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ABSTRACT

Improving Small-Sample Inference in Group Randomized Trials and Other Sources of
Correlated Binary Outcomes

by

Philip Michael Westgate

Chair: Thomas M. Braun

Group Randomized Trials (GRTs), along with many other types of studies, commonly can be

composed of a small to moderate number of independent clusters of correlated data. In this

dissertation, we focus on statistical inference in these settings. Particularly, we concentrate

on test size and estimation variability when a marginal model is employed.

Our first focus is in a general GRT setting in which a logistic regression only implements

an indicator of treatment assignment. A Wald test, using a model-based standard error, for

a marginal treatment effect can tend to have a realized test size smaller than its nominal

value. We therefore propose a pseudo-Wald statistic that consistently produces test sizes at

their nominal value, therefore increasing or maintaining power.

Our second focus is on the estimation performance of QIF as compared to GEE when the

number of clusters is not large, with a focus on GRT settings. GEE is commonly used for the

analysis of correlated data, while QIF is a newer method with the theoretical advantage of

being equally or more efficient. Therefore, it would be reasonable to believe that QIF should

maintain or increase power in GRTs, which typically have low power. We show, however,

that QIF may not have this advantage in GRT settings, and estimates from QIF can have

viii



greater variability than estimates from GEE due to the empirical impact of imbalance in

cluster sizes and covariates, therefore concluding GEE is a more appropriate method in

these settings.

We finally focus on improving the small-sample estimation performance of QIF. Specif-

ically, we propose multiple alternative weighting matrices to use in QIF that combat its

small-sample deficiencies. These weighting matrices are expected to perform better in small-

sample settings, such as for GRTs, but maintain QIF’s large-sample advantages. We compare

the performances of the proposed QIF modifications via simulations, which show they can

improve small-sample estimation. We also demonstrate that two of the proposed QIF ver-

sions work best.
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CHAPTER I

Introduction

1.1 Background and Significance

This dissertation focuses on improving the analysis of correlated data, which occurs in a

wide range of general scenarios such as in longitudinal studies and group randomized trials

(GRTs). It is oriented toward the performance of statistical methodologies, in conjunction

to fitting marginal models, commonly used in these types of studies when the sample size,

or number of independent clusters, is small. Emphasis is given to GRT settings in which

outcomes are binary in nature. However, much of our work can be generalized to common

repeated measures scenarios with non-binary outcomes, especially methods presented in

Chapters III and IV.

In these small-sample settings, some statistical methods may perform sub-optimally due

to their reliance upon asymptotic theory. In this dissertation, we focus on improving test size

and parameter estimation in these contexts. It is important to have these improvements, as

they may have an effect on inference in costly research studies. Particularly, Chapter II fo-

cuses on improving test size in GRT settings in which outcomes are binary in nature. Chapter

III discusses why a newer method, Quadratic Inference Functions (QIF) (Qu, Lindsay, and

Li, 2000), which has multiple theoretical advantages over Generalized Estimating Equations

(GEE) (Liang and Zeger, 1986), including estimation efficiency, can actually lead to esti-

mates having greater variability than the corresponding estimates from GEE. Focus is given
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to GRT settings in which a working exchangeable correlation structure is employed. Chapter

IV proposes and studies methods that are meant to improve the small-sample estimation

performance of QIF, with a general applied focus on GRTs and longitudinal study settings

in which the true and working correlation structures were not restricted to be exchange-

able. Chapter V summarizes the findings of this dissertation, discusses their importance,

and outlines future work.

Specifically, Chapter II focuses on GRTs, which randomize groups of people to treatment

or control arms instead of individually randomizing subjects. Typically, GRTs have a small

number, n, of independent clusters, each of which can be quite large. When each subject has

a binary outcome, over-dispersed binomial data may result, quantified as an intra-cluster

correlation (ICC). Treating the ICC as a nuisance parameter, inference for a treatment

effect can be done using quasi-likelihood (Wedderburn, 1974) with a logistic link. A Wald

statistic, which, under standard regularity conditions, has an asymptotic standard normal

distribution, can be used to test for a marginal treatment effect. However, we have found in

our setting that the Wald statistic may have a variance less than one, resulting in a test size

smaller than its nominal value. This problem is most apparent when marginal probabilities

are close to zero or one, particularly when n is small and the ICC is not negligible. When the

ICC is known, we develop a method for adjusting the estimated standard error appropriately

such that the Wald statistic will approximately have a standard normal distribution. We also

propose ways to handle non-nominal test sizes when the ICC is estimated. We demonstrate

the utility of our methods through simulation results covering a variety of realistic settings

for GRTs, and demonstrate them via the analysis of a dataset from an actual GRT.

Chapter III changes focus from test size to the variability of parameter estimates, while

maintaining an applied interest in GRT scenarios. GEE, already cited, are commonly used

for the analysis of correlated data. Qu et al. (2000) proposed the use of QIF as an alter-

native method to increase efficiency when the working covariance structure is misspecified.

Although existing literature shows QIF has advantages over GEE, the impacts of covariates
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and imbalanced cluster sizes on the estimation performance of QIF in finite samples have

not been studied. This cluster size variation causes QIF’s estimating equations and GEE to

be in separate classes when an exchangeable correlation structure is implemented, causing

QIF and GEE to be incomparable in terms of efficiency. When utilizing this structure and

the number of clusters is not large, we discuss how covariates and cluster size imbalance

can cause QIF, rather than GEE, to produce estimates with the larger variability. This

occurrence is mainly due to the empirical nature of weighting QIF employs, rather than

differences in estimating equations classes. We demonstrate QIF’s lost estimation precision

through simulation studies covering a variety of general GRT scenarios, and compare QIF

and GEE in the analysis of data from a GRT.

Chapter IV again focuses on the estimation performance of QIF. Here, we focus on

decreasing the variance in its parameter estimates, not only in GRT settings in which an

exchangeable correlation structure is employed, but in general repeated measures scenarios

in which the true and working structures can be different than exchangeable, such as AR-

1. Particularly, we propose and compare six alternative weighting matrices for QIF, five of

which asymptotically are optimally weighted combinations of the empirical covariance matrix

and other matrices expected to potentially perform better when the number of independent

clusters is small. These combinations are derived upon minimizing expected quadratic loss,

maintain the large sample advantages QIF has over GEE, and as shown in simulations, can

improve the small sample estimation performance of QIF. Additionally, two of the proposed

QIF versions are shown to work best.
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CHAPTER II

Improving Small-Sample Inference in Group

Randomized Trials with Binary Outcomes

2.1 Introduction

Many clinical trials involve testing a new treatment or intervention versus a control,

with each study participant randomly assigned to one of these study arms. However, group

randomized trials (GRTs) are unique in that groups, or clusters, of people are randomized

instead of each person individually, but the outcome of interest is still obtained from each

subject. Due to feasibility issues, such as high costs, most likely only a relatively small

number of clusters will be involved in a GRT. Additionally, cluster sizes can typically be

quite large. To demonstrate, some common groups of randomization are patients with the

same health care provider, communities, and schools.

An example of a GRT would be the study reported by Atri et al. (1997). This study

aimed to discover if a two-hour training session for receptionists, who were supposed to

later attempt to contact patients, would increase breast screening rates in women who failed

to attend for an appointment by a certain time point. Twelve practices, and inherently the

women their receptionists were to contact, were randomized to this receptionist intervention,

while fourteen were randomized to be controls. The subject-level outcome of interest was an

indicator of whether a given woman had received screening after failing to attend her initial

appointment.

It is the purpose of this chapter to demonstrate methods for testing for a marginal
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treatment effect with a Wald statistic that maintains a nominal test size when the outcomes

of interest from a GRT are subject-level binary indicators of a desired outcome (“success”).

These types of data often lead to over-dispersion because of unmeasured group effects that

make the probability of success vary between clusters. For example, in the Atri et al. (1997)

study, the receptionists’ natural ability to get women to come in for breast screening varies,

thus resulting in different success rates for each practice. Statistical methods need to take

this over-dispersion into account to obtain reliable inference.

In Section 2.2 we introduce statistical notation and existing methodology. In Section 2.3,

we present drawbacks with a traditional Wald statistic when using a model-based standard

error (SE), which motivates the derivation of our psuedo-Wald tests. In Section 2.4, we

examine the performance of our pseudo-Wald tests via simulation as well as in application

to an actual GRT. Section 2.5 contains a discussion and concluding remarks.

2.2 Notation and Existing Methodology

2.2.1 Notation

Throughout this chapter, we adopt the following notation. Let Xij represent the outcome

for subject j in cluster i, j = 1, 2, . . . ni; i = 1, 2, . . . n. Xij = 1 denotes success and Xij = 0

denotes the absence of the desired outcome (“failure”). We also let ρ denote the intra-

cluster correlation (ICC) for any pair of outcomes from individuals within the same cluster.

We assume the ICC is constant across clusters.

We let Zi represent the indicator of treatment assignment for all individuals in cluster i,

with Zi = 1 indicating new treatment or intervention and Zi = 0 indicating control. We let

the first u clusters represent the controls, and the last n− u represent groups receiving the

new treatment or intervention.

We assume πi = Prob(Xij = 1) = E[Prob(Xij = 1 | pi)] is constant for all clusters in

the same treatment arm, where pi is the unobserved true probability of success for any given
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subject in the ith cluster. We assume a simple logistic regression model, logit(πi) = β0+β1Zi,

where logit(πi) = log(πi) − log(1 − πi). If the ith cluster is randomized to control, then

πi = πC ; if randomized to the new treatment or intervention, then πi = πT . Although this

model can be generalized to include cluster-level or individual-level predictors, in the current

presentation we assume that such adjustments are unnecessary.

Let Yi =
∑ni

j=1Xij represent the number of successes in cluster i, which has mean E(Yi) =

niπi and variance V ar(Yi) = niπi(1 − πi)[1 + (ni − 1)ρ]. If ρ = 0, then Yi has a binomial

distribution. In most settings, ρ is assumed to be positive, although negative values are

possible. See, for example, Prentice (1986). This positive correlation results in Yi being

overdispersed, i.e., having larger variance than what is predicted by the binomial distribution.

The factor [1 + (ni − 1)ρ] is known as the variance inflation factor (VIF) for the ith cluster.

The ICC can be viewed as measuring the degree to which responses from subjects within

the same cluster tend to respond “more alike” as compared with subjects from different

clusters in the same arm; this effect is due to clusters potentially having different success

rates, or V ar(pi) > 0 for i = 1, 2, . . . n. Mathematically, for 1 ≤ j 6= l ≤ ni,

ρ =
Cov[E(Xij | pi), E(Xil | pi)] + E[Cov(Xij, Xil | pi)]

E[V ar(Xij | pi)] + V ar[E(Xij | pi)]

=
Cov[pi, pi] + E(0)

E(pi[1− pi]) + V ar(pi)

=
V ar(pi)

πi(1− πi)

Due to the constraint ICC ≤ 1, we have V ar(pi) ≤ πi(1− πi).

Although we only work with the ICC in this chapter, it is important to note that another

popular method is using pairwise odds ratios for modeling the association among subject-

level outcomes within the same cluster. See Carey, Zeger, and Diggle (1993) for more detail.
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2.2.2 Quasi-Likelihood

Wedderburn (1974) developed the theory of quasi-likelihood (QL), which is used when

a generalized linear model (GLM) (Nelder and Wedderburn, 1972; McCullagh and Nelder,

1989) is desired but the true distribution for the observed data is unknown. This is important

since the true distribution for over-dispersed binomial data will be unknown in practice.

Using QL, only the mean and variance structures for the proportion of successes in each

cluster need correct specification. More specifically, the link function with its linear predictor,

h(µi) = ηi = z′iβ, and V ar(Yi) need correct specification. Here, z′i = [1, zi,1,..., zi,p−1] is a p

× 1 vector of covariate values for the ith independent observation and β = [β0,..., βp−1]
′ is

a p × 1 vector of corresponding regression parameters. Maximum quasi-likelihood (MQL)

involves setting the following quasi-score equations equal to zero and solving for β, where

Di = ∂µi/∂β = [∂µi/∂β0,..., ∂µi/∂βp−1]
′ and Vi = V ar(Yi):

U(β) =
n∑
i=1

DiV
−1
i (Yi − µi).

In our setting, the quasi-score equations simplify to

n∑
i=1

[1, Zi]
′ Yi − niπi
1 + (ni − 1)ρ

.

As long as a consistent estimate for the true ICC is used, the MQL estimate of β, β̂MQL =

[β̂0MQL,..., β̂(p−1)MQL]′, converges in probability to β and has an asymptotic normal distri-

bution with covariance matrix (
∑n

i=1DiV
−1
i D′i)

−1, simplifying to

(
n∑
i=1

[1, Zi]
′[1, Zi]

niπi(1− πi)
1 + (ni − 1)ρ

)−1

(2.1)

in our scenario.

Our main concern was that MQL, which is popular for analyzing over-dispersed binomial

data, gives statistical results relying upon asymptotic theory. Unfortunately, since GRTs
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generally do not have a large number of independent clusters, asymptotic theory may not

hold. We discuss three potential problems resulting from this, all of which may cause test

size to not be at its nominal value when using a Wald statistic. First, when the data analyst

is unsure of the correct variance or ICC structure, the sandwich, or empirical, covariance

matrix estimator can be used and is given by

(
n∑
i=1

D̂iV̂
−1
i D̂

′
i

)−1( n∑
i=1

D̂iV̂
−1
i (Yi − niπ̂i)2V̂ −1

i D̂
′
i

)(
n∑
i=1

D̂iV̂
−1
i D̂

′
i

)−1

,

with consistent estimates used in place of unknown parameters (Liang and Zeger, 1986).

This gives a consistent estimate for the covariance of the MQL parameter estimates. Unfor-

tunately, the variance of this covariance estimate, along with its tendency to underestimate

the true standard errors (SEs) for small n, can cause test size to be too large (Kauermann and

Carroll, 2001; Mancl and DeRouen, 2001). Although there is no formal definition for what

small n is, Mancl and DeRouen (2001) and Murray, Varnell, and Blitstein (2004) suggest

n < 50 and n < 40, respectively. Bootstrap and jackknife methods are alternatives to the

sandwich estimator, but can also be problematic, particularly when the number of successes

in each cluster are zero or small (Mancl and DeRouen, 2001). Second, MQL estimates of the

regression parameters tend to be biased away from zero when using the logistic link and n is

small, with bias increasing as the true parameter values move further from zero (presented

later). Third, since normality of the Wald statistic is an asymptotic result, combined with

the need to estimate the ICC, the correct distribution from which to obtain critical values

is unknown.

Methods to help reduce test size toward the nominal value when using the sandwich SE

estimator have been introduced by Kauermann and Carroll (2001), Mancl and DeRouen

(2001), Pan (2001), Fay and Graubard (2001), Pan and Wall (2002), Morel, Bokossa, and

Neerchal (2003), and McCaffrey and Bell (2006). Drum and McCullagh (1993) argued that

using the model-based SE instead of the sandwich estimate is best when n is small and there
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is no reason to believe the assumed variance structure is “substantially incorrect.” Liang and

Hanfelt (1994) also expected the model-based SE to be more stable.

2.2.3 Bias Correction for the MQL Parameter Estimates

Similar to the formulas for the bias in maximum likelihood estimates (MLEs) from GLMs

given by Cordeiro and McCullagh (1991), Cordeiro and Demetrio (2008) gave formulas for

the bias to order n−1 for the MQL estimates. These formulas are given by

Bias(β̂MQL) = −0.5(Z ′WZ)−1Z ′M dF1.

Here, W = diag(niπi(1− πi)/[1 + (ni − 1)ρ]), Z′ = [z1, . . . , zn], M = Z(Z′WZ)−1Z′, Md =

diag[Mii] where Mii is the ith diagonal element of M,

F = diag

[
niπi(1− πi)[2(1− πi)− 1]

1 + (ni − 1)ρ

]
,

and 1 is an n × 1 vector of ones. We now write πC and πT as πC(β) and πT (β), respectively,

since marginal probabilities are functions of β. In our settings,

Bias(β̂0MQL) =
2πC(β)− 1

2πC(β)[1− πC(β)]
∑u

i=1 qi
(2.2)

and

Bias(β̂1MQL) =
2πT (β)− 1

2πT (β)[1− πT (β)]
∑n

i=u+1 qi
−Bias(β̂0MQL), (2.3)

where qi = ni/[1+(ni−1)ρ]. Bias increases with decreases in n and cluster sizes and increases

in ρ, |πC − 0.5|, and |πT − 0.5|.

The bias-corrected estimates (BCEs) are given by β̂BC = [β̂0MQL−B̂ias(β̂0MQL), β̂1MQL−

B̂ias(β̂1MQL)]′ = [β̂0BC , β̂1BC ]′, where πC(β̂MQL) and πT (β̂MQL) are used in place of πC(β)

and πT (β), respectively, in Equations (2.2) and (2.3). Due to using estimated marginal

9



probabilities, biases can be slightly overestimated as found in Bull and Greenwood (1997) and

our simulations (not shown), especially when marginal probabilities are near the boundary

of the parameter space and the number of clusters is small. The following iterative procedure

was therefore used, which produces better bias approximations:

(1) Estimate bias as just mentioned to obtain B̂ias
(1)

(β̂0MQL) and B̂ias
(1)

(β̂1MQL). From

these, denote the current BCEs as β̂
(1)

BC .

(2) Next, use πC(β̂
(1)

BC) and πT (β̂
(1)

BC) in Equations (2.2) and (2.3) to obtain updated bias

estimates, B̂ias
(2)

(β̂0MQL) and B̂ias
(2)

(β̂1MQL). Use these to update the BCEs: β̂
(2)

BC =

[β̂0MQL − B̂ias
(2)

(β̂0MQL), β̂1MQL − B̂ias
(2)

(β̂1MQL)]′.

(3) Keep repeating until |β̂(s)
0BC − β̂

(s−1)
0BC |+ |β̂

(s)
1BC − β̂

(s−1)
1BC | < ε, for some ε close to zero and

s ≥ 1. We used ε = 10−7.

Equation (2.2) shows 0 ≤ |β0| ≤ |E(β̂0MQL)|, with β0 and E(β̂0MQL) having the same

sign, so β̂0MQL is positively biased when β0 > 0 and negatively biased when β0 < 0. This

implies that the BCE for β0 will take on a value between zero and β̂0MQL, giving 0 ≤

β̂0BC/β̂0MQL ≤ 1. Equation (2.3) shows the same relationship typically occurs for β̂1MQL

and β̂1BC . When πC and πT are close in value, though, there is a chance that this will not

occur if |
∑u

i=1 qi −
∑n

i=u+1 qi| is not “small”. Although it makes little difference, we chose

to set β̂1BC = β̂1MQL if β̂1BC/β̂1MQL was originally greater than one.

We note that bias corrections for maximum likelihood estimates, related to the work of

Cordeiro and McCullagh (1991), have been discussed by Cox and Snell (1968) and Firth

(1993). Cox and Snell (1968) gave general formulas for order n−1 biases of multiparameter

MLEs, while Cordeiro and McCullagh (1991) extended this idea by giving the n−1 biases

of MLEs in GLMs. Firth (1993), however, took a different approach to eliminate these n−1

biases by using a bias term inside the score equations.

10



2.3 Developing a Pseudo-Wald Test with Nominal Size

2.3.1 Quantifying the Impact of Model-Based SEs on Traditional Wald Test
Size

From Equation (2.1), the model-based SE for β̂1MQL is

SE(β̂1MQL) = SEβ̂1MQL
[πC(β), πT (β)] =

√√√√[ u∑
i=1

niπC(β)[1− πC(β)]

1 + (ni − 1)ρ

]−1

+

[
n∑

i=u+1

niπT (β)[1− πT (β)]

1 + (ni − 1)ρ

]−1

(2.4)

This is estimated by ŜEMQL(β̂1MQL) = SEβ̂1MQL
[πC(β̂MQL), πT (β̂MQL)]. Simulations (not

shown) indicated that when using an unbiased estimate, ρ̂, for the ICC, ŜEMQL(β̂1MQL) is

also fairly unbiased. For now, assume ρ is known.

The Wald statistic WReg = β̂1MQL/ŜEMQL(β̂1MQL) is regularly used in practice to test

for a marginal treatment effect. Using πC = πT = ρ = 0.05, Figure 2.1a shows the empirical

distribution for WReg from 100,000 simulations, along with the density of the N(0, 1) distri-

bution. Cluster sizes varied uniformly from 25 to 150 subjects, ten clusters were randomized

to each treatment arm, and outcomes were generated by the beta-binomial distribution.

Figure 2.1a reveals that the N(0, 1) distribution has heavier tails since the variance of WReg,

V ar(WReg), is less than one (0.905 in these simulations). This example implies that us-

ing WReg in conjunction with critical values from the N(0, 1) distribution can result in a

test size that is smaller than desired, as will using any heavy-tailed distribution, such as a

t-distribution.

Equation (2.1) shows that the variance of β̂MQL increases with decreases in n and cluster

sizes and increases in ρ, |πC − 0.5|, and |πT − 0.5|. In practice, since β̂MQL is actually

used to estimate its own variability, ŜEMQL(β̂1MQL) is not a fixed quantity. Its variance,

V ar[ŜEMQL(β̂1MQL)], will increase as V ar(β̂MQL) increases, and therefore is also a function

11
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Figure 2.1: N(0, 1) density and empirical distributions for WReg (1a) and W̃1.5 (1b), where
ten clusters were randomized to each treatment arm, and marginal probabilities
and the ICC were 0.05.
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of n, cluster sizes, ρ, πC and πT ..

Due to the variability in ŜEMQL(β̂1MQL), V ar(WReg) will depend on the variances and

covariance of β̂1MQL and ŜEMQL(β̂1MQL). As V ar(β̂1MQL) increases, there are more extreme

values for β̂1MQL, and these large values are associated with values for ŜEMQL(β̂1MQL)

that are larger than the true SE. Hauck and Donner (1977) demonstrated this tendency in

logistic regression. This relationship can cause WReg to be smaller than desired, therefore

reducing V ar(WReg) and making the tails in the distribution of WReg to become lighter, thus

diminishing test size. Test size decreases as V ar[ŜEMQL(β̂1MQL)] increases, implying test

size decreases away from its nominal level with decreases in n and cluster sizes and increases

in ρ, |πC − 0.5|, and |πT − 0.5|.

This phenomenon of test size being smaller than its nominal level is rather minor when

marginal probabilities are not near the edge of the parameter space. Due to the curvature of

Equation (2.4) with respect to the marginal probabilities, the impact from variation in the

estimate of β used in this formula leads to increasingly larger variations in the estimated

SE as |πC − 0.5| and |πT − 0.5| approach 0.5. Empirical evidence (not shown) indicates

that having a large number of clusters, say thirty or more per treatment arm, will typically

combat this problem quite well. For a small to moderate number of clusters, the decrease in

test size may become important as |πC − 0.5| and |πT − 0.5| rise to 0.3 or higher, especially

when ρ is almost as large, if not larger, than πC and πT . Additionally, some GRTs may not

have large cluster sizes. An example of this would be a study where each cluster is actually

an individual subject contributing a small number, or group, of binary outcomes. Having

smaller sizes for a fixed number of clusters will increase the variation in the estimate of β,

causing a greater impact on test size. This impact may be negligible, however, unless the

differences in cluster sizes are large. For instance, a study in which only a small number of

observations on each subject are observed can have larger test size problems than a GRT

where there are a large number of outcomes in each cluster.

13



2.3.2 Deriving a Pseudo-Wald Statistic with Known ICC

In practice, the ICC will need to be estimated, but the goal of this section is to show how

the size of the Wald test can be adjusted closer to a nominal level, α, when ρ is known. As

mentioned previously, V ar(WReg) can be less than one, resulting in test sizes smaller than α

when using N(0, 1) critical values. Two possible ways of fixing this would be to find critical

values that will consistently produce a test size equal to α, or modify ŜEMQL(β̂1MQL) such

that the resulting SE estimate is smaller by an amount depending on n, cluster sizes, ρ, πC

and πT , with the goal of producing a Wald statistic with a variance of one. We take the

latter approach, but utilize the idea of changing the critical values when we later incorporate

estimation of ρ.

Test size, Bias(β̂0MQL), and Bias(β̂1MQL) are functions of n, cluster sizes, ρ, πC and πT .

Incorporating these relationships, we define

β̃Nk = (β̂kBC/β̂kMQL)N β̂kMQL = (β̂kBC)N/(β̂kMQL)N−1, k = 0, 1,

for any non-negative real number N . Our proposed pseudo-SE estimate is S̃EN(β̂1MQL) =

SEβ̂1MQL
[πC(β̃

N
), πT (β̃

N
)], in which β̃

N
= [β̃N0 , β̃

N
1 ]′. SinceN is non-negative, (β̂kBC/β̂kMQL)

∈ [0, 1] implies |β̃Nk | ≤ |β̂kMQL|, which in practice will give S̃EN(β̂1MQL) ≤ ŜEMQL(β̂1MQL)

since πC(β̃
N

) and πT (β̃
N

) will be no further in value from 0.5 than πC(β̂MQL) and πT (β̂MQL),

respectively, in realistic settings. Typically, S̃EN(β̂1MQL) < ŜEMQL(β̂1MQL). The pseudo-

Wald statistic W̃N = β̂1MQL/S̃EN(β̂1MQL) will then be larger in absolute value than WReg.

Also, decreases in n and cluster sizes and increases in ρ, |πC−0.5|, and |πT −0.5| correspond

to increases in test size when using W̃N as the test statistic as compared to using WReg.

Using W̃N as our test statistic, we needed to find a value for N such that the variance

of W̃N is always approximately one, with a resulting test size equal to α when using N(0, 1)

critical values. Increasing N causes S̃EN(β̂1MQL) to decrease, and therefore test size will

increase. Simulations were conducted to find an appropriate solution. Each setting was

14



Table 2.1: Empirical test sizes using the given Wald statistic and N(0, 1) critical values. n/2
clusters were randomized to each treatment arm, and had a marginal success rate
π. The ICC is known. Bold values have corresponding 95% confidence intervals
covering 0.05, the nominal level. Outcomes from the first ten sets of simulations
were generated using the beta-binomial distribution, while outcomes from the last
ten sets of simulations were generated using a log-gamma mixture distribution,
such that −ln(pi) ∼ Gamma(θi, φi).

n/2 π ICC WReg W̃1 W̃1.25 W̃1.5 W̃1.75 W̃2

10 0.05 0.05 0.0360 0.0459 0.0482 0.0509 0.0540 0.0557
20 0.05 0.05 0.0407 0.0440 0.0453 0.0464 0.0472 0.0485
10 0.10 0.05 0.0436 0.0461 0.0471 0.0478 0.0482 0.0491
20 0.10 0.05 0.0470 0.0490 0.0494 0.0499 0.0505 0.0509
10 0.10 0.10 0.0390 0.0462 0.0483 0.0502 0.0521 0.0534
20 0.10 0.10 0.0429 0.0458 0.0466 0.0471 0.0487 0.0490
10 0.20 0.05 0.0481 0.0492 0.0495 0.0495 0.0496 0.0500
20 0.20 0.10 0.0496 0.0502 0.0502 0.0503 0.0504 0.0505
10 0.30 0.05 0.0518 0.0523 0.0524 0.0525 0.0527 0.0528
20 0.30 0.10 0.0514 0.0518 0.0520 0.0520 0.0520 0.0520

10 0.05 0.05 0.0350 0.0464 0.0491 0.0517 0.0543 0.0565
20 0.05 0.05 0.0422 0.0464 0.0471 0.0479 0.0492 0.0502
10 0.10 0.05 0.0429 0.0452 0.0456 0.0470 0.0483 0.0492
20 0.10 0.05 0.0477 0.0493 0.0496 0.0502 0.0507 0.0513
10 0.10 0.10 0.0375 0.0450 0.0476 0.0496 0.0514 0.0536
20 0.10 0.10 0.0440 0.0460 0.0467 0.0472 0.0483 0.0492
10 0.20 0.05 0.0479 0.0485 0.0488 0.0492 0.0496 0.0500
20 0.20 0.05 0.0483 0.0488 0.0488 0.0488 0.0488 0.0488
10 0.20 0.10 0.0459 0.0474 0.0480 0.0483 0.0490 0.0497
20 0.20 0.10 0.0492 0.0502 0.0505 0.0507 0.0511 0.0512

examined in 10,000 simulations, and cluster sizes varied uniformly from 25 to 150 subjects.

Empirical test size was compared for WReg and W̃N with N ∈ {1, 1.25, 1.5, 1.75, 2}. Results

from using a five percent significance level can be seen in Table 2.1 and show that N=1.5

performed best. However, allowing N to be any value from 1.25 to 2 would be adequate.

Figure 2.1b shows the empirical distribution for W̃1.5 from the same set of simulations used

to produce Figure 2.1a, along with the density of the N(0, 1) distribution. The tails from

this empirical distribution match the tails from the N(0, 1) density, indicating that test size

is at its nominal level.

Although we are dealing with scenarios involving small n, it is important to show how
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W̃N performs asymptotically. Given N < ∞ and (n − u)/u is a constant (typically around

one), both β̃
N p→ β and W̃N

d
=⇒ N(0, 1) as n → ∞. Therefore, W̃N and WReg should

give very similar results for large n, and both will approximately behave as standard normal

random variables.

2.3.3 Incorporating Estimation of ICC

The following two issues still need to be handled in practice: (1) finding a consistent

estimate, ρ̂, for the ICC, and (2) finding appropriate critical values and/or adjust Equation

(2.4) to deal with the effect estimating ρ has on the distribution of the Wald statistic that is

utilized. With regard to the first issue, there are many papers that have dealt with the topic

of estimating the ICC, with Ridout, Demetrio, and Firth (1999) presenting an overview with

simulations comparing many different estimation procedures. Some of the more well-known

ways to estimate the ICC are Williams’ method (Williams, 1982), Pseudolikelihood (Carroll

and Ruppert, 1982; Davidian and Carroll, 1987), Extended Quasi-Likelihood (Nelder and

Pregibon, 1987), and ANOVA (Donner and Donald, 1988; Reed, 2000; Jung, Kang, and Ahn,

2001). These are useful in that they can handle regression models with multiple covariates,

both categorical and continuous, at the cluster level. Preliminary simulations (not shown)

were done to find the most appropriate method in our settings in terms of mean squared error

(MSE). Of the previously mentioned methods, ANOVA performed best. If the assumption

of a common ICC is correct, a consistent estimate is given by

ρ̂ANOV A =
MSB −MSE

MSB + (K − 1)MSE

where

MSB =
1

n− 2

n∑
i=1

ni

(
Yi
ni
− π̂i

)2

, MSE =
1∑n

i=1 ni − n

n∑
i=1

Yi

(
1− Yi

ni

)
,
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K =
1

n− 2

[
n∑
i=1

ni −
u∑
i=1

n2
i

mC

−
n∑

i=u+1

n2
i

mT

]
, mC =

u∑
i=1

ni, mT =
n∑

i=u+1

ni

With regard to the second issue, estimating the ICC causes V ar(WReg) and V ar(W̃N)

to increase, leading to an inflation of test size. One method to deal with increased test

size would be to use critical values that are larger in absolute value; however, these values

would need to depend on the bias and variance of ρ̂, and therefore n, since increasing n will

decrease these quantities, causing test size to reduce back toward α. One possible solution

would be to obtain critical values from a t-distribution with f(n) degrees of freedom (df),

denoted as tf(n), assuming f(·) is a “correctly” chosen function. We later demonstrate the

utility of f(n) = n.

Another way to shrink test size back toward α after estimating the ICC would be to use

leverage values to inflate the estimated versions of Equation (2.4) for WReg and W̃N while

continuing to use N(0, 1) critical values. Leverage values, 0 ≤ hi ≤ 1, i = 1, 2, . . . n, are the

diagonal elements of the n× n matrix

H = W 1/2Z(Z ′WZ)−1Z ′W 1/2,

such that
∑n

i=1 hi = p, where p is the number of regression parameters (p = 2 in our setting).

Note that leverage values are estimated using πC(β̂MQL) and πT (β̂MQL). As n → ∞, we

have hi → 0, i = 1, . . . n. We multiply the ith term in Equation (2.4) by (1− hi), giving

√√√√[ u∑
i=1

niπC(β)[1− πC(β)](1− hi)
1 + (ni − 1)ρ

]−1

+

[
n∑

i=u+1

niπT (β)[1− πT (β)](1− hi)
1 + (ni − 1)ρ

]−1

(2.5)

Using this function of the leverages inside Equation (2.4) will cause the denominator of

the Wald statistic to increase as n decreases, offsetting at least part of the elevation in the

variance of the Wald statistic due to the increase in variance and bias of ρ̂.
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2.4 Assessing the Utility of the Pseudo-Wald Statistic

2.4.1 Via Simulation Study

We compare the test size of WReg and W̃1.5 to those of two other Wald statistics. The

first, WS = β̂1MQL/ŜES(β̂1MQL) is the traditional Wald statistic using the sandwich form

for the SE of β̂1MQL. The second, WSBC = β̂1MQL/ŜESBC(β̂1MQL) replaces the sandwich

estimate for SE(β̂1MQL) with the bias-corrected version proposed by Mancl and DeRouen

(2001). All four statistics are compared to both N(0, 1) and tn critical values. We also

compute versions of WReg and W̃1.5 implementing Equation (2.5) which are compared to

N(0, 1) critical values. As mentioned previously, ANOVA is used to estimate a common

ICC. Therefore, our results apply to using any estimator of ρ with bias and variance similar

to that of ρ̂ANOV A. Empirical test sizes under five settings using a significance level of 0.05

are displayed in Table 2.2.

Results show that using WReg leads to inconsistent test sizes. When compared to N(0, 1)

critical values, test size is too large in scenarios with marginal probabilities of at least 0.20,

unless we use the inflated SE. When using the inflated SE or comparing to tn critical values,

the null hypothesis is not rejected enough if marginal probabilities are 0.10 or less. WS is

even less desirable to use. It gives inconsistent test sizes, all tending to be too large. WSBC

fairs better, but also leads to inconsistent inference. WSBC is more reliable when compared

to tn critical values, but test size is too large when group probabilities are 0.05 and too small

when group probabilities range from 0.2 to 0.5. Comparing W̃1.5 and its inflated SE version

to tn and N(0, 1) critical values, respectively, test size is consistently at its nominal level,

and so there is no need to be concerned whether inference will be liberal or conservative.

This gives a valid test, which will not reject the null hypothesis too often as the previously

mentioned tests do in some settings. Additionally, these two proposed pseudo-Wald tests

will produce greater power over all scenarios where other tests are conservative, such as when

comparing WSBC to tn critical values and the marginal probabilities, although not necessarily
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equal, range from 0.20 to 0.50.

2.4.2 Via Application to Actual GRT

We illustrate an application of our pseudo-Wald tests using the study reported by Atri

et al. (1997), the data for which are presented in Turner, Omar, and Thompson (2001). The

number of women failing to attend appointments in a given practice ranged from 19 to 201.

The ICC was estimated to be 0.064, indicating a small variation in estimated success rates

between practices in the same treatment arm. Using the MQL regression parameters, the

marginal probabilities of breast screening for intervention and control practices were esti-

mated to be 0.101 and 0.035, respectively. Parameter and SE estimates, along with p-values

and 95% confidence intervals, for the various methods presented in this chapter are given

in Table 2.3. The model-based SE gave the largest SE estimate, while the sandwich SE

estimate was the smallest. The use of any combination of SE estimate and distribution to

obtain critical values from resulted in the rejection of the null hypothesis, implying there

is strong enough evidence at the five percent significance level to conclude that the inter-

vention was effective. The pseudo-Wald statistic appeared to give slightly stronger evidence

supporting a treatment effect as compared with the use of WReg. The use of the sandwich

SEs gave the strongest support for a treatment effect, although these SE estimates may be

biased downward.

2.5 Concluding Remarks

Many GRTs randomize a relatively small number of clusters. When the data to be

analyzed from this setting is in the form of a binary observation from each study participant,

our proposed pseudo-Wald statistic, W̃1.5, outperforms existing Wald statistics using model-

based or sandwich SEs. The Wald statistic using model-based SEs can produce a test size

smaller than the nominal value, and therefore will produce less power than our pseudo-Wald

statistic under the alternative hypothesis. Additionally, test size can be too large and is
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Table 2.3: Estimates, p-values, and 95% confidence intervals (CIs) resulting from the analysis
of the breast screening data. Critical values were obtained from the N(0, 1) and
t26 distributions. P-values and CIs correspond to the Wald test using the SE

estimate in the corresponding row. S̃E
∗
1.5(β̂1MQL) indicates the use of Equation

(2.5) with our pseudo-SE method.

Estimate N(0, 1) t26

β̂1MQL 1.138
p-value 95% CI p-value 95% CI

ŜEMQL(β̂1MQL) 0.499 0.023 (0.160, 2.116) 0.031 (0.113, 2.163)

S̃E1.5(β̂1MQL) 0.479 0.017 (0.200, 2.076) 0.025 (0.154, 2.122)

S̃E
∗
1.5(β̂1MQL) 0.498 0.022 (0.162, 2.114)

ŜES(β̂1MQL) 0.417 0.006 (0.322, 1.955) 0.011 (0.282, 1.995)

ŜESBC(β̂1MQL) 0.448 0.011 (0.261, 2.015) 0.017 (0.218, 2.058)

inconsistent when using the sandwich-based methods. Therefore, we recommend that W̃1.5

should be utilized with tn critical values, or with the proposed inflated SE given in Equation

(2.5) and N(0, 1) critical values, for hypothesis testing and obtaining confidence intervals.

One may be interested in the validity of the use of W̃1.5 when the nominal level is, say,

0.01 or 0.10, rather than a traditional value of 0.05. The density corresponding to W̃1.5 is

just a widening of the bell-shaped density of WReg, especially in the tails. W̃1.5 produces test

sizes at the nominal level of 0.05 and also has a bell-shaped density, making it unlikely that

choosing a nominal level smaller than 0.05 will yield a larger test size. With levels larger

than 0.05, where the density corresponding to WReg is very similar to the N(0, 1) density,

there is a possibility that W̃1.5 may lead to a slightly inflated realized test size. However, this

possible increase in realized size will be of little concern for fixed nominal levels regularly

used in practice.

Throughout this manuscript, we have assumed the ICC is equal for all clusters. If the

correlation varies from cluster to cluster, our bias and covariance formulas for the MQL

estimates take this variable correlation into account, and our method is still valid when

the varying correlations are known. However, the correlations will need to be estimated in
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practice. If one were to incorrectly assume a common ICC, the size of the proposed pseudo-

Wald test may not be nominal if the quantities q̂i = ni/[1 + (ni − 1)ρ̂ANOV A], i = 1, 2, . . . n,

are not close to the values that would have resulted with correctly specified cluster-specific

correlation estimates. This is more likely to occur in scenarios in which cluster sizes are large

and correlation varies moderately, or with smaller clusters with large variations in ICC.

Our proposed method can be useful in the analysis of rare or common events data where

|πC − 0.5| and |πT − 0.5| are very close to 0.5. Due to the marginal probabilities being near

the boundary of the parameter space, test size can be smaller than the nominal level even if

there is no correlation. Here, our method has no additional limitations as compared to the

traditional Wald statistic. Furthermore, our methods are applicable to any non-GRT setting

that produces cluster-correlated binary data. These settings include teratology experiments

and studies collecting repeated measures on the same subjects.

The results of this chapter focus on Wald tests for a marginal model parameter. Another

popular approach for the analysis of correlated binary data is the use of a generalized linear

mixed effects model (GLMM), in which the correlation is modeled as a random cluster effect,

thereby making interpretation of mean parameters conditional for a given cluster. In the

Atri et al. (1997) study, the interest was in increasing breast screening in the population,

and so a marginal model and our methods would be more suitable than a conditional or

random effects approach. A marginal interpretation may not be as suitable, though, if we

had a scenario where a binary outcome were measured repeatedly on each patient and a

subject-specific interpretation of a mean parameter were of primary interest. In this setting,

our methods would not be used, although generalization of our methods to random effects

model parameters is certainly worthy of research.

Our presentation did not implement β̂1BC in the numerator for any of the presented

Wald statistics, even though it will contain less, if any, bias than β̂1MQL; additionally, its

variance is smaller. Neither Cordeiro and McCullagh (1991) nor Cordeiro and Demetrio

(2008) proposed a variance estimator for β̂BC . Cordeiro and McCullagh (1991) showed that
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for logistic regression with no over-dispersion, the bias in the maximum likelihood estimate

of β, β̂ML, is approximately pβ/n for small β. From this, King and Zeng (2001) proposed

estimating the variance of their β̂BC by multiplying the model-based variance by [n/(n+p)]2.

We utilize a similar approach; by taking into account that the bias-corrected estimate is

approximately a fraction of the MQL estimate, we suggest estimating the SE for β̂1BC by

multiplying the estimated SE for β̂1MQL by β̂1BC/β̂1MQL. One can then incorporate this with

the results of this chapter, i.e. use (β̂1BC/β̂1MQL)S̃E1.5(β̂1MQL) as the pseudo-SE estimate

implemented inside a Wald statistic with β̂1BC in the numerator. This quantity is equivalent

to W̃1.5; therefore, test size remains unchanged. Simulations (not shown) demonstrated that

using β̂1BC with this SE estimate yields approximately the same coverage probability as if

β̂1MQL were utilized; however, due to β̂1BC being approximately unbiased and less variable,

it will yield a more desirable confidence interval.

In further research on testing for a marginal treatment effect, we will study test size

resulting from the typical Wald test using the model-based SE when the outcomes of interest

are not binary responses. We will also extend our model to include other covariates. Further

study is also needed to find more exact SE formulas for the BCEs, and to determine if these

would carry more accuracy and utility than our proposed formula.

An R function that implements our proposed pseudo-Wald tests, and also outputs our

suggested 95% confidence intervals using β̂1BC as the point estimate, can be obtained by

contacting the author at pwestgat@umich.edu.
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CHAPTER III

The Effect of Cluster Size Imbalance and Covariates on

the Estimation Performance of QIF

3.1 Introduction

Correlated data with imbalanced cluster sizes arise often in practice. GRTs and longitu-

dinal studies in which the number of repeated measures is not constant across subjects are

two popular examples where data are composed of independent clusters that typically are

comprised of varying sizes. With these types of data, individual-level responses within any

given cluster are assumed to be correlated.

We particularly focus on GRTs, which are unique from other randomized trials. They

typically are comprised of a small number of independent clusters that can be quite large

and variable in size. Due to these attributes, statistical power can be quite low, but the

study itself can be very costly to conduct. When the desired interpretations for regression

parameters are in terms of the population mean, Generalized Estimating Equations (GEE)

(Liang and Zeger, 1986) are a popular tool of choice for the analysis of data arising from these

trials. They require working correlation and marginal variance structures to be given, but

only the mean structure needs correct specification in order to obtain consistent parameter

estimates.

Due to potentially low power in these studies, the use of a more efficient method would be

very beneficial, which is why we focus on the estimation performance of Quadratic Inference

Functions (QIF). With the same limited requirements as GEE, Qu, Lindsay, and Li (2000)
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proposed this as an alternative method, which is a combination of GEE and the Generalized

Method of Moments (GMMs) (Hansen, 1982). QIF asymptotically has greater efficiency than

GEE when employing the incorrect covariance structure, and is as efficient when using the

correct structure (Qu et al., 2000; Song, 2007; Song et al., 2009). This result depends on all

cluster sizes being equal if a common exchangeable correlation is implemented, such that both

procedures’ estimating equations are within the same class. Many papers, such as Qu et al.

(2000), demonstrate the utility QIF has over GEE when using a working exchangeable or AR-

1 correlation matrix. No paper, however, has studied the finite sample estimation precision,

or reliability, of QIF as compared to GEE when cluster sizes vary and the exchangeable

structure is reasonably employed, such as in common GRT settings. Additionally, the effect

of covariates on QIF’s estimation performance has not been considered.

Our motivating dataset comes from Yudkin and Moher (2001), who discuss issues with

an ongoing GRT dealing with coronary heart disease (CHD) and promoting secondary pre-

vention via two interventions as compared with a control that gives ordinary care to patients.

They give a table of baseline results on four variables and the size of each of the twenty-one

practices, or clusters, participating in the study. Using the presented data, we found the

number of patients in each practice who were recently adequately assessed for three CHD

risk factors. The other three variables were practice-level proportions of patients having a

record of treatment with aspirin, hypotensives, or lipid-lowering drugs since their diagnosis

with CHD. Practices varied in size from twenty-eight to 244.

One issue Yudkin and Moher (2001) discuss with the baseline data is how to utilize re-

stricted randomization of practices to trial arms such that balance, in terms of adequate

assessment and the three records of treatment, is achieved. Our motivation, however, is in

quantifying the association between the marginal probability of a practice, which gives ordi-

nary patient care, having recently adequately assessed any given patient and the proportion

of patients in that practice having a record of treatment with any of the three drug types. Use

of the logistic link would be common for this marginal model, in which the proportion of pa-
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tients for any one of the three records of drug treatment could simply be used as a continuous

covariate. The true, but unobserved, probabilities of adequately assessing any given patient

can vary across practices about their marginal means due to unknown factors, thus inducing

correlation among patients within the same practice. Therefore, a common exchangeable

correlation would be a natural structure to implement in the estimation method.

We later show that GEE and QIF can produce notably different probability estimates

from the analysis of this data, leading to the issue of which method gave more trustworthy

estimates, and in general, which of these two methods would be best to use for the analysis

of data from any GRT. As QIF theoretically is equally or more efficient than GEE, one may

think that its estimates here would be more reliable. For example, the degree of correlation

could depend on the proportion of patients with a record of drug treatment, and QIF should

take this into account if that truly were the case, while GEE cannot. The purpose of this

chapter is to give details into how QIF and GEE can give notably different estimates in this

or any other GRT setting, and why GEE may actually be better to employ in GRT scenarios

and many other small-sample settings.

Section 3.2 discusses GEE and QIF in more detail, including comparisons of their re-

spective classes of estimating equations when an exchangeable correlation structure is im-

plemented. In Section 3.3, we discuss how cluster size imbalance and covariates can cause

QIF, as compared with GEE, to lose estimation precision when the number of clusters is not

large. Additionally, a new version of QIF with corresponding estimating equations in the

same class as GEE when clusters vary in size is presented to argue that the empirical nature

of the weighting matrix used in QIF, rather than class, has the largest impact on estimation

performance. In Section 3.4, we present simulation results, with emphasis on our motivat-

ing dataset and general GRTs, demonstrating the differences in the precisions of parameter

estimates from GEE and QIF. Furthermore, the distinct estimation performances of these

two methods are shown in application to the motivating dataset. Concluding remarks are

given in Section 3.5.
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3.2 Marginal Models

3.2.1 Generalized Estimating Equations

We have N independent clusters of data, and cluster i, i = 1, 2, . . . N , has ni observations,

outcome vector Y i = [Yi1, . . . , Yini
]T , and mean vector µi = E(Y i). The marginal mean

structure is specified as h(µi) = ηi = xiβ, where the jth row of xi, j = 1, 2, . . . ni, is

xij = [xij0, xij1, . . . , xij(p−1)], the vector of covariate values for the jth observation in cluster

i, and β = [β0, β1, . . . , βp−1]
T is a p× 1 vector of corresponding regression parameters. The

estimates for β are obtained by setting the GEE equal to zero,

N∑
i=1

DT
i V

−1
i (Y i − µi) = 0, (3.1)

whereDi = ∂µi/∂β and V i is the working covariance structure for Y i. V i can be written as

A
1/2
i Ri(α)A

1/2
i , where Ai is a diagonal matrix of the working marginal variances for the ni

observations, and Ri(α) is their working correlation structure with parameter(s) α. When

the covariance structure is correctly specified and a consistent estimate for α is employed,

GEE as given in Equation (3.1) are optimal estimating equations (Small and McLeish, 1994).

If V i is misspecified, the parameter estimates, β̂, are still consistent when the mean structure

is correct.

When implementing an exchangeable correlation structure, Equation (3.1) can be rewrit-

ten as

N∑
i=1

DT
i A

−1/2
i (γ1iM 1i + γ2iM 2i)A

−1/2
i (Y i − µi) = 0, (3.2)

where γ1i = −[(ni − 2)ρi + 1]/ki, γ2i = ρi/ki, ki = (ni − 1)ρ2
i − (ni − 2)ρi − 1, M 1i is an

ni×ni identity matrix, M 2i is an ni×ni matrix composed of zeros on the diagonal and ones

elsewhere, and ρi is a function of α and is the assumed common correlation within the ith

cluster (Qu et al. 2000). If cluster sizes are all equal and a constant correlation is assumed
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across clusters, Equation (3.2) is easily seen as being in the class of estimating equations

given by

2∑
r=1

Br

N∑
i=1

DT
i A

−1/2
i M rA

−1/2
i (Y i − µi) = 0, (3.3)

where Br, r = 1, 2, are p× p arbitrary nonrandom matrices. M 1i and M 2i, i = 1, 2, . . . N ,

do not change across clusters, and therefore are denoted here as M 1 and M 2. They can

be thought of as basis matrices since all other quantities inside the two sums over the N

clusters are the same (Qu et al., 2000). With respect to GEE, B1 and B2 are identity

matrices multiplied by γ1 and γ2, respectively, where γr = γri, r = 1, 2; i = 1, 2, . . . N . When

clusters vary in size, or a common correlation is no longer used across all clusters, GEE is

not within this class of estimating equations and belongs to a more specific class given by

2∑
r=1

Or

N∑
i=1

γriD
T
i A

−1/2
i M riA

−1/2
i (Y i − µi) = 0, (3.4)

where Or, r = 1, 2, are p× p arbitrary nonrandom matrices equal to the identity matrix for

GEE.

3.2.2 Quadratic Inference Functions

The QIF proposed by Qu et al. (2000) combines the methods of GMMs and GEE. It

assumes R−1
i (α) =

∑m
r=1 γriM ri, where M ri, r = 1, 2, . . .m, are known basis matrices

and γri, r = 1, 2, . . .m, are functions of α that we will refer to as correlation weights. An

exchangeable structure is a specific case where the inverse of the correlation matrix can be

written as the sum of weighted basis matrices, as shown in Equation (3.2). Unstructured,

AR-1, and independence are the other correlation structures QIF currently supports via this

assumption, each of which have inverses that can at least be approximated by using two

basis matrices (Song et al., 2009). We do not focus on these in this chapter since QIF and

GEE lead to identical estimating equations when using independence (Qu and Song, 2004),
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unstructured cannot be implemented when clusters vary in size, and exchangeable is more

commonly employed than AR-1 in GRT settings. However, the discussion in Section 3.3 on

the lost reliability of QIF as compared with GEE is still at least partially relevant to AR-1

and unstructured working correlations.

Equation (3.2) can be viewed as the sum of two unbiased estimating equations, each of

which are used to build extended score equations defined as

ḡN(β) =
1

N
gN(β) =

1

N

N∑
i=1

gi(β) =

 1
N

∑N
i=1 g1i(β)

1
N

∑N
i=1 g2i(β)

 , (3.5)

or

ḡN(β) =


1
N

∑N
i=1 g1i(β)

...

1
N

∑N
i=1 gmi(β)


in a general setting. The number of extended score equations is m times the number of re-

gression parameters, and therefore cannot be set equal to zero to obtain parameter estimates,

as is done for GEE, since no identifiable solution exists. The extended score equations are

used in Hansen’s (1982) GMMs to create the QIF, defined as

QN(β) = NḡTN(β)C−1
N (β)ḡN(β) =

[
N∑
i=1

gTi (β)

][
N∑
i=1

gi(β)gTi (β)

]−1 [ N∑
i=1

gi(β)

]
.

The estimate for β can now be found by β̂ = arg minβ QN(β), which is asymptotically

equivalent to solving

N∇ḡTN(β)C−1
N (β)ḡN(β) =

N∑
i=1

∇ḡTN(β)C−1
N (β)gi(β) = 0 (3.6)

for β, where ∇ denotes the gradient with respect to βT . Here, the empirical covariance
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matrix CN(β) = (1/N)
∑N

i=1 gi(β)gTi (β) is used to estimate the optimal weighting matrix

ΣN = (1/N)
∑N

i=1Cov[gi(β)]. Results using CN(β) are asymptotically equivalent to using

ΣN , since CN(β)−ΣN
p→ 0 (Qu et al., 2000; Pilla and Loader, 2006).

In practice, gri(β) = DT
i A

−1/2
i M riA

−1/2
i (Y i − µi), r = 1, . . . ,m; i = 1, 2, . . . N , are

regularly implemented in QIF’s extended score equations. These ignore the correlation

weights, implying that α does not need to be estimated. When using an exchangeable

structure and cluster sizes do not vary, Equation (3.6) is in the class of estimating equations

given by Equation (3.3). When cluster sizes vary, Equation (3.6) is in the class of estimating

equations given by Equation (3.3) with one difference: the dimensions of the basis matrices

are dependent on cluster size. This is not in the class given by Equation (3.4) to which GEE

belongs in this scenario. In order for Equation (3.6) and GEE to be in the same class when

cluster sizes vary, the extended score equations need to incorporate the correlation weights;

i.e. use gri(β) = γriD
T
i A

−1/2
i M riA

−1/2
i (Y i−µi), r = 1, 2; i = 1, 2, . . . N , inducing the need

to estimate α.

From Lindsay (1982), Hansen (1982), and Small and McLeish (1994), Qu et al. (2000)

show that, since CN(β) − ΣN
p→ 0, the estimating equations given in Equation (3.6) are

fully efficient when the covariance structure is correctly specified and they are in the same

class as GEE, and always optimal in the Löwner ordering among estimating equations within

their given class. When cluster sizes are constant and assuming a common correlation with

an exchangeable structure, Equation (3.6) and GEE are in the class of estimating equations

given by Equation (3.3), and therefore QIF has the theoretical advantage of asymptotically

producing parameter estimates having equal or less variance than estimates from GEE.

When cluster sizes vary and an exchangeable correlation is utilized, QIF loses this theoretical

advantage unless the correlation weights are used inside the extended score equations. In

this case, GEE and Equation (3.6) both belong to the class given by Equation (3.4).
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3.3 Empirical Weighting and QIF Estimation Precision

3.3.1 The Impacts of Imbalanced Cluster Sizes and Covariates

QIF uses an empirical weighting matrix, CN(β), to estimate ΣN , which is optimal.

Asymptotically, using this matrix is the source of QIF’s efficiency advantage. Even when

clusters vary in size, causing QIF and GEE to not be directly comparable in terms of effi-

ciency theory when using a common exchangeable correlation, QIF still has an advantage in

the sense that it is composed of a consistent weighting matrix whether the true covariance

structure is implemented or not. However, the use of CN(β̂) can lead to lost, rather than

gained, estimation precision as compared to GEE, in small to moderately sized samples, such

as the GRT dataset containing only twenty-one practices. Specifically, imbalance in cluster

sizes, the number of covariates, and their corresponding values, all affect the amount of em-

pirical information from CN(β̂) used to estimate the working weights inside the estimating

equations. The weight(s) used by QIF for any given cluster’s outcomes can therefore be quite

variable when N is not large, which we discuss next. Conversely, GEE uses outcomes from all

clusters to estimate a common correlation parameter that is used inside a fixed correlation,

and thus weighting, structure. This produces weights, and thus estimating equations, that

are possibly much less variable than their counterparts used by QIF, potentially leading to

greater estimation reliability.

Before discussing QIF’s empirical weighting nature, we emphasize that use of some β̂ to

estimate V i in GEE and empirical covariances, gig
T
i , i = 1, 2, . . . N , in QIF, is required in

practice. This will have little influence on parameter estimates from GEE due to the fixed

weighting structure this method employs. However, for small N , not only can QIF’s weights

be quite variable, V ar(β̂) can be large as well, thus implying that the estimated empirical

covariances (gi(β̂)gTi (β̂), i = 1, 2, . . . N) can be notably different than the true empirical

covariances (gi(β)gTi (β), i = 1, 2, . . . N). Due to the variable weighting nature used by

QIF, these differences between estimated and true empirical covariances can lead to notable
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differences between the estimated and true weights, which affects parameter estimation.

Windmeijer (2000, 2005) also notes in the GMM literature that the variance of the final

estimate for β is influenced by the use of β̂ inside the empirical weighting matrix.

We first assume ΣN is known. This matrix averages the covariances of the N ex-

tended score components, gi(β), i = 1, 2, . . . N , such that ḡN(β) is optimally weighted

inside Equation (3.6). This typically does not allow the sole use of Cov[gi(β)] to weight

gi(β), i = 1, 2, . . . N , inside the estimating equations. Rather, QIF uses ∇ḡTN(β)Σ−1
N in

its estimating equations to determine how much individual weight should be given to each

gi(β), i = 1, 2, . . . N , by using the averaged information from sensitivities (Song, 2007) and

covariances over the extended score components from all N clusters.

For a simple example, the baseline marginal probability of adequate assessment was of

interest to Yudkin and Moher (2001), corresponding to an intercept-only model. We later

show that the value used to weight the difference in the observed and expected number of pa-

tients adequately assessed in a given practice is a linear function of size in this simple model,

due to each extended score component being linear in terms of size and the corresponding

residual. Therefore, by using information from all N practices, QIF takes into account how

sensitivities and covariances change on average with respect to size, and then determines the

appropriate weight function. As covariates, such as drug treatment proportions, are added

to the model, this type of average sensitivity and covariance trend has to be determined

with respect to the numerous combinations of size and covariates, making ∇ḡTN(β)Σ−1
N more

complicated, as we will later explicitly show in Equation (3.7).

In practice, CN(β̂) is used in place of ΣN . As covariances can potentially depend upon

cluster size and covariates, CN(β̂) attempts to determine the appropriate trends by averaging

over all estimated empirical covariances, gi(β̂)gTi (β̂), i = 1, 2, . . . N . In finite samples, esti-

mating the effect of these factors on covariances can lead to additional weighting variability

that may be detrimental even when the working covariance structure is incorrect. This is

particularly true for GRTs, as N can be quite small.
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The sensitive nature of weighting used by QIF via CN is exhibited by Qu and Song

(2004), as they show QIF is robust to outliers and contaminated data. Specifically, they

prove that ||∇ḡTN(β)C−1
N (β)gi(β)||2 → 0 as ||Y i − µi|| → ∞, where ||K|| = [tr(KTK)]1/2

for some arbitrary matrixK. Note that large ||Y i−µ̂i|| implies that the estimated empirical

covariance, gi(β̂)gTi (β̂), of the corresponding extended score component is also large, and will

actually downweight the outcomes from this cluster without necessarily doing the same to

other clusters. This shows that although QIF does not solely use Ĉov[gi(β̂)] = gi(β̂)gTi (β̂) to

individually weight gi, i = 1, 2, . . . N , in Equation (3.6), the estimated empirical covariance

from any given cluster can be the most important factor into how much weight its outcomes

receive in the estimating equations.

We now focus on the direct influence from the ith cluster’s empirical covariance, for some

i ∈ [1, 2, . . . N ], on the estimation of weights given to outcomes from any other cluster, say

cluster k. If the only difference between gk(β) and gi(β) is that Y i 6= Y k, i.e. xi and xk

are interchangeable, implying equivalence in terms of size and covariate values, then Y k will

be weighted in the same manner as Y i, and E[gi(β)gTi (β)] = E[gk(β)gTk (β)]. For instance,

two practices in the motivating dataset have an equal number of patients with CHD, and

therefore would be equivalently weighted in the intercept-only model. This implies, for

example, if ||Y i − µ̂i|| is much larger than expected, then both Y i and Y k will be equally

downweighted inside the estimating equations unless ||Y k − µ̂k||, and therefore gk(β̂)gTk (β̂),

is smaller than expected by an amount such that it offsets the overestimated covariance

from cluster i. However, if there are other clusters with similar covariate design matrices,

their estimated empirical covariances may have a less direct impact on the estimation of

weights given to Y i and Y k, but may partially offset some of the random variability from

gi(β̂)gTi (β̂) and gk(β̂)gTk (β̂). For instance, if we are using the record of aspirin treatment

to predict adequate assessment, the most direct influence on the weight given to outcomes

from any given practice comes from other clusters that have a similar size and percentage of

aspirin treatment. Therefore, unless there are numerous clusters with the same or a similar
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design, thus directly improving the estimates for their outcomes’ corresponding weights,

QIF’s estimating equations can be quite variable. Additionally, similarity is rather arbitrary

in terms of covariate design matrices, and we later give specific examples that explicitly give

insight into what is deemed similar with respect to obtaining weights.

As covariates are added to the regression model, such as using all three proportions

of treatment records as predictors of adequate assessment in the same model, or clusters

become more variable in size, there is greater dissimilarity across clusters and the weighting

of their outcomes will be more complicated. In general, empirical covariances used to directly

influence the weights given to outcomes from any cluster come from a group of similar

clusters, although there can be notable indirect influence from dissimilar clusters due to the

linear trend as shown later in Equation (3.7). Greater dissimilarity can therefore result in

less direct empirical information being utilized to estimate weights for any given cluster’s

outcomes, due to ∇ḡTNC−1
N taking these dissimilarities in the N extended score components

into account. This is potentially a good property when we have outliers to downweight,

but when N is not arbitrarily large as is the case in a GRT, this potentially leads to high

variability in the weights, possibly causing QIF to be a less reliable estimation method than

GEE.

We now present a general scenario to clearly show the influence from dissimilarities across

clusters and how outcomes are weighted. We have p cluster-level covariates, and h(.) is the

canonical link, allowing Equation (3.6) to simplify to

N∑
i=1


∑p−1

j=0 κj0xij + (ni − 1)
∑2p−1

j=p κj0xi(j−p)
...∑p−1

j=0 κj(p−1)xij + (ni − 1)
∑2p−1

j=p κj(p−1)xi(j−p)

 (Yi − niµi), (3.7)

in which Yi =
∑ni

j=1 Yij, E(Yij) = µi and xij is the value of the jth covariate, j = 0, . . . p− 1,

for the ith cluster. The kappas are all estimated using functions of estimated parameters,

cluster size, covariate values, and the N empirical covariances which have the most influence.
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The number of kappa parameters increases with the number of covariates, and the amount

of weight given to any cluster’s outcomes relies upon linear combinations of its size and

covariate values. For fixed N , as the number of kappa parameters increases, the amount of

information utilized from empirical covariances to estimate any given kappa can decrease.

For example, when only using one drug treatment percentage as a covariate, QIF estimates

eight kappas, while this number increases to thirty-two when using all three treatments in

the model.

To give specific examples clearly demonstrating the variability in QIF’s estimating equa-

tions’ weights due to dissimilarities across clusters, we first return to the intercept-only model,

but allow clusters to be one of two possible sizes for simplicity. There are two kappas to esti-

mate, and Equation (3.7) reduces to
∑N

i=1[κ00+κ10(ni−1)](Yi−niµ) =
∑N

i=1wQIFi(Yi−niµ),

where µ is the marginal mean shared by all outcomes. Here, the weight given to the ith

cluster will actually be estimated using only the empirical covariances of the extended score

equation components from clusters of that vary same size, rather than using the empirical

variability from all N clusters as does GEE when estimating a common correlation parameter

inside the corresponding fixed weighting function. This nature of weighting is advantageous

for QIF when N is arbitrarily large and the true covariances do depend on cluster size in

some misspecified manner, but for small N can lead to increased variability in the working

weights that can more than offset this advantage in terms of estimation performance.

If we keep N fixed and extend the model to resemble a general GRT in which there is only

one covariate, a cluster-level intervention indicator, then there are eight unknown kappas,

each estimated with a larger variability. In this situation, QIF carries out estimation in a

manner equivalent to fitting an intercept-only model for each trial arm. This implies that

∇ḡTNC−1
N accounts for dissimilarities corresponding to study arm and cluster size, and so the

weight given to (Yi − niµi), i = 1, 2, . . . N , is obtained using only the empirical covariances

from equivalently sized clusters within the same trial arm.

In practice, as is the case with our motivating dataset, there typically is much larger
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imbalance in size across clusters. When this occurs, ∇ḡTNC−1
N has to determine if the weight

given to outcomes should increase or decrease with size, which is done separately for each

trial arm. For instance, suppose outcomes from clusters larger in size have combined empir-

ical covariances smaller than their true covariances. Here, the QIF’s estimating equations

will then overweight larger clusters, while the weight given to smaller clusters may also be

influenced due to the linear trend shown in the intercept-only model’s estimating equation.

Although clusters cannot be categorized into distinct groups as was done when there were

only two possible sizes, the empirical covariances directly influencing the working weight

for any given cluster’s outcomes are from that individual cluster and other similarly sized

clusters in the same trial arm. Dealing with the baseline dataset, we focus this issue toward

an intercept-only model for adequate assessment. Here, the estimated empirical covariances

from practices with similar numbers of CHD patients have the most direct effect on the

estimated weights given to the number of adequately assessed patients from these same

practices.

If we were to expand this model even further by using a continuous covariate, such as

aspirin treatment percentage, rather than an indicator, or by adding even more covariates

such as the other two drug treatment percentages to the model, it is easy to see by Equation

(3.7) that there will be more unknown kappa parameters to estimate and potentially less

information utilized per kappa estimate. Additionally, the manner of weighting shown in

the general GRT example continues in that similar clusters, determined with respect to size

and covariate values, have the strongest direct influence on how much estimated weight their

corresponding outcomes receive in QIF’s estimating equations. For small N , the variability in

these estimating equations can therefore be quite large, possibly making GEE more reliable.

3.3.2 The Impact of Estimating Equations Class

In Section 3.2 we defined a new QIF version such that the rth component of its extended

score equations is given by gri(β) = γriD
T
i A

−1/2
i M riA

−1/2
i (Y i−µi), r = 1, 2; i = 1, 2, . . . N ,
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implying the corresponding asymptotic estimating equations are in the same class as GEE,

given by Equation (3.4), when clusters vary in size. Theoretically, this QIF version will have

an asymptotic efficiency advantage over GEE, particularly when the covariance structure is

misspecified. When N is not large, however, this version of QIF can also be less reliable

than GEE.

Assuming the same intercept-only model presented in the previous subsection, the esti-

mating equation from this new QIF version that is in the same class as GEE is given by∑N
i=1[κ00γ1i + κ10(ni − 1)γ2i](Yi − niµ) =

∑N
i=1wQIFi(Yi − niµ), where κ00 and κ10 now also

include γ1i and γ2i, i = 1, 2, . . . N . When cluster sizes are similar and the correlation estimate

is not large, γ1i and γ2i approximately cancel out inside the weights, which in turn causes

the weights to closely approximate their corresponding values from the regular QIF. As the

variation in cluster sizes increases, as is seen in GRTs, or the correlation estimate becomes

large, there can be a distinct difference between corresponding weights from the two QIF

versions. However, the empirical nature of the weighting matrix for the newly defined QIF

still exists and influences weighting accuracy, possibly decreasing estimation reliability as

compared with GEE.

3.4 The Impacts of Cluster Sizes and Covariates

3.4.1 Shown Via Simulation Study

3.4.1.1 Intercept-Only Simulations

Employing a common exchangeable correlation, we first demonstrate the difference be-

tween both QIF versions and GEE in the context of an intercept-only model, representing

the setting in which we are only interested in estimating the marginal probability of ade-

quate assessment. Results from ten random simulations, with outcomes generated from a

beta-binomial distribution, are presented in Table 3.1, including the intercept estimates

and ratios equaling the estimated weight given to a cluster of size fifty divided by the
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Table 3.1: Intercept estimates and weight ratios, equaling the estimated weight given to a
cluster of size fifty divided by the estimated weight given to a cluster of size
150, from GEE and both QIF versions. The first (last) five simulation results
come from the analyses of randomly generated datasets in which outcomes had a
marginal probability of 0.25 (0.05) and exchangeable correlation of 0.05.

GEE QIF QIF in GEE Class

Simulation β̂0 Ratio β̂0 Ratio β̂0 Ratio
1 -1.18 2.49 -1.18 1.50 -1.18 2.01
2 -0.95 2.59 -0.99 0.62 -0.97 1.00
3 -1.12 2.47 -1.17 1.10 -1.15 1.52
4 -1.15 2.66 -1.13 1.87 -1.13 3.13
5 -0.99 2.64 -0.99 1.51 -0.98 4.03

6 -3.23 2.34 -3.32 2.19 -3.32 4.39
7 -3.09 2.25 -3.06 1.44 -3.09 2.20
8 -2.88 2.19 -3.02 6.74 -3.07 17.00
9 -3.26 2.50 -3.22 3.94 -3.31 5.33
10 -2.93 2.33 -2.92 1.22 -2.93 2.09

estimated weight given to a cluster of size 150. Data were generated using the model

logit(π) = log(π) − log(1 − π) = β0, in which π is the marginal probability for any given

outcome. Values for the marginal probability were 0.25 (0.05) for the first (last) five simu-

lations, implying β0 = −1.10 (β0 = −2.94), while the common correlation was 0.05. Each

simulated dataset consisted of twenty-one practices, with corresponding sizes generated by a

normal distribution with mean 100 and standard deviation fifty, approximately representing

the empirical distribution of sizes contained in the motivating dataset. Generated sizes were

rounded to the nearest integer and forced to take on values between twenty-five and 250. In

this setting, the optimal weight is given as wi = [1 + (ni − 1)0.05]−1 inside the estimating

equation
∑N

i=1wi(Yi − niπ). The optimal ratio is therefore 2.45.

In these ten simulations, the weights used by GEE were much less variable than those

used by either QIF version. For GEE, clusters of size fifty were given anywhere from 2.19 to

2.66 times more weight than clusters of size 150. QIF, however, once gave more weight to
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larger clusters, and clusters of size fifty were given anywhere from thirty-eight percent less

to 6.74 times more weight than clusters of size 150. The QIF with corresponding estimating

equations in the same class as GEE produces notably different weight ratios, but performed

similarly to QIF with respect to the variability in its working weights. Due to this variability

in relative weighting, estimation precision is lost as compared to GEE here.

For each of the two examined settings, we also performed 1,000 additional simulations

generated in the same manner. When the marginal probability was 0.25 (0.05), the empirical

mean squared error (MSE) for GEE’s intercept estimate was only eighty-two (sixty-two) and

eighty-six (sixty-five) percent as large as the MSEs produced by QIF and the newly defined

QIF, respectively, implying GEE was more precise. The last five simulation results in Table

3.1 show that the weights implemented by both QIF versions were more variable when the

marginal probability was 0.05, leading to the smaller MSE ratios in this setting. Additionally,

the newly defined QIF only slightly increased precision over the typical QIF.

3.4.1.2 Description of General Simulation Settings

We now compare the MSE of both QIF versions and GEE, all implementing a common

exchangeable correlation structure, in a variety of simulations representing GRT scenarios.

Table 3.2 presents empirical MSEs for each QIF version, in addition to ratios comprised of

the MSEs from GEE and the respective QIF version in the numerator and denominator,

respectively. The presented MSE quantity for any given method is the sum of the empirical

MSEs from all non-intercept regression parameter estimates in the respective model. Five

different scenarios comprised of four settings each were examined in 1,000 simulations. A

beta-binomial distribution was used to generate outcomes.

In the first three scenarios, which represent general GRTs, the true model in each scenario

is a logistic regression with only cluster-level covariates. Scenarios one and three only use

an intervention indicator, with N/2 clusters in each trial arm. The second scenario uses

an additional indicator and a continuous covariate, with corresponding parameters β2 =
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β3 = 1. There were N/4 clusters for each of the four possible combinations for the two

indicators, while the values for the continuous covariate were independently drawn from

Uniform(−1, 1). Cluster sizes varied uniformly and independently from 5 to 20 in the first

scenario and 25 to 150 in the next two. Table 3.2 presents the number of clusters and

marginal probabilities for control (πC) and intervention (πT ) clusters when the model only

includes an intervention indicator (all other covariates equal zero).

The models in the last two scenarios are representative of the analyses we later carry

out that use the percentages of patients with records of drug treatment to predict adequate

assessment. Scenario 4 represents the logistic regression in which the proportion of patients

having a record of treatment with aspirin is used as a predictor, while the fifth scenario is

representative of using proportions from all three drug treatment records as covariates. Clus-

ter sizes were generated in the same manner as for the intercept-only model simulations. The

percent with a record of aspirin treatment varied uniformly and independently from sixty-six

to ninety-six in both scenarios, while the percents of patients having a record of treatment

with hypotensives or lipid-lowering drugs were generated uniformly and independently on

the set of integers ranging from thirty-seven to seventy-five and fourteen to fifty, respectively,

in the last scenario. In the first two settings of Scenarios 4 and 5, β0 = −1 and all other

parameters were given values of zero. In the last two settings, β = [−2, 0.015]T in Scenario

4 and β = [−3, 0.01, 0.02, 0.04]T in Scenario 5. Table 3.2 indicates the number of practices,

N .

Although its structure was not misspecified, the exchangeable correlation value was al-

lowed to vary from cluster to cluster in some settings since this will be accounted for,

at least asymptotically, by CN(β). In the first scenario, correlations were dependent on

whether a cluster was in the control or intervention arm. Denoting correlation pairs by

(ρcontrol, ρintervention), we used (0.1, 0.1), (0.3, 0.1), (0.3, 0.3), and (0.15, 0.05), for the first

through fourth settings, respectively. The second scenario made the ith cluster’s correlation

a function of its marginal probability, log[ρi/(1 − ρi)] = λ1 + λ2|πi − 0.5|, in which λ2 was
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-5 for the first and third settings and -2.5 for the other two, while λ1 = −2. Correlations

were given by exp(ϕ1 + ϕ2ni)/[1 + exp(ϕ1 + ϕ2ni)] in the third scenario, where ϕ1 and ϕ2

were chosen such that ρi, i = 1, 2, . . . N , were in the ranges (0.024, 0.079), (0.022, 0.337),

(0.011, 0.119), and (0.008, 0.067) for the first through fourth settings, respectively. The

correlation was fixed at 0.05 in the first two settings of Scenarios 4 and 5, but was equal to

log[ρi/(1 − ρi)] = −2.94 + 0.075(xi − 81) and log[ρi/(1 − ρi)] = −2.25 − 5|πi − 0.5| in the

last two settings of Scenarios 4 and 5, respectively. Here, xi represents the practice level

proportion of CHD patients having a record of aspirin treatment.

3.4.1.3 Description of Results

Empirical MSEs were dominated by empirical variances, as squared bias was negligible,

and we discuss MSE results in terms of precision. The first two scenarios show that imbalance

in cluster sizes, even with only one covariate in the model and a large number of clusters, can

cause QIF to produce estimates with larger variance than the corresponding GEE estimates.

Scenario 2 also shows that adding covariates to the model can cause QIF to lose even more

precision, as expected, since this creates greater dissimilarity across clusters and more weight

parameters, or kappas, to estimate. The last two scenarios also show that even when the

number of clusters is large in a context representing our motivating dataset, which typically

is not the case in GRTs, QIF can be considerably less precise than GEE.

Additionally, although GEE assumes a common correlation here, allowing the true corre-

lation value to vary across clusters did not make QIF more reliable, except in three settings

of the third scenario. This is an example where QIF may be advantageous over GEE. It

appears, however, that this is only the case when marginal probabilities are not near zero

or the number of clusters is large. The degree of dependency correlation has on cluster size

also is relevant to whether QIF or GEE performs better here. Additionally, the differences

in the precisions of QIF and GEE shown in this scenario are small compared to the overall

results from the other scenarios, deeming GEE as a more reliable method in general GRT
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Table 3.2: Empirical MSEs for both QIF versions, and ratios comparing GEE’s empirical
MSE to these respective quantities. Common exchangeable correlation structures
were employed with these methods. The scenarios presented are general repre-
sentations of GRTs and the GRT dataset of interest.

QIF QIF in GEE Class

Scenario N ,πC ,πT MSE MSE Ratio MSE MSE Ratio

1.1 40, 0.1, 0.1 0.319 0.660 0.333 0.633
1.2 40, 0.5, 0.4 0.137 0.809 0.137 0.811
1.3 200, 0.5, 0.5 0.032 0.962 0.032 0.975
1.4 200, 0.15, 0.1 0.032 0.920 0.032 0.925

2.1 20, 0.5, 0.4 0.400 0.584 0.382 0.608
2.2 20, 0.1, 0.1 0.652 0.598 0.650 0.600
2.3 100, 0.5, 0.5 0.046 0.883 0.045 0.901
2.4 100, 0.15, 0.1 0.074 0.877 0.073 0.884

3.1 20, 0.05, 0.05 0.362 0.708 0.384 0.668
3.2 20, 0.5, 0.5 0.093 1.123 0.091 1.144
3.3 100, 0.5, 0.5 0.007 1.165 0.007 1.161
3.4 100, 0.05, 0.05 0.030 1.032 0.030 1.029

4.1 21 3.1 ×10−4 0.670 2.6 ×10−4 0.808
4.2 100 5.7 ×10−5 0.648 4.3 ×10−5 0.858
4.3 21 3.6 ×10−4 0.658 3.0 ×10−4 0.798
4.4 100 6.4 ×10−5 0.724 5.2 ×10−5 0.891

5.1 21 8.0 ×10−4 0.696 8.3 ×10−4 0.669
5.2 100 1.2 ×10−4 0.784 1.1 ×10−4 0.876
5.3 21 7.9 ×10−4 0.682 7.8 ×10−4 0.690
5.4 100 1.2 ×10−4 0.794 1.1 ×10−4 0.894
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scenarios.

Both QIF versions performed approximately the same in the first three scenarios. How-

ever, in all four settings of Scenario 4, along with the settings consisting of 100 clusters in

the last scenario, the QIF with estimating equations in the same class as GEE performed

notably better than the regular QIF. This may imply that estimating equations class may

influence estimation precision in some scenarios, while the empirical weighting employed by

both QIF versions still is the major influence of the differences between these two methods

and GEE. In all presented simulation results, the estimated correlation used for the QIF with

estimating equations in the same class as GEE was taken as the estimate for the common

correlation from GEE. We also estimated correlation iteratively inside this QIF version in

the same manner as GEE, which led to almost identical results.

3.4.2 Shown Via Application to the Motivating Example

We now return to our motivating dataset. By multiplying the size and adequate as-

sessment percentage for a given practice, and then rounding this quantity to the nearest

integer, our dataset had a total of 629 adequately assessed patients, while Yudkin and

Moher (2001) report 627. However, this slight difference is not notable in terms of the

regression results, which are presented in Table 3.3. We fit three models of the form

logit(πij) = logit(πi) = β0+β1xi, in which xi represents the proportion of patients within the

ith practice who have a record of treatment with the corresponding drug type, and one model

in which logit(πij) = logit(πi) = β0 + β1x1i + β2x2i + β3x3i. x1i, x2i, and x3i correspond to

the percentages having a record of treatment with aspirin, hypotensives, and lipid-lowering

drugs, respectively. πi is the marginal probability of any given CHD patient in practice i

being adequately assessed.

We first demonstrate the difference in weighting between GEE and both QIF versions

by estimating the overall marginal probability of adequate assessment, corresponding to an

intercept-only model. The estimated weights (marginal probabilities) used (produced) by
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Table 3.3: Estimated logistic regression results when analyzing the GRT dataset using the
given record of drug treatment proportions as covariates inside the model. The
minimum and maximum predicted marginal probabilities are also given from each
model and method.

Covariate(s) Method β̂0 β̂1 β̂2 β̂3 Min Max

Aspirin GEE -2.050 0.014 0.246 0.332
QIF -4.025 0.039 0.192 0.435

QIF in GEE Class -2.365 0.016 0.217 0.311

Hypotensives GEE -1.793 0.015 0.226 0.343
QIF -2.431 0.025 0.183 0.370

QIF in GEE Class -2.158 0.019 0.191 0.331

Lipid-lowering GEE -1.736 0.031 0.214 0.453
drugs QIF -2.459 0.063 0.172 0.670

QIF in GEE Class -2.535 0.063 0.161 0.652

All Three GEE -2.845 0.006 0.014 0.028 0.193 0.401
QIF -5.884 0.021 0.035 0.052 0.117 0.515

QIF in GEE Class -3.746 0.004 0.019 0.057 0.139 0.555

Results After Removing Practice 1

Lipid-lowering GEE -2.409 0.061 0.173 0.518
drugs QIF -2.462 0.062 0.170 0.525

QIF in GEE Class -2.520 0.063 0.163 0.519

Results After Removing Practice 21

Aspirin GEE -2.247 0.016 0.235 0.334
QIF -2.029 0.011 0.219 0.283

QIF in GEE Class -1.920 0.010 0.222 0.278
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GEE, QIF, and the newly defined QIF were [1 + 0.058(ni − 1)]−1 (0.276), 0.273-0.001(ni-1)

(0.276), and 2.510γ̂1i + 2.697(ni − 1)γ̂2i (0.257), respectively, when using the logistic link.

There is no difference between the probability estimates from GEE and QIF, although the

newly defined QIF does give a slightly smaller value. Obtaining parameter estimates this

close in value from these three methods appears to coincide with the simulation results

presented earlier when the true marginal probability was 0.25. However, when the true

marginal probability is closer to zero or the number of clusters is smaller, there is a greater

chance in obtaining a sample from which probability estimates can be notably different across

these three methods due to a larger variability in weighting used by both QIF versions.

The proportion of patients having a record of treatment with aspirin, hypotensives, or

lipid-lowering drugs ranged from sixty-six to ninety-six, thirty-seven to seventy-five, and

fourteen to fifty, respectively. In each model, all three methods estimated the marginal

probability of adequate assessment to be larger for practices having a greater proportion of

patients with a record of drug treatments. Table 3.3 shows the range of estimated marginal

probabilities over all practices used in the corresponding model. Results clearly show the

difference between GEE and both QIF versions. The range in marginal probability estimates

was always smaller for GEE than either QIF version, except when excluding Practice 21 from

the analysis. Additionally, of the two QIF versions, parameter estimates from the version

with estimating equations in the same class as GEE were notably closer to the estimates from

GEE for the first two models. This type of result was especially seen in Scenario 4 of our

simulation results, in which the newly defined QIF performed better than the regular QIF,

but not as precisely as GEE. This gives some indication that the GEE estimates here may be

most reliable. Furthermore, when the proportion of patients with a record of aspirin or lipid-

lowering drug treatments were used in the model, QIF estimated the strongest association

between these covariates and adequate assessment.

We now take a closer look into the strength of the estimated marginal association between

lipid-lowering drugs and adequate assessment. In one practice (Practice 1), only fourteen
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percent of patients were adequately assessed, which is much smaller than any of the corre-

sponding marginal probability estimates, given in the third model presented in Table 3.3,

from any of the three methods. This practice had the maximum proportion of patients with

a record of being treated with lipid-lowering drugs, and therefore had the largest marginal

probability estimate. The first plot in Figure 3.1 clearly shows the difference in this prac-

tice’s observed and estimated probabilities. GEE does not directly take into account how

far the observed proportion of adequately assessed patients is from the marginal mean, and

therefore the estimated association between adequate assessment and lipid-lowering drugs

is not as strong as it would be without using data from this practice. QIF, however, does

directly take into account the large empirical variability and downweights this practice’s out-

comes, allowing the estimated association to be stronger. Explicitly, if we were to estimate

these models without the first practice, QIF and GEE would produce β̂ = [−2.462, 0.062]

and β̂ = [−2.409, 0.061], respectively. These estimates are only slightly different than the

estimates given from QIF when including this practice, distinctly showing the robustness

property of QIF. Although QIF may seem advantageous in this situation, we do not know

for sure if this practice truly is an outlier. If practices such as this one that appear to be

outliers truly do occur throughout the entire population of practices, then GEE may have

given a better estimate of the marginal trend.

In the model in which the proportion of patients having a record of treatment with

aspirin is the only covariate, the difference in estimates from GEE and QIF were not due to

an outlier. Rather, the sensitivity, with respect to empirical covariances, of the estimated

weights implemented inside QIF’s estimating equations led to the notable differences. For

instance, the largest practice (Practice 21) had a notable influence on the estimates produced

by QIF, but not GEE. Table 3.3 presents the differences in parameter estimates before and

after removing this practice. The second plot in Figure 3.1 shows that the overall empirical

variation increases with practice size, excluding the largest practice, in our sample. This one

practice actually brings down the averaged covariance trend with respect to size, estimated
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Figure 3.1: Estimated marginal probabilities in the left plot are from using GEE to estimate
the model in which the proportion of patients having a record of treatment with
lipid-lowering drugs is the only covariate. The bold dot corresponds to Practice
1. In the right plot, estimated marginal probabilities used to obtain differences
are from using GEE and the model in which the proportion having a record
of treatment with aspirin is the only covariate. The bold dot corresponds to
Practice 21.
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via ∇ḡTN(β̂)C−1
N (β̂), as it is notably bigger than the other large practices, but its empirical

variation is only moderate relative to these same practices. Therefore, when we remove

Practice 21, larger practices receive less weight, while the weight given to smaller clusters

increases, due to a rise in the averaged empirical covariances in larger practices.

Specifically, Equation (3.7) reduces to

21∑
i=1

 0.004 + 0.109xi + 0.243(ni − 1)− 0.004(ni − 1)xi

0.245 + 7.917xi + 15.030(ni − 1)− 0.233(ni − 1)xi

 (Yi − niπi)

when using all practices, and becomes

20∑
i=1

 0.005 + 0.257xi + 0.183(ni − 1)− 0.004(ni − 1)xi

0.354 + 21.030xi + 10.274(ni − 1)− 0.279(ni − 1)xi

 (Yi − niπi)

when deleting Practice 21. By plugging in values for xi and size from the dataset, it can

be seen that the proportion of weight given to smaller (larger) clusters typically increased

(decreased) after removing this practice. For instance, Practice 1 (20) consisted of twenty-

eight (160) CHD patients, and seventy-nine (sixty-seven) percent of patients had a record of

aspirin treatment. The weight matrix given to the residual from the first practice increased

from [7.26, 534.51]T to [16.53, 1344.01]T after removing Practice 21, while the weight matrix

corresponding to Practice 20 decreased from [6.53, 438.31]T to [2.65, 70.74]T . In comparison,

GEE is given as

N∑
i=1

 1

xi

 Yi − niπi
1 + (ni − 1)ρ̂

for this example, in which ρ̂ is estimated using the empirical variabilities from all practices,

and the influence via ρ̂ from the empirical variability of one cluster on the weights used by

GEE is very minor. Before (after) removing Practice 21, ρ was estimated to be 0.055 (0.057),
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giving weights that were only negligibly affected.

The GEE estimates do not differ by a large amount when including or excluding Practice

21, and so it appears that GEE produced more reliable estimates. The estimates produced by

QIF were largely influenced by the empirical variability in larger clusters, especially Practice

21, showing that this method can be sensitive in settings consisting of a small number of

clusters due to the variability in CN(β̂). We note that if more practices were included

in this study, the average of the empirical covariances would lessen the influence from a

single cluster on weights used inside QIF’s estimating equations, making them more reliable.

Additionally, although we do not know the true covariances for outcomes in this dataset,

implying we cannot say for sure that GEE produced more appropriate estimates than QIF,

we do see here that QIF can be sensitive even to a single cluster’s empirical covariance, which

is the type of scenario in which QIF can be less reliable than GEE.

When using all three covariates in the same model, there were notable differences in

parameter estimates across the three methods. Both QIF versions were similar in terms of

their predicted ranges of marginal probabilities, which were approximately twice as wide as

the range given from GEE. As with the two previously discussed models, the influences from

Practices 1 and 21 were the major factors in the differences between GEE and both QIF

versions. Taking into account how these practices influenced QIF in these two models, in

addition to the simulation results presented in Scenario 5, it is likely that the GEE estimates

are more reliable here. These estimates show a notable association between adequate assess-

ment and the three covariates, but not nearly as strong of a relationship estimated by either

QIF version due to the influence of only two practices.

3.5 Concluding Remarks

QIF has the theoretical advantage of producing regression estimates with equal or greater

efficiency than GEE (Qu et al., 2000). We have given details and evidence that the class

of estimating equations realistically has less to do with differences in estimation precision
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between QIF and GEE than the empirical nature of CN(β̂) and how this matrix is used to

weight outcomes inside QIF’s estimating equations. In small to moderately sized samples,

as is common with GRTs, QIF can produce estimates with lower precision than GEE, even

when the incorrect covariance structure is implemented. We also showed via our motivating

dataset that the weights QIF implements in its estimating equations can be sensitive to the

empirical variability of even a single cluster, as the number of practices was small.

This chapter focused on an exchangeable structure, as unstructured requires a balanced

design and QIF and GEE are equivalent estimation procedures under an independence as-

sumption. Although less common when clusters vary in size, especially in GRT scenarios,

an AR-1 structure would be appropriate, for example, in a setting resembling administrative

censoring in which patients contribute data at the same distinct time points which are equally

spaced, but with the allowance that they can drop out of the study any time before their

final scheduled visit. The inverse of an AR-1 structure is the weighted sum of three basis ma-

trices, the last of which is usually not implemented with QIF as it contains little information

(Qu et al., 2000). When using all three, however, the estimating equations from QIF are in

the same class as GEE whether clusters vary in size or not, as γri, r = 1, 2, 3; i = 1, 2, . . . N ,

are not functions of size (Qu et al., 2000). Whether using this version or only the first two

basis matrices in the extended score equations should make little difference, however. Just

as we showed in this chapter that the class of estimating equations has little effect on the

estimation precision differences, the empirical nature of CN(β̂) can still cause a loss in QIF’s

estimation reliability as compared with GEE when using a working AR-1 structure. This

result will later become evident in the simulation results of Chapter IV.

As is evident from this chapter, research was required to improve the estimation perfor-

mance of QIF in small to moderately sized samples, and is the focus of the next chapter.

However, if estimation precision is not a concern when deciding between QIF and GEE for

data analysis, QIF has distinct advantages. For example, the QIF can itself be used as

a statistic in goodness-of-fit and likelihood ratio score tests (Qu et al., 2000; Song et al.,
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2009). Although we do not suggest a numerical value, as we have argued that the amount

of empirical information used to estimate weights given to any cluster’s outcomes depends

on the setting, QIF may be a better method to employ when N is arbitrarily large. This is

particularly true when the actual covariance structure is believed to possibly deviate largely

from the chosen working structure. In this situation, CN(β̂) may have greater accuracy in

modeling the entire true covariance structure on average, potentially leading to an improved

estimation performance, in addition to the ability to make use of QIF’s other advantages.

In the next chapter, we propose an improvement to QIF that actually allows us to avoid

having to decide if GEE or QIF will perform best in any specified scenario.
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CHAPTER IV

Improved Quadratic Inference Functions for Parameter

Estimation in the Analysis of Correlated Data

4.1 Introduction

We now give focus towards QIF’s estimation performance in general correlated data

settings in which the number of clusters is not large, the working correlation structure is

not necessarily exchangeable, and clusters may or may not vary in size. Particularly, we

show that QIF’s estimation performance can be inferior to that of GEE’s in these types of

general settings, we propose multiple alternative QIF versions to improve estimation, and

we suggest an improved QIF version which can be used in place of the regular QIF or GEE.

An example we use in this chapter is an AIDS study in which 283 men were followed over

time, each providing 1 to 14 observations. Outcomes from the same subject are assumed to

be associated, although their true correlation structure is unknown, while a marginal model

is fit to describe the mean time trend and the influence of baseline covariates.

This chapter develops improvements to the weighting matrix employed by QIF that are

meant to eliminate potential small-sample estimation deficiencies as compared with GEE,

while typically maintaining QIF’s large-sample advantages. Particularly, we propose utiliz-

ing a weighted combination of the empirical covariance matrix and other matrices that are

less variable in small samples, in which the corresponding weights minimize the expected

quadratic losses of the resulting matrices. The proposed weighting matrices for QIF are

developed in Section 4.2. Section 4.3 demonstrates QIF’s potential for inferior estimation
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performances as compared with GEE in general small-sample settings, and examines the

utility of the multiple proposed alternative weighting matrices in these simulations. Addi-

tionally, the performances of these methods are contrasted in application to the AIDS study.

Concluding remarks are then given in Section 4.4, while the Appendix presents proofs justi-

fying the use of the proposed weighting matrices.

4.2 Improved Weighting Matrices

4.2.1 Using a Model-Based Covariance Matrix

In small to moderately sized samples, GEE can be a better estimation procedure than

QIF due to employing model-based covariance structures to weight outcomes. Alternatively,

QIF uses CN(β) to obtain the weights given to outcomes in Equation (3.6), which can cause

these estimating equations to be quite variable when there is not a large number of clusters.

Therefore, it makes sense that when CN(β) is quite variable, a possibly better estimate for

ΣN would be the corresponding model-based version, MN = (1/N)
∑N

i=1 Ĉov[gi(β)], which

uses the working covariance structures. Particularly,

Ĉov[gi(β)] = Ê[gi(β)gTi (β)] = Ê[Bieie
T
i B

T
i ] = BiA

−1/2
i V iA

−1/2
i BT

i

= BiA
−1/2
i [A

1/2
i Ri(α)A

1/2
i ]A

−1/2
i BT

i = BiRi(α)BT
i ,

and

Bi =


DT

i A
−1/2
i M 1i

...

DT
i A

−1/2
i Mmi


and ei = A

−1/2
i (Y i − µi) are defined by Han and Song (2011).

Use of MN as the weighting matrix in Equation (3.6) can also be problematic, however.
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QIF has greater efficiency than GEE when the covariance structure is misspecified and both

sets of estimating equations are within the same class, which is why CN(β) can be very

helpful. If the model-based covariance for the extended score equations, MN , is misspecified

and always implemented, then QIF no longer has this advantage. Additionally, even when

the number of clusters is not large, if the true covariance structure is misspecified, in some

settings the corresponding bias in MN can be more detrimental than the variability in

CN(β) with respect to parameter estimation. We therefore propose implementing a weighting

matrix, C∗N , that optimally takes into account both the variability in CN(β) and the bias

in MN in order to determine the best weighting matrix to utilize for parameter estimation.

Particularly, C∗N should be as close to the optimal covariance matrix, ΣN , as possible. In

order for C∗N to (i) take into account the bias in MN and variability in CN(β), (ii) be as

close in value, on average, to ΣN as possible, and (iii) maintain the theoretical advantages

QIF has over GEE, we propose improving QIF’s estimation performance by employing

C∗N = ρNMN + (1− ρN)CN(β) (4.1)

in place of CN(β) as the weighting matrix in Equation (3.6). Here, ρN = τ 2
N/(α

2
N + τ 2

N) =

τ 2
N/δ

2
N , α2

N = ||MN−ΣN ||2, τ 2
N = E[||CN(β)−ΣN ||2], and δ2

N = E[||CN(β)−MN ||2]. Here,

||K|| =
√
tr(KKT )/p for some arbitrary p× p matrix K (Ledoit and Wolf, 2004), and this

value for ρN minimizes the expected quadratic loss of ||C∗N − ΣN ||, or E[||C∗N − ΣN ||2].

Here, τ 2
N and α2

N take into account the variability in CN(β) and bias in MN , respectively.

Additionally, for several conditions that are typically met in practice, E[||C∗N −ΣN ||2]→ 0

as N →∞, implying C∗N −ΣN
p→ 0 (Ledoit and Wolf, 2004; Han and Song, 2011; conditions

and proof in Appendix). This result corresponds to Theorem 1 given in Han and Song

(2011).

The proposed weighting matrix is related to the works of Ledoit and Wolf (2004) and Han

and Song (2011). Ledoit and Wolf (2004) proposed a well-conditioned estimated covariance
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matrix that is a weighted combination of the identity and sample covariance matrices. Han

and Song (2011) extended this idea for use with QIF, proposing the use of SN = ρNµNI +

(1 − ρN)CN(β), in which I is the identity matrix, µN is the average value for the diagonal

elements of ΣN , and ρN minimizes E[||SN −ΣN ||2]. They propose this alternate weighting

matrix, which is referred to as the linear shrinkage estimator, as CN(β) may not be invertible

in some study designs. However, although the use of SN can lead to more stable results due

to fixing this particular problem, it is not designed to improve QIF’s estimation performance

in general settings. Particularly, µNI is not meant to model ΣN , whereas this is the sole

purpose of MN .

In practice, MN and ρN need estimation. Similar to Ledoit and Wolf (2004) and Han

and Song (2011), we propose the following:

• The estimator for MN is M̂N , in which covariance parameters need estimation

• The estimator for δ2
N is d2

N = ||CN(β)− M̂N ||2

• The estimator for τ 2
N is t2N = min[t̄2N , d

2
N ], t̄2N = 1

N2

∑N
i=1 ||gi(β)gi(β)T − CN(β)||2

• The estimator for α2
N is a2

N = d2
N − t2N

• The estimator for C∗N is Ĉ∗N =
t2N
d2N
M̂N +

a2
N

d2N
CN(β) = ρ̂NM̂N + (1− ρ̂N)CN(β)

The use of t̄2N is appropriate in the settings of Han and Song (2011), as they deal

with balanced covariate designs. However, in many general applications, the covariances

of the N extended score components will likely vary, inducing bias in t̄2N . Particularly,

Bias(t̄2N) ≈ (1/N2)
∑N

i=1 ||Cov[gi(β)]||2 − (1/N3)||
∑N

i=1Cov[gi(β)]||2 (see Appendix). Bias

can be estimated using the model-based covariances, BiRi(α)BT
i , i = 1, 2, . . . , N , giving an

alternative estimate, t̂2N = max
(

0,min[t̄2N − B̂ias(t̄2N), d2
N ]
)

, for τ 2
N . Results using t̂2N and

t2N are asymptotically equivalent.

Justifications for these estimates are given in the Appendix, and are based on the Lemma

given by Han and Song (2011) with its corresponding proofs, which also use work from Ledoit

55



and Wolf (2004). Specifically, a2
N − α2

N , t2N − τ 2
N , and d2

N − δ2
N all converge in quadratic

mean to zero as N → ∞, under the assumption that E[||M̂N −MN ||4] → 0 as N →

∞. Furthermore, corresponding to the second theorem and its proof given in Han and

Song (2011), E[||Ĉ∗N − ΣN ||2] → 0 as N → ∞, implying Ĉ∗N is asymptotically optimal

since Ĉ∗N − ΣN
p→ 0 (Ledoit and Wolf, 2004; Han and Song, 2011; conditions and proof in

Appendix).

4.2.2 An Alternative Empirical Covariance Matrix

The previous chapter explains that cluster size imbalance can be detrimental to QIF’s

small-sample estimation performance via CN(β). In this section, we therefore propose an

alternate weighting matrix, C̃N(β), that averages out this detrimental effect due to variation

in cluster sizes when implementing a working exchangeable correlation structure. Our hopes

with this matrix is that it will be more stable than CN(β) and less biased thanMN when the

working covariance structure is misspecified. C̃N(β) removes most of the influence cluster size

imbalance has on estimating weights given to observations within Equation (3.6), increasing

the amount of information used to estimate these weights, which will in turn have smaller

variances. Using an exchangeable correlation structure, m = 2 and the empirical covariance

for the ith cluster is gi(β)gTi (β) =

 g1i(β)gT1i(β) g1i(β)gT2i(β)

g2i(β)gT1i(β) g2i(β)gT2i(β)

 =

 A11i A12i

A21i A22i

 .
Denote the element in row u and column v of Ajki as Ajki(u, v), j, k = 1, 2. The elements of

this matrix depend on cluster size via sums in the following fashion:

A11i(u, v) =

[
ni∑
l=1

∂µil
∂βv−1

· ril
σil

][
ni∑
l=1

∂µil
∂βu−1

· ril
σil

]
(4.2)
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A12i(u, v) = A21i(v, u) =

[
ni∑
l=1

∂µil
∂βv−1

· ril
σil

][
ni∑
h=1

rih√
σih

(
ni∑
l 6=h

∂µil
∂βu−1

σ
−1/2
il

)]
(4.3)

A22i(u, v) =

[
ni∑
h=1

rih√
σih

(
ni∑
l 6=h

∂µil
∂βv−1

σ
−1/2
il

)][
ni∑
h=1

rih√
σih

(
ni∑
l 6=h

∂µil
∂βu−1

σ
−1/2
il

)]
(4.4)

Here, ril = (Yil − µil) and σil is the working variance for Yil.

To decrease the effect from cluster size imbalance, the values for Equations (4.2) - (4.4)

could be weighted such that their magnitudes have a diminished dependency on cluster size.

We propose dividing each summation by its respective number of terms. When covariances

and marginal means within any given cluster do not rely upon its size, the magnitudes of

these quantities in Equations (4.2) - (4.4) will depend much less on cluster size. There may

still be some impact, though, since Equations (4.2) - (4.4) are comprised of more covariance

components, rilrih, l 6= h, than variance components, r2
il, l = 1, 2, . . . ni; i = 1, 2, . . . N . If

covariances and variances differ in magnitude, dividing each summation by its respective

number of terms cannot take this dissimilarity into account, and therefore cluster size may

still have a small effect.

Define

C̃N(β) =
1

N

N∑
i=l

C̃i(β) =
1

N

N∑
i=1

 n2
ia n2

i (ni − 1)b

n2
i (ni − 1)bT n2

i (ni − 1)2c

 ,
a = (1/N)

∑N
i=1A11i/n

2
i , b = (1/N)

∑N
i=1A12i/[n

2
i (ni−1)], and c = (1/N)

∑N
i=1A22i/[n

2
i (ni−

1)2]. This can be viewed as estimating Cov[gi(β)] via C̃i(β), i = 1, 2, . . . N , by multiplying

the average of the four weighted empirical covariance component matrices by the functions of

cluster size that these matrices originally were divided by for obtaining the weighted average.

When all clusters are equal in size, C̃N(β) = CN(β). If ni = 1, we set the ith element in b

and c equal to 0.
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Two potential problems are apparent with using C̃N(β) as the weighting matrix. First,

the effect covariates have on the estimation performance of QIF is not taken into account,

and second, C̃N(β)−ΣN does not converge in probability to 0. Rather, C̃N(β)− Σ̃N
p→ 0,

where Σ̃N = E[C̃N(β)]. Due to this result, the estimating equations in Equation (3.6), now

using C̃N(β) in place of CN(β), are theoretically no longer optimal within their respective

class. Our hope is that the corresponding equations will improve estimation performance

both by approximating the optimal equations well and decreasing the variability in Equation

(3.6).

In order to maintain QIF’s large-sample advantages, we suggest using a weighted com-

bination of C̃N(β) and CN(β), similar to the weighted version involving MN . We explore

two different versions, both based on minimizing the expected quadratic loss of the proposed

weighting matrix. In the Appendix, we prove the same asymptotic results as we did for

C∗N and Ĉ∗N , using similar arguments based on work from Han and Song (2011) and Ledoit

and Wolf (2004). Specifically, we prove the Lemma and both Theorems justifying the use of

the proposed weight estimates and that the proposed weighting matrices are asymptotically

optimal. The first version is simplified in that it does not take into account the covariance

term between C̃N(β) and CN(β) when minimizing the expected quadratic loss, while the

second version does.

4.2.2.1 Not Using the Covariance Term

In order to use a combination of C̃N(β) and CN(β) as the weighting matrix, while ignor-

ing the covariance term between these two matrices, we propose the following unestimated

matrix:

S1
N = ρNΣ̃N + (1− ρN)CN(β) (4.5)
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Here, ρN = τ 2
N/(α

2
N +τ 2

N) = τ 2
N/δ

2
N , α2

N = ||Σ̃N−ΣN ||2, τ 2
N = E[||CN(β)−ΣN ||2], and δ2

N =

E[||CN(β)−Σ̃N ||2]. This value for ρN minimizes the expected quadratic loss of ||S1
N −ΣN ||.

τ 2
N and α2

N take into account the variability in CN(β) and bias in Σ̃N , respectively.

In practice, Σ̃N and ρN need estimation. Similar to Ledoit and Wolf (2004) and Han and

Song (2011), we propose the following:

• The estimator for Σ̃N is C̃N(β)

• The estimator for δ2
N is d2

N = ||CN(β)− C̃N(β)||2

• The estimator for τ 2
N is t2N = min[t̄2N , d

2
N ] or t̂2N = min[t̄2N − B̂ias(t̄2N), d2

N ]

• The estimator for α2
N is a2

N = d2
N − t2N

• The estimator for S1
N is Ŝ

1

N =
t2N
d2N
C̃N(β) +

a2
N

d2N
CN(β) = ρ̂N C̃N(β) + (1− ρ̂N)CN(β)

4.2.2.2 Using the Covariance Term

We now propose

S2
N = ρN C̃N(β) + (1− ρN)CN(β), (4.6)

which utilizes the covariance term between C̃N(β) and CN(β). Here, ρN = γN/δ
2
N , (1 −

ρN) = λN/δ
2
N , δ2

N = E[||CN(β) − C̃N(β)||2] = α2
N + τ 2

N + 2θN , α2
N = E[||ΣN − C̃N(β)||2],

τ 2
N = E[||CN(β)−ΣN ||2], θN = E[< CN(β)−ΣN ,ΣN − C̃N(β) >],

γN = γN(τ 2
N , θN , δ

2
N) =


0 if τ 2

N + θN < 0

τ 2
N + θN if 0 ≤ τ 2

N + θN ≤ δ2
N

δ2
N if τ 2

N + θN > δ2
N
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and

λN = λN(α2
N , θN , δ

2
N) =


0 if α2

N + θN < 0

α2
N + θN if 0 ≤ α2

N + θN ≤ δ2
N

δ2
N if α2

N + θN > δ2
N

Here, < K1,K2 >= tr(K1K
T
2 )/p for some arbitrary p × p matrices K1 and K2 (Ledoit

and Wolf, 2004), and this value for ρN minimizes the expected quadratic loss of ||S2
N −ΣN ||,

while maintaining the constraint 0 ≤ ρN ≤ 1. Theoretically, this constraint is not necessarily

satisfied if using ρN = (τ 2
N + θN)/δ2

N , inducing the need for γN and λN = δ2
N − γN .

In practice, ρN needs estimation. Similar to Ledoit and Wolf (2004) and Han and Song

(2011), we propose the following:

• The estimator for δ2
N is d2

N = ||CN(β)− C̃N(β)||2

• The estimator for τ 2
N is t̄2N = 1

N2

∑N
i=1 ||gi(β)gi(β)T − CN(β)||2

• The estimator for θN is θ̂N = −0.5[ 1
N2

∑N
i=1 ||C̃i(β)− C̃N(β)||2 + t̄2N ]

• The estimator for α2
N is a2

N = 1
N2

∑N
i=1 ||C̃i(β)− C̃N(β)||2 + d2

N

• The estimator for γN is γ̂N = γN(t̄2N , θ̂N , d
2
N)

• The estimator for λN is λ̂N = λN(a2
N , θ̂N , d

2
N)

• The estimator for S2
N is Ŝ

2

N = γ̂N

d2N
C̃N(β) + λ̂N

d2N
CN(β) = ρ̂N C̃N(β) + (1− ρ̂N)CN(β)

4.2.3 The Advantages of C∗N

Use of C∗N , rather than C̃N(β), S1
N , or S2

N , has multiple advantages. Use of MN is appli-

cable for any working correlation structure, while C̃N(β) is only designed for the exchange-

able structure. Additionally, MN not only combats the impact of cluster size imbalance,

although in a different manner than C̃N(β), it also protects the weighting matrix from the

effect of covariates on CN(β) as well. Related to this, C̃N(β), S1
N , and S2

N are equivalent
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to using CN(β) as the weighting matrix when all clusters are constant in size, possibly still

leading to inferior estimation performance, while use of MN in C∗N does not revert back to

using CN(β) in finite samples.

4.3 Assessing the Utility of the Proposed Weighting Matrices

4.3.1 Via Simulation Study

To assess the estimation performances of GEE, QIF, and QIF with the different proposed

weighting matrices, we use empirical MSE quantities that are the sum of the empirical MSEs

from all non-intercept parameters. Use of Ĉ∗N , C̃N(β), Ŝ
1

N , and Ŝ
2

N will be referred to as

QIF2, QIF3, QIF4, and QIF5, respectively. As QIF2 and QIF4 can use either t2N or t̂2N , we will

denote these methods with a when using t2N and b when implementing t̂2N . Tables report MSE

ratios, which take the empirical MSE quantity from GEE and divides it by the MSE value

from the corresponding method, and/or the empirical mean of the estimated weights given to

M̂N or C̃N(β). Table 4.1 presents results from general repeated measures scenarios in which

clusters are constant in size, implying QIF, QIF3, QIF4, and QIF5 are equivalent. Table

4.2 presents results from general GRTs and repeated measures scenarios including settings

mimicking the AIDS study. Table 4.1 (4.2 and 4.3) presents results from three (five) different

scenarios, each comprised of two or four different settings. Each setting was examined via

1,000 simulations. Correlated binary data were generated using the method presented by

Qaqish (2003), except for in GRT scenarios in which the beta-binomial distribution was

utilized. Correlation and variance (normally distributed data) parameter estimates used in

model-based covariances for QIF2 and QIF4b were obtained from GEE to reduce simulation

time, although estimates could be found iteratively as is done with GEE. Additionally, β̂

was used in place of β inside the empirical covariance matrices, C̃N(β) and CN(β).
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4.3.1.1 Description of Simulation Settings and Presentation of Results

In Scenario 1, the marginal model is given by

Yij = β0 + β1z1ij + β2z2ij + εij; εij ∼ N(0, j/5); j = 1, . . . , 10.

The number of clusters was 25 (200) for the first (second) and third (fourth) settings. The

true correlation structure was AR-1 (exchangeable) for the first (last) two settings, while the

working correlation structure was always AR-1. The correlation parameter was 0.7 for each

setting, while β = [0, 0, 1]T . Individual-level covariates were generated independently within

and across clusters from N(j/10, 1), similar to a design presented by Qu, Lindsay, and Li

(2000).

In Scenario 2, the marginal model is given by

Yij = β0 + β1z1ij + β2z2i + εij; εij ∼ N(0, 1 + 10z2i); j = 1, 2, 3, 4.

The number of clusters was 25 (200) for the first (second) and third (fourth) settings. The

true correlation structure was AR-1 (exchangeable) for the first (last) two settings, while

the working correlation structure was always AR-1. The correlation parameter was 0.7 for

each setting, while β = [1, 0, 1]T . z2i was generated independently across clusters from

Uniform(0, 1). Of the four equally spaced time points, two were randomly and uniformly

chosen to be the times at which the indicator covariate, z1ij, was given a value of 1, and thus

the remaining two were given a value of 0.

In Scenario 3, the marginal model is given by

logit(πij) = β0 + β1z1i + β1z2ij; j = 1, 2, 3, 4,

where πij is the marginal probability for the jth response in cluster i, and logit(πij) =

log[πij/(1− πij)]. The number of clusters in each of two trial arms was 25 (250) for the first
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Table 4.1: Empirical means of estimated weights given to M̂N in QIF2a and QIF2b, and
empirical MSE ratios comparing the three QIF versions to GEE. Scenarios are
general representations of possible repeated measures studies in which clusters
are constant in size, implying QIF3, QIF4, and QIF5 are equivalent to QIF.

QIF QIF2a QIF2b

Setting N MSE Ratio Ê(ρ̂N) MSE Ratio Ê(ρ̂N) MSE Ratio

(1.1) 25 0.819 0.973 0.960 0.960 0.959
(1.2) 200 0.940 0.776 0.948 0.744 0.948
(1.3) 25 0.876 0.588 0.980 0.564 0.979
(1.4) 200 0.982 0.085 0.984 0.082 0.984

(2.1) 25 0.813 0.996 0.997 0.995 0.998
(2.2) 200 0.967 0.746 0.992 0.727 0.991
(2.3) 25 0.870 0.999 1.000 0.998 1.000
(2.4) 200 1.024 0.384 1.029 0.374 1.030

(3.1) 50 0.864 0.996 0.977 0.980 0.977
(3.2) 500 0.953 0.997 0.965 0.980 0.965
(3.3) 50 0.886 0.947 0.985 0.848 0.986
(3.4) 500 1.011 0.158 1.011 0.088 1.011

(second) and third (fourth) settings. The true correlation structure was AR-1 (exchangeable)

for the first (last) two settings, while the working correlation structure was always AR-1.

The correlation parameter was 0.7 for each setting, while β = [0, 0, 0.1]T . z1i was given a

value of 0 or 1, depending upon the arm of the trial to which the ith cluster belonged, while

z2ij ∼ Uniform(0, 1) was generated independently from all observations within and across

clusters. These settings have similarities to those used by Song et al. (2009).

In Scenario 4, the marginal model is given by

logit(πij) = β0 + β1z1i; j = 1, . . . , ni,

representing a general GRT scenario. An equal number of clusters were randomized to
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the intervention and control arms of the trial, and z1i was an indicator for intervention

assignment. The number of clusters was 20, 200, 40, and 400 for the first through fourth

settings, respectively. Clusters varied in size independently and uniformly from 10 to 50, and

an exchangeable correlation structure was correctly implemented. In the first two settings,

marginal probabilities and correlations were 0.1 and 0.05, respectively, across all clusters. In

the last two settings, marginal probabilities (correlations) were 0.5 (0.3) and 0.3 (0.2) for

control and intervention clusters, respectively.

Scenario 5 uses the same marginal model as Scenario 4, and is meant to demonstrate set-

tings in which correlation values are impacted by cluster size, similar to simulations done in

the previous chapter. Ten (fifty) clusters were randomized to each trial arm in the first (sec-

ond) setting. Marginal probabilities were 0.5, an equal number of clusters were randomized to

each trial arm, and cluster sizes were independently generated from Uniform(25, 150). The

exchangeable correlation value for the ith cluster was exp(ω1 +ω2∗ni)/(1+exp(ω1 +ω2∗ni)),

in which ω1 and ω2 were -0.05 (-1.5) and -0.025 (-0.02), respectively, in the first (second)

setting. This allowed correlations to range from 0.02 to 0.34 in the first setting, and 0.01 to

0.12 in the second setting.

In Scenario 6, the marginal model is given by

logit(πij) = logit(πi) = β0 + β1z1i + β2z2i + β3z3i; j = 1, . . . , ni,

representing a general GRT scenario with multiple covariates, similar to simulations done in

the previous chapter. The number of clusters was 20 (40) for the first (second) setting. Clus-

ter sizes were independently generated from Uniform(25, 150), while z3i ∼ Uniform(−1, 1).

The first two covariates, z1i and z2i, are indicators, and there were N/4 clusters in each of

their four corresponding combinations. The exchangeable correlation value for the ith cluster

was exp(−2 − 5|πi − 0.5|)/(1 + exp(−2 − 5|πi − 0.5|)), allowing correlations to range from

0.02 to 0.12, while β = [0, 0, 1, 1]T .
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Scenario 7 is the same as Scenario 3, except clusters now vary in size and can contribute

up to eight observations, rather than four. Specifically, each cluster had two to eight observa-

tions, randomly and uniformly selected from all eight possible observation times. In the first

two settings, an AR-1 correlation structure was implemented, while the true structure was

exchangeable with a parameter of 0.7. The true correlation between any two observations j

and k from the ith cluster was 0.7|j−k|, j, k = 1, 2, . . . , 8, in the last two settings, while an

exchangeable structure was utilized.

In Scenario 8, the marginal model is given by

Yit = β0 + β1timeit + β2time
2
it + β3z3i + β4z4i + β5z5i + εit; εit ∼ N(0, 105);

i = 1, . . . , 283; t = 1, . . . , ni, in which β = [37,−4.5, 0.35, 0.40, 0, 0]T . This is meant to

mimic the scenario of the application dataset, and cluster sizes, z3i, z4i, and z5i were inde-

pendently generated from Uniform[1, 14], N(0, 64), N(0, 64), and Bernoulli(0.35), respec-

tively. Time was generated uniformly on [0.1, 0.2, . . . , 5.9], and any given time point was not

allowed to be observed more than once for any subject. The true correlation structure was

Corr(Yit, Yik) = 0.6|timeit−timeik| (exchangeable with a common correlation of 0.6) for the first

(last) two settings, while the working correlation structure was exchangeable (AR-1) for the

first (second) and third (fourth) settings. Each setting presents results from fitting models

with (a) only the first three covariates and (b) all five covariates. MSE ratios reported in

Settings 8.2b and 8.4b are only for estimates of β1 and β2, as QIF’s estimation performance is

only superior to GEE’s for estimating the marginal time trend. These ratios would be closer

in value to one if the corresponding MSE quantities were for all non-intercept parameters.

4.3.1.2 Description of Results

Results show that QIF can produce estimates with greater variability than the corre-

sponding estimates from GEE in settings consisting of a small to moderately sized sample,
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Table 4.2: Empirical MSE ratios comparing the seven QIF versions to GEE. Scenarios are
general representations of GRTs and repeated measures scenarios, including set-
tings mimicking the AIDS study. MSE ratios reported in Settings 8.2b and 8.4b
are only for estimates of β1 and β2.

MSE Ratios

Setting N QIF QIF2a QIF2b QIF3 QIF4a QIF4b QIF5

(4.1) 20 0.747 0.969 0.922 0.978 0.914 0.879 0.840
(4.2) 200 0.924 0.993 0.991 0.965 0.951 0.948 0.934
(4.3) 40 0.812 0.966 0.919 0.981 0.959 0.936 0.901
(4.4) 400 0.969 0.972 0.971 0.978 0.978 0.977 0.974

(5.1) 20 1.153 1.148 1.190 0.988 1.146 1.192 1.202
(5.2) 100 1.175 1.103 1.145 0.939 1.176 1.175 1.176

(6.1) 20 0.622 0.946 0.843 0.858 0.808 0.762 0.736
(6.2) 40 0.746 0.973 0.927 0.932 0.909 0.884 0.847

(7.1) 50 0.808 0.953 0.931
(7.2) 200 0.944 0.954 0.951
(7.3) 50 0.812 0.982 0.962 0.925 0.908 0.893 0.876
(7.4) 200 0.931 0.980 0.977 0.954 0.947 0.942 0.939

(8.1a) 283 0.993 1.003 1.000 0.958 0.964 0.964 0.975
(8.1b) 283 0.936 0.979 0.979 0.878 0.889 0.889 0.917
(8.2a) 283 1.150 1.139 1.142
(8.2b) 283 1.138 1.143 1.146
(8.3a) 283 0.874 0.896 0.897 0.779 0.785 0.785 0.809
(8.3b) 283 0.904 0.953 0.951 0.838 0.842 0.842 0.875
(8.4a) 283 1.040 1.049 1.049
(8.4b) 283 1.041 1.050 1.050
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Table 4.3: Empirical mean estimates for ρN in QIF2, QIF4, and QIF5. Scenarios are gen-
eral representations of GRTs and repeated measures scenarios, including settings
mimicking the AIDS study.

Ê(ρ̂N)

Setting N QIF2a QIF2b QIF4a QIF4b QIF5

(4.1) 20 0.936 0.765 0.702 0.587 0.410
(4.2) 200 0.973 0.937 0.654 0.600 0.355
(4.3) 40 0.797 0.533 0.888 0.713 0.614
(4.4) 400 0.158 0.085 0.860 0.683 0.547

(5.1) 20 0.628 0.248 0.232 0.111 0.053
(5.2) 100 0.638 0.372 0.066 0.032 0.002

(6.1) 20 0.908 0.674 0.755 0.599 0.411
(6.2) 40 0.963 0.803 0.840 0.715 0.485

(7.1) 50 0.700 0.517
(7.2) 200 0.161 0.107
(7.3) 50 0.988 0.895 0.857 0.701 0.599
(7.4) 200 0.998 0.968 0.791 0.614 0.501

(8.1a) 283 0.981 0.917 0.794 0.794 0.406
(8.1b) 283 0.985 0.906 0.830 0.830 0.389
(8.2a) 283 0.957 0.920
(8.2b) 283 0.973 0.932
(8.3a) 283 0.983 0.918 0.877 0.877 0.509
(8.3b) 283 0.986 0.901 0.901 0.901 0.484
(8.4a) 283 0.224 0.206
(8.4b) 283 0.287 0.264
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even when the working covariance structure is misspecified. This result was observed in

general GRT and repeated measures scenarios in which working AR-1 and exchangeable

correlations were utilized. Also, both QIF2a and QIF2b usually performed at least almost as

well as GEE when QIF led to estimates with the largest MSE, and approximately as good

as QIF when GEE worked least favorably. However, use of C̃N(β) in some form only worked

better than QIF in GRT scenarios and Scenario 7. In Scenario 4, QIF3 was one of the best

QIF versions, whereas the opposite was seen in Scenario 5. QIF4 and QIF5 performed better

than QIF in Scenarios 4 and 6, and approximately just as well in Scenario 5. However, there

were many settings in which QIF2 performed notably better than any of these other QIF

methods.

In all but one setting in which the number of independent clusters was fifty or less, the

empirical MSE from all non-intercept parameters was notably smaller for GEE than QIF.

This was most obvious in the GRT settings of Scenarios 4 and 6. When N was larger, GEE

and QIF worked similarly, except in Settings 5.2, 8.2, and 8.3.

QIF2a and QIF2b considerably improved the estimation performance of QIF, particularly

in settings consisting of 50 clusters or less. When N ≤ 100, the only setting in which QIF

worked better than QIF2a and QIF2b was Setting 5.2, although the difference in empirical

MSEs here is small. Additionally, QIF2a, QIF2b, and GEE all performed similarly in most

settings, with the exception of Scenario 5 and Settings 8.2 and 8.3, as previously mentioned.

These first two are examples of situations when QIF, QIF2a, and QIF2b perform better

than GEE, and the opposite was seen in Setting 8.3. Also, Scenarios 4 and 6 suggest that

GEE may work better than QIF2b in GRT settings in which the number of clusters is small,

particularly when there are multiple covariates.

Any QIF version utilizing C̃N(β) also performed better than or as well as QIF in the GRT

settings, with the exception of QIF3 in Scenario 5, which was also the only GRT scenario in

which QIF3 did not perform better than QIF4 and QIF5. However, the overall performance

of QIF2 was better than that of QIF3, QIF4, and QIF5 in these settings. Additionally, both
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QIF and QIF2 performed best in the settings of Scenario 8.

QIF2a and QIF2b led to parameter estimates with almost equivalent MSEs in the ma-

jority of repeated measures scenarios, although some small differences were evident in the

GRT scenarios. Estimated weights from these two methods were very similar in Table 4.1

since clusters were constant in size, whereas large variations in size increase the bias in t̄2N ,

shown via differences in the mean weight estimates presented in Table 4.3. These differences

diminished as N increased, however, since the bias in t̄2N decreased. Due to estimated bias,

QIF2b outperformed QIF2a in Scenario 5 by using smaller weights on average, while QIF2a

worked better than QIF2b in the other GRT settings by using larger weights on average.

These same results were also evident when comparing QIF4a and QIF4b, with the exception

of diminishing differences in weight estimates as N increased.

In Table 4.1, when the correlation structure was correctly specified to be AR-1 and

N ≤ 50, mean weight estimates were close to one, due to the variability in CN(β). However,

when N = 200 and the marginal variances were incorrectly assumed constant, the average

weight given to CN(β) increased due to its ability to account for these misspecifications in

larger sized samples. Additionally for QIF2, Scenario 3 and Setting 8.3 show that ρ̂N can be

close to one even for moderate N when the entire covariance structure is correct, as τ 2
N = δ2

N .

In Table 4.3, when correctly implementing an exchangeable structure, similar results were

also particularly evident in Scenario 4 for QIF2. No notable trend was seen with QIF4 or

QIF5.

In settings in which AR-1 was incorrectly implemented, more weight was given to M̂N on

average for smaller sample sizes. However, the majority of weight was given to CN(β) when

N ≥ 200 since this empirical matrix can more accurately account for the true covariances

within the data. An exception would be Setting 8.2, in which the mean estimated weights

were quite large. In this setting, it is interesting that QIF and QIF2 performed better than

GEE, although further study of these results indicates that CN(β) did not necessarily give

QIF the advantage here. Rather, two possible explanations for this superior performance
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could be that QIF only used two basis matrices to approximate the inverse of the AR-1

structure, and that estimation was accomplished my minimizing the value for QN(β). When

incorrectly implementing an exchangeable structure, Setting 8.1 and the third and fourth

settings of Scenario 7 give evidence that this working correlation can still possibly lead to

large values for ρ̂N when N is moderate and QIF2 or QIF4 are used. Even so, this was not

detrimental to parameter estimation.

To give examples of what individual values looked like, Figures 4.1 - 4.4 present his-

tograms of ρ̂N from Settings (1.3) and (5.1). Figure 4.1 shows that the majority of values

for ρ̂N were between 0.3 and 0.7 in Setting (1.3), with the majority being around 0.5. How-

ever, values of at least 0.9 were also seen in about fifteen percent of the simulations. Also,

estimated weights of 0.2 or less were rarely given. With respect to Setting (5.1), notable

peaks about ρ̂N = 0 and ρ̂N = 1 were seen. For QIF2a, ρ̂N = 1 in approximately half of

the simulations, while this only occurred about twenty percent of the time with QIF2b. For

QIF4, ρ̂N = 1 in less than twenty percent of the simulations, and only three percent for

QIF5. In the majority of simulations, QIF was superior to GEE and QIF2b used ρ̂N = 0

due in part to large bias estimates. Additionally, small values for ρ̂N were also seen in the

majority of simulations for QIF4 and QIF5 due to using large values for d2
N , as C̃N(β) is not

necessarily meant to work well when the true covariances rely upon the respective cluster

sizes. It is interesting that in simulations in which QIF2b used ρ̂N = 1, for example, QIF

only performed approximately as well as GEE, while QIF2 performed slightly better. This is

because QIF’s estimating equations and GEE are in different classes, allowing the completely

model-based QIF version to be more efficient than GEE in this Scenario. Additionally, de-

pending on whether QIF performed better than GEE or not, use of 0 < ρ̂N < 1 could either

decrease or increase MSE as compared with QIF.
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Figure 4.1: Values of ρ̂N from using QIF2 to analyze the 1000 simulated datasets from Setting
(1.3).
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Figure 4.2: Values of ρ̂N from using QIF2 to analyze the 1000 simulated datasets from Setting
(5.1).
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Figure 4.3: Values of ρ̂N from using QIF4 to analyze the 1000 simulated datasets from Setting
(5.1).
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Figure 4.4: Values of ρ̂N from using QIF5 to analyze the 1000 simulated datasets from Setting
(5.1).
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4.3.2 Via Application to an AIDS Dataset

As demonstrated in the previous chapter via a GRT dataset from Yudkin and Moher

(2001), results from QIF and GEE can be notably different when the number of clusters is

small. In this example, independent clusters were twenty-one medical care practices, ranging

in size from 28 to 244 patients with coronary heart disease (CHD). The marginal logistic

regression model used three different treatment records to predict the marginal probability

of any given patient being adequately assessed for three CHD risk factors. The variability

in CN(β) was particularly demonstrated when aspirin percentage was used as a covariate.

For this model, the size of one practice was largely influential upon the weights, estimated

via CN(β), given to outcomes in the corresponding estimating equations. Due to this large

variability within CN(β), it turns out that ρ̂N = 1 for every proposed QIF version imple-

menting a weighted combination of CN(β) and another matrix. This implies that full use of

M̂N or C̃N(β) is estimated to give the smallest expected quadratic loss for the respective

proposed weighting matrix. Additionally, QIF3 gives results that are more similar to GEE

implementing a common exchangeable correlation structure than to QIF and QIF2, although

differences were still evident.

For an illustrative example on how estimation of ρ̂N works, we use an AIDS dataset

(Kaslow et al., 1987; Huang, Wu, and Zhou, 2002) that was utilized by Qu and Li (2006) to

demonstrate their extension of QIF for varying-coefficient models. The dataset contains 283

males who became HIV-positive, each contributing one to fourteen observations at unequally

spaced time points, where time is years since infection and ranges from 0.1 to 5.9. The

longitudinal outcome of interest is CD4 percentage, while subjects’ baseline covariates are

age in years, smoking status, and CD4 percentage before infection (pre-CD4). For more

information, refer to the previously cited manuscripts.

As the marginal mean CD4 percentage over time is of interest, we fit the following
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parsimonious model:

E(CD4%it) = β0 + β1timeit + β2time
2
it + β3(preCD4%i − 42.69) +

β4(agei − 34.36) + β5smokei;

i = 1, . . . , 283; t = 1, . . . , ni. Here, pre-CD4 percentage and age are centered at their

respective sample means, and smokei indicates whether the ith subject smokes or not. We

additionally fit a model without age and the smoking indicator, as they do not have a

statistically significant impact on mean CD4 percentage.

The results from fitting these two models are shown in Table 4.4, which gives the regres-

sion parameter estimates from GEE and each QIF version, in addition to ρ̂N when applicable.

Each method and model combination was implemented twice, once using each of a working

exchangeable and AR-1 correlation structure, with the exception of the QIF versions uti-

lizing C̃N(β) that are not applicable for AR-1. Due to each subject contributing a varying

number of unequally spaced observations, an exchangeable structure may be as reasonable

of a guess at the true correlation structure as AR-1, and was implemented by Qu and Li

(2006). The estimated variance, AR-1 correlation, and exchangeable correlation parameters

from GEE were always around 106.5, 0.77, and 0.64, respectively.

Results show that this dataset is an example in which the differing weights given to out-

comes in the corresponding estimating equations do not have a large impact, as parameter

estimates do not vary across methods to a very notable degree. However, several parame-

ters estimated by QIF3 did appear to be larger in magnitude than for the other methods,

although not to a large degree. Values for ρ̂N , however, did vary across methods, models,

and working correlation structures. As clusters varied in size, a notable amount of bias was

estimated when using QIF2, especially seen when comparing the values for ρ̂N from QIF2a

and QIF2b when fitting a model with only the first three covariates and using an exchange-

able structure. When using AR-1, ρ̂N was relatively small in value, ranging from 0.22 to
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0.46, similar to its corresponding empirical means from Setting 8.4. This likely occurred

due to a misspecification in the working covariance structure, in which case CN(β) can be

more accurate in accounting for the true covariances within the data. However, similar to

Settings 8.1 and 8.3, ρ̂N was large when using an exchangeable structure, except when using

QIF2b with only three covariates, QIF4, or QIF5. This result may imply the exchangeable

structure closely resembles reality, although Setting 8.1 indicates that this working struc-

ture can potentially lead to large values for QIF2’s ρ̂N even when N is this large and the

true correlation in not exchangeable. Another notable trend is that ρ̂N always decreased in

value, except when utilizing an exchangeable structure with QIF2a or QIF5, as age and the

smoking indicator were taken out of the model. This possibly occurred since the dimension

of CN(β) reduces when decreasing the number of covariates, therefore diminishing its overall

variability. Here, not using age and smoking implies that CN(β) does not have to estimate

the effect these two covariates have on the covariance structure of the data.

4.4 Concluding Remarks

Although QIF has a theoretical efficiency advantage over GEE, its estimation perfor-

mance may actually be inferior, particularly when the number of clusters is small. Simula-

tions demonstrated that this result can be seen even in general correlated data settings and

when the working correlation structure is not exchangeable, complementing the results of

the previous chapter. To improve QIF in this regard, we proposed several different weighting

matrices to replace CN(β) inside the corresponding estimating equations. One utilizes an em-

pirical matrix that was intended to average out the effect from cluster size variation, denoted

as C̃N(β), while the others implement a weighted combination of CN(β) and either C̃N(β) or

M̂N , the model-based covariance matrix. These combinations optimally take into account

the bias and variability within each of these matrices, minimizing the expected quadratic loss

of the proposed matrix and allowing for the implementation of an asymptotically optimal

weighting matrix.
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Table 4.4: AIDS Dataset Analysis Results

Exchangeable Working Correlation Structure

β̂0 β̂1 β̂2 β̂3 β̂4 β̂5 ρ̂N

GEE 36.68 -4.64 0.37 0.40 -0.04 0.69
36.94 -4.65 0.37 0.39

QIF 36.77 -4.63 0.37 0.37 -0.04 0.53
36.93 -4.63 0.37 0.37

QIF2a 36.84 -4.78 0.40 0.38 -0.05 0.67 1.00
37.09 -4.78 0.40 0.37 1.00

QIF2b 36.83 -4.76 0.40 0.38 -0.05 0.65 0.97
36.97 -4.67 0.38 0.37 0.28

QIF3 37.98 -5.11 0.46 0.39 -0.08 0.44
37.99 -5.01 0.44 0.37

QIF4a 37.22 -4.79 0.40 0.38 -0.06 0.51 0.47
37.08 -4.66 0.38 0.37 0.22

QIF4b 37.22 -4.79 0.40 0.38 -0.06 0.51 0.47
37.08 -4.66 0.38 0.37 0.22

QIF5 36.91 -4.67 0.38 0.38 -0.05 0.55 0.19
36.98 -4.62 0.37 0.37 0.09

AR-1 Working Correlation Structure

β̂0 β̂1 β̂2 β̂3 β̂4 β̂5 ρ̂N

GEE 36.62 -4.86 0.43 0.39 -0.03 0.48
36.79 -4.86 0.43 0.38

QIF 36.54 -4.50 0.34 0.39 0.00 0.46
36.75 -4.57 0.34 0.39

QIF2a 36.59 -4.69 0.38 0.39 -0.01 0.49 0.46
36.77 -4.67 0.37 0.39 0.28

QIF2b 36.58 -4.65 0.37 0.39 -0.01 0.49 0.38
36.77 -4.65 0.36 0.39 0.22
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In practice, the optimal weight, ρN , for each method needs to be estimated, and the overall

performance of QIF as compared with its proposed alternate versions was demonstrated via

simulations in a variety of scenarios. In general, QIF2 typically improved QIF’s estimation

performance to be comparable to that of GEE’s when necessary, and, alternatively, worked

as good as QIF in settings in which GEE produced estimates with the largest variability.

However, any use of C̃N(β) was detrimental in the repeated measures settings of Scenario

8, and although advantageous to QIF in the GRT scenarios, QIF2 had an overall superior

performance as compared with QIF3, QIF4, and QIF5. Additionally, as the sample estimate

for the variability in CN(β) contained bias, two different methods for obtaining ρ̂N were

proposed for use in QIF2 and QIF4. No notable differences were seen in terms of estimation

performance, except in some GRT settings.

Overall, QIF2 appears to typically work approximately as well as the method, either

GEE or the regular QIF, that produces estimates with the least variability in any given

setting. This is advantageous in that it allows for the avoidance of having to choose between

the regular QIF and GEE. For instance, one could argue that GEE should be used when

N is small and the covariance structure is reasonably chosen, while QIF should be chosen

when N is large or the working covariance structure has the potential to largely deviate from

the truth. These are rather arbitrary aspects, and using QIF2, which optimally takes into

account the model-based and empirical aspects of GEE and QIF, respectively, prevents the

use of a potentially inferior method.

As mentioned in the previous chapter, the QIF can itself be used as a statistic in goodness-

of-fit and likelihood ratio score-type tests (Qu et al., 2000; Song et al., 2009). It has also

been shown to be much more robust to outliers than GEE (Qu and Song, 2004). As the

proposed weighting matrices are asymptotically optimal, QIF2a and QIF2b have the same

asymptotic properties as QIF, and their inference function values can also be used as test

statistics. Also, they will be more robust to outliers than GEE, although further study

is required to determine how influential outliers are to QIF2 as compared with QIF and
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GEE. Future research is also needed to determine the validity of the proposed QIF versions

as test statistics, as they will partially employ a covariance matrix that could be biased.

Additionally, these matrices will also influence the validity of the empirical SE estimates

the regular QIF employs. Therefore, future research on obtaining valid SEs is needed,

particularly in small-sample settings.
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4.5 Appendix

This Appendix has three separate sections. The first presents proofs dealing with C∗N

and Ĉ∗N , the second presents proofs dealing with S1
N and Ŝ

1

N , and the last presents proofs

dealing with S2
N and Ŝ

2

N . This Appendix provides proofs of results given in Section 4.2. The

general form for these proofs come from the work of Han and Song (2011) and Ledoit and

Wolf (2004). We direct the reader to proofs in these manuscripts when our proposed method

does not require any modifications to the corresponding work. Additionally, following Han

and Song (2011), we let c be a finite, generic constant which can change in value.

4.5.1 Proofs for Results Using C∗N and Ĉ∗N

We first prove that ρN = τ 2
N/(α

2
N + τ 2

N) minimizes E[||C∗N −ΣN ||2], closely related to the

corresponding proof given in Ledoit and Wolf (2004):

Proof.

E[||C∗N −ΣN ||2] = E[||ρNMN + (1− ρN)CN(β)− ρNΣN − (1− ρN)ΣN ||2]

= E[||ρN [MN −ΣN ] + (1− ρN)[CN(β)−ΣN ]||2]

= ρ2
NE[||MN −ΣN ||2] + (1− ρN)2E[||CN(β)−ΣN ||2] +

2ρN(1− ρN)E[<MN −ΣN , CN(β)−ΣN >]

= ρ2
Nα

2
N + (1− ρN)2τ 2

N + 0.

Now take the first derivative with respect to ρN and set equal to 0:

2ρNα
2
N − 2(1− ρN)τ 2

N = 0.

Solving for ρN ,

ρN =
τ 2
N

α2
N + τ 2

N

= τ 2
N/δ

2
N ,
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where δ2
N = α2

N + τ 2
N = E[||CN(β)−MN ||2].

The following proofs are based on the Lemma given by Han and Song (2011) and its

corresponding conditions. The first two parts of their Lemma are equivalent in our scenario,

and we therefore omit the proofs here.

We now prove δ2
N = α2

N + τ 2
N :

Proof.

δ2
N = E[||CN(β)−MN ||2] = E[||CN(β)−ΣN + ΣN −MN ||2]

= E[||CN(β)−ΣN ||2] + E[||ΣN −MN ||2] +

2E[< CN(β)−ΣN ,ΣN −MN >]

= τ 2
N + α2

N + 0 = τ 2
N + α2

N .

We now prove ||MN ||, δ2
N , α2

N , and τ 2
N remain bounded, and τ 2

N → 0 as N →∞:

Proof.

We first prove ||MN || remains bounded, using arguments similar to those implemented

by Han and Song (2011) for proving that ||ΣN || remains bounded:

||MN || = || 1
N

N∑
i=1

BiRi(α)BT
i || ≤

c

N

N∑
i=1

||Bi||||Ri(α)||||BT
i ||

≤ c

N

N∑
i=1

||Bi||||BT
i || =

c

N

N∑
i=1

||Bi||2 <∞.

We now show α2
N remains bounded:
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α2
N = ||MN −ΣN ||2 = ||MN ||2 + ||ΣN ||2 − 2 <MN ,ΣN >

α2
N is composed of three quantities. We already have the results that ||ΣN ||2 <∞ (Han

and Song, 2011) and ||MN ||2 < ∞, so we now only need to show that | < ΣN ,MN > |

<∞: | < ΣN ,MN > | ≤ c||ΣN ||||MN || <∞. So 0 ≤ α2
N <∞.

Han and Song (2011) proved that τ 2
N is bounded and that τ 2

N

p→ 0.

Now we prove that δ2
N is bounded:

δ2
N <∞ is implied since δ2

N = α2
N + τ 2

N , and αN and τ 2
N remain bounded.

We now prove a2
N − α2

N , t2N − τ 2
N , and d2

N − δ2
N all converge in quadratic mean to zero as

N →∞, under the assumption that E[||M̂N −MN ||4]→ 0 as N →∞. The derivation for

the bias in t2N and the proof that E[(t̂2N − τ 2
N)2]→ 0 as N →∞ are given at the end of this

Subsection.

Proof.

We first prove E[(d2
N − δ2

N)2]→ 0 as N →∞:

d2
N = ||CN(β)− M̂N ||2 = ||CN(β)−MN +MN − M̂N ||2

= ||CN(β)−MN ||2 + ||M̂N −MN ||2 − 2 < CN(β)−MN ,M̂N −MN >
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Therefore,

d2
N − δ2

N = ||CN(β)− M̂N ||2 − E[||CN(β)−MN ||2]

= ||CN(β)−MN ||2 + ||M̂N −MN ||2 −

2 < CN(β)−MN ,M̂N −MN > −E[||CN(β)−MN ||2]

= (||CN(β)−MN ||2 − E[||CN(β)−MN ||2]) + ||M̂N −MN ||2 −

2 < CN(β)−MN ,M̂N −MN >

Following the procedure of the corresponding proof given in Han and Song (2011), all we

need to do is show that the expected value of the square of each of these three terms goes

to 0 as N →∞. In other words, show that each of these three terms converges in quadratic

mean to 0.

First Term: ||CN(β)−MN ||2 − E[||CN(β)−MN ||2]

||CN(β)−MN ||2 − E[||CN(β)−MN ||2]

= ||CN(β)||2 + ||MN ||2 − 2 < CN(β),MN > −

E[||CN(β)||2 + ||MN ||2 − 2 < CN(β),MN >]

= [||CN(β)||2 − E(||CN(β)||2)] + [||MN ||2 − E(||MN ||2)]−

2[< CN(β),MN > −E(< CN(β),MN >)]

= [||CN(β)||2 − E(||CN(β)||2)] + 0− 2[< CN(β),MN > − < ΣN ,MN >]

= [||CN(β)||2 − E(||CN(β)||2)]− 2 < CN(β)−ΣN ,MN >

This shows that the first term can be rewritten as the sum of two terms. Therefore, we

just need to show that both of these terms converge in quadratic mean to 0. Han and Song

(2011) proved that as N → ∞, E
[
(||CN(β)||2 − E[||CN(β)||2])2

]
→ 0. Now we prove that

E[(2 < CN(β)−ΣN ,MN >)2]→ 0 as N →∞:
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By the Cauchy-Schwarz Inequality,

0 ≤ (< CN(β)−ΣN ,MN >)2 ≤ c||CN(β)−ΣN ||2||MN ||2.

Therefore,

0 ≤ E[(2 < CN(β)−ΣN ,MN >)2] ≤ cE[||CN(β)−ΣN ||2||MN ||2]

= c||MN ||2E[||CN(β)−ΣN ||2] = c||MN ||2τ 2
N → 0

as N →∞.

Second Term: ||M̂N −MN ||2

By assumption,

E[||M̂N −MN ||4]→ 0

Third Term: 2< CN(β)−MN ,M̂N −MN >

By the Cauchy-Schwarz Inequality, showing E(c2N)→ 0 and E(b2N)→ 0 implies

E(|cNbN |)→ 0, and so

0 ≤ E[(< CN(β)−MN ,M̂N −MN >)2] ≤ cE[||CN(β)−MN ||2||M̂N −MN ||2]→ 0,

which we now prove: ||CN(β)−MN ||2 = ||CN(β)−ΣN ||2 + ||ΣN −MN ||2 + 2 < CN(β)−

ΣN ,ΣN −MN >, and so E[||CN(β)−MN ||2||M̂N −MN ||2] can be written as the sum of

three terms, each of which we now show converge to zero.

1. E[||CN(β)−ΣN ||2||M̂N −MN ||2]: if we let cN = ||CN(β)−ΣN ||2 and bN = ||M̂N −

MN ||2, then all we need to show is E[||CN(β)−ΣN ||4]→ 0 and E[||M̂N−MN ||4]→ 0.

Han and Song (2011) proved E[||CN(β)−ΣN ||4]→ 0, and by assumption E[||M̂N −

MN ||4]→ 0.
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2. E[||ΣN −MN ||2||M̂N −MN ||2] = ||ΣN −MN ||2E[||M̂N −MN ||2] ≤ cE[||M̂N −

MN ||2]→ 0 by assumption.

3. E[< CN(β)−ΣN ,ΣN −MN > ||M̂N −MN ||2]: By the Cauchy-Schwarz Inequality,

0 ≤ E(| < CN(β) −ΣN ,ΣN −MN > |||M̂N −MN ||2) ≤ cE[||CN(β) −ΣN ||||ΣN −

MN ||||M̂N −MN ||2] ≤ cE[||CN(β)−ΣN ||||M̂N −MN ||2]. Letting cN = ||CN(β)−

ΣN || and bN = ||M̂N −MN ||2, then all we need is E[||CN(β)−ΣN ||2] = τ 2
N → 0 and

E[||M̂N −MN ||4]→ 0, which have already been shown and assumed, respectively.

Therefore, since all three terms converge to 0, E[||CN(β) −MN ||2||M̂N −MN ||2] → 0 as

N →∞.

We now prove E[(t2N − τ 2
N)2]→ 0 as N →∞:

Han and Song (2011) proved than E[(t̄2N − τ 2
N)2] → 0 as N → ∞, and the proof that

E[(t2N − τ 2
N)2]→ 0 as N →∞ then follows from Ledoit and Wolf (2004).

Both E[(d2
N − δ2

N)2] and E[(t2N − τ 2
N)2] converge to 0 as N → ∞, and therefore so does

E[(a2
N − α2

N)2].

We now prove the two theorems similar to those given by Han and Song (2011), now

based upon C∗N and Ĉ∗N . According to the first theorem of Han and Song (2011), the

following five conditions must be met in order for the previous proofs and both Theorems

to be valid: (1) supi≥1 ni < ∞; (2) supi≥1 E||ei||8 < ∞; (3) h(µ) is differentiable; (4) lim

supN→∞
1
N

∑N
i=1 ||X∧8

i ||2 <∞, and ∧ is elementwise exponentiation; and (5) for any β ∈ B,

lim supN→∞
1
N

∑N
i=1 ||G

8
iA
−4
i ||2 < ∞, where B is some subset of Rp. Here, Gi is a matrix

with [ḣ(µij)]
−1 as diagonal elements, where the dot represents the derivative with respect to

µij, and Xi is the matrix of covariate values for the ith cluster.

Theorem 1.1. For β ∈ B, E[||C∗N −ΣN ||2]→ 0 as N →∞, implying C∗N −ΣN
p→ 0.
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Proof. Following Ledoit and Wolf (2004):

0 ≤ ||C∗N −ΣN ||2 = ||τ
2
N

δ2
N

MN +
α2
N

δ2
N

CN(β)− τ 2
N + α2

N

δ2
N

ΣN ||2

= ||τ
2
N

δ2
N

[MN −ΣN ] +
α2
N

δ2
N

[CN(β)−ΣN ]||2

= (
τ 2
N

δ2
N

)2||MN −ΣN ||2 + (
α2
N

δ2
N

)2||CN(β)−ΣN ||2 +

2(
τ 2
N

δ2
N

)(
α2
N

δ2
N

) <MN −ΣN , CN(β)−ΣN >

≤ (
τ 2
N

δ2
N

)2||MN −ΣN ||2 + ||CN(β)−ΣN ||2 + 2(
τ 2
N

δ2
N

)(
α2
N

δ2
N

) <MN −ΣN , CN(β)−ΣN >

The proof will be complete if we show these three terms have expectations that converge to

0.

First Term:

E[(
τ 2
N

δ2
N

)2||MN −ΣN ||2] = (
τ 2
N

δ2
N

)2||MN −ΣN ||2

= (
τ 2
N

δ2
N

)2α2
N = τ 2

N(
τ 2
N

δ2
N

)(
α2
N

δ2
N

) ≤ τ 2
N

p→ 0

Second Term:

E[||CN(β)−ΣN ||2] = τ 2
N

p→ 0.

Third Term:

E[2(
τ 2
N

δ2
N

)(
α2
N

δ2
N

) <MN −ΣN , CN(β)−ΣN >]

= 2(
τ 2
N

δ2
N

)(
α2
N

δ2
N

) <MN −ΣN , E[CN(β)−ΣN ] >

= 2(
τ 2
N

δ2
N

)(
α2
N

δ2
N

) <MN −ΣN , 0 >= 0
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Theorem 1.2. For β ∈ B, E[||Ĉ∗N −ΣN ||2]→ 0 as N →∞, implying Ĉ∗N −ΣN
p→ 0.

Proof. Following Ledoit and Wolf (2004):

0 ≤ ||Ĉ∗N − C∗N ||2 = ||[ t
2
N

d2
N

M̂N +
a2
N

d2
N

CN(β)]− [
τ 2
N

δ2
N

MN +
α2
N

δ2
N

CN(β)]||2

= || t
2
N

d2
N

M̂N −
τ 2
N

δ2
N

MN + (
a2
N

d2
N

− α2
N

δ2
N

)CN(β) +
τ 2
N

δ2
N

M̂N −
τ 2
N

δ2
N

M̂N ||2

= ||τ
2
N

δ2
N

(M̂N −MN) + (
a2
N

d2
N

− α2
N

δ2
N

)[CN(β)− M̂N ] +
t2N
d2
N

M̂N −
τ 2
N

δ2
N

M̂N +

(
a2
N

d2
N

− α2
N

δ2
N

)M̂N ||2

= ||τ
2
N

δ2
N

(M̂N −MN) + (
a2
N

d2
N

− α2
N

δ2
N

)[CN(β)− M̂N ]||2

= (
τ 2
N

δ2
N

)2||M̂N −MN ||2 + (
a2
N

d2
N

− α2
N

δ2
N

)2||CN(β)− M̂N ||2 +

2(
τ 2
N

δ2
N

)(
a2
N

d2
N

− α2
N

δ2
N

) < M̂N −MN , CN(β)− M̂N >

≤ ||M̂N −MN ||2 + (
a2
N

d2
N

− α2
N

δ2
N

)2d2
N +

2(
τ 2
N

δ2
N

)(
a2
N

d2
N

− α2
N

δ2
N

) < M̂N −MN , CN(β)− M̂N >

Now we need to show that E[||Ĉ∗N − C∗N ||2]→ 0, or that the expectations of each of the

above three terms all converge to 0:

First Term: By assumption,

E[||M̂N −MN ||2]→ 0
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Second Term:

(
a2
N

d2
N

− α2
N

δ2
N

)2d2
N = [

a4
N

d4
N

+
α4
N

δ4
N

− 2
a2
Nα

2
N

d2
Nδ

2
N

]d2
N

=
a4
N

d2
N

+
α4
Nd

2
N

δ4
N

− 2a2
Nα

2
N

δ2
N

= (a4
Nδ

4
N + α4

Nd
4
N − 2a2

Nα
2
Nδ

2
Nd

2
N)/(d2

Nδ
4
N)

= (a2
Nδ

2
N − α2

Nd
2
N)2/(d2

Nδ
4
N).

Ledoit and Wolf (2004) prove that E[(a2
Nδ

2
N − α2

Nd
2
N)2/(d2

Nδ
4
N)]→ 0 as N →∞.

Third Term:

2(
τ2
N

δ2N
)(
a2

N

d2N
− α2

N

δ2N
) < M̂N −MN , CN(β)− M̂N >

Using the Cauchy-Schwarz Inequality and denoting cN = 2(
τ2
N

δ2N
)(
a2

N

d2N
− α2

N

δ2N
) and

bN =< M̂N −MN , CN(β) − M̂N >, showing E(b2N) → 0 and E(c2N) → 0 will prove that

the expectation of this third term goes to zero as N →∞.

E(b2N): 0 ≤ E[(< M̂N−MN , CN(β)−M̂N >)2] ≤ E[||M̂N−MN ||2||CN(β)−M̂N ||2] ≤

(by the Cauchy-Schwarz Inequality)

√
E[||M̂N −MN ||4]

√
E[||CN(β)− M̂N ||4] ≤

c

√
E[||M̂N −MN ||4]→ 0 by assumption.

E(c2N): 0 ≤ 4(
τ2
N

δ2N
)2E[(

a2
N

d2N
− α2

N

δ2N
)2]→ 0 since E[(

a2
N

d2N
− α2

N

δ2N
)2] is bounded and

τ2
N

δ2N
→ 0 under

the assumption of a misspecified covariance structure.

We have now shown E[||Ĉ∗N − C∗N ||2] → 0 as N → ∞. Using this in conjunction with

Theorem 1 and the proof given by Han and Song (2011), we have E[||Ĉ∗N −ΣN ||2]→ 0.

We note that all proofs assume ||MN − ΣN ||2 > 0 and E[||M̂N − CN(β)||2] does not

converge to 0. Specifically, we assume that the working covariance structure is misspecified

in some manner. In reality, we have N <∞, and even if the covariance structure is correctly

specified for all data, our method will still work. Additionally, if E[||M̂N − CN(β)||2]→ 0,

for large N it would not make a difference how much weight is given to M̂N and CN(β).
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We now derive the bias in t̄2N , and then prove E[(t̂2N − τ 2
N)2]→ 0 as N →∞.

t̄2N is a function of mp × mp matrices, and is used to estimate E[||CN(β) − ΣN ||2].

Now let x̄N represent any one of the (mp)2 elements comprising CN(β), and µN = E[x̄N ].

||CN(β) − ΣN ||2 is just the sum of the square of each of the (mp)2 elements comprising

CN(β)−ΣN , divided by mp, and so E[||CN(β)−ΣN ||2] is just the sum of the variances of

the (mp)2 elements comprising CN(β), divided by mp.

Now CN(β) is the sample average over the N extended score equations, and x̄N =

(1/N)
∑N

i=1 xi and µN = (1/N)
∑N

i=1 µi. V ar(x̄N) = (1/N2)
∑N

i=1 V ar(xi) = (1/N2)
∑N

i=1 σ
2
i .

t̄2N estimates V ar(x̄N) with (1/N2)
∑N

i=1(xi − x̄N)2. Now

(1/N2)
N∑
i=1

E[(xi − x̄N)2] = (1/N2)
N∑
i=1

E(x2
i )− (1/N)E(x̄2

N)

= (1/N2)
N∑
i=1

(σ2
i + µ2

i )− (1/N)[V ar(x̄N) + E(x̄N)2]

= V ar(x̄N) + (1/N2)
N∑
i=1

µ2
i − (1/N)[V ar(x̄N) + [(1/N)

N∑
i=1

µi]
2]

= [(N − 1)/N ]V ar(x̄N) + (1/N2)
N∑
i=1

µ2
i − (1/N3)

(
N∑
i=1

µi

)2

As (N−1)/N ≈ 1, we can ignore the first term, and therefore the bias of the corresponding

arbitrary element within t̄2N can approximated by (1/N2)
∑N

i=1 µ
2
i−(1/N3)

(∑N
i=1 µi

)2

. Since

we need an estimate for the sum of the variances for each of the (2p)2 elements comprising

CN(β), we need to sum the biases from each of the variance estimates. This leads to

Bias(t̄2N) ≈ (1/N2)
∑N

i=1 ||Cov[gi(β)]||2 − (1/N3)||
∑N

i=1Cov[gi(β)]||2.

We now show the bias terms go to 0 as N →∞:

1. (1/N2)
∑N

i=1 ||BiRi(α)BT
i ||2. ||BiRi(α)BT

i ||2 ≤ c||Bi||4 < ∞ by assumptions, and

so (1/N)
∑N

i=1 ||BiRi(α)BT
i ]||2 <∞. Therefore, since (1/N)→ 0,

(1/N2)
∑N

i=1 ||BiRi(α)BT
i ]||2 = (1/N)

[
(1/N)

∑N
i=1 ||BiRi(α)BT

i ]||2
]
→ 0.
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2. (1/N3)||
∑N

i=1Cov[gi(β)]||2 = (1/N)||MN ||2. We have already proven that ||MN ||2 <

∞, implying (1/N)||MN ||2 → 0.

We now prove E[(t̂2N − τ 2
N)2]→ 0 as N →∞:

E[t̄2N − B̂ias(t̄2N)] = E[t̄2N ] − (1/N2)
∑N

i=1 ||BiRi(α)BT
i ]||2 + (1/N)||MN ||2 → 0 since

Han and Song (2011) show E[t̄2N ] → 0, and we have already shown the other two terms

converge to 0.

[t̄2N − B̂ias(t̄2N)]2 = (t̄2N)2 + [(1/N2)
N∑
i=1

||BiRi(α)BT
i ]||2]2 + (1/N2)||MN ||4

−2t̄2N [(1/N2)
N∑
i=1

||BiRi(α)BT
i ]||2] + 2t̄2N(1/N)||MN ||2 −

2[(1/N2)
N∑
i=1

||BiRi(α)BT
i ]||2][(1/N)||MN ||2]

Now, to prove E([t̄2N − B̂ias(t̄2N)]2) → 0, we need to show that the expected value of

each of these six terms goes to 0 as N → ∞. The second, third, and sixth terms are

each comprised of two terms that do not contain random variables and have been shown to

go to 0, therefore implying these three terms go to 0. Han and Song (2011) showed that

E[(t̄2N)2] → 0. The fourth and fifth terms are comprised of a respective bias term and t̄2N .

As we have already shown that the bias terms are bounded, and both the bias terms and t̄2N

go to 0, we therefore have the result that the fourth and fifth terms also go to 0.

Following Han and Song (2011), E[(t̄2N − B̂ias(t̄2N) − τ 2
N)2] = E([t̄2N − B̂ias(t̄2N)]2) −

2τ 2
NE[t̄2N − B̂ias(t̄2N)] + (τ 2

N)2 → 0 as N → ∞, and the work by Ledoit and Wolf (2004)

proves that E[(t̂2N − τ 2
N)2]→ 0 as N →∞.
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4.5.2 Proofs for Results Using S1
N and Ŝ

1

N

We first prove that ρN = τ 2
N/(α

2
N + τ 2

N) minimizes E[||S1
N −ΣN ||2], closely related to the

corresponding proof given in Ledoit and Wolf (2004):

Proof.

E[||S1
N −ΣN ||2] = E[||ρNΣ̃N + (1− ρN)CN(β)− ρNΣN − (1− ρN)ΣN ||2]

= E[||ρN [Σ̃N −ΣN ] + (1− ρN)[CN(β)−ΣN ]||2]

= ρ2
NE[||Σ̃N −ΣN ||2] + (1− ρN)2E[||CN(β)−ΣN ||2] +

2ρN(1− ρN)E[< Σ̃N −ΣN , CN(β)−ΣN >]

= ρ2
Nα

2
N + (1− ρN)2τ 2

N − 0.

Now take the first derivative with respect to ρN and set equal to 0:

2ρNα
2
N − 2(1− ρN)τ 2

N = 0.

Solving for ρN , we get

ρN =
τ 2
N

α2
N + τ 2

N

= τ 2
N/δ

2
N ,

where δ2
N = α2

N + τ 2
N = E[||CN(β)− Σ̃N ||2].

The following proofs are based on the Lemma given by Han and Song (2011) and its

corresponding conditions. The first two parts of their Lemma are equivalent in our scenario,

and we therefore omit the proofs here.

We now prove δ2
N = α2

N + τ 2
N :
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Proof.

δ2
N = E[||CN(β)− Σ̃N ||2] = E[||CN(β)−ΣN + ΣN − Σ̃N ||2]

= E[||CN(β)−ΣN ||2] + E[||ΣN − Σ̃N ||2] +

2E[< CN(β)−ΣN ,ΣN − Σ̃N >]

= τ 2
N + α2

N + 0 = τ 2
N + α2

N .

We now prove ||Σ̃N ||, δ2
N , α2

N , and τ 2
N remain bounded, and τ 2

N → 0 as N →∞:

Proof.

We first prove ||Σ̃N || remains bounded, using arguments similar to those implemented

by Han and Song (2011) for proving that ||ΣN || remains bounded:

||Σ̃N || = || 1N
∑N

i=1 Σ̃i||, where E[C̃i(β)] = Σ̃i.

||Σ̃N || ≤
c

N

N∑
i=1

||Σ̃i|| ≤
cd

N

N∑
i=1

||Σi|| =
c

N

N∑
i=1

||BiR̃iB
T
i || ≤

c

N

N∑
i=1

||Bi||||R̃i||||BT
i ||

≤ c

N

N∑
i=1

||Bi||||BT
i || =

c

N

N∑
i=1

||Bi||2 <∞,

where R̃i = Cov(ei),

d = max
[
(n̂2/n2

i ),
(

̂n2(n− 1)/[n2
i (ni − 1)]

)
,
(

̂n2(n− 1)2/[n2
i (ni − 1)2]

)
; i = 1, . . . , N

]
,

n̂2 = (1/N)
N∑
i=1

n2
i ,

̂n2(n− 1) = (1/N)
N∑
i=1

n2
i (ni − 1),

̂n2(n− 1)2 = (1/N)
N∑
i=1

n2
i (ni − 1)2

91



We now show α2
N remains bounded:

α2
N = ||Σ̃N −ΣN ||2 = ||ΣN ||2 + ||Σ̃N ||2 − 2 < ΣN , Σ̃N >

So α2
N is composed of three quantities. It has already been shown that ||ΣN ||2 <∞ and

||Σ̃N ||2 < ∞, so we now only need to show that | < ΣN , Σ̃N > | < ∞: | < ΣN , Σ̃N > |

≤ c||ΣN ||||Σ̃N || <∞. So 0 ≤ α2
N <∞.

Han and Song (submitted) proved that τ 2
N is bounded and that τ 2

N

p→ 0.

Now we prove that δ2
N is bounded:

δ2
N < ∞ is implied since δ2

N = α2
N + τ 2

N , and we already showed αN and τ 2
N remain

bounded.

We now prove a2
N − α2

N , t2N − τ 2
N , t̂2N − τ 2

N , and d2
N − δ2

N all converge in quadratic mean

to zero as N →∞.

Proof.

We first prove E[(d2
N − δ2

N)2]→ 0 as N →∞:

d2
N − δ2

N = ||CN(β)||2 + ||C̃N(β)||2 − 2 < CN(β), C̃N(β) > −E[||CN(β)||2]− ||Σ̃N ||2 +

2 < ΣN , Σ̃N >

=
(
||CN(β)||2 − E[||CN(β)||2]

)
+
(
||C̃N(β)||2 − ||Σ̃N ||2

)
−

2
(
< CN(β), C̃N(β) > − < ΣN , Σ̃N >

)

Following Han and Song (2011), we need to show that the expected value of the square

of each of these three terms goes to 0 as N → ∞ in order to prove E[(d2
N − δ2

N)2] → 0 as
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N →∞. Han and Song (2011) proved part (i) of the Lemma that for this first term,

E
[(
||CN(β)||2 − E[||CN(β)||2]

)2]→ 0.

To show E

[(
||C̃N(β)||2 − ||Σ̃N ||2

)2
]
→ 0, we first let x̄ij represent the i, jth element

of C̃N(β), i, j = 1, 2, . . . , 2p. Using the fact that E(x̄2
ij) = V ar(x̄ij) + [E(x̄ij)]

2, we have

E(||C̃N(β)||2) = (2p)−1
∑2p

i=1

∑2p
j=1 V ar(x̄ij) + ||Σ̃N ||2, and so ||Σ̃N ||2 = E(||C̃N(β)||2) −

(2p)−1
∑2p

i=1

∑2p
j=1 V ar(x̄ij). Using this, we need to show

E

[(
||C̃N(β)||2 − ||Σ̃N ||2

)2
]

= E

(||C̃N(β)||2 − E(||C̃N(β)||2) + (2p)−1

2p∑
i=1

2p∑
j=1

V ar(x̄ij)

)2


= E

[(
||C̃N(β)||2 − E[||C̃N(β)||2]

)2
]

+ (2p)−2

(
2p∑
i=1

2p∑
j=1

V ar(x̄ij)

)2

+

(2p)−1

(
2p∑
i=1

2p∑
j=1

V ar(x̄ij)

)
E
(
||C̃N(β)||2 − E[||C̃N(β)||2]

)
→ 0.

Using the proof Han and Song (2011) used to prove part (i) of the Lemma, we have

E

[(
||C̃N(β)||2 − E[||C̃N(β)||2]

)2
]
→ 0.

This is the case since each element of C̃i(β) is just a finite multiple of the corresponding

element in gi(β)gi(β)T . V ar(x̄ij) → 0 as N → ∞, implying [
∑2p

i=1

∑2p
j=1 V ar(x̄ij)]

2 → 0.

Finally, the third term is composed of a bounded term that converges to 0 and another term

that has an expectation of 0, and so E

[(
||C̃N(β)||2 − ||Σ̃N ||2

)2
]
→ 0.

93



With respect to the third term,

E

[(
< CN (β), C̃N (β) > − < ΣN , Σ̃N >

)2
]

= E

[(
< CN (β), C̃N (β) > − < ΣN , Σ̃N > +E[< CN (β), C̃N (β) >]− E[< CN (β), C̃N (β) >]

)2
]

= E

[(
[< CN (β), C̃N (β) > −E(< CN (β), C̃N (β) >)] + [E[< CN (β), C̃N (β) >]− < ΣN , Σ̃N >]

)2
]
,

and so we now show

E

[(
< CN (β), C̃N (β) > −E(< CN (β), C̃N (β) >)

)2
]
→ 0,

E

[(
E[< CN (β), C̃N (β) >]− < ΣN , Σ̃N >

)2
]
→ 0,

and

E
[(
< CN (β), C̃N (β) > −E(< CN (β), C̃N (β) >)

)(
E[< CN (β), C̃N (β) >]− < ΣN , Σ̃N >

)]
→ 0

To prove

E
[(
||CN(β)||2 − E[||CN(β)||2]

)2]→ 0,

Han and Song (2011) show that

||CN(β)||2 = (2p)−1

2p∑
k=1

2p∑
h=1

(
1

N2

N∑
i=1

g2
ikg

2
ih +

1

N2

N∑
i,j=1,j 6=i

gikgihgjkgjh

)
,

V ar[(1/N2)
∑N

i=1 g
2
ikg

2
ih]→ 0, and V ar[(1/N2)

∑N
i,j=1,j 6=i gikgihgjkgjh]→ 0.

< CN(β), C̃N(β) > can be written similar to the expression just shown for ||CN(β)||2,

with the difference being that terms coming from C̃N(β) need to be multiplied by their

corresponding functions of the cluster sizes, all of which are bounded. Therefore, since these
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terms are bounded, this proof given by Han and Song (2011) also shows

E

[(
< CN(β), C̃N(β) > −E(< CN(β), C̃N(β) >)

)2
]
→ 0.

E

[(
E[< CN(β), C̃N(β) >]− < ΣN , Σ̃N >

)2
]

=
(
E[< CN(β), C̃N(β) >]− < ΣN , Σ̃N >

)2

.

We now need to show E[< CN(β), C̃N(β) >]− < ΣN , Σ̃N >→ 0. Let x̄ij and ȳij represent

the i, jth elements of C̃N(β) and CN(β), respectively, i, j = 1, 2, . . . , 2p. Then

E[< CN(β), C̃N(β) >] = (2p)−1E

(
2p∑
i=1

2p∑
j=1

x̄ij ȳij

)
,

and < ΣN , Σ̃N >= (2p)−1
∑2p

i=1

∑2p
j=1 µ̃ijµij, where µ̃ij = E(x̄ij) and µij = E(ȳij).

Cov(x̄ij, ȳij) = E(x̄ij ȳij)− µ̃ijµij, and therefore

(2p)−1

2p∑
i=1

2p∑
j=1

Cov(x̄ij, ȳij) = E[< CN(β), C̃N(β) >]− < ΣN , Σ̃N >,

implying we need to show (2p)−1
∑2p

i=1

∑2p
j=1Cov(x̄ij, ȳij) → 0. For each combination of i

and j, 0 ≤ |Cov(x̄ij, ȳij)| ≤
√
V ar(x̄ij)V ar(ȳij)→ 0, since V ar(x̄ij), V ar(ȳij)→ 0.

The last term,

E
[(
< CN (β), C̃N (β) > −E(< CN (β), C̃N (β) >)

)(
E[< CN (β), C̃N (β) >]− < ΣN , Σ̃N >

)]
,

is 0 since the expectation of the first term is 0, and the second term is bounded and converges

to 0.

We now prove both E[(t2N − τ 2
N)2]→ 0 and E[(t̂2N − τ 2

N)2]→ 0 as N →∞:

Han and Song (2011) proved that E[(t̄2N − τ 2
N)2] → 0 as N → ∞. The proof that

E[(t2N − τ 2
N)2] → 0 as N → ∞ then follows from Ledoit and Wolf (2004), while the proof

that E[(t̂2N − τ 2
N)2]→ 0 as N →∞ has already been given.
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E[(d2
N − δ2

N)2], E[(t2N − τ 2
N)2], and E[(t̂2N − τ 2

N)2] converge to 0 as N →∞, and therefore

so does E[(a2
N − α2

N)2].

We now prove the two theorems similar to those given by Han and Song (2011), now based

upon S1
N and Ŝ

1

N . We note that these theorems assumes there is variation in cluster sizes,

such that CN(β) 6= C̃N(β), as we need δ2
N > 0. Specifically, we assume ||Σ̃N − ΣN ||2 > 0

and E[||C̃N(β)− CN(β)||2] does not converge to 0.

Theorem 2.1. For β ∈ B, E[||S1
N −ΣN ||2]→ 0 as N →∞, implying S1

N −ΣN
p→ 0.

Proof. Following Ledoit and Wolf (2004):

0 ≤ ||S1
N −ΣN ||2 = ||τ

2
N

δ2
N

Σ̃N +
α2
N

δ2
N

CN(β)− τ 2
N + α2

N

δ2
N

ΣN ||2

= ||τ
2
N

δ2
N

[Σ̃N −ΣN ] +
α2
N

δ2
N

[CN(β)−ΣN ]||2

= (
τ 2
N

δ2
N

)2||Σ̃N −ΣN ||2 + (
α2
N

δ2
N

)2||CN(β)−ΣN ||2 +

2(
τ 2
N

δ2
N

)(
α2
N

δ2
N

) < Σ̃N −ΣN , CN(β)−ΣN >

≤ (
τ 2
N

δ2
N

)2||Σ̃N −ΣN ||2 + ||CN(β)−ΣN ||2 + 2(
τ 2
N

δ2
N

)(
α2
N

δ2
N

) < Σ̃N −ΣN , CN(β)−ΣN >

The proof will be complete if we show that these three terms have expectations that converge

to 0.

First Term:

E[(
τ 2
N

δ2
N

)2||Σ̃N −ΣN ||2] = (
τ 2
N

δ2
N

)2||Σ̃N −ΣN ||2

= (
τ 2
N

δ2
N

)2α2
N = τ 2

N(
τ 2
N

δ2
N

)(
α2
N

δ2
N

) ≤ τ 2
N

p→ 0

Second Term:

E[||CN(β)−ΣN ||2] = τ 2
N

p→ 0.
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Third Term:

E[2(
τ 2
N

δ2
N

)(
α2
N

δ2
N

) < Σ̃N −ΣN , CN(β)−ΣN >]

= 2(
τ 2
N

δ2
N

)(
α2
N

δ2
N

) < Σ̃N −ΣN , E[CN(β)−ΣN ] >

= 2(
τ 2
N

δ2
N

)(
α2
N

δ2
N

) < Σ̃N −ΣN , 0 >= 0

Theorem 2.2. For β ∈ B, E[||Ŝ
1

N −ΣN ||2]→ 0 as N →∞, implying Ŝ
1

N −ΣN
p→ 0.

Proof. Following Ledoit and Wolf (2004):

0 ≤ ||Ŝ
1

N − S1
N ||2 = ||[ t

2
N

d2
N

C̃N(β) +
a2
N

d2
N

CN(β)]− [
τ 2
N

δ2
N

Σ̃N +
α2
N

δ2
N

CN(β)]||2

= || t
2
N

d2
N

C̃N(β)− τ 2
N

δ2
N

Σ̃N + (
a2
N

d2
N

− α2
N

δ2
N

)CN(β) +
τ 2
N

δ2
N

C̃N(β)− τ 2
N

δ2
N

C̃N(β)||2

= ||τ
2
N

δ2
N

(C̃N(β)− Σ̃N) + (
a2
N

d2
N

− α2
N

δ2
N

)[CN(β)− C̃N(β)] +
t2N
d2
N

C̃N(β)−

τ 2
N

δ2
N

C̃N(β) + (
a2
N

d2
N

− α2
N

δ2
N

)C̃N(β)||2

= ||τ
2
N

δ2
N

(C̃N(β)− Σ̃N) + (
a2
N

d2
N

− α2
N

δ2
N

)[CN(β)− C̃N(β)]||2

= (
τ 2
N

δ2
N

)2||C̃N(β)− Σ̃N ||2 + (
a2
N

d2
N

− α2
N

δ2
N

)2||CN(β)− C̃N(β)||2 +

2(
τ 2
N

δ2
N

)(
a2
N

d2
N

− α2
N

δ2
N

) < C̃N(β)− Σ̃N , CN(β)− C̃N(β) >

≤ ||C̃N(β)− Σ̃N ||2 + (
a2
N

d2
N

− α2
N

δ2
N

)2d2
N +

2(
τ 2
N

δ2
N

)(
a2
N

d2
N

− α2
N

δ2
N

) < C̃N(β)− Σ̃N , CN(β)− C̃N(β) >

Now we need to show that E[||Ŝ
1

N − S1
N ||2]→ 0, or that the expectations of each of the

above three terms all converge to 0:

First Term: We need to show E[||C̃N(β) − Σ̃N ||2] → 0. Following the work of Han and

Song (2011) showing τ 2
N

p→ 0, we have E[||C̃N(β) − Σ̃N ||2] = E(||C̃N(β)||2) − ||C̃N(β)||2 +
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(||C̃N(β)|| − ||Σ̃N ||)(||C̃N(β)|| + ||Σ̃N ||). These two terms converge in probability to 0

since E

[(
||C̃N(β)||2 − E[||C̃N(β)||2]

)2
]
→ 0, ||C̃N(β)|| and ||Σ̃N || remain bounded, and

| ||C̃N(β)|| − ||Σ̃N || | ≤ ||C̃N(β)− Σ̃N ||
p→ 0.

Second Term:

(
a2
N

d2
N

− α2
N

δ2
N

)2d2
N = [

a4
N

d4
N

+
α4
N

δ4
N

− 2
a2
Nα

2
N

d2
Nδ

2
N

]d2
N

=
a4
N

d2
N

+
α4
Nd

2
N

δ4
N

− 2a2
Nα

2
N

δ2
N

= (a4
Nδ

4
N + α4

Nd
4
N − 2a2

Nα
2
Nδ

2
Nd

2
N)/(d2

Nδ
4
N)

= (a2
Nδ

2
N − α2

Nd
2
N)2/(d2

Nδ
4
N).

Ledoit and Wolf (2004) prove that E[(a2
Nδ

2
N − α2

Nd
2
N)2/(d2

Nδ
4
N)]→ 0 as N →∞.

Third Term:

2(
τ2
N

δ2N
)(
a2

N

d2N
− α2

N

δ2N
) < C̃N(β)− Σ̃N , CN(β)− C̃N(β) >

Using the Cauchy-Schwarz Inequality and denoting cN = 2(
τ2
N

δ2N
)(
a2

N

d2N
− α2

N

δ2N
) and

bN =< C̃N(β)− Σ̃N , CN(β)− C̃N(β) >, showing E(b2N)→ 0 and E(c2N)→ 0 will prove that

the expectation of this third term goes to zero as N →∞.

E(b2N): 0 ≤ E[(< C̃N(β)− Σ̃N , CN(β)− C̃N(β) >)2] ≤

E[||C̃N(β)− Σ̃N ||2||CN(β)− C̃N(β)||2] ≤ (by the Cauchy-Schwarz Inequality)√
E[||C̃N(β)− Σ̃N ||4]

√
E[||CN(β)− C̃N(β)||4] ≤ c

√
E[||C̃N(β)− Σ̃N ||4]→ 0.√

E[||C̃N(β)− Σ̃N ||4]→ 0 by previous work and work from Han and Song (2011).

E(c2N): 0 ≤ 4(
τ2
N

δ2N
)2E[(

a2
N

d2N
− α2

N

δ2N
)2]→ 0 since E[(

a2
N

d2N
− α2

N

δ2N
)2] is bounded and

τ2
N

δ2N
→ 0 under

the assumption of a misspecified covariance structure.

We have now shown E[||Ŝ
1

N − S1
N ||2] → 0 as N → ∞. Using this in conjunction with

Theorem 1 and the proof given by Han and Song (2011), we have E[||Ŝ
1

N −ΣN ||2]→ 0.
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4.5.3 Proofs for Results Using S2
N and Ŝ

2

N

We first prove that ρN = γ2
N/δ

2
N minimizes E[||S2

N −ΣN ||2], related to the corresponding

proof given in Ledoit and Wolf (2004):

Proof.

E[||S2
N −ΣN ||2] = E[||ρN C̃N(β) + (1− ρN)CN(β)− ρNΣN − (1− ρN)ΣN ||2]

= E[||ρN [C̃N(β)−ΣN ] + (1− ρN)[CN(β)−ΣN ]||2]

= ρ2
NE[||C̃N(β)−ΣN ||2] + (1− ρN)2E[||CN(β)−ΣN ||2] +

2ρN(1− ρN)E[< C̃N(β)−ΣN , CN(β)−ΣN >]

= ρ2
Nα

2
N + (1− ρN)2τ 2

N − 2ρN(1− ρN)θN .

Now take the first derivative with respect to ρN and set equal to 0:

2ρNα
2
N − 2(1− ρN)τ 2

N − 2(1− 2ρN)θN = 0.

Solving for ρN , we get

ρN =
τ 2
N + θN

α2
N + τ 2

N + 2θN
=
τ 2
N + θN
δ2
N

,

where δ2
N = E[||CN(β) − C̃N(β)||2]. For this value of ρN to give the minimum expected

quadratic loss, we need θN > −0.5[α2
N + τ 2

N ]. The next proof given shows 0 ≤ δ2
N =

α2
N + τ 2

N + 2θN , implying θN ≥ −0.5[α2
N + τ 2

N ].

The following proofs are based on the Lemma given by Han and Song (2011) and its

corresponding conditions. The first two parts of their Lemma are equivalent in our scenario,

and we therefore omit the proofs here.

We now prove δ2
N = τ 2

N + α2
N + 2θN :
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Proof.

δ2
N = E[||CN(β)− C̃N(β)||2] = E[||CN(β)−ΣN + ΣN − C̃N(β)||2]

= E[||CN(β)−ΣN ||2] + E[||ΣN − C̃N(β)||2] +

2E[< CN(β)−ΣN ,ΣN − C̃N(β) >]

= τ 2
N + α2

N + 2θN .

Theoretically, 0 ≤ ρN ≤ 1 is not necessarily satisfied, so we now use the following

constraints: Let

γN = γN(τ 2
N , θN , δ

2
N) =


0 if τ 2

N + θN < 0

τ 2
N + θN if 0 ≤ τ 2

N + θN ≤ δ2
N

δ2
N if τ 2

N + θN > δ2
N

and

λN = λN(α2
N , θN , δ

2
N) =


0 if α2

N + θN < 0

α2
N + θN if 0 ≤ α2

N + θN ≤ δ2
N

δ2
N if α2

N + θN > δ2
N

Since δ2
N ≥ 0, α2

N ≥ 0, τ 2
N ≥ 0, and δ2

N = α2
N + τ 2

N + 2θN , we have γN + λN = δ2
N . We then

define ρN = γN/δ
2
N and (1− ρN) = λN/δ

2
N .

We now prove δ2
N , α2

N , τ 2
N , θN , γN , and λN remain bounded, with τ 2

N → 0, θN → 0, and

γN → 0 as N →∞:

Proof.
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We now show α2
N remains bounded:

α2
N = E[||C̃N(β)−ΣN ||2]

= ||ΣN − Σ̃N ||2 + E[||Σ̃N − C̃N(β)||2] + 2E[< ΣN − Σ̃N , Σ̃N − C̃N(β) >]

= ||ΣN − Σ̃N ||2 + E[||Σ̃N − C̃N(β)||2],

so we need to show that these two terms are bounded.

First, ||ΣN−Σ̃N ||2 = ||ΣN ||2 + ||Σ̃N ||2−2 < ΣN , Σ̃N >, and we have already shown that

||ΣN ||2 and ||Σ̃N ||2 are bounded. Similarly, we have | < ΣN , Σ̃N > | ≤ c||ΣN ||||Σ̃N || < ∞,

so ||ΣN − Σ̃N ||2 <∞. Second, we have already proven E[||Σ̃N − C̃N(β)||2]→ 0 as N →∞,

implying it remains bounded.

Han and Song (2011) proved that τ 2
N is bounded and that τ 2

N

p→ 0.

We now prove that θN is bounded and that θN
p→ 0:

θN = E[< CN(β)−ΣN ,ΣN − C̃N(β) >] = −E[< CN(β)−ΣN , C̃N(β)−ΣN >]. Before

taking the expectation,

< CN(β)−ΣN , C̃N(β)−ΣN >

= < CN(β)−ΣN , C̃N(β)− Σ̃N + Σ̃N −ΣN >

= < CN(β)−ΣN , C̃N(β)− Σ̃N > + < CN(β)−ΣN , Σ̃N −ΣN > .

Now E[< CN(β) − ΣN , Σ̃N − ΣN >] = < ΣN − ΣN , Σ̃N − ΣN >= 0. Also, 0 ≤ E[| <

CN(β)−ΣN , C̃N(β)−Σ̃N > |] ≤ cE[||CN(β)−ΣN ||||C̃N(β)−Σ̃N ||]
p→ 0, since E[||CN(β)−

ΣN ||2]→ 0 and E[||C̃N(β)− Σ̃N ||2]→ 0. Therefore, θN
p→ 0.

Now we prove that δ2
N is bounded:

δ2
N < ∞ is implied since δ2

N = α2
N + τ 2

N + 2θN , and we already showed αN , τ 2
N , and θN

remain bounded.
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Now we prove that λN and γN remain bounded, and that γN
p→ 0:

It follows that since δ2
N <∞, then λN and γN also remain bounded. We have also shown

that θN
p→ 0 and τ 2

N

p→ 0, therefore τ 2
N + θN

p→ 0, implying γN
p→ 0.

We now prove a2
N − α2

N , t̄2N − τ 2
N , d2

N − δ2
N , θ̂N − θN , γ̂N − γN , and λ̂N − λN all converge

in quadratic mean to zero as N →∞.

Proof.

We first prove E[(d2
N − δ2

N)2]→ 0 as N →∞:

d2
N − δ2

N = ||CN(β)||2 + ||C̃N(β)||2 − 2 < CN(β), C̃N(β) > −E[||CN(β)||2]−

E[||C̃N(β)||2] + 2E[< CN(β), C̃N(β) >]

=
(
||CN(β)||2 − E[||CN(β)||2]

)
+
(
||C̃N(β)||2 − E[||C̃N(β)||2]

)
−

2
(
< CN(β), C̃N(β) > −E[< CN(β), C̃N(β) >]

)

Following Han and Song (2011), all we need to show is that the expected value of the square

of each of these terms goes to 0 as N → ∞ in order to prove that E[(d2
N − δ2

N)2] → 0 as

N →∞. Han and Song (2011) proved part (i) of their Lemma that for this first term,

E
[(
||CN(β)||2 − E[||CN(β)||2]

)2]→ 0.

Similarly, we have already shown

E

[(
||C̃N(β)||2 − E[||C̃N(β)||2]

)2
]
→ 0

and

E

[(
< CN(β), C̃N(β) > −E[< CN(β), C̃N(β) >]

)2
]
→ 0.

Han and Song (2011) proved that E[(t̄2N − τ 2
N)2]→ 0 as N →∞.
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We now prove E[(θ̂N − θN)2]→ 0 as N →∞:

E[(θ̂N − θN)2] = E[θ̂2
N ]− 2θNE[θ̂N ] + θ2

N . We already proved θN
p→ 0, implying θ2

N

p→ 0.

Since θ̂N is bounded and θN
p→ 0, we have 2θNE[θ̂N ]

p→ 0. Now θ̂2
N = 0.25[ 1

N2

∑N
i=1 ||C̃i(β)−

C̃N(β)||2 + t̄2N ]2, and following the argument given by Han and Song (2011) to prove E[(d2
N−

δ2
N)2] → 0, to show E[(θ̂N − θN)2] → 0 as N → ∞, we need to prove E[( 1

N2

∑N
i=1 ||C̃i(β) −

C̃N(β)||2)2]→ 0 and E[(t̄2N)2]→ 0 as N →∞.

From Han and Song (2011), E[(t̄2N)2]→ 0. Similarly, the proof for E[( 1
N2

∑N
i=1 ||C̃i(β)−

C̃N(β)||2)2]→ 0 follows their work.

E[(a2
N − α2

N)2] → 0 as N → ∞ is now implied since δ2
N = α2

N + τ 2
N + 2θN and d2

N =

a2
N + t̄2N + 2θ̂N .

To prove E[(γ̂N − γN)2],E[(λ̂N − λN)2] → 0 as N → ∞, we only need to show one of

these is true, as this implies the other since δ2
N = λN + γN . However, we have already shown

E[(d2
N −δ2

N)2], E[(t̄2N − τ 2
N)2], E[(θ̂N −θN)2], and E[(a2

N −α2
N)2] all converge to 0 as N →∞,

and since d2
N , t̄

2
N , θ̂N , and a2

N in γ̂N and λ̂N match up to δ2
N , τ

2
N , θN , and α2

N , respectively, in

γN and λN , we therefore have the desired results.

We now prove the two theorems given by Han and Song (2011), but now based upon S2
N

and Ŝ
2

N . We note that these theorems assume there is variation in cluster sizes, such that

CN(β) 6= C̃N(β), as we need δ2
N > 0. Specifically, we assume E[||C̃N(β) − CN(β)||2] and

||C̃N(β)− CN(β)||2 are always greater than 0.

Theorem 3.1. For β ∈ B, E[||S2
N −ΣN ||2]→ 0 as N →∞, implying S2

N −ΣN
p→ 0.
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Proof. Following Ledoit and Wolf (2004):

0 ≤ ||S2
N −ΣN ||2 = ||γN

δ2
N

C̃N(β) +
λN
δ2
N

CN(β)− γN + λN
δ2
N

ΣN ||2

= ||γN
δ2
N

[C̃N(β)−ΣN ] +
λN
δ2
N

[CN(β)−ΣN ]||2

= (
γN
δ2
N

)2||C̃N(β)−ΣN ||2 + (
λN
δ2
N

)2||CN(β)−ΣN ||2 +

2(
γN
δ2
N

)(
λN
δ2
N

) < C̃N(β)−ΣN , CN(β)−ΣN >

≤ γN
δ2
N

||C̃N(β)−ΣN ||2 + ||CN(β)−ΣN ||2 +

2(
γN
δ2
N

)(
λN
δ2
N

) < C̃N(β)−ΣN , CN(β)−ΣN >

The proof will be complete if we show that these three terms have expectations that

converge to 0.

First Term: 0 ≤ E[||C̃N(β)−ΣN ||2] = α2
N <∞, which we proved earlier.

(
γN
δ2
N

)2E[||C̃N(β)−ΣN ||2] = (
γN
δ2
N

)2α2
N = γN

γN
δ2
N

α2
N

δ2
N

≤ cγN → 0

Second Term:

E[||CN(β)−ΣN ||2] = τ 2
N

p→ 0

Third Term: 2(γN

δ2N
)(λN

δ2N
)E[< C̃N(β)−ΣN , CN(β)−ΣN >] = −(γN

δ2N
)(λN

δ2N
)θN

p→ 0

Theorem 3.2. For β ∈ B, E[||Ŝ
2

N −ΣN ||2]→ 0 as N →∞, implying Ŝ
2

N −ΣN
p→ 0.
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Proof. Following Ledoit and Wolf (2004):

0 ≤ ||Ŝ
2

N − S2
N ||2 = ||( γ̂N

d2
N

− γN
δ2
N

)C̃N(β) + (
λ̂N
d2
N

− λN
δ2
N

)CN(β) +
γN
δ2
N

C̃N(β)− γN
δ2
N

C̃N(β)||2

= ||(γN
δ2
N

− γN
δ2
N

)C̃N(β) + (
λ̂N
d2
N

− λN
δ2
N

)[CN(β)− C̃N(β)] +

γ̂N
d2
N

C̃N(β)− γN
δ2
N

C̃N(β) + (
λ̂N
d2
N

− λN
δ2
N

)C̃N(β)||2

= ||0 + (
λ̂N
d2
N

− λN
δ2
N

)[CN(β)− C̃N(β)] + 0||2

= (
λ̂N
d2
N

− λN
δ2
N

)2||CN(β)− C̃N(β)||2 = (
λ̂N
d2
N

− λN
δ2
N

)2d2
N

We now need to show that E[( λ̂N

d2N
− λN

δ2N
)2d2

N ]→ 0 as N →∞. The following will be used

for Lemma A.1 in Ledoit and Wolf (2004):

(
λ̂N
d2
N

− λN
δ2
N

)2d2
N =

[
λ̂2
N

d4
N

+
λ2
N

δ4
N

− 2
λ̂NλN
d2
Nδ

2
N

]
d2
N

= (λ̂2
Nδ

4
N + λ2

Nd
4
N − 2λ̂NλNd

2
Nδ

2
N)/(d2

Nδ
4
N)

= (λ̂Nδ
2
N − λNd2

N)2/(d2
Nδ

4
N)

Ledoit and Wolf (2004) prove that E[(a2
Nδ

2
N − α2

Nd
2
N)2/(d2

Nδ
4
N)]→ 0 as N →∞. By simply

replacing a2
N and α2

N with λ̂N and λN , respectively, in their proof, we have E[(λ̂Nδ
2
N −

λNd
2
N)2/(d2

Nδ
4
N)]→ 0 as N →∞.

We have now shown E[||Ŝ
2

N − S2
N ||2] → 0 as N → ∞. Using this in conjunction with

Theorem 1 and the proof given by Han and Song (2011), we have E[||Ŝ
2

N −ΣN ||2]→ 0.
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CHAPTER V

Summary

This dissertation studied the small-sample deficiencies of two different popular techniques

for statistical inference when using a marginal model, and proposed modifications to improve

their performances. Particularly, our topics of interest were test size and estimation vari-

ability. Additionally, an applied focus was directed toward GRT settings with binary data,

as demonstrated by the breast screening and CHD studies, but attention was also given to

marginal models in general repeated measures settings, such as in the AIDS study example.

With respect to sub-optimal inference performance, a Wald statistic in the settings of

Chapter 2 does not necessarily have a standard normal distribution when the number of

independent clusters is small, leading to a decreased test size, and therefore diminished power.

Additionally, the estimating equations for QIF were shown to be in a different class than GEE

when using an exchangeable correlation structure and clusters vary in size, implying QIF does

not necessarily have an efficiency advantage over GEE in this situation. However, even after

modifying QIF’s estimating equations to be within the same class as GEE, corresponding

parameter estimates could still contain greater variability than the corresponding estimates

resulting from the use of GEE. This inferior performance was especially evident in GRT

scenarios, but was also seen in repeated measures designs and was not restricted to a working

exchangeable correlation structure.

To improve inference with the Wald statistic, we proposed a modified standard error,
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creating a pseudo-Wald statistic, W̃1.5, which led to test sizes at the nominal value when the

true exchangeable correlation, or ICC, was known. We also suggested two techniques to yield

nominal sizes when estimating the correlation parameter, which needs to be done in practice.

The first uses W̃1.5 and critical values from a t-distribution with degrees of freedom equalling

the number of clusters in the study, and the second uses an inflated pseudo-standard error,

via leverage values, inside W̃1.5 and standard normal critical values.

To improve inference with QIF, we proposed multiple different weighting matrices to

use in place of the extended score equations’ empirical covariance matrix, CN(β). The

majority of these matrices were based on the weighted combination of CN(β) and either

the model-based covariance matrix, MN , or another empirical matrix we proposed in order

to address cluster size variation, denoted as C̃N(β). These weighted combinations were

based on minimizing the expected quadratic loss of the resulting weighting matrix, which is

asymptotically optimal. Simulations showed that the weighted combination of CN(β) and

MN , defined as QIF2 in this dissertation, typically improved QIF’s estimation performance

to approximately the level of GEE. However, QIF2 and QIF worked similarly when GEE

produced estimates having the greatest variability.

Although the proposed pseudo-Wald test yields sizes at the nominal value when using

a correctly specified correlation, future work is needed to compare the sensitivities of W̃1.5

and the Wald statistic using the bias-corrected standard error to misspecified correlations,

such as incorrectly assuming the ICC is constant across clusters. The power of each test

statistic should be studied as well. Future work should also deal with extending our proposed

standard error modification for implementation when additional covariates are used in the

regression model, and study is needed to determine if the issue of non-nominal test size

occurs only when outcomes are binary in nature.

With respect to QIF2, future work is needed to determine the validity of the correspond-

ing quadratic inference function as a test statistic in small-sample settings, as MN will be

biased when implementing an incorrect covariance structure. Additionally, the sensitivity of
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QIF2 to outliers, as compared with GEE and QIF, needs to be studied. Use of MN will

also effect the validity of standard error estimates produced by QIF2, and therefore future

work is needed to determine an appropriate method for obtaining standard errors with good

properties that lead to valid Wald tests for any sample size.

Finally, the applied importance of our work is that it provides insight into the potential

problems with the methods of focus, and proposes corresponding remedies to improve statis-

tical inference. Typically, studies are very costly to carry out, especially GRTs. Increasing

size to its nominal value for the Wald test inherently increases the power of the study, which

is important since the true statistical power for GRTs can be quite small to begin with.

Additionally, estimates with increased variability lead to a study with less reliable results.

This not only influences hypothesis testing, but also population-average estimates that will

be reported, justifying the importance of improving QIF’s performance.
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