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ABSTRACT

The field of cost-effectiveness analysis (CEA) deals with the comparison of health

interventions based on both costs and effectiveness (ability to improve health). This

dissertation makes several methodological contributions to this area.

Part I develops direct methods for computing mean costs and effectiveness, and

hence conducting CEA, in multi-state disease processes. The common approach

in this case is to use discrete-event simulation techniques to simulate the process

to get the associated cost and effectiveness outcomes. However, the setting up and

implementation of simulation studies can be time and resource intensive. The disser-

tation develops analytical expressions for the time-to-failure, reward processes, and

their (discounted) expectations for time-homogeneous semi-Markov processes with

progressive structure. Direct Monte Carlo methods are proposed for time-varying

multi-state processes. The advantages of these direct methods over discrete-event

simulation are discussed. Sensitivity analysis to parameter estimation is also consid-

ered. The results are demonstrated on illustrative applications.

Part II deals proposes a richer analysis of cost-effectiveness data from discrete

event simulation of disease processes. Such simulations generate extensive amounts

of data which are rarely examined in detail. The analysis is typically reduced to com-

puting and comparing simple CEA metrics. This part of the dissertation proposes a

comprehensive exploratory analysis of the data through graphical techniques. This

includes examining both cross-sectional and temporal views of the time-to-failure,

x



cost, and effectiveness distributions. The concept of a treatment-effect function is

discussed, and it leads to generalized versions of two common CEA metrics. The

potential for richer analysis is illustrated through various examples.

Part III of the dissertation reviews the common CEA metrics based on means

of the cost and effectiveness outcomes and discusses comparisons based on first and

second-order stochastic dominance as well as utility functions. It also deals with

methods for incorporating statistical uncertainty from estimating the unknown pa-

rameters in CEA. Large-sample normal approximations and resampling methods are

reviewed. New contributions to the CEA literature include stochastic dominance

comparisons in the presence of estimation uncertainty, use of rank methods, and

analysis with censored data.
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CHAPTER I

Introduction

1.1 Overview of Cost-Effectiveness Analysis

There is growing emphasis in the health care area on containing costs while also

improving effectiveness (health). This is the main goal of cost-effectiveness analysis

(CEA) which uses metrics based on costs and effectiveness to assess and compare

interventions. Cost-effectiveness analysis involves a comparison of two or more treat-

ments for health policy or medical decision making. One or more new interventions

are compared against the current or baseline intervention.

CEA was introduced to clinicians in the healthcare literature by Weinstein and

Stason (1977). Since that time, it has been widely adopted. Standards for CEA

studies were agreed upon in 1996 by the Panel of Cost-Effectiveness in Health and

Medicine (Gold et al., 1996). These standards include elements to be included in

measuring costs and effectiveness, methods of determining health and effectiveness,

and incorporating time preference and the discounting of costs and effects.

There is a large literature on the development and use of various metrics for

CEA. Most of them are based on the means of the (random) cost and effectiveness

outcomes, where the expected values are taken with respect to some population of

subjects of interest. The metric recommended for CEA in (Gold et al., 1996) is the

1
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incremental cost-effectiveness ratio (ICER). The ICER for comparing two treatments

0 and 1 is given by

(1.1) µICER =
µ1(C)− µ0(C)

µ1(E)− µ0(E)
=

∆(C)

∆(E)
,

where µj(C) and µj(E) are the average cost and effectiveness measures (per person)

of the j−th intervention. Treatment 0 is typically the baseline treatment representing

the current standard of practice while 1 is a new treatment under consideration. The

decision rule associated with ICER is as follows: let λ be the amount of money that

society is willing to pay for a single unit of effectiveness. If the ICER is less than λ,

then the treatment is deemed cost-effective. If not, society would not be willing to

pay for that treatment, and it is not considered cost-effective.

Two other common metrics which are equivalent to each other are the net health

benefit (NHB) and the net monetary benefit (NMB). NHB was introduced by Stin-

nett and Mullahy (1998). NHB converts costs to effectiveness units using the willingness-

to-pay ratio as the conversion factor, and adds the incremental costs (now in effec-

tiveness units) to incremental effectiveness to get an overall benefit in effectiveness

units. Similarly, NMB converts effectiveness to cost units before calculating overall

benefit. The expression for NMB is

(1.2) µNMB(λ) = λ(µ1(E)− µ0(E))− (µ1(C)− µ0(C)) = λ∆(E)−∆(C).

The NMB and NHB, while in different units, are equivalent. Positive values of either

denote a cost-effective intervention. Otherwise, the treatment is not cost-effective.

The ICER and NMB depend on the average costs and effectiveness for the (new)

treatment being considered and the baseline treatment over the lifetime of the analy-

sis. Cost is measured in currency, and typically includes all direct costs of treatment

such as the cost of tests, drugs, supplies, doctors, nurses, other health personnel, and
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medical facilities (Gold et al., 1996). Cost may also include direct non-healthcare

costs such as transportation costs to treatment, or costs due to a change in diet.

The effectiveness of a treatment can be measured in different ways, including deaths

averted or postponed, infections averted, extended life, and quality-adjusted-life-

years (QALYs). QALYs are the most commonly used effectiveness measure in CEA

and are obtained by weighting the length of life by appropriate weights which are

supposed to measure ‘quality of life’ in the patient’s health state. The weight is

between 0 and 1, with the value of 1 referring to perfect health.

Per the recommendation in Gold et al. (1996), both costs and QALYs are dis-

counted at some rate to bring the values at different times to a common reference

value. Discounting cost is standard in the fields of economics and financial evalua-

tion. Discounting QALYs is a bit less intuitive, but CEA relies on the assumption

that QALYs have a monetary value, and also that there is a constant trade-off be-

tween costs and QALYs. Failure to discount QALYs while discounting cost results

in the Keeler-Cretin paradox, in which any treatment program’s cost-effectiveness is

improved by postponement (Keeler and Cretin, 1983).

Beyond being an academic pursuit, CEA has important uses in health policy

around the globe. The UK, Australia, and Canada require economic evaluations

before approving new healthcare technologies (Birch and Gafni, 2004; Hill et al.,

2000; Hjelmgren et al., 2001). These are countries with government-run health-

care systems, so a government-imposed limit on the cost-effectiveness of proposed

treatments is natural. Even the United States government has expressed support

for cost-effectiveness and comparative effectiveness research, in spite of the United

States’ decentralized medical insurance and payment system, with a broad base of

legislation having been introduced in Congress supporting such research (Jacob-
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son, 2007). The World Health Organization (WHO) has also developed guidelines

for the use of cost-effectiveness analysis, with particular concern on providing cost-

effectiveness information when there are limits to the time or resources that can be

invested in a study (Murray et al., 2000). Thus, there is a broad base of support

for conducting CEA studies. Additionally, there is considerable value for patients,

physicians, and policy-makers in understanding the cost, quality of life, and length

of life tradeoffs inherent in medical decisions.

In spite of the large literature that exists for CEA, there remain methodological

gaps and challenges in estimating cost-effectiveness and quantifying the uncertainty

in those estimates. Some of these gaps result from a misunderstanding of statistical

issues, due to the fact that as a relatively new and interdisciplinary field, the CEA

literature has only recently received the attention of statisticians and operations

researchers. Other gaps exist because the field of medical decision-making itself is

evolving; for instance, there have recently been calls in the literature to move beyond

simple decision analysis for the full population to decision analysis more tailored to

individual patients or groups of patients (Basu, 2009; Hayward et al., 2010; Zaric,

2003; Sculpher, 2008).

1.1.1 Methods of Conducting CEA

Two of the main challenges in CEA are obtaining the correct data for the anal-

ysis, and using that data to make meaningful inference and conclusions on cost-

effectiveness. This dissertation will focus on the latter issue, but the source and

quantity of data affects the inferential and modeling techniques available. So in

this section, we will discuss the methods of conducting CEA, and the data sources

available.

The first source of data is actual studies. Those studies may be clinical trials
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or observational studies, but are generally longitudinal. The field data from these

studies can be used to estimate ICER, NMB, and other cost-effectiveness metrics.

See, for example, Meenan et al. (1998), van Hout et al. (1994), and Kinlay et al.

(1996). However, longitudinal studies are expensive to conduct, and it takes several

months or even years for the data to become available. Another obvious limitation of

these clinical studies, related to the cost, is that they are generally of limited sample

size. This may make it more difficult to reach a conclusion on cost-effectiveness, or

even just effectiveness, than it would be with a larger sample size. In particular, it

may be difficult to identify different effects in heterogeneous groups of people.

With the limitations on clinical data, CEA is also performed by creating models

using data from may different sources. These models may be solved for expected

value, either using analytical techniques or discrete event simulation. The limitations

of this approach are the need to assume a model structure and the assumption that

extrapolations of the existing data from studies are valid.

This dissertation will address issues found in both clinical studies and simulated

studies. Two of the issues addressed relate to simulation models for CEA. The first

issue is in computing mean statistics from cost-effectiveness models in simple manner;

CEA has come to rely on discrete event simulation to generate mean values without

considering whether there are tractable analytical solutions. The second broad issue

is the use of simulation data, if simulation is used to evaluate the model. The time

and computational effort invested in discrete event simulation leads to a question

of whether and how simulation data can be used to provide individual and policy-

level decision-makers with useful information for making decisions. The third issue

addressed in this dissertation is decision-making and inference with small sample

sizes, and is more applicable in the case of clinical data.
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1.2 Research Objectives and Organization of the Dissertation

The goal of this research is to improve the process of making a decision between

alternative medical treatments by improving the calculation, characterization, and

understanding of differences between them. This goal is accomplished through three

different research objectives.

1. Develop computationally simple methods for evaluating the mean cost and ef-

fectiveness for disease processes than can be modeled as multi-state processes;

2. Demonstrate the usefulness of graphical methods for analyzing data generated

from discrete event simulation more extensively and, and developing key insights

into the performance of the treatments and their comparisons;

3. Review and improve upon the literature about incorporating uncertainty into

CEA and introduce ideas about evaluating the full distribution of CEA outputs

under uncertainty, using utility theory and stochastic dominance.

The first two objectives enhance the understanding of multi-state models used in

CEA. The third objective, due to its focus on inference, is more applicable in situa-

tions of limited sample sizes, so it is more applicable in the case of conducting CEA

alongside a clinical trial or other medical observational study. As a result, the dis-

sertation can be conceptualized as containing two parts, one focused on multi-state

models and the other focused on inference. Chapters II, and III, form the first part,

and Chapter IV forms the second part. Chapters II, III, and IV have all been written

up as individual papers. As each paper is self-contained, there is some repetition in

motivation and notation between them.
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1.2.1 Multi-State Models for CEA

Models of disease processes are common in the CEA literature. Markov models

for medical decision-making were proposed as an alternative to traditional decision-

analytic models for understanding medical prognosis by Beck and Pauker (1983).

Beck and Pauker (1983) used Markov multi-state models to calculate, via both ana-

lytical and simulation methods, the life expectancy of patients as a result of medical

decisions. The Markov multi-state model is a specific instance of a more general

class of multi-state models. CEA is possible in the context of multi-state models of

disease by assigning cost and effectiveness variables to states and transitions within

the disease model. In this way, CEA models are specialized examples of reward pro-

cesses in the operations research and applied probability literature (see, for example,

Howard (1971), Janssen and Manca (2006), and Janssen and Manca (2007)). In the

case of CEA models, the rewards are cost and effectiveness, as well as measures such

as NMB that are functions of the cost and effectiveness rewards. Markov models are

popular due to the relative simplicity of inference, but other modeling assumptions

are possible. One possible modeling assumption for multi-state models instead of a

Markov assumption is a semi-Markov assumption. Semi-Markov CEA models are

also present in the literature (Matchar et al., 1997; Castelli et al., 2007), although

they are considerably less common than Markov models.

Consider, as a broad example of multi-state modeling, Figure 2.1. Each state in

the model represents a distinct health state, and state K+1 is the end of the disease

process. The end of the process is the same as “failure” in the reliability literature,

and is often death, although models exist where K + 1 could have an alternative

meaning, including disease cure. Figure 2.1 shows the case only of progressively

worsening diseases, as return to a previous state is not possible. Depending on the
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Figure 1.1: Progressive Multi-state Models. Top: Single-step Bottom: Multi-step.

disease and the definition of the state-space, transitions to previous states may be

possible. The top panel is a special case where the subject can move only from a

state to its immediate right. This is useful in studying some health situations where

the disease progresses in a monotone manner. The multi-state model structure in

bottom panel of Figure 2.1 is considerably more general.

Regardless of modeling assumptions, in multi-state models of disease, the patient

is in some health state at the beginning of the study, spends an additional random of

time in that state, and then moves to another health state according to some transi-

tion probability. The subject spends a random amount of time in that state, moves

to a different state, and the process repeats until the person reaches an absorbing

state.

Even in the case of disease models with the Markov assumption, a common method

for evaluating models in the literature is discrete event simulation (DES). The basic

idea in DES is to simulate some large number of ‘patients’ through a disease process,
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with patient health states chosen randomly according to the underlying stochastic

model. This simulation process creates a stochastic disease process and reward pro-

cess for each patient. In traditional CEA, when only the sample means are used

to calculate the µICER and µNMB, this information is not used, and the simulation

may be computationally expensive or difficult to setup. Chapters II and III address

the two sides of the issue, with Chapter II focused on easier ways to evaluate multi-

state CEA disease models, and Chapter III on using the detailed information from

a traditional DES.

Chapter II presents methods for obtaining the estimates of the means of cost-

effectiveness studies modeled as progressive multi-state models. The assumption of

a progressive model is less limiting than it may seem, because with the creation

of additional states, nearly any medical process can be modeled as a progressive

process. Particular attention is given to the case where disease progression of both

the intervention being studied and the baseline population can be modeled as semi-

Markov models. Solutions for each random reward R and expected reward E(R)

for each patient are derived in the case of reward discounting and the case where

rewards are not discounted. The solution methods may be calculated analytically in

the case of stationary disease models, or models of disease in which the parameters

defining the underlying stochastic disease process does not change with time, which

is possible for acute diseases. The methods are extended to a simple and direct

simulation of sojourn time random variables and attached rewards in the case of

time-varying disease processes.

Chapter III demonstrates the usefulness graphical methods for analyzing simula-

tion data more extensively. A simulation of an arbitrarily large number of patients

generates rich data on the entire distribution of patient outcomes, with differences
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due to a combination of random chance and observable covariates. The simulation

also allows the process to be considered as a stochastic process that evolves over

time, rather than as a stochastic outcome observed at just one time, which is the

standard for CEA. As an example, instead of the summary measures Cj and Ej

(where j represents the treatment, and is taken to be 0 or 1 in this dissertation) in

traditional CEA there are cumulative reward processes Cj(t) and Ej(t). Across many

patients, these processes have a distribution at any time t, and the way the quan-

tiles of those distributions, Qj(u; t;C) and Qj(u; t;E), respectively, evolve over time

can be explored using graphical techniques. This chapter uses probability density

plots and Q-Q plots as starting points for analysis, shows several types of follow-up

analysis, and discusses the conclusions a decision-maker could reach in the context

of illustrative examples.

1.2.2 Inference for Stochastic Cost-Effectiveness with Limited Sample Size

As noted earlier, determination of cost-effectiveness is sometimes made with data

collected directly from a clinical setting. CEA measures, including ICER and NMB

must be estimated from data, and the sample size from which to make inference is

generally small. The existing CEA literature contains a large discussion about sta-

tistical inference for CEA, with a focus on determining confidence intervals for ÎCER

and N̂MB. There have been several approaches in the literature to the problem of

inference, and they are reviewed in Chapter IV. Included in this review is a discus-

sion of methodological limitations and corrections of errors in the current literature.

We also propose the application of rank-based methods to CEA.

The large-sample methods and rank-based methods are for inference about a sin-

gle point of a distribution; decision-makers with non-risk-neutral utility functions

should use information on the full range of CEA outputs. Utility functions can
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be used to map from the distribution of outputs in CEA to proper utilities in the

decision-theoretic sense of von Neumann and Morgenstern (Von Neumann and Mor-

genstern, 1947). In general, risk preference is modeled by some utility function u(x),

where each random variable xi is used as the argument is an output of CEA such

as QALY, monetary cost, or monetary benefit (for the i-th intervention). A util-

ity function, u(x) specifies the form of a decision-maker’s preference to values of an

output x; a rational decision-maker will make the choice that maximizes E(u(x)).

We demonstrate sensitivity analysis and the creation of preference regions for CEA

metrics, with a focus on the summary measure of monetary benefit.

In CEA (and in general), it is difficult to ascertain a decision-maker’s exact utility

function. If some general information about the utility function is known, however,

it can be used. For example, if the decision-maker’s utility function for NMB is

known to be of the form u(x) = − exp(−cx), but the value of c is unknown, sensi-

tivity analysis on the parameter c is possible for determining preference regions. If

even less is known about the utility function, stochastic dominance can be used to

determine which option is the best for an entire class of utility functions. For exam-

ple, if it is known that the utility function is monotonically increasing and concave

(i.e., the decision-maker is risk-averse), then the presence of second-order stochastic

dominance indicates the preferred option for all utility functions in that class. If

the utility function is restricted even less, to only the class of monotonically increas-

ing utility functions (i.e., the risk-preference of the decision-maker is unknown), then

first-order stochastic dominance of one option over the others would indicate the pre-

ferred decision. There are very few studies in CEA using stochastic dominance, and

all have considered the population distributions to be known, rather than sampled.

Chapter IV contributes to the literature by assuming that distributions are esti-
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mated, and by extending stochastic dominance inferential techniques and statistical

tests into CEA and discussing the implications for decision-makers. It also addresses

questions of utility functions and sensitivity analysis relative to utility functions.



CHAPTER II

Cost-Effectiveness Analysis in Health Policy Decision
Making: Direct Approaches for Progressive Multi-State

Models

2.1 Introduction

The field of cost-effectiveness analysis (CEA) deals with the comparison of health

interventions based on both relative costs and effectiveness (ability to improve health).

The interventions being compared may be pharmaceutical treatments, diagnostic

tools, surgical treatments, etc. CEA combines the effectiveness of a treatment and

cost with the willingness of society to pay for health into a hybrid measure of cost-

effectiveness.

Most metrics in CEA are based on the means or expected values of costs and

effectiveness outcomes. Perhaps the most common one is the incremental cost-

effectiveness ratio (ICER):

(2.1) µICER =
µ1(C)− µ0(C)

µ1(E)− µ0(E)

where µj(C) and µj(E) are the average cost and effectiveness measures (per person)

of the j−th intervention, j = 0, 1. Here intervention 0 is the standard or baseline and

intervention 1 is the new treatment being considered. The decision rule associated

with ICER is as follows. Let λ be the amount of money that society is willing to

13
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pay for a single unit of effectiveness. If the ICER is less than the willingness-to-pay

ratio λ, then the new treatment is deemed cost-effective. If not, it is deemed to be

not cost-effective.

A second metric that is also common is the net monetary benefit (NMB). It uses

the value of λ explicitly in determining cost effectiveness through the expression

(2.2) µNMB(λ) = λ(µ1(E)− µ0(E))− (µ1(C)− µ0(C)).

Specifically, λ is used to convert effectiveness into its monetary equivalent. If NMB

will be positive, treatment 1 is cost-effective; otherwise, it is not.

The emphasis on averages or expected values arises from economic considerations.

For example, average costs per person translates directly to the total cost of imple-

menting a medical or health intervention policy (Briggs and Gray, 1998; Thompson

and Barber, 2000; O’Hagan and Stevens, 2002). Cost is measured in currency and

typically includes all direct costs of treatment such as the cost of tests, drugs, sup-

plies, doctors, nurses, other health personnel, and medical facilities (Gold et al.,

1996). Direct non-healthcare costs such as transportation costs to get treatment or

costs due to a change in diet may also be included.

The effectiveness of a treatment can be measured in different ways: deaths averted

or postponed, infections averted, extended life, and quality-adjusted-life-years

(QALYs). QALYs are the most commonly used measure in CEA and are obtained

by weighting the lifetime in different states by appropriate weights which are sup-

posed to measure ‘quality of life’ in that health state. QALYs will be used as the

unit of effectiveness in this paper, and we will refer to QALYs and effectiveness

interchangeably.

It is common in CEA to discount both costs and QALYs at some rate to bring the

figures at different times to a common reference value. Discounting cost is standard
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in the fields of economics and finance. Discounting QALYs is less intuitive, but CEA

relies on the assumption that QALYs have a monetary value and that there is a

constant trade-off between costs and QALYs. Failure to discount QALYs while dis-

counting cost results in the Keeler-Cretin paradox, in which any treatment program’s

cost-effectiveness is improved by postponement (Keeler and Cretin, 1983).

If the two treatments are compared in longitudinal clinical trials, one can use the

field data to estimate ICER, NMB, and other cost-effectiveness metrics. See, for

example, Meenan et al. (1998), van Hout et al. (1994), and Kinlay et al. (1996).

However, longitudinal studies are expensive to conduct, and it takes several months

or even years for the data to become available. Also, potential new interventions may

just be contemplated and not actually implemented in a field study. In such cases, one

might be interested in conducting multi-scenario analyses about the new intervention,

including possible components to include, dosage levels, etc. To accommodate these

and other needs, researchers have turned to modeling and simulation techniques, and

a particularly useful tool is discrete event simulation (DES).

There are different ways of conducting DES, even within the context of CEA. Re-

gardless of the approach, the basic idea is to simulate some large number of ‘patients’

through a disease process, with patients’ health states chosen randomly according

to the underlying stochastic model (see, for example, Sonnenberg and Beck (1993)

for a discrete-time Markov model). The multi-state framework is a general way to

do this. In this set-up, the subject is in some health state at the beginning of the

study, spends an additional random of time in that state, and then moves to another

health state according to some transition probability. The subject again spends a

random amount of time in the new state, moves to a different state, and the pro-

cess repeats until the person reaches an absorbing state (failure). The multi-state
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process depends on unknown parameters including the transition probabilities, the

distributions of state occupancy times, also known as sojourn times, and parameters

associated with the effect of (patient) covariates. All of the unknown parameters have

to be estimated, usually from past studies. Sometimes these estimates come from a

longitudinal study of some relevant population of patients (Castelli et al., 2007; Gar-

diner et al., 2006). It is more likely that the data come from disparate cross-sectional

studies. Examples include Valenstein et al. (2001), Paltiel et al. (2001), Liew (2006),

Rosen et al. (2005), and Matchar et al. (2005).

Many software packages are available for conducting DES. If the multi-state model

is built as a decision tree, the software TreeAge may be used (Pauker and Wong,

2005); an example of this is the model by Rosen et al. (2005). Other modelers

may build their own simulations, using traditional programming languages. The

development and implementation of DES for CEA can be time consuming with most

real applications. One important issue in this context is that the low-probability

paths in the multi-state models may not be sampled even with large simulation

samples. Such paths may have unusually high or low rewards (costs or QALYs),

so the resulting simulation may lead to higher variability in the estimates of cost-

effectiveness metrics. (These issues are discussed in more detail in Section 2.6.2.)

The goal of this paper is to develop direct methods and, when possible, analytical

expressions for mean costs and effectiveness and hence cost-effectiveness analysis.

We restrict attention to ‘progressive’ processes (to be defined in the next section)

to simplify the problem but the results can be extended to the more general case.

There are very few papers in the CEA literature that deal with direct approaches to

calculating the mean costs and QALYs associated with patient or policy treatment

decisions. Some discussion is available in the operations research and applied prob-
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ability literature in the general context of rewards (see, for example, Janssen and

Manca (2006) and Janssen and Manca (2007)).

Analytical expressions are developed under a semi-Markov framework for the sta-

tionary case. This includes the Markov model as a special case. Direct Monte Carlo

methods are described for the cases where either or both of the sojourn time dis-

tributions and transition probabilities are non-stationary. These direct approaches

have many advantages over discrete event simulation. The benefits of analytical

expressions is clear. One does not have to conduct a simulation study, and sensi-

tivity analysis to estimating the parameters in the model can be done rather easily.

Even in cases where direct Monte Carlo simulation is used, the simulation effort is

considerably less than in setting up a DES study. Further, the simulation approach

here samples all possible paths through the multi-state process, weights the results

according to the probability, and computes the overall mean cost or effectiveness.

In DES, on the other hand, the probability of a path being sampled depends on its

probability, so some paths will have a very low probability of being included.

The rest of the paper is organized as follows. In Section 2.2, we discuss progres-

sive multi-state processes with the semi-Markov property. In Sections 2.3 and 2.4

we develop expressions for the lifetime distributions, and the random and expected

rewards earned in stationary progressive multi-state semi-Markov models of single

patients, and illustrate the methods with small examples. In Section 2.5 we discuss

combining patient-level results to achieve population-level results. We then discuss

extensions of the method to non-stationary processes and disease processes with mul-

tiple causes of death in Section 2.6. Section 2.6.2 compares the methods developed in

this paper to more traditional discrete event simulation methods, and discusses the

advantages of the methods in this paper, specifically in the context of the extensions
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Figure 2.1: Progressive Multi-state Models
Top panel: Single-step. Bottom panel: Multi-step.

proposed. Finally, we present an application to illustrate the concepts in this paper

in Section 2.7.

2.2 Progressive Multi-state Processes

We will consider the progressive multi-state processes in Figure (2.1). The top

panel is a special case where the subject can move only from a state to its immediate

right (called single-step). This is useful in studying some health situations where

the disease progresses in a straightforward manner. An illustrative application using

renal disease is discussed in Section 2.3.3. The bottom panel shows a more general

case (multi-step) where the patients can move multiple steps with each transition. As

an example of this case, a model of cardiovascular disease is discussed in Section 2.4.3.

Let {Y (t), t ∈ T } denote the state of the subject at time t for t ∈ T . Time

t can be discrete in which case T is the set of non-negative integers {0, 1, 2, ...} or

continuous in which case T is the non-negative half-line {t ≥ 0}. The process {Y (t)}
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takes values in the finite state space E = {1, 2, . . . , (K + 1)}. We take (K + 1) to be

an absorbing state or end point of the process, denoted as ‘failure.’ In the context

of CEA applications, this state will typically be death. Throughout this paper, we

assume that the states are ordered in some natural way and that the subject moves

from left to right only. This is quite natural in health settings. Cases where a patient

is ill and then recovers can be handled by adding a new state rather than allowing

the patient to return to the initial healthy state. Even though this increases the

number of states, it is useful to distinguish a patient who had been in a non-healthy

state and has not had health problems for some time from someone who has always

been healthy.

The first part of the paper deals with homogeneous multi-state processes. We will

be especially interested in semi-Markov processes (SMPs), which are generalizations

of Markov processes. It is convenient to define an SMP in terms of its equivalent

Markov renewal process (MRP) {(Jn, Tn), n = 1, 2, ...} (Janssen and Manca, 2006).

The MRP spends a random amount of time in a state i ∈ E and then jumps to

another state j ∈ E. Jn represents the state the process is in before the nth jump, and

Xn is the occupancy time in state Jn before the nth jump. Further, Tn = X1+· · ·+Xn

is the time of the nth jump. The transition probabilities and sojourn times are given

as follows:

1. the transition probability pi,j(t) = P (Jn+1 = j|Jn = i, Tn = t)

2. the state occupancy (sojourn) distributions are given by the conditional distri-

butions Fi,j(t1, t2) = P (Tn+1 ≤ t2|Tn = t1, Jn = i, Jn+1 = j).

The term Qi,j(t1, t2) = Fi,j(t1, t2)pi,j(t1) is called the semi-Markov kernel. Note

that limt1→∞Qi,j(t1, t2) = pi,j(t1). The corresponding SMP Y (t) can be obtained as
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Y (t) = Jn for t ∈ (Tn−1, Tn). For a time-homogeneous SMP, pi,j(t) is constant in

time and Fi,j(t1, t2) = P (Tn+1 ≤ t2|Tn = t1, Jn = i, Jn+1 = j) does not depend on

t1, the time of the n−th jump. The time-homogeneous Markov case is the simplest

and most well known example of a multi-state model. In this case, the sojourn

distributions Fi,j = Fi and are exponential.

2.3 Single-Step Progressive: Stationary Case

This section develops analytical expressions for the lifetime distribution and ran-

dom and expected rewards for the one-step progressive stationary (time-homogeneous)

case (top panel of Figure (2.1)). The results are developed for a single subject who

is in state s (with s ≤ K) at the start of the study and has spent a period time u in

that state. The results will be combined later to get expressions for a distribution

(population) of subjects. Note that in this one-step case, the transition probability

from state g to g + 1 is one.

2.3.1 Life Time Distribution

Let Xs,s+1(u) be the conditional random variable [Xs,s+1|Xs,s+1 ≥ u]. Then, we

can write T (s;u), the (residual) lifetime of this subject, as a sum of Xs,s+1(u) and

the subsequent Xg,g+1’s:

(2.3) T (s;u) = Xs,s+1(u) +Xs+1,s+2 + ...+XK,K+1.

Recall that the conditional distribution of Xs,s+1(u) is the same as that the uncon-

ditional distribution of Xs,s+1 in the exponential case. The special case where the

subject enters state 1 at the beginning of the study (u = 0) is obtained by taking

s = 1 and u = 0 in the above expression.

Let µs,s+1(u) = E(Xs,s+1) and µg,g+1 = E(Xg,g+1) for g > s. Then, the mean

E[T (s, u)] = µs,s+1(u) +
∑K

g=s+1 µg,g+1. For an SMP, the Xg,g+1’s are independent,
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so the variance is also the sum of the individual variances. For the more general

stationary case (i.e., not an SMP), we have to specify the dependence structure

among the Xg,g+1’s in order to compute the variance.

Special Cases:

Case 1: Consider the Markov case where Fi,j = Fi and are exponential with mean ηi

for i = 1, ..., K. Then, Xs,s+1(u) has the same distribution as the unconditional ran-

dom variableXs,s+1. The distribution of T (s;u) is a sum of independent exponentials.

This is sometimes called a hypo-exponential distribution (Ross, 2003). The mean is∑K
i=s ηi and the variance is

∑K
i=s η

2
i . In the special case where ηi = η, i = 1, ..., K,

T (s;u) has a gamma distribution with parameters (K − s+ 1, η).

Case 2: Suppose we have a semi-Markov process where Fi,j is Gamma(κi,j, η), so the

scale parameter η is the same. Then,
∑K

g=s+1 Xg,g+1 is Z ∼Gamma(
∑K

g=s+1 κg,g+1, η),

so T (s;u) has the same distribution as Xs,s+1(u)+Z where Xs,s+1(u) is a conditional

Gamma(κs,s+1, η) random variable, conditioned on being ≥ u. If u = 0, then the

distribution is Gamma(
∑K

g=s κg,g+1, η). A similar structure holds whenever the sum

of Xg,g+1’s is closed under convolution (the sum belongs to the same family as the

original distribution) or more generally, the sum has a closed form expression. Other

distributions with this property include the Normal (although this is not usually

used to model sojourn times which are positive), Inverse Gaussian with a constraint

on the two parameters, and Poisson. However, for many of the common lifetime

distributions, such as Weibull and Lognormal, the distribution of the sum does not

have a closed form expression even when the components are independent. However,

it is relatively easy to simulate these random variables directly and obtain a Monte

Carlo approximation to the distribution of the sum in equation (2.3).
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2.3.2 Reward Random Variables and Expected Rewards

This section develops expressions for the random rewards and their expectations

accrued over a lifetime. The term ‘rewards’ represent both costs and effectiveness.

The results are obtained under the following setup:

1. There is a fixed reward Ui,j associated with transitioning from state i to state

j. This could, for example, be the cost associated with a one-time treatment;

2. There is a variable reward Vi per unit time associated with the amount of time

spent in state i. This could, for example, be the QALYs for that state (sojourn

time weighted by quality index) or some treatment cost that depends on the

amount of time spent in the state.

No discounting

Consider first the case with no discounting of rewards. Again, the subject is in

state s at the beginning of the study and has already spent an amount of time u in

that state. The total undiscounted random reward is simply

(2.4)

R(s;u) = VsXs,s+1(u) +Us,s+1 + Vs+1Xs+1,s+2 +Us+1,s+2 + ...+ VKXK,K+1 +UK,K+1.

It can be written in a compact form as

(2.5) R(s;u) =
K∑
g=s

Ug,g+1 + VsXs,s+1(u) +
K∑

g=s+1

VgXg,g+1.

Let µg,g+1 be defined as before as the expectation of Xg,g+1. Then, the expected

reward is

(2.6) E(R(s;u)) =
K∑
g=s

Ug,g+1 + Vsµs,s+1(u) +
K∑

g=s+1

Vgµg,g+1.
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The variance of R(s, u) can also be computed from equation (2.5). In the case of

an SMP where the Xg,g+1’s are independent, the variance is also just the sum of the

variances:

V ar(R(s;u)) = V 2
s σ

2
s,s+1(u) +

K∑
g=s+1

V 2
g σ

2
g,g+1,

where σ2
s,s+1(u) = V ar(Xs,s+1(u)) and σ2

g,g+1 = V ar(Xg,g+1).

The more interesting problem is to compute the reward random variable and its

moments under discounting.

Discounting

For discrete time, the rewards are discounted by a discount rate r for each unit of

time. Throughout, let θ = 1
(1+r)

, so θ has the simple effect of discounting the reward

by a single time unit. For continuous time, the discount rate is ρ, so the discount

factor for a time of length x is exp(−ρx).

Define

(2.7) Wg,g+1 = Ug,g+1 + α(Vg+1 − Vg)

with α = θ
(1−θ) for discrete time and α = 1/ρ for continuous time. Further, in the

discrete time case, the discount factor Zs,s+1 = θXs,s+1(u) and Zg,g+1 = θXg,g+1 for

g ≥ s + 1. In the continuous time case, Zs,s+1 = exp(−ρXs,s+1(u)) and Zg,g+1 =

exp(−ρXg,g+1) for g ≥ s+ 1.

Proposition 1:

a) The total random discounted reward is

(2.8) RD(s;u) = αVs +
K∑
g=s

[
Wg,g+1

g∏
m=s

Zm,m+1

]
,

where VK+1 = 0.
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Figure 2.2: Renal Disease Model Structure

b) If the sojourn times are independent (as in the case of an SMP), the total expected

discounted reward is

(2.9) E[RD(s;u)] = αVs +
K∑
g=s

[
Wg,g+1

g∏
m=s

Lm,m+1(γ)

]
,

where Ls,s+1(γ) = E(exp(−γXs,s+1(u)), the Laplace transform of Xs,s+1(u) and

Lm,m+1(γ) is the Laplace transform of Xm,m+1 for m > s. Further, γ = − log(θ)

in the discrete case and γ = ρ in the continuous case.

Part (a) of Proposition 1 is derived in Appendix 2.9.1. Part (b) follows from the

definition and independence of the Zm,m+1’s.

Remark : There are explicit expressions for the Laplace transform of many common

distributions. For example, the Laplace transform L(t) for Gamma(κ, η) is (1+ηt)−κ.

The exponential case corresponds to κ = 1.

2.3.3 Illustrative Application

Computation of CEA Metrics

We consider the renal-disease component of the model from the application in

Rosen et al. (2005) which involves assessing the benefits of angiotensin-converting en-

zyme (ACE) inhibitors, and construct an illustrative example using the same health

states, but different sojourn times and probabilities. ACE-inhibitors are commonly

available drugs that are used to treat a variety of health problems, including cardio-

vascular disease, renal disease, diabetes, high blood pressure, and migraines. They
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prevent the production of angiotensin II from angiotensin I. Angiotensin II is a sub-

stance in the tissues and blood that narrows blood vessels, resulting in increased

blood pressure and stress upon the heart. Generic ACE-inhibitors are widely avail-

able, resulting in relatively affordable pricing. The ACE-inhibitor ramipril was shown

to be effective in reducing MI, cardiovascular death, other cardiovascular events, and

nephropathy (renal disease) in the population aged 55 and older with diabetes (Ger-

stein et al., 2000). ACE-inhibitors are also an attractive treatment option because

they have relatively few side-effects. In this illustrative application, we consider the

effects of ACE-inhibitors on renal disease; in later examples, we also consider their

effect on cardiovascular disease.

Figure (2.2) shows the one-step progressive model with four states ordered from

healthiest to sickest: Normoalbuminuria, Microalbuminuria, Macoalbuminuria, and

End Stage Renal Disease (ESRD). The policy decisions being compared are: ‘1’: use

of ACE inhibitors (adherence), and ‘0’: no use of ACE-inhibitors (non-adherence).

The particular policy decision being considered is full coverage (no co-pay) of the

cost of ACE-inhibitors under Medicare for elderly diabetics, and we are specifically

interested in the effect on those who change from adherence to non-adherence due to

full coverage. In this case, it is assumed that all subjects receiving full reimbursement

for ACE-inhibitors will take them (adherence), and all subjects not receiving full

reimbursement for ACE-inhibitors will not take them (non-adherence).

We assume that all subjects have diabetes and start in the Normoalbuminuria

state. Table 2.1 provides the inputs needed to compute cost and QALYs. All patients

incur an annual cost of $3, 500 for routine medical treatment. The annual cost of

ACE-inhibitors (noted as the cost of treatment adherence) is $300 per subject. As is

usual in the literature, we take the discount rate for costs and QALYs, denoted by
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Table 2.1: Model Inputs: Disease Utilities, Costs, and Discount Rate

QALYs
Diabetes (Baseline Health) 0.88
ESRD 0.61
Annual costs $
Ongoing cost of care 3,500
Diabetes, Normoalbuminuria 1,000
Diabetes with Microalbuminuria 2,000
Diabetes with Macroalbuminuria 4,000
ESRD 80,000
Treatment Adherence 300

Table 2.2: Model Inputs: Disease Prevalence and Progression, Renal Disease Model

Parameter Name Non-Adherent Adherent
Sojourn Distribution Parameters, Gamma Distribution
Shape Parameters, κ
Normoalbuminuria to Microalbuminuria (κ1,2) 2 6
Microalbuminuria to Macoalbuminuria (κ2,3) 1 4
Microalbuminuria to ESRD (κ3,4) 1 2
ESRD to Dead (κ4,5) 0.1 0.1
Scale Parameter, η, (all transitions) 3 3

r, to be 3%(Gold et al., 1996).

The ACE inhibitors affect the sojourn-time distributions in the states, slowing

renal disease progression. We illustrate the computations with gamma sojourn time

distributions. The model parameters are given in Table 2.2. As an example of the

calculations, consider the evaluation of E(C0). We have

E(C0) = αV1 +W1,2L1,2 +W2,3L1,2L2,3 +W3,4L1,2L2,3L3,4 +W4,5L1,2L2,3L3,4L4,5,

since all the Ui,j’s are zero. We can compute each of the above elements: V1 = 4500

(the sum of ongoing cost of care and having diabetes with Normoalbuminuria), V2 =

5500, V3 = 7500, V4 = 80000, and V5 = 0. We take ρ = 0.03, so α = 1/.03. Further,

Lm,m+1 = (1+ηρ)κm,m+1 , and as an example, L1,2 = (1+3×0.03)2 for the non-adherent

case. Form all this, we get E(C0) = $68, 639. Similar calculations show: E(C1) =

$123, 763, E(E0) = 8.7, and E(E1) = 19.0, resulting in µICER = 5, 352$/QALY.

The usual comparison value is λ = $50, 000, so ACE-inhibitors will be considered
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cost-effective. Alternatively, µNMB with λ = $50, 000 is $426, 326; since this is much

larger than the reference value of 0, there is a substantial benefit from using the

new treatment. We also computed the reward expected values for the case with

Weibull sojourn distributions with matching the first two moments matching those

of the gamma distributions used here, and the conclusions were similar, suggesting

that the results were robust to distributional assumptions in this case. The use of

analytical expressions facilitates such comparisons easily.

Parameter Uncertainty and Sensitivity Analysis

The reward estimates are only as reliable as the parameters used to calculate

them. We now illustrate how the uncertainty due to parameter estimation can be

easily quantified using the analytical expressions in this paper. Specifically, we want

to assess how much the conclusions of the CEA analysis depend on the uncertainty

in the estimated values of the unknown parameters.

Consider first a sensitivity analysis – how sensitive cost, QALYs, ICER, and NMB

are to small perturbations of the estimates of each individual parameter. One way

to do this is to compute the derivative of the output as a function of that input

parameter. The expression for the expected discounted reward is

(2.10)

E(RD(1; 0)) = αV1 +W1,2L1,2 +W2,3L1,2L2,3 +W3,4L1,2L2,3L3,4 +L4,5L1,2L2,3L3,4L4,5.

If we are interested in assessing the sensitivity to changes in the parameters κ1,2 and

κ2,3, we can compute the partial derivatives of E(RD(1; 0)) with respect to these

parameters and evaluate them at the estimated parameter values. This deriva-

tive shows the change in reward due to a one-unit change in the parameter at

the estimated values. Doing the calculations, ∂E(C0,D(1, 0))/∂κ2,3 = $9, 429, and
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∂E(C1,D(1, 0))/∂κ2,3 = $4, 836. The corresponding values for QALYs are:

∂E(E0,D(1, 0))/∂κ2,3 = 1.8, and ∂E(E1,D(1, 0))/∂κ2,3 = 0.9. Thus, the mean values

for non-adherent rewards are more sensitive to changes in parameter values. The

sensitivity values for all the parameters are given in Table 2.3.

We now discuss computation of the overall standard error by using Taylor series

approximation. Let Ê(R(1; 0)) = F (β̂1, ..., β̂L) where the β̂j’s represent the esti-

mated parameters (transition probabilities, parameters of the state-occupancy dis-

tributions, etc.). Then, the Taylor series approximation for the variance of Ê(R(1; 0))

is Var[Ê(R(1; 0))] ≈ fTΣ f where f is the vector of partial derivative of F evaluated

at the estimated values and Σ is the variance-covariance matrix of the β̂j’s.

Suppose we have field data from n = 100 patients on the sojourn times in different

states. Usually, the field data will be subject to various forms of censoring (right,

left, interval, etc.), but for simplicity we assume here there is no censoring. Further,

suppose the values in Table 2.2 are the MLEs of the parameters when the data were

fitted to gamma distributions. We can use arguments from likelihood theory to get

the estimated information matrix and invert it to get the variance-covariance matrix

of the parameters. The details are available in standard textbooks and are omitted

here (see, for example, Bickel and Doksum (2001)).

The estimated variances and standard errors for costs and effectiveness are also

given in Table 2.3. As with the sensitivity analysis on individual parameters, the

standard errors for non-adherent rewards are larger than those for adherent rewards.

In practice, one is not likely to get maximum likelihood of the parameter estimates

under some parametric model. Rather, the summary data will consist of statistics

such as the mean and variance of the distributions and possibly their standard errors.

One would then have to estimate the underlying parameters of a parametric model
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Table 2.3: Partial Derivatives of Reward Functions

Variable C0 C1 E0 E1

κ1,2 7,012 3,123 1.8 0.9
κ2,3 9,429 4,836 1.8 0.9
κ3,4 13,866 7,262 1.8 0.9
κ4,5 161,404 81,307 1.2 0.6
η 17,073 19397 2.3 3.4
σ̂2 1.81562× 107 3.76968× 106 0.23 0.09
σ̂ 4, 261 1, 942 0.48 0.30

for the sojourn distribution by matching the moments. For a gamma distribution,

since the mean is κη and the variance is κη2, we get η̂ = (sample variance)/(sample

mean) and κ̂ = (sample mean)2/(sample variance). We can then use Taylor series

approximation to get the standard errors of the estimated parameters.

Similar methods can be used to compute the standard errors of CEA metrics such

as ICER and NMB. See, for, example, O’Brien et al. (1994). In this example, the

estimated standard error for µICER is 245 and that for µNMB is 28,589. Recall that

the estimates for µICER and µNMB at λ = 50, 000 were 5, 352$/QALY and $426, 326

respectively. So, the standard errors due to parameter uncertainty are small in

comparison, so the conclusion of cost-effectiveness still holds.

If the computations of the derivatives is difficult, one can use a simple Monte

Carlo approach to simulate from the distributions of the input variables (Kennedy

and Gentle, 1980; Givens and Hoeting, 2005). These methods are all well known in

the statistical literature. They are not necessary in this single-step case, but we will

demonstrate their application in the more complicated multi-step case in the next

section.

2.4 Multi-Step Progressive: Stationary Case

As before, the results for the multi-step case are developed first for a single subject

who is in state s (with s ≤ K) at the start of the study and has spent a period time
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u in that state.

2.4.1 Life Time Distributions

We can see from Figure (2.1) that the subject can reach the absorbing state

through many possible paths. Suppose the subject moves through the sequence of

states {s = J1 < J2 < ... < Jk < Jk+1 = K + 1} where Ji’s denote the random

indices of the visited states and k is the random number of states visited before

failure. Then,

(2.11) T (s;u) = Is,J2 × IJ2,J3 · · · × IJL,K+1 (Xs,J2(u) +XJ2,J3 + · · ·+XJL,K+1) .

A discrete-event simulation approach might proceed by mimicking the above process

– select J2 randomly according to the set of transition probabilities, simulateXs,J2(u),

select J3 randomly according to the transition probabilities, simulate XJ2,J3 , and so

on.

In the stationary case, the transition probabilities (and hence the indicator func-

tions in equation (2.11) are independent of time. Thus, we can first condition on the

indicator function (the path), compute the sum of the sojourn times for the path,

and then sum over all possible paths. This leads to a representation of the total

(residual) lifetime as

(2.12) T (s;u) =
∑
j

I
(j)
s,i2,...,ikj ,K+1

(
X

(j)
s,i2

(u) +X
(j)
i2,i3

+ · · ·+X
(j)
ikj ,K+1

)
,

where the sum j is over all possible paths {s < i2 < ... < ikj < K+1} from the initial

state s to the absorbing state K + 1. Here I
(j)
s,i2,...,ikj ,K+1 = Is,i2 × Ii2,i3 × · · · Iikj ,K+1.

Note that there are J = 2K−s possible such paths. Further, kj, the number of states

visited before absorption, depends on the path j. For simplicity, we suppress the

superscript notation j in the rest of the paper. Again, the special case where the
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subject just starts in state 1 at the beginning of the study is obtained by taking

s = 1 and u = 0 in the above expression.

As an example, consider the case with 4 states and s = 1. There are four possible

paths: 1→ 2→ 3→ 4, 1→ 2→ 4, 1→ 3→ 4, and 1→ 4, so

T (1, u) = I{1,2,3,4}(X1,2(u) +X2,3 +X3,4) + I{1,2,4}(X1,2(u) +X2,4)(2.13)

+ I{1,3,4}(X1,3(u) +X3,4) + I{1,4}X1,4(u).

The random variables X1,2(u) in the first and second components of the sum in

equation (2.13) are independent realizations of the same random variable. The reason

for independence is that a given subject can take only one of the 4 possible paths,

and different subjects are independent of each other. A similar comment applies to

other cases.

The lifetime distribution is a finite mixture with J elements. Its density can be

expressed as

(2.14) fT (t|s;u) =
∑
j

ps,i2,...,ikj ,K+1

(
fs,i2(t;u) ∗ fi2,i3(t) ∗ ... ∗ fikj ,K+1(t)

)
,

where, as before, the sum j is over all possible paths. Here, ps,i2,...,ikj ,K+1 = E(Is,i2,...,ikj ,K+1) =

ps,i2 × pi2,i3 × · · · × pikj ,K+1, fij ,ik(t) is the density of Xij ,ik , fs,ik(t;u) is the density

of Xs,i2(u) and ∗ denotes convolution.

From standard properties of mixture distributions (McLachlan and Peel, 2000),

one can express the mean of the life-time distribution as

(2.15) E(T (s;u)) =
∑
j

ps,i2,...,ikj ,K+1

(
µs,i2(u) + µi2,i3 + ...+ µikj ,K+1

)
,

where µi,j is the mean of Xi,j and µs,i1(u) is the mean of Xs,i1(u). The variance

expressions are discussed in Appendix 2.9.3.



32

Example: Consider the four-state model in equation (2.13). Suppose s = 1, u = 0,

i.e., the subject starts in state 1 and has not yet spent any time in that state. Further

suppose the distributions ofXi,j are Gamma(κi,j, η) and they are independent. Recall

that the sums of independent gamma distributions with the same scale parameter η

are also gamma. So,

fT (t|1; 0) = p1,2,3,4 Gamma(κ1,2 + κ2,3 + κ3,4, η)

+ p1,2,4 Gamma(κ1,2 + κ2,4, η)

+ p1,3,4 Gamma(κ1,3 + κ3,4η)

+ p1,4 Gamma(κ1,4, η),

a mixture of gamma distributions. The mean of a Gamma(κ, η) distribution is κη.

This can be used to calculate the mean of the lifetime as

(2.16)

E(T (1; 0)) = η (p1,2,3,4(κ1,2 + κ2,3 + κ3,4) + p1,2,4(κ1,2 + κ2,4) + p1,3,4(κ1,3 + κ3,4) + p1,4κ1,4) .

2.4.2 Reward Random Variables and Expected Rewards

No Discounting

Again, consider first the case where there is no discounting of rewards over time.

The total random cost for an individual subject is

R(s;u) =
∑

Is,i2,...,ikj ,K+1

(
Vs,i2X

j
s,i2

(u) + Us,i2+ Vi2,i3X
j
i2,i3

+ Ui2,i3

+ · · ·+ Vikj ,K+1X
j
ikj ,K+1 + Uikj ,K+1

)
,

(2.17)

which can be written in a compact form as

R(s;u) =
∑
j

Is,i2,...,ikj ,K+1

 kj∑
g=1

Uig ,ig+1 + Vi1X
j
i1,i2

(u) +
k∑
g=2

VigX
j
ig ,ig+1

 ,(2.18)
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where i1 = s and ikj + 1 = K + 1. The expected reward can be calculated from this

as

E(R(s;u)) =
∑
j

ps,i2,...,ikj ,K+1

 kj∑
g=1

Uig ,ig+1 + Vi1µi1,i2(u) +
k∑
g=2

Vigµig ,ig+1

 ,(2.19)

where, as before, µi,j is the mean of Xi,j and µi,j(u) is the mean of Xi,j(u). The

variance of the expression is a straightforward extension of the single-step case.

Discounting

The case with discounting is of more interest. The results for the multi-step case

can be obtained by combining the results for all possible paths. The derivations are

given in Appendix 2.9.2. We just provide the main result here.

Recall that in the case with discrete time, the rewards are discounted by a factor

r per unit time. Let θ = 1
(1+r)

. For continuous time, the discount rate is ρ, so the

discount for a time of length x is exp(−ρx). Let

(2.20) Wig ,ig+1 = Uig ,ig+1 + α(Vig+1 − Vig),

for VK+1 = 0 where α = θ
(1−θ) for discrete time and α = 1/ρ for continuous time.

Proposition 2:

a) The total random discounted reward is

(2.21) RD(s;u) =
∑
j

Is,i2,··· ,ikj ,K+1

αVs +

kj∑
g=1

[
Wig ,ig+1

g∏
m=1

Zim,im+1

] ,

where i1 = s and ikj + 1 = K + 1.

b) If the sojourn times are independent (as in the case of an SMP), the total expected

discounted reward is

(2.22) E(RD(s;u)) =
∑
j

ps,i2,··· ,ikj ,K+1

αVs +

kj∑
g=1

[
Wig ,ig+1

g∏
m=1

Lim,im+1(γ)

] ,
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where Lim,im+1(γ) is the Laplace transform of Xim,im+1 for m ≥ 2 and of Xs,i2(u) for

m = 1, and γ = − log(θ) in the discrete case and γ = ρ in the continuous case.

Example: Consider again the 4-state model in equation (2.13). Taking u = 0 and

s = 1,

R(1; 0) = I1,2,3,4(αV1 +W1,2Z1,2 +W2,3Z1,2Z2,3 +W3,4Z1,2Z2,3Z3,4)

+ I1,2,4(αV1 +W1,2Z1,2 +W2,4Z1,2Z2,4)

+ I1,3,4(αV1 +W1,2Z1,3 +W3,4Z1,2Z2,4)

+ I1,4(αV1 +W1,4Z1,4).

If it is a semi-Markov model, the expected reward is obtained by replacing Zi,j in

the above expression with its Laplace transform. Suppose the state-occupancy times

are gamma; i.e., Fi,j =Gamma(κ, η). Its Laplace transform is (1 + tη)−κ. So, the

expected reward for a gamma semi-Markov process can be written as

E(R(1; 0)) = p1,2p2,3p3,4(αV1 +W1,2(1 + tη)−κ1,2 +W2,3(1 + tη)−κ1,2(1 + tη)−κ2,3

+W3,4(1 + tη)−κ1,2(1 + tη)−κ2,3(1 + tη)−κ3,4)

+ p1,2p2,4(αV1 +W1,2(1 + tη)−κ1,2 +W2,4(1 + tη)−κ1,2(1 + tη)−κ2,4)

+ p1,3p3,4(αV1 +W1,3(1 + tη)−κ1,3 +W3,4(1 + tη)−κ1,3(1 + tη)−κ3,4)

+ p1,4(αV1 +W1,4(1 + tη)−κ1,4).

The exponential distribution is a special case with κi,j = 1.

2.4.3 Illustrative Application

We now consider the cardiovascular disease (CVD) component of the application

in Rosen et al. (2005). The structure, shown in Figure (2.3), is a multi-step process

with four states: healthy (no history of MI), a history of one MI (which was survived),

a history of two MIs (both of which were survived), and death due to MI. We make
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Figure 2.3: Cardiovascular Disease Model Structure

Table 2.4: Model Inputs: Disease Utilities, Costs, and Discount Rate

QALYs
Diabetes (Baseline Health) 0.88
MI 0.88
Annual costs $
Ongoing cost of care 3,500
History of MI 2,500
Acute MI (impulse cost) 35,000
Treatment Adherence 300

a simplifying assumption that a third MI would automatically be fatal. In addition,

we restrict attention to deaths due to MI only. We assume that the subject starts

with no history of MI. Again, the intervention in question is full cost-coverage of

ACE inhibitors in diabetics.

The sojourn and impulse costs and QALYs are in Table 2.4. The transition proba-

bilities and sojourn time distributions are in Table 2.5. Note that the state-transition

probabilities do not vary with treatment, but the sojourn time distributions do.

The possible paths through this MI disease process are:

1. Healthy → 1 MI → 2 MI → Dead

2. Healthy → 1 MI → Dead

3. Healthy → Dead

For notational simplicity, we will refer to the healthy state as state 1, survival of a

single MI as state 2, survival of 2 MI as state 3, and death as state 4.

This application differs from the earlier on renal disease in two ways. First, there
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Table 2.5: Model Inputs: Disease Prevalence and Progression, MI Model

Parameter Name Non-Adherent Adherent
Transition Probability
Healthy to MI (p1,2) 0.7 0.7
Single MI to second MI (p2,3) 0.7 0.7
Healthy to Dead (p1,4) 0.3 0.3
Single MI to Dead (p2,4) 0.3 0.3
Second MI to Dead (p3,4) 1 1
Sojourn Distribution Parameters, Gamma Distribution
Shape Parameter, κ
Healthy to MI (κ1,2) 3 4
Single MI to second MI (κ2,3) 1 2
Healthy to Dead (κ1,4) 8 10
Single MI to Dead (κ2,4) 3 4
Second MI to Dead (κ3,4) 1 1
Scale Parameter, η, (all transitions) 3 3

are multiple paths for which probabilities are needed. We can calculate the proba-

bility of each path using the parameters in Table 2.5. For instance, the probability

of path 1 → 2 → 3 → is p1,2p2,3p3,4 = 0.7 × 0.7 × 1 = 0.49. Second, an MI has

an impulse cost, whereas the renal disease model had only sojourn rewards. So, for

example, the non-adherent cost W1,2 is calculated per Equation (2.20) as

WC0
1,2 = 35000 +

1

.03
((3500 + 1000 + 2500)− (1000 + 3500)) = 118, 333.3.

The expected rewards can be calculated using the transition probabilities and

gamma sojourn distribution parameters in Table 2.5 and Equation (2.22). They are:

E(E0) = 11.6, E(E1) = 14.2, E(C0) = $117, 829, E(C1) = $133, 766. So we have

µICER = 5, 595$/QALY, or equivalently with λ = 50, 000, an µNMB = $118, 540.

As in the renal case, the treatment will be considered cost-effective. We also did

the analysis with Weibull distributions with the first two moments matched to the

gamma sojourn distributions, and the results were very similar.

We now turn to an examination of parameter uncertainty and demonstrate the

use of Monte Carlo simulation. Specifically, we simulate the distribution of mean

rewards as the parameter values in the models change. Since the parameter values
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for the gamma distributions have to be positive, we assumed they were distributed

according to a lognormal distribution. The transition probabilities were simulated

according to a beta distribution. The parameters of these distributions were chosen

to reflect the values in Table 2.5.

We simulated 10, 000 patients per path. The densities of E(E1)−E(E0), E(C1)−

E(C0), µICER, and µNMB (calculated at λ = 50, 000) are shown in Figure (2.4). These

distributions capture the uncertainty due to parameter estimation. We see that the

estimated densities for the differences in mean costs and effectiveness do not contain

0, providing unambiguous evidence for the presence of a treatment effect for all the

reward measures. Also, the support of the density of µNMB is above 0 and the support

of the density of µNMB is below the willingness-to-pay of $50, 000/QALY.

2.5 Combining Subject-Level Results to Population Level

The reward expressions and computations presented so far are for a single subject

who starts in a given state and has already spent a certain amount of time there. To

obtain population-level results, suppose there are N subjects in the population, and

Ns subjects are in state s at the start of the study, s = 1, 2, ..., K. Further, suppose

the Ns subjects have spent us,1, us,2, ..., us,Ns units of time in state s, for s = 1, ..., K.

Then, the total (random) reward for the population is just

TRP =
K∑
s=1

Ns∑
n=1

RD(s;us,n),

where RD(s;us,n) is the discounted reward for an individual subject. The average

random reward per subject is

E(TRP ) =
K∑
s=1

Ns∑
n=1

WsRD(s;us,n),

where Ws = Ns/N , the proportion of subjects who are in state s.
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Figure 2.4: Densities of Mean Estimates. Figure A: E(E1) − E(E0) = µ1(E) − µ0(E). Figure B:
E(C1)− E(C0) = µ1(C)− µ0(C). Figure C: µICER. Figure D: µNMB.

In DES, the population of interest in a conceptual one, so one has to select the

values for Ns and us,n. The values of Ns are typically selected to represent the profiles

of the actual population of interest. The values of us,n can be simulated using the

information about state-occupancy distributions Xs,g; g > s.

The expected reward expressions can be used to compute average costs and

QALYs for the various policy decisions and compute the CEA metrics such as ICER

and NMB. As discussed, the unknown parameters for the transition probabilities and
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Figure 2.5: Four-state Model with Multiple Causes of Death. Left panel: Original 4-state model.
Right panel: Model with separate causes of death.

expected values of the sojourn times have to be estimated, typically from historical

data.

2.6 Extensions

Thus far, we have focused on stationary semi-Markov models. The results extend

easily to the case with static covariates (covariates that do not change with time

such as gender). Other covariates such as age, weight, and body mass index will

vary with time. Including them in the analysis will introduce non-stationarity which

is more difficult to handle. We discuss the nonstationary case in this section, along

with an extension to competing causes of death.

2.6.1 Multiple Causes of Death: Competing Risks

One is generally interested in analyzing policy decisions in the presence of multiple

causes of death. If the costs and QALYs associated with all the causes of death are

the same, we can collapse them into one state and use the analysis discussed thus

far. In practice, however, this will not be the case, and we have to treat them

separately. In fact, there may be other reasons for analyzing the different types of

death separately, such as preserving information about failure modes for analysis.

Analysis of multiple causes of death does not pose serious complications for the

analysis. The additional causes of death have to added as new states. Then, one has

to enumerate the different paths to absorption and use the results in the same way as
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before. Some simplifications can be obtained in special cases, such as the single-step

case in the right panel of Figure (2.5). Then, only the last component of the lifetime

and reward expressions change. Suppose there is one additional cause of death.

Then, for the example in Figure (2.5), the life-time expression in Equation (2.3)

changes to

(2.23) T (s;u) =
K−1∑
g=s

(Xg,g+1) +
2∑
d=1

(IK,K+dXK,K+d) ,

and the total discounted random reward from equation (2.8) to

(2.24)

RD(s; j) = αVs+
K−1∑
g=s

[
Wg,g+1

g∏
m=s

Zm,m+1

]
+

2∑
d=1

IK,K+d

[
WK,K+dZK,K+d

K−1∏
m=s

Zm,m+1

]
.

2.6.2 Non-stationary cases

The analysis discussed thus far has been restricted to stationary cases. Non-

stationarity can arise from several sources: non-stationary transition probabilities,

sojourn distributions, time-varying covariates, or a combination. For example, the

sojourn time distributions and the transition probabilities can depend on (calendar)

time or ‘age’ of the patient.

The formulation of semi-Markov processes are general enough to handle these.

Recall the general definition of the semi-Markov kernel in Section 2 with Qi,j(t1, t2) =

Fi,j(t1, t2)pi,j(t1) as the semi-Markov kernel. Here t1 denotes the time at which the

subject transitioned from state i to state j. However, it is not possible to obtain

analytical expressions for non-stationary cases in general. We discuss alternatives in

this section.
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Non-stationary sojourn distributions with stationary transition probabilities

Semi-Markov models with non-stationary sojourn distributions but stationary

transition probabilities have been referred to as additive semi-Markov processes

(Janssen and Manca, 2006, 2007). When the transition probabilities are station-

ary, the general expressions in Section 2.4 still hold. In particular, the (residual)

time-to-failure can continue to be expressed as

(2.25) T (s;u) =
∑
j

Is,i2,...,ikj ,K+1

(
Xs,i2(u) +Xi2,i3 + · · ·+Xikj ,K+1

)
,

and the expressions for the random rewards are also the same. However, the ran-

dom variables Xig ,ig+1 ’s are no longer independent; in particular, their distributions

depend on the times at which the subject transitioned from state ig to ig+1. To be

specific, consider a path {s < i2 < ... < ikj < K + 1}, and let

(2.26) Sim(u) = Xs,i2(u) + · · ·+Xim−1,im

be the time at which the subject transitioned into state im. Then, the distribution

of Xim,im+1 depends on Sim(u). For example, the distributions could be exponential

with mean exp(βim,im+1Sim).

Because of the dependence structure, the expectations of the lifetime and rewards

cannot be derived in analytical form in general. But it is easy to get these values

through direct Monte Carlo simulation. For each possible path, one first simulates

Xs,i2(u), then the conditional random variables [Xi2,i3|Xs,i2(u)], [Xi3,i4|Xs,i2(u), Xi2,i3 ]

etc. This process is repeated N times to get a Monte Carlo average, repeated for

all possible paths and weighted using the transition probabilities to get the overall

expected rewards. This is still much easier than setting up a discrete-event simula-

tion framework. It also has the advantage that all possible paths are sampled and

weighted appropriately in the computation of the CEA metrics.
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General non-homogeneous case

We turn now to the more general situation where both the transition probabilities

and the sojourn time distributions are non-stationary. Situations with time-varying

covariates (such as health status, age, etc.) also fall into this category.

We can write the time-to-failure as in Section 2.4,

(2.27) T (s;u) = Is,J2 × IJ2,J3 · · · × IJL,K+1 (Xs,J2(u) +XJ2,J3 + · · ·+XJL,K+1) ,

but now both the indicator functions for the transitions and the sojourn times depend

on the Sim(u)’s in equation (2.26). We can take the expectation of T (s, u) by first

conditioning on the sojourn times and then taking the expectation with respect to the

distributions of the sojourn times. Doing this allows us to represent the expectation

as

E[T (s;u)|sojourn times] =
∑
j

ps,i2(Ss(u))p(i2, i3)(Si2(u))× · · · × pikj ,K+1(Sikj)

×
(
Xs,i2(u) +Xi2,i3 + · · ·+Xikj ,K+1

)
,

(2.28)

where p(i2, i3)(Si2(u)) = E[Ii2,i3(Si2(u))|sojourn times]. A corresponding expression

will hold for the random rewards. Note that the sum is still over all possible paths.

These conditional transition probabilities have explicit forms as they are given by the

multi-state model. For example, one possible form is p(i2, i3)(t) = 1 − exp(t/ηi1,i2),

indicating that the probability of transition increases with time.

Again, it is not possible to obtain analytical expressions for the expected lifetime

and rewards in general. But the direct Monte Carlo method outlined in the last

subsection extends readily to this situation also.
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Comparison with Discrete-Event Simulation

The advantages of the approaches developed in the paper are clear when there are

analytical expressions for the expected rewards. There is no need to set up a discrete

event simulation framework and simulate sample paths through the multi-state. The

advantages are less evident when analytical expressions are not available and one

still has to use Monte Carlo methods to compute the expectations. Nevertheless, the

direct approaches discussed for the non-stationary cases are easier to work with and

implement than simulating a large-scale multi-state model. The only computational

challenge is in enumerating all the possible paths through the system. This is not a

difficult problem.

A more important advantage is that the approaches outlined here evaluate the

random variables for each possible path, weight them according to the probability

of using that path and obtain an overall average. In DES, on the other hand, not

all possible paths will be used; rather the paths are sampled in each simulation

replication according to their likelihood, so paths with very small probabilities have

a low probability of being sampled. This may be fine for the purposes of getting

expected lifetimes but not for computing rewards. Small probability paths may have

high costs.

Also, the approaches described here examine each of these paths, giving us direct

information about all possible elements that go into the average calculations. The

comparison between DES and the approaches here are similar to the comparison

between simple random and stratified sampling. The latter sample from each stratum

(mixture component or path in our set up) and hence provide detailed information

about the population of interest as well as global information about the average.
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2.7 Application

This section combines the renal disease model and the CVD model previously

discussed so that we can illustrate the results on a more complex application. This

example is very similar to the application in Rosen et al. (2005), but it has been

modified to be progressive, stationary, and with sojourn times that are distributed

according to the gamma distribution. Further, only deaths due to renal disease or

MI are considered; competing risk deaths, which vary with time, are not included.

Figure (2.6) shows part of the multi-step process. The mode of patient death

determines the cost of the death event; in particular, there is an impulse cost associ-

ated with dying of MI, as reflected in Table 2.7. As a result, the two modes of death

are represented as separate health states, as shown in Figure (2.6), and we use the

competing risk extension discussed in Section 2.6. All patients enter the process in

the Normoalbuminuria (healthy) state. To simplify the figure, we have not shown

included additional paths from the relatively healthy states to death caused by MI;

but any patient may die due to MI from any health state. Not all transitions between

states in the model are possible; for instance, a patient cannot progress directly from

Normoalbuminuria to ESRD. Thus, while in theory there are 214−2 = 4096 patient

paths, there are only 49 paths with positive probability. Even 4096 can be handled

with relative ease if we have analytical solutions. The full set of probabilities and the

shape parameters for the gamma sojourn-time distributions, κi,j, for all transitions

in the full model with positive probability are given in Table 2.6. All transitions

are assumed to have scale parameter η = 3, and all patients are assumed to start

with Normoalbuminuria and no history of MI. In the table, we abbreviate the Nor-

moalbuminuria state as Normo, Microalbuminuria as Micro, and Macroalbuminuria
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Figure 2.6: Application Structure.

as Macro. Additionally, MI1 and MI2 denote surviving 1 and 2 MIs, respectively.

Finally, DMI denotes death due to MI, and DESRD denotes death due to ESRD.

The probabilities and sojourn time distribution parameters are more involved

in this bigger model. One reason is that the progression of renal disease affects the

progression of cardiovascular disease; notably, those with Macroalbuminuria progress

more quickly to an MI. Additionally, in the earlier cases with just renal disease or

CVD, medication adherence affected only the sojourn time distribution and not the

transition probabilities; in this combined model, transition probabilities also change

as a result of medication adherence. In general, adherence to medication increases

the time to any event, and decreases the probability of fatal cardiovascular disease

events. Adherence also increases the probability that the next state transition will

be into the next renal disease state, rather than into the next cardiovascular disease

state.
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Table 2.6: Model Inputs: Disease Prevalence and Transition Probabilities, Full Model

Transition Probability Scale Parameter, κ
Parameter Name Non-Adherent Adherent Non-Adherent Adherent
Normo, MI1 0.32 0.4 3 4
Normo to DMI 0.14 0.20 8 10
Normo to Micro 0.55 0.34 2 6
Normo, MI1 to Normo, MI1 0.48 0.59 1 2
Normo, MI1 to DMI 0.20 0.25 3 4
Normo, MI1 to Micro, MI1 0.32 0.17 2 6
Normo, MI2 to DMI 0.68 0.83 1 1
Normo, MI2 to Micro, MI2 0.32 0.17 2 6
Micro to Micro, MI1 0.19 0.37 3 4
Micro to DMI 0.08 0.16 8 10
Micro to Macro 0.73 0.47 1 4
Micro, MI1 to Micro, MI2 0.34 0.52 1 2
Micro, MI1 to DMI 0.15 0.22 3 4
Micro, MI1 to Macro, MI1 0.52 0.52 1 4
Micro, MI2 to DMI 0.49 0.74 1 1
Micro, MI2 to Macro, MI2 0.52 0.26 1 4
Macro to Macro, MI1 0.41 0.44 1 2
Macro to DMI 0.17 0.19 3 4
Macro to ESRD 0.42 0.37 1 2
Macro, MI1 to Macro, MI2 0.54 0.57 1 1
Macro, MI1 to DMI 0.23 0.24 1 1
Macro, MI1 to ESRD, MI1 0.23 0.19 1 2
Macro, MI2to DMI 0.77 0.85 0.3 1
Macro, MI2 to ESRD, MI2 0.23 0.15 1 2
ESRD to ESRD, MI1 0.17 0.13 1 2
ESRD to DMI 0.07 0.06 3 4
ESRD to DESRD 0.76 0.81 0.3 0.3
ESRD, MI1 to ESRD, MI2 0.31 0.25 1 1
ESRD, MI1 to DMI 0.13 0.14 1 1
ESRD, MI1 to DESRD 0.56 0.60 0.3 0.3
ESRD, MI2 to DMI 0.44 0.56 0.3 1
ESRD, MI2 to DESRD 0.38 0.62 0.3 0.3

The reward structure is shown in Table 2.7. There is one complication in the

reward structure for the combined model because a patient’s health state is defined

by a combination of the renal disease state and the CVD state. As a result, both

costs and QALYs are dependent upon the rewards for each disease. QALYs are

multiplicative across the two disease (so an individual with Normoalbuminuria and

a history MI would have an overall utility of 0.88× 0.88), and costs are additive, so

the same individual would have a sojourn cost per unit time of 1000 + 3500 + 2500.
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Table 2.7: Model Inputs: Disease Utilities, Costs, and Discount Rate

QALYs
Diabetes (Baseline Health) 0.88
ESRD 0.61
MI 0.88
Annual costs $
Treatment Adherence 300
Ongoing cost of care 3500
Diabetes, Normoalbuminuria 1000
Diabetes with Microalbuminuria 2000
Diabetes with Macroalbuminuria 4000
ESRD 80000
History of MI 2500
Acute MI (transition cost) 35000
Discount Rate, % 3

The expected reward and probability of each path can be calculated in a manner

similar to in the CVD case, but for the full set of 49 paths this time. The result

is E(E0) = 12.1, E(E1) = 17.1, E(C0) = $151, 307, E(C1) = $153, 180, so µICER =

375 $/QALY, and µNMB = $243, 868, resulting in the intervention being very cost-

effective even for the combined model.

We can use the Monte Carlo simulation of the Taylor Series method introduced in

the multi-step section to determine the uncertainty due to parameter estimation. The

set up is the same as in the CVD case. The densities of E(E1)−E(E0), E(C1)−E(C0),

µICER, and µNMB (calculated at λ = 50, 000) are shown in Figure (2.7). The density

for E(C1) − E(C0) contains 0, so the evidence on whether the intervention reduces

cost is a bit ambiguous. This is also reflected in the distribution for µICER. However,

the support of the density for µNMB is quite a bit to the right of 0, so based on

this metric, one would conclude that the treatment is effective even after taking into

account parameter uncertainty.
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Figure 2.7: Densities of Mean Estimates. Figure A: E(E1) − E(E0) = µ1(E) − µ0(E). Figure B:
E(C1)− E(C0) = µ1(C)− µ0(C). Figure C: µICER. Figure D: µNMB.

2.8 Conclusion

This paper has developed analytical methods for computing cost-effectiveness

metrics with stationary semi-Markov processes. For non-stationary cases, direct

Monte-Carlo simulation has been proposed as an alternative to discrete event sim-

ulation. These methods are considerably easier to implement and use with CEA.

Additional advantages have been noted in the paper. Common aspects of CEA,

including sensitivity analysis, are also easily performed within this framework, and
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were demonstrated in this paper. Some common extensions, to multiple causes of

death and to non-stationary models, were also demonstrated.

While the results in the paper have been restricted to progressive models, they can

be extended to non-progressive (recurrent) models. As a practical matter, however,

nearly all disease models can be built to be progressive through the addition of more

states. While analysts have previously been reluctant to expand the state-space

due to computational concerns in traditional DES, state-space expansion is less of a

concern with the methods in this paper.

2.9 Appendix

2.9.1 Proof of Proposition 1

Single-step Discrete case

We consider the discrete case first. Let fg,g+1(x), s < g ≤ K, be the prob-

ability mass function (pmf) of Xg,g+1 and fs,s+1(x;u) be the conditional pmf of

[Xs,s+1|Xs,s+1 ≥ u].

We compute the total rewards associated with the fixed components, Us,s+1 and

Ug,g+1, s < g ≤ K, that are incurred at the time of transition. The subject starts in

state s and spends an amount of time Xs,s+1(u) in state s before moving to state s+1,

at which time s/he incurs a reward of Us,s+1. So this amount has to be discounted

by θXs,s+1(u) (recall that θ = 1
1+r

). The subject then spends Xs+1,s+2 time units in

state s+ 1 before moving to state s+ 2. So the reward Us+1,s+2 has to be discounted

by θXs,s+1(u)+Xs+1,s+2 . Repeating this argument, we get the fixed reward (reward due

to transitions) over the remaining life of a subject as

FRD(s;u) = Us,s+1θ
Xs,s+1(u) + Us+1,s+2θ

(Xs,s+1(u)+Xs+1,s+2) + ...

+ UK,K+1θ
(Xs,s+1(u)+Xs+1,s+2+...+XK,K+1).

(2.29)
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Define Zs,s+1 = θXs,s+1(u) and Zm,m+1 = θXm,m+1 for m ≥ s + 1. Then, we can write

the discounted fixed reward FRD(s;u) in a compact form as

(2.30) FRD(s;u) =
K∑
g=s

(
Ug,g+1

g∏
m=s

Zm,m+1

)
.

Consider now the variable reward that depends on the amount of time spent in

the different states (sojourn time). Again, the subject starts in state s and spends

an additional Xs,s+1(u) time units in state s. So the total discounted reward for this

period is Vs(θ
1 + ...+θXs,s+1(u)), which can be expressed as Vsθ(1−θXs,s+1(u))/(1−θ).

The subject then moves to state s+ 1 and spends an additional Xs+1,s+2 time units.

So the total discounted reward for this period is Vs+1θ
Xs,s+1(u)(θ1 + · · ·+ θXs+1,s+2(u))

which can be represented as Vs+1θ
Xs,s+1(u)(1 − θXs+1,s+2(u))/(1 − θ). So the total

variable reward over the remaining life of the subject is

V RD(s;u) =
θ

(1− θ)
(
Vs(1− θXs,s+1(u)) + (Vs+1θ

Xs,s+1(u))(1− θXs+1,s+2) + · · ·

+(VKθ
(Xs,s+1(u)+Xs+1,s+2+...+XK−1,K)(1− θXK,K+1))

)
(2.31)

=
θ

(1− θ)
(Vs + (Vs+1 − Vs)Zs,s+1 + (Vs+2 − Vs+1)Zs,s+1Zs+1,s+2 + · · ·

+(VK − VK−1)Zs,s+1...ZK−1,K − (VKZs,s+1...ZK,K+1))

(2.32)

=
θ

(1− θ)

(
Vs +

K∑
g=s

(Vg+1 − Vg)
g∏

m=s

Zm,m+1]

)
(2.33)

where VK+1 = 0.

The fixed and variable costs can be combined to get the total (random) reward

as follows. Let

Wg,g+1 = Ug,g+1 +
θ

(1− θ)
(Vg+1 − Vg).

Then, the total discounted random reward Ru
D(s) can be written in a compact form
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as

(2.34) RD(s;u) =
θ

(1− θ)
Vs +

K∑
g=s

[Wg,g+1

g∏
m=s

Zm,m+1].

This proves part (a) of Proposition 1 for the discrete case.

From the independence of the Xm,m+1’s, we get the expected discounted reward

as

(2.35) E(RD(s;u)) =
θ

(1− θ)
Vs +

K∑
g=s

[Wg,g+1

g∏
m=s

E(Zm,m+1)].

Let Lm,m+1(γ) be the Laplace transform of Xm,m+1 for m > s and of Xs,s+1(u)

for m = s. Then, E(Zi,j) = E(θXm,m+1) = Lm,m+1(− log(θ)). This proves part (b) of

Proposition 1 for the discrete case.

Single-step Continuous Case

The proofs for the continuous case are very similar to the discrete case. For

completeness, we give some of the details below. Let fg,g+1(x) be the probability

density function (pdf) of Xi,j, s < g ≤ K, and fs,s+1(u) be the conditional pdf

of [Xs,s+1|Xs,s+1 ≥ u]. The main difference between the discrete and continuous

cases is in the discounting of the rewards. The discounting factor in continuous

time is exp(−ρx), for a time of length x with continuous discount rate ρ. Again, let

the rewards associated with the fixed components be Ug,g+1 and Us,s+1, incurred at

transition. As before, the subject starts at state s and spends Xs,s+1(u) time units in

state s before moving to state s+1. Us,s+1 is discounted at the time of the transition,

to get Us,s+1 exp(−ρXs,s+1(u)). The subject then spends Xs+1,s+2 time units in state

s+ 1 before moving to state s+ 2, so the resulting total discounted reward from the

second transition is Us+1,s+2 exp(−ρ(Xs,s+1(u) +Xs+1,s+2)). We see that the form of

the discounting is the same as the discrete case except that θx is now replaced by

exp(−ρx).
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Define Zm,m+1 = exp(−ρXm,m+1) for m > s and Zs,s+1 = exp(−ρXs,s+1(u)).

Then, as in the discrete case, we can write the discounted fixed reward FRD(s;u)

compactly as

(2.36) FRD(s;u) =
K∑
g=s

(
Ug,g+1

g∏
m=s

Zm,m+1

)
.

Following the same arguments as in the discrete case, we can write total variable

reward over the remaining life of the subject compactly as

(2.37) V RD(s;u) =
1

ρ

(
Vs +

K∑
g=s

[(Vg+1 − Vg)
g∏

m=s

Zm,m+1]

)

where VK+1 = 0.

Let

Wg,g+1 = Ug,g+1 +
1

ρ
(Vg+1 − Vg).

The fixed and variable costs can be combined to get the total (random) reward

RD(s;u) as

(2.38) RD(s;u) =
1

ρ
Vs +

K∑
g=s

[Wg,g+1

g∏
m=s

Zm,m+1].

This proves part (a) of Proposition 1 for the continuous case.

From this, we see that expected total discounted reward in the continuous case

has the same form as the discrete case:

(2.39) E(RD(s;u)) =
1

ρ
Vs +

K∑
g=s

[Wg,g+1

g∏
m=s

E(Zm,m+1)].

Let Lm,m+1(γ) be the Laplace transform of Xm,m+1 for m > s and of Xm,m+1(u)

for m = s. Then, E(Zm,m+1) = E(exp(−ρXm,m+1)) = Lm,m+1(ρ). This proves part

(b) of Proposition 1 for the continuous case.
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2.9.2 Proof of Proposition 2

Multi-step Discrete Case

Again, we start with the discrete case. Let fig ,ig+1(x) be the pdf of Xig ,ig+1 2 ≤

g ≤ kj and fs,i2(x;u) is the conditional pdf of [Xs,i2|Xs,i2 ≥ u]. Due to the sojourn

time distribution being discrete, Zim,im+1 = θXim,im+1 for m > 2 and Zs,i2 = θXs,i2 (u)

for m = 1.

Take any of the possible sample path: {s, i2, ..., ikj , K+1}. The discounted reward

random variable can be calculated in exactly the same manner as in the single-step

case. Combining the results for the different paths, we get the overall fixed reward

as

FRD(s;u) =
∑
j

I
(j)
s,i2,··· ,ikj ,K+1Us,i2 (Zs,i2 + Ui2,i3Zs,i2Zi2,i3 + · · ·

+Uikj ,K+1(Zs,i2Zi2,i3 · · ·Zikj ,K+1)
)
.

(2.40)

The same arguments can be used to get the variable reward over the remaining

life of the subject as

(2.41) V RD(s;u) =
∑
j

I
(j)
s,i2,··· ,ikj ,K+1

θ

1− θ

(
Vs +

k∑
g=1

(Vig − Vig+1)

g∏
m=1

Zim,im+1

)
,

where i1 = s and ik+1 = K + 1.

Let Wig ,ig+1 = Uig ,ig+1 + θ
(1−θ)(Vig+1 − Vig). Combining the fixed and variable

rewards, we get the total discounted random reward as

(2.42) RD(s;u) =
∑
j

I
(j)
s,i2,··· ,ikj ,K+1

(
Vs +

k∑
g=1

[Wig ,ig+1

g∏
m=1

Zim,im+1 ]

)
,

where i1 = s and ik+1 = K+ 1. This proves part (a) of Proposition 2 for the discrete

case.

From the independence of the Xi,j’s, we get the expected discounted reward as

(2.43) E(RD(s;u)) =
∑
j

ps,i2,··· ,ikj ,K+1

(
Vs +

k∑
g=1

[Wig ,ig+1

g∏
m=1

E(Zim,im+1)]

)
.
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Let Lim,im+1(γ) be the Laplace transform of Xim,im+1 for m ≥ 2 and of Xs,i2(u) for

m = 1. Then, E(Zim,im+1) = E(θXim,im+1 ) = Lim,im+1(− log(θ)). This proves part (b)

of Proposition 2 for the discrete case.

Multi-step Continuous Case

The results for the continuous case follow easily from the discrete multi-step case.

Recall that fig ,ig+1(x) is the pdf of Xig ,ig+1 2 ≤ g ≤ kj and fs,i2(x;u) is the conditional

pdf of [Xs,i2|Xs,i2 ≥ u]. Due to the sojourn time distribution being continuous,

Zim,im+1 = exp(−ρXim,im+1) for m > 2 and Zs,i2 = exp(−ρXs,i2(u)) for m = 1.

The discounted random variable for the fixed rewards along a path j has the same

form as in the case with the discrete-time sojourn distribution:

FRu
D(s) =

∑
j

I
(j)
s,i2,··· ,ikj ,K+1 (Us,i2Zs,i2 + Ui2,i3Zs,i2Zi2,i3 + · · ·

+Uikj ,K+1(Zs,i2Zi2,i3 · · ·Zikj ,K+1)
)
.

(2.44)

For the variable rewards, the random variable is

(2.45) V Ru
D(s) =

∑
j

I
(j)
s,i2,··· ,ikj ,K+1

1

ρ

(
Vs +

k∑
g=1

(Vig − Vig+1)

g∏
m=1

Zim,im+1

)
,

where i1 = s and ik+1 = K + 1.

Now, let Wig ,ig+1 = Uig ,ig+1 + 1
ρ
(Vig+1 − Vig). The total discounted random reward

is thus

(2.46) Ru
D(s) =

∑
j

I
(j)
s,i2,··· ,ikj ,K+1

(
Vs +

k∑
g=1

[Wig ,ig+1

g∏
m=1

Zim,im+1 ]

)
,

This proves part (a) of Proposition 2 for the continuous case.

The expected discounted reward as

(2.47) E(Ru
D(s)) =

∑
j

p
(j)
s,i2,··· ,ikj ,K+1

(
Vs +

k∑
g=1

[Wig ,ig+1

g∏
m=1

E(Zim,im+1)]

)
.
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Let Lim,im+1(γ) be the Laplace transform of Xim,im+1 for m ≥ 2 and of Xs,i2(u) for

m = 1. Then, E(Zi,j) = E(exp(−ρXim,im+1)) = Lim,im+1(ρ). This proves part (b) of

Proposition 2 for the continuous case.

2.9.3 Variances of the Discounted Rewards

We have thus far ignored the calculation of the discounted reward variance, since

expected value is the normal decision-making criterion in CEA. Nevertheless, the

variance of the discounted rewards can also be calculated analytically, and the general

results are in this section.

One-step Case

Recall that in the case with discrete time, the rewards are discounted by a factor

r per unit time, and θ = 1
(1+r)

. For continuous time, the discount rate is ρ, so the

discount for a time of length x is exp(−ρx). As before, let Wg,g+1 = Ug,g+1 +α(Vg+1−

Vg), where α = θ
(1−θ) for discrete time and α = 1/ρ for continuous time. Further,

in the discrete case, Zs,s+1 = θXs,s+1(u) and Zm,m+1 = θXm,m+1 for m ≥ s + 1. In

the continuous case, Zs,s+1 = exp(−ρXs,s+1(u)) and Zm,m+1 = exp(−ρXm,m+1) for

m ≥ s+ 1.

After some algebraic manipulations, we get the variance of Ru
D(s) as

V ar(RD(s;u)) =
K∑
g=s

W 2
g,g+1

g∏
m=s

E(Z2
m,m+1)

+ 2
K∑
g=s

K∑
n=g+1

Wg,g+1Wn,n+1

g∏
m=s

E(Z2
m,m+1)

n∏
`=g+1

E(Z`,`+1)

−

(
K∑
g=s

[Wg,g+1

g∏
m=s

E(Zm,m+1)

)2

.

(2.48)

Let Lm,m+1(γ) be the Laplace transform of Xm,m+1 for m > s and of Xs,s+1(u)

for m = s. Then, E(Zm,m+1) = E(θXm,m+1) = Lm,m+1(− log(θ)), E(Z2
m,m+1) =
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Lm,m+1(−2 log(θ)). For the continuous case, E(Zm,m+1) = Lm,m+1(ρ) and E(Z2
m,m+1) =

Lm,m+1(2ρ).

Multi-step Case

Call Rj the reward earned on path j and Tj the time-to failure on path j in

the multi-step case, and pj the probability of path j, and suppose there are J total

disease paths. From standard properties of mixture distributions (McLachlan and

Peel, 2000),

(2.49) V ar(R(s;u)) =
J∑
j=1

pj (V ar(Tj) + (E(Tj))
2)−

(
J∑
j=1

pjE(Tj)

)2

,

where V ar(Tj) and E(Tj) are calculated as in the single-step case. Additionally

(2.50) V ar(R(s;u)) =
J∑
j=1

pj (V ar(Rj) + (E(Rj))
2)−

(
J∑
j=1

pjE(Rj)

)2

.

The variance of R(s;u) can be calculated using this equation and the independence

of the Xig ,ig+1 ’s and is given by

V ar[Ru
D(s)] =

∑
j

ps,i2,...ikj ,K+1

(
K∑
g=1

W 2
ig ,ig+1

g∏
m=1

E(Z2
im,im+1

)

+ 2
K∑
g=1

K∑
n=g+1

[
Wig ,ig+1Win,in+1

g∏
m=1

E(Z2
im,im+1

)
n∏

`=g+1

E(Zi`,i`+1
)

]

+

(
αVs +

K∑
g=s

[Wig ,ig+1

g∏
m=1

E(Zim,im+1)

)2


−

(∑
j

ps,i2,...ikj ,K+1

(
αVs +

K∑
g=s

[Wig ,ig+1

g∏
m=1

E(Zim,im+1)

))2

.

(2.51)

Where again, let Lim,im+1(γ) be the Laplace transform of Xim,im+1 for m ≥ 2 and

of Xs,i2(u) for m = 1. Then, E(Zim,im+1) = E(θXim,im+1 ) = Lim,im+1(− log(θ)),

E(Z2
im,im+1

) = Lim,im+1(−2 log(θ)). For the continuous case, E(Zim,im+1) = Lim,im+1(ρ)

and E(Z2
im,im+1

) = Mim,im+1(2ρ).



CHAPTER III

Modeling Cost-Effectiveness Data for Medical Decision
Making: A Statistical Framework

3.1 Introduction

Cost-effectiveness analysis (CEA) is part of the broad field of comparative ef-

fectiveness analysis for health/medical decision making. CEA is designed to assess

the comparative value of expenditures on different health interventions (Gold et al.,

1996). The conceptual basis is that, for a given level of available resources, the in-

terventions that provide the greatest health value should be selected. As the name

implies, CEA requires a comparison two types of health outputs: cost and effective-

ness.

Cost-effectiveness analyses have been conducted for a variety of treatments in a

range of population for diseases including depression (Valenstein et al., 2001), asthma

(Paltiel et al., 2001), HIV (Long et al., 2006), cardiovascular disease (Liew, 2006;

Rosen et al., 2005), stroke (Matchar et al., 2005), and colorectal cancer (Castelli

et al., 2007). The UK, Australia, and Canada require economic evaluations before

approving new healthcare technologies (Birch and Gafni, 2004; Hill et al., 2000;

Hjelmgren et al., 2001), although CEA is not required before the introduction of

a treatment in the United States. Clearly, there is considerable value for patients,

physicians, and policy-makers in understanding the cost, quality of life, and length

57
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Figure 3.1: Example Model Disease States and Transitions.

of life tradeoffs inherent in medical decisions. The cost outcome is the cumulative

amount of dollars spent on the subject’s health care due to the intervention, usually

discounted to present-day dollars at start of intervention. Quality and length of

life outcomes are combined to get a single measure called quality-adjusted-life-years

(QALYs). Quality is a weight between 0 and 1 that is assigned to the subject

depending on the health state (such as normal, renal disease, cardiovascular diseases,

etc.). The weight is multiplied by the life-time in that state and accumulated to get

a QALY value, which is also usually discounted to get a present value.

Data on cost and effectiveness of the treatment group and a baseline comparison

group may be obtained from through clinical trials, observational studies, or sim-

ulation. In this paper, we focus on data from discrete event simulation models of

multi-state disease processes. We will use the context of the following application to

illustrate the methods and the usefulness of the analysis in the rest of the paper.

Figure (3.1) represents a simplified version of the model developed in Rosen et al.

(2005) to assess the benefits of angiotensin-converting-enzyme-inhibitors (ACE- in-
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hibitors) for a high-risk group of patients. Rosen et al. (2005) studied the problem

from Medicare’s perspective, with the intervention (treatment 1) being coverage for

beneficiaries with diabetes, and the standard (treatment 0) was standard care, re-

quiring an out-of-pocket co-pay. Figure (3.1) is the model structure for examining

combined effects of the intervention on cardiovascular disease (CVD) and renal dis-

ease. The number of states has been reduced for illustrative purposes. There are two

states of renal disease (mild or no renal disease, and end-stage renal disease (ESRD))

and three CVD states (myocardial infarction or heart attack (MI), cerebrovascular

disease or stroke (CVA), or both MI and CVA). Finally, there is an absorbing state

representing death. There are four possible causes of death in this set up: MI, CVA,

ESRD, and other (independent) causes. Figure (3.1) shows the state space and possi-

ble transitions for this hypothetical example. We will use different sets of illustrative

data to demonstrate the benefits of the various data analysis strategies.

Discrete event simulation (DES) simulates the disease process for a subject from

the population of interest, starting with an initial state and progressing through

the different states over time until death. The costs and QALYs are computed as

the subject evolves through the multi-state process until death. This is done for

both the baseline care as well as the proposed new intervention. The simulation will

be repeated for a large number of subjects with characteristics chosen to represent

the population of interest and with covariates that can vary over time, such as

those representing the health status of the subjects. Throughout this paper, we

assume that the simulation size is large enough to treat the estimated processes and

distributions as continuous.

Most of the commonly used metrics for CEA summarize this extensive amount

of simulation data into simple mean-based measures. Let µj(C) be the average
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(discounted) cost and µj(E) be the average (discounted) effectiveness (QALYs) for

treatment j, j = 0, 1. Here treatment 0 is the baseline and treatment 1 is the new

treatment. (There can be more than one new treatment being compared, but we

restrict to just one for simplicity). The cost and effectiveness are usually computed

over the entire remaining life span of the subjects or some fixed long horizon such

as 30 years. Then, the metrics used for comparison are based on the differences

in means: µ1(C) − µ0(C) and µ1(E) − µ0(E). The most common one-dimensional

measure is the incremental cost-effectiveness ratio (ICER)

(3.1) µICER =
µ1(C)− µ0(C)

µ1(E)− µ0(E)
.

Another commonly used metric is the Net Monetary Benefit (NMB)

(3.2) µNMB = λ [µ1(E)− µ0(E)]− [µ1(C)− µ0(C)] ,

where λ measures society’s willingness to pay for one QALY. These and other com-

monly used metrics for CEA are traditionally based on expected values or averages.

One justification for using average cost is that, from a decision-making perspective,

it is the total cost of the intervention that matters. But the analogous justification

for using average effectiveness is less compelling.

Such simple metrics are popular because they are simple and easy to understand

by high-level policy decision makers. However, like all such summaries, they are

overly simplistic and do not provide sufficient insights into the complex data, which is

time-varying and heterogeneous, and into the trade-offs between cost and benefits. In

fact, there has been debate in the literature to the extent to which cost-effectiveness

ratios are appropriate for informing medical decisions (Birch and Gafni, 1992; Garber

and Phelps, 1997; Sendi et al., 2003; Weinstein et al., 2001).

Our goal in this paper is to demonstrate the usefulness of using graphical methods
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to analyze the simulation data more extensively and develop key insights into the

performance of the treatments and their comparisons. The salient aspects of the

simulation data can be summarized easily in simple cases such as Markov models.

In more realistic situations, such as non-homogeneous processes, the data can have

complex structure even though they are just realizations of simulated processes with

known inputs.

The distribution of costs and benefits associated with an intervention is a result

of randomness and differences in the underlying population, both in terms of clinical

indicators and personal preferences (Stevens and Normand, 2004; Sculpher and Gafni,

2001). McMahon et al. (2005) commented on the differences in outcomes and CE

ratios in heterogeneous patients, and how clinical trials often show the most benefits

from interventions are concentrated in the highest-risk patients (Vijan et al., 1997;

Kent et al., 2002). There is a lot of information to be gleaned from examining the

entire distribution, examining it for heterogeneity, multi-modes, tail behavior, etc.

These are all important sources of information for the research investigator about the

behavior of the treatment and its comparison to the baseline. Before a final policy

decision is made, it is incumbent upon the researcher to systematically scrutinize the

underlying data, examine different features both visually and analytically, develop

insights about the properties of the intervention over time and across groups of

patients, and use all the information before making overall recommendations and

decisions. Of course, experienced clinicians and researchers will have considerable

insights even before the simulation study is conducted, but even they will get new

information from the analysis. Of course, there will be others, including the decision

makers, for whom the analysis will be very useful in understanding the reasons for

and the trade-offs involved in the ultimate decision.
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The paper is organized as follows. Section 3.2 introduces and discusses the

stochastic disease process. Section 3.2.2 discusses the stochastic reward processes

derived from the disease process. Section 3.3 applies the stochastic process frame-

work and applies graphical methods for exploratory data analysis to hypothetical

CEA simulation results.

3.2 Disease Progression Model

In this section, we develop some terminology and notation to characterize the

underlying stochastic processes that are being simulated.

3.2.1 Disease Process

We will use a multi-state model (as in Figure (3.1)) to characterize the disease

process: how the subject evolves through the various disease states until death. Let

{Yj(t), t ∈ T } denote the state of the subject at time t for t ∈ T for treatments

j = 0, 1. Time t can be discrete in which case T is the set of nonnegative integers

{0, 1, 2, ...K+ 1} or continuous in which case T is the non-negative half-line {t ≥ 0}.

The process {Yj(t)} takes values in the finite state space E = {1, 2, . . . , (K + 1)},

which are the various states of health status. We take (K+1) to be an absorbing state

or end point of the process, denoted as ‘failure.’ In the context of CEA problems,

this state will typically be death. Subjects can start the simulation in different initial

states and they will have been in the state for different periods of time, and may

have different ages. There are also important covariates that will distinguish different

subjects. We will ignore these important points for the time being come back to them

later in the discussion.

There has to be some specification of the underlying probabilistic mechanism that

generates the transitions and the sojourn times. For our purposes here, we assume
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that they are specified in setting up the simulation study and reasonable estimates of

the underlying parameters are available from the literature of field studies. We will

also not focus on sensitivity to the estimated values, as this problem has received

substantial attention in the literature (Hunink et al., 1998; Halpern et al., 2000).

There are analytical approaches to studying the behavior of multi-state processes

in simple cases: Markov processes and semi-Markov processes and more general time-

homogeneous processes (see, for example, Howard (1971) and Janssen and Manca

(2006)). We will assume that the processes being studied here are more complex and

so a discrete event simulation study is used.

There are several random variables of interest associated with the disease process.

Perhaps the most important one is the time-to-failure Tj, the time t when the process

Yj(t) reaches the absorbing state K + 1. Throughout, we denote the cumulative

distribution function (CDF) of Tj as Fj(t;T ), t ∈ T and the corresponding quantile

functions as Qj(u;T ) = F−1
j (u), u ∈ (0, 1). Further, the mean or expected time-

to-failure will be denoted as µj(T ) and the hazard rate as hj(t;T ) for j = 0, 1. In

general, the Fj’s are a mixture distribution and their expressions cannot be obtained

analytically, even for Markov and semi-Markov processes (see Aalen (1995), DeFauw

et al. (2011) and Yang and Nair (2011)). But the simulation data will allow us

to study their properties and make comparisons, based on means, quantiles, tail

behavior, hazard rate, etc.

3.2.2 Cost, Effectiveness and Other Derived Processes

As subjects evolve through the disease process, they accumulate costs and QALYs.

The particular structure of these, especially costs, will depend on the application.

For example, there can be an immediate cost associated with a transition from state

i to state j (for example, surgery for an MI) and there can be costs per unit time
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spent in state j (such as cost of long term medical care). These issues are discussed

in general terms under reward processes in Howard (1971) and Janssen and Manca

(2006). See also DeFauw et al. (2011).

We will use the notation {Cj(t), t ∈ T } and {Ej(t), t ∈ T } to denote the cumu-

lative cost and reward processes: so, Cj(t) is the cumulative cost and Ej(t) is the

cumulative effectiveness for treatment j up to time t, for j = 0, 1. These processes

may or may not have been discounted, depending on the application. Further, we

let Fj(x; t;C) = P (Cj(t) ≤ x) denote the CDF of the cost process at time t and

its quantile function as Qj(u; t;C) = F−1
j (x; t;C) with similar definitions for effec-

tiveness: Fj(u; t;E) and Qj(u; t;E). The means of the corresponding distributions

will be denoted as µj(t;C) and µj(t;E). The end of the study will correspond to

t =∞ (when all the subjects have died) or more likely, a large value of t. Analytical

expressions for the cost and effectiveness processes and their means were developed

in DeFauw et al. (2011) for the case of progressive, time-homogeneous semi-Markov

processes. Reference Janssen and Manca (2006) and Janssen and Manca (2007) for

a general discussion of reward processes. Again, the simulation data will allow us

to study the behavior of these quantities and interpret their behavior from CEA

perspective, as to be discussed.

Sometimes, the notions of incremental cost and effectiveness processes are useful.

For example, for chronic diseases where patients live with for many years, studying

incremental annual costs and seeing how they vary over time makes sense. In the

case of more short-term, acute, or rapidly advancing diseases, weekly or daily repre-

sentation of incremental processes may be more useful. We will define incremental

cost as cj(t) = Cj(t)−Cj(t−δ) and incremental effectiveness ej(t) = Ej(t)−Ej(t−δ)

for some suitable time period δ. For discrete processes, δ will typically be 1.
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Another derived process of interest is the cumulative monetary benefit (MB) pro-

cess which is defined for treatment j at time t as Bj(t) = λEj(t) +Cj(t) for j = 0, 1.

We let Fj(u; t;B) = P (Bj(t) ≤ x) be the CDF of the MB process at time t and

its quantile function as Qj(u; t;B) = F−1
j (x; t;B) The means of the corresponding

distributions will be denoted as µj(t;B) and µj(t;E). Recall that the usual NMB

is given by µ1(∞, B) − µ0(∞, B). As with the other cases, we define incremental

monetary benefit as bj(t) = Bj(t)−Bj(t− δ) for some suitable time period δ.

3.3 Richer Analysis: Illustrative Examples

This section will rely primarily on graphical methods to illustrate the potential

in exploring the simulation data in more detail. There is an extensive literature on

graphical methods, and some good references include Chambers (1983) and Cleveland

(1993). See also Doksum and Sievers (1976) for a discussion of treatment-effect

functions. Throughout, we are assuming that the number of simulations is very

large so that, for all practical purposes, the distributions are assumed to be known.

3.3.1 Exploratory Analysis for Interesting Features

There are many graphical techniques for visually examining the data when the

sample sizes are small to moderate. These include boxplots, stem-and-leaf-diagrams

and histograms. Sample sizes in the kinds of simulation studies considered here will

be quite large, and we use a density plot (smoothed histogram) to examine features

of the data.

Consider first cost and effectiveness outcomes at the end of the study. The left

panel in Figure (3.2) shows illustrative densities for treatment and standard: effec-

tiveness data in the right panel and cost data in the left panel. Both cost distributions

are skewed with heavy right tails. This is typical of cost outcomes (just as is the case
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with income distributions), indicating that a small proportion of the population con-

tributes most to the total cost. The tails will have an undue influence on the mean,

so mean-based comparisons can be unduly affected. More importantly, relying on

just simple metrics for comparison can result in the loss of very useful information.

The cost distribution for the standard treatment has a heavier right tail than the

new treatment, and it would be of interest to explore the reasons for this difference.

Suppose we took a deeper look at the percentage of costs incurred by patients in

the highest 20% of each cost distribution, leading to Figure (3.3). We see that a

disproportionate amount of the costs in the right tail for the standard treatment are

incurred by patients in the ESRD state. The treatment is very effective in reducing

this part of the costs.

Figure 3.2: Left: Effectiveness Distributions. Right : Cost Distributions.
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Figure 3.3: Percentage of Cost from Each State.

Consider now the left panel in Figure (3.2) which shows effectiveness distributions.

We see that the density under treatment 0 is bimodal, with a smaller mode in the

right tail. This is not the case for treatment 1. Multi-modality is often an indication

of a mixture phenomenon, suggesting differential effects on the population. Suppose

we drill down into the distribution to examine the reasons for the bimodality and find

that the reason is due to differences in income levels of the patients (socioeconomic

status, or SES). Specifically, a significant portion of the high-income patients were

already taking ACE-inhibitors, so the policy of covering them under Medicare did

not affect their health status. This is confirmed in Figure (3.4) which shows a

substantial difference between the two populations under treatment 0, and shows

that the patients in the high SES group have a distribution similar to the distribution

of the entire population under treatment 1. This group formed only about 25% of

the overall population, so the difference between the groups showed up only slightly

in Figure (3.2). Of course, in a simulation study, this information is part of the

input parameters and so is already known. However, the effects of different input
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Figure 3.4: Left: Effectiveness Distribution of Treatment 0, Stratified by SES.

parameters may not be easily discerned up front. Moreover, the effects could be off-

set by other factors, so there is considerable value in examining the data to determine

the final outcomes and dig down to understand the reasons. In this example, there

are several possible consequences to the finding: a) one could consider the option

of not providing coverage for high-income patients if this is feasible; and b) the

effectiveness of the treatment in the remaining population is much bigger than a

simple mean-based comparison would suggest.

3.3.2 Comparing the Difference in Distributions Using Q-Q plots

The densities are useful in highlighting certain aspects of the distributions (cen-

ter, spread, tails, unusual features, etc.) but are not as effective in comparing the

differences between distributions. In this section, we consider comparisons of CDFs.

The case where the effect of the treatment is to simply shift the response by a con-

stant value ∆ is shown in the left panel of Figure (3.5). This corresponds to shift

distributions where F1(x) = F0(x−∆), or equivalently Q1(u)−Q0(u) = ∆, i.e., the

difference in every u − th quantile is constant. Since
∫ 1

0
Qj(u) du = µj, the mean,
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it also implies that the differences in means equal ∆. In this case, ∆ measures the

treatment effect in a reasonable sense.

Figure 3.5: Left: Shift distribution treatment effect. Right : Uneven treatment effect.

Suppose F1 is entirely below F0, i.e., F1(x) ≤ F0(x) for all x (with strict inequality

for some x), as is the case in the left panel of Figure (3.5). Then treatment 1 is said

to stochastically dominate the other in terms of first order (first-order stochastic

dominance or FSD). Note that F1(x) ≤ F0(x) means that larger values are likely

under F1 compared to F0. Perhaps an easier way of thinking about this is in terms

of the quantile functions: Q1(u) ≥ Q0(u). If the outcome is effectiveness, then

treatment 1 is preferable under FSD, but the opposite is true for cost.

But the treatment effect is likely to be more complex in practice, and we need ways

to interpret them. In general, the distributions will cross (as in the right panel of

Figure (3.5)), indicating that treatment 1 is better than treatment 0 in one region but

not the other. It is difficult to assess the magnitude of the differences between CDFs

as both are curves. For this reason, statisticians have proposed plotting the quantiles

against each other: Q0(u) on the horizontal axis and Q1(u) on the vertical axis

(see Figure (3.6)). This is called the quantile-quantile or Q-Q plot in the statistics



70

Figure 3.6: Quantile-Quantile Plot.

literature. The effect of this plot is to transform the y-axis from a probability scale

to a quantile scale.

There are a number of visual advantages with the Q-Q plot. If the two distri-

butions are identical, the plot will fall on the identity line. If the location model

F1(x) = F0(x−∆) holds, (effect of the treatment is to just change the outcome by ∆

at all values), the plot will be linear with slope 1 and intercept ∆. It is much easier to

determine such an effect from this graph than from the plot of the two CDFs in Fig-

ure (3.5). More generally, if a location-scale model holds, i.e., F1(x) = F0([x− a]/b)

for some constants a and b > 0, the plot will still be linear, but with slope b and

intercept a. It is unlikely that a location-scale model will hold for outcomes such

as failure times, costs and effectiveness, which are constrained to be non-negative.

However, it is common in statistical analysis to take the logarithm of the data and

then do a Q-Q plot to compare the distributions. For example, distributions such as

log-normal and Weibull have a location-scale property in the log-scale.

Let ∆(u) = Q1(u)−Q0(u) be the difference of the Q-Q plot (Q0(u), Q1(u)) from
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the identity function. We will refer to this as the treatment-effect function. (Dok-

sum and Sievers (1976) referred to this as a response function but used a slightly

different form: θ(x) = Q1(F0(x)) − x, which equals ∆(F0(x)).) This treatment-

effect function captures the difference in the treatments in different regions (quan-

tiles) of the distributions. For example, the difference in medians is ∆(.5) and∫ 1

0
∆(u) du =

∫ 1

0
[Q1(u)−Q0(u)] du = µ1 − µ0, the difference in means.

Figure 3.7: Left: Q-Q Plot of Effectiveness Distributions. Right : The treatment-effect, ∆(u), for
Effectiveness.

Figure (3.7) shows an illustrative example for a (hypothetical) intervention for

cardiovascular and heart disease, different from ACE-inhibitor example already used.

The left panel is a Q-Q plot of effectiveness distributions and the right panel shows the

treatment-effect function ∆(u;E). An examination of this function shows that the

treatment is slightly harmful, compared to the standard, in the lower tail but is quite

effective in the other regions. The natural next step is to dig into possible reasons

for this behavior. Figure (3.8) shows a bar plot of the patients in the lower 30% of

the treatment 1 effectiveness distribution and the overall population, classified by

the two relevant racial groups for this example: Caucasians and African-Americans.
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We see that there is a disproportionately higher portion of African-Americans in the

lower tail of treatment 1, suggesting that the treatment is harmful to this group.

Again, such a finding will have important consequences for the decision makers and

would not have been discovered in a simple mean-based comparison.

Figure 3.8: Weight Classification of Patients in Lower Quantiles of Effectiveness Distributions.

Figure 3.9: Left: Q-Q Plot of Cost Distributions. Right : ∆(u) of the Cost Distributions.

Consider a different example. Figure (3.9) compares the cost distributions of two

hypothetical treatments, and we see that ∆(u;C) > 0 at the low quantiles with
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the situation reversed at the higher quantiles. Suppose further analysis to identify

the reasons for the differences leads to Figure 3.10: the left panel shows Q-Q plot

for patients who were healthy at the start of the study and right panel shows Q-Q

plot for patients whose initial state was ESRD. The plot in the left panel looks very

similar to that of the overall population in Figure (3.9). On the other hand, ∆(u;C)

is always negative in the right panel, with the function increasing towards the right

tail. This is another example of effect heterogeneity, this time caused by differences

in initial states. Again, this type of information may be obvious to an experienced

investigator, who may know that the analysis should be separated by initial states.

But there are many possible ways to stratify the data, and an analysis such as the one

proposed in the paper suggests ways to systematically explore the data to identify

differences and then dig deeper to determine possible reasons.

Figure 3.10: Left: Q-Q Plot of Cost Distributions for Patients Starting in Healthy State. Right :
Q-Q Plot of Cost Distributions for Patients Starting with ESRD.

Continuing with the same example, one might want to examine the effect of the

stratification for the corresponding effectiveness distributions. Figure 3.11 shows an

illustrative situation. The right panel suggests that the difference in effectiveness
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distributions is negligible for subjects starting in the ESRD initial state. The left

panel indicates that the difference is much more substantial for subjects starting in

the healthy state. We can now close the loop on this story: the treatment is not

effective for patients who already had ESRD and the added cost is due to cost of

the treatment. One obvious conclusion is to not use this treatment for patients with

ESRD. Again, we reiterate that such a conclusion may already be known to (or at

least suspected by) clinicians before the study, but we are using a simple example

such as this to illustrate that similar benefits may arise in more subtle situations.

Figure 3.11: Left: Q-Q Plot of Effectiveness Distributions for Patients Starting in Healthy State.
Right : Q-Q Plot of Effectiveness Distributions for Patients Starting with ESRD.

3.3.3 Comparisons Over Time

We have focused thus far on analyzing data at the end of the study – either when

all subjects in the simulation have died or after a fixed period. This is also the

focus of CEA. Nevertheless, it is of interest to see how the cost and effectiveness

distributions evolve over time, for budgetary or ethical reasons, or to develop further

insights into the treatment effect.

We revisit the examples in Figure (3.2) where the effectiveness distribution at the
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end of the study was bimodal. Figure (3.12) shows this distribution at three different

time points: t = 5, t = 20 and at the end of the study. it shows that the distribution

was unimodal at an early stage but started to develop the bimodal behavior by t = 20

and it became more pronounced by the end of the study. Depending on the particular

intervention, this could again have policy implications or affect the delivery of the

intervention.

Figure 3.12: Left: Effectiveness Distribution at t=5. Center: Effectiveness Distribution at t=20.
Right: Effectiveness Distribution at t=30.

It can be tedious to compare the density functions or Q-Q plots at many different

times; further, it may be difficult to spot small differences. An alternative approach

to analyzing the evolution of reward over time is to plot selected quantiles of the

reward (cost or effectiveness) distributions against time. Figure (3.13) shows the

evolution of the quantiles over time for a pair of hypothetical treatments 0 and 1. It

shows clearly that the variability of the rewards is low in the early part of the study

for both treatments. As time progresses, the variability in the reward gets higher

for treatment 1 than treatment 0, and the pattern is consistent. Figure (3.14) shows

how the treatment-effect function, ∆(u; t) = Q1(u; t)−Q0(u; t) varies with time. In

contrast, Figure (3.15) shows a different shape for ∆(u; t), where the treatment-effect

is zero for large values of u and positive for smaller values.

We make an important, cautionary note in trying to interpret the treatment-
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effect function. The characteristics of the subjects who are in the lower (or upper)

quantiles of Treatment 0 may not be the same as those who are in the corresponding

quantiles of Treatment 1, and these could also change over time. This complicates

the interpretation, and one has to dig deeper into the data to understand possible

reasons in terms of patient characteristics.

Figure 3.13: Left: Quantile functions over time for Treatment 0; Quantiles. Right : Quantile
functions over time for Treatment 1.

Figure 3.14: Treatment Effect Function Over Time,∆(u; t)Q1(p;E; t)−Q0(p;E; t).
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Figure 3.15: Treatment Effect Function Over Time, Q1(u;E; t)−Q0(u;E; t).

3.3.4 Generalized ICER and NMB Metrics

The notion of the treatment-effect function suggests an obvious way to extend the

definitions of ICER and NMB metrics and conduct a more detailed CEA. Define the

ICER function

(3.3) ICER(u; t) =
∆(u; t;C)

∆(u; t;E)
,

the ratio of the treatment-effectiveness functions for cost and effectiveness. This

metric allows one to examine how the ICER metric varies with the quantiles (for

fixed t) and varies with time (for fixed u). Similarly, we can define an NMB function

as

(3.4) NMB(u; t) = λ∆(u; t;E)−∆(u; t;C).

Figure 3.16 shows an illustrative example with the ICER function on the left and

NMB function on the right. Notice that there is huge variability in the ICER function

early on but it stabilizes over time. Also, the quantiles cross, showing an inconsistent

behavior over time.
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Figure 3.16: Left: ICER(u; t). Right : NMB(u; t).

3.3.5 Analysis of Time-to-Failure Data

While the reward processes are of primary interest in CEA, analysis of the time-

to-failure data would also be of interest. We provide some illustrative examples

here.

If an intervention is considered effective, it would normally be expected to increase

the length of life, on average. The increased lifespan my arise in a number of ways.

First, a treatment may not change disease progression (the health states a patient

experiences), but slow it down (increase the time spent in each health state). If this is

true, the treatment effect on the time in health states may be the same for all health

states (i.e., treatment increases the time in each health state by 25%). Alternatively,

it may slow disease progression unequally in each health state. A second way a

treatment might act is my changing the disease progression entirely. In the case of

a multi-state model, this would mean that the treatment would actually alter the

probabilities of a patient experiencing or dying from a given medical event. As an

example, a treatment may lower the lifetime probability of a patient experiencing an
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MI.

In a multi-state disease process, understanding the time spent in each state can

also provide insight into the drivers of the difference between the two treatments.

Figure (3.17) shows this comparison for the Medicare coverage of ACE-inhibitors in-

tervention (treatment 1), versus the baseline (treatment 0). The side-by-side barplot

shows that patients receiving treatment 1 live longer, and spend much more time in

the healthy state. Additionally, patients receiving treatment 0 spend more time in

all states containing ESRD. This tells the decision-maker that on average, treatment

1 helps patients avoid time in ESRD states and remain healthier, longer, than those

receiving treatment 0.

Figure 3.17: Time in Each State.

A difference in disease progression may also indicate a difference in the modes of

death. Figure (3.18) shows the percentage of deaths due to each of the 4 possible

causes: MI, CVA, ESRD, and competing risk causes (causes not included in the

model). If the figure had bars of equal height for treatment 1 and treatment 0,

that would indicate that the treatment does not effect the mode of patient death.
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However, this is not the case in this example. Figure (3.18) shows that, relative to

treatment 0, patients receiving treatment 1 are less likely to die of CVA and ESRD,

but are more likely to die of MI or competing risk causes. This suggests that, relative

to treatment 0, treatment 1 reduces CVA and ESRD. However, it does not have a

fully protective effect against all CVD, since MI death is comparatively more likely

under treatment 1.

Figure 3.18: Mode of Death.

As we have already seen, stratification of patients by the health state at the start of

treatment can provide useful insight into the differences in death mode. Figure (3.19)

shows the proportions of subjects in each death mode, conditional upon patient

health state at the start of treatment. There is a large difference that depends upon

patient’s initial health. In the case of patients with a history of MI, CVA, or renal

disease, it is very common for the patient to die of whatever complication they have

a history of, regardless of treatment. Patients beginning with no history of renal

disease or CVD are relatively unlikely to die of CVD or renal disease complications,

and more likely to die of competing risk causes.
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Figure 3.19: Top Left: Death Mode for those Starting Healthy. Top Right : Death Mode for those
Starting with an MI. Bottom Left: Death Mode for those Starting with a CVA. Bottom Right :
Death Mode for those Starting with Renal Disease.

3.4 Conclusion

The paper has demonstrated the usefulness of exploring the data from simulation

studies more fully, instead of just relying on simple CEA. We have used hypothet-

ical, illustrative examples in our demonstration, which are by necessity too simple.

Nevertheless, we hope that we have been successful in showing the benefits of such

an approach.
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We have not discussed methods for examining the effects of covariates, such as

other indicators of health-status, in this paper. The effect of time-varying covariates,

in particular, can be difficult to predict. These can be handled through regression

or other types of analyses, suitably modified for the type of data.



CHAPTER IV

Quantifying Treatment Effect in Cost-Effectiveness Analysis

4.1 Introduction

There is growing emphasis in the healthcare area on containing costs while also

improving treatment effectiveness (health gained from treatment). The main goal of

cost-effectiveness analysis (CEA), which uses metrics based on costs and effectiveness

to assess and compare interventions, is to identify effective treatments while also lim-

iting healthcare expenditures. One or more new interventions are compared against

the current or baseline intervention. The term intervention is used to characterize a

variety of options: screening strategies, pharmaceutical treatments, diagnostic tools,

surgical treatments, etc., and they may be implemented via policy- or payer-level

requirements or incentives.

While there are several ways to measure effectiveness of a treatment, quality-

adjusted-life-years (QALYs) are the most common. Both costs and QALYs are usu-

ally discounted at some rate to bring the values at different times to a common

reference value. Discounting QALYs is less intuitive than discounting cost, but CEA

relies on the assumption that QALYs have a monetary value, and also that there is

a constant trade-off between costs and QALYs.

There is a huge literature on the development and use of various metrics for CEA.

83
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Most of them are based on the means of the (random) cost and effectiveness outcomes,

where the expected values are taken with respect to some population of interest. We

review the commonly used metrics in the next section. There has been some effort

to go beyond mean-based analysis in the CEA literature, although this is relatively

limited. We discuss the notions of first and second-order stochastic dominance (FSD

and SSD) of the distributions and discuss their usefulness in CEA. SD concepts are

well known in economics and finance but their use in healthcare decision making

has not received much attention (see Laska et al. (1999); Leshno and Levy (2004) for

some exceptions). Notions of almost stochastic dominance (ASD) from the literature

are also discussed. Even when a new treatment does not stochastically dominate the

current one (as will be the case in many situations), it is of interest to examine

regions of the outcomes space where the new treatment is better than the standard.

Such insights will allow the decision-maker to make more informed decisions.

The concepts of FSD and SSD are popular in economics and finance in part

due to their relationships to general classes of utility functions. We also consider

comparisons in terms of more specialized, parametric utility functions.

A second, and bigger, focus of the paper is CEA in the presence of statistical

uncertainty. In practice, the metrics used for comparison have to be estimated from

field data, inducing estimation uncertainty which has to be taken into account in the

comparisons. We review selected, important results in the CEA literature for mean-

based comparisons: using both large-sample normal approximations and resampling

methods. While these methods are applications of well known results in the statis-

tical literature, there appears to be some confusion that we review and clarify. We

also propose the use of rank-based methods and discuss analysis of censored and

paired comparison data. The new contributions to the CEA literature include SD
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comparisons in the presence of statistical uncertainty.

The rest of the paper is organized as follows. In Section 4.2, we describe the

common mean-based metrics for CEA. Section 4.3 reviews methods for comparisons

based on these metrics in the presence of statistical uncertainty and proposes the

use of other methods from the statistics literature to CEA; these include use of

rank-based methods and analysis of censored data. In Section 4.4 we expand the

comparisons to include utility functions and examining the entire distributions. The

role of utility functions is discussed in Section 4.4.1 and the application of first- and

second-order stochastic dominance in CEA is the subject of Section 4.4.2. This is

followed by the consideration of stochastic dominance comparisons in the presence

of uncertainty. Throughout the paper, we demonstrate concepts using illustrative

examples.

4.2 Mean-Based Metrics for CEA Analysis

Suppose we are comparing a new intervention (treatment 1) against a current or

baseline intervention (treatment 0). Let Cj and Ej, j = 0, 1 be the (random) cost and

effectiveness outcomes over some appropriate lifetime of a subject. Further, there is

some underlying population of subjects that is of interest (such as all patients eligible

for Medicare, patients who are at risk of a disease, etc.). These specifics will depend

on the particular application, and for the purposes here, we assume that they have

already been well formulated.

Let Fj(t;C) and Fj(t;E) be the cumulative distribution functions (CDFs) of Cj

and Ej respectively, for j = 0, 1. Denote by µj(C) and µj(E) their expected values,

i.e., mean cost and mean effectiveness measures. Define ∆(C) = µ1(C)− µ0(C) and

∆(E) = µ1(E)−µ0(E) be the differences in costs and effectiveness respectively. Most
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Figure 4.1: Cost-Effectiveness Plane.

of the metrics in the CEA literature are based on these means – more specifically on

the differences ∆(C) and ∆(E).

Direct two-dimensional analyses have been proposed in the literature (O’Brien

et al., 1994). Here, ∆C and ∆E are plotted on the x- and y-axes separately (see

Figure (4.1)). If the values fall in the lower right quadrant, the new treatment is more

effective and has lower cost than the baseline treatment (termed “dominance” in the

CEA literature). If they fall in the upper left quadrant, the baseline treatment has

higher effectiveness and lower cost. There is a trade-off between cost and effectiveness

if the values fall in the upper right or lower left quadrants. In those quadrants, a

intervention is considered cost-effective if it lies below the line through the origin

with slope λ, the value of the decision-makers willingness-to-pay.

There are several metrics in the literature for combining the two-dimensional

information on costs and effectiveness into a single metric. Perhaps the most common

one is the incremental cost-effectiveness ratio (ICER) given by

µICER =
µ1(C)− µ0(C)

µ1(E)− µ0(E)
=

∆(C)

∆(E)
.
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µICER is compared against a value λ, the amount of money that society is willing to

pay for a single unit of effectiveness. We can think of λ as the factor used to convert

effectiveness into the same scale as cost. If µICER is less than λ (and ∆(E) > 0), then

the new treatment is deemed cost-effective. If not, then the current treatment is

more cost-effective. The willingness-to-pay value is represented in Figure (4.1) with

a dashed line. See O’Brien et al. (1994) for more details.

An assessment of the two treatments in terms of µICER can be visualized in the

two-dimensional plot in Figure (4.1) as follows. Consider the line with slope λ in the

figure. A new intervention is considered cost-effective compared to the baseline, in

terms of ICER, if the point (∆(E), ∆(C)) falls to the right of this line.

Any one-dimensional summary, such as the ICER, will naturally result in a loss of

information. For example, a negative ICER may be caused by the numerator or the

denominator being negative, and the interpretations are quite different – the new

intervention results in higher costs and is less effective or lower costs and greater

effectiveness (Stinnett and Mullahy, 1998). The ICER is known to have additional

disadvantages. If the difference in effectiveness ∆(E) is close to zero, µICER can

be very large. These problems are exacerbated when the ICER metric is estimated

from sample data. It can have huge variability if the true value ∆(E) is close to zero.

Moreover, the signs of the estimates can get switched. Some authors have proposed

a two-phase approach – first determining if ∆(E) is positive (treatment 1 is better

in terms of effectiveness) and then seeing if the ICER metric is positive and what

its value is. This is of course equivalent to a two-dimensional analysis and does not

really mitigate the problems.

Stinnett and Mullahy (1998) proposed two (equivalent) alternatives called Net

Health Benefit (NHB) and Net Monetary Benefit (NMB). To define these, define a
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random variable called monetary benefit (MB) of treatment j as

(4.1) MBj = λEj − Cj, j = 0, 1,

where, as before, λ is used to convert effectiveness into its monetary equivalent.

Then, NMB is defined as

(4.2)

µNMB(λ) = E(MB1−MB0) = λ[µ1(E)−µ0(E)]− [µ1(C)−µ0(C)] = λ∆(E)−∆(C).

If the monetary equivalent of the effectiveness is greater than the cost of the treat-

ment, NMB will be positive and the new treatment is preferred. Otherwise, the

current treatment is preferred. Similarly, NHB is defined as

(4.3) µNHB(λ) = ∆(E)−∆(C)/λ.

Since NMB and NHB are equivalent, we will focus on NMB only in the rest of this

paper. Note the one-to-one relationship: µICER = λ if and only if µNMB(λ) = 0. We

will return to this connection later in the paper.

We note for use later in the paper that NMB is linear in all of its terms, and can

be rewritten as

µNMB(λ) = (λµ1(E)− µ1C)− (λµ0(E)− µ0C)

= µ1(MB)− µ0(MB),

(4.4)

where µ1(MB) = λµ1(E) − µ1C, and as such is the mean monetary benefit of

treatment 1 (i.e., the mean weighted combination of costs and effectiveness resulting

from treatment 1). µ0(MB) has an analogous definition, and is the mean monetary

benefit of treatment 0. If µ1(MB) > µ0(MB), then µNMB > 0, and this relationship

allows us to determine the significance of µNMB by comparing the means of the two

samples.
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Since NMB is also a one-dimensional reduction, it loses important information.

For example, if it is positive, all we know it that λ∆(E) > ∆(C); similarly if it is

negative λ∆(E) < ∆(C).

Another alternative, proposed by Laska et al. (1997) is the difference in cost-

effectiveness ratios (DCER):

(4.5) µDCER =
µ1(C)

µ1(E)
− µ0(C)

µ0(E)
.

Note that this metric is not a function of just the differences ∆(E) and ∆(C), so

it does not suffer from problems of ∆(E) being close to zero, like the ICER. How-

ever, this metric has been criticized by Briggs et al. (2007) who note that economic

decisions should be made based on the marginal difference between an option and

the next-best comparator, which is accomplished using µICER. Therefore, we will not

consider it further in this paper.

We make some final comments about the mean-based metrics before moving to

estimation uncertainty. Note that, if the underlying distributions are symmetric, the

mean coincides with the median, so these metrics can also be viewed as comparisons

of differences in medians, There are other cases also where the differences in the

means coincide with the differences in medians. Suppose F1(t;C) = F0(t−ηC;C) and

F1(t;E) = F0(t− ηE;E), i.e., a location (or shift) model holds. Then, the differences

in means, medians and other location parameters coincide with the differences in the

location parameters ηC and ηE. One consequence is that we can use other estimators

besides the sample means to estimate the differences. This will be taken up later in

the paper.

In practice, however, the treatment difference will be complex, affecting the dis-

persion and other aspects of the distribution. The focus on means for CEA inference

comes from an economic perspective (Briggs and Gray, 1998; Thompson and Bar-
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Figure 4.2: Monetary Benefit Distributions.

ber, 2000; O’Hagan and Stevens, 2002). This certainly makes sense for cost as the

decision-maker would be very interested in the differences in total (expected) costs

of the two treatments. It is less compelling for effectiveness and MB, where there

are important ethical considerations. If the distribution of effectiveness or MB out-

comes is highly skewed, the median is a more appropriate singe-number summary

than the mean. For example, consider the two distributions (F1 corresponding to

treatment 1 and F0 corresponding to baseline) in Figure (4.2). The expected value

of the new treatment is 39, 400 and the standard is 25, 000, so the new treatment

is better in terms of mean. But a comparison of the two CDFs in the figure shows

that the standard distribution is better than the new treatment even up to the 75-th

percentile.

We discuss some alternatives to mean-based comparisons later in the paper. These
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include median of the differences in treatments and comparisons in terms of utility

functions and stochastic dominance.

4.3 Incorporating Statistical Uncertainty with Mean-Based Metrics

As noted earlier, the actual mean values required for CEA analysis are not known

in practice. Rather, they are estimated from data, typically from clinical trials (see,

for example Meenan et al. (1998), van Hout et al. (1994), and Kinlay et al. (1996)).

The estimation of the parameters induces uncertainty which can be substantial when

the sample sizes are small to moderate, so this must be incorporated in the compar-

isons. This topic has been considered by many authors in the CEA literature. We

provide a review and critical assessments of the key methods.

We first consider the situation where the field data are uncensored, the only case

that appears to have been considered in the CEA literature. Extensions to censored

data will be described at the end of this section.

Suppose we have data on n0 subjects for the baseline treatment and n1 subjects

for the new treatment. Typically n0 will be larger than n1, although this is not

an important issue for our purposes here. We assume the data from the different

subjects are independent and identically distributed from the corresponding cost and

effectiveness distributions. Let µ̂j(C) and µ̂j(E), j = 0, 1, be the sample averages of

the observed costs and effectiveness values. Further, let ∆̂(C) = µ̂1(C)− µ̂0(C) and

∆̂(E) = µ̂1(E)− µ̂0(E)

Then, we can define the corresponding estimated quantities as

µ̂ICER =
∆̂(C)

∆̂(E)
,

and

µ̂NMB(λ) = λ∆̂(E)− ∆̂(C).
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We also need notation for the variances and their estimators. Let Vj(C) be the

variance µ̂j(C) and Vj(E) be the variance of µ̂j(E), j = 0, 1 and the corresponding

lower cases as their estimated values. Further, let CVj be the covariance of µ̂j(C)

and µ̂j(E) and cvj be the corresponding estimated values, j = 0, 1. We define the

variances of ∆̂C and ∆̂E to be

(4.6) VC = V0(C) + V1(C)

and

(4.7) VE = V0(E) + V1(E),

with their estimated values being denoted vc and ve, respectively. Likewise, Cov(∆C,∆E)

is given by

(4.8) VC,E = CV0 + CV1,

with estimated values denoted cv0 and cv1, respectively.

The estimated values can be obtained from field data. For example, if S2
0(C) is

the sample variance of the n0 cost values in the sample for the baseline treatment,

S2
0(C)/n0 is an unbiased estimator of V0(C). We denote the estimated standard de-

viation (also called estimated standard error) of µ̂0(C) as ŜE(µ̂0(C)). The standard

errors and estimated covariances for the other quantities can be computed similarly.

There are two ways by which the estimation uncertainty can be incorporated

into the CEA analysis: hypothesis testing and confidence intervals. For example,

hypotheses of interest include the null hypothesis of: a) H0 : ∆(E) ≤ 0 against the

alternative H1 : ∆(E) > 0; b)H0 : ∆(C) ≥ 0 against the alternative H1 : ∆(C) < 0;

c)H0 : µICER ≤ λ against the alternative H1 : µICER > λ; or d) H0 : µNMB(λ) ≤ 0

against the alternative H1 : µNMB(λ) > 0. Hypotheses (a) and (b) are often tested
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can sequentially – a) and then b) – since an advantage in terms of cost would be

attractive only if the treatment is more effective. In all cases, the problems are

formulated so that the null hypotheses favor the standard or baseline treatment, and

sufficient evidence is needed to reject it in favor of the new treatment. One can also

test two-sided hypotheses which test just whether the standard and new treatments

have the same effect, although this is not as meaningful in the CEA context.

In practice, hypothesis testing is less useful than estimating the difference in

the treatment effects and getting confidence intervals around the point estimates.

A confidence interval is more useful because it gives a set of plausible values for

the difference in treatment effects. The interval can also be used to test the null

hypothesis by determining if the hypothesized null value falls inside the confidence

interval or not. One (minor) disadvantage is that one has to specify a confidence

level a priori before the interval is computed, so different confidence levels may lead

to different conclusions about the hypotheses. On the other hand, one can compute

the p-values once for all for the hypothesis tests, and they provide an indication of

the evidence for or against the null hypotheses. We will illustrate the issues later in

the paper.

There are many papers in the CEA literature that have discussed the problem of

statistical uncertainty for mean-based comparisons. These papers discuss examples

and provide summary statistics on v0(E), v0(C), v1(E), v1(C), cv0, cv1, which are

needed for the analysis (see, for example, Willan (2001), Laska et al. (1997), van Hout

et al. (1994), and Chaudhary and Stearns (1996)). However, some of the methods

discussed in this paper, including resampling methods and stochastic dominance

comparisons, require the entire sample data, not just the summary statistics. Such

data are difficult to find in the literature. Thus, we will use artificial data, given in
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Appendix 4.6.1, to illustrate the methods and compare them.

4.3.1 Use of Large Sample Approximations for One-Dimensional CEA

Our goal here is to review the main techniques and also clarify some confusion

that seems to be present in a few CEA papers. The methods in this section depend

on a straightforward application of the central limit theorem, i.e., the distributions

of all the sample means are approximately normal when the sample sizes n0 and n1

are sufficiently large.

NMB

Since µ̂NMB(λ) is a linear combination of the sample means, it also has a normal

distribution in large samples. Specifically, [µ̂NMB(λ) − µNMB(λ)]/ŜE(µ̂NMB(λ)) is

distributed approximately as a standard normal random variable. The standard

error of µ̂NMB(λ) can be calculated as follows. Its variance is

V ar(µ̂NMB(λ)) = λ2V ar(∆̂(E)) + V ar(∆̂(C))− 2λCov(∆̂(E), ∆̂(C))

= λ2[V1(E) + V0(E)] + [V1(C) + V0(C)]− 2λ[CV1 + CV0].

(4.9)

The last expression follows from the independence of the data for treatments 0 and

1. By plugging in estimates on the right-hand side and taking the square root, we

get the estimated standard error as

(4.10) ŜE(µ̂NMB(λ)) =
(
λ2[v1(E) + v0(E)] + [v1(C) + v0(C)]− 2λ[cv1 + cv0]

)1/2
.

One can now construct approximate confidence intervals as well as tests of hy-

potheses relating to µNMB(λ) (see Stinnett and Mullahy (1998)). For example, to test

if µB(λ) > 0 at level α, one can use the approximate (1− α)−level lower confidence

bound (LCB) for µB(λ): [µ̂B(λ) + zαŜE(µ̂B(λ)) where zα is the α−th quantile of

the standard normal distribution. If this LCB does not include zero, then one can
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decide that µB(λ) > 0 or that the new treatment is better than the current one in

terms of NMB (at this value of λ), even after accounting for statistical uncertainty.

Otherwise, one may decide to go with the current treatment. Similar tests can be

constructed for other hypotheses of interest.

The large-sample procedures will work well when the sample sizes for the field data

are sufficiently large. The general rule of thumb in statistics is that both sample sizes

should be at least 30. Clearly, the quality of the approximation will improve as the

sample sizes get bigger. As an aside, sometimes one sees the use of a t-statistic

(Laska et al., 1999) with the value of zα replaced by a quantile from a t-distribution

with some degrees of freedom when the sample sizes are small. The theory for t-

distribution is valid when the underlying distributions of both cost and effectiveness

random variables are (close to) normal, which is not likely to be the case here. We

note that there is no justification for doing this in the present context.

For our example, with λ = 50, 000, µ̂NMB(λ) = 43, 810. A comparison based on

just the point estimate will suggest that the new treatment is cost-effective. Con-

struct a confidence interval, with ŜE(µ̂NMB(λ)) = 30, 128, we get a 90% (large-

sample) lower confidence bound for µNMB(λ) as −15240; the corresponding 95%

two-sided confidence interval is (−15240, 102861). We see that, after incorporating

the statistical uncertainty, the new treatment is not cost-effective.

ICER

We can approximate [µ̂ICER − µICER]/ŜE(µICER) by a standard normal random

variable, and, as before, use this as the basis of large-sample inference. For example,

we can decide that µICER is greater than λ0 if the lower end-point of a one-sided

lower confidence bound for µICER at some specified level, say λU is greater than or

equal to λ0.
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This large-sample approach has been discussed in the CEA literature (see, for, ex-

ample, O’Brien et al. (1994); van Hout et al. (1994); Briggs and Fenn (1998)). There

is, however, some confusion. Some authors claim that the ratio will be approximately

a ratio of Cauchy random variables in large samples and that the distribution will

not have finite moments (Wakker and Klaasen, 1995; Siegel et al., 1996; Zethraeus

et al., 2003). The point about Cauchy random variables is wrong and appears to

arise from mistakenly equating the ratio[
∆̂(C)

∆̂(E)

]
−
[

∆(C)

∆(E)

]
with

[∆̂(C)−∆(C)]

[∆̂(E)−∆(E)]
.

The latter does converge to a ratio of (correlated) normal random variables and

does not have any moments. But the former expression is the quantity of inter-

est. It can be approximated by a linear combination of random variables, each of

which converges to normal (as seen by equation (4.11)), so it has a limiting normal

distribution.

The issue of whether µ̂ICER has finite moments or not does not have any thing

to do with the large-sample approximation. It is indeed true that µ̂ICER = ∆̂(C)

∆̂(E)
may

not have a mean in finite samples. This is so when the distribution of ∆̂(E) gives

positive mass to any region that includes zero, and it can also be true in other cases.

However, as the sample size gets larger, the variance of the estimator decreases, so

both the numerator and the denominator will get closer and closer to their true

values. So, in large samples, the existence of moments is not an issue.

The simplest approach for large-sample inference is to use a direct approximation

of the distribution of µ̂ICER using a first-order Taylor series expansion. This leads to

(4.11) µ̂ICER − µICER ≈
1

∆2(E)

(
∆(E)[∆̂(C)−∆(C)]−∆(C)[∆̂(E)−∆(E)]

)
.

Since ∆̂(E) and ∆̂(C) have large-sample normal distributions, the large-sample nor-
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mality of µ̂ICER follows. The above linearization also yields the following approxi-

mation for the variance:

V ar(µ̂ICER) ≈ 1

∆4(E)

(
∆2(E) V ar(∆̂(C)) + ∆2(C)V ar(∆̂(E))

−2∆(E)Cov(∆̂(E), ∆̂(C))
)

=
1

∆4(E)

(
∆2(E) [V0(C) + V1(C)] + ∆2(C) [V0(E) + V1(E)]

−2∆(E) [CV1 + CV0]) .

(4.12)

The estimated standard error of µ̂ICER is obtained by substituting the estimates and

taking the square root.

For our illustrative example, µ̂ICER = 25407 which is less than the λ = 50000.

ŜE(µ̂ICER) = 300387, indicating huge variability in the estimate. The large-sample

two-sided 95% confidence interval is (−18249, 69064). It contains zero, suggesting

that the differences in cost or effectiveness are not very large (most likely the differ-

ence in effectiveness). The negative value is difficult to interpret on its own, since

this could be due to increased effectiveness and decreased cost or to decreased effec-

tiveness and increased cost, or to estimation uncertainty in either variable. We will

address this issue in Section 4.3.3

It is well known in the statistical literature that ratio estimators, such as µ̂ICER,

can be unstable and that very large sample sizes are needed before the normal ap-

proximation will be adequate. For this reason, alternative methods of constructing

confidence intervals and hypothesis tests have been proposed. The most common one

is Fieller’s method, which has been discussed also in the CEA literature (Chaudhary

and Stearns, 1996; Polsky et al., 1997; Briggs and Fenn, 1998). Perhaps the simplest

way to motivate this approach is as follows. It is well known in statistics and has

also been rediscovered in the CEA literature (see Zethraeus et al. (2000)).
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Recall that µICER = λ if and only if µNMB(λ) = 0. Suppose we used the large-

sample distribution of µ̂NMB(λ) to determine the set of values of λ for which we will

we accept the null hypothesis that µNMB(λ) = 0. Then, from the 1-1 relationship

between µICER = λ and µNMB(λ) = 0, this set of values of λ will yield a confidence

region for µICER. Because the distribution of µ̂NMB(λ) is more stable (it is just a linear

combination of the random variables) than that of µ̂ICER, the resulting confidence

region will also be more stable and will have better properties. The issue now is how

to construct such a confidence region, whether the region will actually be an interval

or disconnected, if it is an interval, whether it is finite. (Fieller, 1954) showed that,

under certain conditions, the interval exists and is given by

1

1− g

[
µ̂ICER −

gvC,E
v E

∓
zα/2

∆̂E

(
vC − 2µ̂ICER vC,E + µ̂2

ICERvE − g
(
vC −

v2
C,E

vE

))1/2
](4.13)

where g = z2
α/2vC/(∆̂

2(E)). For our illustrative data, Fieller’s method gives the

following 95% confidence interval: (−23883, 58059). This is shifted to the left and

shorter than the interval from the direct large-sample normal approximation, but

still includes the value of zero.

The methods discussed thus far can also be used to test various hypotheses related

to µICER or µNMB. See, for example, Gardiner et al. (2000).

4.3.2 Resampling Methods for One-Dimensional CEA

We discuss two alternatives to large-sample methods based on resampling the

data. The first is the randomization test (also called permutation test) and the

second is bootstrap. Although both involve resampling the data, their goals are

different. Randomization attempts to get the null distribution of a test statistic; here

the sampling is done without replacement. Bootstrap, on the other hand, attempts



99

to get the actual distribution of an estimator or test statistic; further sampling is

done with replacement.

Randomization tests have a long history in statistics and are based on a very

simple idea. If the new treatment and the current one are not different, then the

two sets of data should have the same distribution. Consider a generic two-sample

problem where N = n0 + n1 subjects were randomly assigned to two treatments.

Let {Y0,1, ..., Y0,n0} be the data from one treatment and {Y1,1, ..., Y1,n1} be the data

from a second treatment. Let Z be an appropriate test statistic, such as (Ȳ1 −

Ȳ1)/ŜE(Ȳ1 − Ȳ0), the standardized difference of the sample means. Let {V1, ..., VN}

be the combined data. If there is no difference among the two treatments, we can

randomly partition the V data into two groups of size n0 and n1 and compute a new

value of the test statistics, say Z∗, for the new data set. The Z∗ should have the

same distribution as Z under the null hypothesis. If we do this for all
(
N
n1

)
possible

partitions of {V1, ..., VN} into two samples of size n1 and n0, we get
(
N
n1

)
possible

values, and hence the distribution of Z. Now, if the observed value of Z for our

original data set falls in the tails of this distribution, we can interpret it as evidence

that the null hypothesis of no treatment effect is not appropriate. See Lehmann

et al. (2005) and references therein for more details. If the sample size is large, the

permutation distribution can be approximated by a normal distribution (and this

will lead to the same results as in the last section).

In the case of CEA, randomization tests can be used on the any of the statistics:

differences in sample means of costs and effectiveness, NMB, or ICER. We illustrate

it on NMB and test whether µNMB > 0 or equivalently whether µ1(MB) > µ0(MB).

Define the Y0−random variable to be MB0 from the illustrative example, and the

Y1−random variable to be MB1. In this case, n0 = n1 = 32 and N = n0 + n1 = 64.
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Since the value of all possible partitions,
(
N
n1

)
, is very large, we randomly sampled

10, 000 permutations, and calculate 10, 000 values of Z∗ statistics. The test value for

the actual sample is 1.59, which has a p-value of 0.07 based on the bootstrap sample.

Thus, the effect is marginal.

The bootstrap represents a different approach to the problem. There are many

refinements of the original bootstrap approach suggested by Efron (1979). Some of

them have also found their way into the CEA literature. See, for example, Briggs

and Fenn (1998) and O’Brien et al. (1994), with examples in Chaudhary and Stearns

(1996) and Hunink et al. (1998). The basic idea is to resample data, separately and

with replacement, from each of the two samples. Repeatedly sampling and computing

the value of the statistic gives us a distribution which can be used to approximate

the true distribution. Again, the idea can be used to approximate the distribution

of any of the statistics we have discussed thus far. There are several variations of

the bootstrap for testing hypotheses and constructing confidence intervals (see Efron

and Tibshirani (1993) and Briggs and Fenn (1998) in the CEA literature). Perhaps

the most common is the percentile method which used the 100(α/2)-percentile and

100(1 − α/2)-percentile of the bootstrap distribution as confidence limits for the

difference in treatment effect. Other common approaches include the bootstrapped

t-statistic (see Jiang and Zhou (2004) in the health economics literature) and the

bias-corrected, accelerated bootstrap (see Efron and Tibshirani (1993)).

We illustrate bootstrapping with the simple percentile method and compare it

with the results from the large-sample approximations for µICER. Using a bootstrap

procedure to create 10, 000 samples in the illustrative example of µ̂∗ICER and the

percentile method results in a 95% confidence interval for µ̂ICER of (−14702, 61726).

This interval is similar to, but narrower than, those based on the Fieller and large-
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sample normal approximations.

4.3.3 Two-dimensional CEA Based on Mean Metrics

Use of Large Sample Approximations

We can incorporate estimation uncertainty in the two-dimensional setting along

the same lines as before. For example, we can use the large-sample approximations

to get confidence intervals for ∆̂(C) and ∆̂(E) separately. Recall the definitions of

the variance of ∆̂(C) given in Equation (4.6) and for ∆̂(E) given in Equation (4.7).

We know that ∆̂(E) and ∆̂(C) are approximately (and jointly) bivariate normal

with mean ∆(E) and ∆(C) and variance covariance matrix Σ which can be estimated

by

Σ̂ =

 vE vC,E

vC,E vC

 .

A conservative, rectangular joint confidence region that does not depend on the

correlation between the two random variables can be obtained using the Bonferroni

bound (see O’Brien et al. (1994) in the context of CEA). Let the one-dimensional

confidence intervals with levels (1 − α1) for ∆̂C and (1 − α2) for ∆̂E be given by

[∆̂C ± zα1/ŜE(∆C)] and [∆̂E ± zα2/ŜE(∆E)]. Taking the intersection of these two

regions in the two-dimensional plane yields a rectangular confidence region. From the

Bonferroni bounds, the confidence level of this region is greater than (1−α1−α2). It

is common to take α1 = α2 = α/2 to get an overall (1−α)−level region. Figure (4.3)

shows the confidence box region for the illustrative example.

It is well known that this rectangular confidence region is not efficient in such

cases because: a) the Bonferroni bound used to combine the two intervals is conser-

vative; and b) an ellipsoidal confidence region that takes into account the correlation

structure is more efficient (smaller is area for a given level). The ellipsoidal region is
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Figure 4.3: Cost-effectiveness plane with 95% confidence regions: Rectangular region based on
Bonferroni bound and elliptical region.

constructed as follows (see van Hout et al. (1994) for a discussion of this in the CEA

literature). Define the vector

X = [∆̂(E)−∆(E), ∆̂(C)−∆(C)]T .

Recall that XT Σ̂−1X is approximately distributed as χ2(2), a chi-squared random

variable with two degrees of freedom. Let Kα be the (1 − α)−th upper quantile of

the χ2(2) distribution. Then, the set of {(∆(E), ∆(C) : XT Σ̂−1X ≤ Kα} yields an

approximate (1−α) joint confidence region for (∆(E), ∆(C) in the two-dimensional

plane. This region is an ellipse as shown in Figure( 4.3) for the illustrative example.

Figure (4.3) illustrates the elliptical and rectangular confidence regions for our ex-

ample CEA; one can discern that the ellipse covers a smaller area than the rectangle.

We can also see that the point (0, 0) is outside the ellipse as well as the rectangular

region, so the corresponding null hypothesis will be rejected at this confidence level

using either method. Both confidence regions include the point ∆(C) = 0, suggesting

that there is no statistically significant difference in cost between the two treatments.
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Figure 4.4: Cost-effectiveness plane with 95% rectangular confidence regions: bootstrap rectangle
(dashed) with large-sample normal approximation (solid) shown for comparison
.

Resampling Methods

Resampling methods have also been used to get confidence regions in two dimen-

sions. In the CEA context, Briggs and Fenn (1998) discussed the rectangular region

using bootstrapping and Bonferroni bounds. We use our data example again to il-

lustrate this approach. The two-dimensional rectangular region, based on 10, 000

replications, using the percentile method is shown in Figure (4.4). The dotted line

is the region using the bootstrap, and the large-sample normal approximation (solid

line) is also shown for comparison. The region using the bootstrap is somewhat

larger and asymmetric (about the estimates), suggesting that the large-sample ap-

proximation is not as good, especially for the cost dimension.

One can also use the bootstrap the distribution of XT Σ̂−1X to get the critical

value Kα instead of using the χ2 approximation. The details are very similar and

are omitted.
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4.3.4 Use of Rank Statistics

The methods so far deal with mean-based metrics and the statistical uncertainty

that arises from estimating them. As noted earlier, the differences in means coincide

with differences in other location parameters in some special cases. In this section, we

propose a method for assessing the median of the difference in treatment. It is based

on ranks of the data rather than the original numerical values. When the median

of the differences coincides with the mean, this procedure can be used as a robust

alternative to the sample mean-based statistical procedures. The method can be

more efficient than sample mean-based methods when the underlying distributions

have heavier tails than normal, such as the logistic and double exponential.

There is a huge literature on rank-based methods (see, for example, Lehmann

and D’Abrera (1975)). We focus here on just the Wilcoxon test (sometimes called

the Mann-Whitney test), which has been widely used. There has been discussion of

Wilcoxon rank-sum test in the CEA literature. There is a discussion of sample sizes

needed to achieve statistical power for a Wilcoxon test for ICER in Laska et al. (1999).

Mark et al. (1995) use the Wilcoxon rank-sum test to identify differences in resource

consumption between treated and untreated groups, and uses those differences to

estimate cost differences; Mehta et al. (1997) also used the Wilcoxon rank-sum test

to identify significant differences in cost categories, and actually forms CE-ratios

using medians instead of means.

The Wilcoxon test procedure works as follows. Let {Y1,i, i = 1, . . . , n1} be the

data for the n1 patients assigned to Treatment 1 and {Y0,j, j = 1, . . . , n0} be the data

for the n0 patients assigned to Treatment 0. Let N = n1 +n0 and {Zk, k = 1, . . . , N}

be the combined Y0 and Y1 data. Rank the Zk’s and let S1 < ... < Sn1 be the ranks of

the Y1’s among the Zk’s. (We assume there are no ties. The case with ties can be also
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handled and we refer readers to Lehmann and D’Abrera (1975)). Let W =
∑n1

i=1 Si.

If there was no difference between the new and old treatments (null hypothesis), Ws

is symmetric with expected value n1(N + 1)/2 and variance n0n1(N + 1)/12. If the

new treatment is better, then Ws will tend to be larger. We need to know the null

distribution of Ws to develop formal tests.

We can use a randomization framework (same as the one used earlier) to get the

null distribution as follows. If there is no difference among the two treatments, all

the Zk values come from a homogeneous group. So we can randomly take a sample

of n1 values from the Zk’s, assign them to treatment 1 (call them Y1’s) and assign the

remainder to treatment 0 (call them Y0’s). Doing this will result in a value of W ∗
s .

There are
(
N
n1

)
possible ways we can do this. All of these possible values provide the

null distribution of Ws. To test the null hypothesis at level α, take the (1 − α)−th

quantile of the null distribution and reject the null hypothesis if the observed value of

the data is greater than this quantile. (see Lehmann et al. (2005) for more details).

If n0 and n1 are both moderate (say bigger than 30), then the distribution of Ws

can be approximated by a normal distribution with mean n1(N + 1)/2 and variance

n0n1(N + 1)/12. This can be used to get large-sample test procedures. It turns

out that the Wilcoxon test is consistent for testing the general hypothesis F1 = F0

against F1 ≤ F0 (treatment 1 is more effective than treatment 0).

We illustrate the results on the difference in monetary benefits using our data,

so the two distributions of interest are MB0 and MB1. The value of the Wilcoxon

statistics is W = 1370. Using 10, 000 random samples from the full set of possible

permutations, the randomization analysis yields a lower 5% critical values as 913,

indicating a difference in the two distributions. The use of the large-sample normal

approximation, instead of the permutation distribution, gives a critical value of 917,
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very close to the randomization result.

A more interesting problem is getting confidence interval for the difference in the

treatment effects. Consider the n0n1 differences Y1,i − Y0,j. Let D(1) < ... < D(n0n1)

be the ordered values of these differences. Then, the estimate of the median of the

differences Y1,i − Y0,j is estimated (naturally) by the median of the corresponding

sample values, i.e., median of the D(k)’s. This is referred to as the Hodges-Lehmann

estimator in the statistical literature (Lehmann and D’Abrera, 1975). Note that

when the medians coincide with the mean, this estimator provides an alternative

way to estimate the differences in the means. It tends to be robust to outliers in

the data. It can also be more efficient (in a statistical sense) when the underlying

distribution has heavier tails than a normal distribution, such as logistic or double

exponential. Note also that the ranks are invariant to monotone transformations of

the data, provided the same transformation is applied to data from both treatments.

Exact confidence intervals for the Hodges-Lehmann estimator can be based on the

Wilcoxon rank-sum test. The critical values Cα/2 form a two-sided confidence interval

when n0 and n1 are small have been tabulated in the literature. With sufficiently

large samples, one can use large-sample approximation (Lehmann and D’Abrera,

1975) given by

(4.14) Cα/2 ≈ n0n1/2− Zα/2 (n0n1(N + 1)/12)1/2

The Cα/2 should be taken to be the nearest integer. The confidence interval for the

median difference is then given by (D(Cα/2), D(n1n1+1−Cα/2)).

For our data, the Hodges-Lehmann estimator is 54201, indicating an overall cost-

effective treatment effect. The confidence interval using the large-sample approxi-

mation for the distribution is (25250, 81985). It is noteworthy that this confidence

interval is entirely positive, in contrast to the case for the means. This suggests that
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the distributions are not symmetric, so the two quantities are estimating different

treatment effects.

The performance of various rank methods have been compared in the statisti-

cal literature (Lehmann and D’Abrera, 1975). In particular, it is known that the

Wilcoxon procedure does well when the underlying distributions are logistic. Alter-

natives that work well with other distributions, such as the normal scores, have also

been proposed.

4.3.5 Paired Data Analysis

Most of the CEA literature deals with the case where the field data for the stan-

dard and new treatment are independent. This is the most common situation –

there is likely to be considerable field data on the standard and small studies are

then conducted to collect data on the new treatment. It is, however, possible that

the two treatments are compared in the same study and that the two treatments are

assigned to subjects in such a way that the responses are paired or correlated. In this

case, one would just take the difference in the responses (cost and effectiveness) and

analyze the differences as one-sample iid data. Both large-sample approximations

and resampling methods can be used with the one-sample data.

4.3.6 Censored Data

Incorporating uncertainty when the data are censored does not appear to have

been discussed in the CEA literature, so we provide an overview here. Perhaps the

most common type of censoring in clinical trials is fixed time censoring: the study is

stopped at some fixed (prespecified) time and some subjects are alive at the end of

the study. There can be other, more complex forms of censoring, including multiple

right censoring where different subjects are right censored at different times.
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Consider first the case of fixed time censoring. Specifically, suppose data from

both samples are right censored at the same time t0. Then, we cannot estimate

the means of the underlying distributions from the data since we do not have any

information on when the subjects that were alive at time t0 would fail. So, one

cannot use the mean-based metrics. However, we can base the comparisons on the

conditional means – E[Y |Y ≤ t0] – since this quantity can be estimated from the

data. If the data from the two samples are right censored at different times, we have

to take the conditional distribution at the minimum of the two censoring times. One

could estimate median-based metrics from the sample data if the number of censored

observations is smaller than 1/2 for both samples.

The problem is more complex if there is multiple right censoring. However, sev-

eral of the rank-based methods for comparing two populations have been extended

to censored data in the statistical literature. These include generalizations of the

Wilcoxon test and the log-rank test (see Lawless (2003)), with the latter being the

most common.

4.4 Beyond Mean-Based CEA Analysis

We have focused thus far on CEA based on single-number metrics: means, median,

and expected utilities. The remainder of the paper focuses on CEA based on the full

distribution of cost and effectiveness outcomes.

To motivate this analysis, consider Figure (4.5) which shows a hypothetical ex-

ample, the cumulative distribution functions of (say) effectiveness outcomes for a

standard and a new treatment, measured in life-years. In this case, the treatment

improves the mean length of life from about 4.4 years to 5 years, so mean-centric

decision-making would recommend adopting the treatment. However, the median
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Figure 4.5: Hypothetical Effectiveness Distribution.

length of life under treatment actually decreases from 4.2 years to 3.5 years. We can

see from the figure that this occurs due to a long upper tail under the new treatment,

which raises the mean for some of the treated population, but has no benefit for most

of the population. In fact, the treatment lowers effectiveness for about 60% of the

population. The nature of the treatment effects are complex and cannot be charac-

terized by just the differences in means, and different metrics can lead to different

decisions. While a health analyst or decision-maker may still prefer to implement the

treatment, an analysis of the two distributions will provide much more information

about the trade-offs being made and the risks.

4.4.1 Utility Functions

Utility functions provide a natural way to map the cost and effectiveness outcomes

into a decision-theoretic framework in the sense of von Neumann and Morgenstern

(Von Neumann and Morgenstern, 1947). There is a huge literature on this topic,

and we touch on it very briefly.

Using just the means is equivalent to assuming a utility function that is linear
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in the outcomes – in other words, being risk neutral (Keeney and Raiffa, 1976).

This is inadequate in many situations. For example, a person is not likely to be

indifferent between a placebo that has no effect on his/her life expectancy versus a

new treatment that offers a 50% chance of doubling life expectancy but carries a

50% risk of instant death, but these two options offer the same expected utility to a

risk-neutral decision maker. In fact, it is known that patients will exhibit different

behaviors – risk-seeking, risk-averse, and risk-neutral, depending on the situation at

hand (Pliskin et al., 1980). It is also generally recognized that policymakers tend to

be risk-averse – concerned about new interventions being extremely harmful with a

small probability, or concerned about budgetary problems (Koerkamp et al., 2007).

In the rest of this section, we consider comparisons based on expected utilities. If

the utility functions are fully specified, then the problem of incorporating statistical

uncertainty of estimated parameters using utility functions is the same as with the

estimated mean. Consider a particular outcome, say, cost. We can treat the utility

outcomes as the new random variables of interest, estimate their means using the

sample data and incorporate statistical uncertainty using one of the methods that

have already been described.

But the utility functions are rarely known completely. Here we restrict attention

to functions of the form U(x) = (x+ b)c, with 0 < c < 1, a class of risk-averse utility

functions (Keeney and Raiffa, 1976), and examine the sensitivity of the decisions

to the values of b and c. Suppose that the distributions for the MB outcome are,

again, the same ones in Figure (4.2): F0 = LN(10, 0.5) and F1 = LN(9, 2). Suppose

b = 100 and c = 0.3, and so u(x) = (x + 100)0.3. For this case, treatment 1

has an expected utility of 17.9 compared to 20.3 for the standard, so the standard is

preferred. (Recall that treatment 1 had a higher expectation than the standard, even
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though the standard was better than the new treatment up to the 75th percentile.)

However, the parameters b and c are usually unknown, so let us examine how the

comparisons change as the values of b and c change. First, consider a sensitivity

analysis. The left panel of Figure (4.6) shows how the difference in expected utilities

change as b varies with c fixed (at several different values).

Figure 4.6: An examination of the differences in utilities for the utility function: u(x) = (x + b)c.
Left: b varies in the x-axis with c fixed at several values. Right: c varies in the x-axis with b fixed
at several values.

Note that the difference in expected utility is negative over the entire range of b

when c = 0.1 or c = 0.2, indicating that the standard treatment 0 is better than the

new treatment 1. When c = 0.3, the difference in negative for b ∈ (0, 16000) and

positive thereafter. As the value of c gets larger, treatment 1 has higher expected

utility for even relatively small values of b. The right panel shows a different view,

with c changing but the value of b fixed at different levels. For smaller values of b,

treatment 0 dominates treatment 1 for all values of c up to about 0.5. As b gets

larger, the situation reverses, but the behavior in the right panel is more stable than

that in the left panel.

We can represent this information simultaneously in the surface plot in Fig-
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Figure 4.7: Three-dimensional surface plot of the difference in expected utilities as both b and c

ure (4.7). Here, the x- and y-axes show different values of b and c while the z−axis

shows the difference in expected utilities. Figure (4.8) provides yet another view of

the comparison of the two treatments in terms of expected utilities. The plot divides

the two-dimensional b and c space into two regions: one where the new treatment 1

is preferred and the other where the standard treatment 0 is better. Such analyses

are useful in examining the sensitivity of the parameters in a class of utility functions

and provides the decision-maker with additional information.

Many other assumptions about utility are implicit in standard cost-effectiveness

analysis, including the idea of a constant willingness-to-pay that relates cost and

QALYs; the particular values chosen for quality weights; and social welfare consider-

ations. Modeling full multiattribute utility functions and also assessing the requisite

preference data from decision makers are important tasks which are separate from
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Figure 4.8: Preference Regions Relative to Utility Function Parameters.

the estimation of treatment effects. However, it is useful to consider some of the

complexities of utility modeling in order to generate the appropriate results from

statistical estimation (most importantly full distributions instead of mean values

only).

4.4.2 Stochastic Dominance

When there is consensus about the utility functions or if the decision is robust

over a range of functions, it is indeed reasonable to base decisions on expected utility

criteria. More often than not, however, this is not the case. Utility functions of

various individuals and groups (patients, decision makers) can differ greatly within

and across groups.

The finance literature uses mean-variance ordering (Markowitz, 1952) to com-

pare distributions. The mean-variance rule is part of portfolio theory which seeks to

maximize a portfolio return for a given amount of risk, or minimize risk for a given

amount of return. The rule is used to construct an efficient portfolio of investment

opportunities for a risk-averse investor; an investment opportunity is considered in-
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efficient (and discarded) if it has a lower mean and higher variance than another

(Bawa, 1975). We can also consider the use of a similar rule in CEA to determine

an efficient set of interventions. An efficient group of interventions would have rela-

tively high expected NMB and relatively low variance. However, the mean-variance

rule depends on the decision-maker having a quadratic utility function (Tobin, 1958;

Borch, 1969; Feldstein, 1969).

From a health policy perspective, if a treatment increases the variance of out-

comes, it is then important to try and identify the subset of the population for which

the treatment helps and the subset for which it is harmful. Of course, if a policy-

maker is truly indifferent to how medical effects are distributed in the population, the

mean-maximizing policy may be fine. In practice, however, implementing policies

that overtly help one group of patients while ignoring others would be problematic

and possibly unethical.

It is important to recognize at least two different sources of variability – one

due to identifiable differences in patient characteristics and a second due to intrinsic

variation in a homogeneous group of people. In the case of variability due to patient

medical conditions, targeted treatments may be desirable: for instance, treatments

that are most effective at preventing heart attacks in high-risk populations, such as

those with high blood pressure. Treatments that are more effective or cost-effective

along racial or gender lines, however, may be more controversial. Of course, this

separation by patient characteristics can often be murky. Further, even if there are

obvious patient characteristics that cause the difference, the medical intervention

may not be tailored by patient groups for various reasons. Nevertheless, during the

analysis stage, it is important to separate patients into homogeneous populations

and analyze the populations separately. The results can then be combined at the
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decision-making stage.

All of this discussion is intended to make a case for examining the entire distribu-

tion of outcomes for the standard and new treatments and determine areas where one

is better than the other. There are graphical techniques as well as formal methods

for comparing distributions. We focus on formal methods based on the notions of

first- and second-order stochastic dominance (SD) here. The SD concepts have been

discussed extensively in the finance and economics literature.

SD is a useful, and thus far largely overlooked, tool in CEA. There is brief men-

tion applied to Net Health Benefits (equivalent to NMB) in Stinnett and Mullahy

(1998), but with no consideration of the separate outputs of costs and effectiveness

or uncertainty. It is also mentioned in Laska et al. (1999) but the focus of the paper

is on the estimation of sample size to achieve power in statistical tests in CEA, and

there is no analysis of the broader implications of SD on decision-making. There

are very few papers in the more general literature about stochastic dominance for

medical decisions of which we are aware. The first, Leshno and Levy (2004) deal with

the advantages of SD for deciding optimality among a finite set of options. It did

not deal with the question of estimation uncertainty. Finally, Sendi et al. (2003) use

SD to evaluate a portfolio of health interventions. Their decision-making framework

and decision rules are a bit different from those in CEA. Sendi et al. (2003) assume a

fixed budget and that health programs are not divisible; in CEA, the existence of any

hard upper-bound on budget is usually ignored in favor of discussion about whether

an intervention is a good investment, and interventions are implicitly considered to

be divisible, so that they may be implemented in whole or in part from most to least

cost-effective until the budget is exhausted. As a result of the budget constraint,

Sendi et al. (2003) establish that a portfolio is better than a comparison portfolio
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Figure 4.9: Demonstration of Stochastically Smaller Distributions. Left: F1 � F0. Right: No FSD.

through dominance in effectiveness while maintaining a pre-specified probability of

remaining within the budget. The appropriate decision when a first-order stochastic

dominant portfolio does not exist is not discussed.

In the remainder of this section, we review the use of SD methods for CEA (assum-

ing that the distributions are known) and then propose methods for incorporating

estimation uncertainty. The latter topic has not been studied in the CEA literature.

First-Order Stochastic Dominance: FSD

Consider a general set up with two CDFs: F1(x) and F0(x) and define the differ-

ence D(x) = F1(x)−F0(x). We say that F1 is stochastically larger (in the first-order)

than F0 (written as F1 �1 F0) if F1(x) ≤ F0(x) or, equivalently, D(x) ≤ 0 for all

x with strict inequality for some x. A similar statement can be made about F1

dominating F0 in first order. In other words, the CDF of the stochastically smaller

distribution will always be larger than that of the dominating distribution. Recall

that F1(x) being smaller than F0(x) means that the outcomes tend to be larger un-

der F1 than under F0. Perhaps a more intuitive way to describe this is in terms
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survival functions F̄j(x) = 1 − Fj(x), j = 0, 1. So F1 FSD F0 (denoted F1 �1 F0)

if F̄1(x) ≥ F̄0(x) for all x with strict inequality for some x. Clearly, FSD implies

E(X1) > E(X0).

The left panel of Figure (4.9) demonstrates a situation where F1 �1 F0, and the

right panel demonstrates a situation where neither distribution dominates the other.

In Figure (4.9), regions under the curves in each panel are highlighted; these regions

will be discussed in the context of second-order stochastic dominance.

FSD is also known to have a characterization in terms of utility functions. If

F1 �1 F0, then E1(U(X)) > E0(U(X)) for all increasing utility functions. (For

comparing costs where smaller is better, we can take negative cost values). For this

reason, an FSD comparison is the first one to make for a pair of treatments. When

such dominance does not exist, then we can compare them in terms of more restricted

dominance criteria or examine partial dominance (to be discussed later).

Figure 4.10: Cost and Effectiveness Cumulative Distribution Functions of Treatments with FSD in
Monetary Benefit.
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Figure 4.11: Monetary Benefits Cumulative Distribution Functions of Treatments with FSD.

A two-dimensional analysis for FSD involves comparing separately the distribu-

tions of costs and effectiveness for the two treatments. A medical decision that is

FSD in both cost and effectiveness is unequivocally better and there is no tradeoff

between QALYs and cost. However, most new medical treatments typically increase

effectiveness and cost. The basis of CEA is that treatments with increased cost are

worthwhile as long as there is adequate increases in QALYs.

To understand the trade-off, we can convert effectiveness into monetary units as

in the case of NMB. Recall monetary benefit (MB) of treatment j, defined earlier

as MBj = λEj − Cj, j = 0, 1. Letting F1 and F0 be the distributions of MB1 and

MB0 respectively, we can now assess SD in terms of MB. MB can be dominant even

if neither costs nor QALYs of that treatment are dominant. Figures (4.10) and

(4.11)show an example. The CDFs of cost and QALYs cross, so there is clearly no

FSD in these. However, Figure (4.11) shows that there is FSD of treatment 1 over

treatment 0 in terms of MB.

If there are multiple treatments, pairs of treatments can be evaluated against
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each other, or even portfolios of treatments. In this case, rules based on stochastic

dominance are used to discard non-optimal choices. In general, the efficient set of

medical choices are those that are not dominated by any other option. If the number

of options is large, it may be computationally demanding to do pairwise compar-

isons for stochastic dominance between all distributions. There exist algorithms for

reducing the number of pairwise comparisons and finding the efficient set of options,

also referred to as the admissible set (Porter et al., 1973; Bawa, 1975; Bawa et al.,

1979). Regardless of the method used to determine the efficient set of options, the

result may be a large efficient set of options, as the framework may be unable to rank

two risk options (Levy and Hanoch, 1970). We will primarily focus on the pairwise

comparison of two interventions in this paper, but simple extensions are available to

the construction of an efficient set of interventions.

Second-Order Stochastic Dominance

FSD is a fairly stringent condition, and it may not hold in many situations. So

researchers have developed weaker SD criteria called second- and third- order SD

that also have interpretations in terms of utility functions. We will focus just on

second order SD here.

Define Gi(x) =
∫ x
−∞ Fi(y)dy for i = 0, 1. That is, Gi(x) is the area under the

curve of Fi up to the point x. Define

(4.15) L(x) = G1(x)−G0(x) =

∫ x

−∞
D(y)dy =

∫ x

−∞
(F1(y)− F0(y))dy.

We say that F1 dominates F0 in the second order sense (F1 �2 F0) if L(x) ≤ 0

for all x with strict inequality for some x. Figure (4.12) show the areas under the

CDF curves for F0(x) and F1(x) for two different scenarios. The value of the line

representing F0 in the left panel in Figure (4.12) at NMB= 30000 corresponds to the
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Figure 4.12: Area Under the Curves. Left and Right: F1 �2 F0

area shaded under the curve of F0 in the left panel in Figure (4.9). In the left panel,

F1 �1 F0, so F1 �2 F0 by definition. In the right panel F1 �2 F0, but Figure (4.9)

shows that there is no FSD.

It is known that if F1 �2 F0, then E1(U(X)) > E0(U(X)) for decision makers

who are risk-averse (which is to say they have increasing and concave utility func-

tions). More specifically, for any utility function that is differentiable, increasing

and concave, E1(U(X)) > E0(U(X)). Thus, the SSD criterion orders distributions

within a more restricted class of utility functions than FSD. It can be shown that

L(∞) = µ1 − µ0, so SSD also implies µ1 > µ0.

We can again apply the SSD comparisons separately to the distributions of cost

and effectiveness or do a reduced comparison in terms of MB1 and MB0 as discussed

in the case of FSD. A reduced comparison would suffice for a risk-averse decision

maker who cares only about cost-effectiveness, whereas the separate comparisons

are more informative for decision-makers with specific effectiveness goals or cost

constraints.
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Almost Stochastic Dominance

It is quite likely that there is no strict dominance of the one treatment over

another, in terms of cost and effectiveness, or even the combined measure of MB.

In this case, there may be ethical issues concerned with the choice of treatment due

to its differential effect in different regions and whether it helps some segment of

the population and harms others. The question of costs and ethics in healthcare is

more complicated due to the many different methods of insurance and payment in

the United States healthcare system.

Suppose there is no FSD and let

(4.16) S1(F1, F0) = {x ∈ (0,∞) : F0(x) < F1(x)},

the region where F0(x) < F1(x). Recall that no FSD implies that the CDFs cross at

one or more points or that D(x) = 0 for some values of x ∈ (∞,∞). If the crossings

occur at only one point, say x0, then the region will be an interval of the form

(−∞, x0) or (x0,∞); otherwise it will be a union of multiple intervals. Note that the

probability of the area S1 is the same under F0 and F1 since they cross at the end-

points of the intervals that form the regions S1. For example, consider Figure (4.13).

D(x) = 0 at x = a1, x = a2, and x = a3, so P (a1 < X0 < a2) = F0(a2) − F0(a1),

equals P (a1 < X1 < a2) = F1(a2)− F1(a1).

In any case, S1 provides information about the segments of the population where

F0 is better than F1. Suppose F1 �1 F0 for the most part, and the probability of

the regions where F0(x) < F1(x) is small. Then, one possible notion of almost or

ε−FSD is that the total probability of the regions where FSD is violated is smaller

than some threshold ε.

One problem with this notion is the difference F0(x) − F1(x) can be big in this
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Figure 4.13: Conditional Dominance.

region even though the probability of the region is small. To get around this problem,

Leshno and Levy (2002) use an alternative notion of almost stochastic dominance

that depends on the area under the curve. Denote the integrated absolute difference

between F1 and F0 as ||F1 − F0|| =
∫∞
−∞ |F1(x) − F0(x)|dx. This quantity exists if

both F1 and F0 have finite absolute first moments. It can be viewed as one measure

of the difference between the two distributions. Then, Leshno and Levy (2002) say

that F1 almost dominates F0 in FSD (AFSD) if

(4.17)

∫
S1

[F1(x)− F0(x)]dx ≤ ε||F1 − F0||,

with ε ∈ (0, 0.5). In other words, the difference in the area under the curve where

F0(x) < F1(x) is relatively small compared to the total area. Leshno and Levy (2002)

show that, if F1 dominates F0 in terms of AFSD, then F1 is preferred over F0 for all

utility functions that are increasing but have a bounded derivative, where the bound

depends on ε. As ε → 0, this class approaches the class of all increasing utility

functions.

Leshno and Levy (2002) also define ASSD similarly. Let S2(F1, F0) = {x ∈
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Table 4.1: Almost Stochastic Dominance Example Probability Distribution.

Rate of Return: z 5% 7% 9% 12%
P (X = z) 0.1 0.0 0.0 0.9
P (Y = z) 0.0 0.4 0.6 0.0

S1(F1, F0) :
∫ x
−∞ F0(y)dy <

∫ x
−∞ F1(y)dy}, the region where the SSD dominance of

F1 over F0 fails. Then, Leshno and Levy (2002) define almost SSD as follows. F1

almost dominates F0 in SSD (ASSD) if

(4.18)

∫
S2

[F1(x)− F0(x)]dx ≤ ε||F1 − F0||

and µ1 ≥ µ0. As before, ε ∈ (0, 0.5). Leshno and Levy (2002) show that, if F1

dominates F0 in terms of ASSD, then F1 is preferred over F0 for all utility functions

that are increasing and concave with bounded second derivative, where the bound

depends on ε. Again, as ε → 0, this class approaches the class of all increasing and

concave utility functions.

As shown in Leshno and Levy (2002), there are many situations where one would

prefer F1 over F2 in terms of AFSD or ASSD (and for most reasonable utility func-

tions in their respective classes) but there is no (absolute) FSD or SSD. One example

in Leshno and Levy (2002) is a comparison of the utility of stocks (X) and bonds

(Y ). The distribution of the one-year rate of return is given in Table 4.1. Consider

X(n) to be the distribution of X after n years, and Y (n) to be the distribution of Y

after n years. The CDF of X(n) starts to the left of the CDF of Y (n), so FSD of X(n)

over Y (n) does not formally exist, no matter how large n is. However, Leshno and

Levy (2002) show that as n increases the CDF of X shifts right faster than the CDF

of Y , and that nearly all utility functions will prefer X(n) to Y (n) for large n. The

concepts of AFSD and ASSD are definitely applicable to CEA.
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Assessing First-Order Stochastic Dominance with Statistical Uncertainty

As before, we use a generic two-sample set up to describe the procedures. Let

{X1, ..., Xn0} be the data from one treatment and {Y1, ..., Yn1} be the data from

a second treatment, and N = n0 + n1. Let F̂j(x) be the empirical CDF based

on the data, the well-known estimator of the unknown CDF Fj(x), j = 0, 1. Let

D̂(x) = F̂1(x)− F̂0(x). With the data being estimated, methods are needed to infer

from the sample whether FSD exists in the population.

One possibility is using methods to construct a confidence region for D(x) =

F1(x)−F0(x) and using this to assess FSD. Since D(x) is a function, the confidence

region has to be valid for all (or most) values of x, i.e., a simultaneous confidence

region. Perhaps the simplest method to construct such a confidence region is through

the use of the two-sample Kolmogorov-Smirnov (KS) statistic or its weighted ver-

sions. We will consider first the unweighted KS statistic. Let

(4.19) K = sup
−∞<x<∞

|D̂(x)−D(x)| = sup
−∞<x<∞

|(F̂1(x)− F1(x))− (F̂0(x)− F0(x))|.

It is well known that the distribution of K under the null hypothesis that F1(x) =

F0(x) (and the distribution is continuous) is distribution-free, i.e., it does not depend

on the underlying distribution. This is true even in finite samples. The null distri-

bution of K has been well studied and is available in most software packages. Let

Kα = Kα(n0, n1) be the (1 − α)−th quantile of the distribution of K with sample

sizes n0 and n1. From this and equation 4.19 above, we have

(4.20) P

(
sup

−∞<x<∞
|D̂(x)−D(x)| < Kα

)
≥ 1− α.

In other words,

(4.21) D̂(x)±Kα
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is a two-sided confidence region for D(x) for all x – i.e., it is a simultaneous confidence

region. We can now use this band to assess FSD as follows. If the upper bound of

this region is below zero for all x, we can conclude that D(x) ≤ 0 for all x even

after taking the statistical uncertainty into account. This implies that F1 �1 F0.

Conversely, if the lower bound is strictly above zero, it implies that F0 �1 F1.

The two-sided confidence region treats F1 and F0 symmetrically. In CEA, treat-

ment 1 is new and we may be interested only in assessing if F1 �1 F0 or not. In that

case, we can just construct a one-sided upper bound for the confidence region. If the

upper bound is below zero for all x, we conclude that F1 �1 F0.

One disadvantage of the K−band above is that the width of the band ±Kα is

constant for all x. This is not desirable as the variance of D̂(x) tends to zero in both

the lower and upper tails and is highest in the middle regions. To account for this,

we can use a weighted version of the K− statistic of the form

(4.22) W = sup
{x:a<x<b}

|D̂(x)−D(x)|/ŜE(D̂(x)).

Recall that

SE(D̂(x)) =
√
F1(x)(1− F1(x))/n1 + F0(x)(1− F0(x))/n0,

which can be estimated by plugging in the corresponding empirical CDF’s. The

range of the statistic W has to be restricted to {a < x < b} as the variance tends to

zero in the lower and upper tails and dividing by the standard deviation can blow

up the value of the statistic in the tails. In practice, one can take a and b to the

lower and upper percentiles of the data, corresponding to some level such as .01 or

.05. With this choice, the distribution of the statistic is also distribution-free under

the null-hypothesis. Using this test statistic, we get the following band, sometimes
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called the W-band (Doksum and Sievers, 1976):

(4.23) D̂(x)±Wα

√
F̂1(x)(1− F̂1(x))/n1 + F̂0(x)(1− F̂0(x))/n0.

Note that the width of this band decreases as one moves to the tails, and it will be

smaller in the lower and upper tails compared to the K-band.

We use a new example to demonstrate the use of these bands for FSD, and continue

this example into the discussion of SSD also. The data are given in Appendix 4.6.2;

as with the previous example, we suppose that the data has been observed at 32

points for each of the treatments. Figure (4.14) shows the empirical distribution

functions of the monetary benefit for treatments 1 and 0 in our illustrative example;

the distributions do not cross, so we cannot rule out FSD. Figure (4.15) shows the

two-sided confidence band for the monetary benefit, using both the weighted and

unweighted statistics. It shows that the K-band has constant width while the W-

band is narrower in the tails. In both cases, the upper band is not completely below

zero, so we cannot conclude that F1 �1 F0. For the true distributions, shown in

Appendix 4.6.2, we do have FSD but the statistical uncertainty from estimating the

distributions masks this. If the dominance is stronger or if the sample size is much

larger, we would have been able to determine the truth.

Assessing Second-Order Stochastic Dominance with Statistical Uncertainty

There has been less attention in the statistical literature on assessing SSD from

sample data, but some work has been done in economics (see McFadden (1989);

Barrett and Donald (2003)). Also, the problem is more complex as the corresponding

K and W statistics are no longer distribution-free; i.e., the distributions of the test

statistics depend on the underlying distribution even if F1 = F0. One would have to

compute the distribution for each case separately, but the distributions are unknown,
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Figure 4.14: Empirical Cumulative Distribution Function.

making the problem difficult analytically. However, resampling methods can be used

to solve this problems.

As in the FSD case, we use a generic two-sample set up to describe the procedures.

Let {X1, ..., Xn0} be the data from one treatment and {Y1, ..., Yn1} be the data from

a second treatment, and N = n0 + n1. Let Ĝj(x) be the empirical estimator of the

unknown Gj(x) =
∫ x
−∞(F1(y)− F0(y))dy, j = 0, 1. Let L̂(x) = Ĝ1(x)− Ĝ0(x).

We start with a discussion of methods for constructing a simultaneous confidence

region for L(x) = G1(x) − G0(x), As with the FSD case, we use weighted and

unweighted statistics. Let

(4.24) M = sup
−∞<x<∞

|L̂(x)| = sup
−∞<x<∞

|(Ĝ1(x)− Ĝ0(x))|.

As we have noted, the distribution of M depends on the common (but unknown)

distribution under the null hypothesis that F1(x) = F0(x). As discussed in Barrett

and Donald (2003), we will use bootstrap techniques. Specifically, a large number

of bootstrap replications of F̂1(x) and F̂0(x) are created. Denoting them as F̂ ∗1 (x)

and F̂ ∗0 (x), we compute Ĝ∗1(x) and Ĝ∗0(x) and M∗ = sup−∞<x<∞ |(Ĝ∗1(x) − Ĝ∗0(x))|.
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Figure 4.15: Left: D̂(x) and K− band. Right: D̂(x) and W− band.

Let M∗
α be the (1− α)−th quantile of the distribution of M∗. Using this we get the

unweighted two-sided band as

(4.25) L̂(x)±M∗
α.

We also consider an analogous weighted statistic, as in the FSD case:

(4.26) U = sup
{x:a<x<b}

|L̂(x)− L(x)|/ŜE(L̂(x)),

which leads to the weighted confidence band:

(4.27) L̂(x)± UαŜE(L̂(x)).

Again the critical value will Uα will have to be obtained via bootstrap. But there

is an additional complication here in that ŜE(L̂(x)) can be computed only after all

the bootstrap samples are available, while it is needed for each bootstrap computa-

tion. Similar problems have been handled by the double-bootstrap in the statistical

literature Efron and Tibshirani (1993). This involves running another bootstrap

within each bootstrap computation to estimate ŜE(L̂(x)) and then computing the

weighted statistic.
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The left and right panels of Figure (4.16) show the M− or U− bands. Neither one

provides support for SSD of F1 over F0. The bands are rather wide, indicating the

large variability of the estimated Ĝj’s. The main conclusion to be made here is that

establishing SSD in the presence of statistical uncertainty is difficult and requires

very large sample size.

Figure 4.16: Left: M− band for Assessing SSD. Right : U− band for Assessing SSD.

4.5 Conclusion

We have reviewed metrics for quantifying treatment effect in CEA and methods

for making comparisons in the presence of statistical uncertainty. We have tried to

make a case for going beyond mean-based analysis to examine the entire distributions

and using concepts of stochastic dominance. We also discussed comparisons based

on utility functions. Because the utility functions of decision-makers are largely

unknown, we propose sensitivity analysis about the parameters of the utility function.

The procedures we examined for determining SSD in the presence of estimation

uncertainty have very low power, and additional research on alternative methods is

needed.



130

4.6 Appendix

4.6.1 Illustrative Data

This appendix contains the data used for the examples about statistical infer-

ence (except for stochastic dominance) in this paper. Assume the true underlying

distribution of (E0, C0) ∼ LN


 0.3

7.2

 ,

 0.4, 1

1, 7.3


. Likewise, assume the true

underlying distribution of

(E1, C1) ∼ LN


 0.8

7.2

 ,

 0.25, 1

1, 7


. Only n0 = n1 = 32 samples are avail-

able from each population. The summary statistics for these samples are given in

Table 4.2.

Table 4.2: Illustrative Example Summary Statistics

Treatment µ̂(E) µ̂(C) v(E) v(C) cv
0 1.30 17,916 0.017 182,592,614 1400
1 3.09 3,180 0.124 1,301,030,431 7879

The full sample data is in Table 4.3.
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Table 4.3: Illustrative Example Data

Sample E0 C0 E1 C1

1 0.92 163 3.05 41628
2 1.03 496 0.92 10
3 1.47 24715 4.93 19870
4 1.22 8164 2.21 6387
5 1.22 197 2.76 6028
6 0.83 84 1.59 3001
7 0.89 24 1.17 108
8 0.54 25 3.17 13130
9 1.65 12264 1.17 21
10 1.76 9049 1.52 3499
11 0.85 222 0.83 666
12 1.07 1088 1.06 11
13 1.13 222 1.52 92
14 1.14 8748 7.82 344820
15 0.63 1 2.59 256
16 1.46 6774 3.75 39273
17 2.44 29236 1.57 395
18 1.06 400 1.29 38
19 1.96 1415 2.43 6013
20 1.48 7731 3.06 22258
21 0.59 96 7.32 1103670
22 1.33 1013 3.93 22566
23 1.91 535 3.20 110
24 4.37 434992 7.83 271106
25 2.04 13612 1.14 215
26 1.34 4718 5.01 29924
27 0.68 142 1.34 164
28 0.74 165 3.13 25471
29 1.45 4878 2.84 2170
30 0.83 1197 5.20 14646
31 0.75 475 4.36 13537
32 0.94 474 5.00 30678
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4.6.2 Stochastic Dominance Section Illustrative Data

This appendix contains the data used to demonstrate the use of confidence bands

for FSD and SSD. Assume the true underlying distribution of

(E0, C0) ∼ LN


 0.3

7.2

 ,

 0.25, 1

1, 7.


. Likewise, assume the true underlying

distribution of (E1, C1) ∼ LN


 0.8

7.2

 ,

 0.25, 1

1, 7


. Only n0 = n1 = 32 sam-

ples are available from each population. The true distribution functions of these

distributions are shown in Figure 4.17. It is clear from this that there is FSD at a

population level, but the work in this paper shows that the uncertainty is too high

to conclude there is FSD in the case of the 32-patient samples.

Figure 4.17: True Distribution of Stochastic Dominance Illustrative Data.

Table 4.4 contains the sample data used for the stochastic dominance examples.
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Table 4.4: SSD Illustrative Example Data

Sample E0 C0 E1 C1

1 1.01 38 1.29 498
2 1.19 8780 0.99 15
3 2.69 22391 1.55 727
4 0.67 114 2.45 3681
5 0.78 7 2.49 63999
6 3.14 20697 2.08 53816
7 0.69 53 1.56 2219
8 1.36 28034 1.56 118
9 2.27 12041 2.61 340
10 0.65 51 2.19 127
11 1.46 3280 2.39 4480
12 1.06 10 6.42 18387
13 0.63 13 3.45 12200
14 0.77 893 4.76 101872
15 0.96 272 1.52 111
16 2.88 71579 2.43 7133
17 1.32 6786 4.67 3982
18 2.11 286 1.20 57
19 0.56 26 2.88 1131
20 1.06 3009 1.05 19
21 0.79 158 1.87 139
22 0.26 1 1.02 3
23 2.68 112409 2.07 245
24 1.40 77431 2.55 317
25 1.33 5469 0.91 13
26 0.75 256 2.65 815
27 0.93 349 2.28 2604
28 0.94 191 1.49 1269
29 1.49 2730 2.21 3748
30 0.87 111 0.87 105
31 0.66 141 1.04 24
32 1.85 5711 2.10 510



CHAPTER V

Conclusion and Future Work

5.1 Summary and Contributions

Cost-effectiveness analysis will increase in importance as healthcare becomes more

expensive and resources become more constrained. CEA is interdisciplinary, draw-

ing on knowledge from medical doctors and epidemiologists, and increasingly from

statisticians and operations research professionals. This thesis contributes to the

CEA literature by developing methods of evaluation and analysis of cost-effectiveness

data. The following are key components of the contribution.

1. Expressions were developed to evaluate stationary, progressive multi-state mod-

els of disease used for CEA. With the assumption of independence between

transition and sojourn distributions, as is made in the case of Markov and

semi-Markov models common in the literature, the expressions can be easily

evaluated analytically. In the case of non-stationary processes, which have a

dependence between transitions, the expressions can still be evaluated through

a straightforward simulation. This approach has the advantage over traditional

DES of evaluating and weighting all possible patient paths, similar to stratified

sampling in population studies.

2. The stochastic process underlying the analysis of disease progression was made

134
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explicit in Chapter III. We demonstrated the usefulness of using graphical

methods to analyze the simulation data more extensively and to develop key

insights into the performance of treatments.

3. A review of CEA metrics and methods for incorporating statistical uncertainty

was presented, including a clarification of confusion in the CEA literature re-

garding the use of large-sample theory in determining confidence intervals. We

also proposed the use of rank-based methods in CEA, and discussed the deter-

mination of uncertainty in the case of censoring. We expanded the discussion

of CEA to comparisons of entire distributions of rewards. We proposed two

methods for evaluating these distributions: explicit analysis using utility func-

tions and first- and second-order stochastic dominance, for the cases when the

decision-maker utility function is unknown. New contributions to the CEA liter-

ature in this chapter include stochastic dominance comparisons in the presence

of estimation uncertainty, use of rank methods, and analysis with censored data.

5.2 Limitations and Future Research

There are several directions for future research related to this dissertation. The

main limitation of this research is that the examples used in all three papers are

illustrative, and are not based on actual clinical data. This suits the purposes of

methodology development well, but the ideas here should be applied and proved

using actual data, and the availability of such data can be limited. In particular,

the methods Chapter IV should be applied alongside the design and execution of a

clinical or observational trial, and an original simulation study should be conducted

using the methods in Chapter II and III.

Additionally, here are several comments, specific to each of the papers, about
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opportunities for future research.

The expressions in Chapter II are limited to the case of progressive models of

disease. While in general, many CEA models are progressive or can be designed that

way, many existing models are not progressive, and analysts will continue to cre-

ate non-progressive models. The development of methods to handle non-progressive

models is a challenging problem; existing expressions for mean rewards in the rewards

literature are recursive (Howard, 1971; Janssen and Manca, 2006), due to the infinite

number of paths through a non-progressive multi-state model. These recursive cal-

culations are tedious in many cases, and not adopted to CEA. The development of

algorithms and non-DES simulation methods specific to CEA of more general (non-

progressive) evaluation of random and expected rewards would be of use to the CEA

field, and novel in the CEA literature.

The analysis in Chapter III, while useful, is more time-consuming and requires

more knowledge of statistical software than many of the end-users of the information,

and even the analysts who create simulation models, may have. The development

of software to conduct the analysis, including plotting densities and quantiles, and

stratifying on covariates, would be an advancement in the use of this analysis. We

created prototype software as a proof-of-concept, but significantly more information

about end-user requirements and computer science knowledge is needed to create

such software. It would also be interesting to use existing simulation data and apply

the graphical techniques in the paper to see which prove the most useful across

many studies, and from that develop a recommended order of analysis, or even a

prescriptive decision-tree directing analysis for those less familiar with analyzing

data.

For the research presented in Chapter IV, further work is needed in assessing
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stochastic dominance under uncertainty. This dissertation used only KS-type statis-

tics, and these often have limited power, which was obvious in the very wide confi-

dence limits, particulary for second-order stochastic dominance. Particularly chal-

lenging is the fact that it would be desirable to develop statistical tests for dominance

in which the null hypothesis is non-dominance and the alternative is dominance; this

makes it difficult to use many of the L2 tests standard in the literature, where L2

tests are based on measures of the squared integrated distance between the empirical

CDFs (for instance, Cramer-von Mises and Anderson-Darling tests).
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