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CHAPTER I

Introduction

1.1 Background and Significance

Case-control studies are dominant analytic tools in epidemiologic research. In the frequen-

tist domain, the classical theory for estimating relative risk parameters under the case-control

sampling design has been well established (see Breslow, 1996 for a comprehensive review).

However, with advancements in medical sciences, genomic technologies, global positioning

system, and in our ability to collect and process complex data, new issues and challenges are

emerging in such studies. The current thesis addresses three such problems in the general

area of case-control studies using the Bayesian framework as our inferential strategy. The

ultimate goal is to develop appropriate statistical methods to exploit and acknowledge the

nuances of a complex data mechanism, leading to better understanding of risk factors. The

set of risk factors, we consider, consists of both genetic and environmental predictors.

A case-control study is a retrospective study design in which one takes a random sample

of subjects with the disease (cases) and a random sample of subjects without the disease

(controls). Conditional on the disease status, exposure information on potential risk factors

including demographic, behavioral, familial or possibly genetic information is then measured,

depending upon the study objectives. The main goal of a case-control study is to identify

potential risk factors for the disease phenotype defining the cases by comparing the dis-

1
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tributions of exposures in cases and controls. Thus, a retrospective design is alternatively

employed to gain insight on prospective quantities of interest, such as the disease odds ratio

or the relative risk of a disease.

When the disease is rare, Cornfield (1951) showed that the exposure odds ratio approx-

imates the relative risk of disease. In their seminal paper, Mantel and Haenszel (1959),

further clarified the relationship between a retrospective case-control study and a prospec-

tive cohort study. Cornfield et al. (1961) demonstrated that the prospective probability of

disease (D) given the exposure (X) or P(D|X) can be equivalently modeled via a logistic

regression model assuming that the exposures in cases and controls, that is P(X|D), follow

Normal distribution with different means and a common covariance matrix. Cox (1966) and

Day and Kerridge (1967) demonstrated that the maximum likelihood estimator obtained

from the prospective logistic likelihood under this normal exposure model is efficient, that

is, the variance of estimator reach the variance lower bound. A more general class of results

regarding equivalence of prospective and retrospective formulations for any exposure distri-

bution, beyond the Normal, were derived in Anderson (1972) and Prentice and Pyke (1979).

These results established that, for case-control data, though the intercept parameter is not

identifiable in a prospective logistic likelihood, the corresponding estimating equations for

the relative risk parameters are unbiased and the asymptotic standard errors are equivalent

to those obtained from the retrospective likelihood.

Matching of case and control subjects in terms of certain demographic factors has been

widely used as a design strategy to reduce potential bias caused by confounding. Under

matched case control sampling, Breslow et al. (1978) developed a stratified logistic regres-

sion framework with a matched-set (or stratum) specific intercept parameter in a logistic

regression model. Since the number of nuisance parameters grows with sample size, the

naive unconditional maximum likelihood estimate (MLE) is biased and inconsistent under
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this model. Breslow et al. (1978) proposed the use of conditional logistic regression (CLR)

by conditioning on the complete sufficient statistics for the nuisance parameters, namely the

number of cases in each matched set, to eliminate the stratum-specific nuisance parameters.

Missingness in exposure variables entails loss of efficiency in case-control studies, espe-

cially in matched case-control studies where a single missing case-observation could lead to

deletion of the entire stratum in naive complete-case CLR analysis. Several solutions have

been proposed to address this issue, including a class of pseudo-likelihood based methods

(Lipsitz, Parzen, and Ewell, 1998; Paik 2004), semiparametric maximum likelihood estima-

tion (Rathouz, Satten, and Carroll, 2002), and full parametric likelihood based approaches

involving modeling the distribution of the exposure variable in the control population with

exponential family of distributions (Satten and Kupper, 1993; Paik and Sacco, 2000; Satten

and Carroll, 2000; Sinha and Maiti 2008). The results regarding prospective and retrospec-

tive equivalence have also been extended to situations with missingness and measurement

error in covariates (Roeder, Carroll, and Lindsay, 1996).

Despite the rich literature in the frequentist domain, Bayesian methods for case-control

studies started to appear only in the late 1980’s. Bayseian modeling is naturally appealing

in epidemiologic studies as one can incorporate existing evidence in the form of elicited

prior information on the model parameters. The hierarchical formulation allows uncertainty

around prior guesses. Simple Bayesian analysis with a single binary exposure variable under

a beta-binomial conjugate prior structure was introduced in several early papers (Zelen and

Parker, 1986; Nurminen and Mutanen, 1987; Marshall, 1988; Ashby et al., 1993). Zelen and

Parker (1986) focused on inference regarding the log odds-ratio parameter while Nurminen

and Mutanen (1987) considered posterior inference related to the risk ratio and the risk

difference parameters. Marshall (1988) provided an approximate closed form expression

for the posterior distribution of the odds ratio via power expansion of the hypergeometric
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function involved in the density. Ashby et al. (1993) stressed the practical utility and

advantage of a Bayesian approach by eliciting informative prior information from historic

data to analyze a follow-up case-control study.

With the advent of Markov chain Monte Carlo numerical integration techniques (Geman

and Geman, 1994; Gelfand and Smith, 1994; Tierney, 1994) and efficient posterior sampling

schemes, more complex models have been noted for case-control studies. Müller and Roeder

(1997) presented a semiparametric Bayesian approach, based on a retrospective likelihood

with measurement errors in the covariates. The exposure distribution had a flexible Dirich-

let process mixture of normals prior. Seaman and Richardson (2001) considered a similar

problem for categorical exposures and adopted a discrete Dirichlet distribution prior on the

exposure distribution. Müller et al. (1999) proposed a hierarchical Bayesian approach to

combine a case-control and cohort study to estimate the absolute risk of a disease. All of

the above references consider Bayesian modeling of unmatched case-control data.

Bayesian analysis of matched case-control studies was first explored by Diggle et al. (2000)

and Ghosh and Chen (2002). While the former used conditional likelihood to eliminate the

stratum specific nuisance parameters and proceeded with Bayesian inference, the latter used

the unconditional full likelihood as the basis for posterior inference. Rice (2003) considered

the situation where a binary exposure is potentially misclassified in a matched case-control

setting and proposed a full-likelihood based Bayesian approach. Rice (2004, 2008) charac-

terized the class of priors leading to equivalent inference under a marginal likelihood and

conditional likelihood. Prescott and Garthwaite (2005) presented Bayesian methods for

analyzing matched case-control studies in which a binary exposure variable is sometimes

measured with error, but whose correct values have been validated for a random sample

of the matched case-control sets. Rice (2006) provided a nice comparison of the full like-

lihood based method of Rice (2003) to the two-stage approach presented by Prescott and
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Garthwaite (2005). Liu et al. (2009) proposed a Bayesian adjustment for the misclassifi-

cation of a binary exposure variable in a matched case-control study. The method admits

a priori knowledge about both the misclassification parameters and the exposure-disease

association. Sinha et al. (2004, 2005a,b, 2007) provided a unified Bayesian framework for

analysis of matched case-control studies where the exposure distribution could depend on

varying stratum effects. Mukherjee et al. (2007) considered matched case-control studies

with multiple disease states using different links for ordered categorical outcomes.

Recently, case-control studies have been extensively used to study the association between

disease, genes and their interplay with environmental risk factors. Zhang et al. (2006) pre-

sented a Bayesian approach to adjust for population stratification in a genetic association

study. Zhang et al. (2008) considered flexible modeling of the random effects distribution in

family based case-control studies. Mukherjee et al. (2007) presented the first Bayesian work

on modeling case-control studies of gene-environment interaction assuming gene-environment

independence. Mukherjee and Chatterjee (2008) proposed an empirical Bayes-type shrinkage

estimator to analyze case control data to relax the gene-environment independence assump-

tion in a data-adaptive manner. Mukherjee et al. (2008) provided an in-depth comparison

of several concurrent approaches for testing gene-environment interaction. Mukherjee et al.

(2009) investigated a Bayesian sample size determination problem for both estimation and

the hypothesis testing regarding the gene-environment interaction parameter.

In this existing backdrop on Bayesian modeling for case-control data, this dissertation

addresses largely three challenging problems with the connecting theme of modeling atypical

data situations observed under variants of the case-control sampling scheme. Each prob-

lem is motivated by ongoing disease-exposure association studies led by researchers at the

University of Michigan. More specific literature reviews and introductions to the specific

application corresponding to each of the three problems appear in the respective chapters.
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This dissertation is organized as follows. In Chapter II, we consider the problem of model-

ing disease subtypes in matched case-control studies. With advances in modern medicine and

clinical diagnostic techniques, precise characterization of the histological and morphological

features of a tumor are frequently available. Modeling risk profiles corresponding to tumor

subtypes is an important area of research in cancer epidemiology. We use the stereotype

regression model for categorical outcome data to achieve this modeling objective. Ander-

son (1984) introduced the stereotype regression model in his discussion paper on modeling

ordered categorical responses. The stereotype regression model was somewhat unexplored

in subsequent years. Classical frequentist inference for this class of models is complicated

due to non-linearity in the parameter space as well as lack of identifiability under the global

null hypotheses of null covariate effect on outcome. We introduce a Bayesian inferential

paradigm that bypasses these problems under classical inference. Specifically, for modeling

ordered subtypes within the cases in a matched case-control study, the stereotype model

has the advantage of being amenable to the conditional likelihood principle and preserving

consistent inference under prospective-retrospective conversion. We apply our method to

ongoing case-control studies, prostate cancer study (The Flint Men’s Health Study, FMHS).

In subsequent Chapter III, we extend this basic Bayesian idea and consider matched case-

control studies with partially missing exposure under the stereotype model, with the pos-

sibility of non-ignorable missingness. We propose two estimation strategies, namely, a full

Bayes approach and an expectation conditional maximization (ECM) approach based on a

joint retrospective likelihood. Extensive simulation studies and sensitivity analyses are car-

ried out to assess the performances of our methods when compared with other alternatives.

The methods are illustrated by applying them to colorectal cancer study (The Molecular

Epidemiology of Colorectal Cancer, MECC Study).

In the second problem in Chapter IV, we develop methods for identifying gene-gene and
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gene-environment interactions under a two-phase design with non-monotone missing data

patterns in the multiple genetic covariates. Two-phase sampling is often more efficient than

standard case-control sampling where baseline information on certain demographic, envi-

ronmental, behavioral, dietary exposures are available on the entire study population and a

stratified sample based on disease status and some exposure is done to prioritize individuals

for more expensive covariates such as genotyping in Phase II. We propose the first Bayesian

approach in the context of two-phase studies. The proposed method is based on the retrospec-

tive likelihood which allows us to relax the gene-gene and gene-environment independence

assumptions under multiple genes in a data-adaptive manner, thus striking a balance between

bias and efficiency. Furthermore, the method offers an automated Bayesian variable selection

feature to facilitate model selection in the presence of high dimensional genes, environmental

covariates and their interactions in the disease risk model. We handles non-monotone miss-

ingness in the genotype data in Phase-II and posit a flexible model for the joint distribution

of the Phase-I categorical variables using the non-parametric Bayes construction of Dunson

and Xing (2009). Motivated by the MECC study, we investigate the interaction between the

use of statins and 294 genetic markers in the lipid metabolism/cholesterol synthesis pathway.

The sample on which these genetic markers were measured was enriched in terms of statin

users in cases and controls. The natural missing data likelihood in two-phase studies, flex-

ibility of leveraging the constraints around gene-environment and gene-gene independence,

boosted with an adaptive variable selection algorithm, all make the Bayesian method more

appealing.

In the third problem and last problem in Chapter V, we build a spatio-temporal stochastic

point process model to understand the effect of spatially and temporally referenced social

and natural environments; e.g. temperature and the remoteness on the diarrhea preva-

lence in a serial case-control study conducted in Esmeraldas province (the ECODESS study,
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‘http://www.sph.umich.edu/scr/ecodess/home.php’). The study largely investigates how

sensitive incidence of diarrhea is to seasonal variables and social networks. Under a very

complex spatial and longitudinal case pattern, we devise a new approach to analyze these

case patterns as well as predict the disease prevalence over unsampled communities via build-

ing a multi-step procedures based on spatial point process models simultaneously. The study

collected data in 21 communities in Esmeraldas province, while the region of interest has

approximately 150 communities. During seven cycle, all diarrheal case coordinates during

the study visit were recorded. To explain the clustering, we use the log Gaussian Cox pro-

cess (LGCP) model as a primary tool to model spatial clustering and point patterns within

sampled villages and extend it to accommodate a temporal drift. Prediction of case pat-

terns at unsampled communities is performed by tools for the spatial misalignment problem

(SMP) in the spatial regression literature that are used for interpolation with data collected

on different scale and different levels of areal aggregation. We also attempted prediction of

the future disease prevalence. A Bayesian paradigm is applied to model the effect of spatial

covariates and residual spatial heterogeneity in a flexible and computationally tenable man-

ner. The Metropolis-adjusted Langevin algorithm and hybrid Metropolis Hasting algorithm

that facilitate posterior sampling are introduced in this context.

The current thesis explores three new problems under the case-control sampling design

and thus leads to many important questions for future research. Chapter VI presents a

discussion of the remaining work to be completed as a part of my dissertation and possible

extensions of each chapter beyond this dissertation.



CHAPTER II

Bayesian Inference for the Stereotype Regression Model:
Application to a Case-control Study of Prostate Cancer

2.1 Introduction

In his seminal discussion paper on regression and ordered categorical variables (Anderson,

1984), Anderson proposed a very general model for truly discrete outcomes called the stereo-

type regression model. The model can accommodate both ordered and unordered categorical

outcomes and allows for inference regarding the order restrictions. Greenland (1994) pointed

out that unlike models for ordinal data based on the cumulative logits, the stereotype model

has the advantage of yielding valid inference under outcome dependent sampling, for exam-

ple, in case-control studies. In addition to Greenland’s observation, in the current Chapter

we note that for matched case control data with fine degree of stratification and disease

sub-classification, the stereotype model allows for the stratum-specific nuisance parameters

to be eliminated by using the conditional likelihood principle (Breslow and Day, 1980). The

proportional odds model does not yield any reduction due to sufficiency in such instances and

the nuisance parameters remain even in the conditional likelihood (Mukherjee et al., 2007).

However, the stereotype model has been less used, primarily due to some of the computa-

tional complexities arising due to non-linearity in the parameters as well as non-standard

testing theory for testing the global null hypothesis of no covariate effect (Anderson, 1984).

Kuss (2006) presents a comprehensive overview of maximum likelihood estimation strategies

9
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for the stereotype regression model.

There is a growing literature on parametric and non-parametric Bayesian inference for

ordinal data (Johnson and Albert, 1999; Congdon, 2005; Kottas et al., 2005; Sinha et al.,

2004) but the stereotype model has not received attention in the Bayesian domain so far.

A Bayesian approach for inference and model comparison appear to be a natural route for

this class of models, and is a new contribution to the literature. Our goal in this Chapter is

(i) To review the classical background and motivation for proposing this class of models for

ordinal data and compare/contrast with other commonly used ordinal models; (ii) Point out

limitations and issues with maximum likelihood based inference and illustrate the advantages

that an alternative Bayesian route can offer; (iii) Describe Bayesian inference for this class of

models, with special emphasis on case-control data with finer disease subclassification within

the cases; This includes specification of priors, derivation of full conditional distribution of

the model parameters and designing the computational algorithm for estimating posterior

quantities of interest; (iv) Illustrate the methods using a case-control study of prostate

cancer among African-American men, conducted in Flint, Michigan. We consider inference

under both unmatched and matched case-control design. Sections 2.2-2.5 are organized

sequentially according to the above four objectives. We also present a small-scale simulation

study to compare the proposed Bayesian method with maximum likelihood based estimation

in Section 2.6. Section 2.7 presents a brief concluding discussion.

2.2 Classical Background and Motivation for the Stereotype Regression Model

Two of the popular models for categorical outcomes are the polytomous logit model (or the

baseline-category logit model) and the proportional odds model (Agresti, 2002; McCullagh

and Nelder, 1983). Let Y = 0, 1, · · ·K be an outcome with K + 1 categories and let the

reference category be denoted by 0. Let X be a p × 1 vector of p covariates. Then the
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proportional odds model is given by, for k = 0, · · · , K − 1:

(2.1) logit[P (Y ≤ k|X)] = β0k − β�X,

{β0k} are increasing in k and P (Y ≤ K|X) ≡ 1. The number of parameters to be estimated

in this model is K + p. The negative sign is used to make positive (negative) values of the

elements of β correspond to positive (negative) association with the outcome.

On the other hand, the baseline-category logit or polytomous logistic regression model is

given by, for k = 0, 1, · · · , K,

P (Y = k|X) =
exp(β0k + β�

k X)∑K
k=0 exp(β0k + β�

k X)
(2.2)

with constraints β00 ≡ 0 and β0 ≡ 0. The number of parameters to be estimated in this

model is K + (p×K).

The stereotype model, proposed by Anderson (1984) imposes a special structure on the

parameters of the polytomous logistic model, namely,

(2.3) βk = φkβ.

Thus the stereotype model in its complete form is represented by,

P (Y = k|X) =
exp(β0k + φkβ

�X)∑K
k=0 exp(β0k + φkβ

�X)
(2.4)

for k = 0, 1, . . . , K, with β00 = φ0 ≡ 0. An additional constraint has to be imposed on the

other {φk} for identifiability, typically, φK ≡ 1. The {φk} are regarded as scores for different

response categories. Because of this structure, the number of parameters to be estimated in

this model are: K+(K−1)+p = 2K−1+p, in between the dimensionality of models (2.2)

and (2.1). Note that, akin to the proportional odds model, the stereotype model has the

property of representing the effect of the predictors by a single parameter (for given scores)

and is more parsimonious than the polytomous logistic model in (2.2).
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In (2.4), variable Xr has coefficients φkβr (r indexing the variable and k indexing the

category) which represents the log odds-ratio corresponding to category k vs category 0 of

Y . The constraint φK ≡ 1 implies that βr, corresponding to Xr represents the effect of

unit change in Xr on the log OR of response in the highest category K vs category 0 of Y .

In order to understand the interpretation of the parameters in the model and visualize the

structure, let us consider the special case with K = 2, implying that the possible values of

Y are 0, 1, and 2, and a set of two covariates X1 and X2. Then the stereotype model and

the polytomous logit model (in squared brackets) can be compared as,

log[
π1(X)

π0(X)
] = β01 + φ1(β1X1 + β2X2) =

[
β01 + β11X1 + β12X2

]
log[

π2(X)

π0(X)
] = β02 + φ2(β1X1 + β2X2) =

[
β02 + β21X1 + β22X2

]
Just like the proportional odds assumption, the stereotype structure may not be realistic for a

given dataset, and needs to be tested in terms of model diagnostics and fit statistics. However,

it does allow some flexibility compared to the proportional odds model by introducing the

category-specific score parameters which are assumed to be the same for each covariate.

Allowing covariate-specific scores will lead to a model exactly equivalent to the multinomial

logistic model (2.2).

The stereotype model can also be represented in terms of adjacent category logits

log[
πk(X)

πk+1(X)
] = β0k − νkβ

�X,

where νk = φk+1−φk in terms of the score parameters {φk}s. With fixed choice of the scores,

say equispaced, i.e.,φk = k/K, the model reduces to simpler representations corresponding

to the more standard adjacent category logit model as given in Agresti (2002, p. 287).

Anderson’s original motivation was to propose a model for inherently discrete outcomes,

different from models derived from grouped-continuous data, like the proportional odds
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model. The stereotype model captures a situation where the assignment into different cate-

gories are done by processing some indeterminate amount of information in assessor’s mind

who has “stereotypes” in which a new case is categorized. Anderson (1984) and Greenland

(1994) both argue that collapsing invariance and invariance under reversal of outcome codes

should not be treated as axioms of acceptability for ordered regression models. In some

contexts the axiom is less attractive, particularly with assessed categorical outcomes.

Anderson (1984) suggested using the stereotype model for ordered data with monotone

scores.

0 ≡ φ0 < φ1 < . . . < φK ≡ 1

This implies that for a unit increase in covariate xr, the log(OR) φkβr of category k vs baseline

category 0 becomes larger when category k gets further than 0. For this ordered stereotype

model the conditional distribution of Y |X is stochastically ordered in β�X (Anderson,

1984). Note that these orderings are quite different than the ones given in models for

grouped continuous data, for example, in the proportional odds model. There, the ordered

categories are “given” and not necessarily ordered with respect to X, and, the ordering

exists even in the absence of any covariates X. In the stereotype model, the ordering is

intrinsically defined through the regression relationships between Y and X. For example,

if we had a single binary covariate X with values 0 and 1, and pkl = pr(Y = k,X = l),

k = 0, · · · , K, l = 0, 1, denote the cell probabilities in a 2 × (K + 1) contingency table,

then the observations follow an ordered stereotype model if and only if the the probability

ratios pk0/pk1 are monotonically increasing or decreasing. In the spirit of Cornfield’s (1951)

construction of the logistic regression model in terms of the retrospective distribution of

X|Y = k, suppose that X|Y = k ∼ N(μk,Σ), k = 0, · · · , K; then the stereotype model

implies that (μk − μ0)
′Σ−1 = φkβ, or that the means follow a linear trend.

Before concluding this section we will like to point out two major advantages of the stereo-
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type regression model when applied to case-control data with finer disease sub-classification

within the cases, as in our real data example. First, unlike the cumulative logit models,

the stereotype model is preserved under outcome dependent sampling. If f0, · · · , fK are the

sampling fractions corresponding to each category then, under outcome-stratified sampling,

P (Y = k|X, sampled)

P (Y = 0|X, sampled)
= exp(β∗

0k + φkβ
�X)

where β∗
0k = β0k+log(fk/f0). Thus under a correctly specified stereotype model the estimates

from retrospectively sampled data will be consistent for true covariate effects (Greenland,

1994).

Second, in a matched case-control study with binary outcomes, the matched set specific

nuisance parameters are eliminated by using conditional logistic regression (Breslow and

Day, 1980). Mukherjee et al. (2007, 2008) illustrate that the conditioning principle does

not apply to the cumulative logit model and the stratum specific parameters remain in

the conditional likelihood. The number of such nuisance parameters grows with sample

size and thus maximum likelihood estimation runs into inconsistency problems. Due to

its multiplicative intercept structure, the stereotype model is amenable to the conditioning

principle. With this backdrop in mind we proceed to discuss inferential issues associated

with this model.

2.3 Inference in stereotype regression model: issues with maximum likelihood
and advantages of a Bayesian paradigm

In spite of its parsimony when compared to (2.2), with unknown {φk}, the non-linearity

of the parameters in (2.4) makes estimation by a standard generalized linear model software

infeasible. Greenland (1994) suggests a two-step estimation procedure which starts by fixing

{φk}, and then estimating β by fitting a baseline-category logit model with multiple predic-

tors φkxr’s. At the second step, treat β̂
�
X as a single predictor and estimate {φk} by the
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same model fitting procedure. This iterative procedure does not guarantee convergence to the

true MLE. The correct standard errors are recommended to be obtained by a subsequent

bootstrap procedure (Greenland, 1994; Lall el al., 2002). Kuss (2006) discusses various

computational methods to obtain the MLEs in the stereotype regression model. Among

the algorithms proposed he discusses generalized least squares (GLS) and a quasi-Newton

method for direct maximization of the likelihood. PROC NLMIXED, PROC MODEL in

SAS and R function gnm can be modified to do the direct maximization. The model can

be embedded in the class of reduced rank vector of generalized linear models (RR-VGLM)

and can be fitted in R-package VGLM (Yee and Hastie, 2003). The ordered version of the

stereotype model is often harder to fit due to multiple constraints and hitting boundaries of

the parameter space and often not implementable in standard software.

A Bayesian procedure can potentially handle many of these difficulties associated with

frequentist estimation. The ordering constraints are ensured by appropriate prior choices on

the simplex 0 ≡ φ0 < φ1 < . . . < φK = 1, so that the constraints are automatically satisfied

while generating posterior samples. Bayesian computation is based on exact simulation

of the posterior distribution of the parameters, thus calculating the posterior variance or

highest posterior density (HPD) credible interval does not pose any additional challenges or

require validity of large sample approximations. Moreover, if one is actually interested in

estimating the log odds ratio parameters φkβr, corresponding to category k and covariate

Xr, the Bayesian procedure can directly generate the posterior distribution of this quantity,

whereas frequentist inference will require using the multivariate Delta theorem to derive

a variance approximation for this product parameter, and rely on large samples in each

response category for the validity of this approximation.

The multiplicative nature of the stereotype model poses some issues for testing the null

hypothesis of independence H0 : β = 0 in the likelihood based framework. Under this global
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null hypothesis, the score parameters {φk} are not identifiable. McCullagh (1984) pointed out

in the discussion of Anderson (1984) that the approximate null distribution of the likelihood-

ratio statistic is that of the largest eigenvalue of a Wishart matrix (Habermean, 1981). The

testing problem under such non-regular conditions remains to be explored in the frequentist

domain for this class of models. Theories developed for modified partial likelihood ratio test

(Hanfelt and Liang, 1995; Chen et al., 2001) could be useful in deriving a suitable test under

this class of models. We relegate the all discussion related to hypotheses testing to Appendix

A.1.1 and focus on estimation and model comparison in the main text of the Chapter.

Model comparison between the different class of nested models as well as between or-

dered and unordered model can be carried out by using the Deviance Information Criterion

(DIC)(Carlin and Louis, 2000; Gelman et al., 2004). In a Bayesian numerical integra-

tion scheme with direct generation of posterior observations, the expected deviance func-

tion Eθ|y(D(θ)) can be estimated by the average deviances over the posterior realizations

{θl : l = 1, · · · , L}, expressed as,

D =
1

L

L∑
l=1

D(θl) =
1

L

L∑
n=1

{−2 log p(y|θl)}.

The DIC is defined as the expected deviance, penalized by the effective sample size DIC =

D + (D − D(θ∗)) = 2D − D(θ∗), where θ∗ is the posterior mean. The advantage of DIC

over the other model selection criteria is that it can be easily computed in a Markov chain

Monte Carlo (MCMC) setting, in terms of the readily available posterior quantities.

We now proceed to describe our Bayesian approach with specification of prior, likelihood,

posterior and outline the numerical scheme to generate observations from the posterior dis-

tribution of model parameters.
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2.4 Bayesian Inference for the Stereotype Regression Model

We specifically formulate our notations to represent data from a case-control study though

the Bayesian proposal is very general and can readily be applied to a prospective stereotype

regression model. We first describe the methods for a matched case-control design and then

proceed to discuss the modifications under an unmatched study design. Let Yij denote the

disease state corresponding to the j-th subject in the i-th stratum (or matched set), with Si

denoting all variables which contributed explicitly or implicitly to the formation of the i-th

stratum. The disease states are classified into one of the K distinct categories 1, 2, · · · , K,

while the reference control group is denoted by Yij = 0. In each of the N strata we assume

there is one case matched with M controls. The results could be directly generalized to

the setting of more general Li : Mi matching ratio. We consider a vector of covariates X ij

corresponding to subject j in stratum i. The disease risk model is described as,

P (Yij = k|X ij, Si) =
exp(β0k(Si) + φk(β

�Xij))∑K
k=0 exp(β0k(Si) + φk(β

�Xij))
for k = 0, · · · , K(2.5)

The β0k(Si) are category specific intercepts which could vary with strata. For identifiability

β00(Si) ≡ 0. Assuming β0k(Si) ≡ β0k renders an unmatched analysis where the category

specific intercepts are assumed to be constant across matched sets. Under the ordered

model we assume the constraint 0 ≡ φ0 < φ1 < . . . < φK ≡ 1. Without loss of generality, let

us assume that the first subject in each stratum is the case and remaining are controls. To

eliminate the stratum specific nuisance parameters β0k(Si) we use the conditional likelihood,

by conditioning on the event
∑M+1

j=1 Yij = ki, in the i-th stratum, where ki is the observed

disease state corresponding to the case subject in the i-th stratum, i.e. Yi1 = ki. The
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corresponding conditional likelihood is given by

Lc =
N∏
i=1

P

(
Yi1 = ki, Yi2 = · · · = YiM+1 = 0|{X ij}M+1

j=1 , Si,
M+1∑
j=1

Yij = ki

)

=
N∏
i=1

[
exp(φki(β

�X i1))∑M+1
j=1 exp(φki(β

�X ij))

]
(2.6)

One could proceed with Bayesian inference by either assuming a hierarchical prior on the pa-

rameters of the prospective model (2.5) (including β0k(Si)), or via the conditional likelihood

in (2.6) treating it as a genuine likelihood and impose prior structure on the parameters φk

and β. The justification for using Lc as a basis of Bayesian inference can be found in Rice

(2003).

Priors: There are two sets of parameters under consideration here, the covariate effects β

and the category-specific scores φ = (φ1, · · · , φK−1) in the conditional likelihood (2.6). On

the parameters of β, we impose either independent normal or joint multivariate normal pri-

ors. In an unordered stereotype model we can similarly put independent or joint multivariate

normal prior on φ1, · · · , φK−1, without an order constraint on the prior support.

For the ordered stereotype model, to handle the identifiability condition and the order

restriction of the parameters 0 ≡ φ0 < φ1 < . . . < φK−1 < φK = 1 in a natural way, we

reparameterize the parameters in terms of the differences,

γ1 = φ1; γs = φs − φs−1 for s = 2, · · · , K − 1

Thus φk =
∑k

s=1 γs for s = 2, · · · , K, and φ0 = γ0 ≡ 0. The condition φK ≡ 1 implies that

γK = 1 − φK−1 = 1 − ∑K−1
s=0 γs. The stereotype model requires {φk} to be increasing in k

and be bounded by 1, this implies that the sequence of parameters {γs} are positive and lie

in the K − 1 dimensional simplex 0 <
∑K−1

s=1 γs < 1. There are several strategies to ensure

this, here, we focus on the prior structure involving a Dirichlet distribution as follows:

• If 0 ≡ φ0 < φ1 < . . . < φK = 1 are K − 1 order statistics from the uniform distribution
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U (0,1), then the successive differences of the order statistics, namely, {γs} as defined

above, s = 1, · · · , K, follow a Dirichlet (1, · · · , 1) distribution. This particular prior

actually corresponds to centering your belief around equal spacing of the {φk}. Gener-

alizing this result, one can directly impose a Dirichlet(α1, · · · , αK) distribution jointly

on the parameters {γs}, which is a natural prior with support as the above simplex.

Full Conditional Distributions: We first consider the unordered stereotype model with

the following mutually independent normal priors on β and φ

β ∼ N(μβ, σ
2
βIp)

φ ∼ N(μφ, σ
2
φIK−1)

Combining the conditional likelihood (2.6) with the assumed priors, we can derive the fol-

lowing joint posterior distribution,

p(β,φ|Y ,X,S) ∝
N∏
i=1

[
exp(φki(β

�X i1))∑M+1
j=1 exp(φki(β

�X ij))

]
× π(β)π(φ)(2.7)

The full conditional distribution of the respective parameters are given by:

π(βr|·) ∝
exp

(
− 1

2σ2
βr

(βr − μβr − σ2
βr

∑N
i=1 φkiXi1r)

2
)

∏N
i=1

∑M+1
j=1 exp(φki(β

�X ij))

π(φk|·) ∝
exp

(
− 1

2σ2
φk

(
φk − μφk

− σ2
φk

∑N
i=1 I(Yi1 = k)(β�X ij)

)2
)

∏N
i=1

∑M+1
j=1 expφk(β

�X ij)

Where Xijr is the value of the r-th predictor corresponding to the covariate vector X ij,

for the j-th subject, in the i-th stratum, and βr is the parameter specific to covariate Xr;

i = 1, · · ·N, j = 1, · · · ,M + 1, r = 1, · · · , p. For the ordered stereotype model, we consider

the natural prior choice that {γs}, s = 1, · · · , K follows a Dirichlet (α1, · · · , αK) distribution.

The full conditional for {γs} is expressed as

π(γs|·) ∝
N∏
i=1

[
exp(γsI(Yi1 ≥ s)(β�X i1))∑M+1
j=1 exp(

∑ki
k=1 γk(β

�X ij))

]
× γs

αs−1.
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For the special case of Dirichlet(1,· · · ,1) prior, corresponding to a prior belief of equal spacing

of the scores, the joint full conditional distribution of φ = (φ1, · · · , φ(K−1)) is expressed as

following.

π(φ|·) ∝
N∏
i=1

[
exp(φki(β

�X i1))∑M+1
j=1 exp(φki(β

�X ij))

]

Remark: For unmatched case-control data with N subjects consisting of n1 cases

and n0 controls, we have an intercept parameter that is constant across strata, namely,

β0k(Si) ≡ β0k and the conditional likelihood need not be evoked, one is able to proceed

with the unconditional prospective likelihood (2.5) with an additional set of priors on β0 =

(β01, · · · , β0K). The data vector now has only one index with (Yi,X i) corresponding to the

observations on the i-th subject, i = 1, · · · , N . For the unordered stereotype model, we

assume that,

β0 ∼ N(μβ0
, σ2

β0
IK)

β ∼ N(μβ, σ
2
βIp)

φ ∼ N(μφ, σ
2
φIK−1)

Combining the prospective likelihood with the assumed priors we have the posterior as,

p(β,φ|Y ,X) ∝
N∏
i=1

[
exp(I(Yi = k)(β0k + φkβ

�X i))∑K
k=0 exp(β0k + φkβ

�X i)

]
× π(β)π(φ)(2.8)

The full conditional distribution of the respective parameters are as follows:

π(β0k|·) ∝
exp

(
− 1

2σ2
β0k

(β0k − μβ0k
− σ2

β0k

∑N
i=1 I(Yi = k))2

)
∏N

i=1

∑K
k=0 exp(β0k + φkβ

�X i)

π(βr|·) ∝
exp

(
− 1

2σ2
βr

(βr − μβr − σ2
βr

∑N
i=1 I(Yi = k)φkXir)

2
)

∏N
i=1

∑K
k=0 exp(β0k + φkβ

�X i)

π(φk|·) ∝
exp

(
− 1

2σ2
φk

(
φk − μφk

− σ2
φk

∑N
i=1 I(Yi = k)(β�X i)

)2
)

∏N
i=1

∑K
k=0 exp(β0k + φkβ

�X i)
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Here Xir is the r-th covariate corresponding to subject i, i = 1, · · · , N , r = 1, · · · , p. For the

ordered stereotype model and unmatched data likelihood, the full conditional distribution of

γ = (γ1, · · · , γK) under the Dirichlet(α1, · · · ,αk) prior is expressed as follows;

π(γs|·) ∝
N∏
i=1

[
exp(γsI(Yi ≥ s)(β�X i))∑K

k=0 exp(β0k + φkβ
�X i)

]
× γs

αs−1.

Bayesian Computation: The Gibbs sampler (Geman and Geman, 1984; Gelfand and

Smith, 1990) is used to generate a sequence of random observations from the joint pos-

terior distribution [β,φ|Y,X, S] and Bayesian estimates are obtained from this generated

sequence. In this algorithm, observations are sampled iteratively from the following condi-

tional distributions: p[β|X, Y, S,φ] and p[φ|X, Y, S,β]. Since none of the full conditionals

have a standard distributional form, we used a hybrid of Gibbs sampler and Metropolis

Hastings algorithm to generate random numbers from the full conditionals of the parame-

ters as specified above. Noting that some of the above full-conditionals are log-concave, we

use adaptive rejection sampling (ARS) (Gilks and Wild, 1992) for sampling β and φ for the

unordered model and only β for the ordered model. We use Metropolis-Hastings update

of the φ in the ordered model with proposal distribution on φ as order statistics from the

uniform distribution on [0,1]. We typically ran the sampler 50,000 iterations and considered

estimates based on the last 10,000 runs, allowing a burn-in of 40,000 iterations. To monitor

the convergence of the chain, we use the ‘potential scale reduction factor’ diagnostic proposed

by Gelman and Rubin (1992).

2.5 Example: The Flint Men’s Health Study

Prostate cancer is the most common non-cutaneous cancer among American men and

is the second leading cause of cancer deaths in the United States. African American men

have a 1.5 fold higher incidence of prostate cancer compared to Caucasian men (Sarma

and Schottenfield, 2002). The Flint Men’s Health Study (FMHS) is a community-based
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case-control study of prostate cancer in African-American men between the ages of 40-79,

from 1999-2002 (Cooney et al., 2001). Case subjects were identified using the Genessee

County Community-wide hospital oncology program (CHOP) registry. Along with in-home

interview questionnaires on occupational and behavioral exposures, personal and family his-

tory of cancer, the study collected hospital record information on stage, Gleason’s grade of

differentiation, treatment and pre-diagnosis prostate-specific antigen (PSA) value. Several

anthropometric measurements and blood sample were also collected. Disease-free controls

were identified from a sample of African-American men in Flint, or in selected census tracts

in neighboring communities. Controls were asked to undergo a prostate cancer screening

protocol which included providing blood sample for PSA measurement and a comprehen-

sive urological examination. Men with abnormal clinical examination or elevated PSA were

excluded from control set and referred for prostate biopsy. There were 28 men who were

subsequently diagnosed with prostate cancer from this referral, who were included as case-

subjects. We had initial data on 144 cases and 434 controls which contained some missing

information.

Our categorical outcome variable is the stage of prostate cancer. Two systems are in

common use for the staging of prostate cancer. The Jewett system (1975, stages A through

D) was described in 1975 and has since been modified. In 1997, the American Joint Com-

mittee on Cancer (AJCC) and the International Union Against Cancer adopted a revised

tumor, nodes, metastasis (TNM) system that employs the same broad stage categories as

the Jewett system but includes finer subcategories of stage. This revised TNM system is

clinically useful and more precisely stratifies newly diagnosed patients. In 2002, the AJCC

further revised the TNM classification system (Prostate IN., 2002). A thorough review of

the controversies of staging in prostate cancer is contained in (Montie, 1995). We have used

the AJCC recommended TNM based classifications to define our response variable. Notice
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that stage is not a one-dimensional continuum or discretized version of such a latent contin-

uum. According to Anderson’s original motivating framework, assignment of stage should be

treated as summaries of multidimensional outcomes. The stereotypes assigned for different

stages are based on many aspects of a clinical and histopathological examination. As two

potential predictors, we used log(1+PSA) and age. We used pre-diagnosis total free PSA

for the case subjects and the total free PSA measured at the time of entry in the study for

control subjects as a measure of PSA. The age recorded at the time of the PSA measurement

is used as a second covariate in the model.

The final dataset we use for illustration purposes, after removing subjects with missing

information on stage, age or PSA consists of 433 controls and 132 cases. Among 132 cases,

64 subjects are in stage 1, 61 subjects are in stage 2 and 7 subjects are in stage 3 according

to the AJCC/TNM classification as described above. Ages are noted to have a roughly

uniform distribution over the entire range [40, 79] with mean 58 yrs and standard deviation

10.4 yrs. To avoid very small values for the estimated regression coefficient corresponding to

age, we transform the ages into a [0, 1] interval by using the linear transformation, i.e. (Age-

40)/(79-40). The marginal empirical distribution of log-transformed PSA (in combined case

and control sample) is distributed roughly as a normal distribution with mean 1.12 and sd

0.84 truncated at 0. We first analyze the unmatched data using the unconditional likelihood

(2.5) with β0k(Si) = β0k, and explore the association of age and PSA with different stages of

cancer. We fit both the ordered and unordered model in the proposed Bayesian framework.

We used N(0, 52) prior distributions for β,φ in unordered stereotype model and β in the

ordered model. For φ in the ordered model, we use the Dirichlet(1,1,1,1) as a prior density

for the successive score differences {γs} as described in the previous section.

In order to obtain the MLE under the unordered stereotype regression model, we follow

the maximum likelihood algorithm implemented in SAS/ETS module PROC MODEL, by
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fitting the stereotype model as a general multivariate non-linear regression model (Kuss,

2006). Throughout the Chapter we refrain from maximizing the likelihood under the ordered

stereotype model due to computational instability. We provide the result of baseline category

or multinomial logistic regression model for reference. Though not quite comparable, we

present the results of a proportional odds model fitted to the data as well.

Estimates of β,φ and their standard errors with 95% HPD for Bayesian methods or 95%

confidence interval for frequentist methods under different models and approaches are pre-

sented in Table 2.1. We can note the well expected significant positive association between

PSA and stage of cancer. The corresponding log-odds ratios given in Appendix Table A.1

also illustrate that the odds ratios corresponding to each stage as compared to the controls

appear to be ordered in terms of PSA. On the other hand, the effect of age, after adjusting

for PSA is not so pronounced and the direction is sensitive to the model choice, with the age

effect not being significant under any method, except attaining borderline significance in the

ML fitted stereotype model. The score parameters φ̂ appear to be monotonically increasing

across stage, though their values are quite close. The ordered and unordered Bayesian stereo-

type models have very similar values of estimated DIC criterion. The unordered stereotype

regression model fitted by the approach followed in Kuss (2006) has AIC estimate (though

directly not comparable to DIC) close to the Bayesian models. The multinomial logistic

model has an AIC that is higher than the stereotype model. The variance of the log odds-

ratio corresponding to category 3, is indeed worrisome in the multinomial logistic regression

model (estimate 10.81, s.e.=7.47). This is due to the fact that there are only 7 subjects in

category 3 who contribute to the estimation of this parameter, whereas the stereotype model

uses common covariate-specific parameter for estimating this log odds-ratio and has much

superior precision. The proportional odds model, on the other hand has a higher AIC value

compared to both multinomial logistic and stereotype model, indicating that this model may
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not be the right choice in this context.

Table 2.1:
Results of analysis of unmatched FMHS data with 132 cases and 433 controls. We used transformed
age and log(1 + PSA) as the two covariates X1 and X2. Under the Bayesian methods the “esti-
mate” corresponds to the posterior mean whereas PSD and HPD correspond to posterior standard
deviation and highest posterior density intervals respectively. For the MLE, CI corresponds to the
Wald-type large sample confidence intervals.
Unordered Stereotype β1 β2 φ1 φ2 DIC/AIC
Bayes Estimate -0.12 4.29 0.52 0.57 557.6

PSD 1.11 0.46 0.06 0.06
95% HPD (-2.31, 1.99) (3.39, 5.15) (0.40, 0.64) (0.46, 0.70)

MLE Estimate -1.92 8.72 0.35 0.39 563.5
s.e. 0.88 0.82 0.04 0.04
95% CI (-3.64, -0.19) (7.11, 10.33) (0.27, 0.43) (0.31, 0.47)

Ordered Stereotype β1 β2 φ1 φ2 DIC
Bayes Estimate -0.01 4.44 0.50 0.56 555.9

PSD 0.99 0.38 0.05 0.05
95% HPD (-2.28, 2.24) (3.57, 5.24) (0.40, 0.61) (0.45, 0.68)

Alternative Models β1 β2 AIC
Proportional Estimate 0.01 2.13 570.0
Odds Logistic s.e. 0.59 0.17
Regression 95% CI (-1.15, 1.17) (1.79, 2.46)

β11 β12 β13 AIC
Multinomial Estimate 1.37 -0.35 -1.08
Logistic s.e. 0.79 0.83 6.15
Regression 95% CI (-0.18, 2.93) (-1.98,1.27) (-13.13, 10.96)

β21 β22 β23 567.2
Estimate 2.19 2.60 10.81
s.e. 0.24 0.26 7.47
95% CI (1.71, 2.67) (2.08, 3.11) (-3.83, 25.45)

†In Multinomial Logistic regression model, βrk is the log odds-ratio of category k versus the controls corresponding to covariate

Xr, r = 1, 2; k = 1, 2, 3.

‡AIC is the Akaike Information Criterion and DIC is the Deviance Information Criterion.

For illustration purposes we created a matched case-control dataset from this database

with 132 cases matched with three controls in terms of census tract and neighborhoods of

residence to obtain a 1:3 matched dataset with 396 controls. With these 528 subjects and

132 matched sets, we fitted the stereotype and multinomial logistic model via the condi-

tional likelihood. We omit presenting the results for the proportional odds model for the

matched case, as it is not amenable to the conditioning principle and can only implement

an unmatched analysis of a matched study.

For the stereotype models for matched data we consider both ordered and unordered

models with the same prior distributions for unmatched data analysis under the Bayesian

approach. Since the approach in Kuss (2006) does not discuss conditional likelihood, we
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obtain the conditional maximum likelihood estimates by direct maximization of (2.6) via

the Nelder-Mead optimization routine. The optimization method though relatively stable

for a few parameters, encounters many convergence issues with larger number of covariates

or response categories.

The results of matched data analysis are presented in Table 2.2. Though there are certain

numerical differences especially, in terms of the effects of age when compared with the un-

matched analysis, the basic pattern of inference remains the same. The ordered stereotype

model appears to provide a slightly better fit to the data in terms of DIC criterion. The

posterior standard deviations are larger for the matched dataset, providing wider credible

intervals. This may be due to the reason that we created artificial matching in the dataset

for illustration purposes and the matching strategy may not have been efficient and created

correlation among covariates within a matched set.

Table 2.2:
Results of analysis of 1:3 matched FMHS data with transformed age and log(1 + PSA) as the
two covariates X1 and X2. There are 132 matched sets. Under the Bayesian methods the “esti-
mate” corresponds to the posterior mean whereas PSD and HPD correspond to posterior standard
deviation and highest posterior density intervals respectively. For the MLE, CI corresponds to
the Wald-type large sample confidence intervals. For Bayesian models we report DIC whereas for
models fitted by maximum likelihood we report AIC.
Unordered Stereotype β1 β2 φ1 φ2 DIC/AIC
Bayes Estimate 1.57 4.56 0.54 0.63 145.6

PSD 1.15 1.67 0.20 0.23
95% HPD (-0.72 4.67) (1.95, 8.59) (0.20, 1.03) (0.26, 1.13)

MLE Est. 1.54 4.37 0.51 0.58 148.6
s.e. 1.33 1.78 0.20 0.23
95% CI (-1.07, 4.15) (0.88, 7.86) (0.12, 0.90) (0.13, 1.03)

Ordered Stereotype β1 β2 φ1 φ2 DIC
Bayes Estimate 1.57 4.33 0.50 0.66 144.3

PSD 1.18 1.08 0.13 0.16
95% HPD (-0.73, 3.96) ( 2.45, 6.50) (0.29, 0.80) (0.40, 0.96)

Alternative Models β11 β12 β13 AIC
Multinomial Estimate 1.30 0.29 -
Conditional s.e. 0.84 0.99 -
Logistic 95% CI (-0.33, 2.94) (-1.66, 2.24) -

β21 β22 β23 -
Estimate 2.09 2.61 -
s.e. 0.41 0.45 -
95% CI (1.27,2.90) (1.73, 3.49) -

†The Multinomial Logistic model for matched data was fitted by simultaneously maximizing three conditional likelihoods of

categories 1 vs 0, 2 vs 0 and 3 vs 0. The conditional MLEs of β13, β23 did not converge, thus the AIC measure is not available.

‡AIC is the Akaike Information Criterion and DIC is the Deviance Information Criterion.
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Figures 2.1 and 2.2 show posterior densities of β and φ for the ordered and the unordered

model, overlaid on each other for unmatched and matched datasets respectively. The ordered

and unordered model produce fairly similar results in the unmatched case (Figure 2.1), but

certain differences are noted in the matched data context (Figure 2.2). For the ordered model,

mixing of the Markov chain is slow with a single Dirichlet distribution as proposal density

for the φ. We used the mixture of two Dirichlet distributions as proposal and increased the

number of iterations to 100,000 for the ordered models, however certain roughness is still

noted in the density plot due to ties in the posterior samples at boundaries.

An advantage of the Bayesian approach is to be able to carry out exact posterior inference

on the log odds-ratio parameters of category k compared to category 0, namely φkβr, k =

1, 2, 3 and r = 1, 2, corresponding to covariate Xr. Appendix Tables A.1 and A.2 present

the corresponding results for the unmatched and matched datasets. Appendix Figures A.1

and A.2 exhibit the posterior distribution of the log-odds ratio parameters φkβr, r = 1, 2,

k = 1, 2, 3; which look fairly symmetric for the unmatched data but exhibit skewness in

matched data. Based on our computational experience, it appears that both likelihood

maximization and Bayesian estimation with the conditional likelihood for matched data is

appreciably more challenging than the unconditional likelihood with stereotype link function.

2.6 Simulation Study

Since in a real dataset we can only illustrate the methods and the truth about the pa-

rameters is unknown, we conducted a small scale simulation study to evaluate our proposed

methods, mimicking the real data analysis of FMHS in certain aspects. We consider two

covariates, namely X1 and X2 resembling age and PSA in the FMHS study. We generate X1

from a uniform distribution on [40,79] and log(X2) from a N(1.12, 0.842) distribution. We

then generate a matching variable S following a U[0,1] distribution which will only be used
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for generating the matched sample. Given the true parameter values and X, we generate

the outcome variable Y |X, S with five categories ranging from 0 to 4 from a multinomial

distribution with the following response probability,

P (Yi = k|X i, Si) =
exp(β0k + βSSi + φk(β

�X i))∑K
k=0 exp(β0k + βsSi + φk(β

�X i))
for k = 0, · · · , 4,

where β0k are category-specific intercepts with β00=0. We set the effect size corresponding

to the matching variable, namely, βS at 0.5. We consider the covariate-specific parameters

(β1, β2) =(1.0, 2.0). We consider two scenarios with respect to the category specific scores:

φ = (φ0, φ1, φ2, φ3, φ4) = (0, 0.6, 0.9, 0.6, 1) reflecting that the ordering assumption is violated

and φ = (0, 0.25, 0.5, 0.75, 1) when the ordering assumption is preserved. We call these two

situations unordered and ordered setting respectively. The category specific intercepts β0k

are set as (0,-5.5, -7, -6, -8) for unordered setting and (0,-4.5, -5.5, -6.5, -8) for ordered

setting.

With the above distributional structure, we generate 500,000 independent realizations

of the data vector (Y,X, S) resulting in a cohort with 500,000 subjects with roughly 92%

controls and 8% cases. The percentage of cases in stages 1, 2, 3, and 4 were 45%, 30%,

15% and 10% respectively. We first randomly select 150 cases from the case population. In

order to construct a 1:3 matched dataset, corresponding to each selected case we selected

three controls having the value of the matching variable S within 0.03 of what was noted

for the case subject. For generating the unmatched datasets we simply remove S from the

above simulation scheme and generate Y |X only, and randomly select 150 cases and 450

controls from case and control population respectively. We generated 500 such matched and

unmatched datasets by sampling from the cohort. Thus we have four simulation settings (a)

unmatched, unordered (b) unmatched, ordered (c) matched, unordered and (d) matched,

ordered as presented in Tables 2.3 and 2.4 respectively.

We fitted both the ordered and unordered stereotype models using the Bayesian approach,
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with priors identical to our data analysis section. For the unordered model we consider max-

imum likelihood estimation as well. With unmatched, unordered data in Table 2.3 we notice

that the Bayesian ordered stereotype model yields larger biases with respect to φ though the

estimation of β is quite satisfactory in terms of both bias and MSE. The unordered stereotype

model as implemented by the methods illustrated in Kuss (2006) encounter convergence prob-

lems in roughly 30% of all generated datasets and even after removing the non-convergent

datasets the MLE have larger bias and MSE than the corresponding Bayesian method for

estimating β. Under (a), the unordered Bayesian method performs best when estimation

of φ and β are considered simultaneously. In contrast, with (b) unmatched ordered data,

the ordered stereotype model as implemented by the Bayesian method performs the best

in terms of mean squared errors for both β and φ. Note that ML approach tends to yield

smaller biases in estimating φ while producing larger biases in estimating β, an observation

that we could not explain theoretically or heuristically. Interestingly the average DIC for

unordered (ordered) model is less for unordered (ordered)setting, thus the two simulation

settings are reflected in the preferred model choice under the Bayesian approaches.

We repeat the simulation results with 500 matched datasets and results are given in Table

2.4. The basic pattern remains the same as in Table 2.3, with the Bayesian unordered model

performing the best under (c) and the Bayesian ordered model performing the best under

(d). Once again, the DICs are able to indicate the better model fit among the ordered and

unordered model, consistent with the simulation setting of generating ordered or unordered

data.

Appendix Tables A.3 and A.4 contain the corresponding results for the log odds ratio

parameters and the same basic pattern is followed. Based on the simulation study and

the issues encountered with convergence of MLE, it appears that fitting the ordered and

unordered stereotype regression model by the Bayesian approach and assessing comparative
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Table 2.3:
The results of the simulation study under unmatched case-control sampling design. The results
are based on 500 simulated datasets with 150 cases and 450 controls. For each parameter we report
estimated bias and mean squared error based on the 500 replications. The outcome variable Y
has five categories from 0 to 4. The true values for the parameters are: β1 = 1.0, β2 = 2.0; for
unordered setting φ1 = 0.6, φ2 = 0.9, φ3 = 0.6 and for ordered setting φ1 = 0.25, φ2 = 0.5 and
φ3 = 0.75.

Unordered Setting β1 β2 φ1 φ2 φ3

Unordered Stereotype bias -0.02 -0.06 0.04 0.03 0.06
Bayes MSE 0.25 0.08 0.02 0.03 0.02

Unordered Stereotype bias 0.20 0.14 0.04 -0.00 0.03
MLE MSE 0.38 0.96 0.03 0.05 0.03

Ordered Stereotype bias 0.05 0.08 -0.07 -0.18 0.18
Bayes MSE 0.33 0.08 0.01 0.04 0.04

Ordered Setting β1 β2 φ1 φ2 φ3

Unordered Stereotype bias -0.12 0.14 0.01 0.02 0.03
Bayes MSE 0.30 0.12 0.01 0.10 0.15

Unordered Stereotype bias 0.12 0.13 -0.01 -0.00 -0.01
MLE MSE 0.59 0.25 0.01 0.03 0.04

Ordered Stereotype bias -0.08 -0.08 0.00 0.00 0.00
Bayes MSE 0.29 0.06 0.01 0.01 0.01

†The estimated DICs corresponding to Bayesian estimation of the unordered stereotype model and ordered
stereotype model are 922.8 and 928.1 and for unordered setting, 973.5 and 968.1 for the ordered setting
respectively.

model fit via Bayesian model fitting diagnostics is an attractive alternative for this class of

models.

2.7 Discussion

The stereotype regression model is an interesting class of models for categorical outcomes

which has remained somewhat unexplored in the literature due to problems with classical

inference as discussed in Section 2.3. The Bayesian paradigm circumvents many of the issues

with classical inference and provides an alternative approach to estimate the model parame-

ters and carry out model comparisons and model selection for this class of models. In modern

medicine, characterization of disease subclasses in terms of histological and morphological

terms is often available. The stereotype model has a unique distinction among models for

ordered data that is preserved under outcome-dependent sampling and can be applied to

matched data with fine degree of stratification. The current work is the first attempt to-
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Table 2.4:
The results of the simulation study under matched case-control sampling design with 1:3 matching
ratio. The results are based on 500 simulated datasets, each with 150 matched sets. For each
parameter we report estimated bias and mean squared error based on the 500 replications. The
outcome variable Y has five categories from 0 to 4. The true values for the parameters are:
β1 = 1.0, β2 = 2.0; for unordered setting φ1 = 0.6, φ2 = 0.9, φ3 = 0.6 and for ordered setting
φ1 = 0.25, φ2 = 0.5 and φ3 = 0.75.

Unordered Setting β1 β2 φ1 φ2 φ3

Unordered Stereotype bias 0.00 0.01 0.09 0.14 0.15
Bayes MSE 0.38 0.30 0.08 0.12 0.13

Unordered Stereotype bias 0.15 0.30 0.01 0.01 0.05
MLE MSE 0.77 1.02 0.06 0.10 0.11

Ordered Stereotype bias 0.22 0.43 -0.15 -0.26 0.15
Bayes MSE 0.46 0.34 0.03 0.07 0.03

Ordered Setting β1 β2 φ1 φ2 φ3

Unordered Stereotype bias 0.01 -0.01 0.04 0.07 0.15
Bayes MSE 0.39 0.27 0.02 0.05 0.15

Unordered Stereotype bias 0.13 0.23 0.01 0.00 0.04
MLE MSE 0.56 0.39 0.02 0.04 0.12

Ordered Stereotype bias 0.12 0.17 -0.01 -0.02 -0.01
Bayes MSE 0.43 0.17 0.01 0.01 0.01

†The estimated DICs for unordered stereotype Bayes model and ordered stereotype Bayes model are 281.8
and 285.3 and for unordered setting, and, 320.3 and 315.4 for the ordered setting respectively.

wards proposing Bayesian inference for this class of models with and without the ordering

restrictions. We also aim to provide the reader with an classical overview of this class of

models. We point out its advantages for unmatched and matched case-control designs and

illustrate the methodology in a study of prostate cancer. We present a simulation study

when the true outcome are generated from both ordered and unordered model and illustrate

that the Bayesian model comparison approach can discern between the two situations and

lead to an estimate with good mean-squared error properties.

There are many issues which needs further exploration related to the stereotype model

from a frequentist analysis perspective as well, among which is the exploration of an ap-

propriate testing strategy for the hypothesis of independence. Our study indicates that we

need better computation strategies in the conditional likelihood setting. How to extend this

model to accommodate missing data, correlated or clustered observations can be considered

as topics of future research.
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Figure 2.1:
Posterior density estimates for covariate and category specific parameters of the stereotype model
for unmatched FMHS data with numerical summaries as presented in Table 2.1. The results are
based on 100,000 observations generated from the posterior distribution of each parameter. The
solid line corresponds to the unordered model, whereas the dashed line corresponds to the ordered
model.
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Figure 2.2:
Posterior density estimates for covariate and category specific parameters of the stereotype model
for 1:3 matched FMHS data with numerical summaries as presented in Table2.2. The results
are based on 10,000 observations generated from the posterior distribution of each parameter.
The solid line corresponds to the unordered model, whereas the dashed line corresponds to the
ordered model.



CHAPTER III

Missing Exposure Data in Stereotype Regression Model:
Application to Matched Case-Control Study with Diseases

Subclassification

3.1 Introduction

In this Chapter we propose two methods for handling partially missing covariate data in

a stereotype regression model while the data are collected through a matched case-control

design. The stereotype regression model was proposed by Anderson (1984) for analyzing

categorical outcome data by using category-specific scores and maintaining the homogeneous

effect of covariates corresponding to each logit. The model stands intermediate between the

baseline category logit model and the proportional odds model in terms of model flexibility

and parsimony. The model can be adapted to ordered as well as unordered outcome setting

whereas ordering assumption is required for the proportional odds model. The stereotype

model, however, has been less attractive as an alternative to proportional odds model due to

embedded computational burden caused by multiplicative structure of the model parameters.

Since Anderson’s initial paper, there has been only handful of follow-up papers on this class

of models. Greenland (1994) proposed a two-step iterative algorithm followed by bootstrap

for estimation of model parameters and their standard errors respectively. Holtbrügge and

34
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Schumacher (1991) used an iteratively reweighted least squares algorithm (Green, 1984)

to obtain parameter estimates. Recently, Yee and Hastie (2003) considered the stereotype

model as a special case of the reduced rank vector generalized linear model (RR-VGLM) and

introduced a fitting approach in the R-package VGAM (Yee, 2010). Kuss (2006) presented an

in-depth overview on the estimation of the parameters of a stereotype model by employing

generalized least squares and discussed alternate implementation procedures in standard

statistical software. Kuss (2004) contained an illustrative example using the random effects

stereotype regression model. Lunt (2004) considered prediction of ordinal outcomes using

this model. Ahn et al. (2009) presented Bayesian inference for ordered and unordered

stereotype model.

Greenland (1994) pointed out an attractive feature of this model in terms of yielding valid

inference under retrospective sampling, like in a case-control study. Alternative ordinal mod-

els such as the proportional odds or cumulative logit model do not preserve valid inference

under outcome stratified sampling (Mukherjee and Liu, 2009; Mukherjee et al., 2007). More-

over, for a matched case-control study, the conditional likelihood principle (Breslow and Day,

1980) may be invoked to eliminate stratum-specific nuisance parameters under this stereo-

type class of link functions, whereas the proportional odds model is not amenable to this

principle (Mukherjee et al., 2008). With advances in detection and diagnosis techniques for

cancer, classification information into finer subtypes of cancers/tumors are often available in

existing databases. The stereotype model presents an interesting alternative to model asso-

ciation of risk factors with such subtypes rather than just case-control status. The outcome

categories or disease subtypes may or may not be ordered in terms of effect of covariates.

The structure of the stereotype model allows a unique opportunity for testing such order-

ing restrictions. Thus the model appears to be an appealing tool for analyzing matched

case-control data with finer disease subclassification.
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Missingness in exposure values is frequently a concern in matched case-control studies.

Naive use of the conditional logistic regression (CLR) renders deletion of the complete stra-

tum containing any missing case observations in matched case-control studies. There exists

a substantial amount of literature on handling missing data in matched case-control studies

(Satten and Carroll, 2000; Paik and Sacco, 2000; Rathouz et al., 2002; Rathouz, 2003; Sinha

et al., 2005). All of these papers consider missingness mechanisms that may or may not

depend on observed data (missing completely at random (MCAR) and missing at random

(MAR) as defined in Little and Rubin (1987)). Under MAR and MCAR, naive CLR is

known to be inefficient.

If the missingness mechanism depends on unobserved exposure values, failure to incorpo-

rate the missingness information in the analysis can lead to biased and inconsistent results.

Paik (2004) used a parametric approach to handle such informative missingness (IM) in

matched case-control studies using a pseudo-likelihood. After the timely first investigation

of Paik (2004) for handling IM in matched case-control studies, Sinha and Maiti (2008) car-

ried out a comprehensive comparison of Paik’s approach with an alternative full-likelihood

based approach. Both of these papers use the expectation/maximization (EM) algorithm to

estimate model parameters and to derive standard error estimates. None of the above pa-

pers, however, consider the problem of modeling disease subclassification, and do not involve

the stereotype regression model. Sinha et al. (2004) did consider the problem of missing ex-

posure data with multiple disease states using a polytomous regression model but not under

IM. The parametric structure of the stereotype model leads to new computational issues and

there is no literature on handling missingness under this class of models. In this article, we

propose an expectation conditional maximization (ECM) approach and a full Bayesian (FB)

approach to handle missing data under the stereotype model. The methods are applied to

analyze the association between use of statins (a lipid lowering drug), physical activity and
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different stages of colorectal cancer (cancer staging based on Tumor, Nodes, and Metastasis

criteria), in an ongoing population-based matched case-control study (Poynter et al., 2005).

The rest of the article is organized as follows. In Section 3.2.1, we introduce the stereotype

regression model. In Section 3.2.2, we describe the conditional likelihood under a matched

case-control setting, without any missingness. In Section 3.2.3 we present the likelihood

formulation with partially observed data, with a model for missing data and selection prob-

ability mechanism. In Section 3.3, we discuss the computational strategies to estimate the

model parameters, namely the ECM and the full Bayes strategy. We illustrate our methods

via analyzing data from the Molecular Epidemiology of Colorectal Cancer (MECC) Study

in Section 3.4. Finally, we carry out a simulation study to compare properties of the dif-

ferent estimation strategies in terms of bias and mean squared error (MSE) under different

missingness mechanisms in Section 3.5. Section 3.6 presents brief concluding remarks.

Before concluding this section, we highlight two novel features of this article. To the best

of our knowledge, there is no literature on handling missing data under the stereotype link

function. The current article is also the first one to present a full Bayesian framework to deal

with non-ignorable missingness in matched case-control studies under any link function. We

compare the performance of both the full Bayesian (FB) and the maximum likelihood based

approach (ECM) in terms of simulation studies under an array of missingness mechanisms

and model misspecification.

3.2 Models and Assumptions

In this section, we introduce the key ingredients of our likelihood specification, starting

with the stereotype link function, the complete data likelihood, then followed by models for

the selection probability and the distribution of the missing exposure.
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3.2.1 The Stereotype Regression Model

The stereotype model is nested within the family of polytomous logistic regression models.

The polytomous logistic regression model for a categorical response variable Y with K + 1

categories and a p-dimensional vector of explanatory variables X is denoted by

p(Y = k|X) =
exp(β0k + β�

k X)∑K
k=0 exp(β0k + β�

k X)
,(3.1)

for k = 0, 1, . . . , K with constraints β00 ≡ β0 ≡ 0. The p × 1 parameter vector βk denotes

the log odds ratio of category Y = k relative to baseline category Y = 0. Anderson (1984)

proposed the stereotype model by imposing a structure on βk such that βk = φkβ. The

stereotype regression model can thus be represented as,

p(Y = k|X) =
exp(β0k + φkβ

�X)∑K
k=0 exp(β0k + φkβ

�X)
,(3.2)

for k = 0, 1, . . . , K. For identifiability of the parameters, we assume β00 = φ0 ≡ 0 and,

φK ≡ 1. The model can be extended to accommodate ordered outcomes with a mono-

tonicity constraint on the category-specific scores, namely, 0 ≡ φ0 ≤ φ1 ≤ . . . ≤ φK ≡ 1.

The ordering constraint can be tested in light of the data by comparing the ordered and

unordered model by a likelihood ratio test. The number of parameters to be estimated in

(3.2) is (2K − 1) + p, compared to K + (p×K) parameters in the polytomous logit model

(3.1). The stereotype model allows a bit more flexibility than the proportional odds model

which assumes an identical effect of the covariates for each cumulative probability, further

reducing the number of parameters to be estimated to K + p. One can actually test the

indistinguishability of covariate effects on outcome categories k and l by testing H0 : φk = φl

in (3.2) and potentially collapse categories with similar category-specific scores. However,

the limitations of the model are non-linearity in the parameters due to product terms in φ

and β and the lack of identifiability of the parameters under the global null hypotheses of

H0 : β = 0, leading to non-standard asymptotic theory for likelihood based inference.
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3.2.2 Stereotype Regression in Matched Case-Control Studies

As Greenland (1994) pointed out, the stereotype model leads to consistent and asymp-

totically efficient estimates of the parameters of interest, namely, φ and β, under outcome-

stratified sampling. Anderson (1984) specifically recommended this model for categorical

outcomes that are not generated by segmenting a latent continuous scale, but are summaries

of truly discrete multidimensional outcomes. A natural example for such an outcome is stages

of cancer which are typically assessed based on multiple criteria in a case-control study. For

matched case-control studies with finer disease subclassification, the stereotype model pro-

vides additional flexibility in terms of eliminating the matched set specific parameters via

the conditional likelihood.

We now describe the stereotype regression model for the specific setting of a matched

case-control design. Let Yij denote the disease state corresponding to the jth subject in the

ith stratum (or matched set), with Si denoting variables which contributed explicitly or im-

plicitly to the formation of the i-th stratum. The disease states are classified into one of the

K distinct categories 1, 2, · · · , K, while the reference control group is denoted by Yij = 0.

In each of the N strata we assume there is one case matched with M controls. The results

could be directly generalized to the setting of more general Li : Mi matching ratio. For ease

of notation, we restrict our attention to a single covariate Xij with potential missingness, the

results could again be extended to a set of covariates containing missingness in a straightfor-

ward way (Sinha et al., 2008). Let Zij denote the vector of p completely observed covariates

Zij = [Zij1 . . . Zijp]
T corresponding to the j-th subject in the i-th stratum. The stratified

disease risk model for Y = 0, . . . , K is described as,

p(Yij = k|Xij,Zij, Si) =
exp{β0k(Si) + φk(β1Xij + β�

2 Zij)}∑K
k=0 exp{β0k(Si) + φk(β1Xij + β�

2 Zij)}
.(3.3)

The β0k(Si) are category specific intercepts which could vary with strata. For identifiability,
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β00(Si) = φ0 ≡ 0 and φK ≡ 1. The change in the log odds of an individual being in the

kth disease category versus being a control, for each unit increase in X is given by φkβ1.

Without loss of generality, let us assume that the first subject in each stratum is the case

and remaining are controls. To eliminate the stratum specific nuisance parameters β0k(Si),

we use the conditional likelihood, by conditioning on the event
∑M+1

j=1 Yij = ki, in the i-th

stratum, where ki is the observed disease state corresponding to the case subject in the i-th

stratum, ki = 1, · · · , K.

Thus the conditional likelihood when we have complete data is given by,

Lc =
N∏
i=1

P

(
Yi1 = ki, Yi2 = · · · = YiM+1 = 0|{Xij,Zij}M+1

j=1 , Si,
M+1∑
j=1

Yij = ki

)

=
N∏
i=1

exp{φki(β1Xi1 + β�
2 Zi1)}∑M+1

j=1 exp{φki(β1Xij + β�
2 Zij)}

.(3.4)

For completely observed data one could proceed with Bayesian inference via the above con-

ditional likelihood treating it as a genuine likelihood and impose prior structure on the

parameters φk, β1 and β2 (Ahn et al. 2009). The justification for using Lc as a basis of

Bayesian inference can be found in Rice (2004).

3.2.3 Likelihood formulation under missingness in exposure values

Matched case-control analysis is often challenged with issues involving missingness in ex-

posure values. The conditional likelihood approach as described in (3.4) is inefficient in such

situation. Moreover, if the missing data mechanism is non-ignorable, then a naive complete-

case analysis may produce biased and inconsistent estimates. Paik (2004) and Sinha and

Maiti (2008) present elegant EM-based maximum likelihood estimation strategies to handle

non-ignorable missingness in matched case-control study. However, none of these papers

consider a full Bayesian approach, or the issue of finer disease subclassification. The stereo-

type link function has also not been studied therein. We now present a general framework
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for handling missingness in exposure values by modeling both the exposure distribution and

the missingness process under the model (3.3).

Let Rij denote the indicator variable assuming the value 1 if Xij is observed and is 0

otherwise. The joint conditional likelihood we consider as a basis of our inference is given

by

Lcm =
N∏
i=1

Li
cm =

N∏
i=1

p
(
{Rij, Xij, Yij}M+1

j=1 | {Zij}M+1
j=1 , Si,

M+1∑
j=1

Yij = ki

)
.

The likelihood contribution of the i-th stratum is factorized as below,

Li
cm = p({Rij, Xij, Yij}M+1

j=1 |
{
Zij

}M+1

j=1
, Si,

M+1∑
j=1

Yij = ki)

=
M+1∏
j=1

{
p(Rij|Xij, Yij,Zij, Si)× p(Xij|Yij,Zij, Si)

}
× p(Yi1 = ki, Yi2 = · · · = YiM+1 = 0|Zij, Si,

M+1∑
j=1

Yij = ki).

In order to evaluate this likelihood, we first assume a selection probability model, namely,

p(Rij = 1|Xij, Yij,Zij, Si) = H(δ0 + δ1Xij + δ2Yij + δ3Si + δ�4 Zij),(3.5)

where H(u) is the logistic link function defined as H(u) = {1 + exp(−u)}−1.

We now need to specify a model for p(Xij|Yij,Zij, Si). However, using the results of

Satten and Kupper (1993), Satten and Carroll (2000), and Sinha and Maiti (2008), by

specifying a model for p(Xij|Yij = 0,Zij, Si), and the prospective disease risk model (3.3),

one can obtain the distribution ofXij in all disease subclasses, namely, p(Xij|Yij = k,Zij, Si),

k = 1, · · ·K. This well-known result is presented in Lemma 1 of Appendix A.2.2. The last

term in Li
cm, which remains to be expressed as a function of the ingredients of the assumed
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model components, can be simplified as,

p(Yi1 = ki, Yi2 = · · · = YiM+1 = 0|Zij, Si,

M+1∑
j=1

Yij = ki)

= {p(Yi1 = ki|Zi1, Si)/p(Yi1 = 0|Zi1, Si)}/
M+1∑
j=1

p(Yij = ki|Zi1, Si)/p(Yij = 0|Zij, Si).

The marginal odds of the disease p(Y = k|Z, S)/p(Y = 0,Z, S) can again be represented in

terms of the control distribution for X and the parameters of the disease risk model. The

exact representation is stated in Lemma 2 of Appendix A.2.2. The marginal likelihood of

observed data after integrating with respect to the distribution of the missing exposure is

given by,

Lobs
cm =

N∏
i=1

M+1∏
j=1

{
pRij(Rij = 1|Xo

ij, Yij,Zij, Si)× pRij(Xo
ij|Yij,Zij, Si)

}
×

∫
p(1−Rij)(Rij = 0|Xm

ij , Yij,Zij, Si)dF (Xm
ij |Yij,Zij, Si)

×
N∏
i=1

[
{p(Yi1 = ki|Zi1, Si)/p(Yi1 = 0|Zi1, Si)}/

M+1∑
j=1

p(Yij = ki|Zij, Si)/p(Yij = 0|Zij, Si)
]
,(3.6)

where Xo denotes the observed X-values and Xm are the unobserved missing data on X.

Instead of Monte Carlo evaluation of the above integrated likelihood followed by maxi-

mization procedures, both of our estimation strategies FB and ECM will be based on the

following complete data likelihood,

Lcomp
cm =

N∏
i=1

M+1∏
j=1

{
pRij(Rij = 1|Xo

ij, Yij,Zij, Si)× pRij(Xo
ij|Yij,Zij, Si)

× p(1−Rij)(Rij = 0|Xm
ij , Yij,Zij, Si)× p(1−Rij)(Xm

ij |Yij,Zij, Si)
}

×
N∏
i=1

[
{p(Yi1 = ki|Zi1, Si)/p(Yi1 = 0|Zi1, Si)}/

M+1∑
j=1

p(Yij = ki|Zij, Si)/p(Yi1 = 0|Zij, Si)
]
.(3.7)
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Remark 1: Note that in our formulation so far, any parametric and non-parametric model

can be used for the distribution of X. One can restrict attention to the class of exponential

family models like in Paik (2004) or model the distribution of X non-parametrically by

using a Dirichlet process mixture of normals model as in Mukherjee et al. (2007). The

methodology is not restricted to a class of parametric models for X. In Appendix A.2.3, we

provide the version of Lemma 1 and 2, specifically for the general class of exponential family

of distributions. We illustrate specific examples with the Normal and Binomial distribution,

just to provide the reader a sense of how the expressions can be simplified in such commonly

occurring instances.

Remark 2: When the missingness mechanism is MAR, p(R|X, Y,Z, S) = p(R|Y,Z, S) and

the above likelihood Lcomp
cm reduces to the likelihood used in Satten and Carroll (2000) and

Sinha et al. (2005), by simply removing two terms in (3.7) involving the selection probability

model. In that case, there is an implicit assumption that p(R|Y,Z, S) does not involve any

parameters of interest, so the contribution of that term to the likelihood can be ignored in

both ML and FB inference.

3.3 Parameter estimation and inference

3.3.1 The ECM approach

Based on the complete data likelihood Lcomp
cm , we devise an ECM approach to estimate the

model parameters. Let θ denote the parameters governing the assumed control distribution

p(X|Z, S,D = 0). For example, if we assume that the exposure distribution in controls

belongs to an exponential family, i.e.,

f(Xij|Yij = 0,Zij, Si) = exp[ξij{θijXij − b(θij)}+ c(ξij, Xij)],

where the canonical parameters θij are modeled as a regression function of the completely

observed covariates, namely, θij = κ0 + κ�
1 Zij + κ2Si , capturing the dependence of the
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distribution X on Z and S and ξij are the scale parameters. In that case, θ = (κ0,κ1, κ2, ξ).

If we denote the entire parameter vector, as Θ = (β,φ,θ, δ), by using Lemma 1 and 2 of

Appendix A.2.3, the complete-data log-likelihood, say lcomp
cm (Θ) can be obtained via taking

log of (3.7) as,

∑
(i,j):Rij=1

[
ξij

{
θ∗ijX

o
ij − b(θ∗ij)

}
+ c(ξij , X

o
ij) + logH(δ0 + δ1X

o
ij + δ2Yij + δ3Si + δ�4 Zij)

]
︸ ︷︷ ︸

L1(Θ)

+
∑

(i,j):Rij=0

[
ξij

{
θ∗ijX

m
ij − b(θ∗ij)

}
+ c(ξij , X

m
ij ) + log{1−H(δ0 + δ1X

m
ij + δ2Yij + δ3Si + δ�4 Zij)}

]
︸ ︷︷ ︸

L2(Θ)

+
N∑
i=1

{
φkiβ

�
2 Zi1 + ξi1{b(θ∗i1)− b(θi1)}+ log

(
M+1∑
j=1

exp
[
φkiβ

�
2 Zij + ξij{b(θ∗ij)− b(θij)}

])}
︸ ︷︷ ︸

L3(Θ)

,

(3.8)

where θ∗ij = θij + I(Yij = ki)ξ
−1
ij φkiβ1. Let L1(Θ), L2(Θ), and L3(Θ) denote the first, the

second, and the third term of the log likelihood in (3.8), we can characterize the E-step at

the (t+1)th iteration of a standard EM algorithm by computing the expectation of lcomp
cm (Θ)

as,

E{lcomp
cm (Θ(t+1))} = L1(Θ

(t+1)) + E{L2(Θ
(t+1))}+ L3(Θ

(t+1)),(3.9)

where the expectation E is taken with respect to p(Xm
ij |Yij,Zij, Si, Rij = 0,Θ(t)) which in

turn can be expressed as

p(Rij = 0|Xm
ij , Yij,Zij, Si)p(X

m
ij |Yij,Zij, Si)

p(Rij = 0|Yij,Zij, Si)

=
p(Rij = 0|Xm

ij , Yij,Zij, Si)p(X
m
ij |Yij,Zij, Si)∫

p(Rij = 0|Xm
ij , Yij,Zij, Si)dF (Xm

ij |Yij,Zij, Si)
.(3.10)

The integral in (3.10) is replaced by sum for a discrete exposure X. If we have a standard

distributional form for (3.10), e.g., when Xm is binary, we can obtain an analytical expres-

sion for E{L2(Θ
(t+1))}. However, Monte Carlo generation may be necessary at the E-step,
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depending on the form of the distribution of p(Xm
ij |Yij,Zij, Si). In the M -step, we maximize

(3.9) at the (t+1)th iteration with respect to Θ(t+1) conditioning on the previously obtained

values of Θ(t) .

The above M -step may lead to computational complexity with high dimensional parame-

ter spaces. To handle this difficulty, a modification was proposed by Meng and Rubin (1993)

to accelerate the EM algorithm by replacing the M -step with a rather simpler conditional

maximization (CM) step. With the non-linearity in φ and β, adopting the ECM is extremely

helpful for the stereotype link function where the EM often fails to converge. The ECM is in

the spirit of Greenland’s two-step procedure for stereotype models (Greenland, 1994), where

the maximization problem is simplified by iteratively maximizing in terms of φ and β. In

the (t + 1)th step of ECM, we maximize the likelihood in terms of β(t+1), conditioning on

previously obtained (φ(t),θ(t), δ(t)) rather than maximizing the joint likelihood in terms of all

parameters (β,φ,θ, δ). Then we maximize the likelihood with respect to φ(t+1) conditioning

on (β(t+1),θ(t), δ(t)) and continue iteratively. Similar to the EM, we repeat E-step and CM -

step until the convergence condition is met. In this article, the conditional maximization is

performed via the Nelder-Mead optimization routine.

Remark 3: The standard errors corresponding to the estimated parameters can be ob-

tained by inverting the observed Fisher information as prescribed in Louis (1982):

I(Θ) = −E

[
∂2

∂Θ∂Θ� {logLcomp
cm (Θ)}

]
Θ=Θ̂

.(3.11)

We compute the above expectation with respect to the conditional distribution p(Xm|Y,Z, S,

R = 0) by Monte carlo average of the second derivative of the log likelihood. Here, note

that we evaluated each corresponding full dimensional Hessian via a numerical approxima-

tion employing Richardson extrapolations provided in R package ‘hessian:numDeriv’ not by

conditioning on remaining estimated parameters as in two step type process, which is known

to suffer from invalid standard error (Lall et al., 2002).



46

3.3.2 Bayesian approach

Prior Specification: The likelihood used for Bayesian inference is again the complete data

likelihood in (3.7). There are four subsets of parameters (β,φ,θ, δ) under consideration. Our

main interest lies in β(p+1)×1 = (β1,β
p×1
2 ) and φ(K−1)×1 = (φ1, · · · , φK−1) in the disease risk

model (3.4). The two ancillary sets of parameters involve the δ(p+4)×1 = (δ0, δ1, δ2, δ3, δ
p×1
4 )

parameters in the selection probability model and the parameters θ = (κ(p+2)×1, ξ), where

κ(p+2)×1 = (κ0,κ
p×1
1 , κ2), used in modeling the exposure distribution in the control popula-

tion. To formulate the full conditionals, we assume series of prior distributions on these four

sets of parameters.

In this article, we generally consider the following set of mutually independent priors on

Θ :

π(β)
iid∼ N(p+1)(μβ, σ

2
βI), π(δ)

iid∼ N(p+4)(μδ, σ
2
δI),

π(κ)
iid∼ N(p+2)(μκ, σ

2
κI), π(φ)

iid∼ N(K−1)(μφ, σ
2
φI).(3.12)

On ξ, the scale parameter of the exponential family, we adopt a suitable prior given the spe-

cific distribution, for example, we can assume a uniform prior on the logarithmic standard

deviation for Xm following a Normal distribution. Based on the complete data likelihood

in (3.7) and the priors described above, we can elicit full conditionals, that are described in

detail for specific examples in the following section and in Appendix A.2.4.

Bayesian Computation: Following the data augmentation idea of Tanner and Wong

(1987) we iterate the following two steps for iteratively generating observations from the

joint full conditional of (Xm,Θ|Y, Z, S,Xo). At iteration t+ 1,

• (a) : Sample Xm
(t+1) from density P (Xm|Θ(t), Y,X

o,Z, S, R),

• (b) : Sample Θ(t+1) from density P (Θ|Y,Xo,Xm
(t+1),Z, S, R),
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where Θ(t) = (β(t),φ(t),θ(t), δ(t)) are obtained at the previous iteration t. As Tanner and

Wong (1987) pointed out, the first step (a), where we sample Xm from the full conditional

distribution, is analogous to ‘multiple imputation’ of filling in the missing data values. Also

note that in step (a), we in fact, sample Xm from the same full conditional distribution

that we use at the E-step in ECM as given in (3.9). In step (b), or the ‘posterior’ step, we

generate posterior sample of Θ conditional on augmented data. However, instead of working

with a finite number of imputed datasets as in multiple imputation, we iterate this process

in our Monte Carlo sampling scheme and continue until stochastic convergence.

Given the full conditionals and employing the above data augmentation step, we use a

Gibbs sampler (Geman and Geman, 1984) to generate samples from the full conditional

distribution of (β,φ,κ, δ) given the augmented data. Note that though the full conditionals

do not often have a standard form, they are log-concave when the distribution of Xm is

assumed to belong to a general exponential family. In this case, we use the adaptive rejection

sampling or ARS (Gilks and Wild, 1992). For situations when the full conditionals are not

log-concave, we can adopt the adaptive rejection Metropolis sampling (ARMS) (Gilks et

al., 1995). For each parameter, we generate 50,000 posterior samples and discard the first

10,000 iterations as ‘burn-in’. In order to reduce the inner-cycle correlation, a thinning

of 5 observations was applied. We monitor convergence of the chains using the diagnostic

‘potential scale reduction factor’ (Gelman and Rubin, 1992) provided in the R package

CODA (Plummer et al., 2009). Finally, the remaining posterior sequences are analyzed for

evaluating the Bayesian estimates and credible intervals.
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3.3.3 Special Case: Binary Exposure

We turn our attention to the situation when exposure distribution in the controls arise

from a Bernoulli distribution with pij = H(θij) where θij = κ0 + κ�
1 Zij + κ2Si, namely,

f(Xij|Yij = 0,Zij, Si) = exp [θijXij − log {1 + exp(θij)}] .

We can then express the exposure distribution within sub-types of cases as f(Xij|Yij =

ki,Zij, Si) = exp
[
θ∗ijXij − log

{
1 + exp(θ∗ij)

}]
where θ∗ij = θij + φkiβ1 based on Lemma 1 of

Appendix A.2.3. Using these expressions in (3.7), we have, for the Bernoulli case,

Lcomp
cm =

N∏
i=1

M+1∏
j=1

[
H(δ0 + δ1X

o
ij + δ2Yij + δ3Si + δ�4 Zij)

Rij

× {
1−H(δ0 + δ1X

m
ij + δ2Yij + δ3Si + δ�4 Zij)

}1−Rij
]

×
N∏

i:Yi1=ki

exp
( [{RijX

o
ij + (1−Rij)X

m
ij }(θij + φkiβ1)− log {1 + exp(θij + φkiβ1)}

] )
×

N∏
i=1

M+1∏
j=2

exp
(
{RijX

o
ij + (1−Rij)X

m
ij }θij − log {1 + exp(θij)}

)

×
N∏
i=1

exp
[
φkiβ

�
2 Zi1 + log

{
1+exp(θi1+φki

β1)

1+exp(θi1)

}]
∑M+1

j=1 exp
[
φkiβ

�
2 Zij + log

{
1+exp(θij+φki

β1)

1+exp(θij)

}] .(3.13)

Both the ECM and FB inference are developed based on the above complete data likelihood.

Similar expressions for X from a Normal distribution is presented in Appendix A.2.5.

The ECM: We can easily calculate the expected complete data log-likelihood in (3.13)

based on the fact that p(Xm
ij = 1|Yij,Zij, Si, Rij = 0) has a Bernoulli distribution with known

structure. Let H{ψij(θ)} = p(Xm
ij = 1|Yij,Zij, Si, Rij = 0) where ψij(θ) = θij + I(Yij =

ki)φkiβ1 + log{π̄ij(1)/π̄ij(0)}. Here πij(s) denotes H(δ0 + δ1s + δ2Yij + δ3Si + δ�4 Zij) and

π̄ij(s) = 1− πij(s). We can now express the three terms in (3.13) as:
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L1(Θ
(t+1)) =

∑
(i,j):Rij=1

[
Xij{θij + I(Yij = ki)φkiβ1}

− log [1 + exp{θij + I(Yij = ki)φkiβ1}] + log{πij(Xij)}
]
,

E{L2(Θ
(t+1))} =

∑
(i,j):Rij=0

(H{ψij(θ)}[θij + I(Yij = ki)φkiβ1 + log{π̄ij(1)}])

+
∑

(i,j):Rij=0

(
[1−H{ψij(θ)}] log{π̄ij(0)} − log [1 + exp{θij + I(Yij = ki)φkiβ1}]

)
,

L3(Θ
(t+1)) =

N∑
i=1

{
φkiβ

�
2 Zi1 + log

{
1 + exp(θi1 + φkiβ1)

1 + exp(θi1)

}

− log
(M+1∑

j=1

exp
[
φkiβ

�
2 Zij + log

{
1 + exp(θij + φkiβ1)

1 + exp(θij)

}])}
.

We then follow the ECM steps outlined in Section 3.3.1.

The Bayesian Route:

We can obtain the following full conditional distributions of the model parameters, given the

augmented data, by using the likelihood in (3.13) and the prior structure as in (3.12).

π(β1|·) ∝
exp

(
− 1

2σ2
β1

[
β1 − μβ1 − σ2

β1

∑N
i=1 φki {Ri1X

o
i1 + (1−Ri1)X

m
i1 }

]2)
∏N

i=1

∑M+1
j=1 exp

[
φkiβ

�
2 Zij + log

{
1+exp(θij+φki

β1)

1+exp(θij)

} ] ,

π(β2r|·) ∝
exp

{
− 1

2σ2
β2

(β2r − μβ2r − σ2
β2

∑N
i=1 φkiZi1r)

2
}

∏N
i=1

∑M+1
j=1 exp

[
φkiβ

�
2 Zij + log

{
1+exp(θij+φki

β1)

1+exp(θij)

} ] ,

π(φk|·) ∝
exp

{
−

(
φk−μφk

−2σ2
φk

∑N
i=1 I(Yi1=k)

[
β�

2 Z i1+β1{Ri1X
o
i1+(1−Ri1)X

m
i1 }

])2

2σ2
φk

}
∏N

i=1

∑M+1
j=1 exp

[
φkiβ

�
2 Zij + log

{
1+exp(θij+φki

β1)

1+exp(θij)

}] ,

π(δq|·) ∝
exp

{
− 1

2σ2
δ
(δq − μδq − σ2

δ

∑N
i=1

∑M+1
j=1 RijVijq)

2
}

∏N
i=1

∏M+1
j=1

[
1 + exp

{
δ0 + δ1(RijXo

ij + (1−Rij)Xm
ij ) + δ2Yij + δ3Si + δ�4 Zij

}] ,
where Vij0 = 1, Vij1 = Yij, Vij2 = Xij, Vij3 = Si.

π(δ4r|·) ∝
exp

{
− 1

2σ2
δ
(δ4r − μδ4r − σ2

δ

∑N
i=1

∑M+1
j=1 RijZijr)

2
}

∏N
i=1

∏M+1
j=1

[
1 + exp

{
δ0 + δ1(RijXo

ij + (1−Rij)Xm
ij ) + δ2Yij + δ3Si + δ�4 Zij

}] ,
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π(κ0|·) ∝
exp

(
− 1

2σ2
κ

[
κ0 − μκ0 − σ2

κ

∑N
i=1

∑M+1
j=1

{
RijX

o
ij + (1−Rij)X

m
ij

}]2)
∏N

i=1

∑M+1
j=1 exp

[
φkiβ

�
2 Zij + log

{
1+exp(θij+φki

β1)

1+exp(θij)

}]
×

N∏
i=1

M+1∏
j=1

1

1 + exp(θij)
,

π(κ1r|·) ∝
exp

(
− 1

2σ2
κ

[
κ1p − μκ1p − σ2

κ

∑N
i=1

∑M+1
j=1

{
RijX

o
ij + (1−Rij)X

m
ij

}
Zijr

]2)
∏N

i=1

∑M+1
j=1 exp

[
φkiβ

�
2 Zij + log

{
1+exp(θij+φki

β1)

1+exp(θij)

}]
×

N∏
i=1

M+1∏
j=1

1

1 + exp(θij)
, r = 1, . . . , p,

π(κ2|·) ∝
exp

(
− 1

2σ2
κ

[
κ2 − μκ2 − σ2

κ

∑N
i=1

∑M+1
j=1

{
RijX

o
ij + (1−Rij)X

m
ij

}
Si

]2)
∏N

i=1

∑M+1
j=1 exp

[
φkiβ

�
2 Zij + log

{
1+exp(θij+φki

β1)

1+exp(θij)

}]
×

N∏
i=1

M+1∏
j=1

1

1 + exp(θij)

where r = 1, . . . , p, k = 1, . . . , K − 1 and q = 0, . . . , 3. Conditional on the current value of

the sampled Θ, we sample Xm
ij from the conditional distribution p(Xm

ij = 1|Yij,Zij, Si, Rij =

0) = H{ψij(θ)}, where ψij(θ), is exactly as defined in the ECM approach. The Bayesian

iterative computation scheme as described in Section 3.3.2 is then followed.

3.4 Example: The Molecular Epidemiology of Colorectal Cancer Study

Colorectal cancer (CRC) is the third most common cancer in the western world (WHO,

2006). The Molecular Epidemiology of Colorectal Cancer (MECC) study is a population-

based case-control study of patients diagnosed with colorectal cancer in northern Israel be-

tween March 31, 1998 and March 31, 2004. Controls were 1:1 matched according to age, sex,

clinic, and ethnic group (Jewish vs. non-Jewish). Subjects were interviewed on an array of

dietary and behavioral risk factors including levels of physical activity and use of medica-

tions. Physical activity is known to reduce the risk of CRC by 30 to 40 percent according

to the informational website of the National Cancer Institute (NCI, 2009). In the MECC
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dataset 20% of subjects had missing information on the variable measuring participation in

sports or other physical activities. In a high profile article from the MECC study, (Poynter

et al., 2005) were the first to point out that the use of statins, a drug used for hypercholes-

terol, can reduce the risk of colorectal cancer (reported OR 0.53, 95% CI: (0.38,0.74)) after

adjusting for other known risk factors, like physical activity. However, no analysis stratified

in terms of subtypes of CRC were done in the original study. In the current Chapter, we

consider CRC Stage, assigned according to the TNM (Tumor, Node, Metastasis) criteria

recommended by American Joint Committee on Cancer (AJCC, 2002) as our categorical

outcome ranging from (0 to IV) that represents different degree of disease progression. We

investigate the effect of physical activity and statin use across CRC stages via fitting the

stereotype model.

We analyzed data on 1,841 matched pairs with completely observed data on CRC stage

(Y ) and statin use (Z) and partially missing data on physical activity (X). In our analysis,

we treat age as a single matching variable S that can affect our selection probability model

and the model for control distribution of X. To avoid sparse frequencies, the cancer stage

variable Y , was re-grouped into four categories 0 (consisting of 1841 controls), 1 (Stages

I), 2 (Stages II), and 3 (Stages III and IV). The distribution of subjects in the three case

categories were 306 (16.6%), 844 (45.9%), and 691 (37.5%) respectively. The completely

observed variable Z or statin use contained 90% “No” and 10% “Yes”. While physical

activity or X contained 29% “No”, 51% “Yes”, and 20% missing values. Age (observed

range 19-97) was linearly transformed into a [0, 1] interval. The empirical distribution of

transformed age was well-approximated by a Normal distribution with mean 0.64 and sd

0.14.

We analyzed the MECC data by (a) the direct maximizing the conditional likelihood (3.4)

with completely observed data (CMLE), (b) the ECM approach, and (c) the full Bayesian
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method (FB). In order to obtain the CMLE estimates based on complete data, we used direct

maximization of (3.4) via the Nelder-Mead optimization. Note that using CMLE restricted

to completely observed data result in 33% loss of information due to deletion of the entire

stratum with any missing covariate. We allowed the missingness mechanism to potentially

depend on (Y,X, Z, S) under ECM and FB. For FB, we choose a relatively non-informative

N(0, 104) prior on each component of Θ as described in (3.12).

We present the results of this analysis in Table 3.1. For computing standard errors corre-

sponding to CMLE and ECM, we inverted the observed Fisher information matrix based on

complete data and the Monte Carlo evaluated conditional expectation of the Fisher infor-

mation matrix as specified in (3.11) respectively. The posterior standard deviations (PSD)

for the FB approach were obtained from the standard deviation of the generated poste-

rior sequence. All three methods produced similar estimates of β1 and β2. The estimated

covariate-specific coefficients imply the protective effect of physical activity and use of statins

across CRC stages and the effects are highly significant under all methods. Both FB and

ECM have smaller standard errors than the CMLE, due to gain in information by properly

using partially observed covariate information. FB and ECM are fairly comparable in terms

of the standard errors of the parameter estimates.

Note that the estimated stage-specific parameters φ are also fairly consistent across FB

and ECM, while CMLE shows certain numerical differences. It is fairly clear from the

analysis that the protective effect of statins and participation in sports are not homogeneous

across different stages of cancer, as the values of φ1 and φ2 differ significantly. A large

estimate of φ2, approximately 1.80 from both ECM and FB, indicates that the protective

effects were more pronounced in Stage 2. The estimates of φ1 and φ2 also imply that there

is departure from monotone ordering of the categories in terms of covariate effects, thus

the ordered Stereotype model (Anderson, 1984) does not appear to be appropriate for the
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Table 3.1:
Analysis results of the matched MECC study data with participation in sports X and statin use Z
covariates with corresponding coefficients β1 and β2. 1841 cases are 1:1 matched to controls. For
the CMLE, the conditional likelihood (3.4) is directly maximized with completely observed data.
Under the FB methods the ‘Est.’ corresponds to the posterior mean whereas PSD corresponds to
posterior standard deviation. For the disease risk parameters, we present 95% Wald confidence
intervals (CMLE and ECM) whereas for FB we present 95% Highest Posterior Density (HPD)
intervals.

Method
CMLE ECM FB

Parameter Est. SD (95% CI) Est. SD (95% CI) Est. PSD (95% HPD)
β1 -0.34 0.12 (-0.57,-0.11) -0.34 0.09 (-0.55, -0.20) -0.31 0.09 (-0.47, -0.14)
β2 -0.71 0.19 (-1.08,-0.33) -0.75 0.16 (-0.96, -0.34) -0.72 0.15 (-1.03, -0.42)
φ1 0.56 0.41 (-0.25, 1.36 ) 0.62 0.37 (0.01, 1.47) 0.62 0.32 (0.00, 1.25)
φ2 1.59 0.51 (0.60, 2.58) 1.56 0.46 (0.87, 2.68) 1.67 0.43 (0.98,2.52)
κ0 0.10 0.18 (-0.25,0.45) 0.05 0.09 (-0.13, 0.22)
κ1 0.13 0.12 (-0.11, 0.36) 0.12 0.12 (-0.11, 0.35)
κ2 -0.97 0.26 (-1.48,-0.46) -0.80 0.18 (-1.13,-0.45)
δ0 0.58 0.22 (0.15, 1.01) 0.68 0.14 (0.40, 0.93)
δ1 0.06 0.10 (-0.14, 0.26) 0.03 0.15 (-0.25, 0.33)
δ2 -0.00 0.04 (-0.08, 0.08) -0.01 0.04 (-0.09,0.07)
δ3 0.24 0.16 (-0.07, 0.55) 0.29 0.15 (-0.43, 0.35)
δ4 -0.14 0.31 (-0.75, 0.47) -0.04 0.22 (-0.47, 0.39)

current analysis. In fact, the posterior probability of the ordering of the categories, i.e.,

p(φ0 ≡ 0 < φ1 < φ2 < φ3 ≡ 1|Data) was computed from the posterior samples as 0.0012,

indicating no evidence in favor of the ordered stereotype model.

We will like to point out that in the above stereotype model, the log odds-ratio parameters

corresponding to each category k as compared to the controls, is obtained by the parameters

φkβ1 (for X) and φkβ2 (for Z), k = 1, 2, 3. Bayesian inference has the added advantage

of directly generating the posterior of these log odds-ratio parameters directly, instead of

resorting to delta theorems and variance approximations needed in frequentist inference.

Based on the FB analysis, the posterior estimate (95% HPD) of the odds-ratios (relative

to controls) for physical activity corresponding to categories 1, 2 and 3 are 0.83 (0.70,0.99),

0.62 (0.51,0.73), 0.74 (0.62,0.88) respectively. For use of statins, the corresponding odds

ratios are given by 0.65 (0.42,0.94), 0.31 (0.21,0.44) and 0.48 (0.36,0.65) respectively. Figure

3.1 presents estimated posterior densities of the log odds ratios of each CRC stage versus

controls with respect to participation in sports and use of statins respectively. As pointed out

earlier, non-monotone trend in the log odds ratios demonstrates that the ordering assumption
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Figure 3.1:
Posterior density plot corresponding to the log odds ratio parameters in 1:1 matched MECC
study data with numerical summaries and estimates as presented in Table 3.1. The left plot
corresponds to participation in sports (X) and the right plot corresponds to statin use (Z). The
results are based on 10,000 samples generated from the posterior distribution of each parameter.

regarding the category specific parameters is not tenable for this study. We also tried fitting

a proportional odds model to the completely observed data, ignoring the stratification due

to matching and the proportional odds assumption was clearly violated with each collapsing

of the stage category leading to significantly different estimates for the cumulative relative

risk parameter corresponding to each covariate.

Regarding the missing data model, the coefficient δ1 is not statistically significant under

both ECM and FB with p-value 0.55 corresponding to the Wald test for ECM, suggesting that

the missingness does not depend on X (physical activity). We can also note the agreement of
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the point estimates corresponding to the CMLE and after modeling missingness mechanism

(ECM and FB).

3.5 Simulation Study

We evaluate and compare the performances of the three methods by conducting a small-

scale simulation study. The purpose of the simulation study was to assess the methods

under various models for the selection probability and the exposure distribution in terms

of efficiency and robustness under model misspecification. Mimicking the real data analysis

results, we fixed our true parameter values (β,φ,θ, δ) in the range of the point estimates ob-

tained by the three methods. We first generate a large cohort of 500,000 subjects, containing

information on (Y,X, Z, S). Akin to the statin use variable, we generated Z, from a Bernoulli

distribution of success p = 0.1. We then generated a potential matching variable S from a

Normal(0.6, 0.12) distribution, mirroring the age variable in the MECC study. Conditional

on Z and S, we generated a binary X from several probability mechanisms as described

below in detail. Conditional on X,Z, we generated Y from an unmatched stereotype model.

We set the covariate specific parameters β1, β2 =(-0.3, -0.7) and the category specific scores

as φ = (φ0, φ1, φ2) = (0, 0.8, 1.7, 1). We selected the three case-category specific intercepts

as (-1.5, -0.5, -0.9) to make the relative frequency distribution of Y similar to the real data

analysis. With this large population base of 500,000 records on Y ,X,Z, and S, we created

a matched case-control dataset in the following way. First, we randomly sampled 1,000 cases

(Y �= 0) from this large population. Corresponding to each selected case, we chose a matched

control randomly from the set of all controls having the value of the matching variable S

within 0.05 of the S-value for the selected case. We replicated the aforementioned process

200 times to create 200 matched case-control datasets from this large population under each

simulation setting.
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Under each simulation configuration, we considered five different schemes of selection

probability models. The first four models fall under the class of missingness models we con-

sider in (3.5), whereas MM5 involves non-linear terms in X and Y and violate the modeling

assumption of (3.5).

MM1. Missing Completely at Random (MCAR) : logit{p(Rij = 1|Yij, Xij, Zij, Si)}=0.8,

MM2. Missing at Random (MAR) : logit{p(Rij = 1|Yij, Xij, Zij, Si)}=Yij + 0.5,

MM3. Informative Missingness (IM): logit{p(Rij = 1|Yij, Xij, Zij, Si)}=Xij,

MM4. IM : logit{p(Rij = 1|Yij, Xij, Zij, Si)}=0.5Xij + 0.5Yij + 0.5,

MM5. IM : logit{p(Rij = 1|Yij, Xij, Zij, Si)}=XijZij + YijXij + 1.

The parameters for the above models are chosen in a way to yield the marginal probability

of missingness to approximately 20% in each case.

To assess the robustness of our proposed methods under different departures from the

assumed model for missing exposure, we consider three scenarios : (a) The exposure model

is correctly specified (Table 3.2); (b) The exposure model is mis-sepecified in terms of a

covariate (Table 3.3); (c) The exposure model is misspecified in terms of a link function

(Table 3.4).

Under each simulation setting, we evaluated the performance of three methods: CMLE,

ECM, and FB. The corresponding results are presented in terms of the average bias and

mean squared errors across the 200 datasets (Tables 3.2-3.4). In approximately 3% cases,

we failed to obtain estimates from the CMLE approach due to lack of convergence and those

simulation iterations are deleted for a fair comparison across the three methods .

Table 3.2 presents simulation results when the exposure model is correctly specified. We

generated exposure X|Z, S from H(0.3 + 0.3Z − 1.5S). In the presence of non-informative

missingness (MM1, MM2), the CMLE yields less efficient estimates than the ECM and
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the FB methods while all three methods are approximately unbiased. With informative

missingness and a correctly specified selection model (MM3, MM4), the ECM and the FB

produce less biased estimates than the CMLE in terms of β1, the coefficient corresponding

to X, which is noted to be affected most in presence of missingness. When model violation

exists in terms of the selection probability model having non-linear product terms XZ and

Y X (MM5), all three methods produce large biases. Overall, the FB appears to have slightly

better mean squared error properties than the ECM.

To assess the effect of model misspecification in the exposure distribution, for example, due

to missing a correct covariate term, we introduce a quadratic term S2, and generate X|Z, S

from H(0.3+0.3Z−1.5S2) everything else being identical to Table 3.2 settings. Contrary to

our expectation that the full-likelihood based estimates from both FB and ECM will yield

enhanced biases compared to the CMLE, which does not make any parametric assumption

regarding the exposure distribution, we notice that the results are fairly similar across Table

3.3 and Table 3.2 for MM1-MM4 though there is marginally larger bias compared to Table

3.2. This can be possibly explained by the fact that S2 and S are not abundantly apart to

affect the estimation. Model misspecification in both selection probability and the exposure

distribution (MM5), however, results in substantial increase in bias and MSE in the ECM

and the FB as shown under MM5.

Lastly, we investigate the situation where the link function corresponding to generating

X|Z, S departs from the logistic link function. Here we generated X|Z, S from a mixture of

the Burr family of distributions (Burr, 1942),

X|Z, S ∼

⎧⎪⎨⎪⎩ Bernoulli with p(X = 1|Z, S) = 1− {1 + exp(0.3 + 0.3Z)}−0.7, S < 0.5

Bernoulli with p(X = 1|Z, S) = 1− {1 + exp(0.3 + 0.3Z)}−1.3, S ≥ 0.5.

The biases corresponding to the FB and the ECM in Table 3.4 increase when compared

to Table 3.2 and Table 3.3 with some loss in efficiency. This indicates that this type of
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Table 3.2:
Simulation results under correct specification of the exposure model. Here, binary exposureX|Z, S
is generated from P (X = 1|Z, S) = H(0.3 + 0.3Z − 1.5S). The CMLE, the ECM and the FB
methods are considered. The results are based on 200 simulated datasets, each with 1,000 cases
and 1,000 controls. For each parameter of interest in the disease risk model, we report estimated
bias and mean squared error based on the 200 replications. The true values for the parameters
of interest are: β1 = −0.3, β2 = −0.7, φ1 = 0.8, and φ2 = 1.7.

Method
CMLE ECM FB

Parameter Bias MSE Bias MSE Bias MSE
Complete Data

β1 0.007 0.009 0.007 0.008 0.030 0.008
β2 -0.007 0.029 0.002 0.021 0.039 0.021
φ1 -0.053 0.145 -0.072 0.102 -0.036 0.112
φ2 -0.003 0.285 0.003 0.200 0.108 0.223

MM1. logit{p(Rij = 1|Yij , Xij , Zij , Si)}=0.8
β1 -0.023 0.021 -0.015 0.010 0.058 0.011
β2 -0.046 0.068 -0.027 0.033 0.006 0.031
φ1 0.046 0.301 -0.009 0.132 0.069 0.151
φ2 0.071 0.371 -0.002 0.208 0.112 0.236

MM2. logit{p(Rij = 1|Yij , Xij , Zij , Si)}=Yij + 0.5
β1 -0.035 0.034 0.033 0.011 -0.010 0.025
β2 -0.067 0.100 -0.016 0.046 -0.011 0.041
φ1 -0.082 0.307 0.010 0.279 0.026 0.190
φ2 0.070 0.387 0.090 0.293 0.050 0.277

MM3. logit{p(Rij = 1|Yij , Xij , Zij , Si)}=Xij + 1
β1 -0.016 0.026 -0.011 0.013 0.059 0.015
β2 -0.050 0.075 -0.020 0.040 -0.001 0.039
φ1 0.170 0.485 0.118 0.158 0.165 0.175
φ2 0.202 0.647 0.092 0.226 0.171 0.283

MM4. logit{p(Rij = 1|Yij , Xij , Zij , Si)}=0.5Xij + 0.5Yij + 0.5
β1 -0.115 0.043 -0.036 0.012 -0.051 0.017
β2 -0.057 0.064 -0.033 0.024 -0.048 0.028
φ1 0.051 0.367 0.050 0.126 0.052 0.099
φ2 0.053 0.686 -0.006 0.150 -0.076 0.245

MM5. logit{p(Rij = 1|Yij , Xij , Zij , Si)}=XijZij + YijXij + 1
β1 0.186 0.036 0.170 0.035 0.202 0.046
β2 -0.126 0.102 0.065 0.043 0.081 0.038
φ1 0.104 0.377 0.046 0.358 0.087 0.259
φ2 0.207 0.969 0.329 0.672 0.342 0.531

link misspecification is possibly more severely affecting the parametric methods of the ECM

and the FB than covariate misspecification. Thus the performance of our methods can be

dependent upon the nature of the departure from the correct exposure model, producing

slightly larger biases than CMLE under MAR data (MM1-MM2). However, with IM, both

the ECM and the FB lead to improved Bias and MSE properties than the CMLE as the

exposure misspecification bias appears to be less, compared to the bias generated by failure

to account for non-ignorable missingness.

Summarizing our findings, our proposed methods present more efficient estimates than
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Table 3.3:
Simulation results under exposure model misspecification in terms of non-linear predictor in the
exposure model. Here, a binary exposure X|Z, S is generated under P (X = 1|Z, S) = H(0.3 +
0.3Z − 1.5S2). The CMLE, the ECM and the FB methods are considered. The results are based
on 200 simulated datasets, each with 1,000 cases and 1,000 controls. For each parameter we report
estimated bias and mean squared error based on the 200 replications. The true values for the
parameters are: β1 = −0.3, β2 = −0.7, φ1 = 0.8, and φ2 = 1.7.

Method
CMLE ECM FB

Parameter Bias MSE Bias MSE Bias MSE
Complete Data

β1 -0.011 0.011 -0.012 0.010 0.013 0.009
β2 -0.052 0.032 -0.049 0.031 -0.011 0.029
φ1 0.038 0.126 0.036 0.119 0.080 0.143
φ2 0.010 0.182 0.017 0.172 0.113 0.206

MM1. logit{p(Rij = 1|Yij , Xij , Zij , Si)}=0.8
β1 -0.045 0.023 -0.028 0.017 0.038 0.012
β2 -0.029 0.068 0.006 0.039 0.023 0.035
φ1 0.047 0.464 0.028 0.261 0.077 0.232
φ2 0.096 0.501 0.090 0.291 0.087 0.290

MM2. logit{p(Rij = 1|Yij , Xij , Zij , Si)}=Yij + 0.5
β1 -0.025 0.021 0.046 0.012 -0.021 0.035
β2 -0.035 0.054 0.044 0.034 0.040 0.043
φ1 0.044 0.499 -0.039 0.201 0.032 0.119
φ2 0.131 0.503 0.123 0.419 0.063 0.343

MM3. logit{p(Rij = 1|Yij , Xij , Zij , Si)}=Xij + 1
β1 -0.005 0.015 -0.016 0.011 0.071 0.013
β2 -0.008 0.062 -0.018 0.027 0.024 0.026
φ1 0.085 0.262 0.055 0.118 0.120 0.135
φ2 0.194 0.565 0.056 0.172 0.151 0.209

MM4. logit{p(Rij = 1|Yij , Xij , Zij , Si)}=0.5Xij + 0.5Yij + 0.5
β1 -0.132 0.046 -0.044 0.016 -0.055 0.020
β2 -0.029 0.060 -0.013 0.037 -0.044 0.028
φ1 -0.052 0.489 0.006 0.124 0.038 0.101
φ2 0.037 0.725 0.070 0.301 -0.052 0.235

MM5. logit{p(Rij = 1|Yij , Xij , Zij , Si)}=XijZij + YijXij + 1
β1 0.176 0.048 0.187 0.041 0.222 0.036
β2 -0.086 0.109 0.047 0.048 0.033 0.041
φ1 0.003 0.570 0.026 0.340 0.102 0.294
φ2 0.243 1.096 0.390 0.867 0.194 0.670
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Table 3.4:
Simulation results under misspecification in terms of link function corresponding to the exposure
distribution. Here, a binary X|Z, S is generated from a mixture of Burr family of link functions,
P (X = 1|Z, S) = 1 − {1 + exp(0.3 + 0.3Z)}−0.7 when S < 0.5 and P (X = 1|Z, S) = 1 − {1 +
exp(0.3 + 0.3Z)}−1.3 otherwise. The CMLE, the ECM and the FB methods are considered. The
results are based on 200 simulated datasets, each with 1,000 cases and 1,000 controls. For each
parameter we report estimated bias and mean squared error based on the 200 replications. The
true values for the parameters are: β1 = −0.3, β2 = −0.7, φ1 = 0.8, and φ2 = 1.7.

Method
CMLE ECM FB

Parameter Bias MSE Bias MSE Bias MSE
Complete Data

β1 -0.008 0.011 -0.021 0.015 0.017 0.011
β2 -0.036 0.030 0.081 0.019 0.007 0.036
φ1 0.041 0.149 0.098 0.114 0.050 0.142
φ2 0.014 0.273 0.185 0.297 0.131 0.283

MM1. logit{p(Rij = 1|Yij , Xij , Zij , Si)}=0.8
β1 -0.033 0.021 -0.064 0.016 0.045 0.015
β2 -0.030 0.069 0.058 0.035 0.013 0.034
φ1 0.008 0.328 0.124 0.241 -0.016 0.194
φ2 0.086 0.539 0.112 0.330 0.101 0.299

MM2. logit{p(Rij = 1|Yij , Xij , Zij , Si)}=Yij + 0.5
β1 -0.041 0.023 0.082 0.013 0.089 0.014
β2 -0.015 0.052 0.076 0.050 0.023 0.039
φ1 -0.025 0.342 0.161 0.301 0.021 0.214
φ2 0.109 0.601 0.148 0.463 0.110 0.387

MM3. logit{p(Rij = 1|Yij , Xij , Zij , Si)}=Xij + 1
β1 0.173 0.051 0.154 0.036 0.119 0.043
β2 -0.151 0.077 0.095 0.052 0.041 0.029
φ1 0.043 0.389 -0.094 0.203 0.077 0.261
φ2 -0.008 0.644 -0.016 0.240 0.246 0.454

MM4. logit{p(Rij = 1|Yij , Xij , Zij , Si)}=0.5Xij + 0.5Yij + 0.5
β1 -0.017 0.045 0.065 0.022 0.051 0.021
β2 0.019 0.057 0.001 0.044 0.034 0.026
φ1 0.196 0.412 0.094 0.191 0.099 0.189
φ2 0.238 0.847 0.125 0.318 0.102 0.332

MM5. logit{p(Rij = 1|Yij , Xij , Zij , Si)}=XijZij + YijXij + 1
β1 0.201 0.063 0.179 0.072 0.202 0.077
β2 0.087 0.123 0.074 0.053 0.081 0.061
φ1 -0.036 0.481 -0.071 0.362 0.130 0.351
φ2 -0.341 1.112 0.229 0.803 0.366 0.671



61

the naive CMLE using completely observed data in presence of missingness in covariates. In

addition, the proposed methods appear to be fairly robust under modest misspecification in

the missing exposure distribution. Our approaches do suffer under the incorrect model for

informative missingness mechanism. In other more extensive simulation studies under more

dramatic departures from the exposure model, we noticed that the ECM approach is less

robust than the FB (results are not included). Among the three methods, the FB method

has the smallest MSE by virtue of introducing shrinkage effect through prior information.

Regarding the secondary model parameters corresponding to the selection probability and

the exposure distribution, namely, δ and κ, ECM and the FB provide roughly unbiased

estimates except for severe model misspecification (MM5 or situation (c)). Finally, we will

also like to point out that the computational costs for the ECM are substantially less than

the FB in terms of computing time.

3.6 Discussion

This article presents a comprehensive approach to handle non-ignorable missingness in

covariates under the stereotype regression model. Though we focus on matched case-control

studies with finer disease sub-classification as our primary example, the methods can be

adapted to prospective analysis of categorical response data with ordered or unordered

response categories using the stereotype class of link functions. We develop an expecta-

tion/conditional maximization algorithm as well as a full Bayes procedure with data aug-

mentation and compare these approaches with naive use of conditional maximum likelihood

based on complete data. Our real data analysis as well as simulation study establish the

methods lead to substantial gain in efficiency compared to the CMLE and are fairly robust

under modest departures from the model for missing exposure. However the methods could

perform poorly if the selection probability model is grossly misspecified.
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Inference under the stereotype model is burdened with computational and analytical chal-

lenges due to embedded non-linearity and lack of identifiability in the parametric structure.

Missingness further compounds the complexity. The Bayesian paradigm offers flexible alter-

native modeling approaches and inferential solutions for this class of models. For matched

case-control data, the model has an added distinction of accommodating highly stratified

data via conditioning and preserving prospective-retrospective conversion of the parameters

of interest. The current Chapter involves handling a general form of missingness in this class

of models. Future research involves considering a more flexible semi-parametric model for

the exposure distribution, for the missingness mechanism and considering missingness with

correlated or clustered observations as in a longitudinal cohort study under the stereotype

link function.



CHAPTER IV

Bayesian Modeling of Studies of Gene-Environment Interaction
under Two-phase Sampling

4.1 Introduction

Case-control studies are popular analytical tools, particularly in cancer epidemiology, for

assessing gene-disease association where the allele/genotype frequencies at a bi-allelic single

nucleotide polymorphism (SNP) locus are compared between cases and controls. Recent

genomewide case-control association studies (GWAS) have been remarkably successful in

identifying susceptibility loci for many cancers (Yeager et al., 2007; Hunter et al., 2007;

Amundadottir, 2009). A large fraction of variability in the different cancer traits still re-

main unexplained, with the identified SNPs contributing modestly to prediction of disease

risk (Wacholder et al., 2010; Park et al., 2010). It is thus natural to study the genetic ar-

chitecture of a cancer phenotype in conjunction with the known environmental risk factors

(environmental toxins, dietary exposures, physical activity levels, medication use, and other

behavioral risk factors). In the post-GWAS era, more efficient statistical approaches to char-

acterize such complex gene-environment (G x E) interactions, in terms of both design and

analytic tools, have become a pressing need in cancer epidemiology research.

Variants of the case-control sampling design have been often employed in epidemiologic

studies. Two-phase stratified sampling (Neyman, 1938) is an efficient alternative to the

traditional cohort and case-control designs (Cochran, 1963) from cost and resource-saving

63
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perspectives. A typical application of two-phase sampling is for collecting expensive covariate

information, for example, novel biomarkers or genotype data on a prioritized sub-sample of

the initial study base. In particular, we will consider the following set-up: the disease

outcome D, some relatively inexpensive covariates (S) and environmental data (E) are

collected at phase I (P1). At phase II (P2), genotype data (G) is collected on a subset

selected from phase I sample. To select this phase II sub-sample, stratified sampling with

strata defined by phase I data (D, E and possibly S) is implemented.

There is a large amount of literature on two-phase designs, using different likelihood

based approaches (Horvitz and Thompson, 1952; Flanders and Greenland, 1991; Breslow and

Cain, 1988) or estimating score approaches (Reilly and Pepe, 1995; Chatterjee et al., 2003;

Robins et al., 1994). Maximum likelihood inference for such problems was considered in the

pioneering work of Scott and Wild (1997) and Breslow and Holubkov (1997a, b). Lawless

et al. (1999) and Breslow and Chatterjee (1999) compare and contrast several different

approaches for analyzing two-phase data. It has been noted that adding more phases can

lead to further efficiency gains, consequently, the two-phase design has been generalized to

multi-phase designs (Whittemore and Halpern, 1997; Lee et al., 2010). Haneuse and Chen

(2011) propose an intermediate phase between phase I and phase II to reduce participation

bias caused by differential participation.

The potential for such sampling designs for G x E studies has been indicated in Thomas

(2010). Many GWAS adopt this sampling at the design phase, but little attention is paid

at the analysis stage to address the sampling design, thus potentially leading to biased

estimates. To the best of our knowledge, literature on two-phase studies of G x E interaction

is very limited. Chatterjee and Chen (2007) proposed maximum likelihood inference using a

novel regression model for G x E interaction studies where second stage sampling was carried

out based on disease outcome and family history. Asymptotic theories were established under
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the assumption of independence of the genetic and environmental factors in the population.

Multiple papers (Piegorsch et al., 1994; Umbach and Weinberg, 1997; Chatterjee and

Carroll, 2005) attest the phenomenon of gaining efficiency in studies of G x E by exploiting

independence between the genetic and environmental factors under case-control sampling.

Under such constraints, it is beneficial to use the retrospective likelihood for estimating

interaction parameters instead of standard prospective logistic regression. However, with

departures from these constraints, biases in estimating the interaction parameter can occur

under retrospective methods. Several researchers have addressed this issue and proposed

more robust strategies for testing one SNP at a time G x E interaction (Mukherjee et al.,

2008, 2010; Mukherjee and Chatterjee, 2008; Vansteelandt et al., 2008; Li and Conti, 2009;

Murcray et al., 2009). There is no literature on handling multiple genetic markers for G

x G and G x E studies even under case-control sampling, that uses gene-gene and gene-

environment independence on multiple SNP x E interaction parameters.

Bayesian literature on two-phase studies, even beyond the context of G x E studies is also

very limited. Haneuse and Wakefield (2007) presented the first hierarchical Bayesian work

that closely relate to such data structure. The Bayesian framework appears to be a natural

route to explore in the current problem for multiple reasons. First, Bayesian estimation can

lead to efficient computational algorithms as the two-phase likelihood is naturally a missing

data likelihood. Second, for G x E studies, Bayesian methods provide data-adaptive shrink-

age to leverage the constraints of gene-environment independence by imposing informative

priors around this assumption. Third, we incorporate Bayesian variable selection features

which help us to handle a potentially high dimensional disease risk model with main effects

and interactions of multiple genes and environmental factors simultaneously. Fourth, we use

the clever non-parametric Bayesian construction of Dunson and Xing (2009) as a substitute

for profile likelihood in the frequentist setting to construct the retrospective likelihood under
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two-phase sampling. The current Chapter thus contributes to analysis of G x E studies with

multiple markers/environmental exposures under an outcome-exposure stratified two-phase

sampling design by offering a new Bayesian treatment of the problem.

This Chapter is largely motivated by an example that originates from a population based

case-control study of colorectal cancer (CRC) in Israel, namely, the Molecular Epidemiol-

ogy of Colorectal Cancer (MECC) study. Statins (our environmental factor E) are a class

of lipid-lowering drugs used by more than 25 million individuals worldwide for reducing

cardiovascular disease risk. The MECC study was the first to establish a chemoprotective

association of statins with risk of CRC (Poynter et al., 2005). Follow-up individual studies

and a meta analysis of 18 studies have confirmed this association (Hachem et al., 2009).

The benefit of statins for reducing CRC risk has been shown to vary with genetic variations

in HMGCR (3-Hydroxy-3-methylglutaryl coenzyme A reductase) gene, a gene involved in

cholesterol synthesis (Lipkin et al., 2010). To understand the mechanism of effect modifi-

cation further, investigators measured 294 SNPs in 40 genes, including HMGCR (our set

of genetic factors G), selected in the cholesterol synthesis/lipid metabolism pathway. The

sub-sample selected for genotyping from the study population of all cases and controls was

chosen by stratified sampling conditional on statin use (E) and case-control status (D) where

statin users were purposefully oversampled. This sampling strategy was adopted due to lim-

ited budgetary resources and DNA samples. Complete statin use (E) data and other basic

demographic covariates (S) were available on the entire study base (phase I or P1), and

genetic data on these 294 SNPs were only available for the phase II subsample (P2).

In the MECC study, due to experimental and laboratory logistics, genotype data were

missing on a subset of individuals selected in P2 on a group of genes (G1, say) and on

a different subset of individuals on another group of genes (G2, say). This led to a non-

monotone missing data structure with some individuals in P2 having observations on both
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(G1,G2) (subset denoted by P2(G1,G2)) and some only on G1 (subset denoted by P2(G1))

and some only on G2 (subset denoted by P2(G2)). Figure 4.1 is a visual representation of

the sampling scheme and missingness pattern in the data. We would like to point out that

beyond this particular example, when two cohorts are combined for genetic analysis, which

is routinely the case for G x E studies, very similar missing data patterns may occur.

Figure 4.1:
Data Structure under two-phase sampling and missingness pattern at phase II genetic covariate
in the Molecular Epidemiology of Colorectal Cancer study

The rest of the Chapter is organized as follows. In Section 4.2, we present the model

ingredients: the likelihood, priors and posteriors. In Section 4.3, we discuss the analysis of

statin x gene interaction in the MECC study. In Section 4.4, we conduct a simulation study

to compare the various maximum likelihood and score based approaches with the Bayesian

approach. Section 4.5 concludes with a discussion.

4.2 Proposed Methods

4.2.1 The likelihood

We refer to Figure 4.1 for understanding the data structure and construction of our

likelihood. Let u and D denote the subject ID and disease indicator respectively, with

W = (E,S). Here, E is environmental exposure and S are basic demographic covariates
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as described before. There are N individuals in phase I and M individuals in phase II. To

simplify notations we write the retrospective likelihood corresponding to a two-gene model

(G1, G2), with the understanding that the methods/notations can be directly extended to

gene-sets (G1,G2) where each contain multiple SNPs. The two-phase likelihood has the

following form to capture the sampling phases and the missingness patterns in G (Figure

4.1),

LTP =
∏

u∈P1\P2

P(Wu|Du)×
∏

u∈P2(G1)

P(G1u,Wu|Du)

×
∏

u∈P2(G2)

P(G2u,Wu|Du)×
∏

u∈P2(G1,G2)

P(G1u, G2u,Wu|Du).

Each term in LTP can be factorized by using P(G1, G2,W |D) = {P(D|G1, G2,W )P(G1, G2|W )

P(W )}/P(D). This retrospective likelihood is then marginalized over the missing data in

each component. We assume missing completely at random (Little and Rubin, 2002) herein.

The likelihood is then expressed as,

LTP =
∏

u∈P1\P2

∑
g1,g2

P(Du|g1, g2,Wu)P(g1, g2|Wu)P(Wu)/P(Du)

×
∏

u∈P2(G1)

∑
g2

P(Du|G1u, g2,Wu)P(G1u, g2|Wu)P(Wu)/P(Du)

×
∏

u∈P2(G2)

∑
g1

P(Du|g1, G2u,Wu)P(g1, G2u|Wu)P(Wu)/P(Du)

×
∏

u∈P2(G1,G2)

P(Du|G1u, G2u,Wu)P(G1u, G2u|Wu)P(Wu)/P(Du),(4.1)

where P(Du) =
∑

g1,g2

∫
w
P(Du|g1, g2, w)P(g1, g2|w)P(dw) with the integral replaced by the

sum when components of W are discrete. Corresponding to this likelihood, there are three

model ingredients:

1. A disease risk model. We assume, P(D = 1|G1 = g1, G2 = g2,W = w;β) = H[{β0 +

m(g1, g2, w;β)}], where H is the logistic function H(u) = {1 + exp(−u)}−1. Typical choice

of m involves, say for two genes G1 and G2, m(g1, g2, w;β) = βG1g1 + βG2g2 + βEe+ β�
S s+

βG1G2g1g2 + βG1Eg1e+ βG2Eg2e, noting that w = (e, s).
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2. A model for (G1, G2|W = (E,S)). For genotype data at a bi-allelic locus, Gj can take

three possible values (‘g0=aa’, ‘g1=Aa’ and ‘g2=AA’). We assume, P(G1 = gj, G2 = g′j|W =

w;λ) = qjj′(w;λ), j, j
′ = 0, 1, 2. This specification will require a joint model for multivariate

categorical data (trinary for SNP data at a bi-allelic locus). Note that under gene-gene

and gene-environment independence, the model can in general be factorized conditional on

covariates S,

P(G1 = gj, G2 = g′j|E = e,S = s;λ) = q1j (λ1|S)q2j′(λ2|S)︸ ︷︷ ︸
under G−G and G−E independence

, for j, j′ = 0, 1, 2.

Instead of the above fully non-parametric model, we explore a parametric model for the

joint distribution P (G1,G2|W ). We consider a class of log-linear models with linear by

linear structure (Agresti, 2002) for parsimonious modeling of the (G1, G2|W ) associations,

log{μ(G1 = gj, G2 = g′j|E = e,S = s;λ)}

= λ0 + λG1gj + λG2g
′
j + λEe+ λ�

S s

+λG1G2gjgj′ + λG1Egje+ λG2Egj′e+ λ�
G1S

gjs+ λ�
G2S

gj′s,(4.2)

where gj are chosen ordinal scores, typically 0, 1, 2 (Agresti, 2002). This is the common allelic

dosage coding under a log-additive genetic susceptibility model. In case of high dimensional

G, we can further reduce the dimensionality of the problem by assuming common association

parameters λGE and λGS between similar functional groups of SNPs. As discussed in Agresti

(2002), this Poisson log-linear model has a corresponding multinomial representation. Thus,

the probability of PG1,G2(gj, g
′
j|λ) = P (G1 = gj, G2 = g′j|E = e,S = s) can be written in

terms of the multinomial probabilities,

PG1,G2(gj, g
′
j|λ) =

exp(λG1gj + λG2g
′
j + λG1G2gjgj′ + λG1Egje+ λG2Eg

′
je+ λ�

G1S
gjs+ λ�

G2S
g′js)∑2

l=0

∑2
l′=0 exp(λG1gl + λG2g

′
l + λG1G2glg

′
l′ + λG1Egle+ λG2Eg

′
l′e+ λ�

G1S
gls+ λ�

G2S
g

′
l′s)

.
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Note that, gene-gene and gene-environment independence in the above model (2.2) will imply

λG1E = λG2E = λG1G2 = 0.

3. A model for W = (E,S). A non-parametric and flexible model for the distribution of

W is desired. Recall that W can be a mixed set of quantitative and categorical variables.

For the MECC example W is a set of categorical covariates, which will be our primary

focus in this Chapter. In Remark 1, we indicate a modeling for the most general case as

a kernel-mixture extension of Dunson and Xing (2009) (DX from now on), as presented

in Bhattacharya and Dunson (2011). We note that the approach for modeling the joint

distribution of a set of categorical variables can be applied to the the joint distribution of

the trinary genotype variables G1 and G2 in (4.2) as well, but it is not clear how to enforce

the gene-gene and gene-environment independence assumptions through direct priors on

parameters λG1E, λG2E, λG1G2 as in the log-linear model (4.2). This is the primary reason for

using (4.2) for the second component P (G1, G2|W = (E,S)).

Let W u = (Eu,Su), denote the W data corresponding to subject u, u = 1, . . . , N . Here

Wu is p×1 vector of p categorical variables, i.e. Wu = (wu1, . . . , wup) for a subject u. Assume

that the j-th component of W can have dj values j = 1, · · · , p. In order to parsimoniously

model this (d1 × d2 × · · · × dp) joint distribution, DX first note that the joint distribution of

two categorical variables can always be expressed as a finite mixture of product-multinomial

distributions. Extending this idea DX introduce a latent class index variable zu ∈ {1, . . . , k},

such that wur, wut, r, t ∈ {1, . . . , p}, r �= t, are conditionally independent given zu. Then the

joint distribution for wu has this finite mixture representation,

PW (wu1 = c1, · · · , wup = cp) =
k∑

h=1

P (wu1 = c1, · · · , wup = cp|zu = h)P (zu = h)

=
k∑

h=1

P (zu = h)

p∏
j=1

P (wuj = cj|zu = h).(4.3)
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For notational convenience, we rewrite (4.3) as

PW (wu1 = c1, · · · , wup = cp) = πc1···cp

=
k∑

h=1

νh

p∏
j=1

ψ
(j)
hcj

,

d1∑
c1=1

· · ·
dp∑

cp=1

πc1···cp = 1,(4.4)

where ν = (ν1, . . . , νk)
� is a probability vector with νh = P (zu = h) and ψ

(j)
hcj

= P (wuj =

cj|zu = h), is a dj × 1 probability vector i.e., the conditional probability of wuj = cj, given

that subject u is in latent class h for j = 1, . . . , p. We will discuss the choice of k through a

Dirichlet process prior structure on this latent class probability model in the next section.

Remark 1: While Chatterjee and Chen (2007), Chatterjee and Carroll (2005) use profile

likelihood for handling the distribution of W non-parametrically, it has been a challenging

task in the Bayesian framework to posit a flexible model for W = (E,S) which could

be a mixture of categorical and continuous covariates. In this mixed case, Müller et al.

(1999) model the joint distribution of the continuous covariates through a Dirichlet Process

mixture of normals. Then, conditional on the continuous covariates, the categorical variables

have a joint multivariate probit distribution. However, implementation and estimation is

cumbersome under this formulation for a large number of categorical predictors and the

construction seems artificial without a latent continuous score motivation for the multivariate

probit model. A recent paper by Bhattacharya and Dunson (2011) extends the above DX

construction for categorical data to handle joint distribution modeling of more complex data,

including continuous and discrete data. They extend the conditional independence idea and

replace the product-multinomial structure in (4.4) by a product of various kernels, such as

Gaussian, Poisson and more complex univariate or multivariate distributional kernel. An

additional feature of their paper is a factor analytic representation of the joint distribution

that helps with further reducing the dimensionality. The MECC example does not require

going beyond the original DX construction, but with continuous E, this is what we would
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adopt.

4.2.2 Priors

As mentioned before, for this complex retrospective likelihood formulation, we have three

sets of parameters from the above three ingredients. For β in the disease risk model, we

use a Spike and Slab type mixture prior to handle variable selection in a high-dimensional

disease risk model with multiple markers. For λ in the multivariate gene model, the Bayesian

hierarchical approach provides a flexible way to allow for uncertainty around the assumption

of gene-gene and gene-environment independence, through prior on λG1G2 , λG1E, and λG2E.

When sparsity occurs in a certain configuration of (G1,G2,W ) or dimension of (G1,G2,W )

grows, the frequentist profile likelihood estimation may become unstable and the log-linear

model with shared parameters across gene-sets and the DX latent mixture construction aids

with such situations. The presence of missing data, potential sparsity in G, W , the two-

phase data likelihood itself being a missing data likelihood, all make the problem naturally

amenable to a unified Bayesian computational treatment. We follow the same sequence

to describe the prior structure on the parameters involved in the three ingredients of the

likelihood as in the previous section.

1. In the presence of multiple genes in G1 and G2, the logistic disease risk model

can potentially have many pairwise and higher order interaction terms. We implement a

scalable variable selection framework via Spike and Slab type priors (Mitchell and Beau-

camp, 1988; George and McCullogh, 1993) on the parameters β in the disease risk model

P (D|G1,G2,W ;β). We impose mixture prior distributions on each component of β, say,

(β0, βG1 , βG2 , βE, βS, βG1G2 , βG1E, βG2E) for a two-gene model. In general we denote this vec-

tor by βnβ×1 = {βr, r = 1, . . . , nβ}. Given a latent variable p0 representing the mixture
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weight on the null regression coefficients, we describe priors as below.

βr|fr, τr ind∼ N(0, frτr
2), r = 1, . . . , nβ

fr|v0, p0 iid∼ p0δv0(·) + (1− p0)δ1(·),

τ−2
r |a1, a2 iid∼ Gamma(a1, a2),

p0
iid∼ Beta(a, b).

As discussed in Ishwaran and Rao (2003), v0 in the above specification is assumed to be

a small positive value near 0. This value plays a key role in shrinking the posterior of βr

towards zero when the r-th covariate turns out to be insignificant. A Dirac mass on 1, namely,

δ1 represents non-zero βr corresponding to a significant/selected covariate. Choosing the

tuning parameter v0 corresponding to {fr} can be done in a data-adaptive way as described

through the above hierarchy. For this particular application, we fix (a1, a2, a, b) = (5, 50, 1, 1)

for hyperparameters in the above prior specification. Instead of componentwise shrinkage,

one can also offer a more flexible multivariate shrinkage by using a nonparametric mixture

of a point mass at the zero vector (or at a pre-specified vector v0) and a random probability

measure.

2. In the joint log-linear model in (4.2), we typically assume vague normal priors with

large variance on the parameters (λG1 , λG2 , λG1S, λG2S). In our data example, we have

used a N(0, 104) prior. On the other hand, for the G-E pairwise association parameters

(λG1G2 , λG1E, λG2E) we reflect a priori information on G-G or G-E independence via a normal

prior centered at zero but with two different choices for the prior variance. In the first set of

priors we reflect the belief that with 95% probability the association parameter lies between

log(0.8) and log(1.2). This leads to an approximate SD=0.1 under a normal distribution

and thus we assume an informative prior of N(0, 10−2). In the second choice, following the

empirical Bayes estimation of Mukherjee and Chatterjee (2008), we compute association
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parameters for G1-G2, G1-E, and G2-E in the control subjects in the data, say θ̂, and

use a data-driven prior N(0, θ̂2) on λG1G2 , λG1E, and λG2E. Possibilities for data-adaptive

multivariate shrinkage around the independence assumption can be employed here as well

through mixture priors with correlated shrinkage weights.

3. The mixture representation in (4.4) requires determining the number of latent classes

k. Following DX, instead of selecting a fixed k, a Bayesian nonparametric approach is carried

out through the following Dirichlet process prior specification on ν:

π =
∞∑
h=1

νhψh, ψh = ψ
(1)
h ⊗ · · · ⊗ψ

(p)
h , h = 1, . . . ,∞,

ψ
(j)
h ∼ Dirichlet(aj1, . . . , ajdj), independently for j = 1, . . . , p,

νh =
∞∑
h=1

Vh

∏
l<h

(1− Vl), Vh ∼ Beta(1, α),

α ∼ Gamma(aα, bα).

where ⊗ is the outer product. The parameter α is a hyper-parameter that controls the rate

of decrease from the stick-breaking process (Sethuraman, 1994). For example, in case of

small values of α, νh decreases towards zero quickly with increasing h, thus putting most

of the weight on first few components, leading to a sparse representation. The hyperprior

on α allows one to data-adaptively determine the degree of sparseness or the number of

components needed. As discussed in DX (2009), we set (aα, bα) = (1/4, 1/4) for a vague prior

which implies the probability of the independence assumption in the product multinomial

model to be 0.5. We set uniform priors for each category probability ψ by specifying aj1 =

· · · = ajdj = 1, for j = 1, . . . , p.

4.2.3 Posterior sampling

In the full likelihood (4.1), we would like to point out that the three components are

linked with each other through the sum over each component in the expression for P (D) in

the denominator. We denote the two-phase likelihood in (4.1) by LTP which involves the
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parameters (β,λ,ψ,V , α). The full conditionals are not reducible to a simpler closed form

and are best represented by the following proportionality relations:

βr|· ∝ LTP × exp(− βr
2

2frτr2
), r = 1, . . . , nβ,

τr
−2|· ∝ Gamma(a1 + 0.5, a2 +

βr
2

2fr
),

fr|· ∝ {I(fr = v0)p0 + I(fr = 1)(1− p0)} × exp(− 1

2frτr2
βr

2)× fr
−0.5,

p0|· ∝ Beta(a+

nβ∑
r=1

I(fr = v0), b+

nβ∑
r=1

I(fr = 1)),

λl|· ∝ LTP × exp(− λ2
l

2σ2
), l = 1, . . . , nλ,

where nβ and nλ again represent the number of parameters in (β,λ) respectively.

Posterior sampling corresponding to P (W ):

Let us recapitulate the model structure forW which is essentially a Dirichlet process mixture

of discrete Dirichlet kernels. For u = 1, · · · , N and j = 1, · · · , p,

wuj ∼ Multinomial({1, . . . , dj}, ψj
zu,1, . . . , ψ

j
zu,dj

),

zu ∼ Vh

∏
l<h

(1− Vl)δh, Vh ∼ Beta(1, α), α ∼ Gamma(aα, bα).

DX present an efficient data-augmented Gibbs sampling algorithm by augmenting the like-

lihood with latent constructs following Walker (2007). The details of the updating steps are

contained in Appendix.

Note that while the entire likelihood in DX constituted of W data only, in our problem,

P (W ) is embedded as a component in the joint retrospective likelihood LTP in (4.1). Thus

for updating the parameters involved in P (W ), say θ(= {ψ,V , α}), we use the Metropolis

Hastings algorithm. Note that only the terms
∏

u P(W u)/P(Du) from the full likelihood

(4.1) involves θ, where P(Du) =
∑

g1,g2

∑
w P(Du|g1, g2,w) P(g1, g2|w)P(w) in the presence

of only categorical W . We draw θ following the DX algorithm and for proposal density
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for θ. Here we consider the implied full conditional q(θnew|W ) under this algorithm. Then

given λ,β we repeat the following updates of θ.

• At iteration l, sample a vector θnew from q(θnew|W ) as described in DX (2009) algo-

rithm.

• Compute the acceptance ratio

r(θnew,θl) = min[1,

∏
u P(Du|θl,λ,β)∏

u P(Du|θnew,λ,β)
].

In calculating the acceptance ratio, we note that the numerator and denominator∏
u{P(Wu|θnew)}p(θnew) q(θl|W )/

∏
u{P(Wu|θl)}p(θl)q(θ

new|W ) is canceled out where

p(θ) is a prior for θ.

• If r(θnew,θl) < U where U ∼ unif(0, 1), we set θl+1 = θnew. Otherwise, the candidate

vector θnew is rejected and θl+1 = θl.

• Repeat the steps until the posterior chains converge to the stationary distributions.

Given the full conditionals, we implement the Gibbs sampler (Geman and Geman, 1984)

with Metropolis Hastings updates to sample from respective full conditional distributions.

For each parameter, we iterate 50,000 times and discard the first 40,000 iterations as ‘burn-

in’. We check convergence of the chains using traceplots and the diagnostic statistics ‘poten-

tial scale reduction factor’ (Gelman and Rubin, 1992) using the R package CODA (Plummer

et al., 2009). Auto and cross-correlation checks are performed and a thinning of every tenth

observation is carried out. Remaining posterior samples are used to construct estimated

posterior summaries needed for Bayesian inference.

4.3 The Molecular Epidemiology of Colorectal Cancer Study

In this section, we describe the motivating example from the MECC study in detail and

present analysis results. We use data on 1,745 cases and 1,852 controls with completely
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observed response to the question whether statins were used for more than 5 years. The

binary variable ‘statin use of at least 5 years’ (E), is the environmental factor of interest

with 91% “NO” and 9% “YES”.

We consider completely observed confounders and precision variables (S): age (S1), gen-

der (S2), ethnicity (S3), physical activity (S4), family history of CRC (S5), vegetable con-

sumption (S6), NSAID usage within 3 year (S7), and Aspirin usage within 3 year (S8). Age

and ethnicity variables were dichotomized as Age ≥ or < 50 (94% and 6% respectively), and

‘Ashkenazi’ and ‘Non-Ashkenazi’ (68% and 32% respectively). Gender (S3) was coded as 1

(50%) for male and 0 (50%) for female. The remaining binary factors (S4, S5, S6, S7, S8) are

classified to 1 or “YES” with the proportions of (0.36, 0.09,0.31, 0.02, 0.20) respectively.

For genotyping at phase II, stratified-sampling based on the disease status (D) and statin

use (E) was carried out. All case-control subjects with statin use (“YES”) were included at

phase II sample. We have 1,200 cases and 1,200 controls at phase II with data available on

294 trinary SNPs G = (G1, . . . , G294). Genotype data are not completely observed even at

phase II due to technical genotyping failures for a limited number of SNPs. Among 2,400

case-control subjects at phase II, 27 subjects and 20 subjects have no genotype information

in G1 and G2 respectively. We did not have many markers across the genome to successfully

impute these missing genotypes, thus we consider a marginalized likelihood as in (4.1).

Among 294 SNPs, we first illustrate our methods with two SNPs on two genes, RS762551

on CYP1A2 (G1) and RS1056836 on CYP1B1 (G2) where both SNPs exhibit significant in-

teractions with statins in a preliminary one at a time, single marker interaction analysis. We

illustrate our methods for this simple model as some of our competing methods can only han-

dle single marker interaction analysis. No departure from the Hardy-Weinberg equilibrium

was noted (p = 0.38 and 0.73 respectively). The raw frequencies of the cross-classification

of case-control status (D), statins (E), genotypes G1 and G2 are shown in Appendix Table
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A.7. Simple logistic regression analysis was carried out to examine G1-E and G2-E asso-

ciation among control subjects and yielded odds ratios of 0.78 and 0.94 and corresponding

p-values of 0.03 and 0.53 respectively. G1-G2 association reveals no dependence (p-value of

0.83) based on Chi-squared test for independence. This implies that the data is suggestive

of G1-E association whereas little evidence for G2-E or G1-G2 association is noted.

We report the results of this analysis in Table 4.1. Along with two-phase full Bayes ap-

proach (TPFB) we consider five alternative methods. Unfortunately, none of these existing

methods use the data in both phases and make use of the independence constraints. The first

three use phase II data only (i) Unconstrained maximum likelihood (UML), a retrospective

analysis that does not specify any constraints on P (G1, G2|W ), (ii) Constrained maximum

likelihood (CML), that imposes the Hardy-Weinberg Equilibrium as well as G1-E/G1-G2 in-

dependence, (iii) Empirical-Bayes (EB), using data-adaptive ‘shrinkage estimation’ between

the constrained and unconstrained ML estimates. Since methods (ii) and (iii) are developed

for single marker analysis, G2-E independence cannot be enforced in existing software (we

used the ‘CGEN’ package by Bhattacharjee, Chatterjee, and Wheeler, 2011). The above

methods completely ignore biased sampling at phase II and may thus lead to overestimation

of the main effect of E, especially if differential sampling was carried out in cases and controls

at phase II. The next two approaches use information from both phases under a prospective

likelihood framework: (iv) a Horvitz-Thompson estimator, typically known as a weighted

likelihood (WL) approach (Manski and Lerman, 1977; Breslow and Chatterjee, 1999). This

approach uses sampling fractions nij/Nij, where nij and Nij are the number of subjects

corresponding to D = i, E = j at phase II and phase I respectively. The sampling fraction

serves as weights in the likelihood to adjust for biased sampling (we used the svyglm function

in ‘survey’ package in R by Lumley, 2011). Finally (v) a pseudo-likelihood (PL) approach

which also adjusts for biased sampling probabilities in a likelihood framework (Schill et al.,
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1993). Briefly, if we denote Pij = P (D = i|E = j) = exp(iαj)/{1 + exp(αj)} where αj is

the log-odds for D = 1 when E = j, then pseudo-likelihood is defined as
∏

i,j P
Nij

ij

∏
i,j,k pijk.

Here,

pijk =
nij exp{i(β0 − αj + sijkβ)}

n0j + n1j exp(β0 − αj + sijkβ)
.

where sijk is a covariate for a subject with D = i and E = j.

Note that all of these five methods use completely observed phase II data on G1 and G2

as opposed to our proposed method that includes partially observed data by marginalization

of the likelihood in terms of G1 and G2 when needed.

As previously explained, we present our method (TPFB) corresponding to two different

priors on the G-E and G-G association parameters in model (4.2). First, we consider infor-

mative prior N(0, 10−2) that enforces prior belief on independence assumption, we denote

this by TPFB. The analysis using an alternative prior where the variance is estimated based

on observed association in the data is denoted by TPFBemp. In Table 4.1, variable selection

scheme is excluded in the TPFB and TPFBemp by assuming all fr = 1, r = 1, . . . , nβ so that

all covariates are included across all methods.

Under all methods, note in Table 4.1 that the estimated coefficients corresponding to

statin-use suggests strong negative association with CRC status. The estimated effect

size varies depending on whether the method accounts for biased sampling and/or gene-

environment independence. Note that, in presence of interactions, we cannot really interpret

the main effect estimates and need to combine the model results to present estimated sub-

group effects. Recall that G1-E independence does not appear to be supported in the light

of this data, thus the CML approach and TPFB yield numerically different estimates of G1

x E interaction when compared to other methods. For G2 x E and G1 x G2 interaction, the

estimates are fairly comparable across methods. Smaller standard errors corresponding to

interaction parameters are noted in retrospective methods that explicitly model (G1, G2, E)
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Table 4.1:
Analysis results for the MECC study data with statins (E), G1 RS762551 on CYP1A2 and G2

RS1056836 on CYP1B1. The set of risk factors included are: use of statins (E, ‘at least 5
years’=1, ‘o.w.’=0), age (S1, ‘over 50’=1, ‘o.w.’=0), gender (S2, male=1, female=0), ethnicity
(S3, Ashkenazi=0, Non-Ashkenazi=1), sports activity (S4, Yes=1, No=0), vegetable consumption
(S5, High=1, Low=0), family history of CRC (S6, Yes=1, No=0), the use or non-use of NSAID
within 3 years(S7, Yes=1, No=0), the use or non-use of Aspirin within 3 years (S8, Yes=1, No=0).
Under the TPFB method the ‘est.’ corresponds to the posterior mean whereas PSD corresponds
to posterior standard deviation.

TPFBemp TPFB WL PL UML CML EB
est.(PSD) est.(PSD) est.(se) est.(se) est.(se) est.(se) est.(se)

Demographic variables
Age (over 50) 0.00 (.13) 0.01 (.13) 0.08 (.19) 0.08 (.18) 0.08 (.18) 0.06 (.18) 0.06 (.18)
Gender - Male 0.13 (.06) 0.13 (.06) 0.27 (.09) 0.27 (.09) 0.27 (.09) 0.26 (.09) 0.26 (.09)
Ethnicity -0.33 (.08) -0.33 (.08) -0.34 (.09) -0.34 (.09) -0.34 (.09) -0.34 (.09) -0.34 (.09)
Exposure variables
G1 -0.13 (.09) -0.10 (.09) -0.13 (.11) -0.11 (.09) -0.14 (.11) -0.05 (.08) -0.08 (.10)
G2 -0.09 (.08) -0.08 (.08) -0.10 (.09) -0.04 (.09) -0.11 (.09) -0.09 (.08) -0.09 (.08)
Statin use -1.55 (.22) -1.47 (.21) -1.66 (.27) -1.65 (.27) -1.76 (.27) -1.55 (.26) -1.63 (.27)
Sports activity -0.51 (.07) -0.51 (.07) -0.53 (.09) -0.52 (.09) -0.52 (.09) -0.51 (.09) -0.51 (.09)
Family history of CRC -0.31 (.10) -0.31 (.10) -0.59 (.15) -0.58 (.16) -0.58 (.15) -0.58 (.15) -0.58 (.15)
Vegetable consumption -0.22 (.06) -0.22 (.07) -0.19 (.09) -0.19 (.09) -0.19 (.09) -0.19 (.09) -0.19 (.09)
NSAID use -0.64 (.24) -0.65 (.24) -0.58 (.32) -0.58 (.32) -0.58(.32) -0.52 (.31) -0.52 (.31)
Aspirin use -0.51 (.10) -0.51 (.10) -0.47 (.12) -0.49 (.11) -0.49 (.11) -0.48 (.11) -0.48 (.11)
G1 x G2 -0.01 (.07) -0.02 (.08) -0.05 (.09) -0.14 (.11) -0.04 (.09) -0.05 (.06 ) -0.06 (.06)
G1 x Statin use 0.50 (.16) 0.42 (.15) 0.65 (.20) 0.65 (.20) 0.65 (.20) 0.33 (.15) 0.56 (.21)
G2 x Statin use 0.44 (.15) 0.41 (.14) 0.53 (.18) 0.53 (.19) 0.52 (.19) 0.51 (.18) 0.51 (.18)
Gene-Statin association
parameters from P (G1, G2|E,S)
λG1G2

-0.02 (.04) -0.01 (.04)
λG1E -0.16 (.09) -0.08 (.06)
λG2E -0.04 (.08) -0.02 (.07)
†TPFB, TPFBemp: Two-phase full Bayes (with empirical estimates for prior variances), UML: Unconstrained maximum
likelihood, CML: Constrained maximum likelihood, EB: Empirical-Bayes, WL: weighted likelihood, and PL: pseudo-likelihood

dependence structure. The TPFBemp and TPFB generally present smaller standard errors

for the interaction parameter estimates. In general, the results from TPFB approaches are

numerically slightly different than other methods as no other method uses the data and

assumptions simultaneously as the TPFB method does. All methods suggest evidence in

favor of G1 x E and G2 x E interaction being present.

To reflect our main interest in sub-group effects of statin across genotype configurations,

we report effects of statin across genotype sub-groups of one SNP, holding the other SNP

fixed at the common genotype category for that second SNP (coded as 0). It seems that

statin effect is strongly modified by genotype of RS762551 (G1). According to TPFBemp

estimates, keeping G2 genotype fixed at C/C, the benefit of taking statins to reduce the risk

of CRC is maximum in the A/A genotype of G1 with the posterior estimate (and 95% HPD)

of the odds-ratios (relative to controls) being 0.21 (0.14, 0.32). The corresponding ORs
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in genotype category A/C and C/C are 0.35 (0.23, 0.53) and 0.58 (0.32, 1.04) respectively.

Figure 4.2 illustrates estimated posterior densities of the odds ratios corresponding to statin-

use across each genotype of G1 (left) or G2 (right) respectively, while holding the other SNP

fixed at the most common category. This figure indicates that the protective effect of statin

in CRC are diminishing as the allelic dosage for the minor allele increases in both G1 and

G2.

Table 4.2:
Odds ratio estimates for CRC corresponding to statin users vs non-users across genotype sub-groups.
Under all five methods, a model with main effect of G1, G2, E controlling for S was fit as in Table
4.1. Common allele in G1 (RS762551 on CYP1A2) and G2 (RS1056836 on CYP1B1) are A and C
respectively and minor allele in G1 and G2 are C and G respectively.

Statins Statins Statins Statins Statins
G1 A/A A/C C/C A/A A/A
G2 C/C C/C C/C G/C G/G
TPFBemp 0.21 (0.14, 0.32) 0.35 (0.23, 0.53) 0.58 (0.32, 1.04) 0.33 (0.24,0.46) 0.51 (0.32, 0.78)
TPFB 0.23 (0.16,0.34) 0.35 (0.24, 0.51) 0.53 (0.33, 0.94) 0.35 (0.26,0.50) 0.53 (0.34, 0.81)
WL 0.19 (0.11, 0.32) 0.37 (0.23,0.58) 0.70 (0.36, 1.37) 0.32 (0.25, 0.53) 0.54 (0.43, 1.13)
PL 0.19 (0.11, 0.33) 0.37 (0.23,0.58) 0.71 (0.36, 1.38) 0.32 (0.25, 0.53) 0.55 (0.42, 1.17)
UML 0.17 (0.10, 0.29) 0.33 (0.21, 0.53) 0.63 (0.32, 1.24) 0.29 (0.20, 0.42) 0.49 (0.29, 0.82)
CML 0.21 (0.13, 0.35) 0.30 (0.19, 0.47) 0.41 (0.23, 0.74) 0.35 (0.25, 0.50) 0.59 (0.36, 0.97)
EB 0.20 (0.12, 0.33) 0.35 (0.21, 0.56) 0.61 (0.29, 1.25) 0.33 (0.22, 0.48) 0.54 (0.32, 0.92)

†TPFB, TPFBemp: Two-phase full Bayes (with empirical estimates for prior variances), UML: Unconstrained
maximum likelihood, CML: Constrained maximum likelihood, EB: Empirical-Bayes, WL: weighted likelihood,
and PL: pseudo-likelihood

Variable Selection: We explore how variable selection feature performs in this ex-

ample in TPFB method. Previous research by Ishwaran and Rao (2003) discussed the per-

formance of Spike and Slab prior for variable selection in detail, but not for this particular

scenario. We introduce three SNPs (RS5925224, RS10174721, RS1616524) and all possible

pairwise G x G and G x E interactions to the previous two SNP model as fit in Table 4.1.

The dimension of the disease risk model is 34. None of the main effects and interactions

corresponding to these three additional SNPs were significant in a single marker analysis.

We set fr = 1 for S1 through S8 to always keep the confounders and precision variables

in the model. The tuning parameters v0 is fixed at 0.0001 for this application. We would

like to see if the variable selection can still detect the two significant interactions (G1 x E,

G2 x E) and recognize the unimportant SNPs and interactions. We tabulate the posterior
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Figure 4.2:
The left figure shows the posterior densities of the odds ratio estimates of CRC corresponding
to statin users versus non-users across three genotypes in RS762551 of CYP1A2(G1), holding
the genotype in RS1056836 of CYP1B1 at the most frequent category, i.e., (G2) = (C/C).
Similarly, The right figure shows the posterior densities of the odds ratio estimates corresponding
to statin users versus non-users across three genotypes in RS1056836 of CYP1B1(G2), holding
the genotype in RS762551 of CYP1B1 fixed at the most frequent category, i.e., (G1) = (A/A)
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distribution of f = (f1, . . . , fnβ
) which indicate ‘in-and-out’ frequencies of the corresponding

parameters. These posterior frequencies of f can be used to define a ranking of important

predictors. An alternative is to rank the top models (not just the predictors individually).

Before implementing the TPFB, we reduced the dimensionality of parameters in the model

P (G|W ) where G = (G1, G2, G3, G4, G5) by assuming common λGG and λGE association

parameters across all SNPs. We use N(0, 0.12) prior on this common parameter. In addition,

we further assume a single common parameter λGS for all G-S associations with a vague

normal prior N(0, 104).

In Table 4.3, we present numerical results on model and predictor ranking as well as the

Bayesian Information Criterion (BIC) corresponding to each model. We only present the top

10 models. According to the result, the model with main effects of E and G1 x E and G2 x

E interactions seems to be the preferred model (posterior probability 16.7%) followed by the

model with E and only G1 x E interaction (posterior probability 15.9%). Table 4.4 shows
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Table 4.3:
The top 10 promising models in terms of estimated posterior probabilities of the models. All S
adjustment variables are retained in the model and variable selection is performed only on the five
genetic and environmental factors and all possible pairwise interactions. Bayesian Information
Criterion (BIC) is provided for each model.
Model posterior probability % BIC
[E][All S][G1 x E][G2 x E] 16.7 % 48747
[E][All S][G1 x E] 15.9 % 48741
[E][All S] 10.5% 48736
[E][All S][G2 x E] 5.5 % 48742
[E][All S][G1 x E][G2 x E][G5 x E] 2.6% 48755
[E][All S][G1 x E][G5 x E] 2.0 % 48747
[E][All S][G3][G1 x E][G2 x E] 1.6 % 48753
[E][All S][G3][G1 x E] 1.3 % 48749
[E][All S][G1 x E][G3 x E] 1.2 % 48750
[E][All S][G3][G5 x E] 1.2 % 48742
†BIC represents Bayesian Information Criterion

Table 4.4:
The estimated posterior probabilities of appearance corresponding to G and E main effects and
their interactions are shown under the identical setting as in Table 4.3

Covariates G1 G2 G3 G4 G5 E E x G1 E x G2 E x G3 E x G4 E x G5

Freq. 3.9 4.1 9.5 5.1 3.3 99.2 68.4 48.3 6.8 5.3 13.8

the frequency of retaining a predictor in the model according to the posterior distribution of

f . The main effect of E appears most of the times (99.2%) with large selection probabilities

for G1 x E and G2 x E interactions (68.4% and 48.3%) respectively. Overall, non-significant

interactions/main effects are well filtered under this variable selection scheme.

4.4 Simulation study

In this section, we assess the performance of the proposed method by conducting a simu-

lation study. We mainly consider two aspects (i) varying gene-gene/gene-environment asso-

ciation structure and (ii) when phase II sampling is differential between cases and controls.

We compare our method with the five alternative methods mentioned before: WL, PL, UML,

CML, and EB in terms of the average bias and mean squared errors (MSE), based on 200

simulated datasets.

We first describe the data generation procedure. We consider two genes G1 and G2, and,

one environment factor E, with disease status D, all binary. We generate data from the
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following log-linear model (Li and Conti, 2009):

log(μ|D,G1, G2, E) = γ0 + γG1G1 + γG2G2 + γEE + γDD

+ λG1EG1E + λG2EG2E + λG1G2G1G2

+ βG1G1D + βG2G2D + βEED

+ βG1EG1ED + βG2EG2ED + βG1G2G1G2D,(4.5)

where μ denotes expected cell counts corresponding to the (D,G1, G2, E) configuration.

Under this model, we are capable of manipulating G1-E, G2-E, and G1-G2 association

under controls by adjusting λG1E, λG2E, and λG1G2 respectively where these parameters are

approximately equivalent to those in model P (G1, G2|W ) (4.2) when the disease is rare.

Similarly, we can set βG1E, βG2E or βG1G2 , corresponding to the G x E or G x G interactions

in the disease risk model. The parameters (γ0, γG1 , γG2 , γE) controls the marginal frequencies

of G1, G2 and E in controls. Note that γD needs to be set at a large negative value for the

disease to be rare.

For the model parameters in (4.5), we fixed (γ0, γG1 , γG2 , γE, γD) = (−6,−0.5,−0.5,−2.0,

−4.5) that produces approximately 2.5% of cases, frequency of G1 = 1 and G2 = 1 both at

45% while the prevalence of E = 1 is 15%. We assign (βG1E, βG2E, βG1G2) = (0, log(2), log(2))

in (4.5). For setting parameters corresponding to G-E/G-G association, we set (λG1G2 , λG1E,

λG2E) = (log(2), 0, log(1.5)) to reflect G1-G2 and G2-E dependence, and (0, 0, 0) for the

independence scenario.

Now we turn our attention to the sampling design. We randomly generate 1, 000 cases

and 1, 000 controls with complete (D,G1, G2, E) data. We then carry out (D,E)-stratified

sampling as follows. We select 600 cases and 600 controls in phase II. We consider two

scenarios regarding this the stratified sampling stratgey: (a) all subjects with a positive

E(= 1), in cases and controls, are automatically included in phase II; (b) all subjects with
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a positive E (= 1) in cases are included in phase II, however, 600 controls for phase II are

randomly selected regardless of E status. Finally, information on G1 and G2 from phase I

subjects, that is, 400 cases and 400 controls, is treated as missing. We iterate this step to

generate 200 replicate datasets under each sampling scheme.

Table 4.5 displays the simulation results. We follow the convention that⊥ and ∼ represent

the independence and dependence respectively. Under G1⊥E,G2⊥E, and G1⊥G2 the CML

method yields the smallest MSE with respect to G1 x E and G1 x G2 interaction followed

by TPFB, TPFBemp, and EB while WL, PL, and UML present relatively larger MSE. Here

we need to note that the current implementation of CML and EB can only use G1-E and

G1-G2 independence, but not G2-E independence. As phase II sampling becomes differential

between cases and controls from scenario (a) to (b), we notice the substantial increase in

the bias for estimating the main effect of E from CML, UML, and EB as expected while

WL, PL, TPFB, and TPFBemp provide relatively less biased estimates. This trend remains

present in case where G1⊥E,G2 ∼ E, and G1 ∼ G2. Beyond the bias in E estimation from

CML, UML, and EB, we note that under the departure from the independence assumption,

namely, G1⊥G2, there is a dramatic increase in the bias corresponding to the G1 x G2

interaction under CML and to some extent in TPFB. TPFBemp and EB are more robust to

this assumption. Both TPFB show gain in efficiency for interaction estimation compared

to PL and WL. Overall, our proposed methods, especially TPFBemp, yield obvious gain in

efficiency compared to PL and WL in terms of the G x E or G x G interactions in the

presence of independence. On the other hand, TPFBemp provides less biased estimates of

the E effect compared to UML, CML, and EB where the bias introduced by ignoring the

two-phase design is inevitable. When sub-sampling ratio is 80%, the pattern remains same

as seen in Appendix Table A.8.
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Table 4.5:
Simulation results under two scenarios 1) G1⊥E, G1⊥G2, and G2⊥E association, 2) G1⊥E,
G1 ∼ G2, and G2 ∼ E with different strategies for stratified sampling. The results are based on
200 replicated datasets, each with 1,000 cases and 1,000 controls in phase I and 600 cases and 600
controls in phase II. The approaches listed, TPFB, TPFBemp, WL, PL, UML, CML, and EB where
each represents Two-phase full Bayes (with empirically obtained prior variance), Weighted like-
lihood, Pseudolikeliohod, Unconstrained Maximum likelihood, Constrained Maximum Likelihood,
and Empirical Bayes respectively. The CML imposes G1-E and G1-G2 independence, however, no
constraints on G2-E association. We set (βE , βG1G2

, βG1E , βG2E) = (−1.5, 0, log(2), log(2)) for all
scenarios. In terms of MCMC chains from both TPFBs, the posterior results based on 1,000 samples
after ’burn-in’ of 40,000 among 50,000 iterations and a thinning of every 10 samples.

G1⊥E, G1⊥G2, G2⊥E G1⊥E, G1 ∼ G2, G2 ∼ E

Stratified sampling (a)† E G1 x G2 G1 x E G2 x E E G1 x G2 G1 x E G2 x E
(λG1G2

, λG1E , λG2E) = (0, 0, 0) (λG1G2
, λG1E , λG2E) = (log(2), 0, log(1.5))

TPFB Bias -0.049 0.004 -0.015 -0.034 -0.119 0.288 -0.041 0.194

MSE 0.189 0.074 0.182 0.214 0.178 0.173 0.162 0.222
TPFBemp Bias 0.026 0.029 -0.114 -0.097 0.005 0.092 -0.086 0.047

MSE 0.182 0.058 0.251 0.179 0.203 0.103 0.150 0.223
WL Bias -0.081 -0.003 0.042 0.036 -0.060 0.030 0.007 0.059

MSE 0.223 0.115 0.279 0.294 0.184 0.130 0.202 0.269
PL Bias -0.082 -0.006 0.043 0.037 -0.062 0.022 0.008 0.060

MSE 0.223 0.112 0.279 0.294 0.184 0.130 0.202 0.269
UML Bias -0.138 -0.006 0.043 0.037 -0.120 0.022 0.008 0.060

MSE 0.244 0.112 0.279 0.294 0.201 0.130 0.202 0.269
CML Bias -0.137 -0.022 0.035 0.033 -0.133 0.707 0.036 0.054

MSE 0.221 0.054 0.170 0.287 0.195 0.557 0.126 0.258
EB Bias -0.136 -0.020 0.034 0.034 -0.131 0.157 0.025 0.055

MSE 0.222 0.068 0.201 0.287 0.194 0.163 0.144 0.258
G1⊥E, G1⊥G2, G2⊥E G1⊥E, G1 ∼ G2, G2 ∼ E

Stratified sampling (b)‡ E G1 x G2 G1 x E G2 x E E G1 x G2 G1 x E G2 x E
(λG1G2

, λG1E , λG2E) = (0, 0, 0) (λG1G2
, λG1E , λG2E) = (log(2), 0, log(1.5))

TPFB Bias -0.032 -0.014 -0.031 -0.020 -0.173 0.308 0.036 0.220

MSE 0.165 0.098 0.261 0.210 0.249 0.205 0.222 0.252
TPFBemp Bias 0.014 -0.016 -0.091 -0.073 -0.041 0.044 0.078 0.021

MSE 0.173 0.066 0.294 0.238 0.194 0.089 0.249 0.211
WL Bias -0.051 0.006 0.070 0.077 -0.079 0.009 0.127 -0.011

MSE 0.458 0.153 0.577 0.445 0.287 0.137 0.467 0.386
PL Bias -0.076 0.003 0.074 0.079 -0.060 0.017 0.138 -0.031

MSE 0.261 0.150 0.554 0.422 0.268 0.134 0.449 0.384
UML Bias 0.492 0.003 0.074 0.079 0.507 0.017 0.138 -0.031

MSE 0.534 0.150 0.554 0.422 0.550 0.134 0.449 0.384
CML Bias 0.488 -0.002 0.018 0.085 0.508 0.691 0.079 -0.018

MSE 0.483 0.060 0.232 0.386 0.516 0.530 0.157 0.352
EB Bias 0.490 0.002 0.050 0.083 0.503 0.171 0.121 -0.024

MSE 0.491 0.087 0.355 0.388 0.516 0.167 0.276 0.356
†All subjects with E = 1 in case and control are sub-sampled for phase II.
‡All cases with E = 1 are included in phase II, however, control are randomly selected for phase II.

TPFB uses the informative prior N(0, 10−2) on G-G and G-E associations in the model (4.2)

TPFBemp uses the prior N(0, θ̂2) on G-G and G-E associations in the model (4.2) where

θ̂2 is empirically estimated G-G or G-E association parameter under controls.
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4.5 Discussion

We presented a flexible Bayesian approach to estimate gene-gene (G x G) and/or gene-

environment (G x E) interactions under two-phase sampling. The proposed approach can

handle multiple genetic and environmental factors. The method can trade off between bias

and efficiency by incorporating uncertainty around gene-environment independence through

the hierarchical structure in a data-adaptive way. The underlying ingredients of this hier-

archy are the disease risk model, the multivariate gene model, and the joint model for the

environment factors/covariates respectively. Our method can also handle potential missing-

ness in genetic information due to technical inconsistency, or due to merging different studies

or cohorts, leading to non-monotone missing data structure at phase II sub-sample.

We compared our method to simpler alternatives such as UML, CML, and EB that use

gene-environment independence but only based on phase II data, ignoring biased sampling.

We also considered methods that account for biased sampling at phase II: weighted likelihood

and pseudo likelihood, but do not leverage the independence assumption. Our method

provides a framework that integrates both of these features. In a clinical study like the

MECC example, where interest lies in estimating the differential effect of statin use across

genetic sub-groups for devising targeted prevention strategies, estimates of main effects as

well as gene-environment interaction are equally important, thus both estimates need to be

assessed. This Chapter is the first Bayesian paper with retrospective modeling for G x E

studies under two-phase sampling that can handle multiple markers.

There are some limitations of the current Chapter that need to be expanded and explored

in future studies. First, we do not fully address the performance of our method in the

presence of a truly high-dimensional gene model through simulation studies. The method

is scalable to handle up to 294 SNPs and pairwise interactions in our data example, but

we have not carried out a simulation study due to computation time. We also need to deal
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with exponentially increasing number of G x E and G x G interactions in the disease risk

model as well as G-E/G-G/G-S associations in the multivariate gene model, as we add

more G-variables in the model. We address this by Bayesian variable selection and assuming

a common parameter for G-E/G-G/G-S association on genes in the same pathway in the

multivariate gene model. The latter is a rather ad-hoc strategy for reducing the dimension.

Bias in parameter estimates is expected to arise under departures from this assumption.

Calculation of P (D) in the denominator of the likelihood could also pose challenges with

truly high-dimensional data. Second, we have not tested the Dunson and Bhattacharya

(2011) algorithm for mixed set of discrete and continuous covariates in W . Future research

will focus on the higher-dimensionalG and E settings, more general structure of theW vector

as well as possibility of capturing higher order interactions, not just pairwise interactions.



CHAPTER V

A Spatio-Temporal Point Process Model for Analyzing Diarrheal
Case Patterns under a serial Case-Control study

5.1 Introduction

Diarrhea is one of the leading causes of pediatric death. According to the World Health

Organization (http://www.who.int/mediacentre/factsheets/fs330/en/index.html), diarrheal

deaths exceed the combined death toll due to AIDs, tuberculosis, and malaria, largely due to

the high death rate in developing countries. Compared to approximately 2.5 million deaths

each year in developing countries (Kosek et al., 2003), hundreds of millions of diarrheal

cases and thousands of resulting deaths are reported annually in developed countries such

as the United States (Herikstad et al., 2002). Previous epidemiological studies (Curtis and

Cairncross, 2003; Checkley et al., 2004; Barreto et al., 2007) attest that this high prevalence is

largely attributable to individual risks factors such as individual hygiene, food contamination,

and socio-economic status as well as community-associated factors such as inferior water

quality and sanitation systems. Although early work has identified a variety of risk factors

for diarrhea, the debate continues on the limitations of previous studies. Eisenberg et al.

(2006) argued that these risks do not reflect changes in community or ecological determinants.

Accordingly, current epidemiologic research is moving towards a system-based approach to

understand community level factors, household factors, and individual level factors that may

underlie the biological or social causes of diarrhea.

89
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The ECODESS (Ecologia, Desarrollo, Salud, y Sociedad) study is designed to further

the understanding of the underlying causal process of diarrheal prevalence and transmission

rates involving social and ecological factors such as road construction, social networks, san-

itation, and other confounding factors (http://www.sph.umich.edu/scr/ecodess/home.php).

Eisenberg et al. (2006) selected 21 communities in the Esmeraldas province of Ecuador for

this study. Their work suggests an association between remoteness from the most populated

city, Borbón, and all-causes of diarrhea as well as an association between diarrhea and three

pathogens (E. coli, Giardia, Rota virus). They argued that new road construction results

in deforestation, changes in sanitation, hygiene, and changes in social life, all of which con-

tribute to disease transmission. In a follow-up study, Bates et al. (2007) investigated the

role of social networks on disease transmission and found an association between social net-

works and disease prevalence. These findings are consistent with Gushulak and MacPherson

(2004) who showed that remote communities, known to have lower immigration and emi-

gration rates, have lower transmission rates. Levy et al. (2009) focused on the impact of

seasonal changes in water quality induced by rainfall on E. coli and discovered a negative

association between water quality and E. coli counts.

With advances in Geographical Information System (GIS), collection of spatially refer-

enced data is becoming more prevalent. Accordingly, spatial inference ranging from associa-

tion studies between geographically distant covariates and outcomes to the interpolation or

prediction of unobserved values at desired locations is of substantial interest. For example,

spatial research in various fields such as marketing, ecology, and environment have received

much recent attention (Choi et al., 2008; Gelfand and Barber, 2007; Cowles and Zimmerman,

2003).

The ECODESS study is unique as it includes longitudinal and spatial data on the sam-

pled communities. The data include complete enumeration and locations of disease cases,
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spatially and temporally referenced covariates like remoteness and social networks, and tem-

poral covariates such as temperature and precipitation. These features provide researchers

an opportunity to investigate spatial heterogeneity and spatial covariates that may affect

diarrheal prevalence.

Since the seminal papers on stationary point processes (Ripley, 1976, 1977), there has

been a substantial amount of research on point process models, as well as their applications.

Noting that homogeneous point process models are too simple to capture spatial inhomo-

geneity, Diggle and Elliot (1995) proposed an inhomogeneous Poisson process to account

for non-uniformly distributed point patterns of specific diseases under the assumption that

the disease is intrinsically non-infectious. More complex approaches became available along

with the developments in computational techniques. Heikkinen and Arjas (1998) presented

a non-parametric Bayesian model of the intensity function of a spatial Poisson process based

on a step function approximation using a Markov random field prior. Baddely et al. (2000)

discussed semi-parametric and non-parametric estimation of spatial interactions under an

inhomogeneous point process. Møller and Waagepetersen (2003) integrated state-of-the-art

spatial point process models in their book and provided mathematical theories and exam-

ples of miscellaneous applications. Hossain and Lawson (2009) compared commonly used

Bayesian point process models in the presence of a putative hazard source. Several R (R

Development Core Team, 2011) packages have been written that estimate various parameters

of rather simple spatial point process models. Two of the more useful packages are Spatstat

(Baddeley and Turner, 2005) and DCluster (Gómez-Rubio et al., 2010).

In infectious diseases, clustering or aggregation of cases typically occurs. Waller and Got-

way (2004) demonstrated that case patterns frequently display clustering in space. To deal

with clustering, various cluster point process models have been proposed. These include,

the Markov point process (Van Lieshout, 2000), the shot noise Cox process (SNCP) (Brix,
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1999; Brix and Kendall, 2002), and the log Gaussian Cox process (LGCP) (Møller et al.,

1998). Among these, the LGCP is popular due to its flexibility, simplicity, and mathematical

tractability. With respect to the LGCP, Waagepetersen (2004) proved that the expectation

of the approximate posterior from discretized LGCPs converges to the exact posterior ex-

pectation as the cell size of the grid goes to zero. Beneš et al. (2005) used the LGCP to

investigate the association between tick-born encephalitis and spatially varying covariates

of vegetation and altitude. LGCP modeling has also been extended to the spatio-temporal

setting. Brix and Diggle (2001) developed a class of space-time LGCP models where they

used moment-based parameter estimation with space-time correlation structure for the in-

tensity. Brix and Møller (2001) proposed a space-time point process based on a bivariate log

Gaussian Cox birth process in modeling two types of weeds that monotonically propagate

over time. Diggle et al. (2005) used LGCP with a specific intensity function multiplied by

the background intensity obtained by a kernel intensity surface estimation. They also pre-

sented a multiplicative decomposition of the spatio-temporal intensity in an ad hoc fashion.

Recently, Liang et al. (2009) implemented a marked LGCP for differentiating colorectal

cancer types and incorporated non-spatial individual level covariates.

A popular goal in spatial inference is prediction (Gelfand et al., 2001, 2003). When spatial

prediction is required on a different spatial scale than the originally observed scale, spatial

misalignment, also called “change of support”, typically occurs. Since Krige (1951) initially

proposed, what is now referred to as, ordinary Kriging, many versions of Kriging have been

introduced. Gelfand et al. (2001) proposed general types of Bayesian approaches to handle

the spatial misalignment problem (SMP) based on a Gaussian process. These include points

to points, points to blocks, blocks to points, and blocks to blocks. They also extended their

approach to the spatio-temporal setting, illustrating it on ozone measurement data.

In the ECODESS study, spatially and temporally referenced covariates along with diar-



93

rheal case coordinates are available at 21 of the 158 communities in the Esmeraldas province.

Data were collected approximately every twelve months for six years. The researchers wish

to explain spatial and temporal variation in disease patterns within the 21 communities and

predict the number of diarrheal cases at unsampled communities. To achieve both goals, we

propose a Bayesian two-stage spatial point process model accounting for spatial misalign-

ment of the measured covariates. Spatial inhomogeneity, within communities, is accounted

for by a spatially varying covariate, called the social network covariate, and temporal hetero-

geneity is accounted for by temperature and precipitation fluctuations. A second spatially

varying covariate, remoteness from Borbón, is also observed. However, this covariate is spa-

tially misaligned with the social network covariate. Whereas the social network is measured

within communities, remoteness is measured from the center of each community to Borbón.

In this Chapter, we model case patterns in relation to these spatial and temporal covariates.

To the best of our knowledge, there is no literature on modeling serial case patterns

involving spatially and temporally referenced covariates. Park and Kim (2004) considered

case-control studies for diarrhea with longitudinal data without spatial information. Later,

Diggle et al. (2007) proposed spatial point process modeling with two distinct intensities

corresponding to cases and controls without a temporal component. Liang et al. (2009)

also considered two cancer patterns without a longitudinal component. In this respect, our

approach provides a unique aspect involving spatio-temporal case pattern data analysis as

well as prediction.

This Chapter is organized as follows. In Section 5.2, we describe the motivating example

in detail. In Section 5.3, we propose a Bayesian two-stage model that accounts for spatial

misalignment. The model includes inference at the sampled communities, and prediction of

cases at unsampled communities. Its direct application to the ECODESS study follows in

Section 5.4. Results from simulation studies are given in Section 5.5. Finally, we conclude
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with remarks on the current work and possible extensions.

5.2 ECODESS Study : Sampling Design

The ECODESS study covers the northern coastal Ecuadorian province of Esmeraldas

(Figure 5.1, left panel). In the ECODESS study, 21 communities were randomly selected

among 158 communities within Esmeraldas excluding Borbón: the most populated city lo-

cated at the confluence of the three rivers. Communities were selected by a block randomized

design using location, size, population, and the relative distance to Borbón. Within these 21

communities, all households were enrolled in the study and 98% of the residents participated.

The right panel of Figure 5.1 depicts the locations of all 158 communities relative to Borbón.

Figure 5.1:
The left panel displays a map of the Esmeraldas province in Equador. The blue lines represent
three main rivers; the Cayapas, the Santiago, and the Onzole. Each point on the map indicates
the location of a community. The right panel shows whether a community was sampled in the
ECODESS study. The 21 solid dots represent sampled communities and the remaining empty
dots represent unsampled communities.
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The ECODESS research team visited each sampled community annually or semi-annually,

on a rotating basis from the beginning of August 2003 to March 2008, for a total of 7 cycles.

Each visit lasted 15 days. The researchers interviewed each household every morning and

identified all diarrheal cases. A case was defined as an individual having three or more loose

stools in a 24-hour period. Cases, as well as GIS coordinates of the household, were recorded.

Demographic data such as age, gender, and sanitation were also collected.

One goal of the ECODESS study was to identify the association between diseases preva-

lence and a remoteness metric defined by the travel time and total cost of travel to Borbón

(Eisenberg et al., 2006). The remoteness metric, Rc, corresponding to community c, c =

1, . . . , 21, is defined as Rc = Cc/
∑

c Cc + Tc/
∑

c Tc where Tc and Cc are time and cost of

travel to Borbón from community c. Travel time and cost was determined only for the 21

sampled communities. There is a highly significant linear association between the remoteness

metric and distance from Borbón with R2 = 0.83; thus we feel that distance is a justifiable

surrogate for the remoteness metric. The number of cases in each community and the corre-

sponding the distance are summarized in Table 5.1. Figure 5.2 shows case locations at four

of the seven cycles.

According to Bates et al. (2007), the social network covariate is defined through multiple

factors obtained from sociometric surveys. In their study, spatial index, the harmonic mean

of distances from one house to all other houses, shows a strong linear relationship with

social network. Large values of the spatial index corresponds to low density. Bates et al.

(2007) demonstrated that areas with lower values of spatial index, or greater density, have a

greater chance of being exposed to disease transmission, which leads to increases in disease

prevalence. Note that under a discretized setting as our study, this spatial index needs to

be defined at each cell regardless of whether there is a house in that cell. To do this, we

compute the harmonic mean of the distances between each cell and the cells containing at
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least one house.

Table 5.1:
The number of cases and population reported in the 21 sampled communities across 7 cycles in
the ECODESS study. For each community the first row is the number of cases and the second
row is population. We report the remoteness metric measured in 2007 and the corresponding
distance from Borbón. The last column presents grid sizes where the length of each side of a cell
is approximately 11 meters.

Cycle Distance
Community 1 2 3 4 5 6 7 Remoteness (Km) Grid size

San Agustin
9 10 8 8 9 7 7

0.012 9.27 154×135
280 335 335 342 343 324 324

Colon Eloy
12 6 10 19 27 16 18

0.015 12.21 92× 43
815 884 891 868 889 950 961

Naranjal
0 3 4 1 1 0 0

0.022 6.87 151×215
88 88 92 86 85 88 88

Timbire† 11 10 5 8 14 6 10
0.027 20.59 83 × 50

469 528 522 544 571 596 601

Roca Fuerte† 7 2 3 7 4 5 4
0.039 19.99 25×18

156 166 165 188 179 181 172

La Loma
16 5 4 2 2 2 2

0.040 4.74 268 × 219
149 165 158 158 154 138 139

Ranchito
1 1 6 0 1 0 0

0.040 7.49 100× 102
51 68 81 65 61 65 65

Quinto piso
3 1 4 1 3 3 5

0.049 16.51 221 × 278
65 81 88 92 95 74 77

La Pena
1 6 1 1 2 0 2

0.049 20.67 25× 12
98 111 99 89 91 96 88

Las Cruces
4 3 0 2 2 1 0

0.061 13.42 88×91
102 114 107 98 97 124 107

Tangare
0 0 0 2 2 2 3

0.080 20.26 100×21
101 101 101 101 105 98 99

El Rosario
0 2 0 3 1 1 0

0.113 24.86 43×52
129 128 129 131 126 132 129

Guayabal
9 2 0 2 3 1 6

0.122 25.68 14×35
146 148 145 144 146 139 149

Arenales
0 1 3 1 7 0 2

0.140 28.84 175×216
137 156 163 112 126 137 126

Wimbi
6 5 16 10 10 2 3

0.152 28.53 20×32
321 350 369 335 342 339 344

Playa de Oro
4 6 0 3 4 3 3

0.155 32.63 17×23
231 253 255 257 255 265 267

Trinidad
2 0 1 3 2 3 0

0.158 29.02 15×11
98 105 106 102 103 117 105

Telembi
4 8 8 14 5 5 1

0.165 32.76 43×24
283 352 348 330 308 403 397

Vaquerita† 0 1 3 2 3 0 0
0.173 33.01 15×46

35 33 37 33 38 35 35

Santo Domingo† 10 4 8 10 10 4 11
0.190 34.05 89×29

479 505 512 486 481 465 473

San Miguel
2 1 3 1 2 0 2

0.198 39.72 15×20
123 148 154 142 143 145 159

Case Total 101 77 87 100 114 61 79
Population Total 4356 4819 4857 4703 4738 4911 4905
†The communities with bold font are used for internal prediction

Given temperature and precipitation at three weather stations located in San Miguel,

Borbón, and Playa de Oro, we interpolate temperature and precipitation at each of the

remaining 19 sampled communities at each cycle using ordinary Kriging (R package GSTAT;

Pebesma, 2004). Covariate information is summarized in Table 5.2.
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5.3 Proposed Method

We propose a Bayesian two-stage spatio-temporal point process model that involves a

community level analysis followed by prediction of the number of cases at unsampled com-

munities.

We denote the set of the 21 sampled community study windows by S = {Sc}21c=1. Each

rectangular-shaped Sc is the smallest rectangle such that each side is a multiple of 11 meters

and Sc contains all houses within community c. We partition each community window

Sc ∈ S into disjoint square cells of size 11×11 meters, Sc,m, m = 1, . . . , K1c×K2c. Here K1c

and K2c are determined by the area of each community. The grid size of each community

is summarized in Table 5.1. Furthermore, we denote the set of disjoint study windows

for unsampled communities by U = {Ul}106l=1. Note that, for prediction, we excluded 31

communities located outside of the rectangle that contains the 21 sampled communities to

avoid extrapolation (see the rectangle in the right panel of Figure 5.1).

We develop a two-stage model. In stage I, we adopt a log Gaussian Cox process (LGCP,

refer to Appendix A.4.1) model for each sampled community. In stage II, we make use of the

LGCP model results to predict the number of diarrheal cases at unsampled communities.

Let xS,t = {xSc,t}21c=1 denote the set of case coordinates corresponding to sampled community

c at cycle t. Similarly, let xU,t = {xUl,t}106l=1 denote the set of case coordinates corresponding

to unsampled communities at cycle t.

Stage I: Estimation of the intensity at each sampled community.

We consider a LGCP involving community c at cycle t. Denote the intensity function by Λc,t.

A pair of temporal covariates, (Tempc,t, P recc,t), represent temperature and precipitation,

respectively, at community c and cycle t. Additionally, we have a single spatially-referenced

covariate, the spatial index or SI, where SIc is SI at community c and SI = {SIc(s)}21c=1,

s ∈ Sc. Covariate summaries are tabulated in Table 5.2.
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The underlying Gaussian random field (GRF) for community c at cycle t is Yc,t with

mean μc,t = μcom
c + μtime

t , where μcom
c is a community specific random effect that follows

N(μcom, σ
2
com). This random effect captures the community-specific uncertainty not ex-

plained by current covariates but attributable to community-level characteristics such as

average individual age and household sanitation. Furthermore, μtime
t , t = 2, . . . , 7, (μtime

1 = 0

for reference) is the time-specific mean offset. When σ2
t is the marginal variance at time t,

the covariance of the GRF is Cov(Yc,t(s), Yc,t(s
′)) = σ2

t r(s, s
′) = σ2

t exp(−k‖ s− s′ ‖α) where

s, s′ ∈ Sc and ‖ · ‖ denotes the Euclidean norm.

Here, k and α in the correlation function are estimated via the minimum contrast estima-

tion method (Møller et al., 1998) and are considered known constants, (k, α) = (0.26, 20),

across communities and cycles in our model.

Then, the intensity process for community c at cycle t is

Λc,t(s) = πc,t exp(Yc,t(s) + ηSIc(s) + β1Tempc,t + β2Precc,t), s ∈ Sc,

where πc,t is the known population density for community c at cycle t. The vector of pa-

rameters in the first stage is denoted by Ω1 = (μcom,μtime, μcom, σ
2
com, η, β1, β2,σ

2)� where

μcom = (μcom
1 , . . . , μcom

21 ), μtime = (μtime
2 , . . . , μtime

7 ), and σ2 = (σ2
1, . . . , σ

2
7).

Given that case coordinates xSc,t are recorded for community c at cycle t, the likelihood

corresponding to cycle t is expressed as

f(xS,t|Ω1) ∝
21∏
c=1

⎡⎣exp{
−

∫
Sc

Λc,t(s)ds

} ∏
ξ∈xSc,t

Λc,t(ξ)

⎤⎦ ,(5.1)

where the likelihood for all cycles is
∏7

t=1 f(xS,t|Ω1).

However, computationally we cannot work directly with the GRFs, Yc,t, c = 1, . . . , 21,

t = 1, . . . , 7, as they are infinite dimensional. Therefore, we approximate Yc,t through its

realized value on a discretized grid, say Ỹc,t. Note that the approximated value is constant
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within each cell in Sc. Following Møller et al. (1998), we can expand Ỹc,t on an extended

grid Sext
c ,

Ỹ ext
c,t = σ2

tΣ
ext
c,t

1/2
Γext
c,t + μext

c,t , Γext
c,t ∼ N2K1c×2K2c(0, I),

where superscript ext represents values on Sext
c . Here, Σext

c,t is the correlation matrix, Γext
c,t is

a random vector following N(0, I), and μext
c,t is a mean vector defined on Sext

c , respectively.

Then, Ỹc,t is obtained as the appropriate marginal distribution of Ỹ ext
c,t .

Now we describe independent priors for Ω1 and Γext
c,t . With little knowledge about the

parameters, we propose vague independent priors:

log σ2
t

iid∼ N(0, 104), t = 1, . . . , 7,

μcom
c

iid∼ N(μcom, σ
2
com), c = 1, . . . , 21, μtime

t
iid∼ N(0, 104), t = 2, . . . , 7,

η ∼ N(0, 104), β1 ∼ N(0, 104), β2 ∼ N(0, 104),

Γext
c,t

iid∼ N2K1c×2K2c(0, I), t = 1, . . . , 7, c = 1, . . . , 21.

Hyper-priors for the population mean μcom and variance σ2
com are

μcom ∼ N(0, 2× 105), σ2
com ∼ IG(0.1, 0.1),

where IG(α, β) indicates the inverse gamma distribution with mean β/(α− 1). We provide

details regarding full conditionals and our posterior sampling strategy for stage I parameters

in Appendices A.4.2 and A.4.3.

Stage II: Predicts the missing number of cases and estimating the mean

intensities at unsampled communities.

We can predict the number of cases at unsampled communities under the Poisson distribution

if we know the intensity and the population. The expected number of a homogeneous Poisson

process is population/area×intensity×area = population×intensity. Since the populations

at unsampled communitiesU are known, we need only estimate the corresponding intensities.
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The log mean intensities corresponding to sampled communities are determined by the

posterior samples of Ω1 from stage I. We denote the log mean intensity at community c

and cycle t by I tSc(Ω1), or simply I tSc, which is equivalent to log(Λc,t/πc,t) where Λc,t is the

posterior mean of Λc,t. Let I t
S = (I tS1

, . . . , I tS21
)�. At community c, the log mean intensity

I tSc
at cycle t satisfies

K1c×K2c∑
m=1

πc,t exp(I
t
c,m)|Sc,m|

= 1/(K1c ×K2c)|Sc|
K1c×K2c∑

m=1

πc,t exp(I
t
c,m)

= πc,t exp(I
t
Sc
)|Sc|,

where I tc,m represents the posterior mean log intensity in cell Sc,m at cycle t and | · | represents

area. Then I tSc
= log{1/(K1c ×K2c)

∑K1c×K2c

m=1 exp(I tc,m)}.

At cycle t, let I tUl
be the log mean intensity at unsampled community l and let I t

U =

(I tU1
, . . . , I tU106

)�. In terms of the number of cases, N(xUl,t) denotes the number of cases at

unsampled community l and cycle t and let N(xU,t) = (N(xU1,t), . . . , N(xU106,t))
�. Similarly,

N(xSc,t) denotes the number of diarrheal cases at sampled community c and cycle t. Let

N(xS,t) = (N(xS1,t), . . . , N(xS21,t))
�. We also denote a vector of hyper-parameters, to be

defined later, associated with log mean intensities from sampled and unsampled communities

by Ω2.

If we denote the joint likelihood of N(xU,t) = n(xU,t), N(xS,t) = n(xS,t) given correspond-

ing log mean intensities I t
U , I

t
S by f(n(xU,t), n(xS,t)|I t

U , I
t
S), then the full joint likelihood is

7∏
t=1

f(n(xU,t), n(xS,t)|I t
U , I

t
S)π(I

t
U , I

t
S|Ω2)π(Ω2),

=
7∏

t=1

f(n(xU,t)|I t
U)f(n(xS,t)|I t

S)π(I
t
U , I

t
S|Ω2)π(Ω2),(5.2)

where π(I t
U , I

t
S|Ω2) is the joint distribution of the unknown I t

U and the known I t
S given Ω2.

The hyper-prior distribution of Ω2 is π(Ω2).
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The first two terms in (5.2), [N(xU,t)|I t
U ] and [N(xS,t)|I t

S] follow the product of indepen-

dent Poisson distributions, that is, f(n(xU,t)|I t
U) =

∏106
l=1 f(n(xUl,t)|I t

Ul
) and f(n(xS,t)|I t

S) =∏21
c=1 f(n(xSc,t)|I t

Sc
), where

f(n(xUl,t)|I t
Ul
) ∝ exp

{−popnl,t exp(I
t
Ul
)
} {popnl,t exp(I t

Ul
)}n(xUl,t

),

f(n(xSc,t)|I t
Sc
) ∝ exp

{−popnc,t exp(I
t
Sc
)
} {popnc,t exp(I t

Sc
)}n(xSc,t),

where popnl,t and popnc,t represent the populations of unsampled community l and sampled

community c at cycle t, respectively. Also, n(xUl,t) and n(xSc,t) are imputed and realized

values for the number of cases at unsampled community l and sampled community c, respec-

tively.

We assume the joint distribution of I t
U and I t

S follows the multivariate normal distribu-

tion, ⎡⎢⎣( I t
S

I t
U

)∣∣∣∣∣Ω2

⎤⎥⎦ ∼ N21+106

⎡⎢⎣( μt
S(τ )

μt
U(τ )

)
,

(
Φt

S(ρ
2
t , φ) Φt

S,U(ρ
2
t , φ)

Φt
S,U

�
(ρ2t , φ) Φt

U(ρ
2
t , φ)

)⎤⎥⎦ .

Here (μt
S(τ ))c = τ0t+τ1R(Sc) and (μt

U(τ ))l = τ0t+τ1R(Ul) where τ0t is a time t specific offset

and the parameter τ1 corresponds to the distance between Borbón and the center of com-

munity Sc and Ul, respectively. In terms of the covariance, (Φt
S(ρ

2
t , φ))c′c′′ = ρ2t exp(−φ‖c′ −

c′′‖2) where c′ and c′′ represent two centers of {Sc}21c=1. Likewise, the (Φt
S,U(ρ

2
t , φ))c′l′ =

ρ2t exp(−φ‖c′ − l′‖2) where c′ and l′ represent the center of Sc and Ul, respectively and

(Φt
U(ρ

2
t , φ))l′l′′ = ρ2t exp(−φ‖l′ − l′′‖2) where l′ and l′′ represent two centers of {Ul}106l=1, re-

spectively. Let Ω2 = (τ 0, τ1, φ,ρ
2)� where τ 0 = (τ01, . . . , τ07) and ρ2 = (ρ21, . . . , ρ

2
7). Then,

[I t
U |I t

S,Ω2] follows a conditional multivariate normal distribution.
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Independent vague hyper-priors on stage II parameters Ω2 follow:

τ0t
iid∼ N(0, 104), t = 1, . . . , 7,

τ1 ∼ N(0, 104),

log(ρ2t )
iid∼ N(0, 104), t = 1, . . . , 7,

log(φ) ∼ N(0, 104).

Full conditionals and posterior sampling strategy concerning these parameters are given in

Appendices A.4.2 and A.4.3.

5.4 Data example

In this section, we analyze the ECODESS data with our model. We ran both first and

second stage algorithms for 100,000 iterations, discarding the first 50,000 samples as burn-in.

The resulting chain was thinned by saving every 50-th iteration.

Marginal posterior density estimates for parameters β1 (temperature), β2 (precipitation),

η (spatial index), and τ1 (remoteness) are shown in Figure 5.3. The 95% highest posterior

density (HPD) intervals for temperature and precipitation cover zero, indicating temperature

and precipitation do not have a significant association with diarrheal cases. However, both

spatial index and remoteness exhibit a negative association with cases. After adjusting for

population density, larger numbers of cases appear in areas of dense housing, consistent with

previous reports (Bates et al., 2007). Furthermore, the more remote the community, the

fewer cases of diarrhea are observed. As argued by Eisenberg et al. (2006), more remote

communities have less migration which possibly lowers disease transmission. Figure 5.4 shows

marginal estimates of μcom and σ2
com: the population level mean and variance of the random

intercepts μcom
c , as well as the time specific mean contributions, μtime

t . The population level

mean contribution is μcom = −2.05 with variance of σ2
com = 0.33, exhibiting some variation

in cases across communities. Regarding temporal changes to the mean of the intensity,
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substantive changes occur at cycles 2 and 6, with contribution to the mean of −0.71 and

−0.65 respectively, indicating a decrease in cases at these two time points.

Next we considered the predictive performance of our model. First, we selected four

communities, out of 21, at which we assess internal prediction performance. The four com-

munities chosen are Timbire, Roca Fuerte, Vaquerita, and Santo Domingo, as highlighted

in Table 5.1. These four communities were chosen based on their remoteness to Borbón

and their population sizes (Timbire and Roca Fuerte are not remote whereas Vaquerita and

Santo Domingo are remote. Timbire and Santo Domingo have large populations whereas

Roca Fuerte and Vaquerita have small populations). We then fitted our model on the re-

maining 17 communities and compared the predicted number of cases with the observed

number of cases at the remaining four communities. As a baseline comparison, we also fit-

ted a Poisson spatial Kriging model or PSK (Christensen and Ribeiro, 2002) to predict the

number of cases at these four communities, given data from the remaining 17 communities.

In the Poisson spatial Kriging model, we used remoteness as the sole predictor. The PSK

was fitted at each cycle independently of the other cycles. For the PSK, the same Gaussian

correlation function was used (i.e., we plugged in the posterior estimates of ρ̂2t and φ̂ from

our model). Results from both methods are reported in Table 5.3. Both methods seem to

perform fairly well in that, for the most part, 95% HPD intervals of the predicted counts at

these four communities at all cycles cover the observed number of cases. Compared to our

method, the PSK provides wider HPD intervals. This is possibly because the PSK estimates

parameters at each cycle independently whilst μcom
c and τ1 in our model are shared across

all cycles. Note that our model may underestimate the uncertainty as we use the stage I

results as observed data.

We computed a discrepancy measure, the integrated relative mean squared prediction

error (IRMSPE) in terms of the counts, IRMSPEC =
∑7

t=1

∑4
c′=1(N̂c′,t − nc′,t)

2/nc′,t
2. Here
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nc′,t is the observed count at community c′ at cycle t and N̂c′,t is the corresponding predicted

count. The discrepancy measure IRMSPEC values for our method and for the PSK are 3.37

and 5.67, respectively. This suggests that our proposed model gives more accurate internal

prediction.

The ECODESS study is ongoing. At cycle 8, 24 communities participated. In this cycle,

8 new communities were introduced and five original communities from the first 7 cycles

were excluded. We ran our model to perform external validation at cycle 8 data. This

includes prediction of cycle 8 data for the four communities used for internal prediction

plus four new communities that were unsampled in the first 7 cycles (Yalares, Valdez, Loma

Linda, and El Progreso). We use τ̂0, the averaged value of τ̂0t, t = 1, . . . , 7, in the second

stage of our method. For the PSK, the average number of cases at each community over 7

cycles are used. Results are given in Table 5.4. Both approaches predict relatively poorly

at new communities, compared to good performance at the original four communities. We

also obtained IRMSPEC statistics, 2.32 and 3.59 for our method and the PSK respectively.

According to IRMSPEC , our method shows better predictive performance compared with

the PSK approach.

Remark: Figure 5.5 displays predicted counts at the 106 unsampled communities

obtained from our model and from the PSK at cycles 5 and 6. Without the truth, the best

we can do is note that both models give similar results.

5.5 Simulation study

In this section, we report on a simulation study that examines the performance of our

proposed model. We investigate both the community-level spatial effect and global-level

spatial effect on the accuracy of prediction. We generate simulated datasets based on the

following setups.
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We consider a 256 × 256 grid with cells B = (B)i,j, i, j = 1, . . . , 256 on a global study

window S = [0, 1]2. In B, we assign nine boxes, each containing 64 × 64 cells, which will

represent communities (Figure 5.6). These nine boxes cover 56% of the global study window.

The remaining area is considered non-resident area as in the ECODESS study. We assume 3

cycles. Then, we generate points on cells (B) in the nine boxes based on an LGCP with an

approximated intensity Λ̃c,t(s) = exp(Ỹc,t(s)+ δ1S̃1c(s)+ δ2S̃2c), s ∈ B at box c, c = 1, . . . , 9,

and time t, t = 1, . . . , 3, in which a homogeneous process is assumed within each cell of B.

Here Ỹc,t(s) is an approximated GRF on box c at time t. The mean of Ỹc,t(s) is μ
com
c +μtimet

where we assign μcom
c

iid∼ N(μcom, 0.1), c = 1, . . . , 9, to allow some community-wise variation

and μtime = −0.5 for a decreasing linear trend over time in the mean intensity. We assume the

same Gaussian correlation function for the covariance of Ỹc,t(s) across all c: σ
2
t exp(−α‖d‖2)

where σt
2 = 1 and α = 1024. With this correlation function, the correlation between two

neighboring cells in B (d=0.004) is 0.985 whilst the correlation between two neighboring

boxes (d=0.125) is approximately zero. The within-community spatial covariate S̃1c(s) for

c = 1, . . . , 9 is defined by the Euclidean distance between the left top corner of box c and all

cells in box c, respectively. On the other hand, the global-level spatial covariate S̃2c is defined

as the Euclidean distance between the center of each box c and the (78, 136)-th cell in B.

Thus, a SMP exists between S̃1c(s) and S̃2c. One-hundred such datasets were simulated.

We assume that the data from 8 boxes are observed and used to fit the model. Fur-

thermore, we assume points from one remaining box are unobserved in which we perform

prediction.

Four scenarios are considered: 1) (δ1, δ2, μcom) = (1, 0, 8), 2) (δ1, δ2, μcom) = (1,−1.5, 8.65),

3) (δ1, δ2, μcom) = (0, 0, 8.25), and 4) (δ1, δ2, μcom) = (0,−1.5, 8.85). Each scenario depends

on whether there exists a community-level spatial effect and whether there exists a global-

level spatial effect. We adjust the hyper prior mean, μcom, to give approximately 3,000 points
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at time t = 1. Note that S̃1c(s) is considered in stage I whereas S̃2c is only considered in

stage II of our model. We also present the result from the PSK approach which uses count

data on the eight sampled boxes at each cycle and predicts counts on the unsampled box

using the covariate S̃2c. For the PSK, we assume the covariance is known.

We evaluate each parameter estimate via bias and mean squared error of the posterior

median. We also quantify the discrepancy between observed counts and estimated or pre-

dicted counts by calculating the integrated relative mean squared error, IRMSEC , and the

integrated relative mean squared prediction error, IRMSPEC :

IRMSEC =
3∑

t=1

∑
x∈sampled

(N̂x,t − nx,t)
2

n2
x,t

,

IRMSPEC =
3∑

t=1

∑
x∈unsampled

(N̂x,t − nx,t)
2

n2
x,t

.

Similarly, we evaluate the intensity function estimate by calculating the integrated relative

mean squared error, IRMSEI , and the predictive intensity by calculating the integrated

relative mean squared prediction error, IRMSPEI :

IRMSEI =
3∑

t=1

∑
x∈sampled

(Λ̂x,t − λx,t)
2

λ2
x,t

,

IRMSPEI =
3∑

t=1

∑
x∈unsampled

(Λ̂x,t − λx,t)
2

λ2
x,t

.

Here nx,t is the true number of points from the box x at cycle t, N̂x,t is the estimated

counts for the sampled box or the predicted counts for the unsampled box. Similarly, λx,t

is the averaged true intensity used for generating points in box x at cycle t and Λ̂x,t is the

corresponding estimated, or predicted, intensity. Small value of these four statistics indicate

better estimation and prediction.

Under each scenario, we ran a half million iterations. The first half of the posterior

samples were discarded and the chain was thinned by saving every tenth iteration. The

remaining 25,000 samples were used to calculate simulation statistics.
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We present the simulation results in Table 5.5. Under all scenarios, parameter estimation

of μtime and δ1 have small biases while σ2
t has a somewhat larger bias (Table 5.5.(a)). When

we compare the results from scenarios 1 and 2 and scenarios 3 and 4, the presence of a

global spatial effect δ2 does not affect the bias of μcom. However, uncertainty in μcom
c in-

creases by including a non-null δ2. Table 5.5.(b) shows the results of IRMSEI and IRMSEC .

These discrepancy measures do not depend upon the presence of a global-level spatial ef-

fect. However, the accuracy of estimation increases when a community-level spatial effect is

introduced. According to the estimated prediction measures IRMPSEC and IRMPSEI , we

can see that the prediction accuracy increases, as we introduce a global-level spatial effect,

however, this accuracy does not change with the inclusion of a community-level spatial ef-

fect. Compared with the results from the PSK approach, our proposed model yields lower

discrepancy measures indicating more accurate prediction.

5.6 Discussion

In this Chapter, we proposed a Bayesian two-stage spatio-temporal point process approach

based on a log Gaussian Cox process to model case patterns from a serial case-control study

of diarrheal disease in a rural province of Ecuador. In stage I we adopted the LGCP model

that allows us to build a parametric model for the intensity function which can accommodate

geographically referenced spatial indices and temporal covariates such as precipitation and

temperature over 21 widespread communities over seven time cycles. Compared to previous

spatial studies, in this analysis we used a relatively high resolution equipped with a spatially

referenced covariate in order to assess its spatial effect in detail at individual communities

with varying sizes. In stage II, we predict the number of diarrheal cases at unsampled

communities conditional on the estimated intensities of 21 communities obtained in stage I.

The Bayesian inferential framework is a natural choice offering flexible modeling and efficient
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computational algorithms. Consequently, the proposed method provides practical spatial and

temporal perspectives on diarrheal disease prevalence. In accordance with previous findings

from the ECODESS study, our results show a negative association between spatial index

and the number of cases. Regarding temporal covariates, precipitation and temperature do

not appear to be related to case patterns. In addition, more remote communities have fewer

cases after adjusting for population differences.

There are several limitations of our current analysis. First, we ignored correlation across

cycles. If strong temporal correlation exists, we can employ the modeling approach of Brix

and Diggle (2001) to include a spatio-temporal correlation structure. In this context, the

degree of gain in accuracy depends upon the strength of the temporal dependence as well

as the appropriate correlation structure as discussed in Brix and Diggle (2001). Second, we

ignored the uncertainty in the stage I posterior estimates using only point estimates for for

prediction in stage II. A joint likelihood would alleviate this limitation.

As the original study design is a matched case-control study, in the future we will con-

sider a marked point process model to differentiate the two types of outcomes: cases and

controls. In addition, with community level factors studied herein, incorporating individual

risk factors, typically non-spatial covariates, into the intensity model will be investigated in

the future. As suggested by Liang et al. (2009), we can use continuous risk factors such

as age and sanitation level by introducing interaction terms with spatially or temporally

varying covariates. To do this, the study domain needs to be extended to the product space

S × T × V where S denotes space, T denotes time, and V denotes individual risk factors.
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Table 5.2: Covariate summaries by community.
Community Precipitation(mm)/Temperature(◦C) Spatial Index (m)

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 median (min, max)

San Agustin 0.4/25.8 0.2/27.0 0.3/26.8 0.2/26.6 0.1/26.1 0.5/26.1 0.0/25.5 4.3 (1.7, 5.0)
Colon Eloy 0.3/26.1 0.2/26.8 0.3/26.7 0.2/26.5 0.2/25.9 0.5/26.1 0.0/25.4 3.3 (1.7, 4.1)
Naranjal 0.4/26.6 0.1/26.4 0.3/26.2 0.1/26.5 0.3/25.8 0.4/26.1 0.0/26.1 4.4 (-0.1, 5.3)
Timbire 0.1/25.8 0.5/26.2 0.3/25.4 0.2/25.9 0.3/25.8 0.6/26.1 0.2/25.1 3.4 (1.9, 4.3)
Roca Fuerte 0.4/26.0 0.3/25.5 0.3/26.4 0.1/26.2 0.2/25.8 0.5/26.1 0.0/25.5 2.1 (0.2, 3.0)
La Loma 0.3/26.8 0.1/26.6 0.3/26.4 0.1/26.6 0.2/25.8 0.3/26.1 0.0/26.1 4.8 (0.2, 5.4)
Ranchito 0.4/26.6 0.1/26.4 0.3/26.2 0.1/26.5 0.2/25.8 0.4/26.1 0.0/26.1 3.8 (0.1, 4.5)
Quinto piso 0.3/26.0 0.3/26.6 0.4/26.6 0.2/26.4 0.2/25.8 0.6/26.1 0.0/25.4 4.8 (0.7, 5.3)
La Pena 0.4/26.0 0.4/25.4 0.3/26.3 0.1/26.1 0.2/25.8 0.6/26.1 0.0/25.4 1.9 (0.0, 2.8)
Las Cruces 0.4/26.3 0.1/25.8 0.5/27.1 0.1/26.3 0.4/25.8 0.5/26.1 0.0/26.0 3.5 (0.1, 4.3)
Tangare 0.3/25.6 0.1/25.6 1.3/26.0 0.1/26.1 0.5/25.8 0.3/26.6 0.0/26.0 3.2 (1.0, 4.1)
El Rosario 0.3/25.2 0.1/25.2 0.6/26.8 0.1/25.9 0.5/25.8 0.5/26.1 0.0/25.7 2.9 (-3.1, 3.7)
Guayabal 0.5/25.3 0.6/25.8 0.3/25.2 0.2/25.7 0.3/25.6 0.7/26.1 0.2/25.0 2.2 (0.2, 3.1)
Arenales 0.4/26.0 0.4/25.6 0.3/26.1 0.7/25.7 0.3/25.8 0.2/25.8 0.0/25.9 4.4 (1.2, 5.2)
Wimbi 0.5/25.8 0.4/25.2 0.3/26.0 0.1/25.9 0.2/25.8 0.7/26.1 0.0/25.2 2.4 (0.5, 3.2)
Playa de Oro 0.6/24.5 0.6/25.0 0.2/24.7 0.1/25.3 0.3/25.2 0.9/26.1 0.1/24.5 2.0 (1.0, 2.8)
Trinidad 0.4/25.3 0.1/25.2 0.6/26.7 0.8/25.4 0.5/25.8 0.5/26.1 0.0/25.6 1.6 (0.2, 2.3)
Telembi 0.4/25.3 0.4/25.3 0.7/26.7 0.8/25.4 0.6/25.8 0.5/26.1 0.0/25.6 2.6 (1.2, 3.5)
Vaquerita 0.4/26.0 0.4/25.6 0.3/26.0 0.7/25.7 0.4/25.8 0.3/25.8 0.0/26.5 2.4 (-0.2, 3.1)
Santo Domingo 0.5/26.0 0.4/25.5 0.3/26.0 0.7/25.7 0.4/25.8 0.4/26.4 0.0/25.9 3.8 (1.2, 4.5)
San Miguel 0.6/25.7 0.4/25.3 0.9/26.7 0.8/25.4 0.7/25.8 0.5/26.1 0.0/25.7 1.9 (-0.4, 2.6)
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Table 5.3:
Prediction results for four selected communities. The numbers in the parenthesis are the 95%
highest posterior density (HPD) intervals.

Community Method Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7

True 11 10 5 11 17 6 10
Timbire Our model 9 (2, 14) 8 (2, 12) 9 (3, 14) 10 (4, 17) 12 (6, 20) 7 (2, 13) 8 (3, 14)

PSK 11 (1, 27) 10 (1, 23) 9 (1, 22 ) 17 (2, 42) 18 (2, 46) 9 (1, 23) 10 (1, 23)
True 7 2 3 7 4 5 4

Roca Fuerte Our model 3 (0, 6) 2 (0, 5) 3 (0, 6) 3 (0, 7) 4 (0, 8) 2 (0, 5) 2 (0, 5)
PSK 4 (1, 10) 4 (1, 9) 4 (0, 8) 4 (0, 8) 5 (1, 10) 2 (0, 5) 3 (0, 8)
True 0 1 3 2 3 0 0

Vaquerita† Our model 0 (0, 2) 0 (0, 2) 0 (0, 2) 0 (0, 2) 1 (0, 3) 0 (0, 2) 1 (0, 3)
PSK 1 (0, 2) 1 (0, 2) 1 (0, 2) 0 (0, 1) 1 (0, 2) 0 (0, 1) 1 (0, 2)
True 10 4 8 10 10 4 11

Santo Domingo Our model 8 (2, 18) 8 (2, 17) 8 (1, 17) 9 (1, 18) 10 (1, 21) 5 (0, 11) 6 (1, 13)
PSK 9 (1, 22) 8 (1, 19) 9 (1, 24) 16 (1, 41) 16 (2, 42) 7 (1, 17) 6 (1, 16)

* Rounded predicted numbers are shown.
†Vaquerita is excluded in calculating IRMSPEC to avoid division by zero.

Table 5.4:
The number of predicted cases from eight communities out of 24 communities at cycle 8 where
four communities are sampled in the previous cycles and four communities are newly sampled. The
numbers in the parenthesis are 95% HPD credible intervals.

Predicted number of cases
Community Distance(km) Size Population Observed Our model PSK

Original

Timbire 20.59 83 × 50 517 9 10 (8, 12) 8 (4, 11)
Roca Fuerte 19.99 25×18 141 2 3 (2, 4) 5 (2, 9)
Telembi 32.76 43×24 388 5 9 (7, 11) 5 (3, 7)
Santo Domingo 34.05 89×29 420 7 6 (4, 7) 5 (3, 8)

New

Yalares 13.13 166 × 104 146 12 4 (2, 5) 5 (2, 10)
Valdez 16.14 173 × 122 336 9 9 (7, 11) 8 (4, 14)
Loma Linda 38.66 126 × 98 262 17 7 (5, 8) 4 (2, 7)
El Progreso 41.12 50 × 126 123 9 2 (1, 3) 4 (2, 7)

* Rounded predicted numbers are shown.

Table 5.5: Simulation results.
Scenario 1 (δ2 = 0) μC σ2

C σ2
1 σ2

2 σ2
3 βt δ1

True value 8.0 0.01 1.0 1.0 1.0 -0.5 1.0
bias 0.05 0.06 -0.08 -0.010 -0.13 -0.02 -0.05
MSE 0.03 0.00 0.01 0.01 0.02 0.00 0.49

Scenario 2 (δ2 ≈ −1.5) μC σ2
C σ2

1 σ2
2 σ2

3 βt δ1
True value 8.65 0.01 1.0 1.0 1.0 -0.5 1.0
bias 0.03 0.13 -0.08 -0.10 -0.11 -0.01 -0.02
MSE 0.02 0.02 0.01 0.01 0.02 0.00 0.50

Scenario 3 (δ2 = 0) μC σ2
C σ2

1 σ2
2 σ2

3 βt δ1
True value 8.25 0.01 1.0 1.0 1.0 -0.5 0.0
bias 0.01 0.06 -0.08 -0.09 -0.11 -0.01 -0.03
MSE 0.04 0.00 0.01 0.01 0.02 0.00 0.63

Scenario 4 (δ2 ≈ −1.5) μC σ2
C σ2

1 σ2
2 σ2

3 βt δ1
True value 8.85 0.01 1.0 1.0 1.0 -0.5 0.0
bias -0.02 0.13 -0.07 -0.10 -0.11 -0.02 0.01
MSE 0.02 0.02 0.01 0.01 0.02 0.00 0.50

(a)

Scenario IRMSEC IRMSPEC IRMSPE†
PSK IRMSEI IRMSPEI

1 0.0158 0.0027 0.0085 1.175 0.211
2 0.0157 0.0021 0.0086 1.156 0.198
3 0.0165 0.0031 0.0091 1.137 0.201
4 0.0162 0.0022 0.0093 1.148 0.184

†PSK : Poisson spatial Kriging.

(b)
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Figure 5.2:
Spatial and temporal changes in diarrheal cases in Esmeraldas province across 4 selected cycles.
One unit on the 35× 45 grid corresponds to 1.1km.
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Figure 5.3: Marginal posterior densities.
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Figure 5.5:
Predicted number of cases at unsampled communities (red) at cycles 5 and 6. Observed number
of cases at sampled communities are shown in blue. Left column: results from our proposed
model. Right Column: results from the PSK. One unit on each axis corresponds to 1.1km.



115

Figure 5.6:
Left panel shows point patterns on the global study window. Right panel shows point patterns
on 9 rectangular boxes including eight training boxes and one validation box. The region outside
the boxes are considered unpopulated areas where no ‘case’ can occur.



CHAPTER VI

Discussion

6.1 Discussion

Case-control studies have attracted research attention of epidemiologists as well as statis-

ticians for decades. In this dissertation, we developed methods to deal with three novel

problems under case control sampling scheme. In Chapter II, we proposed a Bayesian in-

ference under the stereotype regression model for cancer subtypes in matched case control

study. Following the work in Chapter II, in Chapter III we presented expectation/conditional

maximization algorithm as well as a full Bayes procedure with data augmentation to handle

non-ignorable missingness in covariates under the stereotype regression model. We pro-

posed a flexible Bayesian approach to estimate gene-gene (G x G) and gene-environment

(G x E) interactions under two-phase sampling with potential missingness in genetic covari-

ates in Chapter IV. Finally, we proposed a Bayesian two stage spatio-temporal point process

model to analyze a serial case-control study of diarrheal disease carried out in the developing

country Ecuador. The proposed approach involves community-wise association study with

spatial/temporal predictors and prediction of disease prevalence at unsampled communities.

Since most of the modeling techniques are fairly new in this domain, there are many pend-

ing issues in relation to this dissertation and possible extensions beyond this dissertation.

Though the work on Chapter II and III are fairly complete, there are possible extensions of

116
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the stereotype regression model in the Bayesian framework that need further explorations.

One can consider a more flexible semi-parametric model for the exposure distribution com-

pared to the models belong to exponential family and the missingness mechanism. For exam-

ple, modeling for mixture of continuous and categorical exposures using the kernel-mixture

extension discussed in Bhattacharya and Dunson (2011) will be an interesting alternative.

Also, handling missingness with correlated or clustered observations as in a longitudinal co-

hort study under this class of models is of interest. In the same context, a random effect

approach on the stratum effects as pointed out by Rice (2008) is also a plausible alternative

rather than using conditional likelihood. This will reduce the bias under data missing at

random for complete-case analysis. One can also explore how to further reduce computa-

tional complexity due to non-linearity, lack of identifiability in the parameters, and missing

data under the frequentist framework.

Apart from the theoretical and methodological aspects in Chapter IV, implementation of

the hierarchical Bayesian methods with a rather complex posterior space can pose potential

problems. In this respect, our method in the presence of a truly high-dimensional gene model

> 50 needs to be addressed. This includes handling not only high-dimensional pairwise G x

E interactions in the disease risk model but also G-E associations in the association model

and calculation of P (D) in the denominator of the retrospective likelihood. For modeling

general types of predictors, we can consider mixed set of discrete and continuous covariates

following Bhattacharya and Dunson (2011).

In relevance to Bayesian spatio-temporal modeling in Chapter V, there are a gamut of

issues that need to be further studied. With the original study design in mind, we can

consider a marked-point process model to differentiate two types of outcomes, case and

controls, as attempted in Liang et al. (2009). In addition, we can introduce individual risk

factors, such as age, into the intensity model by allowing interaction terms with spatially
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or temporally varying covariates. We can potentially consider adapting non-separable time-

spatial covariance structure by Gneiting (2002) into modeling intensity. The two stage

approach we currently present underestimate the estimator uncertainty. A joint likelihood

that integrates the two stages will be developed as a part of our future work.

To conclude, the current thesis is expected to generate new ideas for further propagation

of Bayesian thoughts under complex and novel sampling/data structure that are related to

variations of case-control sampling designs.



APPENDICES

119



120

APPENDIX A

Appendix

A.1 Chapter II : Supplementary Material

A.1.1 Testing of hypotheses in stereotype regression model

As indicated in the main text, the multiplicative nature of the stereotype model poses

some issues for testing the null hypothesis of independence H0 : β = 0 in the likelihood based

framework. Under this global null hypothesis, the score parameters {φk} are not identifiable.

McCullagh (1984) pointed out in the discussion of Anderson (1984) that the approximate

null distribution of the likelihood-ratio statistic is that of the largest eigenvalue of a Wishart

matrix (Haberman, 1981). The testing problem under such non-regular conditions remains

to be explored in the frequentist domain for this class of models. Theories developed for

modified partial likelihood ratio test (Hanfelt and Liang, 1995; Chen et al., 2001) could be

useful in deriving a suitable test under this class of models.

The Bayesian paradigm provides a natural alternative to bypass the testing dilemma

under a non-identifiable parameter setting. One natural approach is to examine the HPD

confidence intervals for a set of plausible values of β supported by the data. One can

also compare exact posterior probabilities of the null model and the unrestricted model by

comparing Bayes factors (Berger, 1985), without relying on asymptotic theory for the LR

statistic.
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Bayes factors are typically used to compare two competing models M1 and M2 by calcu-

lating the ratio of the marginal likelihood under the two models:

BF (M2;M1) =

∫
p(θ2|M2)p(y|θ2,M2)dθ2∫
p(θ1|M1)p(y|θ1,M1)dθ1

=
p(M2|y)/p(M2)

p(M1|y)/p(M1)
.

For the purpose of testing our hypotheses of interest which are often of the form H0 : θ ∈ Θ0,

we consider M1 as the space θ ∈ Θ0 and M2 as the space defined by the alternative, Ha :

θ ∈ Θ1. In many situations Θ1 = Θc
0 and thus, p(M2|y) = 1− p(M1|y). In this Chapter, we

use proper priors on the parameters and avoid testing a point null hypothesis by defining Θ0

to be an interval or ball around the standard point null of interest, that has positive prior

probability.

Another hypotheses of interest in the stereotype regression model is to test whether the

categories k and l are indistinguishable in terms of the predictors by testing the simple

hypotheses H0 : φk = φl. Tests for ordering property of {φk} or for the hypothesis of equal

spacing of {φk} can also be easily carried out as the choice between models of different levels

of complexity is made within the same hierarchy of models. Such tests of ordering as well

as indistinguishability among categories can indicate whether the data support stochastic

ordering of outcomes or collapsing across categories. The model also allows one to calculate

a measure of how different category k vs l are by simply estimating |φk − φl|. Empirically,

one would choose the simplest model which will best fit the data.

Under β �= 0, one can continue testing the indistinguishability hypotheses for a subset

of s categories s < K, as well as H0 : φk = φl for s = 2. The likelihood ratio statistic

has a standard chi-squared distribution with df=s− 1. One can compare the general model

to the model with equally spaced fixed scores or with the polytomous logit model, also by

using likelihood ratio chi-squared statistic. Comparison between the ordered and unordered

model can be carried out by comparing the deviance statistic or through other popular model

selection criteria. We illustrate the hypotheses testing issues further through our real data



122

example.

A.1.2 Hypotheses testing in the Flint Men’s Health Study

We performed evaluation of three hypotheses of common interest for illustrative pur-

poses. Namely: (i) the indistinguishability hypotheses that the scores φ1 and φ2 are not

considerably different. (ii) the hypotheses of global independence that age and PSA have no

association with the stages of cancer and (iii) the hypotheses that after controlling for PSA,

age and stages of cancer have no conditional association. In the Bayesian framework, the

first hypotheses in (i) can be tested by comparing the posterior odds of |φ1 − φ2| ∈ (0, ε) for

a small value of ε, normalized by prior odds. For (ii) one can evaluate the posterior odds

of the joint probability β1 ∈ (−ε1, ε1) and β2 ∈ (−ε2, ε2) whereas (iii) warrants evaluation

of the probability β1 ∈ (−ε1, ε1). All the hypotheses are evaluated for small but arbitrary

values of εl, l = 1, 2.

The generated sequence of posterior observations on each parameter allow us to obtain

the posterior probabilities of each hypotheses under consideration and the prior odds can be

evaluated under the assumed prior choices, finally providing us with a Bayes factor for H0

against Ha. We recognize that the Bayes factor is sensitive to the choice of ε and the prior

odds. With ε = 0.1 and ε1 = ε2 = 0.5, the Bayes Factors for hypotheses (i), (ii) and (iii) are

respectively 4.45, ≈ 0.0, 4.86 for the ordered model and 4.33, ≈ 0.0, 4.76 for the unordered

model. The tentative results indicate evidence in favor of (i) and (iii) but overwhelming

evidence against (ii) due to large effect of β2 corresponding to PSA. As described before,

there is no appropriate test for the global null hypothesis (ii) in the frequentist setting due

to non-regular conditions, but under β �= 0, we can test the indistinguishability hypotheses

(i) H0 : φ1 = φ2 under the ML approach. The likelihood ratio statistic 1.625 has a standard

chi-squared distribution with df=1, with a corresponding p-value of 0.20. We also test the

null hypothesis of association between age and stage after controlling for PSA H0 : β1 = 0
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via the LR test, and the likelihood ratio statistic has value 4.33 with a p-value of 0.04, a

conclusion different from the one obtained by Bayesian methods.

We repeat the evaluation of hypotheses (i)-(iii) as discussed above with the matched

dataset. With identical values for ε and εl, l = 1, 2. The Bayes factors in favor of the null

model are respectively 0.43, ≈ 0.0, and 0.86 for unordered stereotype model and 0.55, ≈

0.0, 0.66 for the ordered stereotype model. The evidence in favor of the indistinguishability

hypotheses (i) and the hypotheses of no conditional association of age and stage after control-

ling for PSA is weaker, falling in the zone of indecision according to the Bayes Factor values.

However, the evidence against (ii), the global null hypotheses of independence is again as-

tronomic. Under β �= 0, we can test of H0 : φ1 = φ2 in a ML framework. The likelihood

ratio chi-square statistic value for (i) is 0.33 and p-value of 0.56, illustrating the plausibility

of the indistinguishability hypotheses. Likewise, the likelihood ratio statistics for testing

H0 : β1 = 0 is 1.80 with p-value of 0.18, which shows evidence in favor of (iii). The condi-

tional multinomial logit model does not converge for estimation of log (OR) corresponding

to Stage 3 versus controls.

In order to test the simple hypotheses regarding the partial effect of each predictor,

namely age and transformed PSA one can also examine whether the null hypothesized value

of zero lies within the 95% HPD interval. Table A.1 with unmatched data illustrate that

transformed PSA is strongly associated with cancer stage (95% HPD: (3.39,5.15)) whereas

age is not associated (95% HPD: (-2.31,1.99)). Similar findings are noted in Table A.2 with

analysis of matched data.

We also investigated the evidence in favor of ordering in the φ via calculating the posterior

probability that the φ are monotone, i.e. π((0 = φ0 < φ1 < φ2 < φ3 = 1|Y,X, Z, S), while

fitting the unordered Bayes model. These posterior probabilities for unmatched and matched

datasets are 0.892 and 0.722 respectively, suggesting that the ordered model may be preferred
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in both instances, a finding that is consistent with the point estimates and the DICs noted

in Tables A.1 and A.2 .

Finally, in order to assess the reflection of the non-identifiability under β = 0, issue in the

Bayesian context we generated data from the null model β = 0 and noted that the posterior

dependence between β and φ is very weak, for any choice of φ.
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Figure A.1:
Posterior density estimates for the log odds-ratio parameters in the stereotype model for un-
matched FMHS data with numerical summaries as presented in Appendix Table A.1. The
log(OR) parameters of category k vs category 0 with covariates Xr, are represented by, φkβj ,
k = 1, 2, 3, 4, r = 1, 2 with X1 corresponding to the scaled age variable, and X2 corresponding
to log(1+PSA). The results are based on 10,000 observations generated from the posterior dis-
tribution of each parameter. The solid line corresponds to the unordered model, whereas the
dashed line corresponds to the ordered model.
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Figure A.2:
Posterior density estimates for the log odds-ratio parameters in the stereotype model for 1:3
matched FMHS data with numerical summaries as presented in Appendix Table A.2. The
log(OR) parameters of category k vs category 0 with covariates Xr, are represented by, φkβr,
k = 1, 2, 3, 4, r = 1, 2 with X1 corresponding to the scaled age variable, and X2 corresponding
to log(1+PSA). The results are based on 10,000 observations generated from the posterior
distribution of each parameter. The solid line corresponds to the unordered model, whereas the
dashed line corresponds to the ordered model.
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A.2 Chapter III : Supplementary Material

A.2.1 Generalization to Ci : Mi case:control matching

Our results could be directly generalized to the setting of a more general Ci : Mi

case:control matching ratio. Let Ni = Ci + Mi be the total number of observations in

stratum i. Let Cki be the number of cases in stratum i having response Yij = k, i.e., Cki =∑Ni

j=1 I(Yij = k), k = 1, · · · , K. The conditioning statistic in this case is {Cki, k = 1, · · · , K},

the number of cases of each type in stratum i. The conditional likelihood in stratum i is

Li =
exp(

∑K
k=1 φkβ

TSki)∑
{q1i,··· ,qKi}∈Ωi

exp(
∑K

k=1 φkβ
Tqki)

,

where Ski =
∑Ni

j=1 X ijI(Yij = k), is the sum of covariate vectors corresponding to the

cases of subtype k; and Ωi is the collection of all possible sum vectors (q1i, · · · , qKi) of the

form qki = X ilk1
+ . . .+X ilkCki

. The indices (l11, · · · , l1C1i
, · · · , lK1 , · · · , lKCKi

) is a subset of size

Ci =
∑K

k=1 Cki chosen from Ni elements to ensure that there are exactly Cki distinct entries

contributing to qki, k = 1, · · · , K. Therefore, the cardinality of Ωi is
(

Ni

C1i C2i ··· ,CKi

)
, the

number of ways to assign exactly Cki elements to the k-th category (after this assignment,

the remaining Mi = Ni − Ci are automatically controls). Thus, we partition Ni elements

into subsets of length {C1i, . . . , CKi,Mi}. The conditional likelihood Li is simply the prob-

ability of having the observed data, given that there are exactly Cki cases having Yij = k

in stratum i and remaining are controls. In a finite population sampling framework, Li

could also be interpreted as the probability that K random samples of size Cki are selected

without replacement from the finite population of size Ni with probability proportional to

exp(φkβ
�qki) where qki is the sum of the X ij’s selected in sample k = 1, · · · , K.
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A.2.2 Lemma 1 and 2: Statement in the general case

Let us denote the prospective model for the disease risk as given in 3.3 of the main text by

P (Yij = k|X ij,Zij, Si)/P (Yij = 0|X ij,Zij, Si) = ρk(X ij,Zij, Si), where ρk(·) is as described

in the RHS of (3.3) through the stereotype model, but could be a non-negative real-valued

function, in general. Then Lemmas follow by simply using the definition of conditional

probability and algebraic simplification of collected terms.

Lemma 1.

f(Xij|Zij, Yij = k, Si) =
f(Xij|Zij, Yij = 0, Si)ρk(Xij,Zij, Si)∫
ρ(Xij,Zij, Si)f(Xij|Zij, Yij = 0, Si)dXij

.

Lemma 2.

P (Yij = k|Zij, Si)

P (Yij = 0|Zij, Si)
=

∫
ρk(Xij,Zij, Si)f(Xij|Zij, Yij = 0, Si)dXij.

A.2.3 Lemma 1 and 2: Specific version for the exponential family of distributions

Assume that the exposure distribution in the controls belongs to the exponential family,

i.e.,

f(Xij|Si,Zij, Yij = 0) = exp[ξij{θijXij − b(θij)}+ c(ξij, Xij)].

The canonical parameters θij are modeled as a regression function of the completely observed

covariates Zij and Si, namely, θij = κ0 + κ�
1 Zij + κ2Si.

Lemma 1. The distribution of the exposure variable conditional on a disease subclass, Y = k,

namely, f(Xij|Si,Zij, Yij = k) is also of general exponential form with scale parameter ξij

and canonical parameter θ∗ijk = θij + ξ−1
ij φkβ1 for k = 1, · · · , K.

Lemma 2. Under the same set of assumptions, the marginal odds can be expressed as:

P (Yij = k|Si,Zij)

P (Yij = 0|Si,Zij)
= exp{β0k(Si) + φkβ2

�Zij} × exp[ξij{b(θ∗ijk)− b(θij)}].
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This Lemma can be adapted to simplify the conditional likelihood specified in (3.7) in the

main text.

A.2.4 ECM and Full conditionals when the missing exposure X is assumed to follow the
Bernoulli distribution.

We turn our attention to the situation when exposure distribution in the controls arises

from a Bernoulli distribution with pij = H(θij) where θij = κ0 + κ�
1 Zij + κ2Si, namely,

f(Xij|Yij = 0,Zij, Si) = exp [θijXij − log {1 + exp(θij)}] .

We can then express the exposure distribution within sub-types of cases as f(Xij|Yij =

ki,Zij, Si) = exp
[
θ∗ijXij − log

{
1 + exp(θ∗ij)

}]
where θ∗ij = θij + φkiβ1 based on Lemma 1 of

A.2.3. Using these expressions in (3.7) in the main context, we have, for the Bernoulli case,

Lcomp
cm =

N∏
i=1

M+1∏
j=1

[
H(δ0 + δ1Xij + δ2Yij + δ3Si + δ�4 Zij)

Rij

× {
1−H(δ0 + δ1Xij + δ2Yij + δ3Si + δ�4 Zij)

}1−Rij
]

×
N∏

i:Yi1=ki

exp
(
[{RijXij + (1−Rij)Xij}(θij + φkiβ1)− log {1 + exp(θij + φkiβ1)}]

)
×

N∏
i=1

M+1∏
j=2

exp
(
{RijXij + (1−Rij)Xij}θij − log {1 + exp(θij)}

)

×
N∏
i=1

exp
[
φkiβ

�
2 Zi1 + log

{
1+exp(θi1+φki

β1)

1+exp(θi1)

}]
∑M+1

j=1 exp
[
φkiβ

�
2 Zij + log

{
1+exp(θij+φki

β1)

1+exp(θij)

}] .(A.1)

Both the ECM and FB inference are developed based on the above complete data likelihood.

Similar expressions for X from a Normal distribution is presented in A.2.5

The ECM:

We can easily calculate the expected complete data log-likelihood in A.2.4 based on the



133

fact that p(Xij = 1|Yij,Zij, Si, Rij = 0) has a Bernoulli distribution with known structure

with a mean H{ψij(θ)} = p(Xij = 1|Yij,Zij, Si, Rij = 0) where ψij(θ) = θij + I(Yij =

ki)φkiβ1 + log{π̄ij(1)/π̄ij(0)}. Here πij(s) denotes H(δ0 + δ1s + δ2Yij + δ3Si + δ�4 Zij) and

π̄ij(s) = 1− πij(s). We can now express the three terms in (A.1) as:

L1(Θ
(t+1)) =

∑
(i,j):Rij=1

[
Xij{θij + I(Yij = ki)φkiβ1}

− log [1 + exp{θij + I(Yij = ki)φkiβ1}] + log{πij(Xij)}
]
,

E{L2(Θ
(t+1))} =

∑
(i,j):Rij=0

(H{ψij(θ)}[θij + I(Yij = ki)φkiβ1 + log{π̄ij(1)}])

+
∑

(i,j):Rij=0

(
[1−H{ψij(θ)}] log{π̄ij(0)} − log [1 + exp{θij + I(Yij = ki)φkiβ1}]

)
,

L3(Θ
(t+1)) =

N∑
i=1

{
φkiβ

�
2 Zi1 + log

{
1 + exp(θi1 + φkiβ1)

1 + exp(θi1)

}

− log
(M+1∑

j=1

exp
[
φkiβ

�
2 Zij + log

{
1 + exp(θij + φkiβ1)

1 + exp(θij)

}])}
.

We then follow the ECM steps outlined in Section 3.3.1.

The Bayesian Route:

We can obtain the following full conditional distributions of the model parameters, given the

augmented data, by using the likelihood in (A.1) and the prior structure as in (3.12).

π(β1|·) ∝
exp

(
− 1

2σ2
β1

[
β1 − μβ1 − σ2

β1

∑N
i=1 φki {Ri1Xi1 + (1−Ri1)Xi1}

]2)
∏N

i=1

∑M+1
j=1 exp

[
φkiβ

�
2 Zij + log

{
1+exp(θij+φki

β1)

1+exp(θij)

} ] ,

π(β2r|·) ∝
exp

{
− 1

2σ2
β2

(β2r − μβ2r − σ2
β2

∑N
i=1 φkiZi1r)

2
}

∏N
i=1

∑M+1
j=1 exp

[
φkiβ

�
2 Zij + log

{
1+exp(θij+φki

β1)

1+exp(θij)

} ] ,

π(φk|·) ∝
exp

{
−

(
φk−μφk

−2σ2
φk

∑N
i=1 I(Yi1=k)

[
β�

2 Z i1+β1{Ri1Xi1+(1−Ri1)Xi1}
])2

2σ2
φk

}
∏N

i=1

∑M+1
j=1 exp

[
φkiβ

�
2 Zij + log

{
1+exp(θij+φki

β1)

1+exp(θij)

}] ,
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π(δq|·) ∝
exp

{
− 1

2σ2
δ
(δq − μδq − σ2

δ

∑N
i=1

∑M+1
j=1 RijVijq)

2
}

∏N
i=1

∏M+1
j=1

[
1 + exp

{
δ0 + δ1(RijXij + (1−Rij)Xij) + δ2Yij + δ3Si + δ�4 Zij

}] ,
where Vij0 = 1, Vij1 = Yij, Vij2 = Xij, Vij3 = Si.

π(δ4r|·) ∝
exp

{
− 1

2σ2
δ
(δ4r − μδ4r − σ2

δ

∑N
i=1

∑M+1
j=1 RijZijr)

2
}

∏N
i=1

∏M+1
j=1

[
1 + exp

{
δ0 + δ1(RijXij + (1−Rij)Xij) + δ2Yij + δ3Si + δ�4 Zij

}] ,
π(κ0|·) ∝

exp

(
− 1

2σ2
κ

[
κ0 − μκ0 − σ2

κ

∑N
i=1

∑M+1
j=1 {RijXij + (1−Rij)Xij}

]2)
∏N

i=1

∑M+1
j=1 exp

[
φkiβ

�
2 Zij + log

{
1+exp(θij+φki

β1)

1+exp(θij)

}]
×

N∏
i=1

M+1∏
j=1

1

1 + exp(θij)
,

π(κ1r|·) ∝
exp

(
− 1

2σ2
κ

[
κ1p − μκ1p − σ2

κ

∑N
i=1

∑M+1
j=1 {RijXij + (1−Rij)Xij}Zijr

]2)
∏N

i=1

∑M+1
j=1 exp

[
φkiβ

�
2 Zij + log

{
1+exp(θij+φki

β1)

1+exp(θij)

}]
×

N∏
i=1

M+1∏
j=1

1

1 + exp(θij)
, r = 1, . . . , p,

π(κ2|·) ∝
exp

(
− 1

2σ2
κ

[
κ2 − μκ2 − σ2

κ

∑N
i=1

∑M+1
j=1 {RijXij + (1−Rij)Xij}Si

]2)
∏N

i=1

∑M+1
j=1 exp

[
φkiβ

�
2 Zij + log

{
1+exp(θij+φki

β1)

1+exp(θij)

}]
×

N∏
i=1

M+1∏
j=1

1

1 + exp(θij)
,

where r = 1, . . . , p, k = 1, . . . , K − 1 and q = 0, . . . , 3. Conditional on the current value of

the sampled Θ, we sample Xij from the conditional distribution p(Xij = 1|Yij,Zij, Si, Rij =

0) = H{ψij(θ)}, where ψij(θ), is exactly as defined in the ECM approach. The Bayesian it-

erative computation scheme as described in Section 3.3.2 of the main context is then followed.

A.2.5 ECM and Full conditionals when the missing exposure X is assumed to follow a normal
distribution.

For the purpose of illustration, in addition to the binomial setting presented above, we

extend the ECM and the full Bayesian approaches to the case where the exposure distribution

in controls follows a Normal distribution with the mean θij and unknown variance σ2. The
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canonical mean parameter modeled as θij = κ0 + κ�
1 Zij + κ2Sij. Thus,

f(Xij|Si,Zij, Yij = 0) = exp

⎧⎨⎩(θijXij − θ2ij
2
)

σ2
− X2

ij

2σ2
− 1

2
log(2πσ2)

⎫⎬⎭ .

Based on Lemma 1 of A.2.3, we can obtain θ∗ij = θij + σ2φkiβ1 for the distribution of Xij

in disease category Yij = ki. Now we can develop the complete likelihood in an identical

manner as for binary X in the main text, namely,

Lcomp
cm ∝

N∏
i=1

M+1∏
j=1

[
H(δ0 + δ1Xij + δ2Yij + δ3Si + δ�4 Zij)

Rij

×
{
1−H(δ0 + δ1Xij + δ2Yij + δ3Si + δ�4 Zij)

}1−Rij
]

×
N∏

i:Yi1=ki

exp

{
−Rij(Xij − θij − σ2β1φki)

2

2σ2
− (1−Rij)(Xij − θij − σ2β1φki)

2

2σ2

}

×
N∏
i=1

M+1∏
j=2

exp

{
−Rij(Xij − θij)

2

2σ2
− (1−Rij)(Xij − θij)

2

2σ2

}
× exp

{
−N(M + 1)

2
log(σ2)

}

×
N∏
i=1

exp
{
φki

(
β2

�Zi1 + β1θi1
)}∑M+1

j=1 exp
{
φki

(
β2

�Zij + β1θij
)} .(A.2)

The ECM:

Applying logarithm to the complete likelihood (A.2), we now derive lcomp
cm (Θ). Here L1(Θ

(t+1))

and L3(Θ
(t+1)) have closed forms as following,

L1(Θ
(t+1)) =

∑
(i,j):Rij=1

[
−{Xij − θij − I(Yij = ki)σ

2φkiβ1}2
2σ2

+ logH(δ0 + δ1Xij + δ2Yij + δ3Si + δ�4 Zij)

]

L3(Θ
(t+1)) =

N∑
i=1

[
φkiβ

�
2 Zi1 + φkiβ1θi1 − log

{
M+1∑
j=1

(φkiβ
�
2 Zij + φkiβ1θij)

}]
.

(A.3)

For computing E{L2(Θ
(t+1))}, the conditional distribution of unobserved Xij conditioning

on Yij,Zij, Si, Rij = 0 has no standard closed form with

p(Xij|Yij,Zij, Si, Rij = 0) ∝ {
1−H(δ0 + δ1Xij + δ2Yij + δ3Si + δ�4 Zij)

}
× exp

[{Xij − θij − I(Yij = ki)σ
2φkiβ1}2

2σ2

]
.
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Due to difficulty in direct sampling from this distribution, we employ the Metropolis-Hasting

algorithm to first generate Xij and then evaluate the Monte Carlo average of E{L2(Θ
(t+1))}.

To proceed, let X
(l)
ij , l = 1, . . . , L be L random samples generated from the aforemen-

tioned distribution via the Metropolis-Hasting algorithm, then the resulting expectation

E{L2(Θ
(t+1))} is evaluated as

E{L2(Θ
(t+1))} = L−1

∑
(i,j):Rij=0

L∑
l=1

{
log p(X

(l)
ij |Yij,Zij, Si) + log p(Rij = 0|X(l)

ij , Yij,Zij, Si)
}
.

At each step of the CM , we first maximize (3.11) as outlined in the main text. Note that

in the CM step, here we need to resort to the Monte Carlo approximation for calculating

E{L2(Θ
(t+1))} whereas the closed form calculation is available for the binary exposure.

The Full Bayesian approach:

We assume identical normal prior distributions on β,φ, δ,κ as in the main text and an

additional prior on σ for the variance of the X as follows.

σ2 iid∼ IG(a, b),

The factorization scheme on the complete likelihood (3.11) allows us to obtain the following
full conditionals,

π(β1|·) ∝
exp

{
− (β1−μβ1

−σ2
β1

∑N
i=1 θi1φki

)2

2σ2
β1

}
∏N

i=1

∑M+1
j=1 exp

{
φki(β

�
2 Zij + β1θij)

}
× exp

(
−
∑N

i=1 σ
2β1φki

[
σ2β1φki + 2θi1 − 2{Ri1Xi1 + (1−Ri1)Xi1}

]
2

)
,

π(β2r|·) ∝
exp

{
− (β2r−μβ2r

−σ2
β2

∑N
i=1 φki

Zi1r)
2

2σ2
β2

}
∏N

i=1

∑M+1
j=1 exp

{
φki(β

�
2 Zij + β1θij)

} ,

π(δq|·) ∝
exp

{
− (δq−μδq−σ2

δ

∑N
i=1

∑M+1
j=1 RijVijq)

2

2σ2
δ

}
∏N

i=1

∏M+1
j=1

[
1 + exp

{
δ0 + δ1(RijXij + (1−Rij)Xij) + δ2Yij + δ3Si + δ�4 Zij

}] ,
where Vij0 = 1, Vij1 = Yij , Vij2 = Xij , Vij3 = Si,

π(δ4r|·) ∝
exp

{
− (δ4r−μδ4r

−σ2
δ

∑N
i=1

∑M+1
j=1 RijZijr)

2

2σ2
δ

}
∏N

i=1

∏M+1
j=1

[
1 + exp

{
δ0 + δ1(RijXij + (1−Rij)Xij) + δ2Yij + δ3Si + δ�4 Zij

}] ,
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π(φk|·) ×
exp

[
− {φk−μφk

−σ2
φk

∑N
i=1 I(Yi1=k)β2

�Zi1+β1θi1}
2σ2

φk

]
∏N

i=1

∑M+1
j=1 exp

{
φki(β

�
2 Zij + β1θij)

}
× exp

(
−
∑

Yi1=k φkσ
2β1

[
σ2β1φk + 2θi1 − 2 {Ri1Xi1 + (1−Ri1)Xi1}

]
2σ2

)
,

π(κ0|·) ∝ exp

{
− (κ0 − μκ0 − σ2

κ

∑N
i=1 φkiβ1)

2

2σ2
κ

}
×

exp

[
−

∑N
i=1

∑M+1
j=1 κ0{RijXij+(1−Rij)Xij}

σ2

]
∏N

i=1

∑M+1
j=1 exp

{
φki(β

�
2 Zij + β1θij)

}
× exp

[
−
∑N

i=1

∑M+1
j=1 κ0

{
κ0 + 2κ�

1 Zij + 2κ2Si + 2I(Yij = ki)σ
2β1φki

}
2σ2

]
,

π(κ1r|·) ∝ exp

{
− (κ1r − μκ1r − σ2

κ

∑N
i=1 φkiβ1Zi1r)

2

2σ2
κ

}
×

exp

[
−

∑N
i=1

∑M+1
j=1 κ1rZijr{RijXij+(1−Rij)Xij}

σ2

]
∏N

i=1

∑M+1
j=1 exp

{
φki(β

�
2 Zij + β1θij)

}
× exp

[
−
∑N

i=1

∑M+1
j=1 κ1rZijr

{
κ1rZijr + 2κo ++2κ2Si + 2I(Yij = k)σ2β1φki

}
2σ2

]
,

π(κ2|·) ∝ exp

{
− (κ2 − μκ2 − σ2

κ

∑N
i=1 φkiβ1Si)

2

2σ2
κ

}
×

exp

[
−

∑N
i=1

∑M+1
j=1 κ2Si{RijXij+(1−Rij)Xij}

σ2

]
∏N

i=1

∑M+1
j=1 exp

{
φki(β

�
2 Zij + β1θij)

}
× exp

[
−
∑N

i=1

∑M+1
j=1 κ2Si

{
κ2Si + 2κ0 + 2κ�

1 Zij + 2I(Yij = ki)σ
2β1φki

}
2σ2

]

where r = 1, . . . , p, k = 1, . . . , K − 1 and q = 0, . . . , 3. The additional scale parameter has

a full conditional distribution, π(σ2|·) ∝ IG(a∗, b∗) , where

a∗ = a+
N(M + 1)

2
,

b∗ = b+

∑N
i=1 {Ri1(Xi1 − θ∗i1)

2 + (1−Ri1)(Xi1 − θ∗i1)
2}

2

+

∑N
i=1

∑M+1
j=2 {Rij(Xij − θij)

2 + (1−Rij)(Xij − θij)
2}

2
.

Conditional on the current values of the sampled Θ, we first sample Xij from the conditional

distribution (A.3) via the Metropolis-Hasting algorithm. Given the augmented data, we

generate samples of (β,φ,κ, δ, σ) from the aforementioned full conditionals. The remaining

Bayesian iterative computation scheme as described in Section 3.3.2 of the main text is then

followed.
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Table A.5:
Fitted model parameters and different information criteria for a model comparison between the
polytomous logistic model and the stereotype model with complete case data† from the MECC
Study. Here we used case-control status with cancer Stages recorded for the cases as response
with 4 categories. We use physical activity, use of statins, use of NSAID, vegetable consumption
and family history of colorectal cancer as the set of explanatory variables. AIC, BIC, and DIC
represent the Akaike Information Criterion, the Bayes Information Criterion, and the Deviance
Information Criterion respectively. The AIC and the BIC results are calculated when both models
are fitted under maximum likelihood framework and the DIC results correspond to a Bayesian
estimation of the parameters in both models.

Polytomous logistic model Stereotype model
Estimates(SE/PSD ‡) Estimates(SE/PSD ‡)

Type Coefficient 0:1 0:2 0:3 0:1 0:2 0:3
Intercept -1.55(0.13) -0.41(0.09) -0.37(0.09) -1.47(0.12) -0.39(0.09) -0.39(0.09)
βsports -0.02(0.16) -0.46(0.12) -0.26(0.12) -0.35(0.10)

Maximum βstatins -0.27(0.27) -0.88(0.25) -0.48(0.21) -0.64(0.18)
Likelihood βhistory 0.69(0.22) 0.19(0.20) 0.28(0.19) 0.21(0.16)
Approach βNSAID -0.04(0.19) -0.47(0.15) -0.44(0.15) -0.44(0.12)

βvegetable -0.17(0.09) -0.22(0.07) -0.35(0.07) -0.27(0.07)
(φ1, φ2, φ3) - - - 0.40(0.19) 1.06(0.19) 1.00

Goodness of fit AIC 5442.9 5432.0
BIC 5546.0 5499.2

Intercept -1.54(0.13) -0.41(0.09) -0.37(0.09) -1.46(0.11) -0.44(0.09) -0.35(0.09)
βsports -0.03(0.16) -0.46(0.12) -0.26(0.11) -0.36(0.10)

Bayesian βstatins -0.28(0.27) -0.91(0.25) -0.50(0.21) -0.64(0.18)
Approach βhistory 0.68(0.22) 0.19(0.20) 0.28(0.19) 0.23(0.17)

βNSAID -0.07(0.19) -0.49(0.14) -0.45(0.16) -0.47(0.12)
βvegetable -0.18(0.10) -0.22(0.06) -0.36(0.06) -0.31(0.06)
(φ1, φ2, φ3) - - - 0.40(0.14) 0.89(0.12) 1.00

Goodness of fit DIC 5442.4 5431.3

†The complete data consisted of 1,134 matched pairs with 2,268 subjects.

‡For maximum likelihood estimates, asymptotic standard error (SE) based on inverse of the observed Fisher information is

provided. For Bayesian approaches, posterior standard deviation (PSD) is provided.
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Table A.6:
Coverage probabilities of the Wald-type confidence intervals (for CMLE and ECM) and the HPD
intervals for FB. The nominal coverage probabilities should be 95%. The simulation settings
are identical to that of Table 3.2 in the main text. Here, binary exposure X|Z, S is generated
from P (X = 1|Z, S) = H(0.3 + 0.3Z − 1.5S). The CMLE, the ECM and the FB methods are
considered. The results are based on 200 simulated datasets, each with 1,000 cases and 1,000
controls. For each parameter of interest in the disease risk model, we report the percentage of
intervals including the true parameter value out of the 200 replications. The true values for the
parameters of interest are: β1 = −0.3, β2 = −0.7, φ1 = 0.8, and φ2 = 1.7.

Method
CMLE ECM FB

Parameter Coverage Coverage Coverage
MM1. logit{p(Rij = 1|Yij , Xij , Zij , Si)}=0.8

β1 0.945 0.945 0.935
β2 0.930 0.940 0.940
φ1 0.925 0.955 0.945
φ2 0.910 0.965 0.935

MM4. logit{p(Rij = 1|Yij , Xij , Zij , Si)}=0.5Xij + 0.5Yij + 0.5
β1 0.855 0.925 0.915
β2 0.910 0.930 0.940
φ1 0.950 0.940 0.945
φ2 0.925 0.965 0.945

MM5. logit{p(Rij = 1|Yij , Xij , Zij , Si)}=XijZij + YijXij + 1
β1 0.725 0.685 0.710
β2 0.900 0.910 0.895
φ1 0.890 0.945 0.910
φ2 0.935 0.835 0.850
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Table A.7:
The contingency table contains frequency with respect to two SNPs on two genes, RS762551 on
CYP1A2 (G1) and RS1056836 on CYP1B1 (G2), statins (E), and disease status. The frequencies
are based on completely observed 2,354 subjects at phase II

CYP1A2(RS762551) CYP1B1(RS1056836)
Control Case Control Case

E=0 E=1 E=0 E=1 Total E=0 E=1 E=0 E=1 Total
G=0(A/A) 410 118 513 38 1089 (C/C) 282 75 345 20 744
G=1(A/C) 441 86 473 50 1036 (G/C) 460 100 528 53 1128
G=2(C/C) 99 21 92 13 229 (G/G) 208 50 205 28 483
Total 950 225 1078 101 2354 950 225 1078 101 2354

A.3.1 Dunson and Xing (2007) Update

We describe the posterior sampling steps in relation to parameters in P (W |θ), θ =

{ψ,V , α}, by following Dunson and Xing (2009). They introduce a vector of latent variables

u = {u1, . . . , uN}, uu > 0. The joint distribution of u,w|V ,ψ, α is defined as,

N∏
u=1

⎧⎨⎩ ∑
h∈Auν

p∏
j=1

dj∏
l=1

ψ
(j)
hl

I(wuj=l)

⎫⎬⎭ ,(A.4)

where Auν = {h : νh > zu} and νh = Vh

∏
l<h(1−Vl). The joint posterior is then the product

of the augmented data likelihood (A.4) and respective priors on V ,ψ, α. The augmented

data Gibbs sampling is based on the following steps.

(a) We start with the simplest one. Update uu for u = 1, . . . , N, by sampling from U(0, νzu)

(b) Next step is regarding ψ
(j)
h . Note that we can find h∗ = max{z1, . . . , zN} such that we

do not need to compute any conditionals h > h∗ later on. And we notice that

π(ψ
(j)
h |·) ∝ Dirichlet(aj1, . . . , ajdj)×

N∏
u=1

dj∏
l=1

ψ
(j)
hl

I(wuj=l)
.

Due to the conjugate prior, the posterior conditional for j-th response when zu = h is

given as

Dirichlet

(
aj1 +

∑
u:zu=h

I(wuj = 1), . . . , ajdj +
∑

u:zu=h

I(wuj = dj)

)
.
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(c) The conditionals with respect to Vh is

π(Vh|·) ∝ (1− Vh)
α−1 ×

N∏
u=1

I(uu < Vh)
∏
l<h

(1− Vl).

If we focus on the latter part, we can obtain a beta(1, α) distribution truncated at[
maxu:zu=h

{
uu∏

l<h(1− Vl)

}
, 1−maxu:zu>h

{
uu

Vzu

∏
l<zu,l �=h(1− Vl)

}]
.

(d) Update zu from the multinomial full conditional as given,

Pr(zu = h|·) = I(νh > uu)
∏p

j=1 ψ
(j)
hwuj∑

l∈Auν

∏p
j=1 ψ

(j)
lwuj

, u = 1, . . . , N.

As discussed in Walker (2007), we will be in trouble without latent variables u in that

the choice of zu can be infinite. Since the number of subjects in the dataset itself is

finite, the cardinality of the set Aiν is finite. To validate this argument, we need to find

the smallest k∗ such that
∑k∗

h=1 νh > 1 − min{u1, . . . , uN}. Noticing that
∑∞

h=1 νh is

monotonically increasing and
∑∞

h=1 νh = 1, we can compute the desired k∗.

(e) In the last step, we update α from

Gamma

(
aα + h∗, bα −

h∗∑
h=1

log(1− Vh)

)

Above steps are equivalent to Dunson and Xing (2009) except we set the maximum of the

number of mixtures k such that argmin
∑k

h=1 νh > 0.99 to avoid possible large number

of mixtures, theoretically up to the data size N . This can lead to the bias which has little

influence overall. In such a situation, we adjust Vh and νh to satisfy
∑

h
kνh = 1. The practical

gain from this method is that we can resort to known posterior sampling distributions and

can anticipate facilitating the process.
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Table A.8:
Simulation results under two scenarios 1) G1⊥E, G1⊥G2, and G2⊥E association, 2) G1⊥E,
G1 ∼ G2, and G2 ∼ E. The results are based on 200 replicated datasets, each with 1,000 cases
and 1,000 controls in phase I and 800 cases and 800 controls in phase II. The approaches listed,
TPFB, TPFBemp, WL, PL, UML, CML, and EB where each represents Two-phase full Bayes (with
empirically obtained prior variance), Weighted likelihood, Pseudolikeliohod, Unconstrained Maxi-
mum likelihood, Constrained Maximum Likelihood, and Empirical Bayes respectively. The CML
imposes G1-E and G1-G2 independence, however, no constraints on G2-E association. We set
(βE , βG1G2

, βG1E , βG2E) = (−1.5, 0, log(2), log(2)) for all scenarios. In terms of MCMC chains from
both TPFBs, the posterior results based on 1,000 samples after ’burn-in’ of 40,000 among 50,000
iterations and a thinning of every 10 samples.

G1⊥E, G1⊥G2, G2⊥E G1⊥E, G1 ∼ G2, G2 ∼ E

Stratified sampling (a)† E G1 x G2 G1 x E G2 x E E G1 x G2 G1 x E G2 x E
(λG1G2

, λG1E , λG2E) = (0, 0, 0) (λG1G2
, λG1E , λG2E) = (log(2), 0, log(1.5))

TPFB Bias 0.019 0.011 -0.022 -0.070 -0.116 0.232 -0.018 0.190

MSE 0.156 0.069 0.199 0.187 0.216 0.123 0.183 0.220
TPFBemp Bias 0.019 0.038 -0.086 -0.109 -0.086 0.034 -0.048 0.126

MSE 0.156 0.038 0.208 0.178 0.204 0.081 0.136 0.216
WL Bias -0.030 -0.009 0.049 0.030 -0.074 0.006 0.047 0.071

MSE 0.192 0.099 0.290 0.264 0.260 0.094 0.243 0.270
PL Bias -0.030 -0.010 0.050 0.030 -0.074 0.004 0.047 0.071

MSE 0.192 0.097 0.289 0.264 0.260 0.094 0.243 0.270
UML Bias -0.049 -0.010 0.050 0.030 -0.095 0.004 0.047 0.071

MSE 0.196 0.097 0.289 0.264 0.267 0.094 0.243 0.270
CML Bias -0.042 -0.007 0.042 0.009 -0.080 0.705 0.023 0.061

MSE 0.170 0.045 0.174 0.243 0.231 0.542 0.165 0.253
EB Bias -0.044 -0.010 0.042 0.014 -0.083 0.112 0.035 0.062

MSE 0.175 0.060 0.205 0.249 0.235 0.116 0.179 0.254
†All subjects with E = 1 in case and control are sub-sampled for phase II.

TPFB uses the informative prior N(0, 10−2) on G-G and G-E associations in the model (4.2)

TPFBemp uses the prior N(0, θ̂2) on G-G and G-E associations in the model (4.2) where

θ̂2 is empirically estimated G-G or G-E association parameter under controls.

A.4 Chapter V : Supplementary Material

A.4.1 The Log Gaussian Cox Process

In this section, we review the log Gaussian Cox process. Suppose that Λ = {Λ(s) : s ∈ S}

in a bounded study window S ⊆ R
d and Λ is a nonnegative random field and is almost surely

locally integrable, i.e.,
∫
S
Λ(s)ds < ∞. When the conditional distribution of X given Λ is a

Poisson process with the intensity Λ, we call X a Cox process driven by Λ.

When a Cox process X on R
d is driven by the intensity process Λ = exp(Y ) where

Y = {Y (s) : s ∈ S} is a real valued Gaussian random field (GRF), we call X a log Gaussian

Cox process (LGCP). It is well documented that the distribution of Y , as well as X, is

determined by its mean μ(s) = EY (s), s ∈ S and covariance Cov(Y (s1), Y (s2)), s1, s2 ∈ S

of Y .

The covariance function c(s1, s2) = Cov(Y (s1), Y (s2)), s1, s2 ∈ S is frequently assumed
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to be translation invariant and isotropic. For example, the covariance is commonly assumed

to be a function of the distance d = ‖s1−s2‖, i.e., c(s1, s2) = σ2r(d). Here, σ2 = V ar(Y (s)),

is the marginal variance of the process and r(d) is the correlation function. A commonly

employed correlation function is the power exponential correlation function:

r(d) = exp(−α ‖ d ‖k), α > 0, 0 < k ≤ 2,

where α and k play key roles in characterizing the smoothness of the intensity function.

For longitudinal data across time points, we can postulate a Cox process X t, t = 1, . . . , T

at each time t, which is driven by a time specific intensity process Λt = {Λt(s) : s ∈ S}, t =

1, . . . , T . Then, Λt(s) = exp(Yt(s)), t = 1, . . . , T , provided that the corresponding Gaussian

random fields Y t = {Yt(s) : s ∈ S}, t = 1, . . . , T , are well-defined. The intensity can

easily accommodate temporally and spatially referenced covariates V (t), t = 1, . . . , T and

W (s), s ∈ S by specifying

Λt(s) = exp(Yt(s) + β1V (t) + β2W (s)).

A.4.2 Full Conditionals

We describe an approximated posterior distribution in stage I,

π(Ω1|xS) ∝
7∏

t=1

21∏
c=1

[
exp

{ ∑
ξ∈Sc

(
log(Λ̃c,t(ξ))nc,t(ξ)− |Sc(ξ)|Λ̃c,t(ξ)

)}]
p(Ω1),

where we replace the integral in (5.1) by a sum using the approximation,
∫
ξ∈Sc

exp(Λ̃c,t(ξ))dξ

≈ ∑
ξ∈Sc

exp(Λ̃c,t(ξ))|Sc(ξ)|. Here |Sc(ξ)| represents the area of a single cell in Sc and nc,t(ξ)

is the number of observed cases in a single cell ξ and p(Ω1) prior for Ω1.
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The full conditionals for each parameter are listed below,

π(Γext
c,t |x, ·) ∝ exp

([ ∑
ξ∈Sc

(
log(Λ̃c,t(ξ))nc,t(ξ)− |Sc(ξ)|Λ̃c,t(ξ)

)− ‖ Γext
c,t ‖2/2

])
,

π(σ2
t |x, ·) ∝ 1

σ2
t

exp
[ 7∑

t=1

21∑
c=1

{ ∑
ξ∈Sc

(
log(Λ̃c,t(ξ))nc,t(ξ)− |Sc(ξ)|Λ̃c,t(ξ)

)}− (log σ2
t )

2

2× 104

]
,

π(η|x, ·) ∝ exp
[ 7∑

t=1

21∑
c=1

{ ∑
ξ∈Sc

(
log(Λ̃c,t(ξ))nc,t(ξ)− |Sc(ξ)|Λ̃c,t(ξ)

)}− η2

2× 104

]
,

π(β1|x, ·) ∝ exp
[ 7∑

t=1

21∑
c=1

{ ∑
ξ∈Sc

(
log(Λ̃c,t(ξ))nc,t(ξ)− |Sc(ξ)|Λ̃c,t(ξ)

)}− β1
2

2× 104

]
,

π(β2|x, ·) ∝ exp
[ 7∑

t=1

21∑
c=1

{ ∑
ξ∈Sc

(
log(Λ̃c,t(ξ))nc,t(ξ)− |Sc(ξ)|Λ̃c,t(ξ)

)}− β2
2

2× 104

]
,

π(μcom
c |x, ·) ∝ exp

[ 7∑
t=1

21∑
c=1

{ ∑
ξ∈Sc

(
log(Λ̃c,t(ξ))nc,t(ξ)− |Sc(ξ)|Λ̃c,t(ξ)

)}− (μcom
c − μcom)

2

2σ2
com

]
,

π(μtime
t |x, ·) ∝ exp

[ 7∑
t=1

21∑
c=1

{ ∑
ξ∈Sc

(
log(Λ̃c,t(ξ))nc,t(ξ)− |Sc(ξ)|Λ̃c,t(ξ)

)}− (μtime
t )2

2× 104

]
,

π(μcom|x, ·) ∼ N(
20μ̂

21
,
2× 105

21
),

π(σ2
com|x, ·) ∼ IG(21/2 + 1/2 + 0.1,

(μcom)
2

40
+

∑21
c=1(μ

com
c )2

2
+ 0.1),

where ‖ · ‖ is the Euclidean norm and μ̂ =
∑21

c=1 μ
com
c /21 and 1/21 is a shrinkage factor.

The full conditionals for stage II parameters are,

π(τ0t|·) ∝ 1

|Φt(·|ρ2t , φ)|
exp

{
− (I t − μt(τ ))�Φt(·|ρ2t , φ)−1

(I t − μt(τ ))

2
− (τ0t)

2

2× 104

}
,

π(τ1|·) ∝
∏
t

1

|Φt(·|ρ2t , φ)|
exp

{
− (I t − μt(τ ))�Φt(·|ρ2t , φ)−1

(I t − μt(τ ))

2
− (τ1)

2

2× 104

}
,

π(ρ2t |·) ∝ 1

ρ2t |Φt(·|ρ2t , φ)|
exp

{
− (I t − μt(τ ))�Φt(·|ρ2t , φ)−1

(I t − μt(τ ))

2
− (log ρ2t )

2

2× 104

}
,

π(φ|·) ∝
∏
t

1

φ|Φt(·|ρ2t , φ)|
exp

{
− (I t − μt(τ ))�Φt(·|ρ2t , φ)−1

(I t − μt(τ ))

2
− (log φ)2

2× 104

}
,

where t = 1, . . . , 7. I t = (I t
S, I

t
U)

� and μt(τ ) = (μt
S(τ ),μ

t
U(τ ))

�.
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A.4.3 Posterior sampling strategy

We describe the posterior sampling steps for parameters in stage I. Since full conditionals

do not follow closed form standard distributions, we consider the Metropolis-within-Gibbs

algorithm. We employ a random walk proposal for each parameter except Γext = {Γext
c,t ; c =

1, . . . , 21, t = 1, . . . , 7}. In order to accelerate the sampling process and to have well-mixed

samples, we adaptively tune the variances of the random walk proposals respectively until

desired acceptance rates are achieved.

We repeat the Metropolis-within-Gibbs sampling steps regarding the first stage parame-

ters, (μcom,μtime, μcom, σ
2
com,σ

2, η, β1, β2)
�
39 ≡ Ω1 = (ω1, . . . , ω39)

� and Γext given below.

(i) Start the algorithm by setting initial values for each parameter in Ω1 and Γext. The

initial vector of Γext
c,t for community c and cycle t is drawn from N2K1c×2K2c(0, I) for

c = 1, . . . , 21, t = 1, . . . , 7. We also set proposal variance hωj
corresponding to ωj, j =

1, . . . , 39.

(ii) At the n-th iteration, we use the Metropolis-adjusted Langevin algorithm (MALA,

Besag 1994) for sampling Γextn+1
. Details are in Møller et al. (1998).

(iii) At the n-th iteration, we sample a candidate value from ω∗
j ∼ N(ωn

j , hωj
) where ωn

j is

the value from the previous iteration.

(iv) When Ωn
(−j) = (ωn+1

1 , . . . , ωn+1
j−1 , ω

n
j+1, . . . , ω

n
39), the log posterior ratio or log acceptance

probability is computed:

log(pa) = l(ω∗
j |Ωn

(−j), ·)− l(ωn
j |Ωn

(−j), ·),

where l(ωn
j|Ωn

(−j), ·) is the full conditional for ωn
j on the log scale.

(v) Generate U ∼ Unif [0, 1]. ωn+1
j = ω∗

j if logU < log(pa), otherwise ωn+1
j = ωn

j .

(vi) Iterate steps (iii) through (v) for j = 1, . . . , 39.
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After simulating the stage I posterior, we calculate I t
S. Then we proceed to the stage II

sampling.

(i) Set initial values for parameters for Ω2 = (ω1, . . . , ω15)
�, I t

U , and N(xU,t) for t =

1, . . . , 7. We also set hωj
, the proposal variance for ωj.

(ii) At the n-th iteration, sampling of Ω2
n+1:

Since ωj, j = 1, . . . , 15, does not follow any standard distribution, we use a random walk

Metropolis-Hasting algorithm. Sample ω∗
j from N(ωn

j , hωj
).

Given ω∗
j , the acceptance ratio pa is calculated as

pa = min
{
1,

π(ω∗
j |·)

π(ωn
j |·)

}
,

where π(ω∗
j |·) corresponds to the full conditional of ω∗

j . With probability pa, we update

ωn+1
j = ω∗

j . We repeat this for j = 1, . . . , 15.

(iii) At the n-th iteration, sampling of I t
U
n+1

:

We sample based on the Metropolis-Hasting algorithm. For the proposal density, we

use [I t
U
∗|I t

S,Ω2] which follows a conditional multivariate normal distribution with mean

μt
U(τ

n+1) +Φt
S,U

�
((ρ2t , φ)

n+1)Φt
S
−1
((ρ2t , φ)

n+1) {I t
S − μt

S(τ
n+1)} and variance

Φt
U((ρ

2
t , φ)

n+1) −Φt
S,U

�
((ρ2t , φ)

n+1)Φt
S
−1
((ρ2t , φ)

n+1) Φt
S,U((ρ

2
t , φ)

n+1). Then, the accep-

tance ratio pa is calculated as

pa = min

⎧⎨⎩1,

∏106
l=1

[
exp

{−popnl,t exp(I
t
Ul

∗
)
} {popnl,t exp(I tUl

∗
)}n(xn

Ul,t
)
]

∏106
l=1

[
exp

{−popnl,t exp(I
t
Ul

n)
} {popnl,t exp(I tUl

n)}n(xn
Ul,t

)
]
⎫⎬⎭ ,

We update I t
U
n+1

= I t
U
∗
if U < pa when U ∼ Unif [0, 1]. We repeat this step for

t = 1, . . . , 7.

(iv) We draw N(xn+1
Ul,t

) for unsampled communities using a Poisson distribution with mean

popnl,t exp(I
t
Ul

n+1
).
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(v) Iterate (ii)-(iv) until convergence.
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