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ABSTRACT 

Recent advances in technology have enabled the systematic, genome-wide analysis of 

cancer genomes, providing greater insight into the genetic basis of cancer development and a 

deeper understanding of the human genome.  The focus of the current work is to identify 

genomic alterations potentially conferring risk for developing colorectal and breast cancers by 

performing genome-wide analysis with single nucleotide polymorphism (SNP) genotyping and 

next-generation sequencing (NGS) platforms. 

My first dissertation project involves deeply sequencing the genomes of individuals from 

a single family to identify novel mutations in hereditary mixed polyposis syndrome, a rare form 

of colorectal cancer with no known genetic basis.  A novel candidate gene, ZNF426, was 

identified and decreased expression was confirmed in tumors from affected individuals. 

The second part of my dissertation evaluates methods for detection of somatic copy 

number alterations in colorectal cancer on chromosome 18 and the application of statistical 

methods for utilizing poor quality tumor data.   Using genotyping and expression data from 

tumors, a variety of structural alterations were identified on chromosome 18.  Additionally, I 

demonstrated the utility of applying new statistical methods to identity copy number alterations 

in array data with high background noise.  

The goal of my third project was to evaluate the contribution of consanguinity to breast 

cancer risk in Arab women without mutations in the BRCA1 and BRCA2 genes.  The hypothesis 

in this study is that an increase in autosomal recessive genes responsible for genetic 

susceptibility to breast cancer is expected among families with consanguinity due to the increase 



 

xi 

 

in probability of sharing alleles identical-by-descent. Six unrelated individuals with breast cancer 

shared a 200kb overlapping region of homozygous SNPs on chromosome 9q332-33.3, which 

harbors an important candidate gene for cancer risk, LHX2. 

Whole-genome analysis allows for greater depth and higher throughput sequencing at 

lower costs, adding a new dimension to our understanding of cancer genetics.  Future progress in 

these technologies and bioinformatics methods will improve the costs, sensitivity and accuracy 

of detecting mutations. 
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CHAPTER 1 

Introduction 

 

1.1 The human genome era 

The human genome sequence first published in 2001 contains approximately 2.85 billion 

nucleotides, covering 99 percent of the genome with an error rate of 1 per 100,000 bases (Lander 

et al 2001). Approximately 20,000 protein-coding genes, along with thousands of non-coding 

RNA, regulatory sequences, enhancers, and non-coding DNA were identified. The decade 

following this milestone has revealed the potential of genomic maps and catalogues for 

biomedical research.  For instance, we now can use genome-wide information to describe the 

structure and organization of chromosomes, methylation patterns and the extent of linkage 

disequilibrium between genetic markers.   

The last decade has brought an influx of discoveries of disease-associated mutations in 

the human genome, however, these findings have explained only a small part of disease risk 

(Antonarakis and McKusick 2000). Although the Human Genome Project helped to propel 

progress forward, limitations in technology and cost restricted its application. The Human 

Genome Project used, for the most part, the same sequencing method involving electrophoretic 

separation of mixtures of randomly terminated extension products employed by Sanger in 1977, 

although it was dramatically improved with fluorescently labeled terminators and automated 

laser detectors. Optical imaging of the human reference genome using capillary-based
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sequencing allowed for high quality runs. However, a major drawback of this technology is that 

sequence reads are on the order of 1,000 base pairs, providing a challenge to de novo genome 

sequence assembly from such short reads. For creation of the human reference, efforts were 

focused on placing sequenced reads into genome scaffolds of modest size (500 bp-11.5Mb), 

followed by integration of these scaffolds into the full, contiguous sequence (Ozawa et al 2004).  

 The time following the assembly of the human genome marked a transition in the field of 

medical genetics from a focus on single-gene disease to identifying common genes associated 

with complex diseases such as cancer, diabetes, and heart disease. The predominant idea 

surrounding complex disease was that genetic risk for common diseases is likely due to disease-

predisposing alleles with relatively high frequencies and therefore only a few predominating 

disease alleles exist at each of the major underlying disease loci (Reich and Lander 2001). In an 

effort to catalogue this common variation in European, East Asian and African populations, the 

International Haplotype (HapMap) Project focused on defining linkage disequilibrium patterns 

across these genomes and found that ~500,000–1,000,000 SNPs could capture nearly 90% of 

common genetic variation (2005, Daly et al 2001, Reich et al 2001, Weiss and Clark 2002). 

These finding spurred the advent of genome-wide, array-based technology.  The development of 

genotyping arrays (SNP arrays) allowed for the ascertainment of hundreds of thousands to a 

million genetic markers simultaneously, out of which emerged the Genome-Wide Association 

Study (GWAS). GWA studies are based on the idea that disease related variants are more 

common in the patients with a given disease than in healthy people (Wang et al 2005). In a 

GWAS, the expected result is to detect a sequence change in a SNP on a genotyping array that is 

statistically associated with a disease. However, the SNP itself is not necessarily the actual cause 

of the disease, rather a signal that there is some nearby functional gene variation. Therefore, the 
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study results are often just the beginning of the search for a disease-associated  gene or genes 

(Wang et al 2010a). Recent studies have suggested that the signals in GWA studies may not 

always be pointing to a few common gene variants as previously thought, but instead to many 

rare variants each of which causes relatively few cases and may be located a distance away from 

the site identified in a GWAS (Dickson et al 2010).  

An alternative to the GWAS is whole-genome sequencing, a method capable of 

identifying both common and rare variants.  Whole-genome sequencing has become increasingly 

more practical through innovations in the amplification, sequencing, and detection of genetic 

variation. These second-generation technologies marketed in recent years have vastly expanded 

the capabilities and applications of genome analyses. Polymerase chain reaction (PCR) based 

amplification has now decreased the amount of time needed to perform whole genome scans 

from years with the Sanger technology to a few weeks with the current high-throughput 

platforms. With massively parallel sequencing, attention has now focused on comprehensive 

exome-wide and genome-wide sequencing in large numbers of samples. Along with the 

technology‟s rapid turnaround time comes an exponential increase in genetic data, which 

necessitates parallel progress in computing tools and bioinformatics for data handling and 

interpretation. 

The motivation behind my dissertation is to examine the utility of three different 

quantitative approaches for using genome-wide platforms to understand the role of genetic 

variation in cancer. The second chapter applies next-generation sequencing methods to identify 

extremely rare, highly penetrant, novel variants in a family with an atypical form of colorectal 

cancer.  In chapter three, I explore the role of structural variation in colorectal tumors using high-

density genome-wide SNP arrays.  Finally, in my fourth chapter, I identified large runs of 
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homozygosity enriched with autosomal recessive loci in individuals with a family history of 

consanguineous and breast cancer.  

 

1.2 Insights into colorectal cancer biology 

 Cancer is essentially a condition of aberrant genetic programming, where changes in the 

genomic sequence can potentially alter the structure, function, and potentially the expression of 

proteins that control cellular growth and differentiation processes.  This dysregulation can lead to 

cellular transformation, and ultimately, tumor formation. Genetic variation in a DNA sequence 

may be inherited in the germline or somatically acquired. Although inherited mutations may lead 

to familial forms of cancer, the vast majority of neoplastic disease is sporadic and arises from the 

progressive gain of somatic alterations. These somatic alterations often occur on a background of 

heritable susceptibility alleles, leading to an increased risk of developing cancer (Knudson 1993). 

Colorectal cancer (CRC) is the third most prevalent cancer with nearly 1 million cases 

worldwide (Ferlay et al 2010). Genetic models for colorectal carcinogenesis have previously 

been well described based on molecular, mutational, and epigenetic patterns, including the 

chromosomally instable (CIN), microsatellite instability (MSI) and CpG island methylator 

phenotype (CIMP) pathways (Peinado et al 1992, Thibodeau et al 1993, Vilar and Gruber 2010, 

Vogelstein et al 1988). Mutations in central genes in these pathways have been identified in a 

small number of rare, highly penetrant familial syndromes, accounting for less than 5% of all 

CRC (Goss and Groden 2000, Kemp et al 2004, Marra and Boland 1995). Major CRC genetic 

syndromes include familial adenomatous polyposis (FAP), MUTYH-associated polyposis 

(MAP), and Lynch syndrome (hereditary nonpolyposis colorectal cancer or HNPCC). Rare 

syndromes include hamartomatous polyposis conditions (Peutz-Jeghers syndrome (PJS) and 
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juvenile polyposis syndrome (JPS)).  FAP results from germline mutations in the tumor 

suppressor APC gene on chromosome 5q21, which encodes a protein that is a negative regulator 

in the Wnt signal transduction pathway (Benchabane and Ahmed 2009). MUTYH-associated 

polyposis (MAP) is an autosomal recessive disorder characterized by adenomatous polyps of the 

colorectum and a very high risk of CRC. MAP is associated with biallelic mutations in the 

MUTYH gene located on chromosome 1p, which encodes a protein in the DNA base excision 

repair pathway whose impaired function leads to increased G:C to T:A transversions (Al-Tassan 

et al 2002). Lynch syndrome, is an autosomal dominant condition associated with mutations in 

DNA mismatch repair (MMR) genes (Lynch et al 2009). Peutz-Jeghers syndrome (PJS) is an 

autosomal dominant disorder which leads to a predisposition to various malignancies 

(gastrointestinal, pancreatic, lung, breast, uterine, ovarian and testicular tumors) (Kopacova et al 

2009). The majority of patients whom meet the clinical diagnostic criteria for PJS have a 

mutation in the tumor suppressor STK11 gene located at 19p13.3 (Beggs et al 2010, Jenne et al 

1998). Juvenile polyposis syndrome is a rare, early-onset disease, characterized by the presence 

of hamartomatous polyps throughout the gastrointestinal tract.  It is estimated that 15%–20% of 

JPS patients carry autosomal dominant mutations in the SMAD4/DPC4 on chromosome 18q21.1, 

and 25%–40% of the patients carry autosomal dominant mutations in the gene encoding bone 

morphogenetic protein receptor 1A (BMPR1A) on chromosome 10q22-23 (Brosens et al 2007, 

Howe et al 1998). 

Aside from inherited genetic susceptibility, other CRC associated risk factors include the 

presence of large serrated polyps (serrated adenomas and hyperplastic polyps), a diet rich in total 

fat and meat content, cigarette smoking, male gender, the use of nonsteroidal anti-inflammatory 

drugs, alcohol intake, a sedentary lifestyle, high body mass index (BMI), and abdominal obesity 
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(Gonzalez and Riboli 2010, Hiraoka et al 2010, Hoffmeister et al 2010, Larsson and Wolk 2006). 

High intake of folate, vitamins and dietary fiber, colonoscopy, and postmenopausal hormone use 

have been associated with decreased CRC risk (Dahm et al 2010, Hildebrand et al 2009, Kim et 

al 2010, Rennert et al 2011). 

Family history of non-syndromic CRC is associated with a two-fold increase in risk 

(Carstensen et al 1996) and is estimated to account for ~35% of CRC (Tenesa and Dunlop 2009). 

Familial non-syndromic CRC is thought to be attributed to more common, low- to moderate-

penetrance mutations, mainly based on the identification of variants through candidate gene 

studies. Examples of these genetic variants include the I1307K mutation in the APC gene (Laken 

et al 1997) and variation in TGFBR1 (de Jong et al 2002).  The genome-wide association study 

(GWAS) design has now been widely implemented in colorectal cancer, resulting in the 

identification of several new loci associated with CRC such as 8q23.3, 8q24, 10p14, 11q23, 

15q13, and 18q21 (Broderick et al 2007, Gruber et al 2007, Houlston et al 2008, Tenesa and 

Dunlop 2009, Zanke et al 2007).  The majority of these loci are not located within or near known 

genes, and the biological relevance of some of these signals is unclear (Tenesa and Dunlop 2009) 

(Sotelo et al 2010). Unfortunately, GWAS require large numbers of patients and are very costly. 

Although many common genetic variants have now been statistically associated with CRC, it 

appears that the majority common variants have turned out to explain only a small fraction of the 

genetic risk (Peters et al 2011).   

Due to the limited success of the GWAS design to identify predictive variants for CRC 

development and the recent advancement in massively parallel sequencing technology, a newly 

emerging hypothesis in the field of complex diseases is that both common and rare risk variants 

may contribute to disease (Ley et al 2008). In the second chapter of this dissertation, I describe a 
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study of novel genetic variants identified in a rare familial type of colorectal cancer, hereditary 

mixed polyposis syndrome (HMPS). HMPS is characterized by polyps of mixed 

adenomatous/hyperplastic/atypical juvenile histology, and this polyp phenotype is autosomal 

dominantly inherited. Polyp formation will eventually lead to colorectal cancer development 

without appropriate monitoring and timely, preventative intervention. Little is still known about 

the etiology and the genetic basis of this condition.  

 

1.3 Inheritance of breast cancer susceptibility alleles 

Breast cancer is the most common cancer affecting women, accounting for approximately 

30% of all incident cancer cases among women in 2009 and causing about 15% of female 

cancer-related deaths in the United States alone (Hayat et al 2007, Howlader et al 2010). The 

majority of breast cancer diagnosis occurs late in life (postmenopausal), and many environmental 

risk factors have been associated with the development of breast cancer including height, benign 

breast disease, older age at first birth, younger age at menarche, older age at menopause, high 

estrogen levels, ionizing radiation, and high BMI. Despite these strong environmental risk 

factors, the most significant predictor of breast cancer risk is family history (Couch and Weber 

1996). 

Highly penetrant mutations inherited in at least two susceptibility genes, BRCA1 and 

BRCA2, are associated with an increased risk of developing breast cancer. BRCA1 and BRCA2 

are normally involved in regulating cell growth and DNA repair and are crucial for normal cell 

development and differentiation (Miki et al 1994, Wooster et al 1995). Mutations in these two 

genes together account for approximately two thirds of familial breast cancer, or roughly 5% of 

all breast cancer cases. Approximately sixty percent of women who inherit mutated forms of 
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these genes will develop breast cancer in their lifetime, usually at relatively early ages, and 

women with BRCA1 mutations also have a high risk of developing ovarian cancer (Futreal et al 

1994, Metcalfe et al 2010). Studies have shown that one third of families with BRCA2 mutations 

present with multiple cases of breast cancer alone, but more than 80% of families with BRCA1 

mutations have both breast cancer and ovarian cancer (Schwartz et al 2011).  

In addition to BRCA1 and BRCA2, other mutations have been associated with breast 

cancer susceptibility. A single nucleotide deletion in CHEK2 (1100delC), a cell cycle checkpoint 

kinase also implicated in DNA repair, results in protein truncation and is estimated to confer a 

two-fold increase in breast cancer risk in women without BRCA1 or BRCA2 mutations (Meijers-

Heijboer et al 2002). ATM, a DNA double-strand break repair protein, has recently been shown 

to confer a relative risk of 2.37 in heterozygous carriers of mutations (Renwick et al 2006). Other 

rare syndromes such as Li-Fraumeni Syndrome, Peutz-Jeghers Syndrome, and Cowden/PTEN 

Hamartoma Syndrome are all associated with a high lifetime risk of breast cancer, but they 

account for a very small fraction of inherited susceptibility to breast cancer (Garber and Offit 

2005). The remaining ~75% of familial breast cancer cases not accounted for by these genes 

await explanation, emphasizing the need to identify mutations that are likely to exist in the 

population. 

Hereditary breast cancer may account for at least 15-20% of all breast cancer in 

Ashkenazi Jewish women (Tonin et al 1996).  The BRCA1 mutation 185delAG is commonly 

seen in breast and ovarian cancer families. Preliminary studies have shown that about 1% of 

Ashkenazi Jews carry the 185delAG mutation. This genetic alteration has been estimated to 

account for 20% of cases of breast cancer and 39% of ovarian cancer diagnosed in Jewish 

women before age 50. In addition, two other BRCA1 mutations, 188del11 and 5382insC, seem to 
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be overrepresented in the Ashkenazi Jewish population. Also, a specific mutation in BRCA2 

(6174delT) has been identified in Ashkenazi Jewish women with early onset breast cancer. This 

mutation is found in the population at similar rates to the 185delAG BRCA1 mutation, and the 

5382insC mutation is about half as frequent as the 185delAG. Approximately 1 in 40 Ashkenazi 

women may carry one of these three BRCA mutations (Abeliovich et al 1997, Kotsopoulos et al 

2007, Rennert et al 2007).  

Consistent with the previous observation of a difference in the distribution of 

demographic variables and risk factors between Ashkenazi Jewish and non-Ashkenazi women, 

including the presence of distinct risk haplotypes within each ethnic subgroups of HMMR 

(Pujana et al 2007); younger ages at diagnosis, larger primary tumor size, and lower 5-year 

survival rate have also been reported among Arab women (El Saghir et al 2006). This suggests 

that the mechanism of inheritance associated with breast cancer risk may vary between Jewish 

and non-Jewish women.  Similar to inherited genes, cultural behaviors are passed on from 

generation to generation within families. The particular focus of this research is consanguinity in 

Arab populations. Breast cancer is a result of the interaction of behavioral, cultural, and 

environmental factors, or it may occur in combination with certain genetic mutations.  

In the fourth chapter of my dissertation, I investigate the possibility of a common, 

recessive locus that may account for additional susceptibility to familial breast cancer apart from 

BRCA1 and BRCA2 in Arab and Jewish women with a family history of consanguinity and a 

sibling with breast cancer. My hypothesis is that the increase in probability of sharing alleles 

identical-by-descent expected among families with consanguinity will lead to an increase in 

autosomal recessive genes responsible for the genetic susceptibility to breast cancer. To examine 

this hypothesis I performed homozygosity mapping in consanguineous breast cancer patients 
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with an affected sibling and unaffected mothers, to identify shared genomic regions of disease 

susceptibility.  

 

1.4 The future of the cancer genome 

 Numerous efforts to characterize cancer genomes have emerged in recent years (Berger 

et al 2010, Beroukhim et al 2010, Boehm et al 2007, Chapman et al 2011, Leary et al 2008, 

Parsons et al 2008). These initiatives have relied heavily on large-scale genotyping and now 

sequencing approaches to identify potentially pathogenic point mutations and somatic 

alterations.  With this large amount of high-quality data, the discovery of interrelated pathways 

and analysis approaches has become increasingly complicated. Quantitative approaches to 

understanding the genome not only allow for the discovery of novel variants associated with 

disease, but also to better understand the organization and mutational profile of cancer genomes. 

The following chapters focus on applying quantitative genetics methods, theory, and informatics 

in the analysis of genomic data to detect genes that confer disease risk in colon and breast 

cancers. 
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CHAPTER 2 

 

Whole genome sequencing to identify candidate genes for hereditary mixed 

polyposis syndrome 

 

2.1 Introduction 

 Hereditary forms of polyposis associated with colorectal cancer risk, including Familial 

Adenomatous Polyposis, Juvenile Polyposis and Peutz-Jeghers syndrome, are typically 

straightforward to characterize and distinguish based on histological examination and 

recognizable clinical phenotypes (Whitelaw et al 1997). However, difficulty can arise when an 

individual has polyps of more than one histological type or individual polyps with overlapping 

histological features. Distinguishing between patients with an atypical form of a known 

polyposis syndrome and a distinct clinical disorder is difficult (Jass 2000). 

 An example of an uncertain hereditary form of polyposis is hereditary mixed 

polyposis syndrome (HMPS, OMIM ID %601228), which is characterized by a mixture of 

atypical juvenile polyps, hyperplasic polyps, sessile serrated adenomas and an increased risk of 

colorectal cancer. Polyps appear to be inherited in an autosomal dominant fashion. The putative 

susceptibility locus initially mapped to 15q13-14 by linkage analysis in three Ashkenazi Jewish 

families (Jaeger et al 2003, Thomas et al 1996).  However, the genetic basis of this syndrome is 

not well-understood, and no mutation or associated variants have been identified to 
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date.Syndromes that appear to be Mendelian in nature are a valuable resource for the 

study of genes and gene function. However, for various reasons, they are often not amenable to 

traditional approaches to identifying risk variants such as linkage analysis.  For example, some 

traits are so rare that only a small number of cases are available.  Locus heterogeneity can also 

complicate standard genetic approaches such as linkage where unrelated genes cause a single 

disorder. Sporadic cases due to de novo variants and phenocopies can also complicate the search 

for Mendelian genes. For extremely rare disorders, like hereditary mixed polyposis syndrome, it 

is often the case that only affected siblings in one family or a few unrelated cases from different 

families are available for investigation.  

An alternative to this analytic problem is to deeply sequence the genome of affected 

individuals since it is inherently more robust for detecting variants in heterogeneous disorders.  

Whole-genome next-generation sequencing techniques now feasibly offer opportunities to study 

extremely rare disorders by deeply sequencing the entire genome of affected individuals. Several 

recent examples of using this approach to determine the genetic basis of a Mendelian disorder 

have recently been published, demonstrating the utility of next generation sequencing 

(Kuhlenbaumer et al 2010, Ng et al 2010a, Ng et al 2010b) to discover mutations in genes that 

were refractory to other genetic study designs. 

I hypothesize that rare variants with strong deleterious effects are responsible for 

hereditary mixed polyposis. The current study approach operated under the observation that rare 

monogenic disorders are often due to mutations that are highly penetrant, extremely rare, and 

strongly disrupt normal biology.  In this chapter, I aim to characterize the role that these 

potentially deleterious mutations play in hereditary mixed polyposis syndrome by deeply 

sequencing affected individuals from a single family.  Additionally, I aim to understand how 
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these novel variants may influence tumor phenotype using quantitative real time PCR to assess 

expression levels of candidate genes.  The working hypothesis is that novel, deleterious changes 

in coding regions will alter expression in genes that play a role in tumorigenesis. 

 

2.2 Subjects and Methods 

2.2.1 Subjects 

 Family 202 was recruited as part of the original investigation of the genetic basis for 

hereditary mixed polyposis through the University of Michigan Cancer Genetics Clinic in 2003 

(Figure 2.1).  Three additional unrelated individuals with a putative diagnosis of hereditary 

mixed polyposis were identified at the Ohio State University and used as replication samples.  

 

2.2.1.1 The University of Michigan Cancer Genetics Clinic—Family 202 

The proband in the family seen at the University of Michigan was a 67-year-old man 

(Figure 2.1: II-1) who was diagnosed with colon cancer in 2002.  He underwent a right hemi-

colectomy and was found to have liver metastases.  He was then treated with palliative 

chemotherapy. A significant family history was reported, including a daughter who was 

diagnosed with colon cancer at age 31 and a father who was reported to have had pancreatic 

cancer at age 52 (Figure 2.1: III-3 and I-1).  The proband‟s personal and family history was 

suggestive of hereditary nonpolyposis colorectal cancer (HNPCC) but did not technically meet 

clinical diagnostic criteria for this condition.  The proband‟s tumor was sent for genetic testing to 

evaluate mismatch repair defects.  Microsatellite instability testing performed at the Mayo Clinic 

revealed 0 out of 5 makers were instable (BAT25, BAT26, D2S123, D5S346, and D17S250) and 

immunohistochemistry for 3 mismatch repair genes (MLH1, MSH2 and MSH6) was intact, 
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revealing no features of HNPCC.   Also of note, the proband reported no family history of 

consanguinity or Ashkenazi Jewish ancestry.   The proband died in 2007 due to complications 

from colorectal cancer. 

 The proband‟s 46-year-old son (Figure 2.1: III-5) was evaluated at the Cancer Genetics 

Clinic in 2009 regarding his personal history of colon polyps and family history of colon cancer.  

Due to his family history of colon cancer, the son has had colonoscopies every 4-5 years.  In the 

past, he had several hyperplastic polyps of no significance, however in 2007, two sessile polyps 

in the sigmoid colon were removed and read by a pathologist (JG) to be sessile serrated 

adenoma.  Genetic testing for microsatelitte instability and immunohistochemistry for mismatch 

repair defects was performed on the sessile serrated adenoma tissue in order to provide additional 

diagnostic information which may help to determine HNPCC as a possible diagnosis for this 

family.  In addition, the patient provided a blood sample for familial adenomatous polyposis 

(FAP) and MYH-associated polyposis (MAP) testing.  All results were negative; therefore 

HNPCC, FAP and MAP were excluded from his diagnosis.  The patient‟s personal history of 

hyperplastic polyps and sessile serrated adenoma along with a family history of colon cancer 

arising in the setting of a mixed polyp led to a clinical and pathologic diagnosis of hereditary 

mixed polyposis syndrome.   

 Most recently, the healthy 50-year-old daughter (Figure 2.1: III-4) of the proband was 

seen for screening at the Cancer Genetic Clinic at the University of Michigan in 2011.  

Colonoscopy found a 3 mm sessile serrated adenoma in the descending colon as well as a 12 mm 

flat polyp in the descending colon. Tumor samples as well as a blood sample are currently out 

being evaluated for genetic testing of mutations in HNPCC, FAP and MAP. 

 It is important to note that the daughter (Figure 2.1: III-3) of the proband who was 
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diagnosed with colon cancer at age 31 has not yet been seen in the Cancer Genetics Clinic.  This 

individual did provide a blood sample and consented to participate in the Cancer Genetic Family 

Registry, which allowed for genetic testing of FAP and MAP.  Mutations in APC and MYH were 

subsequently ruled out. Additionally, immunohistochemistry for 3 mismatch repair genes 

(MLH1, MSH2 and MSH6) was found to be intact. Tumor blocks from her prior colon cancer are 

is no longer available. 

 

2.2.1.2 The Ohio State University Clinical Cancer Genetics Program 

 We were able to obtain genomic DNA and formalin fixed tumor block from three 

unrelated individuals collected at the Ohio State University Medical Center through the Clinical 

Cancer Genetics Program.  All three individuals were consented under the University of 

Michigan Cancer Genetics Clinic protocol.  One individual was of Ashkenazi decent and had a 

history of mixed hyperplastic/adenomatous polyps (Patient ID 8328-00) and the other two 

individuals were of European descent and had a history of hyperplastic polyps and sessile 

serrated adenomas (Patient ID 8333-00, ID8293-00).  For additional information see Table 2.1. 

 

2.2.2 Massively Parallel Sequencing 

 Massively parallel sequencing (also referred to as „next-generation‟ or more recently 

„second-generation‟ sequencing) is a high-throughput method of sequencing PCR-amplified 

DNA fragments.  There are several commercially available platforms. The current study used the 

Illumina Genome Analyzer (Ansorge 2009, Suzuki et al 2011) to sequence two affected related 

individuals (Figure 2.1: II-2, III-5) with clinically and pathologically diagnosed HMPS at the 

University of Michigan Sequencing Core. The first step in whole-genome paired-end sequencing 
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is to create a library.  The Encore™ NGS Library System I ( 2010 NuGen Technologies Inc.) 

was used to build DNA libraries with insert sizes from 200-500 bp for paired-end sequencing. 

The kit provides reagents for repairing the ends of DNA that have been fragmented by 

nebulization. The ends are then repaired with a combination of fill-in reactions and exonuclease 

activity to produce blunt ends. Next, an 'A' base is added to the blunt ends followed by ligation 

of Illumina Paired-End Sequencing adapters. These adapters contain two unique sequencing 

primer hybridization sites that are used to attach the fragments to the flow cell. Additional 

sequences complementary to the oligonucleotides in the flow cell are added to the adapter 

sequences with tailed PCR primers. This is followed by gel-based size selection and purification 

to create libraries for cluster generation. Specifically, the Illumina Genome Analyzer platform 

uses what is referred to as a „bridge-amplification,‟ a PCR-based technique in which the 

fragmented and ligated DNA samples are hybridized to the complementary primer bound to one 

of eight channels or „lanes‟ on a microscope slide. Next, the fragments are denatured and the 

original bound fragment, as well as the newly copied strand, anneal to an immobilized primer 

complementary to the free adapter.  This process of „bridge amplification‟ is cyclically repeated 

to generate clusters of single-stranded DNA copied while anchored to a solid surface.  After the 

amplification is performed, sequencing by synthesis is done using fluorescently labeled 

reversible terminator nucleotides.  A laser is passed over the surface, and the emitted light and its 

physical position on the slide are detected.  Finally the label and 3‟-OH terminator are removed 

allowing for synthesis to continue (Figure 2.2).   

 

2.2.2.1 Statistical and Bioinformatic Methods 

The development of faster sequencing platforms has resulted in the generation of 
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overwhelming amounts of sequence data that necessitate computational tools that are not only 

efficient and robust but also difficult to use for even computationally sophisticated teams. These 

powerful computational methods are needed in nearly every step of processing and analyzing the 

data, including alignment of multiple sequenced DNA fragments and their reconstruction into an 

accurate contiguous sequence to single nucleotide and structural variant detection.   

Several tools have been created to work with next-generation sequence data since its 

recent inception, from read based aligners like MAQ (Li et al 2008a), BWA (Li and Durbin 

2009), and SOAP (Li et al 2008b), to single nucleotide polymorphism and structural variation 

detection tools like BreakDancer (Chen et al 2009) and VarScan (Koboldt et al 2009). Because 

the time between the advent of new sequencing technology and its implementation has been so 

rapid, there exists a large development gap between sequencing output and analysis results.  Not 

only are there many challenges associated with implementing analysis tools that can answer 

researcher-specific questions and deal with mass amounts of data, the data in itself is laborious 

and difficult to interpret.  

Because of this difficulty, I used the Genome Analysis Toolkit (GATK), a structured 

programming framework designed to aid in the efficient and robust analysis tools for next-

generation DNA sequence data (McKenna et al 2010) to align data, recalibrate quality control 

scores, locally realign and call SNP/indels.  The GATK environment is a platform-independent 

Java 1.6 framework in which analysis tools are constructed so that the underlying framework can 

easily parallelize and distribute processing to manage massive computing infrastructures in a 

scalable way. The core system uses the binary alignment version of sequence alignment/map 

(SAM) format, called binary alignment/map (BAM) (http://picard.sourceforge.net).  GATK also 

provides a suite of tools including depth of coverage analyzers, a quality score recalibrator, a 
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local realigner, and a SNP/indel caller for working with human medical sequencing projects 

(Figure 2.3). 

 

2.2.2.2 Alignment  

 Alignment and assembly are the first steps in processing the sequence data once the raw 

reads are obtained.  For this analysis, the UCSC assembly hg19 was used as the reference 

sequence. Many short-read aligners are publicly available.  In the current study I used BWA, 

which is based on Burrows-Wheeler Transform plus auxiliary data structures enabling a balance 

between fast performance and accuracy.   However, alignment is often complicated by repetitive 

regions or sequencing errors. Because of this inherent complexity in the genome, three main 

steps are used to better facilitate aligning the raw data, which include base quality score 

recalibration, local realignment around indels and marking duplications (Figure 2.4). A total of 

404,953,503 (III-5) and 239,525,568 (II-2) paired-end reads (35-120bp each) were able to be 

mapped to the reference sequence (mappable reads), resulting in an average of 10x depth of 

coverage of the genome. 

 

2.2.2.3 Variant Calling and Annotation 

After the raw data processing was complete, the next step of the GATK pipeline, which 

includes the unified genotyper, was to identify sites in the sequenced individuals that are 

statistically non-reference.  The UnifiedGenotyper was used to calculate genotype likelihoods, 

only using reads with a minimum mapping quality of at least 10 and fewer than 4 mismatches 

within 40 bp. Candidate sites were called with a per site prior probability of a polymorphism of 

0.001. The E-M algorithm was used to estimate the allele frequency at each site by maximum 
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likelihood, where each potential variant site must have a posterior probability greater than 0.9 

(PHRED scaled quality score of 10). The UnifiedGenotyper produces a Variant Call Format 

(VCF) file that contains the variant sites discovered across samples and the genotypes assigned 

to each sample/site.  The data was then further processed and carefully filtered using 

investigator-set criteria.  Using several measures of quality control provided by BWA, in 

addition to standard genetic measures of quality control (Hardy-Weinberg Equilibrium of 

variants in dbSNP, Mendelian inconstancies between the father and son, transition to 

transversion ratio of 2), the following quality control criteria of ≥ 4x coverage, depth of coverage 

(DP) ≤ 360, heterozygote allele balance (ref/(ref+alt)) (AB) ≤ 75% reference, number of 

covering ready with mapping quality score zero (MQ0 <= 0.1 * depth of coverage)or MAPQ 

zero reads at locus < 4 were used.  Only SNPs passing all of the criteria were included in the 

final analysis. Assuming a dominant model of inheritance, each case was required to have at 

least one novel (not in dbSNP or 1000 Genomes Project) variant in the same gene.  The high-

quality variants common to both the father and son where carried through for further analysis 

(Figure 2.5).  

Next, coding variants were annotated using the SeattleSeq annotation server 

(http://snp.gs.washington.edu/SeattleSeqAnnotation131/). SeattleSeq provides annotation of 

known and novel single nucleotide polymorphisms (SNPs) based on chromosome, base position 

and allelic change. Annotation includes dbSNP „rs‟ numbers, gene names, accession numbers, 

SNP functions, protein positions and amino-acid changes. Because the primary hypothesis is that 

a rare, previously undetected variant is associated with hereditary mixed polyposis in this family, 

common variants were filtered out by excluding those found in dbSNP (build131), the 1000 

Genomes Project, or 43 unaffected controls sequenced by hybrid capture and whole exome 



  

20 

 

sequencing (JL). Variants that lead to premature stop codons and altered splicing are more likely 

to have deleterious consequences on protein structure or function.   In order to prioritize which 

novel, coding variants shared by the father and son should be followed up for further functional 

analysis, we used two bioinformatic prediction algorithms, Sorting Intolerant from Tolerant 

(SIFT) (http://sift.jcvi.org/, (Ng and Henikoff 2003)) and Polymorphism Phenotyping  2 

(PolyPhen2) (http://genetics.bwh.harvard.edu/pph/, (Adzhubei et al 2010)) to determine the 

effects of mutations on protein function. 

 

2.2.3 Validation and Replication 

 The validation of potentially interesting variants is needed to eliminate false positive 

variants due to genotyping errors that can occur from next-generation sequencing. Validation by 

Sanger sequencing was done in germline DNA from all four affected family members (Figure 

2.1: II-2, III-3, III-4, III-5) and cDNA from available tumors. 

 

2.2.3.4 Germline DNA extraction 

Germline DNA was extracted from whole blood using the Puregene kit (Gentra Systems, 

Inc., Minneapolis, MN).  DNA samples were quantified using the spectrophotometer (ND-1000, 

NanoDrop Technologies, Inc., Wilmington, DE) and PicoGreen assay (Molecular Probes 

Invitrogen Detection Technologies, Eugene, OR). The concentration for all qualified samples 

was normalized to 50 ng/ul. 

 

2.2.3.5 Formalin fixed paraffin-embedded tumor DNA extraction 

Paraffin-embedded tumors with adequate residual tissue for microdissection were 
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available for analysis for the father (II-2) and son (III-5). Tumor blocks were recut for uniform 

histopathologic review and microdissection, with the first slide of a series of 12 reviewed by a 

qualified pathologist (JKG) to confirm the original diagnosis and to circle areas for 

microdissection. Corresponding areas of normal tissue (with 0% tumor) from the same slide, or 

from another section of the same surgical resection, were circled for microdissection. DNA was 

extracted by scraping tissue from designated areas of slides with a clean razor blade and 

transferring the samples to separate non-siliconized tubes. Xylene (350 μl) was added to each 

sample to dissolve the paraffin, and ethanol precipitation was performed by adding 150 μl of 

cold 100% ethanol to each sample. Samples were next spun at 14,000 rpm at room temperature 

for 10 minutes. The supernatant was discarded and pellets were lyophilized in a Speed Vac for 8 

min on high heat. Pellets were then resuspended in 100 μl of proteinase K buffer (200 ng/μl 

proteinase K in 50 mM Tris, pH 8.3) and incubated over-night at 37°C. Samples were heated at 

95°C for 8 min and quickly transferred to ice for 5 min to keep the DNA from re-naturing. DNA 

samples were then stored at -80°C. 

 

2.2.3.6 RNA extraction 

Total RNA was extracted from single tissue isolates from available polyps, tumors and 

corresponding normal adjacent tissue using the Qiagen RNeasy FFPE kit (Qiagen, Germantown, 

MA).  Adequate quantities of high-quality total RNA were isolated as determined by Agilent 

2100 BioAnalyzer (Agilent Technologies, Palo Alto, CA). cDNA was synthesized using the 

High Capacity cDNA Reverse Transcription Kit from 200 ng of RNA (Applied Biosystems).  

 

2.2.3.7 Polymerase chain reaction 
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The PCR reaction mixtures (20μL) contained 5ng of genomic DNA (of cDNA from 

tumors), 2μl of 10X PCR buffer (Applied Biosystems), 1.6μL of 25mM MgCl2 (Applied 

Biosystems), 0.8μL each of 10mM dNTP (New England Biolabs) and 10μM forward and reverse 

primers, and 1 U of AmpliTaq Gold DNA polymerase (Applied Biosystems). Cycling conditions 

were as follows: Initial denaturation at 95°C for 3 minutes, 15 cycles of 95°C for 30 seconds, 

70°C for 45 seconds (-1° every cycle), 72°C for 1 minute 10 seconds, 20 cycles of 95°C for 30 

seconds, 55°C for 45 seconds, 72°C for 1 minute 10 seconds, and a final extension at 72°C for 10 

minutes. PCR products were sequenced at the University of Michigan DNA Sequencing Core, 

and Mutation Surveyor Software (SoftGenetics, LLC., State College, PA, USA) was used to 

detect variants identified by whole genome sequencing.  

Real-time quantitative PCR (qRT-PCR) was also performed using SYBR Green PCR 

Master Mix (Applied Biosystems) on an Applied Biosystems Prism 7900 HT Sequence 

Detection System. Two sets of primers were designed to assess the independent expression levels 

of candidate genes of interest and an endogenous control gene, GAPDH. All samples were tested 

in triplicate. The relative expression of the gene of interest was calculated by DCt normalization 

to the expression of GAPDH. 

 

2.3 Results 

2.3.1 Massively parallel sequencing 

The goal of this study was to identify novel variants associated with risk of hereditary 

mixed polyposis syndrome.  A total of 595,292,661 paired-end reads (76-120bp each) were 

„mappable‟, with an average of 10x coverage of the haploid genome (Table 2.2). The first Solexa 

sequencer, the Genome Analyzer, was launched in 2007 and gave scientists the power to 
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sequence 1G of bases in a single run.  When this study began in 2009, the Genome Analyser IIx 

allowed for 2 x 35bp read lengths of 600 million paired-end reads per flow cell. However, newer 

generations of the Illumina Genome Analyzer refined and optimized the sequencing process and 

allowed for more data acquisition. The samples presented here were sequenced over several 

years and over several sequencing platforms, therefore the output and coverage is inconsistent 

between runs. 

 

2.3.1.1 Variant calling and annotation 

 In this study, we were interested in novel variants that are shared by the father and son.  

Massively parallel sequencing identified 1,162,925 such variants of which 125,460 were not 

present in 1000 genomes or dbSNP 131 (Figure 2.5).   After quality control filtration and 

annotation, 64 previously unidentified nonsense, missense or splice site variants were identified 

in the father and the son whose whole genomes were sequenced, of those only 11 (9 missense, 2 

nonsense) were predicted to be damaging by Polyphen2 and SIFT (Table 2.3).   

 

2.3.2 Validation and replication 

Nine of the 11 novel candidate variants were validated by Sanger sequencing. Six out of 

the 9 (67%) variants were shared by affected family members, leading to a small subset of 

candidate genes putatively responsible for HMPS within this family (Table 2.4).   We prioritized 

nonsense variants first, because premature stop codons are more likely to have deleterious 

consequences on protein structure or function.  Next-generation sequencing identified two novel, 

shared, nonsense variants in two candidate genes, DMXL2 and ZNF426.  The next step was to 

determine whether these variants were present in the affected family members and the unrelated 
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individuals with polyposis from Ohio State.  Coding regions of both DMXL2 and ZNF426 were 

Sanger sequenced in the two affected sisters (Figure 2.1 III-3 and III-4) and the three unrelated 

individuals (Table 2.1 B: ID 8329-00, ID 8333-00, and ID 8293-00).  The same nonsense variant 

that was present in the father (II-2) and son (III-5) in ZNF426 was also identified in the two 

affected daughters (III-3 and III-4).  The variant idenfied in DMXL2 was not present in one of the 

affected sisters (Figure 2.1 III-4). None of the novel variants were present in the 3 unrelated 

polyposis individuals.  Tumor DNA as well as DNA extracted from normal adjacent tissue for 

the father and son were sequenced for variation in ZNF426.  The novel variant was present in the 

tumor, however no loss of heterozygosity was detected.  Analysis from quantitative real time 

PCR revealed decreased expression in the carcinoma tissue from the father (II-2) but the 

adenomas (including son‟s sessile serrated adenoma) and normal adjacent tissue were expressed 

at comparable level in both the father (II-2) and son (III-5). 

 Although we attempted replicate potential variants by sequencing the exons of all 

candidate genes in the unrelated individuals from Ohio State, we did not find any variation in 

these individuals at the candidate loci. Hereditary mixed polyposis is extremely difficult to 

diagnosis because of the complex tumor phenotype. Therefore, we had a pathologist at the 

University of Michigan (JG) confirm that these individual do not have hereditary mixed 

polyposis, but likely have another polyposis-related syndrome. 

 

2.4 Discussion 

 Hereditary mixed polyposis syndrome is characterized as an inherited form of polyposis 

associated with an increased colorectal cancer risk.  This syndrome is extremely difficult to 

accurately diagnosis and the genetic basis is unknown.  The hypothesis behind this project is that 
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a rare variant may be associated with this syndrome and I attempted to identify this variant using 

massively parallel sequencing which allows for the detection of previously unidentified low 

frequency allelic variants.  Advances in sequencing technology have made this a cost-effective 

approach to generate large amounts of sequence data.  It is now possible to obtain information at 

a single-base resolution in a high-throughput manner on the level of the entire human genome.  

We identified a novel candidate locus, ZNF426, using NGS.   

 The zinc finger protein 426 (Gene ID: 79088) is located on 19p13.2.   Little is known 

about this gene other than variants in ZNF426 have been found to play role in regulation of 

Kaposi‟s sarcoma-associated herpesvirus RT-mediated expression (Watanabe et al 2007). 

Several lines of evidence suggest that many of the zinc-finger-containing genes in the human 

genome are arranged in clusters (Yang et al 2009). Unfortunately, the structure or function of 

these zinc finger clusters is unclear except that there is some evidence that there exists a human 

cluster consisting >10 related Kruppel-associated box (KRAB)-containing ZNF genes organized 

in tandem over a distance of 350-450kb on chromosome 19.  The information about their 

conservation throughout species is also limited other than the ZNF gene cluster in human 

chromosome 19q13.2 is conserved on mouse chromosome 7 (Shannon et al 1996).  A study of 

gastrointestinal stromal tumor (GIST) patients as part of a phase II trial of neoadjuvant/adjuvant 

imatinib mesylate treatment for advanced primary and recurrent operable GISTs identified a 

gene signature that includes KRAB-ZNFs.  Using gene expression profiling of tumor samples 

before and after imatinib mesylate therapy, they found 38 genes that were expressed at 

significantly lower levels in the pretreatment biopsy samples from tumors that significantly 

responded (>25% tumor reduction) to 8 to 12 weeks of imatinib mesylate. Eighteen of these 

genes encoded Krüppel-associated box (KRAB) domain containing zinc finger (ZNF) 
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transcriptional repressors, of which, 10 KRAB-ZNF genes mapped to chromosome 19p13.2 

(Rink et al 2009). Also of interest, it was recently reported that epigenetic silencing of Krüppel-

type zinc finger protein genes exists on chromosome 19q13 in oral cancer tissue in a genome-

wide DNA methylation study (Lleras et al 2011). 

 Another point of interest is that allelic heterogeneity is likely to be ubiquitous among 

genes that harbor causal rare variants (Bodmer and Bonilla 2008, Pritchard 2001). It is often the 

case that a group of variants affecting the same gene or a set of genes with related functions is 

required to have a substantial probability of affecting the function of the relevant gene product. 

However, there are many challenges to studying heterogeneity in genes that have rare causal 

variants, such as the choice of candidate genes, the choice of appropriate case groups, the need 

for extensive DNA resequencing in large numbers of individuals, and the assessment of the 

functional consequences of variants. For example, for cancer, the most obvious candidates are 

genes that are mutated somatically or epigenetically changed in their expression in a significant 

proportion of cancers. Cases therefore should be enriched for the presence of rare variants. 

Generally these will include cases with one or more close relatives affected, but which are not 

clearly familial and with an early age of onset. Because hereditary mixed polyposis is a rare 

syndrome which is thought to be Mendelian in inheritance, we are assuming that variable 

expression of a single gene is responsible for multiple phenotypes. We attempted to address this 

by sequencing unrelated individuals from Ohio State, however, we did not find any novel 

variants in these individuals at any of the candidate loci.  The individuals from Ohio State likely 

have some related polyposis syndrome that is not hereditary mixed polyposis. 

Although ZNF426, is an attractive candidate for hereditary mixed polyposis in this 

family, there are several limitations to the current study.  The limitation with potentially the 
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greatest impact is the low depth of coverage.  Since the inception of this study 2009 when 

massively parallel sequence first because available, it has been established that 40X-50X 

coverage of the genome is necessary to rule out false negatives (Garner 2011). Therefore, 

our study is vulnerable to Type II error. For example, in the context of next-generation 

sequencing, if the null hypothesis is that an individual does not have some damaging 

variant that leads to disease, and the patient does in fact does have an undetected damaging 

variant, then the test fails to reject the hypothesis and in turn, incorrectly suggests that the 

patient does not have a damaging variant or is „unaffected‟.  Because the current study 

focused on the identification of novel, coding variants, specifically missense, non-sense 

and splice variants with a high damaging potential, it is possible that we missed other 

equally interesting variation that certainly exists in the genome.  

 Yet another major challenge in next-generation sequencing analysis is distinguishing 

between background polymorphisms and potentially disease-associated mutations. Detailed 

analysis of a single individual typically requires deep sequencing, therefore we used stringent 

quality control filters based on preliminary analyses.  Filtering on variant function and frequency 

and carefully selecting cases have been useful in selecting pathogenic variants in previous 

studies (Ng et al 2010b).  However, in cases where genetic heterogeneity exists, these filters may 

not be as effective for identifying pathogenic variation. Relaxing these criteria will in turn 

increase the number of candidate genes, requiring new approaches to prioritize variants of 

interest.  Because this disease is so rare, many individuals are required in order to combine 

shallow sequence data across individuals to generate accurate calls is limited. However, recent 

studies have demonstrated that for disease-associated variants with frequency >0.2%, sequencing 

3000 individuals at 4X depth provides similar power to deep sequencing of >2000 individuals at 
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30X depth but requires only ~20% of the sequencing effort (Li et al 2010, Li et al 2011). 

Additionally, low-coverage sequencing data can be used to build a reference panel that can drive 

imputation into additional samples to increase power (Li et al 2010, Li et al 2011). This strategy 

of using low-coverage sequencing data as a reference for imputation into additional samples may 

be a useful and cost effective analysis of additionally identifying mutations in polyposis related 

colon cancer. 

2.5 Future Directions 

 The genomes of the two affected sisters (III-3, III-4) are currently being sequenced to 

40X at the University of Michigan Sequencing Core using the Genome Analyzer IIx, which is 

capable of paired end sequencing with 150 bp read depth and up to 640 million paired-end reads 

per flow cell.  Whole-exome sequencing is also being performed on the father and son to 

increase the coverage of the exonic regions to 40X and identify additional false negatives 

undetected by the current shallow genome coverage.   
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Table 2.1: Patient descriptions from the University of Michigan and the Ohio State 

University 

 

A. University of Michigan Samples 

IID Dx Age Gender Site Histology 

II-2 67 Male Ascending colon 
Adenocarcinoma with 

mixed features 

III-3 31 Female unknown 
Hyperplastic polyps, 

juvenile polyp 

III-5 46 Male Sigmoid colon 
Hyperplastic polyps, sessile 

serrated adenoma 

III-4 50 Female Descending colon 
Hyperplastic polyps, sessile 

serrated adenoma 

B. Ohio State University Samples* 

IID Dx Age Gender Site Histology 

8328-00 46, 50 Male 
Transverse colon, 

Right colon 

Hyperplastic polyps, sessile 

serrated adenoma 

8333-00 57 Male Sigmoid colon 
Hyperplastic polyps, sessile 

serrated adenoma 

8293-00 71, 72, 73 Male cecum Adenocarcinoma 

* Diagnosis not confirmed by University of Michigan pathologist (JG) 
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Table 2.2: Alignment of sequenced reads for each individual/lane 

Lane 
Total 

reads(bp) 

Pair-

Length 

Aligned 

pairs 

dup 

rate 

Run50_s_5 15799030 36*36 15349266 1.29% 

Run50_s_6 16782874 36*36 16295243 1.31% 

Run50_s_7 16567174 36*36 16098798 1.26% 

Run54_s_1 21335913 52*69 19985654 1.17% 

Run54_s_2 21480977 52*70 20357997 1.18% 

Run54_s_3 20730885 41*70 19697480 1.18% 

Run54_s_4 21369840 52*70 20262894 1.15% 

Run54_s_5 21062978 52*70 19974512 1.11% 

Run54_s_6 20941330 52*70 19860777 1.10% 

Run54_s_7 21297254 52*70 20212580 1.14% 

Run54_s_8 20937268 52*70 19851061 1.14% 

Run78_s_2 32767801 80*80 30464719 2.05% 

Run78_s_3 30060322 80*80 30060467 2.25% 

Run78_s_4 29985539 80*80 29985710 2.26% 

Run78_s_5 31717446 80*80 29909069 2.25% 

Run78_s_6 31967872 80*80 30231466 2.24% 

Run78_s_7 30149000 80*80 30149179 2.28% 

Run95_s_1 33646324 120*120 15090078 3.20% 

Run95_s_2 34370879 120*120 15039776 3.20% 

Run95_s_3 34841643 120*120 15331651 3.33% 

Run95_s_4 34699034 120*120 15371303 3.30% 

Run95_s_6 34862302 120*120 15529162 3.40% 

Run95_s_7 34231103 120*120 15377865 3.30% 

Run95_s_8 32874283 120*120 14805954 3.27% 
Runs 50, 54, and 78 refer to patient III-5.  Run 95 refers to the proband,  II-2. 
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Table 2.3: Novel damaging variants predicted by both Polyphen2 and SIFT.  Nine missense 

and 2 nonsense novel variants were identified using whole-genome sequencing and subsequently 

Sanger sequencing all affected individuals (II-2, III-3, III-4 and III-5). 

Chr Position Allele Function Amino acid Position Gene 

2 234,229,468 C/T Missense THR/MET 125 SAG 

2 55,407,700 C/T Missense GLY/SER 444 C2orf63 

3 100,352,109 C/T Missense ALA/VAL 112 GPR128 

3 63,824,048 C/G Missense GLU/GLN 89 THOC7 

5 155,771,587 G/A Missense ARG/GLN 30 SGCD 

5 38,921,864 G/A Missense GLY/ASP 578 OSMR 

12 54,741,568 G/A Missense ARG/GLN 112 COPZ1 

18 34,349,252 C/G Missense GLY/ALA 1367 FHOD3 

19 39,924,011 A/G Missense TYR/HIS 115 RPS16 

15 51,809,316 A/G Nonsense ARG, stop 829/3037 DMXL2 

19 9,639,194 T/A Nonsense CYS, stop 509/555 ZNF426* 

* ZNF426 was also validated using Sanger sequencing in the two affected sisters (III-3, III-4)
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Table 2.4: Primer sequences for exonic regions of the candidate gene ZNF426 

ZNF426 Chr Start End Forward Primer Reverse Primer bp Tm 

Exon 1 19 9646774 9647097 CCGGTGTATATGTTTGATGGC AGCACCTCCCAAATGAATCAG 324 60 

Exon 2 19 9645667 9646093 CTGCAACTGGCCTTATGTGTG CTTTAAGAAGCCTGGAGACCG 427 60 

Exon 3 19 9644317 9644739 GAATCCTGCATAGGCATTGG CTAACAGGCAGATGGTGTTGC 423 60 

Exon 4 19 9643393 9643789 AGCCTGAATTTCGGTTTAGGG TTCCTAACTTTCTCTAAACCTTGG 397 60 

Exon 5 19 9641510 9641935 GTGCTCACCACCACACC GTTTCACAATTGGAGCATCCC 426 60 

Exon 6 19 9640084 9640458 AAATAAATCTACAGGGAAGGACCT CAATATTTGGTGTCAGGCTGAAG 375 60 

Exon 6 19 9639760 9640286 CTGTGACTGTGAGCAATGTGG TGGAATAATTGAAGGCTTTCCC 527 60 

Exon 6 19 9639373 9639966 ACGAATGGAGGAATTATGGGC AGGTGTATGGTTTCTGGGCAC 594 60 

Exon 6 19 9639009 9639607 TCCTTCCTTACATCCTCACGC GGAACAAATGAGAGCTTTCCC 599 60 

Exon 6 19 9638954 9639542 ATGTGTTGAATGTGGGAAAGC TTTCATGCAGCTTCTTCTCTCC 589 60 
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Figure 2.1: Family 202 pedigree.  Individuals were recruited through the University of 

Michigan Cancer Genetics Clinic.  Affected individuals are colored in black, and diagnosis is 

listed below each affected individual.  The genomes of individuals II-2 and III-5 were sequenced. 

Germline DNA was collected on II-2, III-3, III-4 and III-5. 
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Figure 2.2: Illumina ‘bridge amplification’ technique. After library preparation the DNA 

fragments are: a.) hybridized to a lawn of primers b.) extended by polymerases c.) formation of 

bridge d.) bridge is denatured e.) cycle repeated f.) sequenced by synthesis 

 

e.) d.) f.) 

c.) b.) a.) 

Adapted from www.illumina.com 
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Figure 2.3: GATK framework pipeline used for data processing and analysis 

 

 

 

 

 

 

 

http://www.broadinstitute.org/gsa/wiki 
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Figure 2.4: GATK alignment pipeline. Pipeline used to align the sequence reads to the 

reference genome (hg19).   

 

http://www.broadinstitute.org/gsa/wiki 
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Figure 2.5: Variants identified by whole genome sequencing.  The figure below indicates the 

number of variants identified by whole-genome sequencing of a father (II-2) and son (III-5) with 

hereditary mixed polyposis.  Approximately 125,000 novel variants were found in both the father 

and son and were used for subsequent analysis. 
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CHAPTER 3 

 

Elucidating the complexity of chromosome 18 loss in chromosomally instable 

colorectal cancer 

 

3.1 Introduction 

The accumulation of somatic alterations transform normal colonic epithelial cells and 

instigate the development of colorectal cancer (CRC) (Fearon and Vogelstein 1990, Jass 2007).  

In particular, structural alterations that lead to genomic instability, such as amplifications and 

deletions, play an important role in pathogenesis. Genomic instability in colorectal cancer 

develops through two major pathways based on molecular and mutational patterns, including the 

chromosomally instable (CIN) and microsatellite instability (MSI) pathways (Peinado et al 1992, 

Thibodeau et al 1993, Vilar and Gruber 2010, Vogelstein et al 1988). The majority of colorectal 

cancer is characterized by chromosomal instability (CIN, also referred to as microsatellite stable 

or MSS) arising through the loss or gain of chromosomes and other structural rearrangements 

(Cahill et al 1998, Vogelstein et al 1989). By contrast, microsatellite instable (MSI) CRCs arise 

as a consequence of the loss of DNA mismatch repair (MMR) function and result in the 

accumulation of insertion and deletion mutations, particularly in microsatellite sequences. In 

general, tumors with similar molecular characteristics arise and behave similarly, however a third 

group of tumors classified as microsatellite instabilty low (MSI-L) exists in about 10% of 

sporadic colorectal cancers (Jass et al 1999). 

Somatic loss of heterozygosity (LOH) on the long arm of chromosome 18 (18q) has been 
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shown to be inversely associated with microsatellite instability (MSI), and is an important 

molecular classifier in colorectal cancer (Jass 2007, Watanabe et al 2001). Loss of 

heterozygosity is thought to occur later in the development from adenoma to carcinoma, and to 

contribute to the inactivation of several genes with potential importance in pathogenesis 

(Vogelstein et al 1988). Among the proposed candidate genes located on 18q are the DCC, 

SMAD4, and SMAD22 genes.  The DCC gene encodes a neutrin-1 receptor, which is important in 

apoptosis, cell adhesion, and tumor suppression (Fearon et al 1990). SMAD4 codes for a nuclear 

transcription factor in transforming growth factor-β1 signaling, and is involved in tumor 

suppression (Zhou et al 1998). Although candidate tumor suppressor genes located on 18q have 

been proposed to be targets of this LOH, the specific breakpoints and how they are involved are 

often imprecisely defined (Fearon and Vogelstein 1990, Park do et al 2007, Thiagalingam et al 

1996).  

Additionally, several studies of CRC have suggested allelic loss of chromosome 18q is 

associated with high metastatic potential and reduced patient survival (Diep et al 2003, Jen et al 

1994, Ogunbiyi et al 1998, Watanabe et al 2001, Zhou et al 2002). Several studies have focused 

on the impact of LOH at 18q on the prognosis of early-stage CRC (Alazzouzi et al 2005, Barratt 

et al 2002, Bisgaard et al 2001, Carethers et al 1998, Chang et al 2005, Choi et al 2002, Diep et 

al 2003, Font et al 2001, Halling et al 1999, Lanza et al 1998, Laurent-Puig et al 1992, Martinez-

Lopez et al 1998, Ogunbiyi et al 1998, Pietra et al 1998, Watanabe et al 2001, Zhang et al 2003). 

Of these sixteen studies, 8 found that CRC patients with LOH at 18q had asignificantly lower 

survival than those who were heterozygous in this region. Additionally, four of the eight found 

that chromosomally instable tumors had a significantly worse prognosis in a multivariate 

analysis with hazard ratios for death from 2.0 (95% CI: 0.27-5.10) - 7.30 (95% CI: 1.14 to 7.35)  
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(Carethers et al 1998, Ogunbiyi et al 1998, Watanabe et al 2001) and for recurrence a hazard 

ratio of 9.60 (Pietra et al 1998). Three reports did not find loss of 18q to be independently 

associated with prognosis (Bisgaard et al 2001, Choi et al 2002, Diep et al 2003) and one did not 

perform multivariate analysis (Chang et al 2005). LOH was not found to be prognostic in a 

univariate or multivariate analysis, yet LOH at 18q did yield a poor prognosis in stage II disease 

(Martinez-Lopez et al 1998). While many groups have studied LOH at 18q with respect to CRC, 

conflicting results warrant a more comprehensive analysis. 

With recent advances in genomic technology, systematic analysis of inter- and intra- 

tumor heterogeneity in cancer at a high resolution is now possible using high-density SNP 

arrays. In this study we evaluated genomic alterations in tumors of chromosomally instable 

colorectal cancers and compared those to microsatellite instable cancers by performing genome-

wide analysis of copy number alterations (CNAs) and focused on the somatic heterogeneity on 

chromosome 18. We used two different SNP genotyping platforms, the Affymetrix Genome-

Wide Human SNP Array 6.0 and the Illumina Human 1M-Duo BeadChip. Germline and tumor 

DNA from 21 cases with colorectal cancer and germline DNA from 21 matched controls were 

run on both genome-wide SNP array platforms. Our original study design included thirty tumor 

DNA and thirty germline DNA (extracted from whole blood) samples from the same case, as 

well as 30 germline DNA samples from matched controls to be genotyped on the Affymetrix 

platform.  However, after experiencing technical difficulties associated with the arrays at the 

University of Michigan Comprehensive Cancer Center Genomics Core, we decided to re-run 9 

tumor, 9 germline and 9 matched control DNA samples on the Illumina arrays.  After genotying 

was completed, I incorporated existing gene expression data on colorectal tumors from the 
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U133APlus Affymetrix expression array (n=21) to determine whether copy number alterations 

alter expression of genes associated with colorectal cancer (Vilar et al 2009). 

Examining copy number heterogeneity in tumors in conjunction with genomic instability 

is instrumental in elucidating the mechanisms underlying tumorigenesis, and potentially useful 

for targeted clinical intervention. The identification of structural alterations on chromosome 18 

and their implication for prognosis of CRC is currently an important topic of interest in clinical 

treatment of CRC (Jen et al 1994, Jernvall et al 1999, Ogino et al 2009, Ogunbiyi and Ogunbiyi 

1998). A potential for clinical intervention is adjuvant chemotherapy which has recently been 

suggested to improve survival in patients with colon cancer (Andre et al 2009). Furthermore, a 

previous study suggested that 18q loss may be a significant prognostic factor for patients with 

colorectal cancer who received fluorouracil-based adjuvant chemotherapy (Watanabe et al 2001). 

 

3.2 Subjects and Methods 

3.2.1 Subjects 

 Patients were recruited as part of the Molecular Epidemiology of Colorectal Cancer 

(MECC) study, a population-based case-control study in northern Israel of all incident cases of 

colorectal cancer between March 31, 1998 and March 31, 2004. Incident colorectal cancer cases 

were ascertained from five hospitals in northern Israel, and all cases for this study have 

histologically confirmed cancer of the colon or rectum. The controls were individually matched 

for exact year of birth, sex, clinic, and Jewish versus non-Jewish heritage. The study was 

approved by all relevant IRBs at the University of Michigan and Carmel Medical Center in 

Haifa, and study participants gave written informed consent.   Detailed descriptions of this study 

have previously been published (Poynter et al 2005). Tumor samples were obtained at the time of 
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surgical resection through the MECC study.   Tumors were snap-frozen in liquid nitrogen, 

shipped on dry ice, and stored at –140C°.  Frozen tumors were embedded in freezing media, 

cryotome sectioned (5µm) and evaluated by routine hematoxylin and eosin (H&E) stains by a 

surgical pathologist (JG).  Areas of at least 70% tumor cells were selected for DNA and RNA 

isolation.   

 

3.2.2 DNA and RNA isolation 

3.2.2.1 Tumor DNA  

 DNA was precipitated from the organic phase by adding 0.3 ml of 100% ethanol per 1 ml 

of TRIZOL Reagent.  Samples were stored at 15-30°C for 2-3 minutes and then centrifuged at 

2,000 × g for 5 minutes at 28°C.   The phenol-ethanol aqueous phase was removed and the DNA 

pellet was washed twice in a solution containing 0.1 M sodium citrate in 10% ethanol.  At each 

wash, the DNA pellet was stored in the washing solution for 30 minutes at 15=30°C and 

centrifuged at 2,000 × g for 5 minutes at 2-8°C.  Following these two washes, the DNA pellet 

was suspended in 75% ethanol (1.5-2 ml of 75% ethanol per 1 ml TRIzol Reagent), and then 

stored for 10-20 minutes at 15-30°C and centrifuge at 2,000 × g for 5 minutes at 2-8°C.  The 

DNA was air dried for 15 minutes in an open tube and dissolved by adding 300 – 600 μl of 8 

mM NaOH to DNA isolated from 107 cells or 50 – 70 mg of tissue such that the concentration of 

DNA was between 0.2 – 0.3 μg/μl. The insoluble material was removed by centrifugation at 

>12,000 × g for 10 minutes.  Next the supernatant containing the DNA was transferred to a new 

tube.  For prolonged storage, the DNA was solubilized by adding 8 mM NaOH and samples were 

adjusted with HEPES to pH 7-8 and supplemented with 1 mM EDTA.  Once the pH was 

adjusted, DNA was stored at– 20°C.  
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3.2.2.2 Tumor RNA  

Total RNA was extracted from single tissue isolates using the TRIzol protocol 

(Invitrogen, Carlsbad, CA) and Qiagen RNeasy purification kit (Qiagen, Germantown, MA).  

Adequate quantities of high-quality total RNA was assessed by 1% agarose gel electrophoresis, 

and samples were included only if the 18S and 28S bands were discrete and an rRNA ratio >2.0 

as measured by the Agilent 2100 BioAnalyzer (Agilent Technologies, Palo Alto, CA). 

 

3.2.2.3 Germline DNA  

Germline DNA was extracted from whole blood using the Puregene kit (Gentra Systems, 

Inc., Minneapolis, MN).  DNA samples were quantified using the spectrophotometer (ND-1000, 

NanoDrop Technologies, Inc., Wilmington, DE) and PicoGreen assay (Molecular Probes 

Invitrogen Detection Technologies, Eugene, OR). The concentration for all high quality samples 

was normalized to 50 ng/µl. 

 

3.2.3 Genome-wide arrays 

3.2.3.1 Affymetrix 6.0 single nucleotide polymorphism based array  

The Affymetrix 6.0 Genome-Wide Human SNP Array (Affymetrix, Santa Clara, CA) 

contains 1.8 million probes designed to interrogate 906,600 SNPs and more than 946,000 

invariant sites for the detection of copy number changes.  We ran 21 sets of samples (tumor 

DNA, case germline DNA, and matched control DNA) on arrays at the University of Michigan 

Comprehensive Cancer Center Genomics Core. 250ng of DNA were digested with the StyI and 

NspI restriction enzymes. After the digestion, samples were PCR amplified and subsequently 
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labeled with biotin before hybridization. All steps were performed according to the 

manufacturer‟s protocol.  Birdsuite v1.5.5, a four-stage analytical framework software program, 

was used to derive copy number and SNP genotypes (Korn et al 2008). The four-stage analytical 

framework includes Canary, a routine used to determine the copy number of each individual at 

regions of known copy number polymorphisms. Next, SNP calling is done using Birdseed.  At 

each SNP locus, samples expected to have two copies are assigned canonical SNP genotypes of 

AA, AB or BB. In the third step information across neighboring probes is integrated using 

Birdseye, a hidden Markov model (HMM) based algorithm to discover rare or de novo CNAs 

informed by probe-specific mean and variance intensities estimated in the second step.  Finally, 

copy number and SNP allele information are combined using Fawkes („fast analysis with kopy-

number et SNPs‟) to provide an integrated view of the genetic variation in each sample (Korn et 

al 2008). 

 

3.2.3.2 Illumina Human 1M-Duo DNA array 

The Illumina Human1M-Duo DNA Analysis BeadChip assesses nearly 1.2 million loci 

per sample and was run on a subset of 8 samples pairs (germline DNA from cases and germline 

DNA from a matched control) as well as 8 tumor samples from the same case.  Genotyping was 

performed at the University of Michigan DNA Sequencing Core.  This subset of samples was 

also run on the Affymetrix 6.0 platform. The Human1M-Duo BeadChip was designed to focus 

on tag SNPs, variants in genes, and polymorphic markers in known and copy number variation 

(CNV) regions.  Genotyping was performed according to the Infinium HD protocol (Illumina).  

In summary, 200ng of genomic or tumor DNA was whole genome amplified, fragmented, 

precipitated, and re-suspended. Samples were then hybridized to the Illumina Human1M-Duo 
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BeadChips. After hybridization, the oligonucleotides were extended by a single labeled base, 

which was detected by fluorescence imaging with an Illumina Bead Array Reader. For each 

sample, Illumina‟s GenomeStudio software was used to convert the fluorescence intensities into 

SNP genotypes.  We then normalized the data using a proprietary algorithm and created 

genotype clusters using GenomeStudio by clustering the matched normal individuals.  We 

converted the intensity data to polar coordinates (R, Theta).  The log2(Rsubject/Rreference) or logR 

ratio (LRR) compares the direct intensity, R, between a subject sample and a paired reference 

sample (germline DNA from the sample person). We also transformed allelic intensities into the 

B-allele frequency (allelic composition) using linear interpolation of the canonical clusters.  The 

B-allele frequency is derived from the three canonical genotyping clusters created from the 

GenomeStudio software (Peiffer et al 2006).  

 

3.2.3.3 Quality control 

Genotype calls from both genotyping platforms were subject to rigorous quality control 

before analysis.  We excluded SNPs if they had a call rate lower than 99% in cases or controls, a 

minor allele frequency <1% in the population, or significant deviation from Hardy-Weinberg 

equilibrium in the controls (P ≤ 10
−7

). We removed all the samples with overall genotyping rate 

less than 98%, We ran 2 samples in duplicate to further insure data quality.  Study duplicate 

reproducibility was 99.98% for the Illumina platform and 99.24% for the Affymetrix platform. A 

HapMap CEU trio was also genotyped to check for Mendelian inconsistencies. The median 

number of Mendelian errors was was > 0.02% and 0.1% for the Illumina and Affymetrix 

platforms, respectively.  SNPs that showed Mendelian inconsistencies were also removed from 
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analysis.  In the end, a total of 902,760 and 1,199,187 SNPs from the Affymetrix and Illumina 

platform, respectively, were used in the analyses. 

 

3.2.3.4 Affymetrix U133A expression array 

From the tumor RNA samples, preparation
 
of cDNA, expression analysis with the U133A 

array was performed
 
according to manufacturer‟s protocols at the University of Michigan 

Comprehensive Cancer Center Genomics Core. The cDNA was prepared from 50ng of total 

tumor RNA for each sample using Nugen WT-Ovation™ amplification method and was 

subsequently hybridized to the Affymetrix GeneChip Human Genome U133A PLUS 2.0 Array 

(Affymetrix, Santa Clara, CA) at the University of Michigan Comprehensive Cancer Center 

Microarray Core. Arrays were scanned using Affymetrix protocols and GeneChip scanners. 

Expression values were calculated using Affymetrix GeneChip analysis software MAS 5.0 

(http://www.affymetrix.com/partners_programs/genechip_compatible/genechip_compatible.affx)

.  

 

3.2.4 Statistical analysis 

3.2.4.1 Identification of copy number changes 

3.2.4.1.1 LogR ratio and B allele frequency 

The B Allele Frequency (BAF), which is a measure of normalized allelic intensity ratio, 

along with the logR ratio (LRR) can be useful for identifying regions of copy number change.  A 

normal chromosome has three BAF genotype clusters, (AA, AB, and BB genotypes). 

Heterozygous loci are distributed either as one track around BAF=0.5, or two separate tracks 

above and below 0.5.  Regions of „normal‟ LRR values are centered around zero, but do not have 
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the characteristic the AB genotype cluster.   The LRR and BAF can be used in combination to 

determine several different copy numbers and to differentiate LOH regions from normal state 

regions. Normal copy number regions and copy-neutral LOH regions can be distinguished from 

each other based on the patterns of the LRR ratio and BAF, demonstrating the utility of 

combining of LRR and BAF to generate copy number alteration calls (Figure 3.1). Additionally, 

for each segment in the final copy number alteration set we calculated the median LRR and mean 

“folded BAF”, which is the absolute value of (BAF-0.5), for segmentation.  We performed 

segmentation on folded BAF data using the Circular Binary Segmentation (CBS) algorithm as 

described below (section 3.2.4.2.2). 

 

3.2.4.1.2 Circular binary segmentation 

Segmentation algorithms have been successful in identifying regions of copy number 

change for analysis of data from array-based comparative genomic hybridization (aCGH) 

platforms (Lai et al 2005, Willenbrock and Fridlyand 2005).  We used the Circular Binary 

Segmentation (CBS) algorithm, a robust non-parametric method for dividing the genome into 

regions of equal DNA copy number in order to identify chromosomal regions of gain or loss 

(Olshen et al 2004, Venkatraman and Olshen 2007). The CBS algorithm tests for change-points, 

where the change-points are defined as the genomic locations of copy number transition using a 

maximal t-statistic with a permutation-derived null distribution to obtain the corresponding P-

value. The algorithm starts with the whole chromosome and segments it recursively by testing 

for change-points and stops when no more segments can be found.  CBS was run on both the 

LRR intensity data and the BAF data for each sample using the implementation in the 

Bioconductor package (R version 2.9).  
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3.2.4.1.3 Mixed Gaussian models 

As previously described in section 3.2.4.2.1, BAF values at heterozygous loci can be 

distributed either as one track around 0.5, or two separate tracks above and below 0.5. To aid in 

distinguishing true copy number alterations in tumors from a normal copy number state in data 

with high background noise, we fit the distribution of heterozygous BAF values in each segment 

of copy alteration as either one Gaussian distribution or the summation of two Gaussian 

distributions. The hypothesis is that when a normal copy state exists, the BAF will resemble a 

single Gaussian distribution, and when heterogeneous data (representing copy number change) 

will be a mixture of two normal distributions. When the separation between the two tracks is 

small, the summed distribution may resemble a single Gaussian distribution.  We used empirical 

data to calculate the variance of BAF in order to set the criterion that distinguishes between 

segments. BAF standard variation ≥ 0.1 is considered to be a two-track segment and two separate 

Gaussian distributions. For segments with one track, we obtain the best-fit distribution as 

N(μ,σ
2
), and define the folded BAF value as |μ-0.5|.  For segments with two tracks, the best fit 

distribution is (μ1,σ
2
1;μ2,σ

2
2), and the folded BAF value is |μ1-μ2|/2. We used the maximum 

likelihood estimates for the mean and variance parameters as implemented in the “nlm”  (non-

linear minimization) function in the R Stats (R version 2.9).  Non-linear minimization is a 

Newton-type algorithm, where at each iteration one approximates around the estimate by a 

quadratic function, and then takes a step towards the maximum or minimum of that quadratic 

function.  

 

3.2.4.2 Analysis of expression data 



 

49 

 

We used the Bioconductor package in R to analyze the expression of genes on 

chromosome 18 in CIN tumors to determine whether loss of heterozygosity could be detected by 

a decrease in gene expression.  Tumors with loss of heterozygosity cannot be distinguished from 

tumors with copy-neutral loss of heterozygosity by LRR.  Therefore, I wanted to investigate 

where expression data could be used to distinguish these two mechanisms of copy number loss.   

Expression data from MSI tumors was used as a control set, since the vast majority of MSI-H 

tumors have of normal copy states.  We assessed the quality of the data by evaluating the density 

plots of the log-intensity and RNA degradation plots corresponding to each sample. For all 

samples, MAS 5.0-calculated signal intensities were quantile normalized using the microarray 

analysis software and the normalized data were log2 transformed.  Additionally, we median-

centering and scaled by the standard deviation for each sample separately.  Filtering excluded 

probe sets that were not expressed and those that exhibited low variability across samples. 

Expression values were required to be above the lower quartile of all expression measurements 

in at least 25% of samples, and the interquartile range across the samples on log2 scale was 

required to be at least 0.5. After preprocessing and quality assessment, 21 samples 

(corresponding to the 21 tumor samples successfully genotyped on the Illumina and Affymetrix 

platforms) and 54,677 probe sets (654 probe sets on chromosome 18) were included further 

analysis. 

 

3.2.4.2.1 Hierarchical clustering 

Agglomerative hierarchical clustering analysis using Wards‟ method (Ward and Morris 

1963) and Partitioning Around Mediods (PAM) (Kaufman and Rousseeuw 1990), a more robust 

version of K-means clustering, were performed on the expression data as implemented by the 
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Cluster package in R (R version 2.9). Briefly, Ward's method defines the distance between two 

clusters, “A” and “B”, as the sum of squares.  When clusters are merged, this value increases. 

Hierarchical clustering starts with the sum of squares equal to zero, and increases as the clusters 

are merged. Ward's method minimizes this growth to keep clusters as small as possible. The 

PAM algorithm computes k representative objects, called medoids, defined as that object of a 

cluster whose average dissimilarity to all the objects in the cluster is minimal. After finding the 

set of medoids, each object of the data set is then assigned to the nearest medoid.  As part of the 

analysis, visualization plots were created to display the hierarchical clustering solution based on 

the expression data that were determined by Ward‟s method as well as heat maps of the 

expression intensity levels in all 21 tumors in order to visualize regions of loss and gain (created 

in “Heatmap” and “Heatmap2” packages in R version 2.9). 

 

3.3 Results 

3.3.1 Copy number alterations on chromosome 18 

Copy number alterations were identified using circular binary segmentation, which 

incorporated both the LRR and BAF information from SNP genotyping arrays.  We also visually 

inspected the LRR and BAF plots to examine the extent of the region of loss.  Based on this 

information, we determined that 12 tumors demonstrated instability on chromosome 18, resulting 

in loss of whole chromosomes or deletion of only several kilobases. Plots of the LRR and BAF 

in regions with copy number change seen in tumor samples on chromosome 18 are depicted in 

Figure 3.2 (A-H). Here, loss of at least one arm of chromosome 18 occurred in the tumor 

samples but not the genomic DNA of cases or matched controls. Eleven tumors from either the 

Illumina or the Affymetrix genotyping platform demonstrated copy neutral loss of 



 

51 

 

heterozygosity (CN-LOH), and 3 tumors had a complete deletion of at least one arm of 

chromosome 18 (Table 3.1). The deletion of a chromosomal region was defined and detected by 

the lack of the AB genotype cluster, as well as LRR values below zero. The combined 

measurement of both allelic ratios and normalized intensities provides enhanced delectability of 

genetic aberrations and allows for the identification of copy neutral genetic anomalies such as 

UPD and mitotic recombination.  

We encountered several challenges when analyzing the Affymetrix 6.0 Genome-Wide 

Human SNP Array data. Most notably, the background noise was extremely high (Figure 3.3, A-

H).  To aid in distinguishing copy number alterations from tumors with a normal copy state in 

data with high background noise, we fit the distribution of BAF values in each segment of copy 

alteration as either one Gaussian distribution or the summation of two Gaussian distributions. 

This approach is based on the idea that the BAF data measurements are normally distributed 

when the chromosomes shows normal copy number and is a mixture of normal distributions 

when there are copy number changes on the chromosome. We took this approach to gain some 

insight about the high background samples, and how they could be "unmixed" into separate 

distributions and used to identify copy number change.  When the separation between the two 

tracks is small, the summed distribution should resemble a single Gaussian distribution and 

N(μ,σ
2
), and the folded BAF value is |μ-0.5|. However, if two (or more) Gaussian distributions 

are present then the best fit distribution is (μ1,σ1
2
;μ2,σ2

2
), and the folded BAF value is |μ1 -μ2|/2.  

Eight tumor samples were run on both genotyping platforms, so we were able to use the high 

quality Illumina data to verify the alterations detected even in the high background samples 

(Figure 2.4: A,B,C,D). The „useable‟ samples size was increased from 8 tumors to 21 tumors 

using this approach. 
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3.3.2 Gene Expression in chromosomally instable CRC on chromosome 18 

Using previously existing expression data on colorectal tumors from the U133APlus 

expression array, the same 21 tumor samples with existing SNP array data from both the 

Illumina and Affymetrix genotyping array platforms were used to examine whether loss of 

heterozygosity could be detected by a decrease in gene expression. Mean expression across all 

probes on chromosome 18 was significantly lower (p-value = 0.000137) for samples with 

complete loss of one arm of chromosome 18 compared to the tumor samples with „normal‟ copy 

numbers (including the tumors samples with copy neutral LOH and the microsatellite stable 

tumors). Hierarchical clustering analysis and PAM clustering was performed on the expression 

data as implemented by the „Cluster‟ package available in R. Using Wards‟ method which 

minimizes the loss associated with each grouping during clustering, and which quantifies loss in 

terms of an error sum-of-squares. MSI status for the tumor samples was independently confirmed 

by 8 fluorescent markers and immunohistochemsity results for mismatch repair genes.  The 

hierarchical clustering analysis produced a 2-cluster solution, clearly separating MSI from MSS, 

with the exception of two misclassified MSI tumors. To address the question of whether 

expression data could be used to distinguish between tumors with loss of heterozygosity and 

tumors with copy-neutral loss of heterozygosity, the clustering analysis revealed distinct groups 

with complete deletion of at least one arm of chromosome 18 and the samples with normal copy 

numbers (including CN-LOH) (Figure 3.5). In addition to looking at overall loss of chromosome 

18, we looked at expression levels in previously reported critical regulatory candidate genes that 

appear to underlie the biology and clinical features of a subset of CRCs. In the 18q21-18q21.1 

region several tumor suppressor genes have been mapped (Fearon et al 1990), including the gene 
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SMAD4 (Thiagalingam et al 1996, Zhou et al 1998). Chromosomal instability is an mechanism, 

which leads to the physical loss of a wild-type copy of a tumor suppressor gene, whose normal 

function is to suppress the malignant phenotype. Probes to measure the expression of 3 candidate 

tumor suppressor genes located on 18q (SMAD2, SMAD4 and DCC) were present on the Affy 

expression arrays. Mean expression levels were not significantly different in the tumors with loss 

of 18q compared to the CRCs that showed MSI (Table 3.2). 

 

3.4 Discussion 

The current study examines colon tumor heterogeneity on chromosome 18 by 

determining copy number alterations using high-density SNP genotyping arrays. Previous 

investigations of loss of heterozygosity in colorectal cancer used low-resolution microsatellite 

markers to determine loss on chromosome 18 (Mao et al 2006, Ogino et al 2009, Pilozzi et al 

2011, Wang et al 2010b), however, it is now feasible to characterize tumors with greater 

precision at a much higher density. 

The findings from this study are similar to previous reports in which the most prevalent 

copy number alteration identified in colorectal cancers are chromosomal losses. New insights 

include the statistical methods that can improve yield of poor quality and high background data 

and the further refinement of the regions on chromosome 18 that distinguish chromosomally 

instable colorectal cancer. Across chromosome 18, the most prevalent somatic copy number 

changes were very short (focal) or the entire length of a chromosome arm or whole chromosome 

(Figure 3.2).  This finding is consistent with other studies that have observed a favored loss of 

whole arm (Beroukhim et al). Additionally, I observed that the frequency of arm-level somatic 

copy number alterations decreases with the length of chromosome arms (all chromosomes), and 
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that the majority of chromosome arms exhibit strong evidence of preferential gain or loss, but 

rarely both.  This suggests that loss of chromosome 18 in CRC may not be due purely to the size 

of chromosome 18. Additionally, the finding that the predominant mutational event in tumors 

tend to be arm-level, compared to focal events, reflects the lack of difficulty in which these 

events occur during tumorogenesis (Baudis 2007). However, the high frequency of arm-level 

somatic copy number changes makes it difficult to determine specific genes or targets involved 

in loss. Furthermore, the mechanism for this gross chromosomal instability, which results in 

aneuploidy in the majority of cancers, is still unknown.  

It has been shown that approximately 30% of genes in the human genome code for 

proteins that regulate DNA replication fidelity.  This implies mechanisms such as mitotic 

checkpoint regulation and telomere shortening could lead to instability. Another potential 

mechanism of chromosome instability is through defects in the mechanisms controlling the 

numeral integrity of centrosomes, leading to centrosome amplification resulting in defective 

mitosis and inevitably promoting chromosome instability in tumors (Fukasawa 2005, Fukasawa 

2011, Wang et al 2004).  

In colorectal cancer specifically, there has been great interest in identifying the 

mechanisms responsible for the chromosomal instability (CIN) phenotype. Microsatellite stable 

tumors often show a defect in chromosome segregation, resulting in excess gains or losses per 

chromosome per generation. Cell fusion experiments between CIN and transfected HT-29 cells 

demonstrated that the CIN phenotype acts dominantly at the cellular level, suggesting that it may 

arise via gain-of-function mutations (Lengauer et al 1997). Whether CIN is a consequence of 

chromosome mis-segregation or structural rearrangement has been studied by karyotyping near-

diploid colorectal cancers. Mis-segregation of normal chromosomes and structural 
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rearrangements were not randomly associated within tumors, defining two major pathways of 

CIN, including chromosome gains by mis-segregation of normal chromosomes or chromosomal 

losses by both mis-segregation of normal chromosomes and structural rearrangements (Muleris 

et al 2008). Recently, a comparison of the karyotypes of 345 cases of adenocarcinoma of the 

large intestine in the Mitelman Database of Chromosome Aberrations in Cancer and the 

karyotypes of abnormalities observed in 15 established colorectal cancer cell lines found that 

there were no recurrent translocations in either tumors or cell lines; isochromosomes were the 

most common abnormalities; and breakpoints occurred most frequently at the 

centromeric/pericentromeric and telomere regions.  They concluded that copy number alterations 

appear to be the major mechanism for transcriptional deregulation of cancer genes in CRC 

(Knutsen et al 2010).  

Previous studies have identified genes involved in chromosome instability using 

bioinformatic approaches, by compared 102 human genes highly related to 96 yeast CIN genes 

and showed that down regulation or disruption of genes involved in sister chromatid cohesion 

(MRE11A and CDC4) play a major role in the CIN phenotype in colorectal tumors (Barber et al 

2008, Jorissen et al 2008).  Another study in CRC cell lines used gene expression and array-CGH 

to show major difference between MSI-associated genes in MSI tumors (near-diploid) and MSS 

tumors (aneuploid).  These data suggests that copy number change have profound effects on 

expression of genes in cancer cells (Barber et al 2008, Jorissen et al 2008).  

A limitation to the assessment of arm-level copy number alterations seen in the current 

study and many previous reports is the difficulty in identifying specific breakpoints, genes, or 

gene targets due to the large size of the event. In this case, nucleotide sequencing may be 

required to help identify point mutations, where heterozygous deletions are present. 
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A second limitation is that with algorithms used for identifying regions of copy number 

changes for high-throughput analysis are prone to false positives especially with low minor allele 

frequency SNPs (Hariharan 2003, Jung 2005, Lin et al 2010, Tabangin et al 2009). Therefore, 

validation and replication of findings is important when using array-based techniques for clinical 

applications, where reliability and performance are critical. To address this issue, we used 

independent genotyping platforms, confirmed suspected loss by quantifying decreases in 

expression levels from the same tumors, and Sanger sequenced candidate gene regions on 

chromosome 18 to verify the lack of heterozygous variation in regions of deletion.  

This study demonstrates that SNP genotyping arrays can detect chromosomal alterations 

from frozen tumors at a high resolution and that these copy number alterations point towards 

candidate mechanisms and pathways for further study.  Additionally, the integration of 

expression data with copy number data can be useful in elucidating whether copy number 

alterations effect expression of genes associated with colorectal cancer. 
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Table 3.1: Summary of alterations on chromosome 18 for all tumor samples.  

    

Illumina1M-Duo 

BeadChip 

Affymetrix 6.0 

SNP Array  

Affymetrix Expression 

U133Aplus array 

  
 Copy Number  Copy Number  Cluster Analysis 

Tumors 

Microsatellite 

instability 

status 

LRR
¥
 BAF* LRR BAF

$
 Expression Data 

10772 Stable CN-LOH
$
 4 na‡ 2 2 

10779 Stable CN-LOH 4 na‡ 2 2 

11463 Stable Deletion 2 na‡ 2 1 

13197 Stable CN-LOH 4 na‡ 2 2 

12572 Instable Normal 3 na‡ 1 na 

13030 Stable Del 18q 3 na‡ 2 2 

11110 Stable CN-LOH 4 na‡ 4 2 

10570 Stable Deletion 2 na‡ 2 1 

11349 Stable na† 2 na‡ na‡ 2 

11370 Stable na† 2 na‡ na‡ 2 

10790 Stable na† 2 na‡ na‡ 2 

10808 Stable na† 4 na‡ na‡ MLE
£
 did not converge 

10811 Stable na† 4 na‡ na‡ MLE did not converge 

10858 Stable na† 3 na‡ na‡ MLE did not converge 

11806 Stable na† 2 na‡ na‡ 2 

11813 Stable na† 3 na‡ na‡ MLE did not converge 

11877 Stable na† 2 na‡ na‡ MLE did not converge 

11300 Instable na† 3 na‡ na‡ na 

11907 Instable na† 3 na‡ na‡ na 

12572 Instable na† 3 na‡ na‡ na 

13045 Instable na† 3 na‡ na‡ na 

13120 Instable na† 3 na‡ na‡ na 
*BAF determined by Illumina genotype data (see Figure 1.1)  

†Tumor samples not run on Illumina platform 

$BAF determined by mixture modeling (see Figure 1.3) 

‡Data not usable due to high background noise 

$Copy-neutral loss of heterozygosity 
¥
Log-R Ratio 

£
Maximum likelihood estimate 
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Table 3.2: Gene expression in candidate genes in tumors with LOH on 18q. There was no 

significant difference between expression of MSI tumors versus MSS tumors that had loss of 

chromosome 18. 

    Probe Position MSI MSS 

Gene Location Start End Mean  (n=6)  Mean (n=7) 

SMAD2 18q21.1 43620623 43677180 11.2423 11.3400 

SMAD2 18q21.1 43621619 43677180 9.5854 9.4672 

SMAD2 18q21.1 43622069 43677160 10.6510 10.4526 

SMAD4 18q21.1 46810609 46861111 7.8732 7.8658 

SMAD4 18q21.1 46827286 46859729 9.9604 9.8722 

DCC 18q23.1 48121155 49311286 7.2770 7.3041 
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Figure 3.1: Visual representation of detection of copy number changes using logR ratio and 

B allele frequency. The top panel demonstrated what the LRR signal intensity looks like for 

various copies of a chromosome.  The formula for the LRR is below the figure.  The lower panel 

shows how BAF or allelic copy ratio is used to infer copy number. 
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Figure 3.2 (A-H): Circular binary segmentation (CBS) on LRR, BAF and folded-BAF from 8 tumors samples run on Illumina 

genotyping platform.  The following figures show results on chromosome 18 from segmentation for all tumors samples.  The teal-

colored box represents the separation of the p and q arms.  The positions of candidate tumor suppressor genes are also shown on the 

figure. 
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Figure 3.3 (A-C): Comparison of B allele frequencies in tumor samples from Affymetrix and Illumina genotyping platforms. 

The density plots of the BAF-heterozygous SNPs and the chromosome 18 plots for each tumor sample are shown below.  The panels 

below show first the tumor run on the Illumina platform and then the same tumor sample underneath that was run on the Affymetrix 

platform. The Affymetrix data clearly has much higher background fluorescence intensities compared to the Illumina samples, making 

it very difficult to assess copy number change. 
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Figure 3.4: Detection of mixed Gaussian distributions based on BAF in tumor samples run on the Affymetrix platform with 

high background noise and the same tumor sample run on the Illumina platform. For the samples with loss of heterozygosity 

(10779, 11463 and 10772) there are two distinct normal distributions.  The MSI tumor 12572 (with no LOH) has only one distribution. 
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CNLOH Normal 

MSI MSS 

Figure 3.5: Hierarchical clustering of tumors based on chromosome 18 expression data. 

The figure below shows the two clusters solution (MSI vs. MSS).  Below the heatmap of the 

expression data, the tumor instability is indicated in red (MSI) and yellow (MSS), and copy 

number in green (normal), blue (deletion) and purple (CN-LOH). Decreased expression can be 

seen in the heatmap in the three deleted samples. 
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CHAPTER 4 

Genetic susceptibility to breast cancer among consanguineous individuals of Arab and 

Jewish ancestry 

 

4.1 Introduction 

Breast cancer is associated with several classes of risk factors, including hormonal and 

reproductive patterns however, family history is arguably one of the most important risk factors 

for the disease. Highly penetrant mutations in the known breast cancer genes BRCA1 and BRCA2 

only account for 20–40% of familial breast cancer and less than 10% of breast cancer overall.  

These genes certainly do not explain all of the genetic variation observed in familial breast 

cancer, which suggests that familial breast cancer may be due to other genes (Ford et al 1998, 

Wacholder et al 2010).  

Several studies have attempted to predict modes of familial cancer inheritance using 

segregation analysis. Most analyses of breast cancer inheritance support a model in which 

susceptibility to breast cancer is explained by a rare dominant disease allele with a high lifetime 

risk of the disease (Claus et al 1991). This model was confirmed by the mapping of BRCA1 and 

BRCA2 using genetic linkage analysis (Easton et al 1993, Hall et al 1990, Wooster et al 1994). 

Further evidence based on population studies has suggested that mutations in these genes only 

account for the minority of the overall familial risk of breast cancer (Peto et al 1999). Instead 

these studies propose that low penetrance, common genetic variants contribute to the risk of 

familial breast cancer (Pharoah et al 2002). For example, a population based series of breast
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cancer cases investigated genetic models underlying familial breast cancer in individuals 

diagnosed in patients under the age of 55 (Antoniou et al 2001). The basic model indicated that 

either a common, recessive locus or a number of common, low-penetrance genes with additive 

effects likely account for residual non-BRCA1/2 familial breast.   

Breast cancer is the most commonly diagnosed cancer in Israel, and a leading cause of 

death among women regardless of their ethnic origin. Younger ages at diagnosis, larger primary 

tumor size, and lower 5-year survival rate have been reported among Arab women compared 

with the Jewish women (El Saghir et al 2006). According to the most recent reports of the Israel 

Cancer Registry data from 2007, age standardized rates of breast cancer are higher among Jewish 

women (87.72 per 100,000) than among Arab women (73.19 per 100,000) 

(http://www.health.gov.il). Variability in rates and characteristics of disease could partially be 

explained by differences in lifestyle factors between Arab and Jewish women.  Another 

explanation for discrepancies such as the younger mean age at diagnosis among Arab women is 

that there may be previously undescribed mutations in the BRCA1/2 genes or in other genes that 

lead to early-onset breast cancer. 

Breast cancer among Arab women in Israel is characterized by high rates of parental 

consanguinity and large families, which are advantageous for family-based studies. Parental 

consanguinity ranges from 25% to 60% in different countries in the Middle East (Bener and 

Alali 2006). Endogamy in Arab populations is a result of cultural and historical practices, rather 

than religion. Consanguineous marriages are considered more stable in terms of maintaining 

family finances as well as family structure (Teebi and Teebi 2005) . 

The contribution of parental consanguinity to cancer risk is an understudied area. 

However, there is some evidence that consanguinity augments autosomal recessive alleles due to 
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the increase in probability of sharing alleles identical-by-descent. The suggestion that cancer 

might have a non-BRCA1/2 basis is based on several reports and other examples in cancer 

genetics such as, CHEK2, MYH-associated polyposis, Bloom syndrome and Fanconi anemia 

(Assie et al 2008, Ellis et al 1995, Lebel and Gallagher 1989, Meijers-Heijboer et al 2002, 

Sampson et al 2003).  A study evaluating the effect of inbreeding on cancer incidence on isolated 

islands in Croatia found an increase in breast cancer rates primarily in the younger age groups 

(Rudan 1999, Rudan et al 1999). Several studies specific to Arab populations have suggested that 

consanguinity alters the genotype frequencies in offspring of consanguineous parents and as a 

result change the risk of early-onset breast cancer and possibly other malignancies (Bener et al 

2001, Liede et al 2002, Rudan 1999). There is a report that inbreeding may reduce breast cancer 

risk, however this study was only done on women ages 40-65, and when examining families with 

a  history of breast cancer and consanguinity, the risk was not significantly different in families 

without consanguinity (P = 0.29) (Denic and Bener 2001). The role of inbreeding on the risk of 

complex diseases may therefore be population-dependent and/or disease-dependent. 

One way of locating human genes that are associated with recessive traits in related 

families is by homozygosity mapping.  This method allows for the detection of disease locus 

because adjacent regions influencing the disease will preferentially be homozygous by descent in 

offspring of a consanguineous mating if the disease is recessive.  From a statistical standpoint, 

the length of a run of homozygosity depends on the degree of parental consanguinity, because it 

is reduced by recombination which breaks up chromosomal segments over several generations 

(Wang et al 2009). For example, a single affected child of a first-cousin marriage is shown to 

contain the same total information about linkage as a nuclear family with three affected children 

(Lander and Botstein 1987).  However, even in outbred populations homozygous regions 
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exceeding 1Mb in length have been detected (Gibson et al 2006, Li et al 2006). 

In this study, we use genome-wide single nucleotide polymorphism arrays for 

homozygosity mapping in Arab women without mutations in BRCA1 and BRCA2, to identify 

candidate loci within high-risk individuals with familial breast cancer. The question I am 

attempting to address in this chapter is whether recessive inheritance to breast cancer exists in 

consanguineous individuals as a risk factor for disease. My hypothesis is that an increase in 

autozygous alleles in consanguineous individuals with breast cancer will lead to enrichment of 

autosomal recessive loci. The prior success of strategies using linkage analysis in highly 

informative families that do not carry BRCA1/BRCA2 mutations highlights the value of this 

approach to identify susceptibility variants in familial breast cancer (Meijers-Heijboer et al 

2002). The identification of recessive loci suggests that penetrant common genetic variants may 

contribute to the risk of familial breast cancer.  

 

4.2 Subjects and Methods 

4.2.1 Subjects 

The Breast Cancer in Northern Israel Study is an ongoing population-based case control 

study in northern Israel of all incident cases of female breast cancer since January 1, 2000. 

Incident breast cancer cases were ascertained from five hospitals in northern Israel, where 

diagnoses of breast cancer were made independently by the diagnosing hospital.  The controls 

were collected from the Clalit Health Services (CHS), located in the same geographical area as 

cases and individually matched for exact year of birth, sex, clinic, and ethnic group (Jewish 

versus Arab). Patients were excluded if they had a former diagnosis of a breast cancer in the 

same breast and controls were excluded if found to have had a prior diagnosis of breast cancer 
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(including ductal carcinoma in situ).   Participants were given an in-person interview, which 

provided information about their personal and family history of cancer, reproductive history, 

medical history, exposure to radiation, medication use, and a dietary questionnaire.  The study 

was approved by IRBs at the University of Michigan and Carmel Medical Center in Haifa, and 

study participants gave written informed consent. 

The Familial Cancer Consultation Service, run by the Cancer Control Center and directed 

by Dr. Gad Rennert, provides counseling to patients, families, and health care providers 

regarding inherited susceptibility to cancer. Genetic testing for the three Ashkenazi founder 

mutations, BRCA1 185delAG, BRCA1 6174delT, and BRCA2 5382insC is offered at no cost to 

the patient or family member through a certified molecular diagnostics clinical laboratory. 

Mutation-negative families served as the resource for further gene discovery in this study. 

The population size of Israel is approximately 7.4 million people. Seventy six% are Jews, 

19.5% are Arabs, and 4.3% belong to other ethnic groups, including Bedouin and Druze. The 

proportion of Arabs in northern Israel is 39% vs. 19% in the total Israeli population. Among 

Arab women, nearly 75% are Moslems, 16.5% are Christians and 8.5% are Druze (Central 

Bureau of Statistics, http://www1.cbs.gov.il). The Arab population has distinct age distributions 

compared to the Jewish population. In the Jewish population, 12.5% of women are over age 65 

as compared with 3.5% of Arab women. The percentage of participants in the Breast Cancer in 

Northern Israel Study who have self-reported related parents is 4.5%, 28.5%, and 30.1% among 

Jewish, Christian Arabs, and Muslim Arabs respectively (Table 4.1). 

 

4.2.1.2 Pilot study 
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 As part of a pilot study, 9 cases with breast cancer from the Breast Cancer in Northern 

Israel Study that were referred to the Familial Cancer Consultation Service and identified as 

having a sibling with breast cancer and a family history of consanguinity (Table 4.2 and Figure 

4.1, A-J) Genetic testing for Ashkenazi founder mutations did not reveal mutations in BRCA1/2 

genes.  These 9 individuals were genotyped using the Affymetrix 6.0 Genome-Wide Human 

SNP Array (see section 4.2.3.1).   

 

4.2.1.3 Arab family expansion  

An additional 50 DNA samples from 10 Arab families with a history of breast cancer and 

consanguinity were recently collected in Israel, in an attempt to expand the sample set (Table 

4.3).  Families were contact after being identified by having a family history of consanguinity 

and a sibling with breast cancer.  A priority of collecting of sibling DNA (affected, and 

unaffected) and parents was taken, followed by any additional affect relatives.  

 

4.2.2 Genomic DNA Isolation 

Genomic DNA was extracted from whole blood using the Puregene kit (Gentra Systems, 

Inc., Minneapolis, MN).  DNA samples were quantified using the ND-8000 spectrophotometer 

and PicoGreen assay (Molecular Probes Invitrogen Detection Technologies, Eugene, OR). The 

concentration for all qualified samples was normalized to 50 ng/ul. 

 

4.2.3 Genome-wide single nucleotide polymorphism array 

4.2.3.1 Affymetrix 6.0 array  
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The Affymetrix 6.0 Genome-Wide Human SNP Array (Affymetrix, Santa Clara, CA) 

arrays contain 1.8 million probes, including 906,600 SNP probes.  Nine samples were run on 

arrays at the University of Michigan Comprehensive Cancer Center Affymetrix and Microarray 

Core as part of a pilot analysis. Two hundred and fifty nanograms of DNA were digested with 

StyI and NspI. After the restriction digestion, samples were PCR amplified and subsequently 

labeled with biotin before hybridization. All steps were performed according to the 

manufacturer‟s protocol. 

 

4.2.3.2 Illumina HumanCytoSNP-12 BeadChip 

The HumanCytoSNP-12 BeadChip is a whole-genome scanning panel designed for 

efficient, high-throughput analysis of genetic and structural variation.  The BeadChip includes a 

complete panel of genome-wide tag SNPs including 200,000 SNPs with the highest tagging 

power. DNA samples from 22 cases and 24 unaffected family members were obtained and 

genotyped using the Illumina HumanCytoSNP-12 BeadChip. Probands we screened for 

mutations in BRCA1/2 using a CLIA certified lab, Myriad Genetics (2011 Myriad Genetic 

Laboratories, Inc., 320 Wakara Way, Salt Lake City, UT 84108-1214). Comparative analysis of 

the coding sequence, intro-exon boundaries and deletion/duplication analysis of BRCA1/2 was 

performed on affected individuals.  Forty-six individuals from 5 families were genotyped using 

this platform at the University of Michigan DNA Sequencing Core.  Two of these probands were 

genotyped as part of the pilot study and used for further quality control.   

 

4.2.4 Homozygosity Mapping 
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Using identity-by-descent (IBD) methods to map genes in Mendelian disorders has 

proven to be a useful strategy in clinical genetics and may have potential in complex diseases. 

Homozygosity mapping identifies autosomal recessive genes in consanguineous families by 

detecting chromosomal regions that show homozygous IBD segments. I used a sliding window 

approach as implemented in PLINK for the analysis of IBD.  The whole genome association 

analysis toolset, PLINK v1.05, was used to screen for runs of homozygous genotypes in all cases 

and unaffected family members (Purcell et al 2007). The data were filtered based on several 

quality control measures. Individuals were required to have a genotype for at least 95% of the 

loci, and an individual SNP was considered a failure if <95% of the samples generated a 

genotype. The overall genotyping call rate was 99.91%. One individual was genotyped twice on 

the Illumina array for quality control. To identify samples showing relatedness, identity-by-state 

(IBS) values were calculated for all pairs of individuals (Figure 3.2). Analysis was only 

performed on the autosomal SNPs. We excluded SNPs on the basis of deviation from Hardy-

Weinberg equilibrium using a threshold of P < 1 × 10
−5

 in either the cases or controls. We also 

removed SNPs with a minor allele frequency of <0.05. Next, the remaining high quality SNPs 

were pruned for strong local linkage disequilibrium (LD) (r
2
 > 0.8) and removed in order to find 

long segments that are more likely to represent homozygosity by descent (i.e. autozygosity) 

reducing the chance of an exaggeration of small random differences and in turn the production of 

false-positive results (Abecasis et al 2005). Approximately 122,000 SNPs were carried through 

for identifying runs of homozygosity.  Fifty homozygous SNPs spanning a1000 kilobase distance 

were required for a homozygous region to be called. The algorithm for detecting runs of 

homozygosity (ROH) in PLINK uses a sliding window approach.   Briefly, a window of 50 SNPs 

is taken and moved incrementally across the genome. At each window position, the region is 
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determined to be 'homozygous' based on the required criteria, allowing for 2 heterozygous or 

missing calls (due to genotyping error). Then, for each SNP, the proportion of 'homozygous' 

windows that overlap that position is calculated. The “homozyg-group” option was used to 

produce a file of the overlapping ROH regions separated into pools containing the number of 

cases and controls carrying the ROH. Pools with more than five samples were considered as 

recurrent ROHs. A consensus SNP set representing the minimal overlapping region across all 

samples in the pool was used to define the recurrent ROH regions. 

 

4.2.4.2 Sanger sequencing 

 Candidate genes in regions identified as having a run of homozygosity were sequenced 

using the genomic DNA (Table 4.5). The PCR reaction mixtures (20μL) contained 5ng of 

genomic DNA, 2μl of 10X PCR buffer (Applied Biosystems), 1.6μL of 25mM MgCl2 (Applied 

Biosystems), 0.8μL each of 10mM dNTP (New England Biolabs) and 10μM forward and reverse 

primers, and 1 U of AmpliTaq Gold DNA polymerase (Applied Biosystems). Cycling conditions 

were as follows: Initial denaturation at 95°C for 3 minutes, 15 cycles of 95°C for 30 seconds, 

70°C for 45 seconds (-1° every cycle), 72°C for 1 minute 10 seconds, 20 cycles of 95°C for 30 

seconds, 55°C for 45 seconds, 72°C for 1 minute 10 seconds, and a final extension at 72°C for 10 

minute. PCR products were sequenced at the University of Michigan DNA Sequencing Core, 

and Mutation Surveyor Software (SoftGenetics, LLC., State College, PA, USA). 

 

4.3 Results 

4.3.1 Pilot study homozygosity mapping 
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 Nine DNA samples with Affymetrix 6.0 genome-wide SNP array data were analyzed as 

part of a pilot study using the program PLINK to screen for runs of homozygosity of at least 

1000 kilobases in size.  Five individuals had large runs of homozygous SNPs, including two 

Arab subjects. The largest region of homozygosity detected was on chromosome 10q23.1-25.3, 

which harbors the known tumor suppressor gene PTEN.   All analyses were repeated after 

additional samples were genotyped on the Illumina platform (see section 4.3.2 and 4.3.3).  This 

region was detect on the Illumina platform, but did not meet the criteria for preliminary analysis 

that priority regions of overlapping homozygosity must occur in at least 6 different individuals 

from different families. 

 

4.3.2 Arab family expansion homozygosity mapping 

 In an attempt to expand the sample size of Arab families with a history of consanguinity 

and a sibling with breast cancer, additional DNA samples were collected from both affected and 

unaffected family members (see section 4.2.1.3).   Forty-six DNA samples with Illumina Human 

CytoSNP-12 genotypes, including the 9 samples from the pilot study were analyzed using 

PLINK to detect large stretches of homozygosity.  Runs of homozygosity (ROH) thresholds were 

set based on genomic regions in which a minimum number of consecutive, non-missing SNPs 

were homozygous. ROH was measured per individual in terms of their total length or the sum of 

the lengths of the ROHs found in each person (Spain et al 2009). The frequencies of detected 

ROH of ≥5 Mb were calculated in cases and control. Among affected individuals, 20 of 22 

(90%) had at least one ROH of >5Mb and 15 of 25 (60%) unaffected family members had ROHs 

of >5Mb (P = 0.05242, Fisher's exact test), similar to previous findings in consanguineous 

individuals with cancer.  (Bacolod et al 2009, Spain et al 2009).  
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The primary question of interest in this study is whether homozygous regions harbor 

recessive loci associated with breast cancer risk in consanguineous individuals. Using runs of 

homozygosity with ≥1 Mb of consecutive homozygous SNPs determined minimal overlapping 

ROH regions that were found in at least six affected individuals from different families (Table 

4.4). A 242 kilobase region on chromosome 9q33.2-33.3 was present in affected cases only and 

not in any of the unaffected family members (Figure 4.3). The only known gene or coding 

sequence present in this overlapping, homozygous region is LHX2 (Figure 4.4). 

 

4.3.3 Investigation of candidate locus using Sanger sequencing 

All coding region (+/- 200 bp) of the gene LHX2 were sequenced in the six individuals 

with the overlapping run of homozygosity.  No variation differing from the reference CEPH 

sample sequence was detected in any of the individuals.  Sequence was analyzed using both 

Mutation Surveyor and Sequencer software (section 4.2.4.2). 

 

4.4 Discussion 

Recent studies have reported an increased frequency in runs of homozygosity in cancer 

cases (Assie et al 2008, Bacolod et al 2009) Additionally, genetic modeling suggests that either a 

polygenic model of common, low-penetrant genes or Mendelian inheritance of an autosomal 

recessive allele account for non-BRCA1/2 familial aggregation of breast cancer.  The idea that 

dominant disorders currently outnumber recessive disorders in humans, may represent an artifact 

of the clinical appearance of genetic disorders in the outbred population of Western society, is 

one potential explanation for there have not been many reports of autosomal recessive genes for 

breast cancer (Teebi and Farag 1997). However, breast cancer among Arab women in Israel is 
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characterized by high rates of parental consanguinity and large families, which are advantageous 

for family-based studies and allow for the enrichment of recessive loci, making this population 

ideal for identifying recessive genes associated with breast cancer.  Families were also selected 

not only on the basis of having a family history of consanguinity but also a sibling with breast 

cancer and an unaffected mother, increasing the likelihood that genes associated with disease in 

these families are inherited in an autosomal recessive fashion. 

 Homozygosity mapping allows for the detection of recessive genes associated with the 

disease locus due to the fact that adjacent regions on chromosomes will preferentially be 

homozygous by descent in offspring of a consanguineous mating. In the current study, we 

identified a run of homozygosity in Arab and Jewish women with a family history of 

consanguinity and a sibling with breast cancer on 9q33.2-33.3.  This region only contains one 

gene, LHX2, a putative transcription factor containing two cystein-rich (LIM) motifs and a 

homeobox (HOX) DNA-binding domain. Recent genome-wide methylation studies have 

suggested a role for LHX2 methylation in breast and lung cancer (Kamalakaran et al 2011, 

Rauch et al 2006).  Analysis of these tumors using follow-up survival data identified 

differential methylation of islands proximal to genes involved in cell fate commitment, 

including LHX2, as having prognostic value independent of subtypes and other clinical factors 

associated with breast cancer. Changes in methylation are commonly seen in human tumors, 

and several studies have implicated a role for DNA methylation in cancer pathogenesis (Laird 

and Jaenisch 1994, Laird et al 1995). It has also been found that methylation varies in different 

tumors. For example, some loci tend to show increased levels of DNA methylation while 

others have found a decrease in levels of methylation (Issa et al 1994, Ohtani-Fujita et al 1993, 

Wahlfors et al 1992). It is suggested that changes in DNA methylation that contribute to 
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oncogenesis affect the expression levels by increasing the expression of oncogenes and that 

hypermethylation silences tumor-suppressor genes (Baylin et al 1991).  

 Although we did not detect any mutations in the exonic regions of LHX2, there are 

several possibilities for why dysregulation of this gene may be associated with in breast 

cancer.  Enhancers can activate transcription independent of their location, distance or 

orientation with respect to the promoters of genes (Ong and Corces 2011). Homozygous 

variation occurs in the enhancers or promoter region may affect their interaction and in turn 

the expression of LHX2.  Another possibility is that the homozygous mutations in enhancers or 

other sequence-specific DNA binding proteins may lead to the inability of histone chaperones 

or modifying enzyme to be recruited and therefore they will be unable to modifiy chromatin or 

other epigenetic marks (Cui et al 2009, Heintzman et al 2009).  Methods such as CHIP-seq 

may be useful for determining alteration in expression of non-coding regions of LHX2 

(Johnson et al 2007). 

One criticism of the current study may be the relatively small sample size due to the 

limited number of individuals in an isolated community or a single large family with a high level 

of inbreeding. Therefore, the relevance of inbreeding to the population risk of cancer is unclear 

and inbreeding and founder effects may be confounded. A limitation to the homozygosity 

mapping analysis is that it is difficult to determine the exact window size and thresholds, relative 

to the SNP density and expected size of homozygous segments, even though this is obviously 

important. This study is limited to detection of large segments. Another criticism is that the 

overlapping ROH on chromosome 9 identified in the current study may be a false positive due to 

large amounts of IBS across the genome. One strategy to quantify this possibility would be to 

conduct a simulation study to assess the statistical significance of the type of ROH that we are 
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observing arising by chance (Clark 1999, Wang et al 2005). For more accurate detection of 

smaller segments it might make more sense to use an approach that also takes population 

parameters such as allele frequency and recombination rate into account (Scharpf et al 2008). 

Although there may be some inconsistency in evidence for a role of consanguinity in risk 

of cancer, the study that demonstrated a tendency of consanguinity to decrease the risk of breast 

cancer should be interpreted with caution (Denic and Bener 2001, Denic et al 2005). The first 

study was restricted to women aged 40 to 65,  and found no significant difference between 

women with a family history of breast cancer and consanguinity,  and the second study lacked 

the power to detect an association. Additionally, one cannot exclude the possibility that the 

inconsistencies in findings are due to different genetic backgrounds. 

In summary, the goal of the current study was to evaluate the contribution of 

consanguinity to breast cancer risk in Arab women without mutations in BRCA1 and BRCA2.  

An increase in autosomal recessive genes responsible for genetic susceptibility to breast cancer is 

expected among families with consanguinity due to the increase in probability of sharing alleles 

identical-by-descent. Homozygosity mapping was performed in consanguineous breast cancer 

patients to identify shared genomic regions of disease susceptibility.  Six individuals with breast 

cancer had 242kb overlapping run of homozygous SNPs on chromosome 9q33.2-33.3 which 

harbors a potentially important candidate gene in cancer, LHX2.   

 

4.5 Future Directions 

 A tumor block from one individual with breast cancer and the candidate, homozygous 

region on chromosome 9q33.2-33.3 is available for future analysis.  We plan to perform IHC and 

RT-PCR to determine if LHX2 is expressed in the tumor, and if expression levels are reduced in 
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tumor as compared to normal breast tissue. Expression of LHX2, is has previously been detected 

in breast tissue, however how it is expressed in tumors from individuals with breast cancer has 

not been determined. 
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          Table 4.1: Participants in the Breast Cancer in Northern Israel Study 

  Jewish  Christian Arab  Muslim Arab  

  Cases Controls Cases Controls Cases Controls 

  (n=1418) (n=1118) (n=97) (n=59) (n=177) (n=161) 

Age-mean (yrs)±SD 60.5±12.8 60.9±12.7 55.25±12.6 56.95±12.5 49.0±10.6 50.4±11.3 

Post menopausal (%) 81.8 77.1 77.3 66.1 58.8 39.1 

Age at menarche- mean (yrs)±SD 14.4±2.7 13.7±2.9 14.1±2.8 13±2.4 14.0±2.5 13.5±1.6 

Age at first pregnancy- mean (yrs) 

±SD 
23.5±4.5 23.0±4.2 22.6±3.9 23.2±2.8 22.5±5.5 21.8±4.1 

Number of children- mean±SD 2.5±1.3 2.8±1.4 4.2±1.9 4.5±2.1 5.2±2.9 6.0±2.7 
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Table 4.2 Pilot study breast cancer cases and consanguineous relationships 

  Muslim Arab Christian Arab 

Cases (n=9) 5 (55.4%) 4 (44.5%) 

1st Cousins (n=5) 4 (80%) 1(25%) 

2nd Cousins (n=4) 1 (20%) 3(75%) 
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                Table 4.3 Breast cancer cases and unaffected relatives recruited as part of the expansion sample 

  Muslim 

Arab 

 

Bedouin  

Christian 

Arab 

Sephardi 

Jewish  

Ashkenazi 

Jewish  

Males Females 

Cases                              

(n=22) 
8 (36%) 3 (14%) 8 (36%) 2 (9%) 1 (5%) 0 22 

Unaffected                 

(n=25) 
18 (72%) na 7 (28%) na na 6 19 

Genotyping failure                        

(n=1) 
na na 1 na na na 1 

Full sib pairs 

(n=100) 
81 (81%) 3 (3%) 16 (16%) na na na na 

Parent/Offspring 

pairs (n=18) 
12 (67%) 6 (33%) na na na na na 

Avuncular pairs 

(n=24) 
24 (100%) na na na na na na 
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                       Table 4.4: Homozygous region of overlap in breast cancer cases 

FID IID CHR SNP1 SNP2 KB NSNP 

1001 8874 9 rs10759229 rs10858284       27686.5 1301 

1005 8880 9 rs7851754 rs1614329      20898.9 875 

1007 8882 9 rs7037974 rs2789769       15390.1 610 

1004 8879 9 rs4836798 rs7034837       4154.24 114 

4958 8855 9 rs10984840 rs11793247       15319.1 721 

4955 8872 9 rs10760302 rs11792632       12425.8 715 

overlap 6 9 rs10760302 rs7034837       242.472 20 

  FID = family ID, IID = individual ID,  CHR= chromosome 

      Table 4.5: Primers for sequencing exonic regions of LHX2 on chromosome 9. 

LHX2 Start End Forward Primer Reverse Primer bp 

Exon 

1 
125,814,193 125,814,708 CTTGTGACCCTGGCTTTGG 

 

GCCTTGCATTCTGACCGAG 
 

516 

 

Exon 

2 
125,815,969 125,816,359   CACAGAGGGAGTTGTGGGTG  CTCCTGGGACTAAACGGAAAG 

391 

 

Exon 

3 
125,817,174 125,817,709   GTACCCAACCGTGTGTTCCC CAGAGATTCAATCCAGCTCCC 

536 

 

Exon 

4 
125,823,104 125,823,515   GGATTGAAATGTTTGGCAGTG AGAGAAGCAGACACAGGGTGG 

412 

 

Exon 

5 
125,834,444 125,834,942 GAGCTCTGAGTGAAGCAGTCG 

 

TTACCTCTGTTTCCAGGCGAG 
499 
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breast 43 

65 63 61 58 56 55 53 51 47 45 42  57 
breast  

 
bone 57 

2 

4 

Figure 4.1: Pedigree 41983.  This Muslim Arab family has a history of consanguinity (1st cousins).  The proband has a sibling 

with a diagnosis with breast cancer, and an unaffected mother.   
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Figure 4.2: Pairwise (1-IBS) distance matrix of family expansion sample. This is the 

proportion of alleles IBS across all SNPs for a given pair of individuals. Values of 0 would 

indicate sample duplication. The distance matrix identifies clusters of individuals of greater 

similarity, corresponding to members of the same family. 
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Figure 4.3: Overlapping runs of homozygosity by affection status and family. This figure shows the overlapping ROH in more 

than 5 individuals by affection status where affected is blue and unaffected is green.  Runs of the same color are in the same family.  I 

focused on regions of overlap in individuals from different families.  It can be seen that the region on chromosome 9 has 6 different 

affected individuals from 6 different families. 

Overlapping runs of homozygosity (>1MB and >5 runs) 
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Figure 4.4: Overlapping region of homozygosity on Chromosome 9q33.2-33.3 which contains the candidate gene LHX2. This 

figure is taken from UCSC genome browser in the region where 6 individuals with breast cancer had an overlapping run of 

homozygosity.  The only gene present in this region is LHX2.  Below the UCSC figure is a schematic of LHX2 from Ensemble, 

showing that this gene has 5 exons. 
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CHAPTER 5 

Conclusions 

 

In this dissertation, I have applied several quantitative approaches to understanding the 

cancer genome, which allow for the discovery of the organization and function. I have gained 

insight into the role of genetic variation in the colon and breast cancer genomes through the 

recent advances in technology, and bioinformatic methods.  

I investigated the genetic basis of extremely rare, highly penetrant, novel variants in a 

family with hereditary mixed polyposis syndrome using next-generation sequencing techniques 

and the functional role of a novel variant in the candidate gene, ZNF426. Specifically, using the 

Illumina Genome Analyzer to sequence two affected related individuals with clinically and 

pathologically diagnosed HMPS, a total of 595,292,661 paired-end reads (76-120bp each) were 

mapped to the UCSC assembly hg19, with an average of 10x coverage of the haploid genome. 

The Genome Analysis Toolkit (GATK), which is a structured programming framework designed 

to aid in the efficient and robust analysis tools, was used for DNA sequence data analysis. I 

identified 1,162,925 variants were in common between the father and son, of which 125,460 

were not present in 1000 genomes or dbSNP 131. After quality control filtration and annotation, 

64 previously unidentified, nonsense, missense or splice site variants were identified between the 

two family members. Nine of the 11 novel candidate variants were next validated by Sanger 

sequencing. Six out of the 9 (67%) variants were shared by four of the affected family members, 

leading to a small subset of candidate genes putatively responsible for HMPS within this family. 
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One nonsense variant that was identified by next-generation sequencing in the father and son in 

ZNF426 was also present in the two affected daughters. Tumor DNA as well as DNA extracted 

from normal adjacent tissue for the father and son were sequenced for variation in ZNF426.  The 

novel variant was present in the tumor samples, however no loss of heterozygosity was detected. 

Analysis from quantitative real time PCR revealed decreased expression in the carcinoma tissue 

from the father, yet the adenomas and normal adjacent tissue were expressed at comparable level 

in both the father and son.  This study offers new insight on a novel region on 19p13.2,  that may 

be involved with susceptibility HMPS.   

Chapter three examines the role of colon tumor heterogeneity on chromosome 18 in 

CRC, with much more depth and insight then previous low-resolution microsatellite markers.  In 

this chapter, I determined copy number alterations using high-density, genome-wide SNP arrays 

using circular binary segmentation, which incorporated both the LRR and BAF information from 

SNP genotyping arrays.  I also visually inspected the LRR and BAF plots to see the extent of the 

region of loss.  Based on this information, I determined that 14 out of 21 tumors demonstrated 

instability on chromosomes 18, resulting in loss of whole chromosomes or deletion of only 

several kilobases. Eleven tumors from either the Illumina or the Affy genotyping platform 

demonstrated copy neutral loss of heterozygosity, 3 tumors had a complete deletion of at least 

one arm of chromosome 18.  Due to poor data quality on the Affy platform, resulting in high 

background noise, we fit the distribution of BAF values in each segment of copy alteration as 

either one Gaussian distribution or the summation of two Gaussian distributions. Eight tumor 

samples were run on both genotyping platforms, so I was able to use those samples as 

confirmation of alterations detected even in the high background samples. The „useable‟ samples 

size was increased from 8 tumors to 21 tumors using this approach.  Additionally expression data 
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on colorectal tumors from the U133APlus expression array was assessed for decrease in 

expression levels in regions of loss on chromosome 18 in CIN tumors. Mean expression across 

all probes on chromosome 18 was significantly lower (p-value = 0.000137) for samples with 

complete loss of one arm of chromosome 18 compared to the tumor samples with „normal‟ copy 

numbers (including the tumors samples with copy neutral loss of heterozygosity and the 

microsatellite stable tumors). Hierarchical clustering analysis and K-means clustering was 

performed on the expression data. The hierarchical clustering analysis produced a 2-cluster 

solution, clearly separating microsatellite instable from chromosomally instable tumors and 

suggested grouping of the 3 samples with complete deletion of at least one arm of chromosome 

18 and the samples with „normal‟ copy numbers (including tumors with CN-LOH and neutral 

copy state). New insights revealed in this chapter are the statistical methods that can improve 

yield of poor quality, high background data and the further refinement of the regions on 

chromosome 18 that distinguish chromosomally instable colorectal cancer.   

Finally, in the fourth chapter, I examined large runs of homozygosity in consanguineous 

individuals with a family history of breast cancer for autosomal recessive loci associated with 

disease. I identified large stretches of homozygous SNPs using a genome-wide genotyping 

approach in Arab and Jewish women with breast cancer and no mutations in BRCA1 and BRCA2. 

The whole genome association analysis toolset, PLINK v1.05, was used to screen for runs of 

homozygous genotypes in all cases and unaffected family members. Runs of homozygosity with 

≥1 Mb of consecutive homozygous SNPs defined minimal overlapping ROH regions.  Six 

individuals with breast cancer had 242 kb overlapping run of homozygous SNPs on chromosome 

9q33.2-33.3 which harbors a potentially important candidate gene in cancer, LHX2. All coding 

region (+/- 200 bp) of the gene LHX2 were sequenced in the six individuals with the overlapping 
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run of homozygosity. LHX2 is a putative transcription factor containing two cystein-rich (LIM) 

motifs and a homeobox (HOX) DNA-binding domain. Previous analysis of the sequence 

including the coding regions revealed a CpG-rich region, implicating a role for methylation in 

this gene. 
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APPENDIX: 
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