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CHAPTER I

Introduction

The desire to understand the human brain has been one of the main interests of

scientists throughout the 20th century. In the last 25 years several functional neu-

roimaging techniques have been developed to measure the relationship between activ-

ity in certain brain regions and specific mental functions (Jezzard et al. 2001, Raichle

2006). The research of functional neuroimaging draws together a multi-disciplinary

community of neuroscientists, psychologists, engineers, physicists, statisticians and

computer scientists. Statisticians, without exception, have had a key role to play in

this research and have already made many important contributions to the fields. A

number of statistical methods have been proposed to analyze functional neuroimag-

ing data over the last two decades, see, for example, Friston et al. (2007), Lazar

(2008) and Lindquist (2008) for an overview. However, the statistical results of most

neuroimaging studies are underpowered and suffer from poor reproducibility due to

small sample size (Wager et al. 2007a, Yarkoni 2009). Thus, there is a growing inter-

est in synthesis and integration of results across neuroimaging studies via statistical

meta analysis (Wager et al. 2009, Salimi-Khorshidi et al. 2009, Yarkoni et al. 2010).

Neuroimaging studies typically report three-dimensional coordinates for brain acti-

vation locations, i.e. points in a three-dimensional brain. The number and locations

1
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of the points are both random quantities, Thus, a natural model for such data is a

spatial point process model (Møller and Waagepetersen 2004; 2007). Motivated by

this problem, we develop some new spatial point process models and discuss their

applications to the meta analysis of functional neuroimaging data.

The remainder of this chapter is organized as follows: we start in Section 1.1 with

an overview of functional neuroimaging techniques and data acquisition procedures.

The standard approaches to analyzing functional neuroimaging data in single studies

are summarized in Section 1.2. The rationale and challenges of neuroimaging meta

analyses are presented in Section 1.3. We provide a brief introduction to spatial

point processes in Section 1.4. Finally, we outline the dissertation in Section 1.5.

1.1 Functional Neuroimaging

Functional neuroimaging has experienced a rapid growth since 1990. Currently

there exist several imaging modalities that measure physiological changes due to

brain activation that provide different perspectives on brain function. These modal-

ities include functional magnetic resonance imaging (fMRI), single photon emission

computed tomography (SPECT), positron emission tomography (PET), electroen-

cephalography (EEG) and magnetoencephalography (MEG). Both EEG and MEG

are based on the electrical and magnetic activity in the brain. They have excellent

temporal resolution but poor spatial localization compared with PET and fMRI.

These last two imaging modalities have played a prominent role in the study of hu-

man brain function in health and disease. Both PET and fMRI are able to measure

brain activity indirectly by measuring aspects of blood flow, volume and oxygen con-

tent. Specifically, when a cluster of neurons fire more rapidly, both blood flow and

the oxygen content of the blood in that region increase. PET uses radio-labeled trac-
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ers to identify the blood flow changes related to neural activity, while fMRI measures

the changes in oxygen content of the blood. Since fMRI is a non-invasive technique

that does not require the injection of radioactive tracers, it has taken a dominant

position in the field of functional neuroimaging. Next, we focuses on a very short

overview of how fMRI data are acquired; more detailed explanations can be found

in Jezzard et al. (2001).

We briefly begin with the science of magnetic resonance imaging (MRI). Hydrogen

(1H), the atom with a single proton and no neutrons, is found in abundance in the

body and is very sensitive to magnetic fields (Wills and Hector 1924). This makes

hydrogen particularly easy to image using magnetic resonance (MR). A MR scanner

produces a very powerful magnetic field that is many times greater than the natural

magnetic field of the earth. When the body is placed into a MR scanner, the magnetic

moments of hydrogen change and align with the direction of the field (Hashemi et al.

2004). A radio frequency (RF) pulse transmitter is turned on to inject additional

energy into protons. When the RF pulse is turned off, the protons emit this extra

energy and return to their original aligned positions. We refer to this procedure as

relaxation. The emitted energy is detected in turn by RF coils in the scanner as the

basic MR signal. To construct MR images from MR signals, we employ a system of

gradient coils that can vary the strength of the magnetic field, so that each location

in the brain has its own resonance frequency. The MR image is a map of these

frequencies. In fact, for each voxel, the intensity of the image is proportional to the

number of protons, weighted by their relaxation times in that voxel. In practice,

the raw data from MRI scanner are obtained in the frequency domain. We take the

inverse Fourier transform to convert it into image space, where statistical analyses

are usually conducted.
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Functional MRI extends the use of MRI to measure the neuronal activity of the

brain indirectly and provides information on brain function. It commonly uses blood

oxygenation level dependent (BOLD) contrast (Ogawa et al. 1990, Ogawa and Lee

1992). Oxygenated blood and deoxygenated blood have different magnetic suscep-

tibility (Springer et al. 1999). Deoxygenated blood is more paramagnetic than oxy-

genated blood. This implies that deoxygenated blood suppress the MR signal, while

oxygenated blood does not. Figure 1.1 illustrates the science of BOLD fMRI.

When the brain is active in response to a particular task or stimulus, the neu-

rons responsible for that task increase their energy consumption, in turn, increasing

oxygen demand. The change in blood oxygenation further causes changes in the

local magnetic fields, which in turn affects the MR signal in the active brain re-

gions (Kwong et al. 1992). Functional MRI has been shown to be sensitive to these

changes, although it does not measure brain activity directly (Ogawa and Lee 1992).

During an fMRI experiment, the subject is placed into a MR scanner and is

asked to perform a set of tasks that are designed to measure response to those tasks.

The system tracks changes in fMRI signal at each voxel of the brain over multiple

time points. Let n denote the number of voxels in the brain and let T represent the

number of time points. Typically, n is greater than 100,000 and T varies between 100

to 2,000. Therefore, for a single subject fMRI study, we collect four-dimensional data

with T multivariate observations, each with n elements. From a different perspective,

the data can be considered as n time series, each with T observations. Also, other

functional neuroimaging modalities, such as PET, EEG and MEG, produce the same

four-dimensional data structure, although they have various spatial and temporal

characteristics. In the next section, we provide a survey of statistical modeling and

analysis of functional neuroimaging data. See Friston et al. (2007), Lazar (2008) and
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Lindquist (2008) for more details.

1.2 Statistical Parametric Mapping

Since functional neuroimaging data tends to be very noisy due to the influences of

data acquisition and physiological artifacts, a series of preprocessing steps are used

to remove artifacts and clean up as much of the extraneous sources of variation as

possible, prior to formal statistical analysis (Strother 2006). The major steps involved

in fMRI preprocessing are slice timing correction, motion correction, registration,

normalization and spatial smoothing. These steps are also crucial to validate model

assumptions and make statistical analysis valid (Lindquist 2008).

Many statistical methods have been proposed for a variety of goals in functional

neuroimaging data analysis (Lazar 2008). In this section, we primarily focus on the

standard statistical approach to localizing brain activity, i.e. the general linear model

(GLM) (Mardia et al. 1979). The GLM is at the foundation of most functional

neuroimaging statistical analyses(Friston et al. 1994). The basic GLM approach

assumes that voxels are independent and the same model is appropriate at each voxel

in the brain. This type of analysis is called the massive univariate approach and is

the most common approach. Although, recently some statistical models have been

suggested that account for spatial dependence between neighboring voxels (Gossl

et al. 2001, Katanoda et al. 2002, Luo and Nichols 2003, Penny et al. 2005, Bowman

2005). More specifically, for a single subject fMRI analysis, at each voxel, the fMRI

time series data are fitted via a general linear model with a design matrix that

reflects the stimuli present at different time points. The GLM can be extended to

incorporate information for group analysis as well. Mixed-effects models have also

been suggested for group analysis. After fitting the model, one performs hypothesis
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testing on differences in fMRI signal magnitudes between conditions or groups. This

procedure is repeated for all the voxels and the test statistics (e.g. t-values) are

summarized in a statistical parametric map (SPM), i.e. t-map. A thresholded SPM is

usually constructed to identify regions of brain activation. In a standard fMRI study

over 100,000 hypothesis tests (one for each voxel) are simultaneously made. Thus,

it is important to correct for multiple comparisons to control the false positive rate.

Several statistical methods have been developed based on random field theory for

controlling the family-wise error rate or the false discovery rate (Genovese et al. 2002,

Nichols and Hayasaka 2003). An identified brain activation region is a contiguous

collection of voxels, called a cluster, whose t-values exceed a threshold for statistical

significance at a pre-specified level. Most functional neuroimaging studies publish

their results and only report the peak activation locations: i.e. cluster local maxima.

Steps involved in a standard analysis are shown in Figure 1.3.

1.3 Meta Analysis of Functional Neuroimaging Data

As the number of functional neuroimaging studies grows, neuroscientists are in-

creasingly interested in formal synthesis of findings across studies via meta analysis.

A meta analysis mitigates the problems of a single functional neuroimaging study.

First, most neuroimaging studies have relatively low power due to small sample size.

The typical number of subjects in an fMRI experiment ranges from 10 to 20 due

to difficulty in recruiting special patients and the high cost of fMRI scanner time.

These small sample sizes are likely to provide little power to detect any signal except

extremely large effects (Wager et al. 2007a, Yarkoni 2009). Meta analysis offers a

way to increase statistical power by combining results from different small studies.

Second, many fMRI studies published use p-values that result in high false positive
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rates (Wager et al. 2007b). The goal of a meta analysis is to find consistent acti-

vation region across studies making it possible to separate consistent findings from

idiosyncratic ones. Third, many single functional neuroimaging studies suffer from

poor reproducibility (Thirion et al. 2007). Due to the high cost of fMRI studies,

replicating old studies is rarely done. Instead, new studies only retain some features

of the old study. However, there is no consensus on exactly what constitute a repli-

cation. A meta analysis has the potential to address this problem by identifying

consensus regions that can be tested in replications.

As pointed out in Section 1.2, single studies rarely report the full SPM. Instead,

they only report foci, defined as the local maxima in significant regions in the SPM.

Thus, neuroimaging meta analyses are typically based on these three-dimensional

coordinates. More specifically, a typical meta analysis dataset, called coordinate-

based, contains a list of foci reported from similar studies, where the number and

locations of the reported foci vary from study to study. Figure 1.4 shows a meta

analysis data set in both tabular and image form. Several statistical approaches

have been developed to analyze coordinate-based meta analysis data (Fox et al. 1997,

Nielsen and Hansen 2002, Turkeltaub et al. 2002, Wager et al. 2004, Kober et al. 2008,

Eickhoff et al. 2009, Radua and Mataix-Cols 2009). The kernel-based approaches,

like Activation Likelihood Estimation (ALE) and Multi-level Kernel Density Analysis

(MKDA) play an important role, although they have some limitations, see Section

2.1 for a review of these methods. Such meta analysis approaches have attempted

to address two main problems of interest in the field.

One is to establish activation consistency across studies to control the false pos-

itive rate and increase power. This is the most common goal of neuroimaging meta

analysis. Most current methods are based on the mass-univariate approach that lacks
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an explicit spatial model and makes no spatial inference. This motivates the need

of a fully spatial model. Thus, in this dissertation, a Bayesian spatial point process

model is developed to address these issues. In many cases, the meta analysis dataset

involves various psychological tasks. Neuroscientists are not only interested in iden-

tifying consistent activation regions across studies for a single task, they are also

interested in the regions that are shared between the tasks. Current meta analysis

methods cannot address this problem. We show that this problem can be addressed

by extending the Poisson/gamma random field model (Wolpert and Ickstadt 1998a).

Another interesting problem is discriminating among the different cognitive states

in a meta analysis. In fact, decoding cognitive states from human brain activity is a

primary goal and a key challenge in functional neuroimaging research (Poldrack 2006,

Poldrack et al. 2009). Most studies are designed to determine the distributed brain

activation patterns that result from different known tasks. In a meta analysis, it is of

interest to perform reverse inference on cognitive states from foci that report from a

new study (Wager et al. 2009). From a statistical perspective, this can be considered a

classification/prediction problem (Pereira et al. 2009). Yarkoni et al. (2011) proposed

a new method. However, it can suffer from poor classification performance in some

cases, see discussion in Section 4.1. One reason may be that their method only

focuses on the spatial pattern of the foci and ignores the fact that the number of foci

is also random. Spatial point process models do not suffer from this oversight.

1.4 Spatial Point Processes

In the section, we briefly review basic concepts and spatial point process models.

A spatial point process refers to a random countable subset of a space, such as, a

sub-space, B, of d-dimensional Euclidean space, denoted by Rd. The most important
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spatial point process is the Poisson point process. X is a Poisson point process on

B with intensity λ, denoted by X ∼ PP(B, λ), if and only if 1) ∀S ⊂ B, NX(S)

(the number of points of X in S) follows a Poisson distribution with mean µ(S) =∫
S
λ(x)dx; 2) ∀n ∈ N = {0, 1, 2, . . . , } and S ⊂ B, conditional on NX(S) = n, there

are n points of X in S with density λ(·)/µ(S).

Another useful point process is the Cox process, introduced by Cox (1955) as

the doubly stochastic Poisson process. For our purposes, suppose Z(s) is a non-

negative random field defined on the brain, B ⊂ R3. If, conditional on λ(s), X is a

Poisson process with intensity λ(s), then (marginally) X is said to be a Cox process

driven by λ. If X is a Cox process driven by λ and λ is restricted to be a constant

function, we call X a mixed Poisson process. Now, suppose [X | λ] ∼ PP(B, λ).

The density of this measure with respect to Lebesgue measure on B does not exist.

However, the density (or Radon-Nikodym derivative) does exist with respect to the

probability measure induced by the unit rate Poisson process defined on B (Møller

and Waagepetersen 2004) and is

π(x | λ) = exp

[
|B| −

∫
B
λ(s)ds

]∏
x∈x

λ(x)

where |B| denotes the volume of B. If, further, we attach a mark, mx ∈ M to

each point x ∈ X, then (X,M) = {(x,mx) : x ∈ X,mx ∈ M} is a marked Cox

process with intensity ρ : B × M → R+ ∪ {0}. If the Mx are independent and

identically distributed with density π(m) and are also independent of the process X,

then ρ(s,m) = λ(s)π(m). Now consider a point process X. Conditional on X = x,

suppose that associated with each x ∈ x is a process Yx centered at x and that

these processes are independent of one another. Then ∪x∈xYx is an independent

cluster process. Scatter noise and outliers are often modeled by a homogeneous

Poisson process with intensity ε independently of all yx (van Lieshout and Baddeley
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2001). Then the independent cluster process has modified intensity λ(·; x) = ε +∑
x∈x fx(·;x). See Møller and Waagepetersen (2004) for more details on spatial

point processes.

1.5 Dissertation Outline

This dissertation is organized as follows. In Chapter II, we propose a Bayesian

spatial hierarchical model for functional neuroimaging meta analysis using a marked

independent cluster process. In Chapter III, we develop a non-parametric Bayesian

modeling approach to the analysis of multi type spatial point patterns and discuss

its application to a multi type emotion meta analysis. Incorporating the models in

Chapters II and III, a Bayesian spatial point process based classifier is proposed in

Chapter IV for reverse inference on cognitive states in functional neuroimaging meta

analysis. In the last chapter, we summarize our findings with discussions for future

work.
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Blood flow and volume ↑↑↑
Oxygenated blood ↑

Deoxygenated blood ↓
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Rest (normal blood flow) 
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Figure 1.1: An illustration of the BOLD fMRI mechanism. (A): BOLD signal mechanism
in MRI; (B): oxygenated blood (red) and deoxygenated blood (blue) flow during rest and
activation.
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Figure 1.2: An illustration of fMRI signal and single subject data.
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Karlsson et al

proposed that the occipital cortex is involved in the processing of
visually relevant, complex emotional stimuli.32 These activations
of the visual cortex are also independent of the type of emotion.
This is fully in accordance with our results, which showed that
people in the non-alexithymia group activated to a greater extent
than the alexithymia group large dorsal areas, including the cu-
neus, uvula and fusiform gyrus, in response to emotional films.

There was also distinct left-sided lateralisation visible in the
brain activation of the alexithymia group. According to the older
theories of emotion, the left hemisphere is specialised in cognitive
processing and the right hemisphere in the processing of emotion.
However, in a meta-analysis of healthy people,33 the authors
found no support for the hypothesis of overall right lateralisation
of emotion processing. It could be that the normal balance
between the hemispheres is lost in alexithymia, and that individ-
uals with this condition thus exhibit relatively more left-sided
activations. Some evidence in favour of this view exists. Several
studies have suggested left hemisphere dominance in participants

with alexithymia.34–36 Deficits in the perception of emotion have
also been found in people with right hemisphere damage.37,38

One of the reasons for our results being to some extent different
from the previous imaging studies could be that we used film clips
instead of pictures. Because films create a more prolonged and
engaging emotional response, they may simulate real-life emotional
situations better than static pictures do. There are also several limita-
tions to our study, including its small sample size, with exclusively
female participants, and the use of a self-report measure to assess
alexithymia. Our results should be replicated with other methods
of assessment of alexithymia, including structured interviews such
as the recently developed Toronto Structured Interview for Alexithy-
mia,39 or reliable projective methods such as the Levels of Emotional
Awareness Scale,40 and possibly a larger sample.

In conclusion, our study shows that alexithymia is related both
to impairment in the processing of emotions (less activation in the
anterior cingulate) and to a tendency to activate brain areas
relating to bodily sensations in emotion-evoking situations.

36

Fig. 1 Brain areas exhibiting less activation in the participants with alexithymia.

Table 1 Brain regions showing lesser activation in alexithymia

Talairach and Tournoux coordinates

Cluster size Brain region x y z tmax
a z

Whole brain exploratory analyses
2903 Right posterior lobe, cuneus 24 779 13 4.94*b 4.34

Right posterior lobe, uvula 30 783 23 4.60*b 4.10
Right occipital lobe, cuneus (BA19/18) 18 796 23 4.38*b 3.93

3502 Left occipital lobe, cuneus (BA18) 716 796 18 4.77*b 4.22
Left occipital lobe, fusiform gyrus (BA18) 722 790 717 4.65*b 4.13
Left occipital lobe, middle occipital gyrus (BA19) 736 793 14 4.55*b 4.06

Region of interest analyses
20 Right limbic lobe, anterior cingulate 14 30 26 4.54

3

4.05
35 Left frontal lobe, superior frontal gyrus (BA8)/middle frontal gyrus (BA6) 732 22 54 4.27 3.85

BA, Brodmann area.
a. d.f.¼40.
b. Corrected (family-wise error rate).
c. Corrected (false discovery rate).
*P50.05.

Figure 1.3: The fMRI data processing pipeline illustrates the paths from the raw fMRI
time series to the statistical parametric maps to the peak activation locations (foci) via
preprocessing, statistical analysis and cluster analysis.
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Figure 1.4: Functional neuroimaging meta analysis data: foci reported from different studies.



CHAPTER II

Meta Analysis of Functional Neuroimaging Data via
Bayesian Spatial Point Processes

As the discipline of functional neuroimaging grows there is an increasing interest

in meta analysis of brain imaging studies. A typical neuroimaging meta analysis

collects peak activation coordinates (foci) from several studies and identifies areas

of consistent activation. Most imaging meta analysis methods only produce null

hypothesis inferences and do not provide an interpretable fitted model. To overcome

these limitations, we propose a Bayesian spatial hierarchical model using a marked

independent cluster process. We model the foci as offspring of a latent study center

process, and the study centers are in turn offspring of a latent population center

process. The posterior intensity function of the population center process provides

inference on the location of population centers, as well as the inter-study variability

of foci about the population centers. We illustrate our model with a meta analysis

consisting of 437 studies from 164 publications, show how two subpopulations of

studies can be compared and assess our model via sensitivity analyses and simulation

studies.

15
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2.1 Introduction

Functional neuroimaging is a relatively young discipline within the neurosciences

that has led to significant advances in our understanding of the human brain (Raichle

2003). One of the most widely used method, functional magnetic resonance imag-

ing (fMRI), has grown from just 2 publications in 1993 to over 2100 in 2009 (based

on a PubMed search for “fMRI” in the title or abstract). However, due to the

relatively high cost of MRI scanner time a typical fMRI study consists of fewer than

20 subjects. Thus most studies suffer from inflated type II errors (i.e. low power)

and poor reproducibility (Thirion et al. 2007). See, e.g., Jezzard et al. (2001) for an

overview of fMRI analysis methods.

To overcome these limitations there has been a growing interest in meta analyses

of functional neuroimaging studies. The goal of a functional neuroimaging meta

analysis is similar to that of a single study: to identify regions of the brain that

are activated by some thought, emotion or action. Given the statistic images from

the studies, or the original data, an intensity based meta analysis (IBMA) can be

conducted via either a fixed effects model or an hierarchical mixed effects model

(Salimi-Khorshidi et al. 2009). However, published studies rarely provide the statistic

images or original data (though we note that there is a growing interest among

researchers in sharing full image data and statistic maps). Rather, they only provide

the locations of local maxima in the statistic image in significant regions of activation;

that is, (x, y, z) coordinates in a template space, typically the Montreal Neurological

Institute (MNI) template (Mazziotta et al. 2001). We shall refer to these locations

as foci, or a single focus. Thus, the data in most functional neuroimaging meta

analyses consist of only the foci, allowing only a coordinate based meta analysis
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(CBMA). While a range of CBMA methods have been proposed, Fox et al. (1997),

Nielsen and Hansen (2002), Turkeltaub et al. (2002), Wager et al. (2004), Kober

et al. (2008), Eickhoff et al. (2009), Radua and Mataix-Cols (2009), we consider only

the current versions of two commonly used methods, modified activation likelihood

estimation (Eickhoff et al. 2009, modALE), and multilevel kernel density analysis

(Kober et al. 2008, MKDA). See Salimi-Khorshidi et al. (2009) for a recent review

of CBMA methods.

Both modALE and MKDA create a meta analysis statistic map based on the foci

of each study, where the statistic value at each voxel (or volume element) summarizes

the evidence for clustering at that location. Briefly, they start by creating an image

for each focus, where the intensity in the image is based on the proximity of each

voxel to the focus. These per-focus maps are then combined into a study map, and

the study maps are in turn combined into a meta analysis map. The intensities in

the meta analysis map are compared to maps generated by null hypothesis Monte

Carlo simulation, creating P-values. The two methods differ in how they create the

foci maps, and how they combine these into study and meta analysis maps. The

modALE creates a focus map by placing a Gaussian density of size σmodALE centered

at the focus (normalized to integrate to unity over the map), where the intensity

is interpreted as the probability that the focus arose from a given voxel. Assuming

independence between foci, modALE combines focus maps with the probability addi-

tion rule, effectively computing the probability that one or more foci arose at a given

voxel; this procedure is used both to combine focus maps into study maps, and to

combine study maps into meta analysis maps. MKDA creates a focus map by plac-

ing a sphere of unit intensity and diameter dMDKA centered at the focus. Multiple

focus maps are combined into a study map with the logical OR operator, creating an
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indicator map showing where one or more foci are found within distance dMDKA of

a given voxel. Multiple study maps are combined into a meta analysis map with the

sample mean, providing a map interpretable as the proportion of studies with one or

more foci within distance dMDKA. Monte Carlo resampling is roughly similar in each

method, with foci locations randomly shuffled between studies, and meta analysis

maps recreated for each realization; see the respective references for details. Tradi-

tional mass-univariate statistical inference is carried out, finding either voxel-wise or

cluster-wise P-values, corrected by familywise-error methods or the false discovery

rate.

While methods like modALE and MKDA are widely used, have freely available

implementations, and, for MKDA in particular, have intuitive appeal, we find that

they have several shortcomings. Both require spatial kernel parameters (σmodALE

and dMDKA) that must be fixed; while Eickhoff et al. (2009) propose an algorithm

for estimating σmodALE based on training data, the value is not data adaptive and

is assumed to be constant over the brain. Further, while neuroimaging users are

familiar with the voxel-wise and cluster-wise inferences generated, these are based

on a mass-univariate approach that lacks an explicit spatial model. Specifically, there

is no way to infer on spatial dispersion of foci between studies, nor obtain spatial

confidence regions on where foci arise in the population of all studies.

In this work we propose a hierarchical spatial point process model (Møller and

Waagepetersen 2004; 2007, Illian et al. 2008) and estimate model parameters via the

Bayesian paradigm. In particular, we adopt a spatial independent cluster process

(van Lieshout and Baddeley 2001). The algorithm used to estimate the posterior

distribution of model parameters stochastically searches for clusters of foci. Clusters

appear in regions of (relatively) high foci density across studies and thus represent
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regions where a preponderance of studies reported activation. A cluster’s center rep-

resents the most likely location of the foci that define the cluster, and thus represents

the “population center” of activation in the particular region of the brain in which

the cluster is observed. Thus, a central goal of our modeling is to find clusters of foci

and their associated population centers. Furthermore, since we adopt a Bayesian

modeling approach, other quantitative information can be extracted from our model

that cannot be deduced from current CBMA methods. Such as 1) the variability

of the foci about the population center; 2) the variability of the population cen-

ters themselves; 3) the probability that there exists at least one population center

in any region of interest (ROI) within the brain; 4) the probabilistic comparison of

locations of cluster (population) centers of foci across different types of studies (e.g.

studies of negative vs. positive emotion); 5) prediction of where a new study will

most likely report foci (and hence the most likely locations where activation will be

found); and 6) estimation of the proportion of foci that do not cluster with foci from

other studies. Specific examples are given in Section 2.3.

To give an impression of the neuroimaging meta analysis data, Figure 2.1 shows an

extract of the foci data of the emotion meta analysis in both tabular and image form

(see Section 2.3 for more details). Note that both PET and fMRI data are considered,

reasonable since, after smoothing, group fMRI studies are similar to PET data in

smoothness and interpretation of the signal (Feng et al. 2004). An important facet of

the data is the issue of singly reported foci versus multiply reported foci. For a given

activation area in the brain, some authors only report a single focus, while others

report multiple foci, however this information is rarely provided in the literature.

These differences are attributable to how different software packages report results,

and simply author preference.
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The remainder of this manuscript is organized as follows. In Section 2.2 we pro-

pose our Bayesian hierarchical marked spatial independent cluster process. In Section

2.3, we apply our model to a meta analysis data set of emotion studies and com-

pare our results from modALE and MKDA. In Section 2.4 we briefly discuss results

from sensitivity and simulation studies. We conclude the paper with a discussion

of our model and ideas for future research. We provide supplementary material in

Appendix A with algorithm details, pseudo code, and details from simulation studies

and sensitivity analyses.

2.2 The Model

2.2.1 Model Outline and Notation

First we outline our model and then present details. The hierarchical model

consists of three main levels and is illustrated in Figure 2.2. At the lowest level,

level 1, are the foci (data). For study c, c = 1, . . . , C, the foci are a realization,

xc, of an independent cluster process, Xc, driven by random intensity function λ1c

and these processes are independent across studies. The process Xc is made up of

two types of foci: singly reported foci (type 0) and multiply reported foci (type 1).

For a generic point x ∈ xc denote the missing type indicator, or mark, by δx. Let

Xd
c = {x ∈ Xc : δx = d}, d = 0, 1. Conditional on the realization, yc, of a latent study

activation center process, Yc, we associate with each y ∈ yc a process, X1
cy, of type

1 foci normally distributed about the study activation center y with covariance Ψy

and that these processes are independent and their union X1
c = ∪y∈ycX

1
cy forms an

independent cluster process driven by random intensity function λ1
1c. Note that Ψy

is a latent, random mark attached to y ∈ yc. Also, conditional on the realization, z,

of a latent population center process, Z, we associate with each z ∈ z a process, X0
cy,

of type 0 foci normally distributed about the population center z with covariance
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Σz (a latent random mark attached to z) and that these processes are independent

across studies. We also allow the possibility that type 0 foci do not cluster about

any z ∈ z and model them as an independent homogeneous Cox process Xc∅ driven

by homogeneous random intensity ε1c. The union X0
c = ∪z∈zX

0
cz ∪ Xc∅ forms an

independent cluster process driven by random intensity function λ0
1c. We note that

Xc = X0
c ∪X1

c and is driven by the random intensity λ1c = λ0
1c + λ1

1c.

At level 2 we model the latent study activation center process for study c, Yc,

as an independent cluster process. Conditional on the (realized) population center

process, z, we associate with each z a finite process, Ycz, with realization ycz of

points normally distributed about the population center z with covariance Σz. We

assume that the processes Ycz given z are independent. We allow the possibility

that some study activation centers do not cluster about any z ∈ z and model these

as an independent homogeneous Cox process Yc∅ driven by homogeneous random

intensity ε2c. and thus their union Yc = ∪z∈zYcz ∪Yc∅ forms an independent cluster

process driven by the random intensity function λ2c. (A study activation center is a

substitute for the location of the global maximum in a given activation region, which

is not reported. This is how we account for multiply reported foci.)

At the highest level, level 3, are the latent population centers. We assume, a

priori, that the population centers are a realization, z, of a homogeneous Cox process

Z driven by homogeneous random intensity β. Attached to each population center,

z ∈ z, is a latent random mark, Σz. The points that cluster about the population

centers are singly reported foci from level 1 and study activation centers from level

2. We refer to the singly reported foci and the study activation centers collectively

as activation centers.
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2.2.2 Model Details

We begin at level 1. We model Xc with an independent cluster process on the

brain, B, driven by λ1c(x; ·). (Throughout, f(x; ·) represents a parametrized function

f of x. The ‘·’ is shorthand for all parameters on which f depends.) The conditional

likelihood of this process for study c is

(2.1) π [xc | λ1c(x; ·)] ∝ exp

[
−
∫
B
λ1c(s; ·)ds

] ∏
x∈xc

λ1c(x; ·).

We note here that Xc | λ1c(x; ·) is a Poisson point process and that the conditional

likelihood defined in (2.1) is the density of Xc | λ1c(x; ·) with respect to the measure

of a unit-rate Poisson process and not to the standard Lesbesgue measure (Møller

and Waagepetersen 2004; 2007). The unmarked process Xc is made up of the two

types of foci—singly reported, type 0, and multiply reported, type 1. For a generic

point x ∈ Xc assume, a priori, that π(δx = 0) = p = 1 − π(δx = 1). Given these

marks the processes X0
c and X1

c are independent and are driven by intensity functions

λ0
1c and λ1

1c, respectively, with λ1c = λ0
1c + λ1

1c. Let (x, δ)c = {(x, δx) : x ∈ xc}. The

joint density of the data and marks is

π [(x, δ)c | λ1c] =
1∏
d=0

π
[
xdc | λ1c

] ∏
x∈xc

p1−δx(1− p)δx

∝ exp

[
−
∫
B
λ0

1c(s; ·)ds
] ∏
x∈xc

[
λ0

1c(x; ·)p
]1−δx ×

exp

[
−
∫
B
λ1

1c(s; ·)ds
] ∏
x∈xc

[
λ1

1c(x; ·)(1− p)
]δx

.(2.2)

Now (2.2) and (2.1) are equivalent in the sense that if we marginalize over all possible

δc = {δx : x ∈ xc} in (2.2) we get (2.1). The intensity functions are

λ0
1c(x; ·) = ε1c +

∑
z∈z

θ1cφ3(x; z,Σz)(2.3)

λ1
1c(x; ·) =

∑
y∈yc

ηcφ3(x; y,Ψy).(2.4)
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The function φ3(a; b,Ab) represents the density of a 3-D normal random variable

with mean b, covariance matrix Ab at location a. The parameter θ1c multiplied by∫
B φ3(x; z,Σz)dx is the expected number of type 0 foci that cluster about population

center z ∈ z, while ηc
∫
B φ3(x; y,Ψy)dx is the expected number of type 1 foci that

cluster about study activation center y ∈ yc. The intensity function of the type 0

foci that do not cluster about a population center is ε1c.

Level 2: Let (y,Ψ)c = {(y,Ψy), y ∈ yc}. The joint density of the conditional

latent study activation center process and the independent marking distribution, for

study c, is

π [(y,Ψ)c | λ2c] = π [yc | λ2c(y; ·)]
∏
y∈yc

π [Ψy]

∝ exp

[
−
∫
B
λ2c(s; ·)ds

] ∏
y∈yc

λ2c(y; ·)π(Ψy).

The intensity function of the unmarked process Yc is given by

(2.5) λ2c(y; ·) = ε2c +
∑
z∈z

θ2cφ3(y; z,Σz).

In (2.5), θ2c

∫
B φ3(y; z,Σz)dy is the expected number of study activation centers that

cluster about population center z ∈ z. The intensity function of the study activation

centers that do not cluster about a population center is ε2c.

By independence the joint density of the processes X0
c , Yc, c = 1, . . . , C, is

C∏
c=1

π(x0
c | λ0

1c)π(yc | λ2c) ∝ exp

(
−
∫
B
λ(s; ·)ds

) C∏
c=1

∏
x∈x0

c

λ0
1c(x; ·)

∏
y∈yc

λ2c(y; ·)

where

λ(y; ·) =

(
C∑
c=1

(ε1c + ε2c)

)
+

(
C∑
c=1

(θ1c + θ2c)

)∑
z∈z

φ3(y; z,Σz)

≡ ε+ θ
∑
z∈z

φ3(y; z,Σz).(2.6)
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Level 3: At the final level, the latent, unmarked, population center process Z is

modeled as a homogeneous Cox process driven by β defined on B. Let |B| denote

the volume of B. Let (z,Σ) = {(z,Σz), z ∈ z}. The conditional joint density of the

population center process and the independent marking distribution is

π [(z,Σ) | β,T ] = π(z | β)
∏
z∈z

π(Σz | T ) ∝ exp (−β|B|)
∏
z∈z

β π(Σz | T )

where T is a hyperprior for the distribution of Σz.

We now specify prior distributions and begin with level 3 priors and work back-

wards. For z ∈ Z, Σz ∼ W−1(T , ν); that is, Σz has an inverse Wishart distri-

bution with scale matrix T and ν degrees of freedom. The Σz are independent

of one another and are independent of the process Z. The inverse of the hyper-

parameter T is assigned a Wishart distribution: T−1 ∼ W (T 0, ν0) where T 0 and

ν0 are fixed. The random intensity, β, of Z is assigned, a priori, a gamma distri-

bution: β ∼ G(aβ, bβ) with aβ and bβ fixed (values of the fixed hyper-parameters

should be problem specific and are discussed below in Section 2.3). Now at level 2,

the marks, Ψy, of the study activation center processes are given an inverse Wishart

distribution: Ψy ∼ W−1(S, d). The Ψy are independent of one another and inde-

pendent of the processes Yc, c = 1, . . . , C. Both ε and θ defined in (2.6) are assumed

known. In the simulation of the posterior distribution, it is not necessary to esti-

mate the parameters ε2c and θ2c, c = 1, . . . , C and estimates of ε1c and θ1c are only

needed to impute the missing type indicator (whether a focus is a singly reported

focus or a multiply reported focus). We assume the probability that a type 0 fo-

cus in study c clusters about a population center z ∈ z and the probability that

a study activation center in study c clusters about the same population center are

equal. We feel this assumption is quite reasonable as it implies that the study ac-

tivation centers and the singly reported foci are treated equivalently in level 2 (see
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the intensity functions in (2.3), (2.5) and (2.6)). Furthermore, we assume that these

probabilities are also equal across studies. This assumption also reduces the number

of parameters that need to be estimated. In Appendix A, we show that this proba-

bility equivalence assumption implies θ1c/ε1c = θ2c/ε2c = θ/ε, which, in turn, implies

that ε1c/ε = θ1c/θ (≡ ρ1c) and ε2c/ε = θ2c/θ (≡ ρ2c). Thus,
∑C

c=1(ρ1c + ρ2c) = 1.

Define ρ = (ρ11, . . . , ρ1C , ρ21, . . . , ρ2C). A priori, we assign ρ a Dirichlet distribution:

ρ ∼ D(α1, . . . , α1, α2, . . . , α2). The prior distribution on ρ induces a prior distribu-

tion on the ε1c, θ1c, ε2c and the θ2c. The last level 1 parameters are the ηc. A priori,

we assume that ηc ∼ G(aη, bη) and are independent of one another.

The posterior distribution of parameters given data is complicated and has no

closed form solution. Thus we resort to spatial birth and death processes nested

within a Markov chain Monte Carlo simulation algorithm to sample from the poste-

rior distribution. Details of the algorithm and pseudo code are provided in Appendix

A.

2.3 Application

In this section, we apply our model to a neuroimaging meta analysis of emotion

first reported in Kober et al. (2008). The meta analysis data set consists of 164

publications of various aspects of emotion. A total of 7 emotions were studied across

the different experiments: sad, happy, anger, fear, disgust, surprise and affective.

Our goal is to find consistent regions of activation across the different studies and

types of emotions. Many papers report results from different statistical comparisons

called “contrasts”, which we are calling studies. Following the convention of existing

neuroimaging meta analyses, we treat each of these studies as independent. There

are a total of 437 studies reporting a total of 2475 foci. Table 2.1 lists some features
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and summary statistics of this data set. Consult Kober et al. (2008) for further

details.

2.3.1 Prior Parameters

Several parameters are assigned vague or non-informative prior distributions. We

assign a vague prior to the ηc: ηc ∼ G(0.001, 0.001), c = 1, . . . , C, while ρ is assigned

the non-informative Jeffrey’s prior: ρ ∼ D(0.5, . . . , 0.5, 0.5, . . . , 0.5). All other prior

and hyperprior parameters are obtained by elicitation from an expert in the meta

analysis of neuroimaging data, and neuropsychologist, Tor Wager. We asked Tor,

based on his experience, 5 questions: i) How many population centers do you expect

to find in this meta analysis? ii) Given that some studies report multiply reported

peaks per activation regions and other do not, on average how many multiply re-

ported peaks per study do you expect? or how many activation centers per study do

you expect? iii) What percentage of the activation centers do you expect to cluster

about population centers? iv) What is the average spread of multiply reported foci

about study activation centers? v) What is the average spread of activation centers

about population centers? We note that since we need to match expected numbers,

or percentages, given in these responses to the actual data, some prior settings have

an empirical Bayesian flavor. Given his responses, we derive the remaining prior

distributions as follows.

i) The number of population centers, or clusters, for this particular meta analysis is

in the range from 20 to 40. Thus, a priori, we set the expected number of population

centers, E [NZ(B)], to 30. We want to be vague about the range of the number of pop-

ulation centers and thus set β|B| ∼ G(0.03, 0.001). Therefore, since [NZ(B) | β|B|]

has a Poisson distribution with mean β|B|, NZ(B) is, a priori, a negative binomial

random variable with mean 30 and variance 30, 030. ii) The mean number of foci
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reported per study is 5.67 (Table 2.1). We expect that there will be on average,

5 singly reported foci and study activation centers (collectively, activation centers)

per study (for a total of 2185) and that iii) the majority of these will cluster about

population centers—80% (for a total of 1748). Let A = ∪Cc=1 ∪z∈z (X0
cz ∪Ycz), then

E(NA(B)) ≡ θ
∑

z∈z Φ3(·; z,Σz) = θ
∑

z∈z

∫
B φ3(ξ; z,Σz)dξ is the expected num-

ber of activation centers that cluster about population centers; i.e., conditional on

θ, z and the marks Σz, z ∈ z, NA(B) is a Poisson random variable with mean

θ
∑

z∈z Φ3(·; z,Σz). Equating the latent number of population centers to the mean

number of population centers, nz(B) = E(NZ(B)) = 30, and assuming Φ3(·; z,Σz) ≈

1, ∀z ∈ z, we have E(NA(B)) ≈ 30θ = 1748 which implies that θ = 1748/30. Also,

ε|B| is the expected number of activation centers that do not cluster about popula-

tion centers; i.e. A∅ ≡ ∪Cc=1 (Xc∅ ∪Yc∅) ∼ Poisson(B, ε) so that NA∅(B) is a Poisson

random variable with mean ε|B| = 437. Thus, ε = 437/|B|. iv) The covariances,

or marks, Ψy ∼ W−1(S, 5) where S is the 3 × 3 identity matrix, I. This gives,

a priori, E(Ψy) = I. v) The covariances Σz ∼ W−1(T , 5) with T−1 ∼ W (T 0, 5)

where T 0 = 0.8I which results in, a priori, E(Σz) = 4I. We note here that if

A ∼ W−1(B, d) and A has dimension m × m, that the variance and covariances

of the elements of A do not exist when d ≤ m + 3 (Press 1982). Thus, the prior

distributions of Ψy and Σz are heavy-tailed.

A sensitivity analysis of the posterior distribution to the informative prior infor-

mation in our model (numbers 1 through 5 above; i.e. NZ(B), ε, θ, Ψy and Σz and

hyperprior T ) is provided in Appendix A. We briefly discuss our findings in Section

2.4, below. Next, we present results from our modeling of the emotion meta analysis

dataset.
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2.3.2 Analysis of the Emotion Meta Analysis Dataset

We approximate the posterior distribution by running the algorithm for 120,000

iterations, discarding the first 20, 000 as a burn-in. We assess convergence of the

chain by multiple runs of the algorithm from diverse initial conditions and visually

inspect the difference in various posterior mean intensity functions and find only

minor differences. Furthermore, we use the method of Gelman and Rubin (1992) to

assess convergence on the number of population centers. The mean of the potential

scale reduction factor is 1.0 with an upper 0.975 quantile of 1.01. Thus, the number

of iterations and burn-in appears to be sufficient and that the chain has converged

to stationarity.

First we compare our results with those from a modALE (Eickhoff et al. 2009)

and a MKDA (Wager et al. 2007b, Kober et al. 2008) analysis of the same data.

Since we do not have an auxiliary data set that can be used to estimate the kernel

size used in modALE, we use the default kernel size provided in the software. In

fact, the software does not allow the user to define the kernel size. To the best of our

knowledge, the kernel size defined in the software is that derived in Eickhoff et al.

(2009) and is based on a fist clenching experiment which may not be appropriate for

our data. Figure 2.3 shows a visual, qualitative comparison of the activation center

and population center intensity functions and the modALE and MKDA maps for

11 equally spaced, 2 mm axial slices, throughout the brain. Although qualitatively

similar, there are visible differences. For instance, in the third column of Figure

2.3 the activation center intensity from our model appears to be more concentrated

than either the modALE or MKDA map. We also note that we have separated out

two intensity functions: the activation center intensity function and the population

center intensity function.
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We can identify several regions of high intensity, with the highest intensities cen-

tered in slice Z = −22mm. These bilateral regions are the amygdalae and the high

activation center intensity indicates a preponderance of studies clustering in these re-

gions and that the clustering is tight. Both modALE and MKDA also identify these

regions with large statistic values. We find very high, very concentrated intensity in

each amygdala in the population center intensity function as well. (The population

center intensity function is created by smoothing the posterior histogram of popula-

tion centers with a Bayesian nonparametric density estimation model. In particular,

a mixture of Dirichlet process priors model (Escobar and West 1995).) This indicates

that the variability of the population centers is much smaller than the variability of

the activation centers about these population centers. Quantitatively, however, it is

difficult to compare results between our model and CBMA methods, as they have

very different interpretations. At a particular voxel, the value in the modALE map is

the probability that at least one focus occurs at said voxel across studies. The value

in the MKDA map has the interpretation of a (weighted) proportion of studies that

report a focus within a prespecified distance to that voxel. Whereas our posterior

intensity functions are interpreted as just that: intensities of activation centers or

population centers given the data. Given a voxel, of say volume v, the integrated

intensity over the volume of the voxel (or over any ROI) is interpreted as the ex-

pected number of activation centers (or population centers, as the case may be) in

that voxel or ROI. Note that if the intensity function is normalized by its integral

over the brain, then the normalized intensity function can be interpreted as a spatial

density function. The integral of the spatial density function over any ROI is the

probability of an activation (population) center occurring in that ROI. There is a

distinct difference between this interpretation and that of modALE. In modALE, the
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probabilities are per voxel so that the probability measure integrates to one at each

voxel. Thus, modALE is a massive univariate approach, as is MKDA. Whereas, the

spatial density function integrates to one over the entire brain and not at each voxel.

Computationally, modALE takes around 20 minutes, MKDA takes around 2 hours

(1000 permutations) and our model takes approximately 20 hours to sample from

the posterior (120K iterations), all on a 2.4 GHz iMAC.

Since we use a Bayesian hierarchical model, extra information can be extracted

than from current CBMA methods. The information that can be extracted is enu-

merated in the introduction and we now provide examples.

1) and 2). Given any prespecified ROI, our model provides location and variability

of location of activation centers about population centers and about the variability

of population centers, themselves, within the ROI. We use an amygdala ROI, as

over 50 years of research has implicated its role in emotion (see Phelps and LeDoux

(2005) for a review). For example, integrating over the z-dimension, the posterior

95% credible ellipses of both population centers and activation centers within the

amygdalae are provided in Figure 2.4. These credible ellipses represent the uncer-

tainty in the location of the population centers that are found in the amygdalae (the

gray ellipses) and the variability of activation centers that cluster about the popula-

tion centers that are found in the these structures (the larger, white ellipses). Note

that these latter ellipses are conditional on the event that a single population center

occurs in the respective amygdala. A single population center occurred in 69% of

the iterations in the left amygdala and 90% in the right.

3) At lease one population center occurred in over 99.9% of the iterations for both

amygdalae. In Appendix A, Table 4, we provide the probability that at least one

population center occurs in various ROIs.
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The volumes of the ellipsoids are given in Table 2.2 and quantify the inter-study

variability of activation centers about the population centers and the variability in

the locations of the population centers. The location of the maximum statistic value

from modALE and MKDA, conditional on being located in each amygdala, are also

provided in Table 2.2 for comparison. Although each activation center ellipsoid is

about 3 times the volume of the respective amygdala, any activation center within

one of these ellipsoids, is deemed close enough to be associated with the amygdala,

irrespective of our model. That is, a neuropsychologist would consider them to be

“associated with, or part of, the amygdalae”. The volume of the 95% credible el-

lipsoids of population centers are roughly 100 times smaller than the corresponding

activation center ellipsoids. This demonstrates a key strength of our Bayesian hier-

archical model: the ability to quantify the precision of the population locations and

to quantify the precision of the activation centers as they cluster about population

centers. We note here that there is an identifiability issue with the intensity function

defined in (2.6): it is invariant to permutations of the indices in the summations, and

thus the intensity is invariant as well. However, by conditioning on the event that

exactly one population center occurs in, say, the right amygdala, we conditionally

removed the lack of identifiability.

To the best of our knowledge, our model is the first model of neuroimaging meta

analysis data that quantifies these precisions and that separates the precision of the

activation centers about population centers and the precision of the location of pop-

ulation centers. CBMA methods, such as ALE and MKDA, provide point estimation

of activation regions and do not quantify the associated estimation error. (A boot-

strap estimate of standard errors, of the modALE or MKDA map, is conceivable,

however the computational cost would be large—for a bootstrap sample of size n,



32

roughly n times longer than a single run—and would not allow separation of sources

of variability.)

In Figure 2.3 we also provide the posterior predictive intensity. This function

provides information about where a new, future, study of emotion would most likely

report activation centers. For example, the expected number of activation centers in

a new study is 5.62. Integrating the predictive intensity over each amygdala results

in an expected number of activation centers of 0.090 and 0.092 in the right, left

amygdala, respectively.

4) To demonstrate how our model can be used to compare subpopulations of

studies, we split our meta analysis into studies based on positive emotions and those

based on negative emotions. In particular, there is interest in whether the brain

regions that subserve positive and negative emotions are the same. Specifically,

is the location of activation the same for both types of emotional stimuli within

an amygdala? To address this question we apply our model to the positive and

negative emotions subsets. Convergence was assessed visually and by computing

the multivariate potential scale reduction factor for both the location of the left

(upper bound of reduction factor = 1.02) and right (upper bound = 1.01) amygdala

population centers.

There are 522 foci from 95 studies of positive emotions and 1663 foci from 281

studies of negative emotions. For each amygdala, let Zp and Zn denote the positive

and negative emotions population centers, respectively, located in the amygdala,

conditional on the event that there is exactly one population center in the amgydala.

The estimated posterior distribution of Zp and Zn can be approximated by normal

distributions: Zp ∼ N(µp,Σp) and Zn ∼ N(µn,Σn), where µp and µn are the mean

locations of the population centers and Σp and Σn are the covariance matrices, from
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which we can compute the associated 95% credible ellipsoids (see Figure 2.5). With

the assumption that positive and negative emotions studies are independent, the

difference in locations is Zd = Zp − Zn ∼ N(µp − µn,Σp + Σn). Thus we can

compute the 95% credible ellipsoid of Zd for each amygdala. In both the left and right

amygdala, the 95% credible ellipsoid excludes the origin—indicating a substantial

difference in location. We also estimate the posterior distribution of the Euclidean

distance between Zp and Zn, i.e. Epn =
√

(Zp − Zn)′(Zp − Zn), from which we can

estimate the probability Pr(Epn > d) for different d’s. For example, in the right

amygdala Pr(Epn > 2mm) > 0.999 and Pr(Epn > 4mm) = 0.932. For the left

amygdala Pr(Epn > 2mm) = 0.983 and Pr(Epn > 4mm) = 0.704. This analysis

suggests there is strong evidence of a difference in location between the positive and

negative emotions population centers located in the right amygdala, and modest

evidence for a difference in the left amygdala. To our knowledge, our model is the

first one to be able to quantify and draw inferences on differences in population

locations between studies.

5) The posterior predictive intensity of a new study is shown in the fourth row

of Figure 2.3. It is qualitatively similar to the posterior activation center intensity,

however some minor differences can be seen.

6) Lastly, the posterior mean of the proportion of activation centers that do not

cluster about any population center is 0.22 with a standard deviation of 0.01.

2.3.3 Model Assessment

We conduct a posterior predictive model assessment using the L function which

is a summary statistic for second order properties of a point process (Baddeley et al.

2000, Illian et al. 2009). The L function can indicate aggregation or clustering for a
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point process. For our model, L(r; ·) = {3K(r; ·)/4π}1/3, where

K(r; Xc, ·) =
1

|B|
∑

x1,x2∈Xc

1[‖x1 − x2‖ ≤ r]

λ1c(x1; ·)λ1c(x2; ·)

Consider the posterior predictive distribution of the differences ∆c(r) = L(r; Xc, ·)−

L(r; X∗c , ·), where X∗c is a simulated sample from the posterior predictive distribu-

tion. As discussed by Illian et al (2009), if zero is an extreme value in the posterior

predictive distribution of ∆c(r) for a range of distances r, then we may question the

fit of our model. We estimate the upper and lower boundaries of the 95% posterior

intervals for the posterior predictive distributions of ∆c(r), r > 0, for the 437 studies

(c = 1, . . . , 437). Over ninety percent (395/437) of the studies have 95% posterior

intervals of ∆c(r) that cover zero for r > 0. This implies that the posterior predictive

intervals for most studies provide no evidence against our model.

2.4 Simulation Studies And Sensitivity Analysis

We briefly discuss our findings of a sensitivity analysis and a study of robustness

to model misspecification. Full details are available in Appendix A.

To assess sensitivity to prior specification, we vary several prior and hyperprior

values. We investigate nine different prior scenarios. Our conclusion is that the

number of population centers is somewhat sensitive to prior specification. This is not

surprising as the population centers are latent and partially removed from the data by

the second level of our hierarchy. However, our main focus is on the posterior intensity

functions, the location and variability of the population centers, and the location and

variability of the activation centers about population centers. Specifically, examining

the amygdala ROIs, we find that the intensity functions and locations are quite stable,

as are the volumes of the 95% credible ellipsoids of the activation centers. However,

the volumes of the 95% credible ellipsoids of the (amygdalae) population centers are
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somewhat sensitive to the prior settings (see Table A.3 in Appendix A).

To assess robustness to model misspecification we simulate data from three differ-

ent models. The first two data sets are simulated according to our model hierarchy.

The first data set is simulated directly from our model. The second data set is sim-

ulated from a Matérn cluster process (Møller and Waagepetersen 2004). Our model

is resilient to this model misspecification. The third data set is not simulated ac-

cording to any hierarchy. Foci are drawn directly from a specific intensity function

(simulation C, in Appendix A). Here we find that the true activation center process

is well approximated by our model. However, in this case, some care is needed in

the interpretation of “population centers”.

2.5 Discussion

In this paper, we present a Bayesian hierarchical spatial cluster modeling approach

that is novel for neuroimaging meta analysis. Our model provides extra information

and results that previously proposed methods cannot; and, as opposed to all cur-

rent CBMA methods, our model is not massively univariate. With our modeling

approach, we can focus attention on specific regions of interest and provide point es-

timates of the population centers as well estimates of the precision of the population

centers and the precision of the activation centers that cluster about each population

center. By introducing latent study centers, our model minimizes the potential bias

induced by multiple foci per activation region. Our model also accounts for scatter

noise (foci that don’t cluster) by modeling them as a homogeneous process. Fur-

thermore, it is a trivial matter to include study weights into our model that account

for differences in publication/study fidelity by weighting the variances of the cluster

processes.
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One potential drawback of our modeling approach is that practitioners may not

be used to thinking in terms of spatial models and their related intensity functions.

Rather, they are used to the massive univariate approach (voxel by voxel assessment)

of current CBMA methods. Nevertheless, our modeling approach does offer the

practitioner important information that other methods, to date, cannot provide (see

the list in the Introduction).

Future directions within our modeling approach is to incorporate multiple sources

of information into study weights such as sample size, nominal significance level,

and whether or not the study adjusted for multiple comparisons, to name a few.

These various sources could be combined into a single score via principal components

analysis and the score discretized by ranking and thresholding on the n-tiles of the

first principal component. Another direction would be to account for publication bias

in our model. One potential avenue to pursue is to consider the activation centers

as a thinning of a marked point process and model the retention probability as a

function of, say, the probability of a negative study (that was not published).
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Table 2.2: The 95% credible ellipsoid volumes for population and activation centers.

Center Location (mm) 95% Credible Ellipsoid
x y z Volume (mm3)

Lt. amygdala Pop. -20.3 -5.8 -19.8 138.3
Act. -20.7 -6.1 -19.1 12473.8
modALE -22.0 -6.0 -16.0 NA
MKDA -24.0 -4.0 -18.0 NA

Rt. amygdala Pop. 23.2 -6.9 -19.7 72.8
Act. 23.2 -6.2 -19.7 8558.8
modALE 20.0 -4.0 -18.0 NA
MKDA 22.0 -4.0 -18.0 NA

Note: Volume of a human brain is about 1,450,000 mm3

volume of L./R. amygdala is 3,120/3,192 mm3
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(A) (B)

Pub. Scan Study Emotion x y z
1 PET 1 sad -59 -14 -1

… … …
12 -74 -35

2 happy 48 -78 -1
… … …
12 -72 -33

3 happy 51 -66 5
-44 -75 15

4 sad -57 -16 -2
37 26 -26
-32 12 -17

2 PET 5 aff 48 -74 -3
… … …
-12 -69 -12

6 aff 44 -80 -9
… … …
6 9 57

…. … … … … … …
164 fMRI 437 mixed -24 0 -12

… … …
48 -88 -8

1

Figure 2.1: Panel (A): A subset of the emotion meta analysis data set. Panel (B): All foci,
(x, y, z) locations, from all studies plotted in the MNI brain template.
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Figure 2.2: Hierarchical Model Illustration: Level 1: The foci from each study, xc, are
the observed data, here shown as open and filled circles. The open circles represent singly
reported foci, x0

c , and the solid circles represent multiply reported foci, x1
c . Whether foci

are multiply or single reported is a latent property, δx. Level 2: Multiple reported foci
cluster about latent study activation centers, yc, (open triangles) with the dashed circles
representing Ψy. Singly reported foci in level 1 are shown in level 2 as open circles as they,
along with the study activation centers, may cluster together in level 3. Level 3: Activation
centers, x0

c from level 1 and yc from level 2, may cluster about a population center, z (filled
diamond) with the dashed circle representing Σz or may fail to cluster and are modeled as
background scatter and outliers.
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Z=−42 Z=−32 Z=−22 Z=−12 Z=−2 Z=8 Z=18 Z=28 Z=38 Z=48 Z=58

modALE Map

0 0.00481 0.00963 0.0144 0.0193

Z=−42 Z=−32 Z=−22 Z=−12 Z=−2 Z=8 Z=18 Z=28 Z=38 Z=48 Z=58

MKDA Map

0 0.0665 0.133 0.199 0.266

Z=−42 Z=−32 Z=−22 Z=−12 Z=−2 Z=8 Z=18 Z=28 Z=38 Z=48 Z=58

Activation Center Intensity

0 0.062 0.124 0.186 0.248

Z=−42 Z=−32 Z=−22 Z=−12 Z=−2 Z=8 Z=18 Z=28 Z=38 Z=48 Z=58

Predictive Intensity

0 0.000162 0.000323 0.000484 0.000646

Z=−42 Z=−32 Z=−22 Z=−12 Z=−2 Z=8 Z=18 Z=28 Z=38 Z=48 Z=58

Population Center Intensity

0 0.000531 0.00106 0.00159 0.00212

Figure 2.3: Qualitative comparison of the modALE map, MKDA map, the posterior ex-
pected activation center intensity function, the posterior predictive intensity for a new study
and the posterior expected population center intensity function. We stress here that the
gray scale values of the modALE, MKDA and intensity maps are not comparable as their
interpretations are not comparable. Qualitatively, the first three rows are similar. The pop-
ulation intensities, however, are much more focused than the activation center intensities,
especially in slices Z = −22, 18, 28. This reflects the larger variability of activation centers
about the population center than the variability of the population centers, themselves.
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Axial View (Z = −14mm) Coronal View (Y = −4mm)

Sagittal View (left, X = −22mm) Sagittal View (Right, X = 22mm)

Figure 2.4: The 95% marginal credible ellipses. Large, ellipses are the marginal ellipses of
the activation centers. Small, ellipses are the marginal ellipses of the population centers
within each amygdala. The black regions (masks), covered by the white ellipses, are the
amygdalae.
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Axial View (Z = −14mm) Coronal View (Y = −4mm)
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Figure 2.5: The 95% marginal credible ellipses for population centers from positive (dashed
ellipses) and negative (solid ellipses) emotion studies. The “x” and the circle represent the
centers of the respective ellipses.



CHAPTER III

Hierarchical Poisson/Gamma Random Field Models For
Multi-type Spatial Point Patterns

Motivated by the analysis of multiple realizations and groups of spatial point

patterns, we propose a non-parametric Bayesian modeling approach that extends the

Poisson/Gamma random field model introduced by Wolpert and Ickstadt (1998a).

In particular, each group of point patterns is modeled as a Poisson point process

driven by a random intensity that is a kernel convolution of gamma random field.

The group-level gamma random fields are linked and modeled as a realization of a

common gamma random field shared by all groups. We propose an hybrid algorithm

with adaptive reject sampling (ARS) embedded in a Markov chain Monte Carlo

(MCMC) algorithm for posterior inference. We illustrate our models on simulated

examples and two real data sets.

3.1 Introduction

The Poisson/gamma random field (PGRF) model (Wolpert and Ickstadt 1998a)

is a nonparametric Bayesian approach to fitting spatial point processes. It has been

used in numerous applications (Ickstadt and Wolpert 1999, Best et al. 2000; 2002,

Stoyan and Penttinen 2000, Niemi and Fernández 2010, Woodard et al. 2010, Lim

and Dass 2011) due to its robustness and computational efficiency. In the PGRF

44
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model, the sampling distribution is a Poisson point process. The intensity function,

in turn, is modeled as a convolution of a spatial kernel and a gamma random field.

The PGRF model assumes a single realization of a spatial point process. How-

ever, there is growing interest in analyzing multiple spatial point patterns (Baddeley

2010) motivated by problems in the biological and medical sciences such as a disease

mapping (Lawson et al. 2000, Diggle 1990, Diggle and Rowlingson 1994, Baddeley

et al. 2005); studies in spatial epidemiology, where each point represents either a

case or a control; the analyses of plant ecologies (Brix and Møller 2001, Diggle 1981;

1983, Diggle and Milne 1985, van Lieshout and Baddeley 1999), where the locations

of plants are marked by the species classification of each plant; and the meta-analysis

of functional neuroimaging studies (Fox et al. 1997, Kober et al. 2008, Eickhoff et al.

2009, Wager et al. 2009, Kang et al. 2011), which combines foci, (x, y, z) coordinates

in a three dimensional brain, reported from many independently performed studies.

In general, such data can be represented by two mathematically equivalent for-

mulations that lead to different statistical approaches. The first is to treat the data

as a single pattern of n points where each point location xi is marked by its type

zi. This results in a marked point pattern, or more specifically, a multi-type point

pattern when type zi admits only integer values. Statistical methods for this type of

data analyze the marks and locations jointly or conditionally (Diggle 1990, Diggle

and Rowlingson 1994, Höogmander and Särkkä 1999). Alternatively, the data can

be represented as a multivariate observation x = (x1, . . . ,xJ) where xj is the point

pattern of type j.

Statistical methods to analyze multivariate point patterns include Diggle and

Milne (1985), van Lieshout and Baddeley (1999), Diggle et al. (2005). In particu-

lar, Diggle and Milne (1985) investigated statistical approaches for bivariate point



46

pattern by fitting bivariate Cox processes. van Lieshout and Baddeley (1999) pro-

posed several summary statistics to quantify the dependence between the different

types of point patterns. Diggle et al. (2005) addressed the spatial segregation in a

multivariate point process via nonparametric estimation of ratios of component-wise

intensities. Multivariate log Gaussian Cox processes have also been extensively stud-

ied (Møller et al. 1998, Brix and Møller 2001, Møller and Waagepetersen 2004; 2007).

where the multivariate point pattern x is assumed to be a realization of a multivari-

ate Cox process driven by z = (exp(y1), . . . , exp(yJ)) where y = (y1, . . . ,yJ) is a

J-dimensional Gaussian random field.

In this article, we propose an alternative approach to fitting multivariate spatial

point patterns by extending the PGRF model to an hierarchical PGRF (HPGRF)

model, in the same spirit as Teh et al. (2006) extend Dirichlet processes to hierarchi-

cal Dirichlet processes. Specifically, we consider each type of spatial point pattern as

a realization of one PGRF where the gamma random fields across different types are

assumed to be drawn from a common gamma random field. This implies that the

random intensity functions for different types are linked which allows sharing of clus-

ters between different types in the multivariate spatial point pattern. An illustrative

example is the analysis of spatial locations of two cohorts of plants: newly emergent

and 1-year-old bramble canes in a 9 meter squared rectangular plot (Hutchings 1979).

Diggle and Milne (1985) analyzed this data using a bivariate linked Cox process. In

their model, spatial correlation between the two types is induced by assuming that

the random intensity functions for the types are equal up to a constant. Thus, their

is a strong restriction that the spatial clustering patterns of the two types are the

same. Relaxing this assumption, the HPGRF model allows each type to have its

own intensity while allowing common clustering patterns between the two types. We
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discuss this example in more detail in Section 3.3.1.

As noted by Wolpert and Ickstadt (1998a), the PGRF model is analogous to the

mixture of Dirichlet processes (MDP) model for random distributions of non-point

pattern data (Antoniak 1974, Ferguson 1973, Escobar and West 1995). There is

growing interest in extending the MDP model to accommodate dependence between

the distributions (MacEachern 1999, Teh et al. 2006, Rodriguez et al. 2008), where

the hierarchical DP (HDP) by Teh et al. (2006) has been widely applied to many

problems (Xing and Sohn 2007, Hoffman et al. 2008, Blei et al. 2010, Fox et al. 2011).

The HDP model assumes that the multiple group specific distributions are drawn

from different DPs with a common baseline measure which is in turn a draw from

another DP. Our HPGRF model generalizes the PGRF in a similar manner, allowing

the different intensity/probability measures to share the same set of atoms but have

distinct sets of weights.

The main motivating example comes from a functional neuroimaging meta anal-

ysis of emotions (Kober et al. 2008) consisting of a set of functional neuroimaging

studies of emotion. Each study reports a list of three-dimensional foci: that is, the

peak activation locations in statistically significant regions of activation within the

brain. A primary goal of functional neuroimaging meta-analysis studies is to find

clusters of foci across all studies. Clusters appear in regions with high foci intensity.

That is, where a preponderance of studies report activation. We assume, with rea-

son, that the foci reported from different studies comprise multiple realizations of a

spatial point process driven by a latent intensity function that identifies the consis-

tent activation, if any exists, across studies. Thus, the HPGRF model can be used

to estimate the common intensity function across studies. This meta-analysis data

set also contains information about the types of emotions studied. Thus, another
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primary goal is to identify foci clustering across the different types of emotion. For

example, the amygdalae are thought to play an important role in the processing of

emotions (Phelps and LeDoux 2005). This example is discussed in detail in Section

3.3.2.

The remainder of this chapter is organized as follows. Section 3.2 presents the

HPGRF model for multi-type spatial point patterns. We first describe the model for

a single realization in Section 3.2.1, where we discuss the model properties, a data

augmentation scheme and a Lévy measure construction for the model representation,

and a hybrid algorithm with adaptive reject sampling (ARS) embedded in a Markov

chain Monte Carlo (MCMC) algorithm to simulate the posterior. Then we extend the

model for multiple realizations in Section 3.2.2. We illustrate our proposed models on

two motivating examples in Section 3.3 and assess model performance via simulation

studies in Section 3.4. Finally, we draw conclusions with a brief discussion in Section

3.5.

3.2 The Model

In this section, we first extend the PGRF model to a hierarchical PGRF model

for multi-type spatial point processes. Then we motivate and further extend the

HPGRF model to fit multiple independent realizations of the spatial point process

for each type. In this article, all the spatial point patterns are defined on a region B

which is a subregion of the d dimensional Euclidean space, Rd.

3.2.1 Hierarchical Poisson/Gamma Random Fields

Let J denote the number of distinct types of spatial point patterns. Let yj,

j = 1, . . . , J , denote the observed point pattern for type j on region B. We assume

that yj is a single realization of a Poisson point process Yj with intensity measure
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Λj(dy) which, in turn, is a convolution of a random measure Gj(dx) with a kernel

measure Kσ2
j
(dy, x), where σ2

j is the kernel variance. For each j, Gj(dx) is assumed to

be a gamma random field with base measure G0(dx) and scale parameter τ , and the

Gj(dx) are mutually independent. To introduce dependence between different types

of spatial point patterns, let G0(dx) be a gamma random field with base measure

α(dx) and scale parameter β. In summary, we have

[Yj | Λj(dy)] ∼ PP{B,Λj(dy)}, Λj(dy) =

∫
B
Kσ2

j
(dy, x)Gj(dx),

[Gj(dx) | G0(dx), τ ]
i.i.d.∼ GRF{G0(dx), τ},

[G0(dx) | α(dx), β] ∼ GRF{α(dx), β}.(3.1)

Here, the notation PP{A,Λ(dx)} denotes a Poisson point process on region A, a

subset of Rd, with intensity measure Λ(dx), and GRF{a(dx), b} represents a gamma

random field with base measure a(dx) and scale parameter b. Suppose Kσ2
j
(dy, x)

and Λj(dy) are both dominated by a reference measure Π(dy). In this article, Π(dy)

is the Lebesgue measure. Furthermore, we have Kσ2
j
(dy, x) =

∫
B kσ2

j
(y, x)Π(dy) and

Λj(dy) =
∫
B λj(y)Π(dy), where kσ2

j
(y, x) is a kernel function and λj(y) is an intensity

function. The intensity measure Λj(dy) is the individual level intensity for each point

process Yj. We define the “population mean” intensity as

Λ0(dy) =
1

τ

∫
B
K̃(dy, x)G0(dx),(3.2)

where K̃(dy, x) = J−1
∑J

j=1 Kσ2
j
(dy, x). This implies that

Λ0(dy) =
1

J

J∑
j=1

E[Λj(dy) | G0, σ
2
j , τ ],

the average of the expected intensity measures over different types. The HPGRF

is similar to the HDP model by Teh et al. (2006) and induces spatial correlation
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between the number of points in any two regions of interest between types. More

specifically, the following model properties hold.

Model Properties

Let δz(A) denote the Dirac delta measure, i.e. δz(A) = 1 if z ∈ A, δz(A) = 0,

otherwise. For any A ⊆ B and a generic point process Z, define the counting measure

NZ(A) =
∑

z∈Z δz(A), that counts the number of points of Z in A. The conditional

mean and covariance structure of NYj
(A) for the HPGRF model are summarized in

the following theorem whose proof is given in Appendix B.

Theorem 1. Within type j, for any A,B ⊆ B,

E{NYj
(A) | σ2

j , τ, α, β} =
1

τβ

∫
B
Kσ2

j
(A, x)α(dx).(3.3)

Cov{NYj
(A), NYj

(B) | σ2
j , τ, α, β}

=
1

τβ

∫
B
Kσ2

j
(A ∩B, x)α(dx) +

1 + β

τ 2β2

∫
B
Kσ2

j
(A, x)Kσ2

j
(B, x)α(dx).(3.4)

Between types j and k (j 6= k),

Cov{NYj
(A), NYk

(B) | σ2
j , σ

2
k, τ, α, β} =

1

τ 2β2

∫
B
Kσ2

j
(A, x)Kσ2

k
(B, x)α(dx).(3.5)

This theorem shows that as an a priori property, the number of points in A and

B are correlated for different types of point processes, whether or not A and B are

disjoint. When σ2
j = σ2

k, j 6= k, (3.4) and (3.5) show that the covariance within the

same group is larger than the covariance from different types. Posterior inference of

the HPGRF model is realized by the following model representation.

Augmentation and Complete Data Model

Wolpert and Ickstadt (1998a) propose an alternative model representation based

on data augmentation that produces a more efficient MCMC algorithm for posterior
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estimation of the PGRF model. Modifying their approach, we attach a mark to

each point in Yj. Based on the model (3.1), NYj
(B) is a Poisson random variable

with mean Λj(B). Given NYj
(B), Gj(dy) and σ2

j , all points in Yj are mutually

independent and follow the same distribution determined by Λj(dy): for each point

Yj ∈ Yj,

[Yj | NYj
(B), Gj(dy), σ2

j ] ∼
Λj(dy)

Λj(B)
=

∫
BKσ2

j
(dy, x)Gj(dx)

Λj(B)
.(3.6)

For each Yj ∈ Yj, we resolve this mixture by drawing an auxiliary random variable

Xj = x ∈ B from the distribution,

[Xj | Yj, NYj
(B), Gj(dx), σ2

j ] ∼
kσ2

j
(Yj, x)Gj(dx)

λj(Yj)
.(3.7)

Define (Xj,Yj) = {(Xj, Yj), Yj ∈ Yj}. Then we can show that (Xj,Yj) is a Poisson

point process on B × B with intensity measure Kσ2
j
(dy, x)Gj(dx):

[(Xj,Yj) | Kσ2
j
(dy, x)Gj(dx)] ∼ PP{B, Kσ2

j
(dy, x)Gj(dx)},(3.8)

where we only observe the realization of Yj, while Xj is the collection of latent

marks. By integrating out Xj, the marginal distribution of Yj reduces to model

(3.1).

The Lévy Measure Construction

Several methods to simulate gamma random fields have been proposed including

Bondesson (1982), Damien et al. (1995) and Wolpert and Ickstadt (1998b). The

inverse Lévy measure algorithm (Wolpert and Ickstadt 1998a;b) provides an efficient

approach and has been successfully applied to the PGRF model. We represent the

algorithm in the following theorem.
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Theorem 2. Let θm
i.i.d.∼ α̃(dx) = α(dx)/α(B), νm = E−1

1 {ζm/α(B)}/β, and ζm =∑m
l=1 el, for m = 1, 2, . . ., where el

i.i.d.∼ Exp(1), i.e. the standard exponential distri-

bution, and E1(t) =
∫∞
t
e−uu−1du. Let Γ[dx] =

∑∞
m=1 νmδθm(dx), then

Γ(dx) ∼ GRF{α(dx), β}.

Note that α̃(dx) is a probability measure generated by the normalization of α(dx).

The sequence {ζm}Mm=1 denotes the jumps of the standard Poisson process on R+.

This is a specific case of Theorem 1 by Wolpert and Ickstadt (1998a). It not only

provides an efficient approach to the simulation of a Gamma random field, but it

also can be used for model representation to simplify the posterior computation.

Let InvLévy[α(dx), β] represent the sampling distribution of {(θm, νm)}Mm=1, gener-

ated according to Theorem 2 given the base measure α(dx) and scale parameter β,

where M is an extended natural number (N̄). Theorem 2 suggests an alternative

representation of model (3.1):

G0(dx) =
∞∑
m=1

νmδθm(dx),(3.9)

where {(θm, νm)}∞m=1 ∼ InvLévy{α(dx), β}. Note that G0 has support at {θm}∞m=1.

This implies that each Gj necessarily has the same support. Thus, there exist positive

random numbers µj,m, j = 1, . . . , J,m ∈ N, such that

Gj(dx) =
∞∑
m=1

µj,mδθm(dx).(3.10)

Let (B1, . . . , Br) be any partition of B. Let Al = {m : θm ∈ Bl} for l = 1, . . . , r.

Then (A1, . . . , Ar) is a finite partition of the natural numbers. For each j and l,

we have Gj(Bl) ∼ Gamma(G0(Bl), τ) so that
∑

m∈Al µj,m ∼ Gamma
(∑

m∈Al νm, τ
)
.

Thus, for m ∈ N,

µj,m ∼ Gamma(νm, τ).(3.11)
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Finally, combining equations (3.8), (3.9), (3.10) and (3.11) we have the following

equivalent representation of the HPGRF model:

[
(Xj,Yj) | {(µj,m, θm)}∞m=1, σ

2
j

]
∼ PP

{
B, Kσ2

j
(dy, x)

∞∑
m=1

µj,mδθm(dx)

}
,

[µj,m | νm, τ ]
i.i.d.∼ Gamma (νm, τ) ,

{(θm, νm)}∞m=1 ∼ InvLévy{α(dx), β}.(3.12)

In practice, we cannot sample {(Xj,Yj)}Jj=1 according to (3.12), since it requires

simulating an infinite number of parameters, which, in fact, reflects the nonparamet-

ric nature of the HPGRF model. We suggest the following truncated model: for any

finite integer M ,

[
(Xj,Yj) | {(µj,m, θm)}Mm=1, σ

2
j

]
∼ PP

{
B, Kσ2

j
(dy, x)

M∑
m=1

µj,mδθm(dx)

}
,

[µj,m | νm, τ ]
i.i.d.∼ Gamma (νm, τ) ,

{(θm, νm)}Mm=1 ∼ InvLévy{α(dx), β}.(3.13)

The following theorem states that model (3.12) can be approximated by the truncated

model (3.13) to any desired level of accuracy.

Theorem 3. For j = 1, . . . , J , for any ε > 0 and for any region A ⊆ B, there exists

a natural number Mε, such that

E{Λj(A)− ΛMε
j (A) | β, τ} < ε,

where ΛM
j (A) =

∑M
m=1 µjmKσ2

j
(A, θm) is the conditional expectation of NYj

(A) in

the truncated model (3.13).

Posterior Computation

Theorem 3 implies that, for a sufficiently large integer M the truncated model

(3.13) can well approximate the HPGRF model (3.1). Furthermore, the approxi-
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mation only involves a fixed number of parameters allowing the computation of the

posterior.

The target distribution

Let (xj,yj) denote a realization of (Xj,Yj), mj be the observed number of points

in (xj,yj), and (xj,l, yj,l) ∈ (xj,yj) denote an observed point indexed by l, for l =

1, . . . ,mj. Write (xj,yj) = {(xj,l, yj,l)}
mj
l=1, θ = {θm}Mm=1, ν = {νm}Mm=1, and µj =

{µj,m}Mm=1. The joint density of {xj}Jj=1, {µj}Jj=1, {σ2
j}Jj=1, ν, θ, τ and β given

{yj}Jj=1 is proportional to

J∏
j=1

π(xj,yj | µj,θ, σ2
j )π(σ2

j )π(µj | ν, τ)× π(τ)π(ν | β)π(β)π(θ)

∝
J∏
j=1

exp

{
−

M∑
m=1

Kσ2
j
(B, θm)µj,m

}
mj∏
l=1

{
kσ2

j
(yj,l, xj,l)

M∑
m=1

µj,mIθm(xj,l)

}

×
J∏
j=1

[
π(σ2

j )
M∏
m=1

{
τ νmµνm−1

j,m

Γ(νm)
exp{−τµj,m}

}]

×π(τ) exp{−E1(βνM)}
M∏
m=1

{ν−1
m exp{−νmβ}}π(β),(3.14)

where π(xj,yj | µj,θ, σ2
j ) is the density of (Xj,Yj) with respect to a unit rate

Poisson process (Møller and Waagepetersen 2004), π(θ) is the density of θ with

respect to
∏M

m=1 α̃(dx) and, in this article, α(dx), is assumed to be non-atomic.

Then, the θm, for m = 1, 2, . . . ,M , are distinct with probability one. The densities

of other parameters are all with respect to a product of Lebesgue measures. Note

that π(θ) = 1 in our model. Also, the function Ix(y) is an indicator function with

Ix(y) = 1 if x = y, Ix(y) = 0, otherwise. Note that Ix(y) = Iy(x).

Next, we summarize the key steps in the posterior simulation.

• Sampling xj

From (3.14), it is straightforward to obtain the conditional distribution of xj,l
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given all other parameters:

Pr(xj,l = θm | ·) ∝ µj,mkσ2
j
(yj,l, θm).(3.15)

• Sampling θ

The conditional density of θ with respect to
∏M

m=1 α̃(dx) is

π(θ | ·) ∝ exp

{
−

M∑
m=1

[
J∑
j=1

Kσ2
j
(B, θm)µj,m

]}

×
J∏
j=1

mj∏
l=1

[
M∑
m=1

µj,mIxj,l(θm)

]
.(3.16)

This implies that for all j, l,
∑M

m=1 Ixj,l(θm) > 0. There exists at least one θm

that is equal to xj,l. Suppose there are Ñ distinct points among {xj,l}, denoted

as {s1, . . . , sÑ}. Due to the symmetry of {µ1,m, . . . , µJ,m, θm}Mm=1 in (3.16) and

noting that θ1, · · · , θm are distinct points, each θm must be equal to one of

s1, . . . , sÑ . Thus, to sample θ, we first draw a random permutation {p1, . . . , pm}

of {1, . . . ,M}, then set θpm = sm for 1 ≤ m ≤ Ñ , and for m > Ñ , we draw θpm

according to the following conditional density with respect to α(dx),

π(θpm | ·) ∝ exp

{
−

J∑
j=1

Kσ2
j
(B, θpm)µj,pm

}
.(3.17)

• Sampling µj

Theorem 4. The full conditional distribution of µj,m, for j = 1, . . . , J and

m = 1, . . . ,M , is given by

[µj,m | ·] ∼ Gamma[νm + bjm, Kσ2
j
(B, θm) + τ ].(3.18)

where bjm =
∑mj

l=1 Iθm(xj,l).

Proof in given in Appendix B.
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• Sampling ν

Theorem 5. The conditional distribution of νm, given all other parameters, is

π(νm | ·) ∝


cνmm

Γ(νm)
ν−1
m , m = 1, . . . ,M − 1

exp{−E1(βνM)} c
νM
M

Γ(νM )
ν−1
M , m = M

(3.19)

where cm = τJ
∏J

j=1 µj,me
−β and π(νm | ·), for m = 1, . . . ,M , are log concave

functions.

Proof in given in Appendix B. Theorem 5 implies that we can draw νm for

m = 1, . . . ,M from (3.19) by using the adaptive rejection sampling (ARS)

algorithm (Gilks and Wild 1992).

Sampling hyperparameters

We update σ2
j , for j = 1, . . . , J , τ using Metropolis within Gibbs sampling. In

this article, we choose kσ2
j
(x, y) =

(
1

2πσ2
j

)d/2
exp{−‖x − y‖2/(2σ2

j )} and assume, a

priori, σ−2
j ∼ Uniform[aσ, bσ], τ ∼ Gamma(aτ , bτ ) and β ∼ Gamma(aβ, bβ). The full

conditional of σ2
j is

π(σ2
j | ·)

∝ exp

[
−

M∑
m=1

{
Kσ2

j
(B, θm)µj,m

}
−
S2
j

σ2
j

− mjd

2
log(σ2

j )

]
I[aσ ,bσ ](σ

−2
j ),(3.20)

where S2
j = 1

2

∑mj
l=1 ‖xj,l − yj,l‖2. Thus, to update σ2

j , we use a random walk and

first draw σ2∗
j ∼ N(σ2

j , θ
2
σ), if σ2∗

j ∈ (aσ, bσ), then set σ2
j = σ2∗

j with probability

min{r(σ), 1}, where r(σ) is

exp

[
M∑
m=1

{[
Kσ2

j
(B, θm)−Kσ2∗

j
(B, θm)

]
µj,m

}
+ S2

j

(
1

σ2
j

− 1

σ2∗
j

)](
σ2
j

σ2∗
j

) 1
2
mjd

The full conditional of τ is

π(τ | ·) ∝ τJ
PM
m=1 νm+aτ−1 exp

{
−

(
bτ +

J∑
j=1

M∑
m=1

µj,m

)
τ

}
,(3.21)
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which implies that we can update τ by drawing

τ | · ∼ Gamma

(
J

M∑
m=1

νm + aτ − 1,
J∑
j=1

M∑
m=1

µj,m + bτ

)
.(3.22)

The full conditional of β is

π(β | ·) ∝ βbβ−1 exp

{
−

[
aβ +

M∑
i=1

νm

]
β − E1(βνM)

}
.(3.23)

It is easy to show π(β | ·) is a log concave function, thus, the ARS algorithm can be

used to sample β.

3.2.2 HPGRF for multiple independent realizations

Although the HPGRF for a single realization discussed in Section 3.2.1 has a

wide range of applications for multi-type spatial point processes, as pointed out

in Section 3.1, a functional neuroimaging meta analysis involves more complicated

multiple spatial point patterns, i.e. foci reported from different studies with different

types. It is straightforward to assume that the foci from different studies are multiple

independent realizations of a spatial point process for each type, where the spatial

point processes are linked across types by shared clustering in certain regions of

the brain. This motivates the need to extend the HPGRF for multiple independent

realizations. Model properties (Theorem 1 – 3) do not change for each realization,

but the posterior simulation algorithm need to be modified accordingly. We mainly

focus on the extension based on the truncated model (3.13) as it can well approximate

model (3.1).

Let (xi,j,yi,j), for i = 1, 2, . . . , nj, be multiple independent realizations of the

Poisson point process (Xj,Yj) in model (3.13), where nj is the number of realizations

for (Xj,Yj). For each i and j, write (xi,j,yi,j) = {(xi,j,l, yi,j,l)}
mi,j
l=1 , where (xi,j,l, yi,j,l)

is an observed point in (xi,j,yi,j) indexed by l, for l = 1, . . . ,mi,j, and mi,j is the
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observed number of points in (xi,j,yi,j). The joint density of {{xi,j}
nj
i=1}Jj=1, {µj}Jj=1,

{σ2
j}Jj=1, ν, θ, τ and β given {{yi,j}

nj
i=1}Jj=1 is proportional to

J∏
j=1

{
nj∏
i=1

[
π(xi,j,yi,j | µj,θ, σ2

j )
]
π(σ2

j )π(µj | ν, τ)

}
×π(τ)π(ν | β)π(β)π(θ),(3.24)

where for each j the density π(xi,j,yi,j | µj,θ, σ2
j ), for i = 1, . . . , nj has the same

form of π(xj,yj | µj,θ, σ2
j ) in model (3.14), and all other parameters have the exact

same density as the model (3.14). This implies that in the steps for sampling ν, τ

and β are as described in 3.19, 3.22 and 3.23. For other parameters, we have the

following sampling schemes.

• Sampling xi,j

The full conditionals of xi,j,l, for l = 1, . . . ,mi,j, are a similar to (3.15), i.e.

Pr(xi,j,l = θm | ·) ∝ µj,mkσ2
j
(yi,j,l, θm).(3.25)

• Sampling θ

The full conditional density of θ with respect to
∏M

m=1 α̃(dx) is

π(θ | ·)

∝ exp

{
−

M∑
m=1

J∑
j=1

Kσ2
j
(B, θm)µjmnj

}
J∏
j=1

nj∏
i=1

mi,j∏
l=1

[
M∑
m=1

µj,mIxi,j,l(θm)

]
.(3.26)

Let θ̃1, . . . , θ̃M̃ be M̃ distinct points in {{{xi,j,l}
mij
l=1}

nj
i=1}Jj=1. We first draw a

random permutation of {1, . . . , M} denoted by {p1, . . . , pM}. Then for 1 ≤

m ≤ M̃ , let θpm = θ̃m. For m > M̃ , draw θpm according to the following density

with respect to α̃(dx),

π(θpm | ·) ∝ exp

{
−

J∑
j=1

Kσ2
j
(B, θpm)µj,pmnj

}
.(3.27)
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• Sampling µj

The full conditional distribution of µj,m, for m = 1, . . . ,M , is

[µj,m | ·] ∼ Gamma

[
νm +

nj∑
i=1

mi,j∑
l=1

Iθm(xi,j,l), njKσ2
j
(B, θm) + τ

]
,(3.28)

which is a straightforward extension of Theorem 4.

• Sampling σ2
j

With the same assumptions on the prior as in Section 3.2.1, the full conditional

density of σ2
j is, for σ2

j ∈ [aσ, bσ],

π(σ2
j | ·)

∝ exp

[
−

M∑
m=1

{
Kσ2

j
(B, θm)µj,mnj

}
−
S2
·,j

σ2
j

− dm·,j
2

log(σ2
j )

]
,(3.29)

where S2
·,j = 1

2

∑nj
i=1

∑mi,j
l=1 ‖xi,j,l − yi,j,l‖2 and m·,j =

∑nj
j=1mi,j. Thus, a similar

random walk scheme can be used as in Section 3.2.1.

3.3 Examples

In this section, we illustrate the proposed HPGRF model on the bramble canes

example and the neuroimaging meta-analysis example discussed in the Introduc-

tion. For both analyses, we assign vague priors on the hyper-parameters, i.e. σ−2
j ∼

U [0, 10], β ∼ Gamma(0.001, 0.001) and τ ∼ Gamma(0.001, 0.001). Also, the base

measure α(dx) = Π(dx)/|B| where Π(dx) denotes the Lebesgue measure and |B| =∫
B Π(dx). This implies that α̃(dx) = α(dx) and α̃(B) = 1 (Theorem 2).

3.3.1 Bramble Canes

The bramble canes data were recorded and first analyzed by Hutchings (1979).

The data set includes information on the locations and ages of bramble canes in

a 9 meter squared field. For our analysis we estimate the intensity function on a
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100× 100 regular lattice covering the field. The canes are classified as either newly

emergent or one year old, see Figure 3.1. The data were subsequently analyzed

by Diggle (1981; 1983) and Diggle and Milne (1985). All these analyses indicate

that each type of cane exhibits clustering. The multivariate J function proposed by

van Lieshout and Baddeley (1999) can be used to measure the dependence between

the two cohorts. In particular, we choose a cross type J function, i.e. J01, see van

Lieshout and Baddeley (1999) for the definition, which makes a comparison between

the distributions of the distances to the nearest one-year old cane measured from any

location in the region and a newly emergent cane. We consider the null hypothesis

that the two types of bramble cane patterns are independent, in which case J01 ≡ 1.

Figure 3.2 shows the Kaplan-Meier estimate of J01 for the bramble canes data and

the 95% confidence envelope of the estimate under the null distribution, which are

computed from 100 simulations obtained by wrapping the observation window on a

torus and randomly translating the point pattern of newly emergent canes (Lotwick

and Silverman 1982). In Figure 3.2, the estimated J01 is significantly smaller than

1 and falls outside the null confidence envelope. This implies that the presence of

a newly emergent cane increases the chance of finding a one-year old cane nearby.

However, to our best knowledge, no nonparametric methods exist that can estimate

the intensity shared between types. We apply our HPGRF model to jointly analyze

the two types of bramble canes, which can produce the intensity estimates for each

type of bramble canes as well as a population mean intensity between the two types.

Also, we apply the PGRF model to fit each type of point pattern separately, where the

kernel function and the prior of the smoothing parameters are identical to those used

in HPGRF, the base measure for each gamma random field is also set to be α(dx),

and the scale parameters for both types are assumed to follow a Gamma(0.001, 0.001)
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distribution.

Posterior estimates are obtained from 50,000 iterations of simulation with a burn-

in of 20,000 iterations. Figure 3.3 displays the estimated posterior mean intensity

functions obtained from both models. Comparing the intensity estimates for both

types of canes in Figure 3.3, the HPGRF intensity estimate is spatially more diffuse

than the PGRF intensity estimate. Table 3.1 summarizes the posterior distribution

of the smoothing kernel variance parameter σ2
j obtained from both models. The

HPGRF estimate are much larger. As the multivariate J function suggests the de-

pendence between the two cohorts, the HPGRF should provide more reliable results

about the kernel parameters, since it borrows information across the two types, while

the PGRF only estimates the kernel parameters using data within each type. In Fig-

ure 3, the intensity estimates for the two types of canes by HPGRF shows more

similarity compared with the results estimated by the PGRF. Also, the HPGRF

provides the population mean intensity estimates from which we can identify the

common clustering regions between the two types of canes.

3.3.2 Functional Neuroimaging Meta Analysis of Emotion

In this section, we apply the proposed model to a functional neuroimaging meta

analysis of emotion first reported by Kober et al. (2008) and further analyzed in

Chapter II. This data set consists of 164 publications of various aspects of emotion.

Kober et al. (2008) proposed a multi-level kernel density analysis (MKDA) approach.

The goal is to identify consistent regions of activation across the different studies and

types of emotion. In Chapter II, we address this problem using a Bayesian hierarchi-

cal independent cluster process (BHICP) model. However, both MKDA and BHICP

only analyze a single group of spatial point patterns that ignores the different types of

emotions studied and focus on finding consistent activation over the different types of
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emotions. It is also of great interest to identify consistent activation regions between

sub types, such as the type of emotion. The HPGRF model can take into correla-

tion between sub types and identify consistent activations regions that are shared by

different sub types. In particular, we focus on a subset of the meta-analysis dataset,

including 219 studies reporting 1393 foci of five emotions: sad, happy, anger, fear and

disgust, as shown in Figure 3.4. Table 3.2 lists some features and summary statistics

of this data set. Posterior estimates are based on 120,000 iterations of simulation with

a burn-in of 20,000, The posterior mean intensity estimate are presented in Figure

3.5. We also separately fit a spatial point process for each sub population, although

the sub populations might be correlated. However, the original PGRF (Wolpert and

Ickstadt 1998a) cannot be directly applied to our data, as it is only designed for a

single realization of a spatial point process. Thus, we modify the PGRF model to fit

multiple independent realizations of a spatial point process. We refer to this model

as IPGRF. See Appendix B for more details. We compare the intensity estimates be-

tween the HPGRF and the IPGRF for two axial slices Z = −20, 26mm, as shown in

Figure 3.6, from which we can see the intensity estimates by HPGRF and IPGRF are

qualitatively similarly. The HPGRF intensity estimate is a bit more spatially diffuse

than the IPGRF intensity estimate. Table 3.4 shows the smoothing kernel variances

estimated by the two methods, where the HPGRF estimates are slightly larger than

IPGRF estimates but the 95% credible intervals between the two estimates overlap.

As shown in Figure 3.5, the HPGRF can estimate the “population level” intensity

which finds consistent activation regions across the different emotions. We can see

there is a high and concentrated intensity in axial slice Z = 15mm in the “population

level” intensity. It is actually in the right amygdala. The amygdala, an almond-sized

and -shaped brain structure, has been shown to be linked with a person’s mental
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and emotional state (Adolphs 1999). Our analysis indicates that the five emotions

share high activation in the right amygdala.

3.4 Simulation Studies

In this section, we report results from simulation studies that demonstrate the

ability of the HPGRF to borrow information from different types and provide more

accurate intensity estimates compared to the IPGRF model.

3.4.1 Simulated Data Sets

We simulate 2D spatial point patterns on region A = [0, 100]2 from three different

types of points based on Poisson point processes with mixture intensity functions.

i.e., for i = 1, . . . , N ,

(3.30) Yi,j | µ,Σ ∼ PP{A, λj(x)dx}, j = 1, 2, 3.

where λj(x) = ε +
∑

(θ,µ,Σ)∈(θ,µ,Σ)j
θφ2(x;µ,Σ) and φd(x;µ,Σ) denotes the d-dimen-

sional Gaussian density at x with mean µ and covariance Σ. We set intensity param-

eters such that point patterns from different types show clustering on four regions,

where the intensity parameters are summarized in Table 3.3 and where ε = 0.001,

We assume that the three sub types have intensity functions:

λ1(x) = ε + θ2φ2(x;µ2,Σ2) + θ3φ2(x;µ3,Σ3) ,

λ2(x) = ε + θ2φ2(x;µ2,Σ2) + θ4φ2(x;µ4,Σ4),

λ3(x) = ε+ θ1φ2(x;µ1,Σ1) + θ2φ2(x;µ2,Σ2) + θ3φ2(x;µ3,Σ3) .

The true intensity functions are presented in Figure 3.7. This shows that the three

sub types share clustering in region 2 and type 1 and type 3 share clustering in region

3. Also, only points from type 1 and type 3 cluster about region 1 and region 4,

respectively.
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3.4.2 Accuracy of Intensity Estimates

We simulate K = 1000 data sets according to the model specifications in the

previous section and fit each data sets via the HPGRF and the IPGRF models

respectively. Figure 3.7 present the estimated posterior mean intensity functions

for one of the simulated data sets compared with the true intensity. We measure

the model performance based on the sub-type average integrated mean square error

(IMSE) and integrated weighted mean square error (IWMSE), i.e.

IMSE =
1

JK

J∑
j=1

K∑
k=1

∫
A

[λ̃jk(x)− λj(x)]2dx

IWMSE =
1

JK

J∑
j=1

K∑
k=1

∫
A

[λ̃jk(x)− λj(x)]2λj(x)dx

where λ̃jk(x) is the estimated posterior mean intensity function for type j in simula-

tion k and λj(x) is the true intensity function. IWMSE gives more weight to regions

with a large true intensity. The results are summarized in Table 3.5 which shows

that the HPGRF results in small IMSE and IWMSE that are 27% and 35% smaller

than those of the IPGRF, respectively. Thus, when sub types share clustering. The

HPGRF model is more accurate.

3.5 Discussion

In this article, we focus on the analysis of multi type spatial point patterns to

which we propose a nonparametric Bayesian approach, i.e. the HPGRF, by extending

the PGRF model by Wolpert and Ickstadt (1998a). The HPGRF model accounts

for the dependence in the point patterns between the different types. The HPGRF

is able to deal with more complicated multivariate spatial point patterns than the

standard PGRF can handle, i.e. multiple groups of spatial point patterns, where each

group contains one or more independent realizations of a spatial point process. The
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spatial point processes across groups can either be independent of one another or

remain connected, depending on the particular features of the data. The real data

analyses suggest that our model can provide “population mean” intensity estimates

to identify common regions that share clustering providing better interpretation of

data. The simulation studies shows that the HPGRF can improve the accuracy of

intensity estimate for each sub type.

There are several future directions. First, the HPGRF can be further extended

to more than two levels of hierarchy for more complex spatial point patterns, where

the depth depends on the needs of the data analysis. Another interesting extension

is to make the HPGRF model able to deal with multiple dependent realizations of

multi-type spatial point processes, which is potentially useful for spatial-temporal

data. Also, the current posterior computational method is based on a truncation

method, where the number of gamma points, i.e. M , must be much larger than

the observed number of points. This motivates the needs of more efficient posterior

simulation algorithm for massive data sets in the future.
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Table 3.1: Summary statistics of the posterior distribution of the smoothing kernel variance
σ2

j via HPGRF and PGRF for bramble canes data.

Bramble canes Statistics HPGRF PGRF

Mean. 23.7 3.1
Newly emergent Sd. 4.1 0.6

C.I. (16.9,32.4) ( 2.2, 4.5)

Mean. 28.6 6.9
One year old Sd. 5.6 1.4

C.I. (20.1,42.3) ( 4.6, 9.9)

Table 3.2: Number of studies and foci in the emotion emotion analysis data set.

sad happy anger fear disgust

Studies 45 36 26 68 44
Foci 346 177 166 367 337

Table 3.3: Parameters for true intensity functions

Region j 1 2 3 4

σj 15 10 5 10
µj (60, 75)T (70, 30)T (40, 50)T (10, 20)T

Σj

(
30 15
15 15

) (
30 −10
−10 40

) (
20 −5
−5 10

) (
10 5
5 20

)
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Table 3.4: Summary statistics of the posterior distribution of the smoothing kernel variance
σ2

j via HPGRF and PGRF for five emotion meta analysis

Methods Statistics Emotions
Sad Happy Anger Fear Disgust

HPGRF Mean. 0.94 1.02 1.07 1.01 1.08
C.I. (0.87,1.02) (0.90,1.14) (0.94,1.19) (0.93,1.09) (1.00,1.18)

IPGRF Mean 0.97 0.99 0.99 0.97 0.98
C.I. (0.94,0.99) (0.97,1.01) (0.97,1.01) (0.95,0.99) (0.96,1.00)

Table 3.5: The IMSE and IWMSE of the intensity estimation via HPGRF and IPGRF

×10−3 HPGRF IPGRF

IMSE (s.e.) 176.27(22.84) 227.42(25.74)
IWMSE (s.e.) 11.17( 2.64) 17.09( 2.62)
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Figure 3.1: Locations of newly emergent and one year old bramble canes.
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Figure 3.2: The estimate of the multivariate J function, e.g. J01(r) (solid line) for the
bramble canes data with the 95% confidence envelope (dashed lines) based on 100 random
torus translations of the data.
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Figure 3.3: The HPGRF and PGRF posterior mean intensity estimates for each type of
bramble canes point patterns. The HPGRF also provide a “population mean” intensity
estimate.
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Figure 3.4: The 1393 foci reported from 219 studies of five emotions
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Figure 3.5: HPGRF: Foci intensity estimation for five emotions (Sad, Happy, Anger, Fear
and Disgust) compared with the “population mean” intensity estimation



71

Z = −20mm
Sad Happy Anger

HPGRF Intensity

Fear Disgust Pop. Mean

IPGRF Intensity 0

0.0015

Z = 26mm
Sad Happy Anger

HPGRF Intensity

Fear Disgust Pop. Mean

IPGRF Intensity 0

0.001

Figure 3.6: The HPGRF posterior mean intensity estimates of the two axial slices (Z =
−20mm, 26mm) for five emotions (Sad, Happy, Anger, Fear and Disgust) compared with
the IPGRF intensity estimates.
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Figure 3.7: The true intensity compared with the HPGRF and IPGRF intensity estimates
for the simulated Poisson cluster point process data sets.



CHAPTER IV

A Bayesian Spatial Point Process Classifier with Application
to Functional Neuroimaging Reverse Inference

Decoding of behavioral information or cognitive states from human brain activity

is a primary goal in functional neuroimaging research. Many studies are designed

to determine the distributed patterns of brain activation that result from different

known brain functions. In the meta analysis of these studies, it is of great interest

to perform reverse inference on cognitive states from peak activation locations that

are reported from a new study. Motivated by this problem, we develop a Bayesian

classification model for multiple types of point patterns via spatial point processes.

With appropriate modeling of the intensity function for each type of point pattern,

we construct a classifier based on the posterior probability of the type given a point

pattern. We show this posterior probability, for a new study, can be efficiently esti-

mated via importance sampling. We also propose a statistical map as an exploratory

tool to discover the impact of brain regions on distinguishing cognitive states. Our

method is illustrated by the analysis of 437 emotion studies. Our model shows a

higher correct classification rate compared with a naive Bayes classifier, and the

proposed statistical map provides valuable insights into the relationships between

emotions and brain activity.

73
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4.1 Introduction

With the rapid growth of functional neuroimaging studies during the past two

decades researchers have shown that there are strong connections between mental

states and brain activity. Most functional neuroimaging studies are designed to ad-

dress this problem based on a “forward inference” procedure. Identify the brain

activity that results from given psychological tasks. A key challenge for cognitive

neuroscience is to decode metal states based on the measurements of brain activity

that are obtained from functional neuroimaging techniques. We refer to this proce-

dure as “reverse inference”. There is an increasing interest in developing statistical

machine learning approaches to reverse inference using functional Magnetic Reso-

nance Imaging (fMRI) data, see Pereira et al. (2009) for a tutorial overview. Most of

these methods are developed particularly for modeling subject level statistical para-

metric maps (SPM) or voxel-wise time series that are acquired from a single fMRI

study given known tasks or metal states. However, due to small sample size, single

fMRI studies usually suffer from low power and poor reproducibility (Yarkoni 2009,

Kober et al. 2008, Eickhoff et al. 2009). To overcome these limitations, researchers

are paying much attention to formal synthesis of cognitive neuroscience literature

via statistical meta analysis (Yarkoni et al. 2010, Kang et al. 2011). Current meth-

ods for meta-analysis, like Activation likelihood Estimation (ALE) by Eickhoff et al.

(2009), Multi-Kernel Density Analysis (MKDA) by Kober et al. (2008), Bayesian

Hierarchical Independent Cluster Process (BHICP) in Chapter II and Hierarchi-

cal Poisson/Gamma Random Fields (HPGRF) in Chapter III, primarily focus on

forward inference, i.e. localizing consistent effects over studies using reported peak

activation foci. The MKDA and the ALE are mass-univariate approaches and re-
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quire fixed tuning parameters, Furthermore, they also do not provide an interpretable

fitted model, and cannot produce spatial confidence intervals on locations of activa-

tion. The BHICP and the HPGRF are fully Bayesian spatial models, where BHICP

explicitly models the clustering of study foci about latent activation centers (ac-

counting for multiple peaks within a study describing a single anatomical region),

which in turn cluster about latent population centers. In particular, the BHICP can

dissociate between inter-study spread of foci and spatial uncertainty in population

response location. The HPGRF is a non-parametric Bayesian approach that jointly

analyses multiple types of foci, where each group is associated with a particular task

or psychological state. It assumes that the random intensities for different groups

are linked, which allows sharing of clusters between different types.

Although meta analysis offers a unique opportunity to make psychological in-

ferences across many task domains, there is little work aimed at reverse inference.

Yarkoni et al. (2011) combine a naive Bayes classifier (NBC) and the MKDA. For

each study, this method creates binary activation maps using the MKDA, with a

value of 1 (activated) assigned to each voxel in the brain if it is within a certain dis-

tance (a spherical kernel size) of a reported focus, and 0 (non-activated) otherwise.

These binary activation maps are in turn treated as feature variables in the naive

Bayes classifier. The study type, i.e. the designed psychological state, determines the

class membership. More specifically, for each type, an activation probability map is

constructed by a taking weighted average of the binary maps. Using the activation

probability maps, the predictive probability of the study type given activation from

a new study is then computed based on Bayes’ theorem under the independence as-

sumption (see Yarkoni et al. (2011) for details). This method is very computational

efficient and can handle extremely large sets of voxels without difficulty. Also, it per-
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forms well in classifying working memory from emotion from pain studies. However,

there are several potential drawbacks of this method. First, it ignores the spatial

dependence in the activation maps, leading to biased predictive probabilities of the

class membership. Second, it requires fixed tuning parameters that might affect the

classification performance: the current method simply sets these parameters based

on experience rather than estimating them from data. Third, it only focuses on the

difference in the spatial distributions of foci between groups while neglecting the

absolute rates of foci, which may be important for classification.

To address the above issues, we propose a Bayesian spatial point process based

classifier that provides a general modeling framework for the classification of multiple

types of spatial point patterns. More specifically, for each study, we observe a set

of foci that are assumed to be a single realization of a spatial point process. Also,

we have information about the type of each study. Thus, the foci reported from

different studies can be modeled as multiple independent realizations of a multi-type

point process. The classifier is, in turn, constructed from the posterior predictive

probability of the type of a new study. Although our method can be applied to

any model that has an explicit intensity or density function, its application may be

non-trivial for some complex hierarchical models.

In this article, we discuss how to apply our method to build up a Bayesian clas-

sifier based on the BHICP or the HPGRF. Our model has at least three advantages

compared with the MKDA based NBC. First, in meta analysis data, the number

of foci reported, as well as their locations are random. Both the random number

and random locations are explicitly modeled by in our spatial point process mod-

els. Furthermore, spatial dependence between foci is also modeled. These features

of the data are not modeled by the MKDA based NBC. Second, our hierarchical
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spatial model is a more accurate representation of the true data generating process,

relative to the MKDA kernel mapping of points to voxel-wise images. Third, our

fully Bayesian model captures more sources of variation and appropriately conveys

the certainty in the computation of the predictive probabilities that determines the

classification outcome.

The performance of our method is evaluated via leave-one-out cross validation

(LOOCV) on all the observed data. Specifically, leaving one study out, we conduct

Bayesian learning of the parameters on the foci reported from the remaining studies

and make a prediction on the study type for the study left out. We repeat the pro-

cedure for each study and compute the classification rate based on all the observed

studies. The above procedure for a Bayesian model can be very computationally ex-

pensive because it involves multiple posterior simulations. We employ an importance

sampling approach to reduce the computation of LOOCV for our models. This idea

has been investigated by many researchers (Gelfand et al. 1992, Gelfand 1996, Alqal-

laf and Gustafson 2001, Vehtari and Lampinen 2002) for a general Bayesian model.

We apply this idea to the proposed Bayesian spatial point process classifier to avoid

multiple posterior simulations. Due to the complexity of the model, this is not a

trivial application of important sampling, Nevertheless, the gain in computational

efficiency is great.

For decoding of cognitive states from brain activity, neuropsychologists are also

interested in understanding the role of individual locations of the brain in the clas-

sification. To address this problem, the MKDA based NBC method can provide a

voxel-wise reverse inference probability map, called a salience map, where the value

on each map represents the probability of the study type given a focus is reported at

that voxel. Since our model simultaneously considers the entire point pattern from a
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study, we see no unique way to measure the contribution of a single voxel. Instead,

we propose a single foci impact map (SFIM), as an exploratory tool to discover the

impact of brain regions in the classification. Given a particular study, for each type,

the value of study-level SFIM at each voxel represents the change in the probability

of the group by adding that voxel (or a focus located in that voxel) into the observed

point pattern from that study. The group-level SFIM for each type is defined as an

average of the study-level SFIMs over all possible studies that can be generated from

the fitted model. As illustrated in Section 4.4, SFIM provides valuable insight into

the relationships between psychological states and brain activity.

The reminder of this chapter is organized as follows. In Section 4.2, we first de-

scribe a general Bayesian model for reverse inference in neuroimaging meta analysis,

then we incorporate the BHICP and the HPGRF into this modeling framework.

Also, we discuss some computational details of LOOCV. In Section 4.3, we pro-

pose the single focus impact map to understand an individual voxel’s contribution

to classification. We demonstrate our methods in Section 4.4 on a meta-analysis

of emotions, classifying different sub-types of emotion, and compare to the MKDA

based NBC. In the last section, we conclude our work with a discussion and ideas

for future research.

4.2 The Model

Suppose we have observed data Dn = {(xi, ti)}ni=1 consisting of n studies where xi

denotes the observed point pattern in the brain reported from study i, ti ∈ {1, . . . , J}

is the study type and J is the number of study types. Our goal is to make inference

on the study type for a new study, i.e., tn+1 given the foci xn+1 obtained from this

study and the observed data Dn. Next, we describe a general Bayesian modeling
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framework to build a spatial point process classifier.

4.2.1 Bayesian Spatial Point Process Classifier

For each i = 1, 2, . . . , n + 1, we assume that xi is a single realization of a spatial

point process Xi and ti is a sample realization of the type indicator, Ti. We infer on

Tn+1 based on the following posterior predictive probability, for j = 1, . . . , J ,

Pr(Tn+1 = j | xn+1,Dn) =∫
Pr(Tn+1 = j | Θ,xn+1,Dn)π(Θ | xn+1,Dn)dΘ,(4.1)

where Θ includes all the parameters involved in the sampling model of data π(Dn+1 |

Θ). The estimate of Tn+1 is usually given by

T̂n+1 = arg max
j

Pr(Tn+1 = j | xn+1,Dn).(4.2)

To obtain (4.1), we need to have the specification of Pr(Tn+1 = j | Θ,xn+1,Dn) and

π(Θ | xn+1,Dn), which can be derived from the sampling model π(Dn+1 | Θ) and

the prior distribution π(Θ) based on Bayes’ theorem. A widely used assumption on

π(Dn+1 | Θ) is the conditional independence of different samples given the parameters

(Gelman et al. 2004), i.e.

π(Dn+1 | Θ) =
n+1∏
i=1

π(xi, ti | Θ).(4.3)

This implies that Pr(Tn+1 = j | Θ,xn+1,Dn) = Pr(Tn+1 = j | Θ,xn+1). Therefore,

the most important problem is to specify the joint distribution of Xi and Ti given

Θ. In general, there are two approaches to modeling π(xi, ti | Θ), which can be

either written as Pr(Ti = ti | Θ)π(xi | Ti = ti,Θ) or π(xi | Θ) Pr(Ti = ti | xi,Θ).

In the former approach, we first specify the distribution of the study type and then

model the distribution of foci given the study type, while in the latter approach we
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model foci before the type. Although both approaches are commonly used in general

classification problems (Hastie et al. 2008), we feel the former approach provides

a more accurate representation of the true data generating process in our problem

since neuroimaging studies selected in the meta analysis are all designed to observe

the brain activity pattern given the pre-specified task or the psychological states.

Thus, we need to specify Pr(Ti = ti | Θ), the a priori probability of the study type,

as well as π(xi | Ti = ti,Θ): the sampling distribution of the foci from each study

given their study type. In summary, we consider the following general model, for

i = 1, . . . , n+ 1,

Xi | Ti = j,Θ
i.i.d.∼ Poisson[B, λj(x | Θ)]

Pr[Ti = j] = pj, for j = 1, . . . , J,

Θ ∼ π(Θ),

where Poisson[B, λj(x | Θ)] denotes a Poisson point process on B with intensity

function λj(x | Θ). The parameter pj is pre-specified and represents the prior prob-

ability for study type j. Θ includes all other parameters or latent quantities that

are involved in the model. The prior density of Θ is denoted π(Θ). To estimate

the posterior predictive distribution (4.1) for Tn+1, one may directly draw Θ from

π(Θ | xn+1,Dn). However, this is not straightforward to implement. Thus, we con-

sider an alternative approach using the posterior draw of Θ given Dn and then use

an importance sampling approach. We have the follow proposition:

Proposition 1. The posterior predictive distribution for Tn+1 is given by

Pr[Tn+1 = j | xn+1,Dn] =

pj
∫
π(xn+1 | Tn+1 = j,Θ)π(Θ | Dn)dΘ∑J

j′=1 pj′
∫
π(xn+1 | Tn+1 = j′,Θ)π(Θ | Dn)dΘ

(4.4)
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where

π(xn+1 | Tn+1 = j,Θ) = exp

{
|B| −

∫
B
λj(x | Θ)dx

} ∏
x∈xn+1

λj(x | Θ).

This proposition leads to the following algorithm used to estimate the posterior

predictive probability used for reverse inference.

Reverse inference algorithm

• Input: The observed data Dn, a foci pattern, xn+1, reported from a new study

and the total number of simulations K.

• Step 1: Run a Bayesian spatial point process model to obtain the posterior

draws Θ(k) ∼ π(Θ | Dn), for k = 1, . . . , K.

• Step 2: Compute

π
(k)
j = exp

{
−
∫
B
λj(x | Θ(k))dx

}{ ∏
x∈xn+1

λj(x | Θ(k))

}
.

• Output: The posterior predictive probability is given by

P̂r[Tn+1 = j | xn+1,Dn] =
pj
∑K

k=1 π
(k)
j∑J

j′=1 pj′
∑K

k=1 π
(k)
j′

.(4.5)

The prediction of Tn+1 is given by

T̂n+1 = arg max
j

(
pj

K∑
k=1

π
(k)
j

)
.(4.6)

To evaluate the performance of our method, we are interested in computing the

leave-one-out cross-validation (LOOCV) classification rates. More specifically, we

use data D−i = {(xl, tl)}l 6=i to make a predication of Ti denoted by T̂i, and focus on

the J × J LOOCV confusion matrix C = {cjj′}, defined by

cjj′ =

∑n
i=1 Ij(ti)Ij′(T̂i)∑n

i=1 Ij(ti)
,(4.7)
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where Ia(b) is an indicator function. Ia(b) = 1 if a = b, Ia(b) = 0, otherwise. Then

the overall and the average correct classification rates are respectively given by

co =
1

n

n∑
i=1

Iti(T̂i), and ca =
1

n

n∑
i=1

cjj.(4.8)

In order to obtain T̂i, we compute the LOOCV predictive probabilities. For i =

1, . . . , n,

Pr[Ti = j | xi,D−i] =

∫
Pr[Ti = j | xi,D−i,Θ]π(Θ | xi,D−i)dΘ,(4.9)

which can be estimated via Monte Carlo simulation. However, it is not straightfor-

ward and very inefficient to draw Θ from π(Θ | xi,D−i) for each i. Thus, to avoid

having to run the multiple posterior simulations, we consider another representation

of (4.9) in the following proposition.

Proposition 2. The LOOCV predictive probabilities of Ti, for i = 1, . . . , n, is given

by

Pr[Ti = j | xi,D−i] =
pjQjti∑J

j′=1 pj′Qj′ti

,(4.10)

where

Qjj′ =

∫
π(xi | Ti = j,Θ)

π(xi | Ti = j′,Θ)
π(Θ | Dn)dΘ.

Proposition 2 leads to the following algorithm.

LOOCV algorithm

• Input: The observed data Dn and the total number of simulations K.

• Step 1: Run a Bayesian spatial point process model to obtain the posterior

draws Θ(k) ∼ π(Θ | Dn), for k = 1, . . . , K.
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• Step 2: For i = 1, . . . , n and j = 1, . . . , J , compute

(4.11) Q̂jti =
1

K

K∑
k=1

π(xi | Ti = j,Θ
(k)
i )

π(xi | Ti = ti,Θ
(k)
i )

.

• Output: The posterior of the predictive probabilities of Ti, for i = 1, . . . , n, are

given by

P̂r[Ti = j | xi,D−i] =
pjQ̂jti∑J

j′=1 pj′Q̂j′ti

.(4.12)

And the estimate of Ti is

T̂i = arg max
j

(pjQjti) .(4.13)

Both BHICP and HPGRF provide an explicit form of π(xi | Ti = j,Θ) for i =

1, . . . , n+ 1 and the posterior estimates for {Θ(k)}Kk=1. Hence, we now discuss details

on how to build up Bayesian classifiers and the corresponding LOOCV algorithms

from these two models and compare the results.

4.2.2 The BHICP Model

In this section, with the assumption of independence between different types, we

provide a representation of the BHICP model for a meta analysis involving multi

type foci. We assume that xi, the observed foci from study i, is one realization of

an independent cluster process Xi on the brain, B, with intensity λ1j. Let Yij be an

independent cluster process with intensity function λ2j representing the latent study

activation centers from study i of type j, and Zj be the population centers of type

j with constant intensity βj. Define Ψij = {Ψy, y ∈ Yij} and Σj = {Σz, z ∈ Zj},

which are the covariance matrices attached to Yij and Zj to describe the cluster

shapes. Write Θij = {ε1ij, ε2ij, θ1ij, θ2ij, ηij,yij,Ψij} that collects all the unknown

parameters and latent quantities indexed by i and j, where ε1ij, ε2ij, θ1ij, θ2ij and ηij
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are intensity function parameters (see Chapter II). for details. Given the study type

Ti = j and all other latent quantities denoted by “•”, we have the following BHICP

model,

Xi | Ti = j, • i.i.d.∼ Poisson[B, λ1j(x | zj,Σj,Θij)]

Yij | •
i.i.d.∼ Poisson[B, λ2j(y | zj,Σj,Θij)]

Zj | βj
i.i.d.∼ Poisson[B, βj]

where the intensity functions λ1j and λ2j are given by:

λ1j(x | zj,Σj,Θij) = ε1ij +
∑
z∈zj

θ1ijφ(x; z,Σz) +
∑
y∈yij

ηijφ(x; y,Ψy),

λ2j(y | zj,Σj,Θij) = ε2ij +
∑
z∈zj

θ2ijφ(y; z,Σz).

Let Θj = {zj,Σj,Θ(n+1)j} and let xj = {xi : Ti = j} denote all the foci that are

reported from studies of type j. We have the follow corollary of Proposition 1 for

the BHICP model.

Corollary 1. In the BHICP model, the posterior predictive distribution (4.4) for

Tn+1 is proportional to

pj

∫
exp

{
−
∫
B
λ1j(x | Θj)dx

}{ ∏
x∈xn+1

λ1j(x | Θj)

}
π(Θj | xj)dΘj,(4.14)

where

π(Θj | xj) = π(y(n+1)j | zj,Σj,Ψ(n+1)j, ε2(n+1)j, θ2(n+1)j)π(zj,Σj | xj)

×π(Ψ(n+1)j)π(ε1(n+1)j)π(θ1(n+1)j)π(ε2(n+1)j), π(θ2(n+1)j)π(η(n+1)j).(4.15)

This implies that to draw Θj given xj, we first draw (zj,Σj) given xj for j =

1, . . . , J by applying the BHICP model running the posterior simulations J times,

one for each study type j (see Chapter II for more details). Then draw ε1(n+1)j,

θ1(n+1)j, ε2(n+1)j, θ2(n+1)j, η(n+1)j and Ψ(n+1)j from their respective prior distribution.

And finally draw y(n+1)j given ε2(n+1)j, θ2(n+1)j, Ψ(n+1)j, zj and Σj from (4.14).
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4.2.3 The HPGRF Model

For each type j, the foci reported from study i, i.e. xi, are one realization of a

Poisson point process with random intensity λj, where λj is modeled as a spatial

convolution of a kernel function kσ2
j
(x, y) and a gamma random field Gj(dy) with

base measure G0(dy) and scale parameter τ . To induce correlation between studies,

we further assume that G0(dy) is also a gamma random field with base measure

α(dy) and scale parameter β. In summary, we have that

Xi | Ti = j, • i.i.d.∼ Poisson[B, λj(x | Gj, σ
2
j )],

λj(x | Gj, σ
2
j ) =

∫
B
kσ2

j
(x, y)Gj(dy),

Gj(dy)
i.i.d,∼ GRF(G0(dy), τ),

G0(dy) ∼ GRF(α(dy), β).(4.16)

Let Θ = {{σ2
j}Jj=1, {Gj)}Jj=0}. Then, based on the posterior simulation algorithm

proposed in Chapter III, propositions 1 and 2 allow us to perform reverse inference

and produce the LOOCV classification rates.

4.3 Single Focus Impact Map

To understand the contribution of an individual focus to the classification, we

consider a voxel wise “Single Focus Impact Map” (SFIM). Define Sj(ξ) as the ex-

pected change in the predictive probability of study type Tn+1 = j given xn+1 and

Dn when adding a focus ξ at voxel v to xn+1. The expectation is taken with respect

to the predictive distribution of Xn+1 given Dn. i.e. For ξ ∈ v ⊂ B and each type j,

Sj(ξ) :=

EXn+1|Dn [Pr(Tn+1 = j | xn+1 ∪ {ξ},Dn)− Pr(Tn+1 = j | xn+1,Dn)](4.17)

The following proposition allows easy computation of Sj(ξ).
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Proposition 3. The SFIM map defined by (4.17) is given by

Sj(ξ) =

EXn+1,Θ|Dn

[
pjλj(ξ | Θ)π(xn+1 | Tn+1 = j,Θ)∑J

j′=1 pj′λj′(ξ | Θ)π(xn+1 | Tn+1 = j′,Θ)

]
− pj.(4.18)

Thus, Sj(ξ) ∈ [−pj, 1− pj].

This implies that Sj(ξ) is positive when a type j focus, ξ, uniquely occurs at voxel

v. If only a type j focus, ξ, is absent at voxel v, then Sj(ξ) will be negative.

The algorithm for SFIM:

• Input: The observed data Dn and the total number of simulations K.

• Step 1: Run a Bayesian spatial point process model to obtain posterior draws

Θ(k) ∼ π(Θ | Dn), for k = 1, . . . , K.

• Step 2: Draw t
(k)
n+1 from the prior probabilities {pj}Ji=1, for k = 1, . . . , K.

• Step 3: Draw x
(k)
n+1 from the density π(xn+1 | Tn+1 = t

(k)
n+1,Θ

(k)), for k =

1, . . . , K.

• Step 4: Let {v1, . . . , vN} denote all the voxels in B, and let ξi be the center of

vi. For i = 1, . . . , N , j = 1, . . . , J and k = 1, . . . , K, compute

L
(k)
j (ξi) = λj(ξi | Θ(k))π(x

(k)
n+1 | Tn+1 = j,Θ(k)).(4.19)

• Output: The salience map Sj(ξi), for i = 1, . . . , N and j = 1, . . . , J , is esti-

mated by

Ŝj(ξi) =
1

K

K∑
k=1

pjL
(k)
j (ξi)∑J

j′=1 pj′L
(k)
j′ (ξi)

− pj.(4.20)
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4.4 Application

To demonstrate our method, we use the meta analysis of emotions previously

discussed in Chapters II and III. We only consider the five emotions anger, disgust,

fear, happy and sad, leaving 219 studies. Table 4.1 shows summary statistics for

each type of emotion, where anger has the least number of studies and foci, fear

has the most number of studies and foci, and sad has the highest average number

of foci per study. We assume equal prior probability, pj = 0.2, for each type, and

fit our Bayesian spatial point process classifier based on the BHICP model and

the HPGRF model. Table 4.2 shows the LOOCV classifications rates based on

our BHICP and HPGRF models as well as those based on MKDA using the NBC.

Our spatial classifier correctly classifies 181 (BHICP) and 186 (HPGRF) of the 219

studies, for overall rates of 0.83 (BHICP) and 0.85 (HPGRF), far above random

chance of 0.20. Averaging correct classification rates over emotions which gives

equal weight to all emotions, provides an average rates of 0.82 and 0.85 respectively

for the BHICP and HPGRF based spatial classifier. The MKDA based NBC (kernel

radius is 10 mm) correctly classifies 99 studies with an overall rate of 0.45 and an

average rate of 0.36. Changing the MKDA kernel radius to 5mm, 15mm and 20mm

faired no better. The single focus impact maps are displayed in Figure 4.1 along with

prediction intensity maps and population center intensity maps. On the axial slice

located at Z = −20mm, the right amygdala (pointed to by white arrows) is visible

in both study level intensity maps and population center intensity maps. There is

greater spatial precision in the population center map. Since most emotions have

some right amygdala activation, inclusion of a new focus in or near the right amygdala

does not result in strong signal in the SFIM. However anger, which shows evidence of
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right lateral orbito-frontal activation (pointed to by red arrows), is unique and thus

appears as strong positive signal in the SFIM map. On the axial slice, Z = 26mm,

the predictive intensity of study foci and the population center posterior intensity

reveals that sad, happy and disgust have some precuneus activation (white arrows),

except anger. The SFIM reflects this, with anger studies having a negative predictive

value for precuneus activations: more precisely, for a random study, if you add one

focus in the precuneus, the predictive probability of anger decreases, increasing the

predictive probability of disgust and sad study types. The SFIM for anger also shows

positive predictive value of activations in the inferior frontal gyrus (pointed to by

red arrows) relative to other emotion types. The peak intensity in the anger SFIM

is 0.024, indicating that the addition of a single focus to the inferior frontal gyrus

increases the predictive probability 0.024.

4.5 Simulation Studies

In this section, we conduct simulation studies to evaluate the performance of our

methods. We compared the prediction accuracy of the BHICP, the HPGRF and the

NBC methods for different sets of simulated data.

4.5.1 Simulated Data Sets

We consider four types of foci and assume each type has 100 studies. Specifically,

we generate the type indicator ti = j, if j − 1 ≤ i/100 < j, for i = 1, . . . , 400. Given

{ti}400
i=1, we simulate foci xi from Poisson cluster processes on brain B (MNI space)

with mixture intensity functions:

[Xi | T i = j, λj] ∼ Poisson[B, λj(x)], for j = 1, . . . , 4.(4.21)

where λj(x) = ε +
∑3

l=1 θjlφ(x | µl,Σl). The locations of cluster centers are given

by µ1 = (−30, 20, 15)′, µ2 = (30,−10,−10)′ and µ3 = (0,−40, 40)′. The clus-



89

ter shapes are given by Σ1 =


40 1 1

1 40 1

1 1 40

, Σ2 =


30 4 4

4 30 4

4 4 30

, Σ3 =


20 2 2

2 20 2

2 2 20

. The background intensity is ε = 1/|B|. For the choices of cluster

intensities {{θjl}3
l=1}4

j=1, we consider the following two cases:

Case 1

θ11 = 1, θ12 = 1, θ13 = 0,

θ21 = 0, θ22 = 1, θ23 = 1,

θ31 = 1, θ32 = 0, θ33 = 1,

θ41 = 1, θ42 = 1, θ43 = 1.

Case 2

θ11 = 1, θ12 = 1, θ13 = 1,

θ21 = 1, θ22 = 1, θ23 = 1,

θ31 = 2, θ32 = 2, θ33 = 2,

θ41 = 2, θ42 = 2, θ43 = 2.

Figure 4.2 shows the simulated foci for the two different cases. In case 1, type 1 and

type 2 share clustering in region 1, type 2 and type 3 share clustering in region 3,

and type 1 and type 3 share clustering in region 2. Type 4 shows clustering in all

three regions. In case 2, all four types share clustering in the same region but with

different intensities. Type 1 and type 2 have the same intensity. Type 3 and type 4
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have identical intensities. The cluster intensities of type 3 and type 4 aer twice as

large as those of type 1 and type 2.

4.5.2 Simulation Performance

We apply our Bayesian spatial point process classifier and the MKDA based NBC

method to the simulated data. We assume equal prior probability of each type in the

classification. For the BHICP model of each type, we specify the priors according to

Chapter II, where the expected number of population centers is 3. In the HPGRF

model we use the same priors that are specified by Chapter III. We compute the

LOOCV classification rates for the BHICP model, the HPGRF model and the MKDA

based NBC method for the two cases (Tables 4.3 and 4.4). For both two cases, the

BHICP and the HPGRF models provide better prediction accuracy than the NBC

method. The overall BHICP classification accuracy is comparable to that of the

HPGRF model in both cases. In case 1, both the BHCIP and the HPGRF models

have overall classification rates greater than 0.75, much larger than the NBC correct

classification rate of 0.575. The correct classification rates for types 1, 2 and 3 are

all higher than that of type 4 for all three models. This is due to the fact that type 4

shares clustering with other types. In case 2, none of the models can distinguish type

1 and type 2, because both of them are simulated from the same intensity, which is

also true for type 3 and type 4. However, in the BHICP and the HPGRF confusion

matrices in Table 4.4, only a few studies of type 1/type 2 are misclassified as type

3/type 4. The models can detect the differences in the absolute number between the

types of foci that show clustering in the same region. The NBC method provides

almost the same misclassification rates for each type.
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4.6 Discussion

We propose a Bayesian spatial point process classifier for reverse inference for

neuroimaging meta analysis. Our method obtains accuracy rates twice those of the

naive Bayesian classifier. Possible reasons for this superior performance include:

1) We use an explicit spatial point process model that better captures the spatial

structure of foci than the mass-univariate NBC. Our approach jointly models the

random number and locations of foci, while the NBC ignores the spatial dependence

between voxels. 2) Our hierarchical spatial model is a more accurate representation of

the true data generating mechanism, relative to the MKDA kernel mapping of points

to voxel-wise images. 3) Our fully Bayesian model captures more sources of variation,

and appropriately conveys the certainty (or lack there of) in the computation of

the predictive probabilities that determine the classification outcome. Finally these

results provide evidence against a homogeneous representation of different emotions

in the brain.

In the future, one extension of the BHCIP model is to build up a joint cluster

process model for multiple types of point patterns, where their intensity functions

are assumed to be driven by the same population center process, but with distinct

parameters. This would enable the detection of common population centers shared

by some, or all, sub types, as well as distinct population centers for each sub type. A

joint model of this type would be more parsimonious than the current BHCIP model

and thus should increases statistical efficiency.
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Table 4.1: Summary statistics from the emotion meta analysis data set

Statistics Sad Happy Anger Fear Disgust

Number of studies 45 36 26 68 44

Number of foci 346 177 166 367 337

Avg. number of foci per study 7.69 4.92 6.38 5.40 7.66
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Table 4.2: The LOOCV classification rates
Naive Bayes Classifier (overall: 0.45, average: 0.37)

Truth Classification Rates
sad happy anger fear disgust

sad 0.38 0.11 0.07 0.40 0.04
happy 0.11 0.25 0.03 0.56 0.06
anger 0.12 0.23 0.00 0.50 0.15

fear 0.06 0.06 0.01 0.81 0.06
disgust 0.09 0.16 0.05 0.32 0.39

Bayesian Hierarchical Independent Cluster Process Model
(overall: 0.83, average: 0.82)

Truth Classification Rates
sad happy anger fear disgust

sad 0.78 0.00 0.11 0.04 0.07
happy 0.06 0.92 0.00 0.03 0.00
anger 0.08 0.08 0.69 0.15 0.00

fear 0.13 0.01 0.00 0.85 0.00
disgust 0.05 0.02 0.02 0.07 0.84

Hierarchical Poisson/Gamma Random Fields Model
(overall: 0.85, average: 0.85)

Truth Classification Rates
sad happy anger fear disgust

sad 0.91 0.02 0.00 0.07 0.00
happy 0.03 0.83 0.03 0.08 0.03
anger 0.00 0.08 0.77 0.15 0.00

fear 0.01 0.07 0.06 0.81 0.04
disgust 0.02 0.02 0.00 0.02 0.93
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Table 4.3: Simulation study results: Case 1
Naive Bayes Classifier (overall: 0.575)

Truth Classification Rates
Type 1 Type 2 Type 3 Type 4

Type 1 0.61 0.16 0.16 0.07
Type 2 0.09 0.83 0.04 0.04
Type 3 0.19 0.19 0.57 0.05
Type 4 0.18 0.26 0.27 0.29

Bayesian Hierarchical Independent Cluster Process Model
(overall: 0.77)

Truth Classification Rates
Type 1 Type 2 Type 3 Type 4

Type 1 0.81 0.06 0.09 0.04
Type 2 0.05 0.84 0.06 0.05
Type 3 0.10 0.05 0.79 0.06
Type 4 0.12 0.10 0.13 0.65

Hierarchical Poisson/Gamma Random Fields Model
(overall: 0.76)

Truth Classification Rates
Type 1 Type 2 Type 3 Type 4

Type 1 0.78 0.07 0.07 0.08
Type 2 0.07 0.83 0.05 0.05
Type 3 0.10 0.06 0.78 0.06
Type 4 0.10 0.13 0.13 0.64
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Table 4.4: Simulation study results: Case 2
Naive Bayes Classifier (overall: 0.32)

Truth Classification Rates
Type 1 Type 2 Type 3 Type 4

Type 1 0.35 0.33 0.12 0.20
Type 2 0.42 0.31 0.10 0.17
Type 3 0.16 0.13 0.31 0.40
Type 4 0.22 0.10 0.38 0.30

Bayesian Hierarchical Independent Cluster Process Model
(overall: 0.45)

Truth Classification Rates
Type 1 Type 2 Type 3 Type 4

Type 1 0.51 0.40 0.02 0.07
Type 2 0.46 0.45 0.05 0.04
Type 3 0.03 0.06 0.43 0.48
Type 4 0.01 0.06 0.41 0.42

Hierarchical Poisson/Gamma Random Fields Model
(overall: 0.51)

Truth Classification Rates
Type 1 Type 2 Type 3 Type 4

Type 1 0.47 0.49 0.01 0.03
Type 2 0.37 0.54 0.04 0.05
Type 3 0.04 0.07 0.49 0.40
Type 4 0.02 0.02 0.42 0.54
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Study Foci: Predictive Intensity

Fear Disgust

0

0.00054

Population Centers: Posterior Intensity0

0.00013
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Z = −20mm
Sad Happy Anger

Study Foci: Predictive Intensity

Fear Disgust

0
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Population Centers: Posterior Intensity0
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SFIM−0.015

0

0.021

Z = 26mm

Figure 4.1: Two axial slices (Z = -20mm, 26mm) of the predictive intensity of study foci,
the posterior intensity of population centers, and single focus impact maps produced by
BHICP model for the meta analysis of five emotions.
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Case 1

Case 2

Figure 4.2: Simulated Data.



CHAPTER V

Conclusion

Motivated by a meta analysis of 437 emotion studies, in this dissertation, we

develop a series of Bayesian hierarchical spatial point process models for functional

neuroimaging meta analysis and related problems.

In Chapter II, we produce a fully Bayesian hierarchical spatial model, i.e. the

BHICP model, for neuroimaging meta analysis. We explicitly model the clustering

of study foci about latent activation centers (accounting for multiple peaks within

a study describing a single anatomical region), which in turn cluster about latent

population centers. In particular, our model dissociates between inter-study spread of

foci, and spatial uncertainty in population response location. Furthermore, since we

adopt a Bayesian modeling approach, other quantitative information can be extracted

from our model that cannot be deduced from current methods.

In the future, one extension of the BHICP model is to incorporate multiple sources

of information as covariates into the study level intensity functions such as sample

size, nominal significance level, and whether or not the study is adjusted for multiple

comparisons. The covariate adjusted model can increase the power of detection of

population centers and reduce bias. We would also like to study the identifiability

of the hierarchical independent cluster process model, particularly focusing on the

98
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assessment of Bayesian learning of parameters, such as location and variability of

population centers.

In Chapter III, we develop a hierarchical Poisson/Gamma random field model

for multi type spatial point processes. We have shown that our model not only

estimates the intensity function more accurately for each type of point pattern, but

also provides a “population mean” intensity which can be used to identify common

regions of clustering shared between the types. Although the development of this

model is motivated by the analysis of multi type emotion meta analysis, it can be

applied to any problem that involves multi type spatial point patterns.

In the future, we plan to extend the model using multiple levels of hierarchy where

the number of levels and the structure of the hierarchy depend on the needs of the

data analysis. This model is particularly useful for complex data analysis. In the

meta analysis of emotion, for example, based on prior knowledge, some regions in the

brain are activated for both anger and fear, but not for other emotions. A multi-level

hierarchical extension of our model could identify these regions.

The current algorithm is based on the Lévy measure construction which involves a

large number of parameters and must be greater than the number of observed points.

This results in an expensive computational cost. Thus, another interesting future

direction is to develop a more efficient algorithm for the posterior computation of

our model. One potential solution is to develop a equivalent model representation

with a random number of parameters in a similar fashion to the Chinese Restaurant

Franchise (Teh et al. 2006) for hierarchical Dirichlet process.

In Chapter IV, we focus on reverse inference based on the meta analysis of func-

tional neuroimaging data, for which we propose a Bayesian spatial point process

classifier for multiple types of point patterns. With appropriate modeling of the
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intensity function for each type of point pattern, we have shown that a classifier

can be constructed based on the posterior probability of the type, given a particular

point pattern. This posterior probability, for a new study, can be efficiently esti-

mated via an importance sampling approach. We also propose a statistical map as

an exploratory tool to discover the impact of brain regions on distinguishing cogni-

tive states. The proposed method is illustrated by a meta analysis of 219 emotion

studies with five types. This model shows a much higher correct classification rate

compared with a naive Bayes classifier, and the proposed statistical map provides

valuable insight into the relationships between emotions and brain activity. Our mod-

eling framework can integrate any model that has explicit estimates of the intensity

function or density function for each type of point pattern. We have demonstrated

that the BHICP and the HPGRF models can be adapted for a classifier through our

methods. We have found that the HPGRF model which jointly analyses the multi

type spatial point patterns results in higher accuracy than the BHICP model that

independently fits each type of point pattern. However, the BHICP model has the

advantage that it dissociates between inter-study spread of foci and the spatial uncer-

tainty in population response locations. This motivates future work to build a joint

cluster process model for multi type point patterns, where their intensity functions

are assumed to be driven by a common population center process, but with distinct

parameters. For a particular type, the cluster intensity can be very small or close to

zero, indicating that it does not cluster about this population center. This enables

detection of the common population centers shared by some or all of the types of

point pattern as well as the particular population centers for each type. This joint

model is more parsimonious than the current model and thus would increase the

statistical efficiency. Furthermore, it may produce higher correct classification rates.
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Another promising future direction for the analysis of spatial point patterns is to

develop models for Bayesian random shape spatial clustering. The Matérn cluster

process makes an assumption that points cluster in spheres. In some applications,

spatial point patterns may cluster in configurations that are not well represented

by a sphere. Overlapping spherical clusters may be able to capture some features

of these clusters, however, the number and shape of unique clusters may also be of

interest. Thus, the development of a Bayesian random shape spatial point process

model that generalizes the Matérn cluster process in 3D is of intereset. We can

represent the shape of clusters as closed surfaces using 3D spherical coordinates

and build up a stochastic model for the radial function. The key idea is to utilize

the spectral representation of a homogeneous and isotropic Gaussian random field

on the unit sphere (Yadrenko 1983). We obtain the random radial function of the

shapes by exponentiating this process. Simulation studies show the model has good

performance on fitting different shapes of cluster point patterns.

In the future, we plan to apply this model to the meta analysis of functional neu-

roimaging and compare it with other models. The general idea may also be applied

in other random shape analyses. For example, we can incorporate the random shape

framework into a spatial-mixture model (Woolrich et al. 2005) that segments the

functional statistical parametric maps into three classes: activation, non-activation

and de-activation. The random shapes would represent the boundaries of the regions

for each class, which specifies the prior model of the spatial class labels. It avoids esti-

mating the normalizing constant compared with the regular discrete Markov random

fields models.
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APPENDIX A

The Details of Bayesian Hierarchical Independent Cluster
Process Model

A.1 Probability Equivalence Assumption

The probability equivalence assumption: the probability that a type 0 focus in

study c clusters about a population center z ∈ z and the probability that a study

center in study c clusters about the same population center are equal over all studies,

for c = 1, . . . , C. Let x, y be two points in the brain B, then we have

Pr(x ∈ X0
cz | x ∈ X0

c) = Pr(y ∈ Ycz | y ∈ Yc)

Pr(x ∈ X0
cz)

Pr(x ∈ X0
c)

=
Pr(y ∈ Ycz)

Pr(y ∈ Yc)

E[I(x ∈ X0
cz)]

E[I(x ∈ X0
c)]

=
E[I(y ∈ Ycz)]

E[I(y ∈ Yc)]
(A.1)

E[NX0
cz

(B)]

E[NX0
c
(B)]

=
E[NYcz(B)]

E[NYc(B)]
,(A.2)

where (A.2) follows from (A.1) by the following argument. Suppose there are two

point processes A,B ⊂ S and B 6= ∅, for any two points ξ, η ∈ S, then Pr(ξ ∈ A) =

Pr(η ∈ A) and Pr(ξ ∈ B) = Pr(η ∈ B) > 0, thus,

Pr(ξ ∈ A)

Pr(ξ ∈ B)
=

Pr(η ∈ A)

Pr(η ∈ B)
⇒ E[I(ξ ∈ A)]

E[I(ξ ∈ B)]
=
E[I(η ∈ A)]

E[I(η ∈ B)]
≡ R.
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Therefore,

E[NA(S)]

E[NB(S)]
=

∑
η∈S E[I(η ∈ A)]∑
η∈S E[I(η ∈ B)]

=

∑
η∈S R · E[I(η ∈ B)]∑
η∈S E[I(η ∈ B)]

= R =
E[I(ξ ∈ A)]

E[I(ξ ∈ B)]
, for any ξ ∈ S,

where N•(S) =
∑

a∈S I(a ∈ •).

According to the definitions of X0
c , X0

cz, Yc and Ycz and the intensity function

(3) and (6) in Section 2.2, (A.2) implies, for c = 1, . . . , C,

pz ≡
θ1cΦ(B; z,Σz)

ε1c|B|+
∑

z∈z θ1cΦ(B; z,Σz)
=

θ2cΦ(B; z,Σz)

ε2c|B|+
∑

z∈z θ2cΦ(B; z,Σz)
.(A.3)

By routine calculations, we have

θ1c

ε1c
=
θ2c

ε2c
=

1

|B|

(
Φ(B; z,Σz)

pz
−
∑
z′∈z

Φ(B; z′,Σ′z)

)
≡ qz.(A.4)

From the definition of θ and ε in equation (8) in Section 2.2, we have

θ

ε
=

∑C
c=1(θ1c + θ2c)∑C
c=1(ε1c + ε2c)

=

∑C
c=1 qz(ε1c + ε2c)∑C
c=1(ε1c + ε2c)

= qz =
θ1c

ε1c
=
θ2c

ε2c
.(A.5)

This further implies that we can define ρ1c and ρ2c as follows:

ρ1c ≡
ε1c
ε

=
θ1c

θ
, ρ2c ≡

ε2c
ε

=
θ2c

θ
,(A.6)

such that

C∑
c=1

(ρ1c + ρ2c) =

∑C
c=1(θ1c + θ2c)

θ
=

∑C
c=1(ε1c + ε2c)

ε
= 1.(A.7)

Write ρ = (ρ11, · · · , ρ1C , ρ21, · · · , ρ2C). The parameter set {ε1c, θ1c, ε2c, θ2c}Cc=1 can be

now be reparametrized by {ρ, θ, ε}. Thus, the number of parameters is reduced by

2C − 1.
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A.2 Algorithm Details

In this section, we provide algorithm details and pseudo code. We first present

the posterior distribution, and then discuss the details of the continuous time spatial

birth-and-death processes for simulating from the posterior study activation center

processes and the posterior population center process. We also provide details on

updating all parameters in the hybrid MCMC algorithm. We then discuss some

issues on Normal and Student-t probability computations, show how to estimate the

posterior intensity function for the population center process and the 95% credible

ellipsoids.

A.2.1 Posterior Distribution

The joint posterior of model parameters, including latent variables, is

π[δ1, . . . , δC , (y,Ψ)1, . . . , (y,Ψ)C , (z,Σ), ε,θ,η, β,T | x1, . . .xC ]

∝
C∏
c=1

{
π [(x, δ)c | ε1c, θ1c, ηc, (z,Σ), (y,Ψ)c] π(ε1c)π(ηc)π(θ1c)

}
×

C∏
c=1

{
π [(y,Ψ)c | ε2c, θ2c, (z,Σ)]π(ε2c)π(θ2c)

}
× π [(z,Σ) | β,T ] π(β)π(T ),(A.8)

where ε = (ε11, . . . , ε1C , ε21, . . . , ε2C), θ = (θ11, . . . , θ1C , θ21, . . . , θ2C) and η = (η1

, · · · , ηC). With the probability equivalence assumption, we have that εdc = ρdcε and

θdc = ρdcθ for d = 1, 2 and c = 1, . . . , C, Thus, (A.8) is equivalent to

π[δ1, . . . , δC , (y,Ψ)1, . . . , (y,Ψ)C , (z,Σ),ρ,η, β,T | x1, . . .xC ]

∝
C∏
c=1

{
π [(x, δ)c | ρ1c, ηc, (z,Σ), (y,Ψ)c] π(ηc)

}
×

C∏
c=1

{
π [(y,Ψ)c | ρ2c, (z,Σ)]

}
π(ρ)× π [(z,Σ) | β,T ] π(β)π(T ).(A.9)
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This is proportional to

C∏
c=1

π [x0
c | ρ1c, (z,Σ)

] ∏
x∈x0

c

π(δx = 0)

×
C∏
c=1

π [x1
c | ηc, (y,Ψ)c

] ∏
x∈x1

c

π(δx = 1)π(ηc)

×
C∏
c=1

{
π [(y,Ψ)c | ρ2c, (z,Σ)]

}
π(ρ)× π [(z,Σ) | β,T ] π(β)π(T ).(A.10)

We propose an hybrid algorithm with two continuous time spatial birth-and-death

processes embedded in a standard MCMC algorithm to sample from the posterior

(A.10).

A.2.2 Imputation of Missing Type Indicators

The full conditional distribution of δc is

π[δc | ·] ∝
1∏
d=0

π[xdc | ·]
∏
x∈xdc

π(δx = d)

 ∝
1∏
d=0

∏
x∈xdc

λd1c(x; ·)π(δx = d).

Furthermore, the full conditional probability mass function of δx for each x ∈ xc is

π[δx = d | ·] ∝ λd1c(x; ·)π(δx = d) for d = 0, 1. We set π(δx = d) = 0.5, thus,

π[δx = d | ·] =
λd1c(x; ·)
λ1c(x; ·)

, for d = 0, 1.(A.11)

A.2.3 Spatial Birth-and-Death Processes

The spatial birth-and-death process (Preston 1975, Møller and Waagepetersen

2004), a continuous time Markov process whose transitions are either births or deaths,

can be used to simulate spatial point processes.

General Procedure

Suppose we wish to construct a spatial birth-and-death process to simulate a

latent point process A from its posterior π(a | u), where u is data. Preston (1975)
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showed that if the birth and death rates satisfy the detailed balance equation

(A.12) π(a | u)b(a, ξ) = π(a ∪ {ξ} | u)d(a ∪ {ξ}, {ξ}),

then the chain is time reversible and that the spatial birth-and-death process has a

unique equilibrium distribution π(a | u) to which it converges in distribution from

any initial state. In (A.12) b(a, ξ) is the birth rate for adding a new point ξ to the

current configuration, a, of the point process A, and d(a, ξ) denotes the death rate

for removing a point ξ from a. We adopt the birth rate suggested by van Lieshout

and Baddeley (2001) using a mixture intensity, i.e. b(a, ξ) =
∑

u∈u h(ξ;u), where

h(ξ; ·) is an intensity function. To satisfy the detailed balance equation, the death

rate for removing ξ from a is d(a, ξ) = [π(a/{ξ} | u)/π(a | u)]
∑

u∈u h(ξ;u). Let

B(a) =
∫
b(a, ξ)dξ denote the total birth rate. Note that B(a) does not depend on

a. Write B = B(a). Let D(a) =
∑

a∈a d(a; a) denote the total death rate. Given

current state a, after an exponentially distributed time with rate B +D(a), a birth

is proposed with probability B/{B+D(a)} by sampling ξ from the mixture density∑
u∈u h(ξ;u)/B. A death is proposed with probability D(a)/{B + D(a)} and the

point a ∈ a is removed with probability d(a; a)/D(a).

Details for Simulating the Posterior Study Activation Center Processes

From (A.9), for c = 1, . . . , C, the full conditional posterior distribution of a marked

study activation center process for study c is

π[(y,Ψ)c | ·] ∝ π[x1
c | ηc, (y,Ψ)c]× π[(y,Ψ)c | ρ2c, (z,Σ)],

for which we construct a spatial birth-and-death process using the birth rate

bc[(y,Ψ)c, (y,Ψy)] =
∑
x∈x1

c

ηcφ3(y;x,Ψy)π(Ψy),(A.13)
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where φ3(ξ;µ,Σ) denotes the 3D normal density at ξ with mean µ and covariance

matrix Σ. The death rate for removing (y,Ψy) ∈ (y,Ψ)c is then

dc[(y,Ψ)c, (y,Ψy)]

=
π[x1

c | ηc, (y,Ψ)c/{(y,Ψy)}] · π[(y,Ψ)c/{(y,Ψy)} | ρ2c, (z,Σ)]

π[x1
c | ηc, (y,Ψ)c] · π[(y,Ψ)c | ρ2c, (z,Σ)]

×
∑
x∈xc

ηcφ3(y;x,Ψy)π(Ψy)

=
exp{ηcΦ3(·; y,Ψy)}∏

x∈x1
c

[
1 + ηcφ3(x;y,Ψy)

λ1
1c(x;·)−ηcφ3(x;y,Ψy)

] · ηc∑x∈xc
φ3(y;x,Ψy)

λ2c(y; ·)
,(A.14)

where Φ3(· | µ,Σ) =
∫
B φ3(ξ | µ,Σ)dξ, is 3D normal probability over the brain B

with mean µ and covariance matrix Σ. Using (A.13), the total birth rate is

Bc =

∫
B

∫
M

∑
x∈x1

c

ηcφ3(y;x,Ψy)π(Ψy)dΨydy

= ηc
∑
x∈x1

c

T3(·;x,S/(d− 2), d),(A.15)

where M is the space of 3× 3 symmetric positive definite matrices. T3(·;µ,S, d) is

student-t probability over the brain B with mean µ, scale matrix S and d degrees of

freedom. The total death rate is given by

Dc[(y,Ψ)c] =
∑

(y,Ψy)∈(y,Ψ)c

dc[(y,Ψ)c, (y,Ψy)].(A.16)

For a birth, we draw a new point (y,Ψy) from

(A.17)

bc[(y,Ψ)c, (y,Ψy)]

Bc

=
∑
x∈x1

c

{
φ3(y;x,Ψy)π(Ψy)

T3(·;x,S/(d− 2), d)
· T3(·;x,S/(d− 2), d)∑

x′∈x1
c
T3(·;x′,S/(d− 2), d)

}
,

To draw from this mixture distribution, first draw

Ψy ∼ W−1(S, d),(A.18)

then draw y from the following mixture distribution,

[y | Ψy] ∼
∑
x∈x1

c

vxNB(x,Ψy),(A.19)
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where NB(µ,Σ) denotes the 3D normal distribution truncated to B with mean µ and

covariance matrix Σ, and the weight vx = T3(·;x,S/(d− 2), d)/Bc.

The simulation time for this spatial birth-and-death process at each iteration of

the hybrid algorithm is set to 1/Bc, and the number of points in yc is initially set to

zero.

Details for Simulating the Posterior Population Center Process

Note that (A.6) implies that the intensity functions for Xc
0, Yc and Y, say, λ0

1c, λ2c

and λ have the following relationships: λ0
1c(y; ·) = ρ1cλ(y; ·) and λ2c(y; ·) = ρ2cλ(y; ·).

Thus,

C∏
c=1

{
π[x0

c | ρ1c, (z,Σ)] · π[yc | ρ2c, (z,Σ)]
}

∝
C∏
c=1

exp

{
−
∫
B
λ0

1c(x; ·) + λ2c(x; ·)dx
} ∏
x∈x0

c

λ0
1c(x; ·)

∏
y∈yc

λ2c(y; ·)


∝ π[y | (z,Σ)] ·

C∏
c=1

{
ρ

n(x0
c)

1c ρ
n(yc)
2c

}
.

This implies that (A.10), the full joint posterior, is proportional to

C∏
c=1

{
π
[
x1
c | ηc, (yc,Ψc)

]
π(ηc)ρ

n(x0
c)

1c ρ
n(yc)
2c

}∏
y∈y

π(Ψy)×

π(ρ)π [y | (z,Σ)]π [z | β] π(β)π(T )
∏
z∈z

π(Σ | T ).(A.20)

Thus, the full conditional posterior distribution of the population center process is

π[(z,Σ) | ·] ∝ π[y | (z,Σ)]π[z | β]
∏
z∈z

π(Σz | T ),

for which we construct a spatial birth-and-death process using the birth rate,

b[(z,Σ), (z,Σz)] = βπ(Σz | T )

[
1 +

θ

ε

∑
y∈y

φ3(y; z,Σz)

]
,(A.21)
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and the death rate, for removing a point (z,Σz) ∈ (z,Σ), is

(A.22) d[(z,Σ), (z,Σz)] =
exp{θΦ3(·; z,Σz)}∏

y∈y

[
1 + θφ3(y;z,Σz)

λ(y;·)−θφ3(y;z,Σz)

] [1 +
θ

ε

∑
y∈y

φ3(y; z,Σz)

]
.

The total birth rate is

(A.23)

B =

∫
B

∫
M
b[(z,Σ), (z,Σz)]dΣzdz = β

[
|B|+ θ

ε

∑
y∈y

T3(·; y,T /(ν − 2), ν − 2)

]

and the total death rate is

D(z,Σ) =
∑
z∈z

d[(z,Σ), (z,Σz)](A.24)

For a birth, we draw a new point (z,Σz) from the mixture density

b[(z,Σ), (z,Σz)]

B

=
∑
y∈y

{
β|B|π(Σz)

B
+

φ3(y; z,Σz)π(Σz)

T3(·; y, T
ν−2

, ν − 2)

βT3(·; y, T
ν−2

, ν − 2)

B

}
.(A.25)

This implies that we first draw

Σz ∼ W−1(S, ν),(A.26)

then draw z from the following mixture distribution,

[z | Σz] ∼ w∅UB +
∑
y∈y

wyNB(y,Σz),(A.27)

where UB denotes the uniform distribution over the brain B, and the weight wy =

β|B|/B when y = ∅ and wy = βB−1T3(·; y,T /(ν − 2), ν − 2) if y ∈ y.

The total simulation time for this spatial birth-and-death process at each iteration

of the hybrid algorithm is set to 1/B and number of points in the population center

process is set to zero as the initial state.
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A.2.4 Standard MCMC Updates

Upon exiting the spatial birth-and-death processes, conditional on the number

of points in Yc and Z, we use a standard MCMC algorithm to update the study

activation center processes parameters and population center process parameters,

i.e. (y,Ψ)c and (z,Σ), as well as η, ρ, β and T .

Update (y,Ψ)c given NYc
(B) = nc

Define a latent indicator variable αx ∈ yc with prior π(αx = y) = 1/nc for

each x ∈ X1
c and y ∈ yc, such that X1

cy = {x ∈ X1
c ;αx = y}. Recall that X1

cy

is a process defined in Section 2.1 with intensity function ηcφ3(x; y,Ψy). Write

αc = {αx, x ∈ X1
c}. Note that π[x1

c ,αc | λ1
1c] ∝

∏
y∈y π[xcy | ηc, y,Ψy]. Then the

full conditional distribution of (y,Ψ)c and αc is π[(y,Ψ)c,αc | ·] ∝
∏

y∈yc

{
π[xcy |

ηc,Ψy]π(Ψy)
}
π[yc | ρ2c, (z,Σ)]. This further implies the full conditional of y ∈ yc is

π[y | ·] ∝ exp{−ηcΦ3(·; y,Ψy)}λ2c(y; ·)φ3

y;

∑
x∈x1

c

xI(αx = y)∑
x∈x1

c

I(αx = y)
,

Ψy∑
x∈x1

c

I(αx = y)

 .

Thus to update y ∈ yc, draw

y∗ ∼ NB

[∑
x∈x1

c
xI(αx = y)∑

x∈x1
c
I(αx = y)

,
Ψy∑

x∈x1
c
I(αx = y)

]
,(A.28)

and accept with probability

min

{
1, exp{ηc[Φ3(·; y,Ψy)− Φ3(·; y∗,Ψy)]}

λ2(y∗; ·)
λ2(y; ·)

}
.(A.29)

The full conditional of Ψy is

π[Ψy | ·] ∝ exp{−ηcΦ3(·; y,Ψy)}π(Ψy)

×φ3

y;

∑
x∈x1

c

xI(αx = y)∑
x∈x1

c

I(αx = y)
,

Ψy∑
x∈x1

c

I(αx = y)

 .
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Thus to update Ψy, draw

Ψ∗y ∼ W−1

S +
∑
x∈xc1

(x− y)(x− y)TI(αx = y), d+
∑
x∈x1

c

I(αx = y)

 ,(A.30)

and accept with probability

min
{

1, exp{−ηc[Φ3(·; y,Ψ∗y)− Φ3(·; y,Ψy)]}
}
.(A.31)

To update αx, we have

π[αx = y | ·] =
φ3(x; y,Ψy)∑

y′∈yc
φ3(x; y′,Ψy′)

∀ y ∈ yc.(A.32)

Update (z,Σ) given NZ(B) = m

Define a latent indicator variable γy ∈ z ∪ {∅} with prior π(γy = z) = 1/(m + 1)

for each z ∈ z ∪ {∅} and y ∈ Y such that Ycz = {y ∈ Y; γy = z}. From Section 2.1,

Yc∅ is a homogeneous Poisson process with constant intensity ε and Ycz for z ∈ Z

is a point process with intensity θφ3(y; z,Σz). Write γ = {γy, y ∈ Y}. Note that

π[(y,γ) | ·] ∝ π[yc∅]
∏

z∈z π[ycz | z,Σz]. Then the joint posterior distribution of

(z,Σ) and γ given all other parameters is

π[(z,Σ),γ | ·] ∝
∏
z∈z

{
π[ycz | z,Σz]π[Σz]

}
π[z | β].

Thus the full conditional of z ∈ z is

π[z | ·] ∝ exp{−θΦ3(·; z,Σz)}φ3

(
z;

∑
y∈y yI(γy = z)∑
y∈y I(γy = z)

,
Σz∑

y∈y I(γy = z)

)
.

Thus to update z ∈ z, draw

z∗ ∼ NB

[∑
y∈y yI(γy = z)∑
y∈y I(γy = z)

,
Σz∑

y∈y I(γy = z)

]
,(A.33)

and accept with probability

min{1, exp{θ[Φ3(·, z,Σz)− Φ3(·, z∗,Σz)]}}.(A.34)
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The full conditional of Σz is

π[Σz | ·] ∝ exp{−θΦ3(·; z,Σz)}π(Σz | T )

×φ3

z;

∑
y∈y

yI(γy = z)∑
y∈y

I(γy = z)
,

Σz∑
y∈y

I(γy = z)

 .

Thus update Σz by first drawing

Σ∗z ∼ W−1

[
T +

∑
y∈y

(y − z)(y − z)TI(γy = z), ν +
∑
y∈y

I(γy = z)

]
,(A.35)

and accept with probability

min{1, exp{θ[Φ3(·, z,Σz)− Φ3(·, z,Σ∗z)]}}.(A.36)

To update each γy for y ∈ Y, we have

π[γy = ∅ | ·] =
ε

ε+ θ
∑

z′∈z φ3(y; z′,Σz′)
(A.37)

π[γy = z | ·] =
θφ3(y; z,Σz)

ε+ θ
∑

z′∈z φ3(y; z′,Σz′)
∀ z ∈ z,(A.38)

Update η, ρ, β and T

The full conditional for ηc for c = 1, 2, . . . , C is

π[ηc | ·] ∝ π[x1
c | ηc, (y,Ψ)c]π(ηc)(A.39)

∝ exp

−ηc
∑
y∈yc

Φ3(·; y,Ψy) + bη

 ηn(x1
c)+aη

c ,(A.40)

Thus to update ηc draw

ηc ∼ G

∑
y∈yc

Φ3(·; y,Ψy) + bη,n(x1
c) + aη

 ,(A.41)

According to (A.20), the full conditional for ρ is

π[ρ | ·] ∝
C∏
c=1

{
ρ

n(x0
c)

1c ρ
n(yc)
2c

}
π(ρ) ∝

C∏
c=1

{
ρ

n(x0
c)+α1c

1c ρ
n(yc)+α2c

2c

}
,(A.42)
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Thus update ρ by drawing

ρ ∼ D[n(x0
1) + α11, . . . ,n(x0

C) + α1C ,n(y1) + α21, . . . ,n(yC) + α2C ].(A.43)

The full conditional for β is π[β | ·] ∝ exp {−β(|B|+ bβ)} βn(z)+aβ . Thus draw

β ∼ G[n(z) + αβ, |B|+ bβ].(A.44)

The full conditional of T is π[T | ·] ∝ π(T )
∏

z∈z π(Σz | T ). Therefore, draw

T ∼ W−1

[
(T−1

0 +
∑
z∈z

Σ−1
z ), ν0 + νn(z)

]
.(A.45)

A.2.5 Normal and T Probability Computation

The total birth rate and death rate in the spatial birth-and-death process, as well

as many standard MCMC updates involve the evaluation of 3D normal and student-t

probabilities over the brain. It is difficult to directly evaluate these probabilities over

arbitrary regions such as the brain. Thus, we resort to Monte Carlo simulation of

these probabilities. Since more than half of the normal and t probabilities in our

motivating example are close to 1 we consider the following approximation. If the

99% credible ellipsoid of the target distribution lies completely within the brain we

set the probability to 0.995, otherwise, we estimate it via Monte Carlo simulation.

We set the Monte Carlo sample size n = 500 using the estimated standard error,√
p(1− p)/n, where p is the true probability. This results in a maximum absolute

value of the Monte Carlo error (twice the standard error) of 0.05 when p = 0.5.

A.2.6 Posterior Intensity Estimation

Let (z(k),Σ(k)) be the posterior draw of the population center process at the

kth iteration after burn-in, for k = 1, . . . , K. To obtain its intensity function, we

combine all of the draws of locations, i.e. ∪Kk=1z
(k), which are then smoothed with a
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mixture of Dirichlet process priors model (a non-parametric Bayesian model used for

density smoothing/estimation, Escobar and West (1995)). We rescale the density by

multiplying the posterior mean number of population centers, i.e.
∑K

k=1 n(z(k))/K

to estimate the intensity.

Also, using (z(k),Σ(k)), we estimate the activation center process intensity function

by K−1
∑K

k=1 λ(y; z(k),Σ(k)), where λ(y; ·) is defined by equation (9) in Section 2.2.

Let ρ(k) be the posterior draw at the kth iteration after burn-in. To obtain

a posterior predictive intensity λ̃ for a new study, given ρ(k) and (z(k),Σ(k)), we

randomly pick c(k) ∈ {1, . . . , C}, then simulate a Poisson point process y
(kl)
0 with

intensity ρ
(k)

1c(k)
λ(y; z(k),Σ(k)), for l = 1, 2, . . . , L. For the kth iteration, λ̃(k) with a

voxel v is estimated by

λ̃(k)(y; ·) =

∑L
l=1

∑
y0∈y(kl) I[y0 ∈ v]

L|v|
, for y ∈ v,

Then λ̃(y; ) is estimated by
∑K

k=1 λ̃
(k)(y; ·)/K.

A.2.7 Credible Ellipsoid Computation

Conditional on the event that there is exactly one population center, z ∈ Z, in the

region of interest, the posterior distribution of z can be approximated by a normal

distribution N(µz,Λz), where (µz,Λz) can be simulated via a mixture of Dirichlet

process priors model based on the posterior sample of Z. The 95% credible ellipsoid

for the population centers is CRp
z = {x : (x − µz)

TΛ−1
z (x − µz) ≤ χ2

0.95,3}, where

χ2
0.95,3 is the 0.95 quantile of χ2 distribution with 3 degrees of freedom.

Conditional on the same event, the posterior distribution of an activation center

y ∈ (Yz = ∪Cc=1Ycz) that is associated with the population center z located in the

region of interest, is a normal distribution with mean z and covariance matrix Σz,

which can be estimated using the posterior draws of the population center process.
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Thus, the 95% credible ellipsoid for the activation centers is CRa
z = {x : (x −

z)TΣ−1
z (x− z) ≤ χ2

0.95,3}.

A.2.8 Pseudo Code

Starting with an initial state of all the parameters, repeat the following steps for

a pre-specified total number of iterations:

1. Update δ according to (A.11).

2. For c = 1, . . . , C, run the spatial birth-and-death process for study center pro-

cesses.

2.1. Compute Bc according to (A.15); set τc = 1/Bc; set t = 0; set (y,Ψ)c =

({∅}, {∅});

2.2. Compute dc[·, (y,Ψy)] for all (y,Ψy) ∈ (y,Ψ)c and Dc according to (A.14)

and (A.16).

2.3. Draw r ∼ U [0, 1]. If r < Bc/(Bc + Dc), then draw (y,Ψy) according to

(A.18) and (A.19), and set (y,Ψ)c = (y ∪ {y},Ψ ∪ {Ψy})c, else select

(y,Ψy) from (y,Ψ)c with probability dc[·, (y,Ψy)]/Dc and set (y,Ψ)c =

(y\{y},Ψ\{Ψy})c.

2.4. Draw a sojourn time s from an exponential distribution with rate Bc +Dc;

set t = t+ s, if t < τc, then go to 2.2.

3. Update each (y,Ψy) ∈ (y,Ψ)c, for c = 1, . . . , C based on (A.28) and (A.30).

4. Update ηc, for c = 1, . . . , C according to (A.41).

5. Update ρ from (A.43).

6. Run the spatial birth-and-death process for the posterior population center pro-

cess:
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6.1. Compute B based on (A.23); set τc = 1/B; set t = 0; set (z,Σ) =

({∅}, {∅}).

6.2. Compute d[·, (z,Σz)] for all (z,Σz) ∈ (z,Σ) and D based on (A.22) and

(A.24).

6.3. Draw r ∼ U [0, 1]. If r < B/(B+D), then draw (z,Σz) according to (A.26)

and (A.27), and set (z,Σ) = (z ∪ {z},Σ ∪ {Σz}), else select (z,Σz) from

(z,Σ) with probability d[·, (z,Σz)]/D and set (z,Σ) = (z\{z},Σ\{Σz}).

6.4. Draw a sojourn time s from an exponential distribution with rate B + D;

set t = t+ s; if t < τ , then go to 6.2.

7. Update each (z,Σz) ∈ (z,Σ) based on (A.33) and (A.35).

8. Update β from (A.44).

9. Update T from (A.45).

A.3 Simulation Studies

In this section, we conduct two simulation studies. In the first, we investigate the

sensitivity of the prior parameter settings in our model for the emotion data. In the

second, we study sensitivity of the model specification by simulating three data sets

based on different models.

A.3.1 Sensitivity to Priors

Our primary interest is how the posterior inference (including the number, lo-

cation and variability) of the population centers varies with different informative

prior specifications. We keep the non-informative priors that ρ ∼ D(0.5, . . . , 0.5)

and ηc ∼ G(0.001, 0.001) for any c = 1, 2, · · · , C and let β|B| ∼ G(aβ, 0.001), which

implies that var(β|B|)/E(β|B|) = 1000, thus the prior for β is relatively vague. We
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consider nine scenarios where scenario 1 has the same prior set up as in Section 3 in

the manuscript, other scenarios vary the settings of E[NZ(B)], E[NA(B)]/E[NY(B)],

E[NUc(B)], E[Σz] and E[Ψy] (see Table A.1 for a summary of the different scenarios),

where Uc = Yc ∪X0
c , is the activation centers in study c, Y = ∪Cc=1Uc, represents

the activation centers over all studies, and A = ∪Cc=1 ∪z∈z (Xcz ∪Ycz), denotes the

activation centers that cluster at the population level.

Table A.1: Sensitivity Analysis Priors.

Scenario aE[NZ(B)] bE[NUc
(B))] c E[NA(B)]

E[NY(B)] E[Σz] E[Ψy] T 0
dθ dε|B|

1 30 5.0 0.80 4I I 0.8I 58.27 437.00
2 25 5.0 0.80 4I I 0.8I 69.92 437.00
3 35 5.0 0.80 4I I 0.8I 49.94 437.00
4 30 5.0 0.75 4I I 0.8I 54.62 546.25
5 30 5.0 0.85 4I I 0.8I 61.91 327.75
6 30 5.0 0.80 8I I 1.6I 58.27 437.00
7 30 5.5 0.80 4I I 0.8I 64.09 480.70
8 30 4.5 0.80 4I I 0.8I 52.44 393.30
9 30 5.0 0.80 4I 2I 0.8 I 58.27 437.00

a A priori expected number of population centers.
b A priori expected number of activation centers per study.
c A priori proportion of act. centers that cluster about a population center.
d Derived values from footnotes a, b and c.

We simulate the posterior distribution with 20,000 iterations after a burn-in of

2,000 iterations. Table A.2 shows descriptive statistics on the posterior distribution

of the number of population centers after burn-in. As anticipated, scenarios 2 and 7

result in a decrease in the posterior mode of the number of the population centers.

This is because scenario 2 has a smaller prior mean number of population centers

while scenario 7 has a larger prior mean number of activation centers that clusters

about population centers. However, the change is not dramatic. The posterior mode

of the number of population centers for all nine scenarios is around 42, with a range

from 36 to 49.

In Figure A.1 we compare sensitivity of the activation center posterior intensity,

and in Figure A.2 we compare sensitivity of the population center posterior intensity.
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Table A.2: The summary statistics on the posterior number of population centers

Scenario Min Max Mean s.d. Mode
1 38 47 42.60 1.4 42
2 32 40 35.90 1.2 36
3 44 55 49.10 1.5 49
4 37 48 42.40 1.4 42
5 38 47 42.50 1.4 42
6 37 49 42.60 1.5 43
7 34 42 37.60 1.3 37
8 43 55 48.30 1.6 48
9 36 45 40.10 1.3 40

Figure A.3 compares the marginal credible ellipses for both population centers and

activation centers. From these figures, we see that the posterior expected intensities

and marginal credible ellipses are qualitatively quite similar. Table A.3 summarizes

the estimated location (x, y, z), the Euclidean distance in locations between scenario

1 and other scenarios, the volume of the 95% credible ellipsoid and the volume of

the 95% credible interval of population centers as well as activation centers condi-

tional on the population centers located in the amygdalae. The estimated number of

population centers and the estimated volume of the credible ellipsoids is somewhat

sensitive to the choice of prior on β, θ and ε, but the posterior intensity and the es-

timated location of the population centers are stable to various prior specifications.

The maximum distance in credible ellipsoid locations for population center between

scenario 1 and other scenarios is around 1mm (0.5 voxel).
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Z=−42 Z=−32 Z=−22 Z=−12 Z=−2 Z=8 Z=18 Z=28 Z=38 Z=48 Z=58

Scenario 1

0 0.0872 0.174 0.262 0.349

Z=−42 Z=−32 Z=−22 Z=−12 Z=−2 Z=8 Z=18 Z=28 Z=38 Z=48 Z=58

Scenario 2

0 0.0872 0.174 0.262 0.349

Z=−42 Z=−32 Z=−22 Z=−12 Z=−2 Z=8 Z=18 Z=28 Z=38 Z=48 Z=58

Scenario 3

0 0.0872 0.174 0.262 0.349

Z=−42 Z=−32 Z=−22 Z=−12 Z=−2 Z=8 Z=18 Z=28 Z=38 Z=48 Z=58

Scenario 4

0 0.0872 0.174 0.262 0.349

Z=−42 Z=−32 Z=−22 Z=−12 Z=−2 Z=8 Z=18 Z=28 Z=38 Z=48 Z=58

Scenario 5

0 0.0872 0.174 0.262 0.349

Z=−42 Z=−32 Z=−22 Z=−12 Z=−2 Z=8 Z=18 Z=28 Z=38 Z=48 Z=58

Scenario 6

0 0.0872 0.174 0.262 0.349

Z=−42 Z=−32 Z=−22 Z=−12 Z=−2 Z=8 Z=18 Z=28 Z=38 Z=48 Z=58

Scenario 7

0 0.0872 0.174 0.262 0.349

Z=−42 Z=−32 Z=−22 Z=−12 Z=−2 Z=8 Z=18 Z=28 Z=38 Z=48 Z=58

Scenario 8

0 0.0872 0.174 0.262 0.349

Z=−42 Z=−32 Z=−22 Z=−12 Z=−2 Z=8 Z=18 Z=28 Z=38 Z=48 Z=58

Scenario 9

0 0.0872 0.174 0.262 0.349

Figure A.1: Sensitivity analysis results: comparisons of the posterior activation center
intensity on 11 slices of the brain from Z = −42mm to Z = 58mm.
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Z=−42 Z=−32 Z=−22 Z=−12 Z=−2 Z=8 Z=18 Z=28 Z=38 Z=48 Z=58

Scenario 1

0 0.00088 0.00176 0.00264 0.00352

Z=−42 Z=−32 Z=−22 Z=−12 Z=−2 Z=8 Z=18 Z=28 Z=38 Z=48 Z=58

Scenario 2

0 0.00088 0.00176 0.00264 0.00352

Z=−42 Z=−32 Z=−22 Z=−12 Z=−2 Z=8 Z=18 Z=28 Z=38 Z=48 Z=58

Scenario 3

0 0.00088 0.00176 0.00264 0.00352

Z=−42 Z=−32 Z=−22 Z=−12 Z=−2 Z=8 Z=18 Z=28 Z=38 Z=48 Z=58

Scenario 4

0 0.00088 0.00176 0.00264 0.00352

Z=−42 Z=−32 Z=−22 Z=−12 Z=−2 Z=8 Z=18 Z=28 Z=38 Z=48 Z=58

Scenario 5

0 0.00088 0.00176 0.00264 0.00352

Z=−42 Z=−32 Z=−22 Z=−12 Z=−2 Z=8 Z=18 Z=28 Z=38 Z=48 Z=58

Scenario 6

0 0.00088 0.00176 0.00264 0.00352

Z=−42 Z=−32 Z=−22 Z=−12 Z=−2 Z=8 Z=18 Z=28 Z=38 Z=48 Z=58

Scenario 7

0 0.00088 0.00176 0.00264 0.00352

Z=−42 Z=−32 Z=−22 Z=−12 Z=−2 Z=8 Z=18 Z=28 Z=38 Z=48 Z=58

Scenario 8

0 0.00088 0.00176 0.00264 0.00352

Z=−42 Z=−32 Z=−22 Z=−12 Z=−2 Z=8 Z=18 Z=28 Z=38 Z=48 Z=58

Scenario 9

0 0.00088 0.00176 0.00264 0.00352

Figure A.2: Sensitivity analysis results: comparisons of the population center intensity on
11 slices of the brain from Z = −42mm to Z = 58mm.
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Scenario 1 Scenario 2 Scenario 3

Scenario 4 Scenario 5 Scenario 6

Scenario 7 Scenario 8 Scenario 9

Figure A.3: Sensitivity analysis results: comparisons of the 95% marginal credible ellipses
of both population centers (blue circles) and activation centers (yellow circles).
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Table A.3: The estimated location (x, y, z), the Euclidean distance in locations between
scenario 1 and other scenarios (Dist.), the volume of 95% credible ellipsoid and the volume
95% credible interval of population center as well as activation centers conditional on the
population centers located in the amygdalae.

Scenario Amygdala Region Location (x, y, z) Dist. Volume 95% CI

1

L. Pop. Ctr. (-18.8, -6.9,-19.8) 0.00 86.80 [80.1, 94.1]
L. Act. Ctr. (-20.8, -6.0,-19.0) 0.00 12885.80 [6093.0, 47684.1]
R. Pop. Ctr. ( 23.2, -6.2,-20.3) 0.00 35.70 [33.1, 38.6]
R. Act. Ctr. ( 23.2, -6.3,-19.9) 0.00 8299.00 [4623.9, 13586.7]

2

L. Pop. Ctr. (-19.0, -6.6,-19.8) 0.30 60.00 [55.4, 64.8]
L. Act. Ctr. (-20.3, -6.4,-19.1) 0.60 12582.80 [6736.1, 41708.8]
R. Pop. Ctr. ( 23.4, -6.5,-20.0) 0.40 35.10 [32.5, 37.9]
R. Act. Ctr. ( 23.3, -6.4,-19.8) 0.10 9118.20 [5332.8, 13965.5]

3

L. Pop. Ctr. (-18.5, -7.0,-19.8) 0.30 123.90 [110.7, 142.5]
L. Act. Ctr. (-20.8, -5.6,-19.0) 0.40 11782.70 [5488.1, 35089.0]
R. Pop. Ctr. ( 23.7, -6.8,-20.3) 0.80 71.60 [65.0, 78.6]
R. Act. Ctr. ( 23.1, -6.3,-19.7) 0.20 8217.70 [4272.6, 14578.1]

4

L. Pop. Ctr. (-18.5, -6.6,-20.3) 0.60 160.80 [91.4, 193.0]
L. Act. Ctr. (-21.0, -5.8,-19.1) 0.30 12420.30 [5881.2, 44945.2]
R. Pop. Ctr. ( 23.2, -6.3,-20.2) 0.20 41.50 [37.2, 63.4]
R. Act. Ctr. ( 23.2, -6.2,-19.9) 0.10 8229.20 [4449.7, 14538.9]

5

L. Pop. Ctr. (-18.9, -6.8,-19.8) 0.10 75.40 [69.4, 82.0]
L. Act. Ctr. (-20.5, -6.1,-19.2) 0.40 12651.90 [6244.3, 43772.6]
R. Pop. Ctr. ( 23.3, -6.4,-20.0) 0.40 42.80 [37.7, 103.2]
R. Act. Ctr. ( 23.3, -6.3,-19.7) 0.20 8929.50 [4907.4, 14888.7]

6

L. Pop. Ctr. (-18.7, -6.8,-19.7) 0.20 88.20 [81.1, 95.9]
L. Act. Ctr. (-20.6, -6.0,-19.1) 0.20 13065.90 [6560.5, 41233.8]
R. Pop. Ctr. ( 23.3, -6.3,-20.2) 0.20 44.40 [41.1, 48.0]
R. Act. Ctr. ( 23.3, -6.2,-19.8) 0.20 9638.40 [5371.7, 16713.5]

7

L. Pop. Ctr. (-19.0, -6.8,-19.8) 0.20 83.10 [76.4, 90.2]
L. Act. Ctr. (-20.6, -6.0,-19.1) 0.20 12590.50 [6323.7, 41233.9]
R. Pop. Ctr. ( 23.3, -6.4,-20.1) 0.30 33.80 [31.4, 36.5]
R. Act. Ctr. ( 23.3, -6.3,-19.9) 0.10 8043.00 [4966.5, 12771.3]

8

L. Pop. Ctr. (-18.2, -6.3,-19.5) 0.90 147.90 [119.0, 252.6]
L. Act. Ctr. (-20.8, -5.8,-19.0) 0.10 12408.30 [5566.6, 42291.3]
R. Pop. Ctr. ( 23.6, -6.8,-19.3) 1.20 86.60 [78.1, 95.0]
R. Act. Ctr. ( 23.1, -6.3,-19.7) 0.20 8537.70 [4473.1, 13830.1]

9

L. Pop. Ctr. (-18.3, -7.0,-20.3) 0.60 133.50 [98.8, 151.5]
L. Act. Ctr. (-20.7, -5.9,-19.2) 0.20 13087.00 [6236.0, 44717.0]
R. Pop. Ctr. ( 23.4, -6.6,-19.8) 0.70 42.60 [36.6, 65.4]
R. Act. Ctr. ( 23.3, -6.3,-19.8) 0.20 8358.00 [4868.9, 13905.9]
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A.3.2 Sensitivity to Model Specification

Simulation A: We simulate data, or foci, x, the centers of activation regions, y,

and the population centers from our model with the following parameters. The mean

number of population centers is β|B| = 5 and the number of studies is C = 15. For

each study, we set the mean number of study centers associated with the population

centers as (1 −
∑C

c=1 ρ1c)θ/C = 1/15, where ρ1c = 8/125 and θ = 50. The mean

number of foci, per population center, that do not cluster with a study center is∑C
c=1 ρ1cθ/C = 4/3. The mean number of the multiple foci per activation region

is ηc = 5, for all c = 1, . . . , C. The mean number of activation centers that do not

cluster is ε|B| = 30. The covariance matrix that describes the variability of activation

centers about population centers is set to Σz = 9I for all z ∈ z. The covariance

matrix for multiply reported foci that cluster about study centers is Ψy = I for all

y ∈ y. Based on the above settings, the mean number of observed foci is 315. The

simulated data are shown in Figure A.4.

The hyper prior values are E[β|B|] = 2, θ = 100, ε|B| = 50, E(ηc) = 10, E(ρ1c) =

0.03 for all c = 1, · · · , C, E[Σz] = 4I, for all z ∈ z and E(Ψy) = I for all y ∈ y.

Results: The posterior mean number of population centers is 5. The estimated

posterior marginal intensity function of the activation centers is shown in Figure A.4

from which we can identify the 5 clusters. Also, we can see that the data and the

intensity are well matched. The estimated posterior marginal intensity function of

the population centers is also shown in Figure A.4. Clearly, the intensity is highly

concentrated around the 5 true population locations.

We conclude that if the data are generated from our model, then our method

provides very accurate results even when then priors are biased from the truth.

Next, we investigate how the proposed method is robust to model mis-specification.
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Figure A.4: Simulation A results: the images in the first column show the simulated foci
(white points) and the true locations of population centers (red X), projected unto the XY,
XZ and YZ plane for the top, middle and bottom, respectively. The images in the middle
column show the posterior intensity of the activation centers, integrated over the Z, Y and
X directions for the top, middle and bottom, respectively. The images in the last column
show the posterior intensity of the population centers, each integrated over one dimension
as in the middle column.
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Simulation B: We set population centers z = {z1, z2}, where z1 = (22,−6,−18)

and z2 = (−20,−6,−18), i.e. the centers of the amygdalae. For each population

center zi ∈ z, i = 1, 2, we draw 50 foci and 5 study centers from a uniform distribution

over spheres with centers zi and radius RΣ = 5. For each activation center, yj ∈

y, j = 1, 2, · · · , 10, we draw 10 foci from a uniform distribution over spheres with

centers yj, and radius RΛ = 1. The uniform distributions are in direct contrast with

the Gaussian distributions assumed in our model. We set the number of studies to

C = 5 and randomly assign each study two activation centers and 40 foci, for a total

of 200 foci. Hyper prior values are E(β|B|) = 2, ε|B| = 60, θ = 100, E(Σz) = 4I

for all z ∈ z, E(Ψy) = I for all y ∈ y, E(ηc) = 10 and E(ρ1c) = 0.033 for all

c = 1, 2, . . . , C.

Results are shown in Figure A.5. The estimated posterior marginal intensity of

activation centers clearly show there are two activation regions and match the truth

well. Also, in Figure A.5, the estimated posterior marginal intensity of the population

centers is highly concentrated on the two points. The above results imply that the

proposed model is robust to this model mis-specification.

Simulation C: For this simulation, we do not set population centers and study

centers. Rather, we directly simulate foci, x = {x1, · · · , x350}. For i = 1, 2, · · · , 300,

we simulate them from the following function:

(A.46) xi = x0 + r


sin(ψi) cos(ϕi)

sin(ψi) sin(ϕi)

cos(ψi)


where x0 = (46, 55, 46), ψi ∼ U(−0.5π, 0.5π), ϕi ∼ U(0.25π, 0.5π) and r ∼ U(20, 25).

For i = 301, · · · , 350, the xi are drawn uniformly over the brain and are considered

as noise. We then randomly assign the 350 foci to 20 studies. The hyper-prior values
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Figure A.5: Simulation B results: The first column shows the simulated foci and the true
locations of population centers. The middle column show the posterior intensity of the
activation centers, and the last column shows the posterior intensity of the population
centers. See Figure 4 for display conventions.
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are E(β|B|) = 5, ε|B| = 60, θ = 50, E(Σz) = 100I for all z ∈ z, E(Ψy) = I for all

y ∈ Y, E(ηc) = 10 and E(ρ1c) = 0.033 for all c = 1, 2, . . . , C.

Figure A.6 compares the estimated posterior marginal intensity of activation cen-

ters with the data. Figure A.6 also compares the posterior intensity of the “popula-

tion centers”—contrasted against the data as there are no true population centers.

Our model picks about 7 population centers. Obviously, in this case, the “population

centers” are driven by the data—our model clusters the data about these “popula-

tion centers” although the data generating mechanism assumes no such centers. The

posterior intensity of the activation centers is still well estimated, however, care must

be taken in the interpretation of the population level parameters. They exist solely

to fit the data.

Figure A.6: Simulation C results. The first column shows the simulated foci. The middle
column shows the posterior intensity of activation centers, and the last columns shows the
posterior intensity of the “population centers”. See Figure 4 for display conventions.
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A.4 Whole Brain Results

We emphasize here that the model fits intensity functions to the entire brain and

not only on ROIs. ROIs, however, are a useful way to summarize the posterior

intensity functions. Table A.4 summarizes the posterior mean number of population

centers occurring in various ROI as well as the posterior probability that at least one

population center occurs in said ROI. Note that most regions are bilateral, specifically

the amygdala consists of a pair of symmetric regions. Most ROIs have strong evidence

for one or more population centers. ROI’s are from the CIC Atlas (Tziortzi et al.

2010), a revised and hierarchical version of the Harvard-Oxford atlas (Desikan et al.

2006).

Table A.4: The posterior expected number of population centers in different ROIs and the
posterior probability that at least one population centers is located in the ROI.

Region (R) E[NZ(R) | X] Pr[NZ(R) ≥ 1 | X]
Occipital Lobe Occipital Pole 4.02 >0.999

Calcarine Cortex 2.00 >0.999
Cuneus 0.00 0.000
Lingual Gyrus 1.00 >0.999
Occipital Fusiform Gyrus 1.00 >0.999

Insular & Temporal Lobe Insular Cortex 1.00 >0.999
Anterior Temporal Pole 2.71 >0.999
Superior Temporal Gyrus 0.41 0.412
Middle Temporal Gyrus 1.00 >0.999
Inferior Temporal Gyrus 0.00 0.000
Parahippocampal Gyrus 0.00 0.000
Temporal Fusiform Gyrus 1.00 >0.999
Amygdala 2.05 >0.999
Hippocampus 0.00 0.000

Frontal Lobe Precentral Gyrus 0.00 0.000
DorsoLateral Frontal Cortex 5.00 >0.999
Medial Frontal Cortex 2.16 >0.999
Frontal Operculum 0.98 0.982
Orbitofrontal 4.00 >0.999
Supplementary Motor Area 0.00 0.000

Cingulate Cortex Posterior Cingulate Gyrus 0.00 0.000
Anterior Cingulate 2.00 >0.999

Parietal Lobe Postcentral Gyrus 0.00 0.000
Parietal Lobule 0.00 0.000
Supramarginal Gyrus 0.00 0.000
Angular Gyrus 0.00 0.000
Precuneous Cortex 0.00 0.000
Parietal Operculum Cortex 0.00 0.000

Basal Ganglia Globus Pallidus 0.00 0.000
Striatum 1.00 >0.999

Thalamus & Brainstem Thalamus 0.91 0.913
Midbrain 0.00 0.000
Pons 0.00 0.000
Medulla 0.00 0.000

Cerebellum Ventrolateral Cerebellum 0.00 0.000
Medial Cerebellum 0.00 0.000
Dorsal Cerebellum 2.00 >0.999

Other Cerebral White Matter 6.00 >0.999
Lateral Ventricle 0.00 0.000
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We also show the posterior standard deviation of activation center intensity function

in Figure A.7. Each of 11 slices is a 2mm thick slice, and intensity functions shown

in each slice are integrated over the 2mm slice. The axial slices are separated by 10

mm.

Z=−42 Z=−32 Z=−22 Z=−12 Z=−2 Z=8 Z=18 Z=28 Z=38 Z=48 Z=58

Standard Deviation of Activation Center Intensity

2.34e−05 0.0186 0.0372 0.0558 0.0745

Figure A.7: The posterior standard deviation of the activation center intensity on 11 axial
slices of the brain (from Z = −42mm to Z = 58mm).
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APPENDIX B

The Details of Hierarchical Poisson/Gamma Random Fields
Model

B.1 Proofs

In this section, we provide the proofs for all the theorems that are presented in

the paper. We first introduce the following lemmas.

Lemma 1. If Y ∼ Poisson(B,Λ), then for any two regions A,B ⊂ B, we have

Cov{NY(A), NY(B)} = Var{NY(A ∩B)} = Λ(A ∩B).

Proof. Note that NY(A) = NY(A ∩ B) + NY(A/B) and NY(B) = NY(A ∩ B) +

NY(B\A). By the independent property of the Poisson point process, we have that

NY(A) and NY(B\A) are independent, NY(B) and NY(B\A) are independent, and

NY(B\A) and NY(A\B) are independent. Thus,

Cov{NY(A), NY(B)} = Cov{NY(A ∩B) +NY(A/B), NY(A ∩B) +NY(B/A)}

= Cov{NY(A ∩B), NY(A ∩B)} = Var{NY(A ∩B)} = Λ(A ∩B).

Lemma 2. Let Γ(dx) ∼ GRF{α(dx), β}, and let f1(x) and f2(x) be measurable

functions on B, Then

Cov

{∫
B
f1(x)dΓ(dx),

∫
B
f2(x)dΓ(dx)

}
=

1

β2

∫
B
f1(x)f2(x)α(dx)
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Proof. We start with the case that f1(x) and f2(x) are simple functions on B, i.e. for

m = 1, . . . ,M and n = 1, . . . ,M , there exist numbers am, bn ∈ R and disjointed sets

Am and Bn with B =
⋃M
m=1Am =

⋃N
n=1Bn such that f1(x) =

∑M
m=1 amδAm(x) and

f2(x) =
∑N

n=1 bnδBn(x). Then
∫
B f1(x)Γ(dx) =

∑M
m=1 amΓ(Am) and

∫
B f2(x)Γ(dx) =∑N

n=1 bnΓ(Bn). Thus,

E

{∫
B
f1(x)dΓ(dx)×

∫
B
f2(x)dΓ(dx)

}
= E

{
M∑
m=1

amΓ(Am)×
N∑
n=1

bnΓ(Bn)

}

= E

{
M∑
m=1

N∑
n=1

amΓ(Am ∩Bn)×
N∑
n=1

M∑
m=1

bnΓ(Am ∩Bn)

}

=
M∑
m=1

N∑
n=1

M∑
m′=1

N∑
n′=1

ambn′E {Γ(Am ∩Bn)Γ(Am′ ∩Bn′)}

=
M∑
m=1

N∑
n=1

ambnE{Γ2(Am ∩Bn)}

+
∑

(m,n)6=(m′,n′)

ambn′E{Γ(Am ∩Bn)}E{Γ(Am′ ∩Bn′)}

=
M∑
m=1

N∑
n=1

ambn

{
α(Am ∩Bn)

β2
+
α2(Am ∩Bn)

β2

}
+

∑
(m,n)6=(m′,n′)

ambn′
α(Am ∩Bn)

β

α(Am′ ∩Bn′)

β

=
1

β2

M∑
m=1

N∑
n=1

ambnα(Am ∩Bn)

+
1

β2

M∑
m=1

N∑
n=1

M∑
m′=1

N∑
n′=1

ambn′α(Am ∩Bn)α(Am′ ∩Bn′)

=
1

β2

∫
B
f1(x)f2(x)α(dx) +

1

β2

∫
B
f1(x)α(dx)

∫
B
f2(x)α(dx).

Furthermore,

Cov

{∫
B
f1(x)dΓ(dx),

∫
B
f2(x)dΓ(dx)

}
= E

{∫
B
f1(x)dΓ(dx)

∫
B
f2(x)dΓ(dx)

}
− 1

β2

∫
B
f1(x)α(dx)

∫
B
f2(x)α(dx)

=
1

β2

∫
B
f1(x)f2(x)α(dx).
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For general measurable functions, f1(x) and f2(x), a routine passage to the limit,

refining the partition Am and Bn, completes the proof.

B.1.1 Proof of Theorem 1

First, we note that given G0, τ and σ2
j , the conditional expectation of NYj

(A) is

E{NYj
(A) | G0, τ, σ

2
j} = EGj{E{NYj

(A) | Gj} | G0, τ, σ
2
j}

= EGj{Λj(A) | G0, τ, σ
2
j} = EGj

{∫
B
Kσ2

j
(A, x)Gj(dx) | G0, τ

}
=

∫
B
Kσ2

j
(A, x)E {Gj(dx) | G0, τ} =

1

τ

∫
B
Kσ2

j
(A, x)G0(dx).

Also, the conditional covariance between NYj
(A) and NYj

(B) is

Cov{NYj
(A), NYj

(B) | G0, τ, σ
2
j}

= EGj{Cov{NYj
(A), NYj

(B) | Gj} | G0, τ, σ
2
j}

+CovGj{E{NYj
(A) | Gj}, E{NYj

(B) | Gj} | G0, τ, σ
2
j}

= E{Λj(A ∩B) | G0, τ}+ Cov{Λj(A),Λj(B) | G0, τ, σ
2
j}

=
1

τ

∫
B
Kσ2

j
(A ∩B, x)G0(dx) +

1

τ 2

∫
B
Kσ2

j
(A, x)Kσ2

j
(B, x)G0(dx).

Now, given σ2
j , α, β, within type j, for any A ⊆ B,

E{NYj
(A) | σ2

j , τ, α, β} = EG0{E{NYj
(A) | G0, σ

2
j , τ} | σ2

j , τ, α, β}

= EG0

{
1

τ

∫
B
Kσ2

j
(A, x)G0(dx) | σ2

j , τ, α, β

}
=

1

τ

∫
B
Kσ2

j
(A, x)E{G0(dx) | α, β} =

1

τβ

∫
B
Kσ2

j
(A, x)α(dx).
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Within type j, the conditional covariance between NYj
(A) and NYj

(B) is

Cov{NYj
(A), NYj

(B) | σ2
j , τ, α, β}

= EG0{Cov{NYj
(A), NYj

(B) | G0, τ, σ
2
j} | σ2

j , τ, α, β}

+CovG0{E{NYj
(A) | G0, τ, σ

2
j}, E{NYj

(B) | G0, τ, σ
2
j} | τ, σ2

j , α, β}

= EG0

{
1

τ

∫
B
Kσ2

j
(A ∩B, x)G0(dx) +

1

τ 2

∫
B
Kσ2

j
(A, x)Kσ2

j
(B, x)G0(dx)

}
+Cov

{
1

τ

∫
B
Kσ2

j
(A, x)G0(dx),

1

τ

∫
B
Kσ2

j
(B, x)G0(dx) | τ, σ2

j , α, β

}
=

1

τβ

∫
B
Kσ2

j
(A ∩B, x)α(dx) +

1

τ 2β

∫
B
Kσ2

j
(A, x)Kσ2

j
(B, x)α(dx)

+
1

τ 2β2

∫
B
Kσ2

j
(A, x)Kσ2

j
(B, x)α(dx)

=
1

τβ

∫
B
Kσ2

j
(A ∩B, x)α(dx) +

1 + β

τ 2β2

∫
B
Kσ2

j
(A, x)Kσ2

j
(B, x)α(dx).

For j 6= k, the conditional covariance between NYj
(A) and NYk

(B) is

Cov{NYj
(A), NYk

(B) | σ2
j , σ

2
k, τ, α, β}

= EG0{Cov{NYj
(A), NYk

(B) | G0, σ
2
j , σ

2
k, τ} | σ2

j , σ
2
k, τ, α, β}

+CovG0{E{NYj
(A) | G0, σ

2
j , τ}, E{NYk

(B) | G0, σ
2
k, τ} | σ2

k, σ
2
j , τ, α, β}

=
1

τ 2β2

∫
B
Kσ2

j
(A, x)Kσ2

k
(B, x)α(dx).
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B.1.2 Proof of Theorem 3

Proof. For any M > 0, the conditional expected truncated error given σ2
j , τ , β, and

{νm, θm}Mm=1 is

E

[
Λj(A)− ΛM

j (A) | σ2
j , τ, {νm, θm}Mm=1

]
=

1

τ

∞∑
m=M+1

E{νm | {νm}Mm=1}Kσ2
j
(A, θm)

≤ 1

τ

∞∑
m=M+1

E{νm | {νm}Mm=1, β} =
1

τ

∞∑
m=1

E{νm+M | {νm}Mm=1, β}

=
1

τβ

∞∑
m=1

E
{
E−1

1 (ζm+M/α(B)) | {νm}Mm=1

}
(let ζ ′m = ζm+M − ζM)

=
1

τβ

∞∑
m=1

E
{
E−1

1 ((ζ ′m + ζM)/α(B)) | {νm}Mm=1

}
(note that ζ ′m ∼ Gamma(m, 1))

=
1

τβ

∞∑
m=1

∫ ∞
0

E−1
1 ((s+ ζM)/α(B))

sm−1

Γ(m)
exp(−s)ds

=
1

τβ

∫ ∞
0

E−1
1 ((s+ ζM)/α(B))

∞∑
m=1

sm−1

Γ(m)
exp(−s)ds

=
1

τβ

∫ ∞
0

E−1
1 ((s+ ζM)/α(B))ds

=
1

τβ

[
1− exp{−E−1

1 (ζM/α(B))}
]

≤ E−1
1 (ζM/α(B))

τβ
≤ 1

(exp(ζM/α(B))− 1)τβ
.

Taking the expectation with respect to ζM on both sides of the above inequality,

E

[
Λj(A)− ΛM

j (A) | τ, β
]

≤ 1

τβΓ(M)

∫ ∞
0

sM−1 exp(−s)
(exp(s/α(B))− 1)

ds

≤ α(B)

τβΓ(M)

∫ ∞
0

sM−2 exp(−s)ds =
α(B)

τβ(M − 1)
.

when α(B) = 1, we have a more accurate upper bound

E

[
Λj(A)− ΛM

j (A) | τ, β
]
≤ ζ(M)− 1

τβ
.
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where ζ(M) =
∑∞

k=1 k
−M . Therefore, for any ε > 0, take Mε = ba(B)/τβεc + 1,

where bxc = n if n ≤ x < n + 1 and n is an integer number. This completes the

proof.

B.1.3 Proof of Theorem 4

Proof. Write aj,l =
∑Ñ

m=1mIθm(xj,l), then we have Im(aj,l) = Iθm(xj,l). Note that

the θm are distinct,
∑M

m=1 Iθm(xj,l) = 1 =
∑M

m=1 Im(aj,l). Thus,

M∑
m=1

µj,mIθm(xj,l) =
M∑
m=1

µj,mIm(aj,l) = µjaj,l .(B.1)

Furthermore,

mi,j∏
l=1

µj,aj,l =

mi,j∏
l=1

µ
PM
m=1 Im(aj,l)

j,aj,l
=

mi,j∏
l=1

M∏
m=1

µ
Im(aj,l)
j,aj,l

=
M∏
m=1

µ
bj,m
j,m ,(B.2)

where bj,m =
∑mi,j

l=1 Iθm(xj,l). From (3.14), (B.1) and (B.2), the conditional distribu-

tion of µj,m is

π(µj,m | ·) ∝ µ
νm+bj,m−1
j,m exp{−(Kσ(B, x) + θm)µj,m}

which completes the proof.

B.1.4 Proof of Theorem 5

Proof. It is straightforward to obtain (3.19) from (3.14). Now we show π(νm | ·) for

m = 1, . . . ,M , are log concave functions. Define g(νm) = νm log(cm) − log(νm) −

log{Γ(νm)}. By the Taylor expansion of log(Γ(x)) (Boros and Moll 2004),

log(Γ(x)) = −γx− log(x)−
∞∑
k=1

[x
k
− log

(
1 +

x

k

)]
,

where γ is a constant. Thus,

g(νm) = νm[γ + log(cm)]−
∞∑
k=1

[νm
k
− log

(
1 +

νm
k

)]
.
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Furthermore, the second order derivative of log[π(νm | ·)], for m = 1, . . . ,M − 1, is

[log(π(νm | ·))]′′ = g′′(νm) = −
∞∑
k=1

[
1

(ν2
m + k)2

]
< 0,

and

[log{π(νM | ·)}]′′ = β2E ′′1 (βνM) + g′′(νM)

= − 1

ν2
M

(βνM + 1) exp(−βνM)−
∞∑
k=1

[
1

(ν2
M + k)2

]
< 0.

This implies that π(νm | ·), for m = 1, . . . ,M , are log-concave.

B.2 PGRF for multiple spatial point patterns

The PGRF model (Wolpert and Ickstadt 1998a) fits the intensity function of a

single spatial point pattern. We extend the PGRF model on two fronts: we allow

multi-type point patterns, and within each type, we allow multiple, independent

realizations. Specifically, we assume that yi,j, for i = 1, . . . , nj, are independent real-

izations of a Poisson point process Yj with intensity measure Λj(dy) which, in turn,

is the convolution of a random measure Gj(dx) with a kernel measure Kσ2
j
(dy, x):

Yj | Λj
i.i.d.∼ Poisson{B,Λj(dy)}, Λj(dy) =

∫
B
Kσ2

j
(dy, x)Gj(dx)

Gj(dx) ∼ GRF{G0(dx), τ}.(B.3)

In this section, we assume that the different groups of spatial point patterns are

independent of one another, then the base measure G0(dx) in model (B.3) is con-

sidered as a prior parameter and assumed to be fixed and known. This implies that

we can separately fit the model within each group to make inference on the ran-

dom intensity measure Λj(dx) and Gj(dx) for j = 1, . . . , J in model (B.3). When

G0(dx) is fixed, we refer the model (B.3) as the IPGRF, which extends the original
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PGRF model (Wolpert and Ickstadt 1998a) to fit the multiple independent realiza-

tions of a Poisson point process. In particular, we consider independent realizations,

i.e. {(x·,j,y·,j)} = {xi,j,yi,j}
mj
i=1 of (Xj,Yj), for j = 1, . . . , J , in model (3.8). The

following theorem suggests a posterior simulation algorithm for Gj(dx).

Theorem 6. The conditional distribution of Gj(dx), given τ , σ2
j , G0 and (y·j,x·j),

for j = 1, . . . , J , is given by

[Gj(dx) | τ, σ2
j , G0,y·j,x·j]

∼ GRF

{
G0(dx) +

nj∑
i=1

Nxi,j(dx), τ + njKσ2
j
(B, x)

}
.(B.4)

Proof. First let Kσ2
j
(dy, x), for j = 1, . . . , J , be simple functions on B with respect

to x, i.e. there exists a set of partitions {Ajm}
Mj

m=1, for j = 1, . . . , J , of B, such that

Kσ2
j
(dy, x1) ≡ Kσ2

j
(dy, x2) for any x1, x2 ∈ Ajm.

Let χjm = Kσ2
j
(B, x) for x ∈ Ajm, κiljm = kσ2

j
(yj,l, x) for x ∈ Ajm, γjm = Gj(Am)

and gm = G0(Am). This implies that Λj(B) =
∑Mj

m=1 χjmγm. In model (3.8), the

joint distribution of (x·,j,y·,j), {Gj}Jj=1 given G0, σ and τ is

π({x·,j,y·,j}Jj=1, {Gj}Jj=1 | G0, {σ2
j}Jj=1, τ)

= π({(x·,j,y·,j)}Jj=1, | {Gj}Jj=1, {σ2
j}Jj=1)π({Gj}Jj=1 | G0, τ)

=
J∏
j=1


nj∏
i=1

exp

|B| − Mj∑
m=1

χjmγjm

mi,j∏
l=1

Mj∑
m=1

kiljmγjmδxj,l(Ajm)


×

J∏
j=1


Mj∏
m=1

γgm−1
jm τ gm

Γ(gm)
exp (−τγjm)

 .

This implies that the posterior distribution of Gj given G0, σ and τ ,

π(Gj | G0,σ, τ,y,x)

∝ exp

− Mj∑
m=1

(njχjm + τ)γjm

 nj∏
i=1

mi,j∏
l=1

Mj∑
m=1

kiljmγjmδxj,l(Ajm) ·
Mj∏
m=1

γgm−1
jm .
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Note that
∑Mj

m=1 δxj,l(Ajm) = 1 for any i, j and l. Let tj,l =
∑Mj

m=1mδxj,l(Ajm), then

Im(tj,l) = δxj,l(Ajm). This implies that

Mj∑
m=1

kiljmγjmδxj,l(Ajm) =

Mj∑
m=1

kiljmγjmIm(tj,l) = kiljtj,lγjtj,l ,

and

nj∏
i=1

mi,j∏
l=1

kiljtj,lγjtj,l =

nj∏
i=1

mi,j∏
l=1

{kiljtj,lγjtj,l}
PMj
m=1 Im(tj,l)

=

nj∏
i=1

mi,j∏
l=1

Mj∏
m=1

{kiljtj,lγjtj,l}
Im(tj,l) =

Mj∏
m=1

nj∏
i=1

mi,j∏
l=1

{kiljmγjm}Im(tj,l)

=

Mj∏
m=1

{kiljmγjm}
Pnj
i=1

Pmi,j
l=1 Im(tj,l) =

Mj∏
m=1

{kiljmγjm}
Pnj
i=1

Pmi,j
l=1 δxj,l (Ajm)

=

Mj∏
m=1

{kiljmγjm}
Pnj
i=1Nxij (Ajm),

which in turn implies that

π(Gj | G0,σ, τ,y,x) ∝
Mj∏
m=1

{
exp [−(njχjm + τ)γjm] γ

Pnj
i=1Nxij (Ajm)+gm−1

jm

}
.

Let φj(x) be a nonnegative and simple function with constant value φjm on each

Ajm. Then the moment generating function is Gj[φ] =
∑Mj

m=1 φjmγjm. Also,

E{exp(−Gj[φ]) | G0,σ, τ,y,x}

∝
Mj∏
m=1

{∫ ∞
0

exp (−(φjm + njχjm + τ)γjm) γ
Pnj
i=1Nxij (Ajm)+gm−1

jm dγjm

}

∝
Mj∏
m=1

{φjm + njχjm + τ}−
Pnj
i=1Nxij (Ajm)−gm

The normalizing constant can be obtained by exp{−Gj(0)} = 1. Then the Laplace
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exponent of Gj given G0, σ, τ , y and x is,

− log {E{exp(−Gj[φ]) | G0,σ, τ,y,x}}

= log

Mj∏
m=1

{
φjm + njχjm + τ

njχjm + τ

}Pnj
i=1Nxij (Ajm)+gm

=

Mj∑
m=1

log{1 + φjm(njχjm + τ)−1} ×

{
nj∑
i=1

Nxij(Ajm) + gm

}

=

∫
B

log{1 + φ(x)(njKσ2
j
(B, x) + τ)−1}

(
nj∑
i=1

Nxij +G0

)
(dx).(B.5)

By letting Mj → ∞, it is straightforward to show that (B.5) also holds when

Kσ2
j
(dy, x) and φ(x) are general measurable functions. By Wolpert and Ickstadt

(1998a), the form of the Laplace exponent in (B.5) implies that (B.4).

According to the construction of gamma random fields in Theorem 2, in model

(3.8),

Gj(dx) =
∞∑
m=1

µj,mδθm(dx),

where θm
i.i.d.∼ G0(dx)/G0(B), µj,m = E−1

1 {ζjm/G0(B)}/τ and ζj,m =
∑m

l=1 ejl with

ejl
i.i.d.∼ Exp(1). Based on this representation, we have the following Theorem,

Theorem 7. Given Gj, σ
2
j , yj,l and mi,j, the conditional distribution of xj,l is,

Pr(xj,l = θm | Gj, σ
2
j , yj,l,mi,j) ∝ µj,mkσ2

j
(yj,l, θm).(B.6)

Proof. By the construction (3.7) of xj,l in Section 3.2.1 and we can write Gj(dx) =∑∞
m=1 µj,mδθm(dx),

π(xj,l | Gj, σ
2
j ,yj,l,mi,j) ∝

∞∑
m=1

µj,mkσ2
j
(yj,l, θm)Iθm(xj,l),

which implies (B.6).

All other parameters in model (3.8) of the IPGRF can be updated by Metropolis

within Gibbs sampling.
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APPENDIX C

The Details of Reverse Inference

C.1 Proofs

C.1.1 Proof of Proposition 1

Proof. First, we notice that

π(Θ | xn+1,Dn) =
π(Θ | xn+1,Dn)

π(Θ | Dn)
π(Θ | Dn)

=
π(xn+1,Dn | Θ)π(Θ)

π(xn+1,Dn)
· π(Dn)

π(Dn | Θ)π(Θ)
· π(Θ | Dn)

=
π(xn+1 | Θ)π(Dn | Θ)π(Θ)

π(xn+1,Dn)
· π(Dn)

π(Dn | Θ)π(Θ)
· π(Θ | Dn)

=
π(xn+1 | Θ)

π(xn+1 | Dn)
π(Θ | Dn)

=
π(xn+1 | Θ)π(Θ | Dn)∫
π(xn+1 | Θ)π(Θ | Dn)dΘ

.(C.1)

Plug (4.14) into (4.1), the probability become

Pr[Tn+1 = j | xn+1,Dn]

=

∫
pjπ(xn+1 | Tn+1 = j,Θ)π(Θ | Dn)dΘ∫ ∑J

j′=1 pj′π(xn+1 | Tn+1 = j′,Θ)π(Θ | Dn)dΘ
.(C.2)
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C.1.2 Proof of Corollary 1

Proof. In the BHICP model, we assume independence between different types:

π(Dn | Θ) =
J∏
j=1

π(xj | Θj),

π(Θ) =
J∏
j=1

π(Θj).

This implies that

π(Θ | Dn) =
π(Dn | Θ)π(Θ)∫
π(Dn | Θ)π(Θ)dΘ

=

∏J
j=1 {π(xj | Θj)π(Θj)}∫

· · ·
∫ ∏J

j=1 π(xj | Θj)π(Θj)dΘj

=
J∏
j=1

π(xj | Θj)π(Θj)∫
π(xj | Θj)π(Θj)dΘJ

=
J∏
j=1

π(Θj | xj),

which completes the proof.

C.1.3 Proof of Proposition 2

Proof. The LOOCV posterior predictive probability is

Pr[Ti = j | xi,D−i]

=

∫
Pr[Ti = j | xi,Θ]π(Θ | xi,D−i)dΘ

=

∫
Pr[Ti = j | xi,Θ]

π(Θ | xi,D−i)
π(Θ | xi, Ti = ti,D−i)

π(Θ | xi, Ti = ti,D−i)dΘ.

Note that

π(Θ | xi,D−i)
π(Θ | xi, Ti = ti,D−i)

=
π(Θ,xi,D−i)π(xi, Ti = ti,x−i, t−i)

π(xi,D−i) · π(Θ,xi, Ti = ti,D−i)

=
Pr[Ti = ti | xi,D−i]
Pr[Ti = ti | xi,Θ]

.
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This implies that

Pr[ti = j | xi,D−i]
Pr[Ti = ti | xi,D−i]

=

∫
Pr[Ti = j | xi,Θ]

Pr[Ti = ti | xi,Θ]
π(Θ | xi, Ti = ti,D−i)dΘ

=

∫
π[xi | Ti = j,Θ]pj
π[xi | Ti = ti,Θ]pti

π(Θ | xi, Ti = ti,D−i)dΘ

:= Qj,ti .

By
∑J

j=1 Pr[Ti = j | xi,D−i] = 1, we have that

1− Pr[Ti = ti | xi,D−i]
Pr[Ti = ti | xi,D−i]

=
∑
j 6=ti

Qj,ti .

This implies

Pr[Ti = ti | xi,D−i] =
1

1 +
∑

j 6=ti Qj,ti

,

Pr[Ti = j | xi,D−i] =
Qj,ti

1 +
∑

j 6=ti Qj,ti

.

C.1.4 Proof of Proposition 3

Proof. The SFIM is computed by

Exn+1|Dn [Pr(Tn+1 = j | xn+1 ∪ {ξ},Dn)− Pr(Tn+1 = j | xn+1,Dn)]

= Exn+1|Dn
{
EΘ|Dn [Pr(Tn+1 = j | xn+1 ∪ {ξ},Θ)]

− EΘ|Dn [Pr(Tn+1 = j | xn+1,Θ)]
}

= Exn+1,Θ|Dn [Pr(tn+1 = j | xn+1 ∪ {ξ},Θ)− Pr(tn+1 = j | xn+1,Θ)]

= Exn+1,Θ|Dn

[
pjλ1j(ξ | Θj)π(xn+1 | Tn+1 = j,Θj)∑T

j′=1 pj′λ1j′(ξ | Θj′)π(xn+1 | Tn+1 = j′,Θj′)

]
−Exn+1,Θ|Dn [Pr(Tn+1 = j | xn+1,Θ)]

= Exn+1,Θ|Dn

[
pjλ1j(ξ | Θj)π(xn+1 | Tn+1 = j,Θj)∑T

j′=1 pj′λ1j′(ξ | Θj′)π(xn+1 | Tn+1 = j′,Θj′)

]
− pj,
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where

Exn+1,Θ|Dn [Pr(Tn+1 = j | xn+1,Θ)]

=

∫
π(xn+1 | Tn+1 = j,Θj) Pr(Tn+1 = j)

π[xn+1 | Θ]
π(xn+1 | Θ)π(Θ | Dn)dxn+1dΘ

=

∫
Pr(Tn+1 = j)π(xn+1 | Tn+1 = j,Θj)π(Θ | Dn)dxn+1dΘ

=

∫
Pr(Tn+1 = j)π(xn+1 | Tn+1 = j,Θj)π(Θj | Dn)dxn+1dΘj

= Pr(Tn+1 = j) = pj.

This implies that Sj(ξ) ∈ [−pj, 1− pj].
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— (1998b), “Simulation of Lévy random fields,” in Practical Nonparametric and Semipara-
metric Bayesian Statistics, eds. Dey, D., Müller, P., and Sinha, D., New York: Springer
Verlag, pp. 227–242.

Woodard, D. B., Wolpert, R. L., and OConnell, M. A. (2010), “Spatial Inference of Ni-
trate Concentrations in Groundwater,” Journal of Agricultural, Biological, and Environmental
Statistics, 15, 209–227.

Woolrich, M. W., Behrens, T. E. J., Beckmann, C. F., and Smith, S. M. (2005), “Mixture
models with adaptive spatial regularisation for segmentation with an application to fMRI
data,” IEEE Transactions on Medical Imaging, 24, 1–11.

Xing, E. P. and Sohn, K. A. (2007), “Hidden Markov Dirichlet process: Modeling genetic
inference in open ancestral space,” Bayesian Analysis, 2, 501–528.

Yadrenko, M. I. (1983), Spectral theory of random fields, Optimization Software.

Yarkoni, T. (2009), “Big correlations in little studies: Inflated fMRI correlations reflect low
statistical powerCommentary on Vul et al. (2009),” Perspective on Psychological Science, 4,
294–298.

Yarkoni, T., Poldrack, R. A., Nichols, T. E., Van Essen, D. C., and Wager, T. D. (2011),
“Large-scale lexical decoding of human brain activity,” Unpublished Manuscript.



152

Yarkoni, T., Poldrack, R. A., Van Essen, D. C., and Wager, T. D. (2010), “Cognitive neu-
roscience 2.0: building a cumulative science of human brain function,” Trends in Cognitive
Sciences, 14, 489–496.


