Fisher information matrix evaluated at βm. Analogously, we can find the optimal

βk for our multi-task generalized linear model as following.

βkm+1
= βkm + (

∑
t

wktx
t′Qtxt)−1(

∑
t

wktx
t′Qt∆t(yt − µt)) (5.2)

Qt = {d[
∂2b(γt

i)

∂γt
i
2 (

∂g(µt
i)

∂µt
i

)2]−1}

∆t = {d
∂g(µt

i)

∂µt
i

}

where µt
i and γt

i are functions of βm. In equation 5.2, wkt ∈ W is a pre-computed

weight matrix and g(µt
i) is the link function from the generalized model. For each

iterative step m+1, we have βm as a constant vector from the previous step. Function

µt
i and γt

i are evaluated again based on constant value βm. The main computational

issues left for estimation using the multi-task learn algorithm are calculating the

inverse and estimating the tuning parameter for weight matrix W . We are going to

cover those issues in following examples.

In the simplest case, where yti is an independent quantitative variable following the

normal distribution, the multi-task model can be simplified into a weighted regression

problem. The optimal estimation for parameters βk for the kth task can be written

explicitly as

β̂k = [
l∑
t

wkt

nt∑
i

xt
i′xt

i]
−1[

l∑
t

wkt

nt∑
i

xt
i′yti ] (5.3)

Notice that we can always pre compute xk′xk
p×p and xk′ykp×1, so the only term we

need to update is the tuning parameters in the weight matrix. For a given constant
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weight matrix, the multi-task method’s computational complexity is same as the

independent method. According to the equation 5.3, the solution always exists when

the first part of the expression is invertible. It is easy to see that as long as one of∑l
t wkt

∑nt

i xt
i′xt

i with nonzero weight is a positive definite matrix, the sum will be

invertible. By adopting multi-task method, we are able to construct a better learner

for task with a few observation without adding too much computational cost.

In contrast, the log likelihood function for 0/1 responses can be written as equation

5.4 with E(yti) = π(xt
i).

L(β1, · · · , βk) =
∑
k

l∑
t

wkt

nt∑
i

yti log(π(x
t
i)) + (1− yti)log(1− π(xt

i)) (5.4)

π(xt
i) =

expxt
i′βk

1 + expxt
i′βk

After simple algebraic manipulations, we find that γ(βk, xt
i) = log(

π(xt
i)

1−π(xt
i)
). We

can obtain the optimal βk explicitly by solving equation 5.5 iteratively.

βkm+1
= βkm + (

∑
t

wktx
t′Qtmxt)−1(

∑
t

wktx
t′Qtm∆t(yt − µt)) (5.5)

Qtm = {dµt
i
m
(1− µt

i
m
)}

∆tm = {d
1

µt
i
m(1− µt

i)
m}

µt
i
m

= π(xt
i) =

expxt
i′βkm

1 + exp xt
i′βkm

Similar to regularization approaches, the multi-task generalized linear model also

gives us biased estimations. Unlike other regularization methods to penalize all task

at once, our method helps us select the related tasks and pool the parameter space for

related tasks together without penalizing too much on unrelated ones. Variable selec-

tion can be very important for generalization especially in high dimensional problems.

Unlike other regularization methods, we hope to achieve the variable selection step by
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discovering the statistical insignificant estimators through bootstrapping methods.

5.3 Simulations

5.3.1 Prediction Performance

In order to demonstrate predication performances, we compare testing errors, sum

of square differences, among multi-task, individual and pooled learning method on

many synthetic data sets, since all three approaches share the same model structures.

Penalized approach is not included in this comparison, because there exists no simple

procedures for the existing multi-task penalized approaches to uncover the unrelated

tasks within the given information. We keep only limited number of tasks for this

study to have a clear picture of relationship among all tasks. In the first study, we

have total five tasks. When the responses are numeric variables with given weight

information, regression approaches are employed in the simulation. We simulated the

following situations with different signal to noise ratio by adjusting error variance.

For each task, we have xk
i = (xk

i1, · · · , xk
i8) ∼ N(

−→
0 , I8). The first three tasks has

parameter as β1 = β2 = β3 = (1, 1, 1, 1, 0, 0, 0, 0), while the last two tasks have the

same parameter as β4 = β5= (0, 0, 0, 0, 1, 1, 1, 1) with block weight matrix. Predictor

yki is generated by x′β+ an error term with variance ϵ = (0.5, 1, 2.5, 5) for different

signal to noise ratios. During iterations, each task is randomly divided into a testing

(around 30 percent)and a training set with total 60 observations. Performance is

evaluated based on the sum of square distances of all testing sets.

Figure.5.1 boxplot is based on 200 cross validations of testing errors from all three

methods under different signal to noise ratios. It is easy to see, pooled regression

(blue) always gives the worst performance for all error variances in the simulation

since there exists unrelated tasks within the given information. When the signal to

noise ratio is high, the least square method (green) have a comparable testing error
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Figure 5.1: Box plot of testing errors over 200 cross validations. Red, green and
blue box plots are constructed based on testing errors from multi-task,
individual training and pooled methods. From the left column to the
right column, signal to noise ratio decreases.

Table 5.1: Ratios of medians testing errors
Methods Multi-task Independent training Pooled training
var(ϵ) = .5 1 0.921854 0.116384
var(ϵ) = 1 1 0.856275 0.384252
var(ϵ) = 2.5 1 0.850344 0.659147
var(ϵ) = 5 1 0.861968 0.960116

as multi-task learning method (red). As signal to noise ratio decreases, from the left

column to the right column, multi-task learning method have lower testing errors

than individual method by borrowing strength from multiple tasks. The outstanding

prediction rate can also be found in table 5.3.1, where we compute the radios of

median testing errors. Each cell in the table is computed as the median of testing

errors from the multi-task method over the median of testing errors from the other

methods.

For each of the given learning methods, we also use bootstrapping confidence in-

tervals to check if one can correctly uncover the sparsity structure of the parameter.

In this study, we use the same data set with a weight matrix, constructed based on

Gaussian Kernel. Figure 5.2 shows some bootstrapping confidence intervals for some

estimated parameters for both multi-task and individual methods with variance of

error equaled to one. Table 5.3.1 records the percentage of bootstrapping confidence
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Figure 5.2: Bootstrapping results from both multi-task and individual methods for
some of estimated parameters.

Table 5.2: Percentage of confidence interval correctly cover zero and average length
of confidence intervals.

Methods Multi-task (Length) Individual (Length) Pooled (Length)
var(ϵ) = 0.5 0.6 (0.132) 0.65 (0.237) 0 (0.162)
var(ϵ) = 1 0.7 (0.179) 0.6 (0.306) 0.05 (0.217)
var(ϵ) = 2.5 0.5 (0.391) 0.55 (0.717) 0.15 (0.299)
var(ϵ) = 5 0.5 (0.875) 0.55 (1.631) 0.35 (0.612)

interval which correctly cover the right sparse structure and the average length of

all confidence intervals for estimations. Based on the table, the multi-task learn-

ing method is able to uncover the corrected parameter information with reasonable

interval lengths.

Besides numerical responses, we also apply the multi-task learning method to 0/1

responses, yki follows Binomial (xk
i
′
βk). In this case, we compare the multi-task model

to individual and pooled logistic models under different generalized signal to noise

ratios. In Gabriela’s work (Czanner et al. (2008)), the generalized signal to noise
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Table 5.3: Ratios of medians of sum of testing errors
Methods Multi-task Independent training Pooled training
var(ϵ) = .5 1 0.921854 0.116384
var(ϵ) = 1 1 0.856275 0.384252
var(ϵ) = 2.5 1 0.850344 0.659147
var(ϵ) = 5 1 0.861968 0.960116

ratios are defined as

Dev(y, f(x, β̂0))−Dev(y, f(x, β̂))

Dev(y, f(x, β̂))

where deviance is a measure of the distance between the fitted model and observed

data y. β0 is the component of the mean unrelated to the signal while β is the

component related to the signal. Figure 5.3 shows pooled logistic regression model

perform the best when the generalized signal to noise ratios is small. As the signal

increases, the multi-task learning model starts to have a better performance. Table

5.3.1 also contains ratio of median testing error among all methods.

Figure 5.3: Box plot of testing errors over 200 cross validations under different gener-
alized signal to noise ratios. Red, green and blue box plots are constructed
based on testing errors from multi-task, individual training and pooled
methods. The estimated generalized signal to noise ratios range from 5
to 50.
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Table 5.4: average sum of square distances SSD
Methods Sum of square differences
Learning with weight 1 169.2043
Learning with weight 2 35.66681
Learning with weight 3 318.1389

Similar to other multi-task methods, our multi-task model give a better preference

for both numerical and categorical responses based on a corrected information on re-

lationship among tasks. However, we often do not have the most accurate information

in real world applications. We demonstrate the importance in identifying the optimal

weight matrix, W , based on simulations. Next, we have total four tasks where all

xk
i = (xk

i1
, · · · , xk

i8
) ∼ N(

−→
0 , I8) and responses are numerical variable ϵki ∼ N(0, 0.5).

Each task is divided into a testing and a training set with 30 observations. Each

performance is once again evaluated based on the sum of square distances on testing

sets. Three constant weight matrixes are applied to the case. The true parameter

space can be correctly captured by the second weight matrix.
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We record the average sum of square distances over 200 iterations under different

weight matrices in the table 5.3.1. Compare multi-task learning method’s testing

error across different weight matrices. When the weight matrix closely captures the

structure of underlying parameter space, the learner will have the best performance.

In real world applications, even though we often have some knowledge about rela-

tionships among tasks, we do not have accurate information to fully capture the true

relationship among tasks. Besides comparing prediction performance on imprecise

weight structures, we perturb the correct weight matrix by adding noise information
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Figure 5.4: Box plot of testing errors over 200 cross validations from weight with
white noise simulation. Red, green and blue box plots are constructed
based on testing errors from multi-task, individual training and pooled
methods.

to the observed weighted matrix. In the following example, we still have the same

setting as in the first simulation where we have total five tasks. The parameter for

the first three tasks is β1 = β2 = β3 = (1, 1, 1, 1, 0, 0, 0, 0). The last two tasks have

the same parameter as β4=β5=(0, 0, 0, 0, 1, 1, 1, 1). We add a white noise term, fol-

lowing uniform (0, 1
3
), to all elements of the correct constant weight matrix before

standardization to create a new weight matrix. It is easy to show variance of es-

timated parameters for numerical responses can still be bounded by a function of

variance of ϵ and variance of noise on the weight matrix. The estimated parame-

ter follows a product distribution. In Figure 5.5, even with noise in the relationship

among tasks, multi-task learning method still has outstanding performances. In table

5.3.1, we once again compare medians of testing errors among three methods. Since

there exists additional noise within weight information, the individual method has a

slightly better performance compare to other methods when signal to noise ratios are

large.
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Table 5.5: Ratios of medians of sum of testing errors
Methods Multi-task Independent training Pooled training
var(ϵ) = .5 1 2.710279 0.367452
var(ϵ) = 1 1 1.037603 0.368603
var(ϵ) = 2.5 1 0.820177 0.866236
var(ϵ) = 5 1 0.851348 0.972207

5.4 Applications

We apply multi-task learning method to a movie rating data set to check per-

formance under a real world situation. The goal of the study is to predict movie

ratings from 514 users. In this application, each user is treated as one task, which

contains 30 to 150 rated movies. Besides past movie ratings, we also have information

on name, year, length, budget, rating from IMDB database and number of votes for

each movie. For each user or task, we have information on some intrinsic attributes,

such as user’s age, gender, occupation and location. Since the rating ranges from 1

to 5 with a balanced distribution, we treat the movie rating as a numerical variable.

In this paper, we capture the relatedness among tasks by constructing the weight

matrix based on common movie ratings. For example, if user A and user B both

watched and rated ”Toy Story”, then the (A,B)th element in the weight matrix will

be defined as WA
B=WB

A = Sλ(Rate
A
Toy story, Rate

B
Toy story), where S can be any kernel

function. Since we treat the movie rates as numerical variables for this study, we

employed Gaussian kernel to construct the similarity between two tasks. Figure

5.5 shows a box plot of total average testing errors from 514 users for multi-task,

individual and pooled methods over 50 cross validations. Due to heterogeneity of

distributions, pooled method has the worst prediction performance. By effectively

utilizing information obtained from users with similar tastes, multi-task has the best

performance in predicting users movie ratings. On average, multi-task increases total

prediction accuracy for 514 users by around 5 percent.

Apart from comparing overall predication error rate for all three methods, we also
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Figure 5.5: Box plot of testing errors from 514 users over 50 cross validations.

take a closer look at performance for each user for both multi-task and individual

methods. Figure 5.6 is a predication differences per user plot, where x-axis represents

users ranked by number of rated movies and y-axis stands for predication differences

between multi-task and individual methods. Negative value in the y-axis means that

multi-task outperforms individual method for a particular user. It is easy to see that

multi-task tends to have a better performance in predicting movie ratings for users

with a few past ratings.

For statistical inference, we employ the bootstrapping method to construct con-

fidence intervals for all users. Table 5.4 contains bootstrapping confidence intervals

for three users with different group sizes, ( 34, 44, 113). The first column constitutes

confidence bands for the user with the least observation and the last column consti-

tutes information for user with the most observation. The second user and the third

user rate 11 common movies. The first user and the third user only rate one movie in

common. There are no common rated movies between user one and two. The boot-

strapping confidence interval also reviews some degrees of similarity in parameters

for user two and three.

Along with having forecasting models for predicting future movie ratings for 514

users, we also create a relationship network, which captures their movie preferences.
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Figure 5.6: Closer look at testing errors from 514 users for multi-task and individual
learning methods.

Table 5.6: Ratios of medians of sum of testing errors
C.I. User One User Two User Three
Year (2.34×10−4, 3.68×10−4) (4.69×10−4, 6.04×10−4) (9.52×10−4, 1.02×10−3)

Length (-1.01×10−3, 4.48×10−4) (2.07×10−3, 3.66×10−3) (6.71×10−4, 1.78×10−3)

Budget (-3.40×10−9, -1.27×10−9) (-1.28×10−9, 7.40×10−10) (5.12×10−9, 7.28×10−9)

Rating (4.07×10−1, 4.47×10−1) (2.99×10−1, 3.44×10−1) (2.28×10−1, 2.75×10−1)

Votes (-7.27×10−6, -2.71×10−6) (1.64×10−6, 5.08×10−6) (-1.02×10−6, 2.42×10−6)

Figure 5.7: The edge weight distribution of movie preference network.
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Figure 5.8 shows movie preference networks for all 514 users in the application, where

nodes are users and edges are similar movie preferences. The weight of edge represents

the similarity in movie preferences. Figure 5.7 is the histogram of edge weight. Node

color represents the age group of a user. Yellow , orange and red stand for age group

below age 25, 25-45 and above 45 groups. From top to bottom in Figure 5.8, the same

movie preference network reviews less connections based on degrees of similarity. The

second graph only contains over 800 connections with weight over 0.8. In this picture,

we use a force directed layout based on edge weight. We can identify more similar

movie preferences within the same age group in the same color connected nodes

shown in the second network. There exists more similarities in movie tastes for 25-35

(orange) and above 45 (red) groups. The younger age group has the least similarity

with other the two groups.

5.5 Conclusions and Future Work

In this paper, we propose a generalized linear model for multi-task learning prob-

lem by capturing the relatedness among tasks by a kernel weight matrix. We demon-

strate the performance of the multi-task generalized linear model on multiple synthetic

data sets. Even with noisy weight information, we also show superior prediction rates

for multi-task learning model. Finally, we apply our multi-task learning model on a

movie rating application. To explore its benefits, there are still many areas of multi-

task learning problem waiting to be solved. The next step would be to apply our

multi-task generalized linear model to different applications.
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Figure 5.8: Movie Preference Network, where nodes are users and edges are similar
movie preferences.From the top network to the bottom network, we select
edges with high similarity level. Node color stands for different age groups
(below age 25 = yellow, 25- 35 age group = orange , above 45 group =
red).
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CHAPTER VI

Conclusion and Discussion of Future Work

This thesis addressees various aspects of visual analytics. Chapter 2 describes a

visual algebraic framework for visual analytic process. While chapter 3 constructs an

uncertainty model for querying based on this visual analytic algebra. Chapter 4 intro-

duces a dimension reduction method based on penalized singular value decomposition

to provide an effective overall visual representation for visual analytics. Chapter 5

proposes a statical learning method based on both observations and relationships

among other related data to understand data on the individual level. All chapters

consider different aspects of analyzing data set with network information. Next, we

briefly discuss a number of future directions.

6.1 Network Data Analysis and Practical Tools

The data analytic process is not a straight line linked by a single procedure, it

often involves much circling back, and looking at the workflow to assess where the

user has been and where she should go next. Often, one needs to stop at the current

findings to reinterpret them in terms of what we has been learned. Not only will our

models of the data change, but also our visualizations and even the form of the data

itself. Velleman (1997) captures this spirit well with his aphorism ”The process of

data analysis is one of parallel evolution. Interrelated aspects of the analysis evolve
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together, each affecting the others”.

While presented separately, the dimension reduction and the multi-task learning

method of this thesis work together to build our understanding of the network data

from different aspects for one single analytic step. To balance our curiosity visually,

trace our past discoveries consistently and guide our future analysis fully, we need

the visual algebraic framework to encourage scepticism and remind us to question

for future exploration. It is a tool to combine the human ability to see patterns in

network data, and the innate desire to uncover stories about data.

It is difficult to judge the impact of all work. Based on the user experiment, the

visual analytic algebra has high reproducibility to cope and repeat existing network

graphs. Based on synthetic and real world applications, both dimension reduction

and multi-task learning methods demonstrate their outstanding performances.

6.2 Future Work

My future work will still be evolving around the topic of visual analytics. I am

currently developing a more effective tool for our visual algebra and extending the

uncertainty model to incorporate the uncertain graph structure. In addition, I im-

prove and implement the dimension reduction technique into a existing visualization

system, such as R and Cytoscape. There are a number of functions that support

user developed packages for both systems. Moreover, I am planing to extend the di-

mension reduction method to a data mining method for high dimensional data with

network structures. By incorporating the additional network structure, we hope to

improve the predication rate for all observations.

This thesis has presented many practical methods that support different aspects of

visual analytics, improving our ability to explore data both statistically and visually.

The methods are not just computational, but also provide a mental framework that

supports a data visual analytic process and stresses a mixture of human and machine
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intelligence to progressively build our understanding of complex data.

113



BIBLIOGRAPHY

114



BIBLIOGRAPHY

Anderson, J. R. (1995), Learning and Memory, Wiley and Sons Inc.

Argyriou, A., T. Evgeniou, and M. Pontile (2006), Multi-task feature learning, Jour-
nal of Machine Learning, 10, 243–272.

Argyriou, A., C. Micchelli, M. Pontile, and Y. Ying (2008), A spectral regulariza-
tion framework for multi-task structure learning, Neural Information Processing
Systems.

Auber, D., Y. Chiricota, F. Jourdan, and G. Melanc (2003), Multiscale visualization
of small world networks, In Proceedings of the IEEE Symposium on Information
Visualization, pp. 75–81.

Bakker, B., and T. Heskes (2003), Task clustering and gating for bayesian multi-task
learning, Journal of Machine Learning Research, 4, 83–99.

Batagelj, V., and A. Mrvar (2009), Pajek program for large network analysis, Home
page: http://vlado.fmf.uni-lj.si/pub/networks/pajek/.

Baxter, J. (2000), A model of inductive bias learning, Journal of Artificial Intelligence
Research, 12, 149–198.

Ben-David, S., and R. Schuller (2003), Exploiting tasks relatedness for multiple task
learning, Proceedings of Computational Learning Theory (COLT), 37, 373–384.

Borg, I., and P. Groenen (1997), Modern Multidimensional Scaling: theory and ap-
plications, Springer Series in Statistics.

Breiman, L., and J. Friedman (1997), Predicting multivariate responses in multiple
linear regression, Journal of the Royal Statistical Society,Series B, 59(1), 3–54.

Caponnetto, A., C. Micchelli, M. Pontile, and Y. Ying (2008), Universal multi-task
kernels, Journal of Machine Learning Research, 9, 1615–1646.

Chen, J., J. Liu, and J. Ye (2010), Learning incoherent sparse and low-rank patterns
from multiple tasks, KDD.

Choo, J., S. Bohn, and H. Park (2009), Two-stage framework for visualization of
clustered high dimensional data, Visual Analytics Science and Technology, pp. 67–
74.

115



Collaboration, T. C. (2006), Cytoscape Users Manual, Institute for Systems Biology
and University of California San Diego.

Costa, L., F. Rodrigues, G. Travieso, and V. Boas (2007), Characterization of complex
networks, Advances in Physics, 56 (1), 167–242.

Czanner, G., S. V. Sarma, U. Eden, and E. Brown (2008), A signal-to nosie ratio
estimator for generalized linear model systems, World Congress on Engineering.

de Leeuw, J., and G. Michailidis (2000), Optimization transfer using surrogate objec-
tive functions, Journal of Computational and Graphical Statistics, 9 (1), 26–31.

Elmqvist, N., T. N. Do, H. Goodell, N. Henry, and J. Fekete (2008a), Zame interactive
large-scale graph visualization, In Proceedings of the IEEE Pacific Visualization
Symposium 2008, pp. 215–222.

Elmqvist, N., P. Dragicevic, and J.-D. Fekete (2008b), Rolling the dice: Multidimen-
sional visual exploration using scatterplot matrix navigation, IEEE Transactions
on Visualization and Computer Graphics, 14 (6), 1539–1148.

Evgeniou, T., and M. Pontil (2004), Regularized multi-task learning, KDD’ 04.

Gene H. Golub, C. F. V. L. (1996), Matrix computations, third ed., Johns Hopkins
studies in the mathematical sciences.

Grammel, L., M. Tory, and M.-A. Storey (2010), How information visualization
novices construct visualizations, IEEE Transactions on Visualization and Com-
puter Graphics, 16 (6), 943–952.

Grinstein, G., C. Plaisant, S. Laskowski, T. O’Connell, J. Scholtz, and M. Whiting
(2008), Vast 2008 challenge: Introducing mini challenges, Proceedings of IEEE
Symposium, 1 (1), 195–196.

Hanrahan, P. (2006), Vizql a language for query, analysis and visualization, SIGMOD.

Heer, J., S. K. Card, and J. A. Landay (2005), Prefuse: a toolkit for interactive
information visualization, In CHI 2005 Proceedings of the SIGCHI conference on
Human factors in computing systems, pp. 421–430.

Henry, N., J.-D. Fekete, and M. J. McGuffin (2007), Nodetrix: a hybrid visualization
of social networks, IEEE Transactions on Visualization and Computer Graphics,
13 (6), 1302–1309.

Heskes, T. (2000), Empirical bayes for learning to learn, Proceedings of ICML-2000,ed
Langley,P., pp. 367–374.

Holten, D. (2006), Hierarchical edge bundles: Visualization of adjacency relations
in hierarchical data, IEEE Transactions on Visualization and Computer Graphics,
12 (5), 741–748.

116



Hornik, K., and A. Gebhardt (1998), MASS Package, R User Manual, CRAN.

Ideker, T., V. Thorsson, J. A. Ranish, et al. (2001), Integrated genomic and proteomic
analyses of a systematically perturbed metabolic network, Science, 292 (4), 929–
934.

I.Kecskes, and T. Papp (2000), Foreign language and mother tongue, Hillsdale.

J.D., B. A. Brown, and R. Cocking (1999), How people learn: brain, mind, experience
and school, National Academy Press.

Jolliffe, I. (2002), Principal Component Analysis, second ed., Springer Series in Statis-
tics.

Laramee, R., and R. Kosara (2007), Challenges and unsolved problem, In Human-
Centered Visualization Environments, pp. 231–254.

Lounici, K., M. Pontile, A. Tsybakov, and S. vande Geer (2009), Taking advantage
of sparsity in multi-task learning, Conference on Learning Theory.

Ma, K.-L. (2003), Visualizing time-varying volume data, IEEE Computing in Science
and Engineering, 5 (3), 34–42.

McLachlan, G. J. (2004), Discriminant analysis and statistical pattern recognition,
Wiley series in probability and mathematical statistics.

Michailidis, G. (2006), Data Visualization Through Their Graph Representations.

Miriah Meyer, T. M., and H. Pfister (2010), Multeesum: A tool for comparative
spatial and temporal gene expression data, IEEE Transactions on Visualization
and Computer Graphics, 1 (2), 99–108.

Moustafa, W. E., G. M. Namata, A. Deshpande, and L. Getoor (2011), Declara-
tive analysis of noisy information networks, in ICDE Workshop on Graph Data
Management: Techniques and Applications.

Muelder, C., and K.-L. Ma (2008), Rapid graph layout using space filling curves,
IEEE Transactions on Visualization and Computer Graphics, 14 (6), 1301 – 1308.

Obozinski, G., B. Taskar, and M. Jordan (2006), Multi-task feature selection, Tech-
nical Report.

Obozinski, G., M. Wainwright, and M. Jordan (2008), Union support recovery in
high-dimensional multivariate regression, Technical Report.

Obozinski, G., B. Taskar, and M. Jordan (2009), Joint covariant selection and joint
subspace selection for multiple classification problem, Statistics and Computing.

117



Oesterling, P., G. Scheuermann, S. Teresniak, G. Heyer, S. Koch, T. Ertl, and G. H.
Weber (2010), Two-sage framework for a topology-based projection and visual-
ization of classified document collections, IEEE Symposium on Visual Analytics
Science and Technology, pp. 91–98.

Olga Troyanskaya, M. C., et al. (2001), Missing value estimation methods for dna
microarrays, Biostatistics, 17 (6), 520–525.

Olson, J., and G. Olson (1990), The growth of cognitive modeling in human computer
interaction since goms, Human computer interaction, 5, 221–265.

Pontile, M., T. Evgeniou, and A. Argyriou (2007), Convex multi-task feature learning,
Journal of Machine Learning, 10, 243–272.

Raudenbush, S., and A. Bryk (2002), Hierarchical Linear Models, Saga Publications,
Inc.

Schneidewind, J., and H. Ziegler (2006), Challenges in visual data analysis, Proc. Int’l
Conf. Information Visualization (IV), pp. 9–16.

Shaverdian, A., H. Zhou, G. Michailidis, and H. Jagadish (2009a), Algebraic visual
analysis: The catalano phone call data set case study, VAKD 09.

Shaverdian, A. A., H. Zhou, G. Michailidis, and H. Jagadish (2009b), Algebraic
visual analysis: the catalano phone call data set case study, Proc. ACM SIGKDD
Workshop on Visual Analytics and Knowledge Discovery.

Shojaie, A., and G. Michailidis (2009), Analysis of gene sets based on the underlying
regulatory network, Journal of Computational Biology, 6 (3), 407–426.

Stasko, J., C. Grg, Z. Liu, and K. Singhal (2007), Jigsaw: Supporting investiga-
tive analysis through interactive visualization, Proc. IEEE Symp. Visual Analytics
Science and Technology, pp. 131–138.

Thomas, J., and K. Cook (2005), Illuminating the path: The research and develop-
ment agenda for visual analytics, IEEE Computer Society.

Tibshirani, R. (1996), Regression shrinkage and selection via the lasso, Journal of the
Royal Statistical Society. Series B (Methodological), 58, 267–288.

Travers, J., and S. Milgram. (1969), An experimental study of the small world prob-
lem, Sociometry, 32 (4), 425–443.

Tulip, D. A. (2004), A huge graph visualization framework, In Graph Drawing Soft-
ware, Mathematics and Visualization, pp. 105–126.

VAST (2009), Vast 09 challenge dataset, http://hcil.cs.umd.edu/localphp/hcil/vast/index.php.

118



Velleman, P. F. (1997), The philosophical past and the digital future of data analysis
375 years of philosophical guidance for software design on the occassion of john w.
tukeys 80th birthday.

Viau, C., M. J. McGuffin, Y. Chiricota, and I. Jurisica (2010), The flowvizmenu and
parallel scatterplot matrix: Hybrid multidimensional visualizations for network
exploration, IEEE Transactions on Visualization and Computer Graphics, 16 (6),
1100–1108.

Weaver, C. (2008), Multidimensional visual analysis using cross-filtered views, pp.
163–170.

WIKIPEDIA (2011), Scoring algorithm.

Witten, D. M., R. Tibshirani, and T. Hastie (2009), A penalized matrix decompo-
sition, with applications to sparse principal components and canonical correlation
analysis, Biostatistics, 10 (3), 515–534.

Wong, P., H. Foote, G. C. Jr., P. Mackey, and K. Perrine (2006), Graph signatures
for visual analytics, IEEE Transactions on Visualization and Computer Graphics,
12 (6), 1399–1413.

Yuan, X., P. Guo, H. Xiao, H. Zhou, and H. Qu (2009), Scattering points in parallel
coordinates, IEEE Transactions on Visualization and Computer Graphics, 15 (6),
1001–1008.

Zhang, J., Z. Ghahramani, and Y. Yang (2008), Flexible laten variable models for
multi-task learning, Journal of Machine Learning.

119


