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Preface 

This thesis is the compilation of published and unpublished work on the elucidation of 

the role of protein sulfenylation in eukaryotic redox signaling.  Cysteine sulfenic acid 

forms upon reaction of a protein thiolate with hydrogen peroxide, which functions as an 

essential second messenger in a number of signaling pathways.  Protein sulfenylation is 

a reversible modification that has emerged as a biologically important mechanism for 

dynamic modification and regulation of protein activity. 

 

In Chapter 1, we discuss biological sources of reactive oxygen species, including 

hydrogen peroxide and current methods to detect their production.  Additionally, we 

discuss protein sulfenylation within the broader context of cysteine oxidation, methods to 

detect each of these disparate modifications, and highlight recent examples from the 

literature to illustrate the diverse mechanisms by which hydrogen peroxide can regulate 

protein function.  This work has been published as a review for which the citation is 

Paulsen C.E. and Carroll K.S., “Orchestrating redox signaling networks through 

regulatory cysteine switches,” (2010) ACS Chem Biol 5: 47-62.  

 

Chapter 2 focuses on the first direct demonstration of an essential role for sulfenic acid 

modification of the thiol peroxidase Gpx3 to communicate conditions of oxidative stress 

to the transcription factor Yap1 in Saccharomyces cerevisiae.  The citation for this 

chapter is Paulsen C.E. and Carroll K.S., “Chemical dissection of an essential redox 

switch in yeast,” (2009) Chem Biol 16: 217-225.  
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Chapter 3 outlines the characterization of methods to profile ROS production and to 

monitor the redox status of the cellular glutathione pool, as well as the development of a 

method to profile global protein sulfenylation in Saccharomyces cerevisiae.  These 

methods were intended to be applied to study the effect of mutant huntingtin expression 

and aggregation on changes in the cellular redox status and in global protein oxidation, 

which would have provided insight into the role reactive oxygen species production plays 

in disease progression.  

 

In Chapter 4, we present the development and application of an alkyne-based probe for 

sulfenic acids, DYn-2.  DYn-2 was used to reveal dynamic changes in global protein 

sulfenylation in response to epidermal growth factor stimulation of the human epidermoid 

carcinoma A431 cell line.  This study identified three protein tyrosine phosphatases and 

the epidermal growth factor receptor as direct protein targets of hydrogen peroxide 

produced for epidermal growth factor signaling.  Additionally, oxidation of the epidermal 

growth factor receptor was shown to enhance inherent kinase activity.  These data have 

been submitted for publication in Nature Chemical Biology as Paulsen C.E., Truong 

T.H., Garcia F.J., Homann, A., Gupta V., Leonard S.E., and Carroll K.S., “Protein 

sulfenylation goes global: probing intracellular targets of hydrogen peroxide produced for 

growth factor signaling.”  

 

Finally, Chapter 5 is a discussion of future directions for developing redox-based 

irreversible inhibitors for the epidermal growth factor receptor and for the continued 

study of redox regulation of protein tyrosine kinases that contain cysteine residues with 

structural homology to the epidermal growth factor receptor.  
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ABSTRACT 

Elucidating the Role of Protein Sulfenylation in Eukaryotic Signal Transduction 

 

By 

Candice Elaine Paulsen 

 

Co-Chair: Kate S. Carroll and Anna K. Mapp 

 

H2O2 acts as a second messenger that can modulate intracellular signal transduction via 

chemoselective oxidation of cysteine residues in signaling proteins, however, the protein 

targets of H2O2 as well as how oxidation influences protein activity has remained largely 

unknown.  In the present study, we present the first direct demonstration of an essential 

role for sulfenic acid modification of the thiol peroxidase Gpx3 to communicate 

conditions of oxidative stress to the transcription factor Yap1 in Saccharomyces 

cerevisiae.  We then describe the characterization of methods to profile ROS production 

and to monitor the redox status of the cellular glutathione pool, as well as the 

development of a method to profile global protein sulfenylation in Saccharomyces 

cerevisiae.  Next we present the development and application of an alkyne-based probe 

for sulfenic acids, DYn-2.  This new probe was used to reveal dynamic changes in global 

protein sulfenylation in response to epidermal growth factor stimulation of the human 

epidermoid carcinoma A431 cell line.  This study identified three protein tyrosine 

phosphatases and the epidermal growth factor receptor as direct protein targets of 

hydrogen peroxide produced for epidermal growth factor signaling.  Additionally, 
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oxidation of the epidermal growth factor receptor was shown to enhance inherent kinase 

activity.  Collectively, these results provide novel insight into how hydrogen peroxide can 

function as a second messenger to regulate eukaryotic signaling pathways and have 

broad implications for therapeutic development.  



1 

Chapter 1 
 

Orchestrating redox signaling networks through regulatory 

cysteine switches 

 

1.1  Abstract 

Hydrogen peroxide (H2O2) acts as a second messenger that can mediate intracellular 

signal transduction via chemoselective oxidation of cysteine residues in signaling 

proteins.  This Review presents current mechanistic insights into signal-mediated H2O2 

production and highlights recent advances in methods to detect reactive oxygen species 

(ROS) and cysteine oxidation both in vitro and in cells.  Selected examples from the 

recent literature are used to illustrate the diverse mechanisms by which H2O2 can 

regulate protein function.  The continued development of methods to detect and quantify 

discrete cysteine oxoforms should further our mechanistic understanding of redox 

regulation of protein function and may lead to the development of new therapeutic 

strategies. 

 

1.2  Introduction 

Reactive oxygen species (ROS) including hydrogen peroxide (H2O2), superoxide (O2·-), 

and the hydroxyl radical (·OH) are generally deemed toxic consequences of aerobic life 

that are swiftly eradicated to maintain cellular homeostasis.  If left unchecked, ROS can 

indiscriminately damage biomolecules and contribute to aging and pathologies such as 
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cancer, diabetes, and neurodegenerative disorders1-3.  However, studies performed over 

the past decade also indicate that a diverse array of external signals (Table 1.1)  

Table 1.1 External Stimulants that Induce ROS Production. 

 
Stimulant Organisma ROS 

Sourceb Effect of Stimulant Reference 

     

Peptide Growth Factors     
Epidermal growth factor (EGF)  Hs,M,R NOXc Proliferation 4-7 
Platelet-derived growth factor (PDGF)  Hs,M,R NOX Proliferation/Migration 7-10 
Basic fibroblast growth factor (bFGF) B NOX Proliferation 11 
Vascular endothelial growth factor (VEGF) P L Angiogenesis/Proliferation 12 
Granulocyte-macrophage colony-
stimulating factor (GM-CSF) H ND Proliferation/Migration 13 

Insulin M,R NOX Glucose uptake/transport 14,15 
 
Cytokines     

Lipopolysaccharide (LPS) M NOX Induction of immune 
response 

16-18 

Interleukin-1β (IL-1β) Hs,M NOX,L Induction of immune 
response 

7,19 

Interleukin-3 (IL-3) Hs ND Induction of immune 
response 

13 

Interleukin-4 (IL-4) Hs NOX Induction of immune 
response 

20 

CD28 stimulation Hs L Induction of immune 
response/Proliferation 

21 

Tumor necrosis factor α (TNFα) B,M,Hs NOX Apoptosis 7,11,22,23 
Transforming growth factor-β1 (TGF-β1) M ND Cell cycle arrest 24 

     
Agonists of GPCRsd     
Angiotensin II (AngII) R NOX Hypertrophy 25-28 
Lysophosphatidic acid (LPA) Hs NOX,L Proliferation 29,30 
Thrombin Hs NOX Proliferation 8 
Serotonin  Ha NOX Proliferation 31 

     
Other Stimulants      
Wounding Z NOX Leukocyte recruitment 32 
Oxidative stress  D MT Differentiation 33 
Reoxygenation after hypoxia R MT O2·- burst 34 
     

 

a B, bovine; D, Drosophila melanogaster; Ha, hamster; Hs, human; M, mouse; P, pig; R, rat; Z, 
zebrafish.  
b NOX, NADPH Oxidase; M, mitochondria; L, lipoxygenase; ND, not determined. 
c For many of these cases, the specific NOX isoform activated is unknown.  Each NOX isoform 
demonstrates disparate tissue expression and continued studies will be required to elucidate the 
regulation of each NOX isoform in response to diverse external signals.  
d Guanosine triphosphate (GTP)-binding protein (G protein)-coupled receptors (GPCRs). 
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stimulate the controlled production of ROS in healthy cells and have uncovered a role for 

oxidants as essential second messengers in intracellular signaling pathways.  An 

important cellular target or “sensor” of ROS is the thiol (RSH) functional group of the 

amino acid cysteine, which can exist in a number of oxidation states such as disulfides 

(RSSR) or sulfenic (SOH), sulfinic (SO2H) and sulfonic (SO3H) acids35.  Such oxidative 

cysteine modifications can constitute a facile switch for modulating protein function, akin 

to phosphorylation.  In this Review, we present current mechanistic insights into signal-

mediated H2O2 production and highlight recent advances in methods to detect ROS and 

cysteine oxidation both in vitro and in cells.  Selected examples from the recent literature 

of proteins that form disulfides, SOH, and SO2H are discussed, underscoring the variety 

of mechanisms by which ROS can modulate protein function and signal transduction 

cascades. 

 

1.3  H2O2 as a signaling molecule 

O2·- spontaneously dismutates to H2O2, a process that is enhanced at least 1,000-fold by 

a class of enzymes known as superoxide dismutases (SOD) 36.  In the presence of metal 

ions (iron or copper), H2O2 can be decomposed through the Fenton reaction to form 

·OH.  Among these, H2O2 is the most abundant ROS (in vivo concentration of 10-7 M) 

with the longest half life (t1/2 = 10-5 sec) 37,38.  The relative stability and uncharged nature 

of H2O2 permits its diffusion across long distances and membranes, though recent 

evidence indicates that O2·- may also cross membranes through anion channels 36.  

Owing to its highly diffusible nature, H2O2 has been shown to act as a paracrine signal 

both in plant cell differentiation 39 and more recently in the recruitment of immune cells to 

wound sites in zebrafish larvae 32.  As will be discussed below, H2O2 can be quickly 

generated in cells, selectively perceived by downstream proteins, and undergo 



4 

degradation by cellular antioxidant defense systems.  Collectively, these properties 

make H2O2 an ideal mediator of signal transduction processes. 

 

1.4  Signal-mediated ROS production 

The mitochondrial electron transport chain (ETC) funnels electrons from reduced matrix 

substrates through four protein complexes (I-IV) to molecular oxygen producing water 

and establishing a proton gradient across the inner mitochondrial membrane.  The 

energy from this gradient is then harnessed to drive the production of the primary cellular 

energy source, adenosine triphosphate (ATP).  The final complex in this pathway, 

complex IV delivers electrons to molecular oxygen to generate water; however, electrons 

can leak prematurely from the ETC upstream of complex IV to cause the univalent 

reduction of oxygen to O2·- 37.  The accidental production of O2·- by the ETC is thought to 

be the primary intracellular source of this oxidant, though cellular signals can also 

stimulate O2·- generation in the mitochondria.  This process is strictly dependent upon 

the redox enzyme p66Shc, which has been shown to be a genetic determinant of lifespan 

in mammals 40.  In response to signals that include growth factor deprivation, oxidative 

stress, or UV irradiation, p66Shc translocates to the mitochondria where it generates ROS 

(either H2O2 or O2·-) by delivering electrons from the ETC to molecular oxygen (Figure 

1.1a) 41,42.  

 

p66Shc-derived ROS can diffuse into the cytoplasm where it down-regulates the activity 

of FoxO3, a transcription factor implicated in the expression of mitochondrial antioxidant 

enzymes including manganese SOD (MnSOD) and catalase 43,44.  The resulting 

decrease in the mitochondrial antioxidant capacity renders the organelle more 

susceptible to oxidative stress.  This may enhance the pro-apoptotic effect of p66Shc 

through increased permeability of the mitochondrial inner membrane, ultimately resulting  
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Figure 1.1. Signaling-derived sources of intracellular ROS.  (a) p66Shc generates pro-apoptotic ROS 
in the mitochondria.  In response to oxidative stress, UV irradiation, or growth factor deprivation, p66Shc 
localizes to the mitochondria where it generates ROS (O2·- or H2O2).  H2O2 ultimately produced can 
diffuse across the outer mitochondrial membrane to the cytosol where it can modulate the activity of 
diverse proteins.  P66Shc-derived H2O2 also stimulates the opening of the permeability transition pore 
causing mitochondrial swelling and apoptosis.  (b) NOX enzymes assemble at discrete locations in the 
cell such as the plasma membrane and at focal adhesions to generate ROS in response to diverse 
extracellular signals.  The catalytic subunit of each NOX isoform (NOX1-5, DUOX1-2) has a conserved 
domain structure of six transmembrane a-helices and binding sites for two heme prosthetic groups.  The 
C-terminal intracellular domain binds the FAD and NADPH cofactors and electrons from NADPH are 
translocated across the membrane through the heme prosthetic groups to generate O2·- (NOX1-5) or 
H2O2 (DUOX1-2).  Full enzymatic activity of these enzymes requires the association of co-activator 
proteins (NOX1-4) or Ca2+ (NOX5, DUOX1-2) to the N-terminal intracellular domain.  The O2·- produced 
is dismutated by SOD to H2O2, which can freely diffuse across the membrane to the cytosol to regulate 
protein activity and signaling cascades. 
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in apoptosis 45.  Mice lacking p66Shc accumulate significantly less ROS over time, exhibit 

extended life spans and reduced incidence of aging-associated degenerative diseases 

without an increase in tumor frequency 40,41,46-48.  Therefore, p66Shc has recently been 

deemed a potential therapeutic target for treating diseases such as neurodegenerative 

disorders that are associated with ROS accumulation and induction of apoptosis 37,49,50.   

 

A variety of extracellular signals have also been shown to stimulate ROS production by 

activating NADPH oxidase (NOX) enzymes, which translocate an electron from reduced 

nicotinamide adenine dinucleotide phosphate (NAPDH) across the cell membrane to 

generate H2O2 (Table 1.1) 25,32,37,51,52.  ROS production by these enzymes requires a 

catalytic subunit, of which there are seven known isoforms (Nox1-5, Duox1 and Duox2) 

that show disparate cell- and tissue-specific expression patterns.  Full activity of these 

multi-component enzymes also requires the binding of flavin adenine dinucleotide (FAD) 

and the association of either a distinct set of cytoplasmic coactivator proteins or calcium 

to the intracellular domain (Figure 1.1b) 53.  Recent work indicates that receptor-

mediated NOX activation occurs through the recruitment of these additional proteins 

20,22,54 and cofactors 20, though the precise mechanistic details appear to be pathway- 

and isoform-specific.  For example, NOX1 and NOX2 activation by tumor necrosis factor 

(TNF) requires riboflavin kinase (RFK).  This association may promote enzyme 

activation by increasing local levels of the FAD prosthetic group 23.  Future studies on 

the mechanism of NOX activation are likely to reveal additional biochemical features that 

could conceivably lead to the identification of potential therapeutic targets.  Lastly, is 

important to note that intracellular and extracellular signals can also initiate ROS 

production through p66Shc- and NOX-independent mechanisms (Table 1.1) 55-57.   

Regardless of the specific cellular source, the H2O2 signal diffuses rapidly into the 

cytoplasm where it can induce distinct physiological responses including proliferation, 



7 

differentiation and apoptosis/necrosis 33,37,58,59.  However, the high diffusability of H2O2 

also raises the specter of aberrant signaling.  To circumvent this problem, NOX 

complexes appear to be targeted to distinct regions of the plasma membrane via lipid 

rafts 53 and assemble at focal adhesions 60 to direct H2O2 production to specific cellular 

microdomains.  The precise mechanisms that prevent H2O2 diffusion from such 

microenvironments are unknown 61,62.  One possibility is that antioxidant enzymes 

including glutathione peroxidases, catalase, and peroxiredoxins co-localize with NOX 

complexes to limit extraneous ROS dissemination 53.  

 

1.5 Cellular ROS detection 

The subcellular location and relative ROS concentration produced in response to 

external signals can have a dramatic impact on the cellular outcome (e.g. proliferation or 

apoptosis).  Chemical probes for oxidant detection have emerged as essential tools to 

probe signal-mediated ROS production in cells 63.  Compounds such as 

dihydrodichlorofluorescin (DCFH), dihydrorhodamine-123 (DHR), and more recently, 

dihydrocyanines 16 are routinely used to visualize intracellular ROS.  Often times, 

however, these reagents exhibit high background fluorescence resulting from auto- and 

photo-oxidation.  An innovative, new generation of reagents employs a caged boronate 

switch and provides chemoselective detection of cellular H2O2 6.  Ratiometric sensors 64, 

nanoparticles 17, and protein-based 34 systems have also been developed for ROS 

detection.  Continued improvement in the reaction kinetics and dynamic range of these 

reagents should facilitate detection of intracellular ROS at subcellular resolution 65.  

 

1.6 Sensing H2O2 through cysteine oxidation 

The reaction of H2O2 with biomolecules provides a mechanism for how cells can “sense” 

changes in redox balance.  In proteins, the thiol side chain of the amino acid cysteine is 
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particularly sensitive to oxidation 66.  Some cysteines are more susceptible to oxidation 

than others and this provides a basis for specificity in ROS-mediated signaling.  Thiolate 

anions (RS-) are intrinsically better nucleophiles and show enhanced reactivity with 

H2O2, compared to the thiol form 67.  Thus, the pKa value of the thiol group can modulate 

cysteine reactivity.  In proteins, a typical cysteine residue has a pKa of ~8.5.  However, 

the presence of polar or positively charged amino acids can stabilize the thiolate form 

through electrostatic interactions and decrease the pKa to as low as 3.5 66,68.   

 

Other determinants of cysteine reactivity toward H2O2 include access of the oxidant to its 

target and the presence of specific binding sites.  For example, peroxiredoxins have low 

pKa catalytic cysteines (4.5-5.9) 69-71 that react with H2O2 with second-order rate 

constants of 105-108 M-1 sec-1 72,73.  The catalytic cysteine of protein tyrosine 

phosphatases (PTPs) is also characterized by a low pKa value (4.6-5.5) 74,75.  However, 

H2O2 reacts with PTPs at second-order rate constants between 10-160 M-1 sec-1 67,76,77.  

This difference in reactivity is likely due to the unique architecture of the peroxiredoxin 

active site and facilitates rapid reaction with low, endogenous levels of H2O2 78.  

Importantly, the decreased reactivity of non-peroxiredoxin thiolates with H2O2 provides a 

potential mechanism to modulate protein activity only after robust changes in oxidant 

concentration (e.g., in response to external signals).    

 

The initial reaction of a cysteine thiolate with H2O2 yields a sulfenic acid (SOH), which is 

implicated in a number of important biochemical transformations.  Once formed, a SOH 

lies at a crossroad and can lead to formation of additional posttranslational modifications 

(PTMs) (Figure 1.2).  The stability of a SOH is influenced, in part, by the presence of 

nearby cysteine residues and by the accessibility of the modification site to the low 

molecular weight thiol, glutathione (GSH) 35.  The reaction of SOH with either a 
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neighboring cysteine or GSH will generate a disulfide bond that, in the case of GSH, is 

known as S-glutathiolation 79.  Both disulfide products can be reduced back to the thiol 

by the action of either the GSH/glutathione reductase (GSH/GSR) or the 

thioredoxin/thioredoxin reductase (Trx/TrxR) systems 80.  Cysteine thiolates can also 

react with reactive nitrogen species (RNS) including nitric oxide (NO) to generate S-

nitrosothiols (S-NO) that can hydrolyze to form SOH or react with a second cysteine to 

form a disulfide 

81,82.  

 

SOH can undergo 

further reaction with 

H2O2 to generate 

the SO2H and 

SO3H oxoforms 

(Figure 1.2), 

though the rate of 

these reactions is 

slower than 

observed for a 

thiolate 70.  With the 

exception of one 

protein family, both 

the SO2H and SO3H modifications are considered irreversible and the latter is deemed a 

hallmark of diseases such as cancer, diabetes, and neurodegenerative disorders that 

are associated with oxidative stress 1-3.  To prevent over-oxidation of critical cysteine 

residues, SOH may be converted to a disulfide or be S-glutathiolated.  Sulfenamide 83-86 

 
 
Figure 1.2. Oxidative modifications of protein cysteine residues.  Low 
pKa cysteines are present in the cell as thiolates and form a SOH upon 
reaction with H2O2.  Once formed, the SOH can react with a second cysteine 
either in the same or a second protein yields a disulfide.  Alternatively, a SOH 
can react with the LMW thiol GSH (pink circle) to form a special disulfide 
known as S-glutathiolation.  In the event that a neighboring cysteine or 
glutathione are absent, the amide nitrogen of the neighboring residue can 
attack the SOH to form a sulfenamide.  Each of these oxoforms can be 
reduced by the GSH/GSR or Trx/TrxR systems to regenerate the thiols (not 
depicted).  The SOH can also further react with H2O2 to generate the 
irreversible SO2H and SO3H oxoforms. 
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and hypervalent sulfur 87 species also form through SOH intermediates and may also 

safeguard against over-oxidation (Figure 1.2).  

 

The switch-like nature of the disulfide and SOH highlights their ability to function as a 

reversible means to regulate protein function, analogous to phosphorylation.  The SO2H 

oxoform has also emerged as an important PTM.  For these reasons, efforts have been 

aimed at identifying proteins with redox-active cysteine residues and to elucidate the 

biological roles of these cysteine oxoforms.  To highlight the progress in this area over 

the past few years, the remainder of this Review will focus on recent examples from the 

literature that demonstrate the diverse ways in which these PTMs regulate vital cellular 

processes. 

 

1.7 Disulfide bonds 

Disulfide bond formation in proteins is a widely recognized cysteine modification and, 

under normal conditions, occurs predominately in the endoplasmic reticulum (ER).  This 

organelle provides an oxidizing environment to facilitate disulfide bond formation in 

nascent proteins destined for export to the extracellular milieu 88.  By contrast, the 

cytoplasm, nucleus, and mitochondrial matrix are reducing environments.  In these 

compartments, cysteines are maintained in their thiol form by the combined activity of 

the GSH/GSR and Trx/TrxR systems 80,88, though protein disulfides can be generated by 

the action of the Erv family of sulfhydryl oxidases 89.  In response to external signals and 

under stress conditions the cytoplasm becomes more oxidizing, which allows protein 

disulfides to accumulate until redox balance is restored. 

 

Disulfide bond formation can influence the catalytic activity, protein-protein interactions, 

and subcellular localization.  Underscoring the importance of this oxoform, a number of 
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methods have been developed to identify proteins that undergo this modification 90,91.  

These approaches are typically based on loss of reactivity with thiol-modifying reagents 

or restoration of labeling by reducing agents such as dithiothreitol (DTT) with subsequent 

analysis by mass spectrometry (MS).  To enable quantitative analysis of redox-sensitive 

cysteines, Cohen and colleagues have employed isotope-coded affinity tag (ICAT) 

methodology 92.  This differential isotopic labeling method uses a subtractive approach to 

monitor fluctuations in levels of reduced protein thiols under different conditions (e.g. +/- 

oxidant).  Jakob and coworkers have expanded the application of ICAT to develop a 

ratiometric labeling approach, termed OxICAT 93.  This approach permits direct 

identification and quantitative evaluation of proteins that form disulfides under different 

cellular conditions.  

 

Global studies to identify proteins that undergo disulfide bond formation implicate this 

modification in the regulation of numerous biological processes including redox 

homeostasis, chaperone activity, metabolism, transcriptional regulation, and protein 

translation (Table 1.2) 93,94.  Once formed, a disulfide can have divergent effects on 

protein function, which are central to the ability of H2O2 to orchestrate cellular signaling 

events, which can lead to diverse biological outcomes (Table 1.2).  For example, 

starvation-induced autophagy is associated with a temporary increase in ROS 

production that inactivates a key cysteine protease, Atg4 by forming a disulfide bond 

involving the catalytic cysteine 95.  In contrast, survival of bacteria such as Escherichia 

coli under conditions of both oxidative and heat stresses requires activation of the 

molecular chaperone Hsp33 via intramolecular disulfide bond formation 96.  

 

H2O2 can also regulate the activity of protein tyrosine phosphatases (PTPs) by inducing 

intramolecular disulfide bond formation, which inactivates the phosphatases to permit 
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prolonged flux through the corresponding signaling pathways (Table 1.2).  Protein 

kinases are also believed to undergo redox control; however, the evidence for this is less 

direct since increased activity may also be attributed to inhibition of the opposing 

phosphatase.  Recently, the serine/threonine kinase, PKGIα was shown to undergo 

intermolecular disulfide formation between monomers and this modification appears to 

enhance its affinity for target proteins 
97.   

Table 1.2. Examples of Redox-Regulated Proteins and Complexes. 
 

Protein Oxoforma,b Effect of Oxidation on Protein Reference 

    

Phosphatases    
LMW-PTPs A,B Inactivates 98 
PTEN A,B Inactivates 99,100 
Cdc25 A,B Inactivates 77,101 
PTP1B A,B,C Inactivates 84,85 
PTP2a A,B,C Inactivates 86 

SHP-1/SHP-2 A,B Inactivates 102 
 
Kinases    

Sty1/Tpx1 A Activates 103 

PKA RI A Activates 104 
Src tyrosine kinase A Activates/Inactivates 105,106 
PKG-1a A Enhances affinity for substrates 97 
ASK1 A Initiates oligomerization/Activates 107 
    
Transcription factors    

AP-1 (Fos/Jun) A Inhibits DNA binding 108 
Hsf1 A Activates 109,110 
Nrf-2/Keap-1 A Enhances Nrf-2 stability 111 
FoxO4/p300/CBP A Acetylates/Inactivates 112 
OxyR A,B Activates 113,114 
Yap1/Gpx3 A,B Activates 115-117 

OhrR A,B Inhibits DNA binding 83,118 
SarZ A,B Inhibits DNA binding 119 
    
Other    
Hsp33 A Activates 96 

HDAC4/DnaJb5 A Inactivates/Inhibits complex 
formation 

120 

GDE2 A Inactivates 121 

DJ-1 D Locates to mitochondria/Active as a 
cytoprotectant 

122,123 

MMP-7 D Activates 124 
 

a The significance of oxidation for many of these proteins in live cells remains to be determined. 
b A, inter/intramolecular disulfide; B, sulfenic acid; C, sulfenamide; D, sulfinic acid. 



13 

The terminal targets of signal transduction cascades are transcription factors that 

regulate gene expression.  Some transcription factors, such as AP-1 108 and OxyR 113,114 

appear to be regulated by direct oxidative modification (Table 1.2).  The activity of 

transcription factors can also be regulated by changes in the accessibility of their target 

genes, for example, by PTM of histones.  The class II histone deacetylases (HDACs) 

function as transcriptional corepressors of various developmental and differentiation 

processes.  The activity of one isoform, HDAC4 is regulated by its interaction with the 

small molecular chaperone DnaJb5 120.  This chaperone forms a multiprotein complex 

with thioredoxin (Trx1) and importin α (Imp), a component of the nuclear import 

machinery, through 

the adapter protein 

Trx binding protein-

2 (TBP-2) (Figure 

1.3) 125.  In a recent 

study, Sadoshima 

and colleagues 

demonstrated that 

cysteine residues in 

DnaJb5 can form a 

disulfide preventing 

its interaction with 

HDAC4.  Dissociation from the DnaJb5 multiprotein complex coupled with disulfide bond 

formation in HDAC4 exposed the nuclear export signal (NES) resulting in cytoplasmic 

localization of HDAC4 and derepression of its target genes 120.  Sadoshima and 

coworkers proposed a model whereby Trx1 reduces intramolecular disulfides in DnaJb5 

and HDAC to restore complex formation and nuclear accumulation (Figure 1.3).  This 

 
 
Figure 1.3.  Model for redox-regulation of cardiac hypertrophy by 
HDAC4.  The type-II histone deacetylase, HDAC4 normally modifies histones 
to repress the expression of genes involved in hypertrophy.  Nuclear 
localization of HDAC4 is mediated by its association with importin α (Imp) 
through a multiprotein complex consisting of the molecular chaperone 
DnaJb5, TBP-2, and Trx1.  In the presence of H2O2, intramolecular disulfide 
bonds form within HDCA4 and DnaJb5, which stimulates dissociation and 
nuclear export of the complex.  Upon removal of H2O2, Trx1 reduces the 
disulfides in both HDAC4 and DnaJb5 to restore formation and nuclear 
localization of the complex. 
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model presents a mechanism for how signal-mediated H2O2 production may promote 

developmental defects such as cardiac hypertrophy and highlights this pathway as a 

potential target for therapeutic intervention.  

 

Disulfide bond formation can also lead to additional PTM of oxidized proteins and 

represents another important mechanism to modulate activity.  An example of such a 

regulatory mechanism was recently demonstrated for the FoxO4 transcription factor, 

which is inactivated by forming an intermolecular disulfide with either the p300 or CREB-

binding protein (CBP) acetyltransferases 112.  Caspase-9, the initial caspase in the 

mitochondrial apoptotic cascade also appears to be regulated in this manner since 

formation of an intermolecular disulfide with apoptotic protease-activating factor 1 (Apaf-

1) stimulates auto-cleavage of caspase-9 and initiation of the apoptotic cascade 126.  

 

1.8 Sulfenic acids 

 Sulfenic acids are relatively unstable and reactive groups, which have traditionally been 

viewed as intermediates en route to other oxidation states (Figure 1.2).  In recent years, 

however, stable SOH have been identified in a growing list of proteins and received 

intense interest for their roles in cell signaling (Table 1.2) 35,61,127.  Indeed, the 

appropriate protein microenvironment can lead to stable SOH formation.  For example, 

SOH modification of human serum albumin can persist for hours 128 and has been 

observed in more than 40 crystal structures 68,119.  

 

The PTP family of phosphatases is another commonly cited example of SOH-mediated 

regulation of activity 129-131.  In these enzymes, the low pKa catalytic cysteine can oxidize 

to SOH with concomitant inactivation.  Crystal structures of PTP1B and PTPa 

demonstrate that the SOH modification can react with the backbone amide nitrogen of a 
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neighboring amino acid to form a cyclic sulfenamide 84-86.  However, the rate of 

sulfenamide formation is slow relative to reaction of the SOH intermediate with thiols 

such as GSH or cysteine 83.  Alternatively, the SOH intermediate in PTPs can condense 

with a proximal “backdoor” cysteine to generate an intramolecular disulfide, as has been 

observed for low molecular weight (LMW) 98, Cdc25 77,101, and PTEN phosphatases 100.  

Two members of the tandem Src homology 2 (SH2) domain-containing PTPs (SHPs) 

also undergo oxidative modification in activated T cells 132.  Interestingly, SHPs possess 

two “backdoor” cysteines that comprise a unique regulatory mechanism 102.  Sequential 

reaction of these proximal cysteines with the SOH intermediate and subsequent disulfide 

exchange generates a disulfide between the “backdoor” cysteines that inactivates the 

enzyme.  

 

Peroxidases and peroxiredoxins also form SOH intermediates as part of their catalytic 

cycle 61.  The primary role of these enzymes is to metabolize peroxides and maintain the 

reducing environment of the cell.  Recent studies, however, reveal additional regulatory 

functions for these antioxidant enzymes.  For example, peroxiredoxin 1 (Prdx1) was 

shown to promote PTEN tumor suppressor activity by protecting against oxidative 

inactivation 99.  A molecular mechanism was not provided in this study, however, it is 

possible that Prdx1 either neutralizes local H2O2 to prevent PTEN oxidation or acts as a 

reductase to reduce the PTEN disulfide.  The latter activity is analogous to the newly 

elucidated role for Prdx1 in promoting neuronal cell differentiation 121.   

 

Small molecule probes that recognize specific cysteine oxoforms over similar species 

represent promising new tools for elucidating signaling pathways and regulatory 

mechanisms that involve redox signaling and thiol oxidation.  To this end, approaches 

have been developed that allow for the detection of sulfenic acid modifications on 



16 

proteins that exploit the unique chemical reactivity of this species 133-138.  Although SOH 

are often metastable species, the direct detection of SOH formation has several 

advantages including the identification of the reactive site where the oxidation chemistry 

was initiated 61. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

All recently developed reagents for sulfenic acid detection are based on 5,5-dimethyl-

1,3-cyclohexanedione, also known as dimedone (Figure 1.4a).  The chemoselective 

 
 
Figure 1.4.  Detection and characterization of oxidized proteins.  (a) Structures 
and reaction scheme for chemoselective tools used to detect protein SOH in vitro and 
in vivo.  (b) Flowchart of steps that can be undertaken and the corresponding 
information obtained to elucidate the significance and prevalence of protein oxidation 
in vivo. 
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reaction between dimedone and a protein SOH was first reported by Benitez and Allison 

in 1974 139,140.  Since then, this reaction has been exploited to detect SOH modifications 

by MS and through direct conjugation to fluorophores and biotin 133,135.  More recently, 

azide analogs of dimedone, known as DAz-1 136,137 and DAz-2 134, have been developed 

that can be used to label sulfenic acid-containing proteins in live cells, thereby 

minimizing the potential for oxidative artifacts during cell lysis.  Proteins tagged by the 

azidodimedone analogs can be conjugated to biotin or fluorophores via chemical ligation 

techniques such as the Staudinger ligation or click chemistry (Figure 1.4a) 137,141.  

Application of azidodimedone probes to discover protein targets of oxidation in human 

cell lines has shown that as many as 200 different cellular proteins undergo SOH 

modification 134.  The newly identified proteins have roles in signal transduction, DNA 

repair, metabolism, protein synthesis, redox homeostasis, nuclear transport, vesicle 

trafficking, and ER quality control.  Azidodimedone probes have also been used to 

identify a functional role for SOH modifications in the yeast peroxide-sensing system 

comprising the peroxidase Gpx3 and the transcription factor Yap1 117.  

 

1.9 Sulfinic acids 

The SO2H modification has been best characterized in peroxiredoxins and forms through 

reaction of H2O2 with the SOH intermediate.  Notably, only the eukaryotic homologues of 

the peroxiredoxins are susceptible to SO2H formation 142,143.  For a subset of eukaryotic 

peroxiredoxins, the SO2H modification can be reversed by an enzyme termed, 

sulfiredoxin 144. Recent studies indicate that SO2H repair proceeds through a sulfinic acid 

phosphoryl ester intermediate formed by the direct transfer of the γ-phosphate from ATP 

to peroxiredoxin 145-147.  The reversibility of SO2H in peroxiredoxins suggests that this 

modification may also function as a controllable redox switch in proteins.  Indeed, Poole 

and coworkers have proposed the floodgate model of signaling, which posits that SO2H 
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modification of peroxiredoxin permits a temporary increase in cellular H2O2 143.  In 

addition to peroxiredoxins, important biological functions for SO2H modifications have 

been demonstrated in matrix metalloproteases 124 and the Parkinson’s disease protein 

DJ-1 122,123.  Although oxidation of cysteine to SO2H is gaining acceptance as an 

important regulatory mechanism as well as a marker of protein damage, the full scope of 

these modifications remain unknown.  The development of chemical tools for SO2H 

detection may afford new opportunities to elucidate the role of this modification in human 

health and disease. 

 

1.10 Regulation of protein signaling complexes 

H2O2 can also influence protein activity through oxidative modification of regulatory 

protein complexes, as illustrated by the mammalian NRF2/KEAP1 system.  NRF2 is a 

basic leucine zipper (bZIP) transcription factor that regulates the expression of enzymes 

involved in oxidant and xenobiotic detoxification 148.  This transcription factor has a 

nuclear localization sequence (NLS), however, it is held in the cytoplasm under non-

stress conditions by KEAP1, which functions as a homodimer and interacts with the DLG 

and ETGE sites of NRF2 (Figure 1.5a) 149,150.  KEAP1 serves as an adaptor for an 

ubiquitin ligase complex and binding of KEAP1 to both the DLG and ETGE sites 

optimally orients NRF2 lysine residues for ubiquitination, which targets it for degradation 

151.  Nuclear accumulation and activation of NRF2 in response to oxidative stress is 

associated with increased NRF2 stability and is dependent upon oxidative modification 

of three cysteine residues in KEAP1, which weakens its interaction with the DLG motif in 

NRF2 149-152.  Until recently, it was not clear how KEAP1 oxidation enhances the stability 

of NRF2 since oxidized KEAP1 still interacts fully with the ETGE site and weakly with the 

DLG site.  A new study demonstrated that p21Cip1/WAF1, a protein involved in numerous 

cellular processes including cell-cycle arrest and apoptosis, could compete with KEAP1 
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for binding to the DLG site of NRF2.  Displacement of KEAP1 by p21CIP1/WAF1 inhibits 

KEAP1-mediated ubiquitination of NRF2 and provides a unique regulatory role for 

 
Figure 1.5.  Redox-regulation of protein complexes influences gene transcription and signaling 
cascades.  (a) Proposed mechanism for redox-regulation of NRF2 stability and activity by KEAP1 and 
p21CIP1/WAF1.  Binding of KEAP1 to the DLG and ETGE sites in NRF2 optimally orients lysine residues in 
NRF2 for ubiquitination (black circles) leading to degradation.  In the presence of H2O2, three cysteine 
residues in KEAP1 are oxidatively modified (oxoform unknown, S*), which induces a conformational 
change in KEAP1 that decreases its affinity for the DLG site.  Additionally, KEAP1 oxidation may mask 
its NES leading to nuclear accumulation of the complex and activation of NRF2.  p21CIP1/WAF1 can 
compete with oxidized KEAP1 for binding to the NRF2 DLG site to enhance the stability of the 
transcription factor.  (b) Two proposed models for H2O2-mediated activation of ASK1.  ASK1 assembles 
into multimers in the cell that interact with Trx1.  Association of Trx1 with ASK1 sequesters the kinase in 
an inactive conformation.  Upon oxidation of Trx1 by H2O2, ASK1 is released to interact with additional 
proteins forming the active signaling complex (Trx1-oxidation model).  Alternatively, H2O2 induces 
intermolecular disulfide bond formation between ASK1 monomers to facilitate the interaction with 
additional proteins forming the activate kinase complex (ASK1-oxidation model).  In this second model, 
Trx1 negatively regulates ASK1 by maintaining the kinase in a reduced and inactivate state. 
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p21Cip1/WAF1 (Figure 1.5a) 111.  

 

The apoptosis signal-regulating kinase (ASK1)/Trx1 system represents another H2O2-

sensitive protein complex (Figure 1.5b).  Two models have been proposed to explain 

H2O2-mediated activation of ASK1.  One model posits that Trx1 sequesters ASK1 in an 

inactive complex and, upon treatment of cells with TNF or H2O2, undergoes 

intramolecular disulfide formation.  In subsequent steps, ASK1 is released, which 

permits oligomerization to form the active kinase complex (Figure 1.5b, left) 153.  A 

recent study, however, demonstrated that stable ASK1 oligomerization and activation in 

response to H2O2 is mediated by disulfide bond formation between ASK1 monomers 107.  

Hence, an alternative regulatory model was presented whereby Trx1 negatively 

regulates ASK1 signaling under resting conditions by maintaining it in a reduced state 

(Figure 1.5b, right).  This alternative model is attractive since it is consistent with the 

known disulfide reductase activity of Trx1.  

 

Prolonged activation of ASK1 by TNF signaling induces apoptosis, which is also 

associated with ROS production from the NOX1 complex 22.  ASK1 activates the Jun N-

terminal kinase (JNK) and p38MAPK-signaling pathways.  The latter is required for 

induction of mitochondrial apoptosis during oxidative stress by enhancing the stability of 

p53 154.  Interestingly, p53 regulates the expression of p66Shc, which is required for 

stress-activated p53 to stimulate mitochondrial ROS production and apoptosis 49.  This 

apoptotic signaling pathway provides an attractive mechanistic link between NOX 

activation and the initiation of p66Shc-dependent mitochondrial ROS production, though 

further studies will be required to evaluate this potential connection. 
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1.11 Cysteine oxidation in disease 

To date, a number of proteins have been identified wherein chemoselective oxidation of 

cysteine residues serves as a mechanism to regulate normal cellular functions (Table 

1.2).  It is important to note, however, that excessive H2O2 production, either through 

aberrant receptor activation or mitochondrial dysfunction can lead to spurious 

modification and hyper-oxidation of cysteines.  This would be expected, for example, in 

disease states that are associated with excessive ROS production such as cancer, 

diabetes, or neurodegenerative disorders 1-3.  Consistent with this proposal, a recent 

study found that SOH modification of proteins is enhanced in malignant breast cell lines 

using an antibody that recognizes the protein-dimedone adduct 138.  Although Trx/TrxR, 

GSH/GSR and the recently identified bacterial sulfenate reductase 155 can repair 

reversible forms of thiol oxidation, persistent oxidative stress can overpower these 

systems can lead to aberrant protein oxidation that may contribute to disease 

pathogenesis. 

 

1.12 Future perspectives 

The recent development of chemical tools to detect cellular ROS as well as mechanistic 

studies into NOX enzymes activation and p66Shc have greatly expanded our 

understanding of how ROS are produced in response to diverse external signals.  

Continued development of ROS-sensing reagents should facilitate the temporal and 

spatial resolution of signal-mediated ROS production.  Once formed, ROS can modulate 

the activity of proteins and regulate signaling pathways involved in cell proliferation, cell 

differentiation, and apoptosis via chemoselective oxidation of cysteine residues.  The 

recent development of methods to detect disulfides and SOH has expanded the 

inventory of protein cysteine residues known to undergo oxidation modifications, though 

probes for SO2H are lacking.  Such proteins targets of oxidation are implicated in a wide 
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array of cellular processes including signal transduction, DNA repair, metabolism, 

protein synthesis, redox homeostasis, nuclear transport, vesicle trafficking, and ER 

quality control.  Though some reactive cysteines are susceptible to numerous 

modifications, the majority of thiols appear to undergo specific oxidative PTMs, which 

suggests that there are fundamental differences in the chemical and biological basis for 

target specificity 134.  

 

Profiling oxidized proteins (i.e., inventory mapping) serves as the first step to elucidating 

the biological roles of these cysteine PTMs (Figure 1.4b).  Mapping sites of cysteine 

modification can be used to expand our understanding of features within a protein 

microenvironment that facilitate the oxidation process.  The transition from inventory 

mapping to the mapping of functional cellular context will be greatly facilitated by genetic 

and biochemical experiments.  For example, site-directed mutagenesis can be employed 

to remove the modified cysteine or alter the protein environment in order to influence the 

redox sensitivity, as in DJ-1 122 and Gpx3 116.  Another important step toward evaluating 

the physiological significance of oxidative cysteine modifications will be to quantify 

redox-dependent changes in the extent of protein oxidation.  To this end, the OxICAT 

method 93 should facilitate such analysis for disulfide bond formation.  Since increased 

H2O2 concentrations can lead to aberrant SOH formation 138, similar ratiometric methods 

should be developed for SOH to hone in on the modified proteins that are pivotal for 

regulation of cellular signaling.  

 

Studies reported in the last three years have expanded our knowledge regarding 

mechanisms of signal-mediated ROS production and the means by which ROS regulate 

cellular signaling networks.  The continued emergence of methods to detect and quantify 
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discrete cysteine oxoforms should further our mechanistic understanding of redox 

regulation of protein function and could lead to the development of new therapeutics. 
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Chapter 2 
 

Chemical dissection of an essential redox switch in yeast 

2.1 Abstract 

Saccharomyces cerevisiae responds to elevated levels of hydrogen peroxide in its 

environment via a redox relay system that is comprised of the thiol peroxidase Gpx3 and 

transcription factor Yap1.  In this signaling pathway, a central question that has not been 

resolved is whether cysteine sulfenic acid (Cys-SOH) modification of Gpx3 is required 

for the Yap1 activation in cells.  Here we report that cell-permeable chemical probes, 

which are selective for sulfenic acid, inhibit peroxide-dependent nuclear accumulation of 

Yap1, trap the Gpx3 sulfenic acid intermediate, and block formation of the Yap1-Gpx3 

intermolecular disulfide directly in cells.  In addition, we present electrostatic calculations 

that show cysteine oxidation is accompanied by significant changes in charge 

distribution, which may facilitate essential conformational rearrangements in Gpx3 during 

catalysis and intermolecular disulfide formation with Yap1.  Collectively, these studies 

constitute the first direct demonstration that oxidation of the catalytic cysteine in Gpx3 to 

sulfenic acid is essential for oxidative stress sensing in budding yeast and highlight the 

growing roles of sulfenic acid modifications in biology. 

 

2.2 Introduction 

All organisms have evolved cellular responses to monitor and adapt to adverse and 

changing environmental conditions.  In most cases, the stress response is initiated at the 

genetic level and ultimately, involves the synthesis of proteins that serve a protective 
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function 1-5.  One type of response mechanism is triggered by reactive oxygen species 

(ROS), including hydrogen peroxide (H2O2), superoxide (O2•
–), and hydroxyl radical 

(•OH), which are toxic due to their ability to damage DNA and proteins 6.  As a result, 

aerobic organisms have defense mechanisms to protect against ROS.  The oxidative 

stress response has been well characterized in Escherichia coli and Salmonella 

typhimurium where transcription factors such as OxyR 7-12 and SoxR/SoxS 13-16 up-

regulate the expression of genes involved in ROS metabolism.  Genetic screens have 

also enabled the identification of transcription factors that regulate antioxidant systems in 

yeast 17,18. 

 

In Saccharomyces cerevisiae the transcription factor Yap1 is a central regulator for the 

oxidative stress response 13,19.  Yap1 is a basic leucine zipper (bZIP) transcription factor 

and its DNA-binding domain exhibits homology to members of the mammalian Jun 

family of proteins 20,21.  Yap1 contains a non-canonical leucine-rich nuclear export signal 

(NES) embedded within its C-terminal, cysteine-rich domain (c-CRD) comprised of 

residues Cys598, Cys620, and Cys629 22.  A second cysteine-rich domain in Yap1 is 

located within the N-terminal region (n-CRD) and is comprised of residues Cys303, 

Cys310, and Cys315 22.  Yap1 is essential for yeast survival under conditions of 

oxidative stress 17,18 as well as for cellular resistance to diamide, electrophiles and 

cadmium 17,23-26.  In response to hydrogen peroxide, Yap1 stimulates the expression of 

~100 genes including the TRX2 gene which encodes thioredoxin, GSH1 which encodes 

γ-glutamylcysteine synthetase involved in glutathione biosynthesis, and GLR1 which 

encodes glutathione reductase 4,27.  

 

Responding to changes in cellular ROS is critical for cell viability and, as a result, there 

has been significant interest in elucidating the molecular mechanism(s) of transcription 
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factor activation by oxidative stress 9-11,28,29.  In 1997, Kuge and colleagues reported that 

oxidative stress caused Yap1 to translocate from the cytosol to the nucleus, and that 

localization was mediated by conserved cysteine residues in the c-CRD 30.  In vitro 

studies reported by Delaunay et al. demonstrated that peroxide stress triggered disulfide 

formation between Cys303 and Cys598 22,30.  The structural basis of Yap1 activation was 

revealed in a solution structure, which showed that in its active, oxidized form the 

nuclear export signal (NES) in the c-CRD of Yap1 was masked by disulfide-mediated 

interactions 31.  Additional studies demonstrated that a second protein was required for 

peroxide-induced Yap1 activation, which was identified as the non-heme peroxide-

scavenging enzyme Gpx3 32.  Notably, a yeast mutant with substitution of Gpx3 Cys36 to 

serine could not activate Yap1 and that expression of Yap1 Cys303Ala from a 

centromeric low-copy number plasmid stabilized a disulfide-linked complex with Gpx3 32. 

 

From these collective studies, Delaunay et al. proposed the mechanism for Gpx3-

mediated Yap1 activation that is summarized in Figure 2.1 29,32.  In this model, the Gpx3 

active site cysteine (Cys36) is oxidized to a sulfenic acid, which can react with the 

resolving cysteine in Gpx3 (Cys82) or with Yap1 Cys598 to form an intra- or 

intermolecular disulfide, respectively.  In the latter pathway, thiol-disulfide exchange 

leads to a disulfide between Cys303 and Cys598 in Yap1 and nuclear accumulation of 

the transcription factor.  Although a cysteine sulfenic acid modification is central to these 

competing pathways, it has yet not been determined whether this posttranslational 

modification is essential for Yap1 activation in cells or how Gpx3 Cys36 and Cys82, 

which are predicted to be separated by >13 Å in the reduced state, come into proximity 

to form a disulfide 19,33. 
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In this report, we take a chemical biology approach to address the role of cysteine 

sulfenic acid modification in Yap1 activation. Here, we present four key results.  First, we 

demonstrate that cell-permeable chemical probes, which covalently modify sulfenic 

acids, intercept the Yap1-Gpx3 redox relay and inhibit peroxide-induced nuclear 

localization of Yap1.  Second, we show that disruption of the Yap1-Gpx3 relay is 

associated with peroxide-dependent labeling of the sulfenic acid intermediate in wild-

type Gpx3, in vitro and directly in cells.  Third, we demonstrate that a probe for sulfenic 

acid inhibits formation of the Yap1-Gpx3 intermolecular disulfide in vivo.  Taken together, 

these studies demonstrate the essential role of sulfenic acid posttranslational 

modification in the Yap1-Gpx3 redox relay.  Finally, electrostatic calculations indicate 

 
 
Figure 2.1.  Proposed molecular mechanism for the Yap1-Gpx3 redox relay.  
Gpx3 is hypothesized to transmit a stress signal to Yap1 through oxidation of its 
catalytic cysteine (Cys36) to sulfenic acid.  Next, the Gpx3 Cys36 sulfenic acid 
condenses with Cys598 in Yap1 to form the Yap1-Gpx3 intermolecular disulfide.  
Thiol-disulfide exchange with Yap1 Cys303 generates the Cys303-Cys598 
intramolecular disulfide in Yap1.  Formation of this disulfide masks the nuclear 
export signal and results in nuclear accumulation of the transcription factor.  Figure 
adapted from D’Autreaux et al. 2008.   



37 

that cysteine oxidation is accompanied by a significant amount of negative charge 

localization to the sulfenate oxygen, which could be exploited by Gpx3 to carry out the 

conformational change required for intramolecular disulfide formation during catalysis as 

well as intermolecular disulfide formation with Yap1. 

 

2.3 Results and discussion 

 

2.3.1 Sulfenic acid-specific chemical probes inhibit Yap1 nuclear localization 

The mechanism outlined in Figure 2.1 predicts that the sulfenic acid intermediate, which 

forms at Gpx3 Cys36, during the catalytic cycle is essential for Yap1 activation and 

nuclear localization.  To test this model we reasoned that a small-molecule, which is cell-

permeable and chemically selective for sulfenic acid could trap the Gpx3 sulfenic acid 

modification.  Therefore, if the Gpx3 sulfenic acid modification is essential for Yap1 

nuclear localization, yeast treated with a sulfenic acid-specific probe should not exhibit 

peroxide-induced nuclear localization of the transcription factor.  Alternatively, if the 

Gpx3 sulfenic acid intermediate is not essential, the probe should not inhibit nuclear 

localization of Yap1. 

 

To distinguish between these models, we used a green fluorescent protein (GFP)-

tagged Yap1 yeast strain 34 and fluorescence microscopy to monitor the effect of sulfenic 

acid reactive probes on Yap1 localization.  In untreated samples of logarithmically 

growing yeast cells, Yap1 showed primarily cytosolic localization (Figure 2.2a and b).  

After hydrogen peroxide stimulation, Yap1 accumulated in the nucleus, reaching 

maximal nuclear translocation within 5 min of peroxide treatment (Figure 2.2a and b).  

After ~30 min, fluorescently labeled protein moved back to the cytosol (Figure 2.2a and 
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b).  These kinetics are consistent with published data describing peroxide-dependent 

Yap1 nuclear translocation 22,30.   

 

To trap the sulfenic acid modification in Gpx3 in cells and prevent thiol-disulfide 

exchange with Yap1, we used dimedone (5,5-dimethyl-1,3-cyclohexadione), a cell-

permeable and nucleophilic small-molecule that is chemically selective for sulfenic acids 

35-40.  In this reaction, dimedone reacts with the electrophilic sulfur atom in sulfenic acid 

to form a stable thioether bond (Figure 2.3a).  Dimedone alone had no effect on Yap1 

distribution in nonstimulated cells (data not shown), but completely blocked its nuclear 

translocation in peroxide-treated cells (Figure 2.3b and c).  Peroxide-dependent nuclear 

localization of Yap1 could be completely restored by diluting dimedone-treated yeast in 

fresh medium lacking inhibitor and culturing cells for 16 hours (Appendix 2.6.1).  Since 

the protein-dimedone adduct is irreversible, these data suggest that the redox relay is 

 
 
Figure 2.2.  Analysis of Yap1-GFP cellular localization upon activation by hydrogen peroxide.  a) 
Exponentially growing yeast with a chromosomal copy of Yap1 fused to GFP (Yap1-GFP) were treated 
with hydrogen peroxide (400 µM) during the indicated period and analyzed for GFP staining.  b) Kinetics 
of Yap1-GFP nuclear localization.  Cells (n = 200 –300) from (a) were scored for nuclear accumulation of 
Yap1-GFP. 
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restored by degrading modified Gpx3 and biosynthesis of new thiol peroxidase.  The rate 

of turnover for Gpx3 protein has not been reported, however, the half-life for Gpx2 in 

budding yeast is 168 minutes 41.  Based on this estimate, complete degradation (e.g., 

five-half lives) of modified Gpx3 would take approximately 14 hours, consistent with our 

observations.  Taken together these data demonstrate that a sulfenic acid modification is 

required for peroxide-induced Yap1 nuclear accumulation, directly in living cells. 

 

 

 
Figure 2.3.  Dimedone inhibits peroxide-dependent nuclear localization of Yap1-GFP.  a) 
Dimedone and DAz-1 selectively modify sulfenic acids.  Reaction of either probe with Gpx3 Cys36 
sulfenic acid will form a stable adduct and, based on the model in Figure 2.1, is predicted to inhibit 
peroxide-dependent nuclear localization of Yap1.  b) Yap1-GFP remains in the cytoplasm when cells are 
exposed to dimedone.  Exponentially growing yeast were treated with dimedone (50 mM) and hydrogen 
peroxide (400 µM) for 15 min at 30 °C and analyzed for GFP staining.  c) Kinetics of Yap1-GFP nuclear 
localization in yeast exposed to dimedone.  Cells (n = 200 –300) from (b) were scored as in Figure 2.2b.  
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2.3.2 Trapping the Gpx3 sulfenic acid modification in vivo 

The above results are consistent with the model proposed in Figure 2.1.  However, the 

data presented in Figure 2.3 do not indicate whether Gpx3 is modified by sulfenic acid-

specific probes in peroxide-treated cells.  To show that inhibition of Yap1 nuclear 

localization is accompanied by peroxide-dependent tagging of Gpx3 in cells we used a 

sulfenic acid-specific probe that we have recently developed in our lab, known as DAz-1 

(Figure 2.3a) 35,40.  Based on the dimedone scaffold, this probe is also functionalized 

with an azide chemical handle that can be selectively detected with phosphine or alkyne-

based reagents via the Staudinger ligation or click chemistry for detection of modified 

proteins42 (Figure 2.4a).  Peroxide-dependent Yap1 nuclear accumulation was also 

suppressed in DAz-1 treated cells, as expected (data not shown).  

 
 
Figure 2.4.  The sulfenic acid azido probe DAz-1 traps the Gpx3 sulfenic acid 
intermediate in lysate and yeast cells.  a) Strategy to trap the Gpx3 sulfenic acid 
intermediate with DAz-1.  b) The Gpx3-FLAG sulfenic acid intermediate is trapped by DAz-
1 in cell lysate.  Extracts (100 µg protein) produced from yeast cells, untreated or exposed 
to hydrogen peroxide (10 µM), were incubated in the presence or absence of DAz-1 (1 
mM) for 1 h at 37 °C.  After DAz-1 labeling, Gpx3-FLAG was immunoprecipitated with 
FLAG M2 affinity resin, reacted with p-biotin (250 µM), resolved under reducing conditions 
and analyzed by HRP-streptavidin Western blot.  c) The Gpx3-FLAG sulfenic acid 
intermediate is trapped by DAz-1 directly in cells.  Exponentially growing yeast not treated 
or treated with DAz-1 (50 mM) were exposed to hydrogen peroxide (400 µM) for 10 min at 
30 °C.  Extracts were prepared, Gpx3-FLAG was immunoprecipitated with FLAG M2 
affinity resin, and samples were analyzed as in (b). 
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To facilitate enrichment of Gpx3, a relatively low abundance protein, we inserted the 

FLAG epitope into chromosomal Gpx3 (Appendix 2.6.2a).  Control experiments verified 

that the tag did not disrupt the Yap1-Gpx3 redox relay (Appendix 2.6.2b and c) or the 

ability of sulfenic acid-specific chemical probes to inhibit peroxide-induced Yap1 nuclear 

accumulation (Appendix 2.6.2d and e).  To probe for sulfenic acid modification of Gpx3 

in vitro, whole cell yeast lysate was not treated or treated with DAz-1, in the presence or 

absence of hydrogen peroxide.  Subsequently, Gpx3 was immunoprecipitated and 

conjugated to phosphine-biotin (pBiotin).  Samples were analyzed under reducing 

conditions and DAz-1 labeling was detected by streptavidin-HRP Western blot (Figure 

2.4a).  Gpx3 showed peroxide-dependent labeling by DAz-1 (Figure 2.4b).  Control 

reactions carried out in the absence of DAz-1 or hydrogen peroxide showed no labeling, 

as expected (Figure 2.4b).  Next we investigated whether DAz-1 could trap the Gpx3 

sulfenic acid intermediate directly in cells.  For these experiments, cells were not treated 

or treated with DAz-1, in the presence or absence of hydrogen peroxide.  Gpx3 showed 

peroxide-dependent labeling by DAz-1 (Figure 2.4c).  As before, no signal was 

observed in the absence of DAz-1 or hydrogen peroxide (Figure 2.4c).  Collectively, 

these data show that DAz-1 can trap the Gpx3-sulfenic acid intermediate in lysate and 

directly in cells.   

 

The sulfenic acid intermediate has been detected at the active site in thiol peroxidases 

when the resolving cysteine is not present to generate the disulfide bond 38,43.  To our 

knowledge, however, chemical trapping of the sulfenic acid intermediate in a wild-type 

thiol peroxidase has not yet been reported.  To provide additional evidence that 

dimedone can trap the reactive sulfenic acid intermediate in Gpx3 we investigated 

peroxide-dependent disulfide formation in recombinant his-tagged Gpx3, in the presence 

or absence of dimedone.  For these experiments, we analyzed Gpx3 under nonreducing 
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conditions, which permit the oxidized and reduced forms of Gpx3 to be distinguished by 

their electrophoretic mobility 22,32.  Treatment with hydrogen peroxide converted Gpx3 

from its reduced to its oxidized form (Figure 2.5a, lanes 1 and 2).  However, in the 

presence of dimedone, the majority of Gpx3 remained in the reduced state (Figure 2.5a, 

lane 3).  This observation is consistent with covalent modification of the Gpx3 Cys36 

sulfenic acid intermediate by dimedone and inhibition of intramolecular disulfide 

formation between Cys36 and Cys82.   

 

Next, we investigated whether DAz-1 could trap the sulfenic acid intermediate in 

recombinant wild-type and mutant Gpx3 protein.  Peroxide-dependent DAz-1 labeling of 

wild-type Gpx3 was observed (Figure 2.5b, lanes 1 and 2), analogous to results 

obtained with Gpx3-FLAG in yeast lysate and cells.  Additional studies carried out with 

Gpx3 Cys36Ser and Gpx3 Cys36Ser Cys64Ser (Appendix 2.6.3) also indicate that 

DAz-1 labels the active site Cys36, consistent with previous results obtained using NBD-

Cl 43.  Finally, the intensity of DAz-1 labeling was increased in the Gpx3 Cys82Ser 

mutant, as expected (Figure 2.5b, lanes 3 and 4).  

 

 
 
Figure 2.5.  Dimedone treatment inhibits formation of the intramolecular disulfide in recombinant 
wild-type and or Cys82Ser Gpx3.  a) Analysis of the in vitro redox state of recombinant Gpx3.  
Recombinant wild-type Gpx3 (60 µM), untreated or exposed to hydrogen peroxide (60 µM) was incubated 
in the presence or absence of dimedone (50 mM).  Samples were resolved under non-reducing conditions 
and visualized by Coomassie blue stain.  The oxidized and reduced forms of Gpx3 are indicated by arrows.  
b) DAz-1 traps the sulfenic acid intermediate in wild-type and mutant Gpx3.  Wild-type or Cys82Ser Gpx3 
(50 µM), untreated or exposed to hydrogen peroxide (100 µM), were incubated in the presence or absence 
of DAz-1 (10 mM) for 15 min at 37 °C.  After DAz-1 labeling, samples were treated with p-biotin (250 µM), 
resolved under reducing conditions and analyzed by HRP-streptavidin Western blot.   
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In a previous study, Poole and coworkers investigated sulfenic acid formation in the 

bacterial thiol peroxidase AhpC, but failed to observe reactivity with dimedone during the 

catalytic cycle 44.  In these experiments, it is possible that the sulfenic acid in wild-type 

AhpC was not trapped by dimedone due to the low concentration of probe employed in 

these experiments 44.  Moreover, a more recent study reported by Poole and coworkers 

shows that the sulfenic acid intermediate in AhpC Cys165Ser reacts more slowly with a 

dimedone analog, relative to an oxidized cysteine protease 38.  Hence, rates of covalent 

modification may depend on the surrounding microenvironment of the sulfenic acid and 

vary from protein to protein. 

 

2.3.3 Dimedone blocks formation of the Yap1-Gpx3 intermolecular disulfide in vivo 

Previously, Toledano and coworkers demonstrated that expression of Yap1 Cys303Ala 

stabilized a disulfide-linked complex with Gpx3 32.  Given this finding and the data 

presented in Figures 2.2 – 2.5, we reasoned that covalent modification of the Gpx3 

sulfenic acid intermediate by dimedone should inhibit formation of the Yap1-Gpx3 

intermolecular disulfide in vivo.  To test this hypothesis, we generated a plasmid 

encoding Yap1 Cys303Ala with an N-terminal Myc epitope and transformed this 

construct into yeast.  In subsequent steps, we challenged yeast with hydrogen peroxide, 

in the presence or absence of dimedone.  After processing, cellular proteins were 

resolved under nonreducing conditions and Yap1-Gpx3 complex formation was 

monitored by Western blot (Figure 2.6 and Appendix 2.6.4).   

 

In the absence of hydrogen peroxide or at a low concentration of the oxidant (200 µM), 

the Western blot showed only a single band corresponding to Yap1 Cys303Ala (Figure 

2.6, lanes 1 and 2).  However, as the concentration of hydrogen peroxide was raised 

(400 µM – 800 µM) we observed a second band in the Western blot, which increased in 
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intensity and migrated approximately 25 kDa higher than Yap1 Cys303Ala (Figure 2.6, 

lanes 3 – 5).  As predicted for the Yap1-Gpx3 complex, the higher molecular weight 

species disappeared when samples were analyzed under reducing conditions (data not 

shown) and was not observed in a gpx3 null strain (Appendix 2.6.4).  To test whether 

dimedone could inhibit formation of the Yap1-Gpx3 complex, we conducted side-by-side 

experiments in the presence of the chemical probe.  Notably, the higher molecular 

weight Yap1-Gpx3 complex was not observed in dimedone-treated cells (Figure 2.6, 

lanes 6 – 10).  Likewise, the Yap1 Cys303Ala-Gpx3 complex could be selectively 

immunoprecipitated from peroxide-treated cells, but was not formed in dimedone-treated 

samples (Appendix 2.6.5).  Together, these data show that dimedone inhibits the 

formation of the Yap1-Gpx3 intermolecular disulfide in vivo. 

 

2.3.4 Sulfenic acid formation: a general mechanism for conformational change 

A recent crystal structure of the peroxidase Gpx5 from Populus trichocarpa x deltoids 

(PtGPX5) determined that the catalytic and resolving cysteines are located 21 Å apart in 

the reduced enzyme 29.  Likewise, structure homology modeling predicts that Cys36 and 

Cys82 in Gpx3 are separated by 13 Å 33.  Therefore, the transition between the reduced 

and oxidized states is accompanied by significant conformational changes in this family 

of peroxidases.  In their analysis of the PtGpx5 structures, Koh and colleagues propose 

 
 
Figure 2.6.  Dimedone inhibits formation of the Yap1-Gpx3 intermolecular disulfide in vivo. 
Exponentially growing yeast, carrying Myc-Yap1 Cys303Ala, untreated or exposed to dimedone (50 mM) 
were treated with hydrogen peroxide at the concentrations indicated for 2 min.  NEM-blocked extracts were 
prepared as described in methods, resolved by non-reducing SDS-PAGE and analyzed by Western blot 
using antibodies against the Myc epitope.  Myc-Yap1 Cys303Ala and the Myc-Yap1 Cys303Ala-Gpx3 
mixed disulfide are indicated by arrows. 
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that during the catalytic cycle, deprotonation of Cys92 to form the thiolate anion 

destabilizes adjacent structural elements and thereby, facilitates conformational change 

29.  However, since the catalytic cysteine in the peroxidase is characterized by a low pKa 

33 this residue is constitutively deprotonated at physiological pH.  Therefore, it seems 

unlikely that the thiolate mediates conformational change during the catalytic cycle.  

Rather, we hypothesize that oxidation of the thiolate to the sulfenic acid, which is also 

expected to be deprotonated at physiological pH 45, is responsible for accelerating the 

rate of intramolecular disulfide formation.  

 

To investigate changes in charge-density distribution that occur when a thiolate is 

oxidized to a sulfenate we generated potential energy surfaces for these functional 

 
Figure 2.7.  Cysteine oxidation to sulfenic acid as a mechanism for conformational change.  a) 
Electrostatic potential surface of cysteine in the thiolate and sulfenate forms.  The surfaces depict the 
highly delocalized negative charge of a nucleophilic thiolate and the accumulation of negative charge on 
the sulfenate oxygen atom.  Electrostatic potential surfaces were generated using Spartan 06 
(Wavefunction, Inc.).  Color gradient: red corresponds to most negative and blue corresponds to most 
positive.  b) Structure homology-based model of the yeast Gpx3 active site depicted with negative (red) 
and positive (blue) electrostatic surface potentials.  Hydrophobic residues Ala33, Val34, Phe38, Trp125 
and Phe127 surround the sulfur atom of Cys36 (yellow).  The thiol functional group is also in proximity to 
amide functional groups from Gln70 and Asn126.  This model was generated using the Swiss Model 
program with human Gpx3 (pdb 2r37), related to yeast Gpx3 by ~36% identify, as the structural template.  
The electrostatic surface potential and figure were generated in Pymol (http://pymol.sourceforge.net). 
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groups (Figure 2.7a).  These calculations show that the charge-density distribution 

differs dramatically between these states.  Notably, cysteine oxidation is accompanied 

by a significant localization of negative charge to the sulfenate oxygen atom.  Therefore, 

when surrounded by hydrophobic and electronegative residues (Figure 2.7b) formation 

of the sulfenate anion in the Gpx3 active site may promote conformational 

rearrangement via electrostatic repulsion, which is required for intramolecular disulfide 

formation during catalysis and for intermolecular disulfide formation with Yap1. 

 

2.4 Conclusions 

Reduction and oxidation comprise an important class of posttranslational modifications.  

In this context, the thiol side chain of cysteine is most sensitive to redox transformations 

and can occur in a variety of oxidation states.  Among these, the thiol and the disulfide 

are best known, but oxygen derivatives such as sulfenic (RSOH), sulfinic (RSO2H), and 

sulfonic (RSO3H) acid are observed in a growing number of proteins, and are proposed 

to regulate a wide variety of phenomena such as catalysis, metal binding, protein 

turnover and signal transduction 37,46.  This study constitutes the first direct evidence that 

cysteine oxidation to sulfenic acid in the thiol peroxidase Gpx3 is essential for yeast to 

sense oxidative stress and, more broadly, sheds light on the growing roles of sulfenic 

acid modifications in biology.  From a chemical perspective, this work highlights the 

utility of cell-permeable, small-molecule probes to investigate redox-regulated signal 

transduction in living cells 6.  Finally, this work also contributes to our molecular 

understanding of how oxidative cysteine modification and accompanying changes in 

electrostatic charge distribution may be exploited to facilitate conformational change in 

proteins. 
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2.5 Experimental Procedures 

 

2.5.1 Strains and growth conditions 

The S. cerevisiae strain ATCC-201388 (MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0) 

containing GFP-modified Yap1 were used in all experiments, with the exception of the 

∆gpx3, which is in BY4742 (MATα his3∆1 leu2∆0 lys2∆0 ura3∆0 can1-100).  Cells were 

grown at 30 °C in YPD [1% yeast extracts, 2% bactopeptone, and 2% glucose] or SC – 

Ura media containing 2% glucose.  The Gpx3-FLAG strain was derived from the Yap1-

GFP strain.  The FLAG epitope was appended to Gpx3 in the yeast chromosome as 

described 47.  In brief, primers 5’-AAACCTTCTTCGTTGTCCGAAACCATCGAAGAACT 

TTTGAAAGAGGTGGAAAGGGAACAAAAGCTGGAG-3’ and 5’-AAATATAAAAGAAAAC 

TAAGCTTTACCTAACTTCAAAAGAAGAAGACCTGCCTATAGGGCGAATTGGGT-3’ 

were used to amplify a 3xFLAG/Kan cassette with regions of homology to Gpx3 from the 

p3FLAG-KanMX plasmid.  The PCR-amplified product was transformed into the Yap1-

GFP yeast strain 48,49.  Transformants were selected on YP-Gal plates supplemented 

with G418 (200 mg mL-1).  Chromosomal tagging was verified by PCR and anti-FLAG 

Western blot.  

 

2.5.2 Cloning, expression, and purification of recombinant Gpx3 

Yeast genomic DNA was isolated from the Yap1-GFP yeast strain as described 50.  

Gpx3 was amplified by PCR from yeast genomic DNA using the following primers: 5’-

TTTATCGGATCCATGTCAGAATTCTATAAGCTAGCACCT-3’ and 5’-ACCTGCCTCGA 

GCTATTCCACCTCTTTCAAAAGTTCTTC-3’.  pRSETa-6xHis-Gpx3 was constructed by 

subcloning Gpx3 into the BamHI and XhoI sites of pRSETa (Invitrogen).  pRSETa-6xHis-

Gpx3 Cys36Ser, pRSETa-6xHis-Gpx3 Cys82Ser, and pRSETa-6xHis-Gpx3 Cys36Ser 

Cys64Ser were generated using site-directed PCR mutagenesis.  Wild-type, Cys82Ser, 
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Cys36Ser, and Cys36Ser Cys64Ser Gpx3 were purified from Escherichia coli strain 

BL21(DE3) pLysS as previously described 43. 

 

2.5.3 Construction of Myc-Yap1 Cys303Ala 

Yap1 was amplified by PCR from yeast genomic DNA using the following primers: 5’-

TAAACCTCTAGAATGAGTGTGTCTACCGCCAAGAGGTC-3’ and 5’-CCCGCTCTCG 

AGTTAGTTCATATGCTTATTCAAAGCTA–3’.  Yap1 was then subcloned into pCR4 

(Invitrogen).  pCR4-Yap1 Cys303Ala was generated by site-directed PCR mutagenesis.  

Myc-Yap1 Cys303Ala was generated in two steps by PCR.  The first PCR product was 

generated from the pCR4-Yap1 Cys303Ala template using the following primers: 5’-

GATTTCCGAAGAAGACCTCATGAGTGTGTCTACCGCC-3’ and 5’-GTTCATATGCTT 

ATTCAAAGCTAATTGAACGTCTTCTGC-3’.  The product of this reaction was then used 

to generate the complete Myc-Yap1 Cys303Ala fragment using the following primers: 5’-

AAGCTTATGGAACAGAAGTTGATTTCCGAAGAAGACCTC-3’ and 5’-GTTCATATGC 

TTATTCAAAGCTAATTGAACGTCTTCTGC-3’.  Finally, the Myc-Yap1 Cys303Ala PCR 

product was digested with HindIII and XhoI and subcloned into the multiple cloning 

region of p416-TEF 51. 

 

2.5.4 Stock solutions of sulfenic acid probes 

Dimedone was prepared in DMSO at a final concentration of 1.1 M.  DAz-1 was 

synthesized as previously described 40 and prepared as a 50:50 mixture of DMSO and 

0.1 M Bis-Tris HCl pH 7.0 at a final concentration of 0.25 M.  Chemical probes were 

added directly to culture or reactions in vitro. 

 

 

 



49 

2.5.5 Yeast culture with sulfenic acid probes 

Exponentially growing yeast were treated with dimedone or DAz-1 (50 – 100 mM) and 

cultured for 30 – 60 min prior to treatment with hydrogen peroxide (400 µM).  At the 

indicated times, cells were fixed by incubating for 15 min at rt with 4% (w/v) 

paraformaldehyde with rocking.  To restore peroxide-dependent nuclear localization of 

Yap1, dimedone-treated cells were diluted 10,000-fold in fresh media lacking probe, 

grown to saturation (16 hrs) and re-challenged with hydrogen peroxide (400 µM).  

Samples were fixed and analyzed as described above. 

 

2.5.6 Fluorescence microscopy 

Exponentially growing yeast (1 mL) were harvested and washed twice with 0.1 M 

KH2PO4, pH 6.6 and stored at 4 °C in the same buffer.  For oxidized samples, 

exponentially growing yeast (1 mL) were exposed to hydrogen peroxide (400 µM) and 

samples were fixed at various time points, as described above.  Yap1-GFP 

nucleocytoplasmic localization was analyzed with a Nikon Eclipse 80i fluorescent 

microscope equipped with a Photometrics CoolSnap ES2 cooled CCD camera and 

MetaMorph software. 

 

2.5.7 Kinetics of Yap1-GFP nucleocytoplasmic localization 

Exponentially growing yeast were exposed to hydrogen peroxide (400 µM) only or 

dimedone (50 mM) and then hydrogen peroxide (400 µM).  Samples were fixed before 

and after peroxide treatment as described above.  At each time point, cells (n = 200 – 

300) were scored for subcellular localization of Yap1-GFP.  Nuclear localization of Yap1-

GFP was verified by co-localization with DAPI stain (Appendix 2.6.2).  Experiments 
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were performed in duplicate and data is presented as the average of the two trials and 

are presented with corresponding standard deviations. 

 

2.5.8 Immunoprecipitation of Gpx3-FLAG from S. cerevisiae  

Cells from the Yap1-GFP/Gpx3-FLAG strain (4 x 108 for in vitro studies, 1.25 x 108 for in 

vivo studies) were harvested, resuspended in lysis buffer [25 mM HEPES, pH 7.5, 35 

mM NaCl, 2 mM EDTA, 1x yeast protease inhibitor cocktail, 40 µM chymostatin], and 

lysed by mechanical disruption using glass beads.  Gpx3-FLAG was immunoprecipitated 

from lysate with EZView Red ANTI-FLAG M2 affinity gel (Sigma) for 1 – 4 h at 4 °C.  The 

resin was collected at 8,200 g for 30 s and washed three times with 25 volumes of wash 

buffer [50 mM Tris HCl, 150 mM NaCl, pH 7.4].  Gpx3 was eluted with three volumes of 

elution buffer 1 [50 mM Tris HCl, pH 7.5, 150 mM NaCl, 1 mg mL-1 1xFLAG peptide or 

0.5 mg mL-1 3xFLAG peptide]. 

 

2.5.9 Analysis of Gpx3 intramolecular disulfide formation in vitro 

Recombinant wild-type Gpx3 was reduced with DTT (50 mM) for 1.5 h at rt.  Reducing 

agent was removed by gel filtration using p-30 micro Bio-Spin columns (BioRad).  Wild-

type Gpx3 (60 µM) was then treated with dimedone (50 mM) or DMSO in the presence 

of hydrogen peroxide (50 µM) for 10 min at rt.  Reactions were then incubated with 

iodoacetamide (300 mM) for 10 min at rt, resolved by non-reducing SDS-PAGE on 4-

12% Bis-Tris gels (Invitrogen) and visualized by Coomassie blue staining. 

 

2.5.10 DAz-1 labeling of recombinant Gpx3 and Gpx3-FLAG 

Recombinant wild-type, Cys36Ser, Cys82Ser and Cys36Ser Cys64Ser Gpx3 were 

reduced with DTT (50 mM) for 1.5 h at rt.  Reducing agent was removed by gel filtration 
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using p-30 micro Bio-Spin columns (BioRad).  Wild-type Gpx3 and mutants (0 – 50 µM) 

were then treated with DAz-1 (10 mM) or DMSO in the presence of hydrogen peroxide 

(50 µM) for 15 min at 37 °C.  Small-molecules were separated from the reaction by 

ultrafiltration with Amicon Ultra Filters (10 KD, Millipore).  Reactions were then diluted 

with an equal volume of Buffer D and concentrated by ultrafiltration.  Azide-modified 

Gpx3 was biotinylated and analyzed as described below.  For Gpx3-FLAG, protein was 

immunoprecipitated from yeast lysate (100 µg total protein) and treated with DAz-1 (1 

mM) or DMSO followed by the addition of hydrogen peroxide (0 – 25 µM).  Reactions 

were incubated at rt for 1 h.  Alternatively, yeast lysate (100 µg) was exposed to 

hydrogen peroxide (10 µM) and incubated at rt for 10 min prior to the addition of DMSO 

or DAz-1 (1 mM).  Gpx3-FLAG was then immunoprecipitated as described above.  For in 

vivo labeling of Gpx3-FLAG exponentially growing yeast were treated with DAz-1 (50 

mM) for 20 min prior to peroxide treatment.  Cells were exposed to hydrogen peroxide 

(400 µM) and grown at 30 °C for 10 min.  Cells were harvested, washed and Gpx3 was 

enriched from the lysate (200 µg) as described above. 

 

2.5.11 Biotinylation of Gpx3 and Western blot analysis 

Azide-tagged Gpx3 was conjugated to biotin via Staudinger ligation with phosphine 

biotin (p-Biotin; 100 – 250 µM) for 2 – 4 h at 37 °C 52,53.  The resulting samples were 

subjected to SDS-PAGE and Western blot analyses as previously described 35 with the 

following modifications.  Biotinylated proteins were detected by incubating PVDF 

membrane with 1:5,000 – 1:10,000 streptavidin-HRP (GE Healthcare) in Tris-buffered 

saline Tween-20 (TBST) or phosphate-buffered saline Tween-20 (PBST).  For 

recombinant Gpx3 studies, 6xHis-Gpx3 was detected by incubating the PVDF 

membrane with 1:50,000 – 1:100,000 HisProbe-HRP (Pierce).  For yeast studies, Gpx3-
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3xFLAG was detected by incubating the PVDF membrane with 1:2,000 – 1:10,000 Anti-

FLAG M2 (Stratagene) in TBST, washed in TBST (2 x 10 min) and then incubated with 

1:10,000-1:50,000 Goat Anti-Mouse- HRP (Pierce).  Western blots were developed with 

chemiluminescence (GE Healthcare ECL Plus Western Blot Detection System) and 

imaged on a Typhoon 9410 or by film. 

 

2.5.12 Analysis of Yap1-Gpx3 intermolecular disulfide formation in vivo 

Exponentially growing yeast carrying p416-TEF-Myc-Yap1 Cys303Ala were treated with 

dimedone (50 mM), hydrogen peroxide was added to yeast cultures (0 – 1 mM) and cells 

were grown at 30 °C for 2 min.  Cultures were lysed with TCA (20% v/v) and protein 

precipitates were resuspended in NEM buffer [100 mM Tris HCl, pH 8.0, 1 mM EDTA, 

1% SDS, 150 mM NEM, 1x yeast protease inhibitor cocktail, 40 mM chymostatin].  The 

pH was neutralized with sodium hydroxide and the alkylation reaction proceeded at rt for 

15 min.  For immunoprecipitation, the Yap1 Cys303Ala-Gpx3-FLAG complex was 

isolated from cell extracts as described above.  Proteins were then resolved by non-

reducing or reducing SDS-PAGE using NuPAGE 4-12% or 8% Bis-Tris gels (Invitrogen) 

in NuPAGE MES running buffer, transferred to PVDF membrane and blocked with 5% 

bovine serum albumin (BSA) in PBST overnight at 4 oC or 1 h at rt.  The membrane was 

washed in PBST (2 x 10 min) and the Myc epitope was detected by incubation with 

1:1,000 Anti-Myc monoclonal antibody (Covance) at 4 oC overnight, washed in PBST, 

followed by 1:10,000 Goat Anti-Mouse-HRP (Pierce).  Alternatively, the Myc epitope was 

detected by incubating the PVDF membrane with 1:1,000 Anti-Yap1 polyclonal antibody 

(Santa Cruz Biotechnology) at 4 °C overnight, washed in PBST, followed by 1:25,000 

Goat Anti-Rabbit-HRP (Calbiochem). 
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2.6 Appendices  

2.6.1 Restoration of peroxide-dependent Yap1 nuclear localization.  After dimedone 

treatment (100 mM) and peroxide exposure (400 µM), yeast cells were diluted 10,000-

fold into dimedone-free media and cultured to saturation (16 hrs).  Subsequently, cells 

were exposed to H2O2 (400 µM) for 15 min at 30 °C and analyzed for GFP staining. 

 

 

 

 

 

 

 

 

2.6.2 The FLAG epitope tag does not alter Gpx3 function in the Yap1-Gpx3 redox 

relay.  a) Immunoprecipitation of Gpx3-FLAG from yeast.  Gpx3 was 

immunoprecipitated from lysates produced from the Yap1-GFP and Yap1-GFP/Gpx3-

FLAG yeast strains.  The protein extract was incubated with M2 anti-FLAG resin for 1 h 

at 4 °C, washed, and eluted with the FLAG peptide (1 mg mL-1).  Samples were resolved 

under reducing conditions and analyzed by Western blot with M2 anti-FLAG, followed by 

HRP-goat anti-mouse.  b) Peroxide-dependent nuclear localization of Yap1 in Yap1-

GFP/Gpx3-FLAG yeast strain.  Exponentially growing yeast culture was exposed to 

hydrogen peroxide (400 µM) for the times indicated and then analyzed for GFP staining.  

c) Kinetics of Yap1 nuclear localization in Yap1-GFP/Gpx3-FLAG yeast strain.  Cells (n = 

200 – 300) from (b) were scored for Yap1-GFP nuclear localization at the indicated time 

after hydrogen peroxide exposure.  d) Dimedone inhibits peroxide-dependent Yap1 

nuclear localization in the Yap1-GFP/Gpx3-FLAG strain.  Exponentially growing yeast 
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culture was exposed to dimedone (50 mM), incubated for 30 min at 30 °C, treated with 

hydrogen peroxide (400 µM) for 15 min, and analyzed for GFP staining.  e) Kinetics of 

peroxide-dependent nuclear localization of Yap1 in the presence of dimedone.  Cells (n 

= 200 – 300) from (d) were scored for Yap1-GFP nuclear localization for the time 

indicated after H2O2 challenge.  

 

2.6.3 DAz-2 labeling of recombinant Gpx3. Wild-type, Gpx3 Cys36Ser or Gpx3 

Cys36Ser Cys64Ser (50 µM) were incubated with or without DAz-1 (10 mM), in the 

presence or absence of hydrogen peroxide (50 µM) for 15 min at 37 °C.  DAz-1 was 

removed by ultrafiltration and reactions were labeled with p-biotin (250 µM).  Proteins 

were resolved under reducing conditions and analyzed by HRP-Streptavidin Western 

blot.  Slight labeling of Gpx3 Cys36Ser is observed in these experiments (Left panel).  

Possible sites of sulfenic acid formation in the Gpx3 Cys36Ser mutant are Cys64 and 

Cys82.  Since Cys82 has a high pKa 54 we hypothesized that Cys64 was the site of 

sulfenic acid formation in the mutant Gpx3 Cys36Ser protein.  To this hypothesis, we 

probed the Gpx3 Cys36Ser Cys64Ser mutant for sulfenic acid formation, in the presence 

or absence of hydrogen peroxide (Right panel).  The disappearance of label in these 
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experiments suggests that, in the context of the Gpx3 Cys36Ser mutant, Cys64 is the 

site of sulfenic acid formation.  Since Cys64 oxidation is not observed in the wild-type 

protein it is possible that the Cys36Ser mutation alters the protein microenvironment 

surrounding Cys64, thereby enhancing its susceptibility to oxidation.  Further, we note 

that the faint labeling observed for the Gpx3 Cys36Ser mutant, in the absence of 

exogenously added hydrogen peroxide, likely results from oxidation of the mutant protein 

during the gel filtration step, which is carried to remove reducing agent.  Consistent with 

this proposal, we do not observe DAz-1 labeling of Gpx3 Cys36Ser in the presence of 

reducing agent (data not shown).  Finally, we note that Gpx3 Cys64 is completely 

dispensable for the Yap1-Gpx3 redox relay 32,55. 

 

 

 

 

 

2.6.4 The Yap1-Gpx3 intermolecular 

disulfide is not observed in ΔGpx3 cells.  

Exponentially growing ∆Gpx3 yeast strain 

carrying p416-TEF-Myc-Yap1 Cys303Ala was 

exposed to H2O2 (400 µM) for 2 min.  Samples 

were processed as described in Figure 2.6, 

resolved under non-reducing conditions and 

analyzed by Western blot using antibodies 

against Yap1 (top).  Ponceau S stain of 

membrane (bottom). 
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2.6.5 The Yap1-Gpx3 complex is immunoprecipitated via the FLAG epitope and is 

not formed in dimedone-treated cells. Exponentially growing yeast carrying p416-

TEF-Myc-Yap1 Cys303Ala was exposed to H2O2 (400 µM) for 2 min.  The Yap1 

Cys303Ala-Gpx3-FLAG complex was immunoprecipitated as in Figure 2.4b, resolved 

under reducing conditions and analyzed by Western blot using antibodies against the 

Myc epitope.  
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Chapter 3 
 

Determining the contribution of reactive oxygen species 

production to huntingtin (Ht) pathogenesis in yeast 

3.1 Abstract 

Neurodegenerative diseases, including Huntington’s disease (HD), are characterized by 

protein aggregation and are associated with mitochondrial dysfunction and oxidative 

stress due to increased reactive oxygen species (ROS) production.  Little is known, 

however, about the role that ROS play in disease pathogenesis.  To characterize the 

interplay between mutant huntingtin protein (Ht) expression/aggregation and changes to 

the cellular redox status, we employed a yeast model of HD.  Herein, we present initial 

studies to develop and optimize methods to detect ROS production, changes in the 

redox status of the cellular glutathione pool, and global protein oxidation in yeast.  

Ultimately, the low level of global protein oxidation detected and challenges with 

reproducibility resulted in the discontinuation of these studies. 

 

3.2 Introduction 

ROS including hydrogen peroxide (H2O2), superoxide (O2•
-), and the hydroxyl radical 

(•OH) have been deemed toxic byproducts of aerobic existence.  More recently, ROS 

have also been shown to function as necessary second messengers in a number of 

eukaryotic signaling cascades 1-4.  Nontheless, unchecked ROS production can result in 

indiscriminate oxidative damage to important biomolecules including proteins, lipids and 
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DNA, and can contribute to aging and pathologies such as cancer, diabetes, and 

neurodegenerative disorders 5-7.   

 

HD is a progressive neurodegenerative disorder that is caused by a glutamine CAG 

expansion in the N-terminal portion of exon I of the huntingtin gene 8.  The wild type 

(WT) Ht is a large (~348 KDa), predominantly cytoplasmic, protein of complex albeit 

largely uncharacterized function that is known to interact with a number of proteins 

involved in vesicle transport, cytoskeletal anchoring, clathrin-mediated endocytosis, 

neuronal transport and/or postsynaptic signaling 9.  Mutant Ht is cleaved into a number 

of polyglutamine (polyQ)-containing fragments that misfold and form soluble and 

insoluble protein aggregates containing co-associating proteins.  Accumulation of these 

soluble and insoluble Ht aggregates has been shown to result in mitochondrial toxicity 

and dysfunction due to reduced activity of electron transport chain (ETC) enzymes in 

mouse and yeast models of HD 10,11.  Additionally, decreased expression of ETC 

enzymes has been detected in post-mortem samples of affected brain regions 12.  The 

ETC funnels electrons from reduced matrix substrates through four protein complexes to 

molecular oxygen producing water and establishing a proton gradient across the inner 

mitochondrial membrane that drives ATP synthesis.  Electrons can leak prematurely 

from these enzyme complexes, however, to result in O2•
-production and, as expected, 

mitochondrial dysfunction is associated with increased ROS production 13.  Consistent 

with observations of mitochondrial dysfunction in HD, signs of irreversible oxidative 

damage to lipids and proteins is observed in post-mortem brain slices and in the plasma 

of HD patients 14,15.  

 

A long-standing question in the redox biology field is whether ROS are produced as a 

toxic byproduct of protein aggregation in neurodegenerative disorders or whether the 



62 

ROS produced function to initiate and/or promote pathogenesis 16.  Moreover, identifying 

the protein targets of oxidative stress would shed light on how oxidative modification of 

proteins may be contributing to disease progression.  Yeast models of HD have been 

developed wherein yeast express Ht constructs containing polyQ expansions of varying 

lengths conjugated to green fluorescent protein (GFP) to facilitate visualization of Ht 

aggregation as a function of polyQ length (Figure 3.1a) 17,18.  Ht constructs containing 

smaller polyQ expansions such as Q25 exhibit diffuse fluorescence (Figure 3.1b) 

whereas increasing length of the polyQ expansion results in increased protein 

aggregation (Figure 3.1b).  Importantly, expression of the longest mutant Ht polyQ 

expansion protein, Q103 

has been shown to 

induce mitochondrial 

dysfunction and ROS 

production in yeast 11.  

These observations 

validate the use of this 

model to study the 

correlation between Ht 

expression/aggregation 

and changes in the 

cellular redox balance.  Herein, we present initial studies that were performed to develop 

and optimize methods to detect ROS production, changes in the redox status of the 

cellular glutathione pool, and global protein oxidation in yeast.  Ultimately, the low level 

of protein oxidation detected and issues with reproducibility resulted in the 

discontinuation of these studies. 

 

 
Figure 3.1.  Expression of huntingtin (Ht) fragments in yeast.  a) 
Schematic representation of the Ht exon I proteins with increasing polyQ 
expansion regions (orange), GFP (green), and FLAG (purple) tags.  b) 
Expression of Ht proteins with various polyQ expansions was induced by 
growing exponentially growing yeast in media containing galactose for 
25 h and analyzed for GFP staining. 
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3.3 Results and discussion 

 

3.3.1 Exploration of methods to characterize the redox status of yeast 

Our ultimate goal was to characterize the interplay between mutant Ht 

expression/aggregation and changes to cellular ROS production and protein oxidation.  

Changes in the cellular redox balance are routinely monitored by using fluorescent 

probes that report on ROS production, including 2’,7’-dihydrodichlorofluorescein 

diacetate (H2DCF-DA, Figure 3.2a) and dihydroethidium (DHE, Figure 3.2b) and by 

measuring fluctuations in the redox status of glutathione, a high abundance cellular 

antioxidant.  Indeed, Barrientos and colleagues have previously demonstrated that Q103 

Ht expression in yeast results in enhanced ROS production compared to yeast 

expressing Q25 Ht; however, the full panel of polyQ expansion proteins were not 

examined 11.   

 

As preliminary experiments, we first sought to demonstrate the utility of H2DCF-DA and 

DHE in revealing differences in ROS content of WT versus Vma2Δ yeast under normal 

growth conditions and as a function of H2O2 or menadione treatment (Figure 3.3).  

 
Figure 3.2.  Compounds used in this study.  Detection of intracellular ROS by oxidation of a) 
dihydrodichlorofluorescein (H2DCF) to the fluorescent dichlorofluorescein (DCF), or b) dihydroethidium 
(DHE) to the fluorescent ethidium.  c) Redox modulating compounds.  Diamide oxidizes the cellular 
glutathione pool.  Menadione induces redox cycling in the mitochondria resulting in O2

•- formation.  d) DAz-
1 and DAz-2, sulfenic acid probes; phosphine-biotin (pBiotin) and alkyne-biotin, biotinylation reagents; 
alkyne-TAMRA, TAMRA-conjugating reagent. 
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Vma2 is a vacuolar proton-translocating ATPase in yeast and its deletion has been 

shown to result in chronic oxidative stress 19.   Initially, we monitored changes in cellular 

ROS content with H2DCF-

DA, which is an oxidant-

sensitive probe that is 

converted to the 

fluorescent product DCF 

by reaction with various 

ROS (Figure 3.2a).  

Figure 3.3a shows that 

while H2DCF-DA detected 

a significant change in 

intracellular ROS content 

in cells treated with H2O2.  

However, inconsistent with 

literature, no significant 

difference in ROS content 

was revealed between WT 

and Vma2Δ yeast 19.   

 

Because Q103 Ht expression in yeast induces mitochondrial dysfunction, we 

hypothesized that O2•
- levels would increase 19.  While H2DCF-DA exhibits broad 

reactivity with radical- and non radical-based ROS, DHE is an oxidant-sensitive probe 

that is converted to the fluorescent ethidium product primarily by reaction with radical-

based ROS such as O2•
- (Figure 3.2b) 20.  We, therefore, explored the utility of DHE to 

 
Figure 3.3.  Characterization of the cellular redox status of WT 
and Vma2Δ  yeast.  a) Exponentially growing WT and Vma2Δ yeast 
were pre-loaded with 10 µM H2DCF-DA for 15 min, stimulated with 1 
mM H2O2 or vehicle control for 30 min at rt and intracellular ROS 
was measured by DCF fluorescence.  b) Exponentially growing WT 
and Vma2Δ were incubated with 5 µM DHE and 1 mM menadione or 
vehicle control for 30 min at 37 oC and intracellular ROS was 
measured by ethidium fluorescence.  Error bars represent s.e.m. of 
four readings.  Statistical significance was determined by two-tailed 
Student’s T-test with a p < 0.05 cutoff.  n.s., not significant; *, p < 
0.001.  c and d) Exponentially growing WT yeast were incubated 
with 1.5 mM diamide or vehicle for 30 min at 30 oC and analyzed for 
c) GSH/GSSG or d) reduced GSH as a percentage of the total 
glutathione pool. 
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detect changes in ROS content between WT and Vma2Δ yeast that have been untreated 

or treated with menadione, a compound that induces redox cycling in the mitochondria 

resulting in increased levels of O2•
- (Figure 3.2c).  While DHE did not reveal differences 

in basal ROS content among untreated, menadione-treated WT, and untreated Vma2Δ 

yeast, menadione treatment induced a significant increase in DHE oxidation in Vma2Δ 

cells (Figure 3.3b).  Thus neither H2DCF-DA nor DHE revealed differences in basal 

ROS content between WT and Vma2Δ yeast.  This suggests either that these probes are 

insufficiently sensitive to monitor fluctuations in ROS production unless the changes are 

similar to those induced by exogenous H2O2 or menadione treatment, or that Vma2 

deletion is not associated with a significant change in ROS.  

 

In addition to monitoring changes in ROS production, fluctuations in the cellular redox 

balance can also be observed by characterizing the redox status of the cellular 

glutathione pool.  Treatment of WT yeast with diamide, a compound that oxidizes the 

cellular glutathione pool (Figure 3.2c), resulted in a substantial decrease in the ratio of 

reduced to oxidized glutathione (GSH/GSSG, Figure 3.3c) and in the percentage of 

reduced glutathione (Figure 3.3d).  Having demonstrated that the cellular redox status 

of pharmacologically treated yeast could be characterized by monitoring ROS production 

and determining the redox status of the cellular glutathione pool, we next sought to 

establish a protocol for profiling global protein oxidation in yeast.  

 

3.3.2 Development of a method to profile global protein sulfenylation in yeast 

Genetic and biochemical studies implicate protein cysteine thiols as the primary targets 

of intracellular ROS 2,21-25.  Given that Q103 Ht expression has been shown to stimulate 

ROS production in yeast 19, mutant Ht expression could potentially stimulate changes in 
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global protein oxidation that could contribute to disease progression.  Interestingly, the N 

terminus of Ht contains several cysteine residues in addition to the polyQ expansion 

region, entertaining the possibility of direct redox modulation of Ht function or its 

propensity for aggregation 26,27.  Furthermore, N-terminal fragments of Ht have been 

shown to interact with and chemically reduce copper (II) to copper (I) 28.  Copper (I) can 

then react with molecular oxygen to generate O2•
- that rapidly dismutates to H2O2.  

However, the relative contribution of Ht-bound copper versus mitochondrial dysfunction 

to O2•
- generation in neurodegenerative disorders remains unknown.  Nonetheless, both 

copper (I) and copper (II) can react with H2O2 to generate •OH and •OOH, respectively 

via Fenton-like chemistry that can ultimately result in protein oxidation 29.  If Cu-bound Ht 

serves as a significant source of intracellular ROS, then it is possible that proteins 

associating with Ht could be direct targets of this ROS.  To address these collective 

possibilities we sought to develop a method to profile global protein oxidation in mutant 

Ht-expressing yeast that could also be applied to characterization of the oxidation status 

of mutant Ht and its co-associating proteins.   

 

The initial reaction product of a protein thiol with ROS such as H2O2 is sulfenic acid, 

which is detected with high selectivity by reaction with the 1,3-cyclohexadione compound 

dimedone (Figure 3.4a).  The selective reaction of dimedone with protein sulfenic acids 

has been exploited to detect oxidized proteins in cell lysates by conjugating the 1,3-

cyclohexadione warhead to biotin or fluorophores 30,31.  Our lab has recently 

demonstrated the functionalization of 1,3-cyclohexadiones with azide chemical handles 

to facilitate labeling of protein sulfenic acids directly in cells 32-34.  The first of these 

probes, DAz-1 (Figure 3.2d), was used to demonstrate requirement for sulfenic acid 

modification of Gpx3 in the Yap1-Gpx3 redox relay in yeast 35.  In our study, a 

substantial amount of DAz-1 was required (50 µM) due to its low reactivity, the relatively  
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Figure 3.4.  Detection of global protein sulfenylation with DAz-2.  a) Chemoselective reaction 
of dimedone with protein sulfenic acids yields a covalent adduct.  b) Click chemistry is more 
efficient than Staudinger ligation.  Recombinant Cys82Ser Gpx3 (50 µM), untreated or exposed to 
100 µM H2O2, was incubated with the indicated concentrations of DAz-2 or vehicle control for 15 
min at rt.  After DAz-2 labeling, samples were treated with pBiotin (250 µM) or alkyne-biotin (100 
µM) and analyzed by streptavidin-HRP western blot.  Protein loading was assessed by ponceau S 
stain.  c) Decoupled strategy to label protein sulfenic acids with DAz-2 in yeast.  d and e) 
Exponentially growing WT yeast were incubated with the indicated concentrations of DAz-2 for 2 
h at 37 oC.  Excess probe was washed away, extracts were prepared, and DAz-2 modified 
proteins were conjugated with d) alkyne-TAMRA or e) alkyne-biotin and analyzed by d) in-gel 
fluorescence or e) streptavidin-HRP blot.  f) Exponentially growing WT and Pdr5Δ were incubated 
with the indicated concentrations of DAz-2 for 2 h at 37 oC and processed as in (d). 
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low expression of endogenous Gpx3, and the inefficiency of the Staudinger ligation 

reaction.  Our second azido-dimedone probe, DAz-2, is more reactive than DAz-1 34.  

Therefore, we employed DAz-2 to develop a method that was more feasible for the 

detailed investigation of global protein sulfenylation to enhance sensitivity and lessen the 

amount of probe required.  As an additional means to increase detection sensitivity, we 

also used click chemistry to append biotin or TAMRA tags as it is more efficient than 

Staudinger ligation (Figure 3.4b).  

 

DAz-2 and alkyne-biotin or alkyne-TAMRA were used to establish a protocol to profile 

global protein sulfenylation in WT yeast (Figure 3.4c).  We found that DAz-2  detected 

global protein sulfenylation in a dose-dependent manner in WT yeast as monitored by in-

gel fluorescence (Figure 3.4d) and streptavidin-HRP Western blot (Figure 3.4e).  The 

labeling efficiency, however, was far lower than what was routinely detected with 

mammalian cells (e.g. 1:30,000 streptavidin-HRP was required for detection in yeast 

cells whereas 1:50,000 – 1:80,000 is used for mammalian cells) and the results were 

insufficiently reproducible (data not shown).  We additionally assessed the effect of 

exogenous H2O2 and redox modulating compounds on global protein sulfenylation, 

however reproducible increases in protein oxidation were not observed (data not 

shown).  One possible reason for the decreased labeling of protein sulfenic acids in 

yeast and the complications with reproducibility could be due to insufficient probe 

retention.  S. cerevisiae expresses xenobiotic export channels that could be expected to 

influence probe retention 36.  To determine the effect of the exportin channels on the 

observed level of global protein sulfenylation, we used a Pdr5 deletion yeast strain that 

is lacking Pdr5, a multidrug transporter that is involved in the pleiotropic drug response 

36,37.  Unfortunately, deletion of Pdr5 did not appear to have a significant effect on the 

extent of global protein sulfenylation observed with DAz-2 (Figure 3.4f) and also failed 
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to increase the reproducibility of labeling results, suggesting that Pdr5 deletion had no 

effect on probe retention (data not shown).  These collective results show that global 

protein sulfenylation can be detected in yeast using DAz-2.  However, the extent of 

labeling and reproducibility is quite low, which could suggest that protein sulfenylation is 

not a common mechanism for protein regulation in this organism.   Alternatively, and 

perhaps more likely, sulfenic acid probes with enhanced reactivity may be required to 

detect global protein sulfenylation in this organism.     

 

3.4 Conclusion 

The goal of this study was to characterize the redox status of yeast and to profile global 

and targeted protein sulfenylation in response to mutant Ht expression as a function of 

polyQ expansion size.  These studies would have marked the first investigation into a 

correlation between mutant Ht-induced ROS production and protein oxidation in cells.  

To begin these studies, we first needed to establish methods that would allow us to 

characterize ROS production, changes in the redox status of the cellular glutathione pool 

and to reproducibly detect global protein sulfenylation.  We have demonstrated that 

H2DCF-DA and DHE can detect large increases in cellular ROS due to exogenous 

application of ROS or redox modulating compounds.  However, whether H2DCF-DA or 

DHE are sensitive enough to detect the changes in ROS content that are associated 

with expression of mutant Ht of differing polyQ expansions in yeast is unknown.  

Additionally, we were able to establish a protocol to profile global protein sulfenylation in 

yeast, but issues with reproducibility and sensitivity ultimately resulted in the 

discontinuation of these studies.  Since the cessation of this project, a report by Hersch 

and colleagues has demonstrated that cysteine residues in the N-terminal portion of Ht 

are susceptible to oxidative modification when expressed in mammalian cell culture.  

While the specific cysteine oxoform was not identified, oxidation of this N-terminal 
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fragment was shown to delay clearance of soluble Ht protein, which is believed to be the 

toxic species 26.  In this way, cysteine oxidation of Ht appears to increase the burden of 

soluble mutant protein, which could contribute to disease progression.  

 

3.5 Experimental procedures 

 

3.5.1  Strains and growth conditions 

The S. cerevisiae strains WT, Vma2Δ, and Pdr5Δ, which were kind gifts from Prof. Anuj 

Kumar (University of Michigan), are in the BY4742 (MATα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 

can1-100) background and were used in all experiments, with the exception of the Q25, 

Q46, Q72, and Q103 Ht-expressing strains, which were a generous gift from Prof. Jason 

Gestwicki (University of Michigan).  WT, Vma2Δ and Pdr5Δ were grown at 30 oC in YPD 

(1% yeast extracts, 2% bactopeptone, and 2% glucose).  Ht-expressing yeast were 

grown at 30 oC in SC – His media containing 2% glucose.  Induction of Ht protein 

expression for fluorescence microscopy was achieved by growing yeast cultures in 

selective media containing 2% raffinose as the sole carbon source overnight followed by 

growth in SC – His media containing 2% galactose for 25 h.  

 

3.5.2 Fluorescence microscopy 

Yeast were fixed and analyzed by fluorescence microscopy for GFP-tagged Ht proteins 

as previously described 35. 

 

3.5.3 Stock preparation 

All stocks were freshly prepared, unless otherwise indicated.  

Dihydrodichlorofluorescein-diacetate (Sigma) was prepared at 1 mM in DMSO.  

Dihydroethidium (Sigma) was prepared at 100 µM in acetonitrile.  Diamide, a gift from 
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Prof. Ursula Jakob (University of Michigan), was prepared at 1 M in distilled water.  

Menadione (AnaSpec) was prepared at 100 mM in methanol.  DAz-2 and phosphine-

biotin were synthesized and purified as previously described 34. Alkyne-biotin was 

synthesized according to established literature procedures 38.  DAz-2 was prepared in 

DMSO at 250 mM. Phosphine-biotin (pBiotin) and alkyne-biotin were prepared in DMSO 

and alkyne-TAMRA (Invitrogen) was prepared in dimethylformamide at 5 mM.  pBiotin 

stocks were stored in a dessicator at -80 oC whereas DAz-2, alkyne-biotin, and alkyne-

TAMRA stocks were stored at -20 oC.     

 

3.5.4 Intracellular ROS detection with DCF 

Intracellular ROS were measured in a 96-well plate using the fluorescent probe DCF (the 

intracellular product of H2DCF-DA that fluoresces in the presence of ROS, including 

H2O2).  Exponentially growing yeast were resuspended in 50 mM HEPES pH 7.4 and 105 

cells were apportioned to each well.  The cells were pre-loaded with 10 µM H2DCF-DA 

for 15 min at rt and then stimulated with 1 mM H2O2 or vehicle control and incubated for 

an additional 30 min at rt.  After incubation, the intensity of fluorescence was measured 

at 488 nm (excitation) and 525 nm (emission) using a SpectraMax M5 microplate reader 

(Molecular Devices).  

 

3.5.5 Intracellular ROS detection with DHE 

Intracellular ROS were measured in a 96-well plate using the fluorescent probe ethidium 

(the intracellular product of DHE that fluoresces in the presence of radical-based ROS).  

Exponentially growing WT and Vma2Δ yeast (107 cells) were washed with PBS (x 2), 

resuspended in PBS (500 µl) and incubated with 5 µM DHE at 37 oC for 30 min in the 

presence of 1 mM menadione or vehicle control.  Afterwards, the cells were washed with 

PBS (x 2), resuspended in PBS (90 µl), and apportioned to 3 wells.  The intensity of 
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fluorescence was measured at 510 nm (excitation) and 580 nm (emission) using a 

SpectraMax M5 microplate reader (Molecular Devices).  

 

3.5.6 Quantification of glutathione in WT yeast cells.  

Exponentially growing WT yeast were treated with 1.5 mM diamide or vehicle at 30 oC 

for 30 min.  The cells were then harvested in 5% sulfosalicylic acid and lysed by 

mechanical disruption with glass beads.  Levels of total, reduced, and oxidized 

glutathione were measured using the Glutathione Fluorescent Detection kit (Luminos) 

according to the manufacturer’s instructions.  

 

3.5.7  Expression, purification, and labeling of sulfenylated Gpx3 

Cys82Ser Gpx3 was expressed and purified as previously described 35.  Cys82Ser Gpx3 

was previously stored in 50 mM Tris HCl pH 7.4, 300 mM NaCl, 10% glycerol, and 5 mM 

DTT.  DTT was removed from Cys82Ser Gpx3 via spin filtration using P-30 micro 

BioSpin columns (BioRad) pre-equilibrated with Gpx3 buffer (50 mM Tris HCl pH 7.4, 

300 mM NaCl).  50 µM Cys82Ser Gpx3 was treated with 0, 2.5, or 5 mM DAz-2 in the 

presence or absence of 100 µM H2O2 at rt for 15 min.  Excess probe was removed by 

spin filtration as above and DAz-2 modified Cys82Ser Gpx3 was biotinylated and 

analyzed as described below.  After bioorthogonal reactions, the samples were 

quenched by addition of SDS loading dye.  

 

3.5.8 Yeast culture with DAz-2 

Exponentially growing yeast were incubated with DAz-2 (2.5 – 7.5 mM) or DMSO vehicle 

control at 30 oC for 2 h with periodic gentle agitation.  Following treatment, cells were 

collected, and washed with PBS.  Cells were resuspended in triethanolamine lysis buffer 

(50 mM triethanolamine pH 7.4, 150 mM NaCl, 1x yeast protease inhibitor cocktail 
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(Sigma), 40 µM chymostatin) and lysates were generated by mechanical disruption with 

glass beads.  The protein concentration of the lysates was determined by the Bradford 

assay (BioRad). 

 

3.5.9 Bioorthogonal chemistries 

DAz-2 modified Gpx3 was conjugated to biotin via Staudinger ligation with phosphine 

biotin (p-Biotin; 250 µM) for 2 h at 37 °C as previously described35 or via click chemistry 

with alkyne-biotin (100 µM alkyne-biotin, 1 mM TCEP, 100 µM TBTA, 1 mM CuSO4) for 

1 h at rt.  Lysates (20 – 50 µg) generated from DAz-2 treated cells were conjugated to 

biotin or TAMRA via click chemistry (100 µM alkyne-biotin or alkyne-TAMRA, 1 mM 

TCEP, 100 µM TBTA, 1 mM CuSO4) for 1 h at rt.   Reactions with alkyne-TAMRA were 

performed in the dark.  Afterwards, the reactions were quenched by methanol 

precipitation and the resulting protein pellets were resuspended in SDS sample loading 

dye.  

 

3.5.10 Western blot and in-gel fluorescence analyses 

Protein samples were subjected to SDS-PAGE and Western blot analyses as previously 

described 32,35.  Briefly, biotinylated proteins were detected by blocking the PVDF 

membrane with 3% BSA in Tris-buffered saline Tween-20 (TBST) for 1 h at rt, washing 

with TBST (3 x 5 min) and incubating with 1:25,000 – 1:30,00 streptavidin-HRP (GE 

Healthcare) in TBST for 1 h at rt.  Western blots were developed with 

chemiluminescence (GE Healthcare ECL Plus Western Blot Detection System) and 

imaged on a Typhoon 9410.  In-gel fluorescence of SDS-PAGE gels was imaged using 

the TAMRA settings on a Typhoon 9410.    



74 

 3.6 References 

1 D'Autreaux, B. & Toledano, M. B. ROS as signalling molecules: mechanisms that 
generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol 8, 813-824 
(2007). 

2 Paulsen, C. E. & Carroll, K. S. Orchestrating redox signaling networks through 
regulatory cysteine switches. ACS Chem Biol 5, 47-62 (2010). 

3 Rhee, S. G. Cell signaling. H2O2, a necessary evil for cell signaling. Science 
312, 1882-1883 (2006). 

4 Stone, J. R. & Yang, S. Hydrogen peroxide: a signaling messenger. Antioxid 
Redox Signal 8, 243-270 (2006). 

5 Andersen, J. K. Oxidative stress in neurodegeneration: cause or consequence? 
Nat Med 10 Suppl, S18-25 (2004). 

6 Klaunig, J. E. & Kamendulis, L. M. The role of oxidative stress in carcinogenesis. 
Annu Rev Pharmacol Toxicol 44, 239-267 (2004). 

7 Lowell, B. B. & Shulman, G. I. Mitochondrial dysfunction and type 2 diabetes. 
Science 307, 384-387 (2005). 

8 A novel gene containing a trinucleotide repeat that is expanded and unstable on 
Huntington's disease chromosomes. The Huntington's Disease Collaborative 
Research Group. Cell 72, 971-983 (1993). 

9 Landles, C. & Bates, G. P. Huntingtin and the molecular pathogenesis of 
Huntington's disease. Fourth in molecular medicine review series. EMBO Rep 5, 
958-963 (2004). 

10 Oliveira, J. M. et al. Mitochondrial dysfunction in Huntington's disease: the 
bioenergetics of isolated and in situ mitochondria from transgenic mice. J 
Neurochem 101, 241-249 (2007). 

11 Solans, A., Zambrano, A., Rodriguez, M. & Barrientos, A. Cytotoxicity of a mutant 
huntingtin fragment in yeast involves early alterations in mitochondrial OXPHOS 
complexes II and III. Hum Mol Genet 15, 3063-3081 (2006). 

12 Gu, M. et al. Mitochondrial defect in Huntington's disease caudate nucleus. Ann 
Neurol 39, 385-389 (1996). 

13 Trushina, E. & McMurray, C. T. Oxidative stress and mitochondrial dysfunction in 
neurodegenerative diseases. Neuroscience 145, 1233-1248 (2007). 

14 Butterfield, D. A. & Kanski, J. Brain protein oxidation in age-related 
neurodegenerative disorders that are associated with aggregated proteins. Mech 
Ageing Dev 122, 945-962 (2001). 

15 Klepac, N. et al. Oxidative stress parameters in plasma of Huntington's disease 
patients, asymptomatic Huntington's disease gene carriers and healthy subjects : 
a cross-sectional study. J Neurol 254, 1676-1683 (2007). 

16 Emerit, J., Edeas, M. & Bricaire, F. Neurodegenerative diseases and oxidative 
stress. Biomed Pharmacother 58, 39-46 (2004). 

17 Duennwald, M. L., Jagadish, S., Muchowski, P. J. & Lindquist, S. Flanking 
sequences profoundly alter polyglutamine toxicity in yeast. Proc Natl Acad Sci U 
S A 103, 11045-11050 (2006). 

18 Krobitsch, S. & Lindquist, S. Aggregation of huntingtin in yeast varies with the 
length of the polyglutamine expansion and the expression of chaperone proteins. 
Proc Natl Acad Sci U S A 97, 1589-1594 (2000). 

19 Milgrom, E., Diab, H., Middleton, F. & Kane, P. M. Loss of vacuolar proton-
translocating ATPase activity in yeast results in chronic oxidative stress. J Biol 
Chem 282, 7125-7136 (2007). 



75 

20 Fink, B. et al. Detection of intracellular superoxide formation in endothelial cells 
and intact tissues using dihydroethidium and an HPLC-based assay. Am J 
Physiol Cell Physiol 287, C895-902 (2004). 

21 Dansen, T. B. et al. Redox-sensitive cysteines bridge p300/CBP-mediated 
acetylation and FoxO4 activity. Nat Chem Biol 5, 664-672 (2009). 

22 Fomenko, D. E. et al. Thiol peroxidases mediate specific genome-wide regulation 
of gene expression in response to hydrogen peroxide. Proc Natl Acad Sci U S A 
108, 2729-2734 (2011). 

23 Klomsiri, C., Karplus, P. A. & Poole, L. B. Cysteine-based redox switches in 
enzymes. Antioxid Redox Signal 14, 1065-1077 (2011). 

24 Weerapana, E. et al. Quantitative reactivity profiling predicts functional cysteines 
in proteomes. Nature 468, 790-795 (2010). 

25 Winterbourn, C. C. & Hampton, M. B. Thiol chemistry and specificity in redox 
signaling. Free Radic Biol Med 45, 549-561 (2008). 

26 Fox, J. H. et al. Cysteine oxidation within N-terminal mutant huntingtin promotes 
oligomerization and delays clearance of soluble protein. J Biol Chem 286, 18320-
18330 (2011). 

27 Landles, C. et al. Proteolysis of mutant huntingtin produces an exon 1 fragment 
that accumulates as an aggregated protein in neuronal nuclei in Huntington 
disease. J Biol Chem 285, 8808-8823 (2010). 

28 Fox, J. H. et al. Mechanisms of copper ion mediated Huntington's disease 
progression. PLoS One 2, e334 (2007). 

29 Ramirez, D. C., Mejiba, S. E. & Mason, R. P. Copper-catalyzed protein oxidation 
and its modulation by carbon dioxide: enhancement of protein radicals in cells. J 
Biol Chem 280, 27402-27411 (2005). 

30 Charles, R. L. et al. Protein sulfenation as a redox sensor: proteomics studies 
using a novel biotinylated dimedone analogue. Mol Cell Proteomics 6, 1473-1484 
(2007). 

31 Poole, L. B. et al. Fluorescent and affinity-based tools to detect cysteine sulfenic 
acid formation in proteins. Bioconjug Chem 18, 2004-2017 (2007). 

32 Reddie, K. G., Seo, Y. H., Muse III, W. B., Leonard, S. E. & Carroll, K. S. A 
chemical approach for detecting sulfenic acid-modified proteins in living cells. Mol 
Biosyst 4, 521-531 (2008). 

33 Seo, Y. H. & Carroll, K. S. Facile synthesis and biological evaluation of a cell-
permeable probe to detect redox-regulated proteins. Bioorg Med Chem Lett 19, 
356-359 (2009). 

34 Leonard, S. E., Reddie, K. G. & Carroll, K. S. Mining the thiol proteome for 
sulfenic acid modifications reveals new targets for oxidation in cells. ACS Chem 
Biol 4, 783-799 (2009). 

35 Paulsen, C. E. & Carroll, K. S. Chemical dissection of an essential redox switch 
in yeast. Chem Biol 16, 217-225 (2009). 

36 Sipos, G. & Kuchler, K. Fungal ATP-binding cassette (ABC) transporters in drug 
resistance & detoxification. Curr Drug Targets 7, 471-481 (2006). 

37 Lamping, E. et al. Characterization of three classes of membrane proteins 
involved in fungal azole resistance by functional hyperexpression in 
Saccharomyces cerevisiae. Eukaryot Cell 6, 1150-1165 (2007). 

38 Zhao, X. Z. et al. Biotinylated biphenyl ketone-containing 2,4-dioxobutanoic acids 
designed as HIV-1 integrase photoaffinity ligands. Bioorg Med Chem 14, 7816-
7825 (2006). 

 
 



76 

Chapter 4 

 

Protein sulfenylation goes global: Probing intracellular targets 

of hydrogen peroxide produced for growth factor signaling 

4.1  Abstract 

Since its discovery, protein sulfenylation (–SOH) has been studied almost exclusively in 

the context of peroxide metabolism, oxidative stress and biomolecular damage.  With the 

identification of new classes of sulfenylated proteins and associated enzyme reducing 

systems, the regulatory power of this modification is now coming to the fore.  However, 

investigating the biological role of sulfenylation still poses a major challenge, particularly 

within complex biological environments.  Herein, we report the design and synthesis of 

DYn-2, a new alkyne-functionalized probe for detecting cellular sulfenic acids with 

improved sensitivity.  After establishing the utility of DYn-2 in prototype systems we 

show, for the first time, that hydrogen peroxide (H2O2) produced by growth factor 

stimulation leads to dynamic and global changes in protein sulfenylation in cells.  

Furthermore, we identify the epidermal growth factor receptor (EGFR) as a new and 

sensitive target of endogenous H2O2 generation, and provide evidence for proximity-

based thiol oxidation vis-à-vis growth factor-dependent association of the receptor and 

the NADPH oxidase, Nox2.  The site of EGFR oxidation was directly mapped to active 

site Cys797 and functional studies show that H2O2 modulates intrinsic receptor tyrosine 

kinase activity, indicating that sulfenylation as well as phosphorylation regulate EGFR 

function.  These results shed new light on the molecular mechanisms that underlie redox 
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signaling pathways and also have implications for irreversible inhibitors that target 

oxidant-sensitive cysteine residues in kinases and other therapeutically important 

proteins. 

 

4.2  Introduction 

H2O2 is a source of oxidative stress, but also acts as an essential second messenger in 

signal transduction networks of normal healthy cells, wherein growth factors, cytokines 

and a variety of other ligands trigger production of hydrogen peroxide (H2O2) through 

activation of their corresponding receptors1-3.  Indeed, H2O2 has been demonstrated to 

regulate many basic cellular processes including proliferation, differentiation, growth, 

migration, and survival.  For instance, binding of epidermal growth factor (EGF) to the 

extracellular domain of the EGF receptor (EGFR) results in the assembly and activation 

of NADPH oxidase (Nox) complexes, which generate H2O2
4,5. Once formed, peroxide 

modulates signaling cascades by reaction with specific biomolecular targets (Figure 

4.1a).  

 

There is now a wealth of evidence indicating that protein cysteine residues are sensitive 

and critical targets of H2O2, both by direct oxidation and vis-à-vis thiol peroxidases6-11.  

The product of the direct reaction between H2O2 and a protein thiolate (–S–) is sulfenic 

acid (–SOH).  Sulfenylation is reversible (either directly or indirectly by disulfide 

formation) and affords a mechanism in which changes in cellular redox state can be 

exploited to regulate protein function, analogous to phosphorylation12-14.  Recent studies 

shed new light on the role of sulfenic acid and also expanded the repertoire of proteins 

that can undergo sulfenylation15-21, hinting at the regulatory potential and significance of 

these modifications.  However, the scope of protein sulfenylation in complex biological 

processes, particularly in mammalian signal transduction, remains virtually unknown.  
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Investigating the functional role of protein sulfenylation still poses a major challenge, 

particularly within complex biological environments.  To this end, we have developed 

DYn-2, a new alkyne-functionalized probe for detecting cellular sulfenic acids with 

improved sensitivity.  After establishing its utility in prototype systems, we used this new 

 
 
Figure 4.1. Cellular redox status affects epidermal growth factor (EGF)-mediated signaling.  (a) 
Ligand binding to epidermal growth factor receptors (EGFRs) and their subsequent dimerization induces 
receptor auto-phosphorylation by the intrinsic tyrosine kinase activity on specific residues in the 
cytoplasmic domain.  The phosphorylated sites serve as docking sites for various proteins involved in 
the activation and regulation of key prosurvival pathways, such as PI3K/AKT and RAS/ERK.  Receptor-
ligand interaction also results in activation of the Nox family of NADPH oxidases (not shown), which in 
turn stimulates the production of ROS and oxidation of intracellular biomolecules, leading to modulation 
of the signaling cascade.  Protein targets of growth factor-induced ROS are generally implied from 
studies in complex lysates or recombinant proteins and, to date, have not been detected directly in cells.  
(b) Confocal fluorescence image of A431 cells before (T0) and after 100 ng/ml EGF stimulation for 2, 15, 
30, and 60 min (labeled as T1, T2, T3, and T4, respectively).  Cells were fixed and stained as described 
in Methods with rabbit anti-EGFR antibody (2 µg/ml) followed by Alexa594-conjugated (red) goat anti-
rabbit secondary antibody (1:1000).  White arrows highlight changes in receptor localization (T0, plasma 
membrane; T1, membrane ruffles; T2, regions of cell stretching and migration; T3, perinuclear and 
endosomal membranes; T4, plasma membrane and ruffles).  Nuclei were counterstained with DAPI 
(blue).  (c) EGF-induced ROS generation in A431 cells as revealed by DCF fluorescence.  A431 cells 
were stimulated with 500 ng/ml EGF or vehicle for 5 min, after which the generation of intracellular ROS 
was measured by DCF fluorescence as described in Methods.  Where indicated, A431 cells were treated 
with 10 µM gefitinib, 1 µM afatinib, 100 µM apocynin, 100 µM wortmannin or 100 µM L-NAME for 25 min 
or 20 mM NAC for 10 min before EGF stimulation.  Data were normalized to the vehicle control and error 
bars show ± s.e.m.  Statistical analysis was by a two-tailed Student's t test; ** indicates that P < 0.001, * 
indicates that P < 0.05 when compared against EGF-only treated cells.  (d-f) Western blots showing 
phosphorylated (p) and total EGFR, AKT, and/or ERK.  Phospho-antibodies recognize EGFR pY1068, 
AKT pS473, or ERK pT185/pY187.  Note that the ERK1 and ERK2 isoforms (44 and 42 kDa, 
respectively) appear as a single band on the SDS-PAGE gradient gels.  A431 cells were stimulated with 
the indicated concentrations of EGF or H2O2 or vehicle for 5 min (d), or stimulated with 100 ng/ml EGF 
or vehicle for 5 min (e,f).  Where specified, cells were treated with the indicated concentrations of PEG-
catalase for 30 min (e), or apocynin for 25 min (f) prior to EGF stimulation.  Gefitinib treatment was 
performed as in c.  pEGFR, pAKT, and/or pERK were analyzed from whole-cell lysates, and blots were 
stripped and reprobed for total protein as loading controls. 
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probe to show that EGFR-mediated generation of H2O2 is accompanied by dynamic and 

global changes in protein sulfenylation.  We then demonstrate that protein tyrosine 

phosphatases (PTPs), which are important regulators of mitogenic signaling, undergo 

differential, EGF-dependent sulfenylation in cells.  Furthermore, we identify EGFR as a 

new and sensitive target of endogenous H2O2 production, mediated by EGF-dependent 

association with Nox2.  The site of EGFR oxidation was directly mapped to active site 

Cys797 and biochemical studies show that low levels of H2O2 can modulate intrinsic 

kinase activity, affording the first evidence that sulfenylation as well as phosphorylation 

can directly regulate receptor tyrosine kinase (RTK) function. 

 

4.3  Results 

 

4.3.1  EGF stimulation modulates cell morphology and EGFR trafficking 

To investigate events after the interaction of EGF with its cell surface receptor we used 

the human epidermoid carcinoma A431 cell line, which naturally expresses high levels of 

EGFR.  As shown by phase contrast microscopy, EGF stimulation induced rapid 

changes in cell shape and architecture (Appendix 4.6.1).  Membrane ruffling was 

observed within 2 minutes; however, this activity subsided within 15 minutes, followed by 

retraction and regrowth.  Next, we used immunofluorescence to determine whether 

EGF-dependent changes in cell morphology coincided with EGFR mobilization (red, 

Figure 4.1b).  EGFR localized to the plasma membrane without EGF stimulation and 

concentrated at sites of membrane ruffling within two minutes of mitogen treatment.  

Fifteen minutes after EGF exposure, peripheral staining of EGFR had decreased and, by 

thirty minutes, the majority had accumulated in punctate foci throughout the peripheral 

cytoplasm.  After one hour, some internalized receptors had recycled back to the plasma 

membrane.  These data show that EGF stimulation leads to dramatic changes in A431 
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cell morphology and EGFR subcellular localization, consistent with 

immunohistochemistry and cryo-electron microscopy analysis22,23, setting the stage to 

probe ROS-mediated signal transduction, as detailed below. 

 

4.3.2  Cellular redox status affects EGF-mediated signaling in A431 cells 

Although aspects of redox signaling have been studied in A431 cells, there is 

surprisingly limited data regarding the relationship between ROS and phosphorylation of 

major downstream receptor targets or EGFR inhibitors and thus, we first characterized 

these fundamental properties.  Intracellular generation of ROS was measured using the 

conversion of the oxidant-sensitive probe 2’,7’-dihydro-dichlorofluorescin diacetate 

(H2DCF-DA) to fluorescent product DCF.  Coincident with membrane ruffling, EGF-

stimulated A431 cells exhibited an increase in DCF fluorescence intensity (Figure 4.1c).  

Moreover, reversible and irreversible inhibitors of EGFR (gefitinib and afatinib, 

respectively), Nox (apocynin), PI3K (wortmannin), and the antioxidant NAC (Appendix 

4.6.2) attenuated EGF-dependent ROS generation.  Control experiments with the NO 

synthase inhibitor, L-NAME, showed no significant impact on ROS levels (Figure 4.1c).  

These experiments support and extend seminal studies reported by Rhee and Chang4,24 

indicating that EGF-dependent ROS production requires EGFR and Nox activation.  

 

We then investigated the effect of exogenously added H2O2 on the phosphorylation of 

EGFR and downstream signaling targets, AKT and ERK.  ROS differentially modulates 

the activity of these downstream pathways in several cell types, including endothelial 

cells and neural progenitor cells25-28; however, this phenomenon has not been well 

characterized in A431 cells.  Figure 4.1d (right panel) shows that treatment with H2O2 in 

the absence of EGF was sufficient to trigger a dose-dependent increase in 

phosphorylation of EGFR, consistent with prior studies29,30.  Additionally, we found that 
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exogenous H2O2 increased AKT and ERK phosphorylation.  Control experiments 

showed that all three signaling proteins were phosphorylated in response to EGF and 

that EGFR or PI3K inhibitors attenuated this effect (left panel, Figure 4.1d and 

Appendix 4.6.3a).  Having established that exogenous H2O2 mimics EGF by inducing 

phosphorylation of EGFR and downstream signaling factors, we next examined the role 

of endogenous H2O2.  Scavenging EGF-induced generation of H2O2 with PEG-catalase 

suppressed EGFR autophosphorylation (Figure 4.1e), global protein tyrosine 

phosphorylation, and AKT/ERK activation (Appendix 4.6.3b and c); similar modulatory 

effects were observed with NAC supplementation (Appendix 4.6.3d and e).  Apocynin 

and DPI treatment inhibited EGFR, AKT, and ERK phosphorylation, whereas L-NAME 

had no apparent effect on these signaling pathways (Figure 4.1f and Appendix 4.6.3f 

and g).  Collectively, these data underscore the importance of endogenous H2O2 

production for EGFR signaling as a result of Nox activation in A431 cells. 

 

Protein sulfenic acids are detected with high selectivity by reaction with the cyclic β-

diketone, known as dimedone31-33 (Figure 4.2a).  The requirement for sulfenic acid 

formation in yeast H2O2 sensing18 and T-cell activation17 has been demonstrated by 

inhibition with dimedone, which blocks oxidation or reduction of sulfenic acid-modified 

proteins through covalent modification.  To investigate this issue in growth factor 

signaling, A431 cells were incubated with EGF in the presence of increasing 

concentrations of dimedone.  In the absence of dimedone, addition of EGF triggered 

phosphorylation of EGFR and effectors, while preincubation with dimedone resulted in 

dose-dependent inhibition (Appendix 4.6.3h).  Treatment of cells with dimedone did not 

decrease H2DCF-DA oxidation following activation (data not shown).  Therefore, 

treatment of cells with dimedone, a small-molecule that reacts irreversibly with protein  

 



82 

 

 
 
Figure 4.2. Development and validation of DYn-2 probe for detecting sulfenic acid.  (a) Chemoselective reaction 
between sulfenic acid and the cyclic β-diketone, known as dimedone.  (b) Design and synthesis of DYn-2 (2).  LDA, 
lithium diisopropylamide; HMPA, hexamethyl phosphoramide; 5-iodopent-1-yne.  (c) Comparison of DAz-2 and DYn-2 
detection of sulfenic acid in recombinant Gpx3.  50 µM protein was untreated or exposed to 100 µM H2O2 and 
incubated in presence or absence of 1 mM probe for 15 min at 37 °C.  Labeled proteins were then conjugated to azide-
biotin (Az-Biotin) or alkyne-biotin (Alk-biotin) via copper(I)-catalyzed azide-alkyne [3+2] cycloaddition (click chemistry), 
separated by SDS-PAGE, and detected by streptavidin-HRP western blot, as described in Methods.  Comparable 
protein loading was confirmed by reprobing the Western blot with anti-His tag antibody.  (d) MS/MS analysis using 
collision-induced dissociation (CID) of the precursor ion m/z 551.52 [M + 2H – H2O]+2 corresponding to DYn-2-tagged 
peptide (C*GFTPQYK) derived from trypsin digest of Gpx3.  (e) Bioorthogonal chemical reporter strategy to label 
sulfenylated proteins in cells and their subsequent detection using click chemistry and streptavidin-HRP Western blot.  
(f,g) Western blots showing DAz-2 and DYn-2 detection of protein sulfenic acids in cultured mammalian cells and total 
GAPDH.  In (f), HeLa cells were incubated with 5 mM probe or vehicle for 2 h at 37 °C.  In (g), A431 cells were 
stimulated with 100 ng/ml EGF or vehicle for 5 min, washed, collected as described in Methods, and then incubated 
with 5 mM probe or vehicle for 1 h at 37 °C.  (f,g) Following probe treatment, cells were washed and harvested in 
modified RIPA buffer (50 mM triethanolamine, pH 7.4, 150 mM NaCl, 1% NP-40, 1% sodium deoxycholate, 0.1% SDS) 
supplemented with protease inhibitors and 200 U/ml catalase as described in Methods.  Azide- or alkyne-tagged 
proteins in whole-cell lysate were biotinylated via click chemistry, and detected as in c.  Astericks denote endogenously 
biotinylated proteins. 
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sulfenic acids, decreased EGFR tyrosine phosphorylation and subsequent activation of 

signaling pathways, suggesting that cysteine oxidation is critical for this process.  

 

4.3.3  Synthesis and evaluation of alkyne chemical reporters for protein sulfenic 

acid 

Although H2O2 is an essential second messenger that modulates signaling pathways, 

the scope and identity of cellular protein targets of peroxide remains largely unknown.  

Selective reaction with dimedone has been used to detect sulfenic acids in cell lysates 

through direct conjugation of the β-diketone warhead to biotin or fluorophores15,34.  

Recently, we have shown that functionalizing dimedone with a small azide chemical 

handle enables trapping of sulfenic acid-modified proteins directly in cells16,35,36.  A key 

feature of this approach is that it preserves structural integrity and redox potentials 

between different subcellular compartments37.  Our first probe, DAz-1, combined the 1,3-

cyclohexadione nucleophile and an azide group installed at position 5 via an amide 

linkage35,36.  Studies with this azide derivative, in conjunction with Staudinger ligation or 

click chemistry for bioconjugation to affinity and detection reagents, showed utility for 

visualizing cellular sulfenylation.  In our next probe, DAz-2, we replaced the amide bond 

by a short alkyl azide linker at the 4-position16.  This reagent exhibited enhanced potency 

compared to DAz-1, enabling identification of sulfenylated proteins in resting HeLa 

cells16 and elucidation of a protein system in the bacterial periplasm that protects single 

cysteines from hyperoxidation38.  

 

Previous studies demonstrate that alkynyl-chemical reporters in combination with azide-

bearing detection tags offer improved sensitivity compared to the reverse orientation, 

due to decreased background signal39-42.  In view of these observations, we sought to 

determine whether the orientation of the azide and alkyne partners could be reversed.  
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Toward this end, we designed and synthesized the alkyne-modified 1,3-cyclohexadione 

analogs, DYn-1 (4) and DYn-2 (2) (Figure 4.2b and Appendix 4.6.2).  The synthesis 

began with ethyl protection of the reactive diketone.  Alkylation of 3-ethoxy-cyclohex-2-

enone at position 4 with 3-bromopropyne proceeded smoothly, owing to the activated 

nature of the alpha carbon; however, poor yields were obtained for longer bifunctional 

haloalkyl linkers (~20%).  This difficulty was also encountered, but not overcome, in the 

synthesis of DAz-2 and related analogs16,34.  A variety of bases and additives were 

evaluated to increase the efficiency of alkylation (data not shown).  After much 

experimentation, we found that the addition of anhydrous zinc chloride and the cyclic 

urea DMPU resulted in a moderate improvement in yield; however, this necessitated 

cumbersome protection and deprotection of the terminal alkyne.  To overcome the issue 

of poor reactivity, we examined monoalkylation of the dianion generated from 1,3-

cyclohexadione.  Using this method, we were able to prepare DYn-2 without protecting 

groups in a single step from commercially available materials in 96% yield (Figure 4.2b).   

 

With DYn-1 and DYn-2 in hand, we performed comparative studies to determine their 

utility for detecting protein sulfenic acid modifications alongside DAz-2.  To this end, we 

used a recombinant thiol peroxidase from budding yeast, known as Gpx3, with an active 

site cysteine (Cys36) that is readily oxidized to sulfenic acid18.  In these experiments, 

Gpx3 was exposed to H2O2 or untreated, and then reacted with DYn-1, DYn-2, DAz-2 or 

vehicle control.  Following treatment, excess probe was removed by spin filtration, and 

reporter-tagged Gpx3 was coupled to azide- or alkyne-biotin (Appendix 4.6.2) via click 

chemistry.  Analysis by streptavidin-HRP Western blot revealed robust, H2O2-dependent 

labeling of Gpx3 by DYn-2, with a slightly increased intensity relative to DAz-2 (Figure 

4.2c).  In contrast, DYn-1 displayed significantly reduced labeling, as compared to DYn-

2 and DAz-2 (data not shown).  Model chemical reactions indicated a decrease in click 
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reaction yield, likely due to steric hindrance around the reactive site.  As a result, DYn-1 

was not pursued further.  Control reactions performed in the absence of probe showed 

no detectable signal by Western blot (Figure 4.2c).  Next, we verified the nature of the 

covalent adduct formed between oxidized Gpx3 and DYn-2 by electrospray ionization 

mass spectrometry (ESI-MS).  ESI-LC/MS analysis of intact protein afforded a single 

major species with a molecular weight of 22916.39 Da, consistent with a single DYn-2 

adduct (Appendix 4.6.4a).  Detailed analysis of trypsin cleavage products from this 

reaction by ESI-LC/MS/MS definitively confirmed Gpx3 Cys36 as the site of DYn-2 

modification from the doubly-charged peptide ion at m/z 551.52 corresponding to H2N-C-

(2)GFTPQYK-OH (Figure 4.2d).  Upon inspection, the expected series of b and y-ions 

of this sequence matched nicely to the major fragment ions in the spectrum.  Overall, 

Western blot analysis as well as intact protein measurement and proteolytic 

fragmentation characterization MS approaches confirm that DYn-2 selectively targets 

protein sulfenic acid modifications. 

 

4.3.4  Validation of DYn-2 for detecting protein sulfenylation in cell culture 

Having confirmed the reactivity of DYn-2 with a prototype protein in vitro, we next 

evaluated the ability of this reagent to detect protein sulfenylation in cultured cells using 

the approach outlined in Figure 4.2e.  Briefly, HeLa or A431 cells were incubated with 

DYn-2, DAz-2, or vehicle control.  After treatment, cells were washed thoroughly to 

remove excess probe, lysed and tagged proteins were conjugated to azide- or alkyne-

biotin under click chemistry conditions.  Streptavidin-HRP Western blot analysis showed 

the existence of sulfenylated proteins in HeLa and A431 cells (Figure 4.2f and g).  The 

qualitative profile of DYn-2 labeling was similar to DAz-2, suggesting that the probes 

reacted with the same protein targets.  Notably, the total signal from DYn-2 cell labeling 

was greater than the signal from DAz-2 under identical conditions (Appendix 4.6.5a), 
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and the signal ratio between EGF-stimulated and unstimulated A431 cells was almost 

40% greater for DYn-2 (Appendix 4.6.5a, right panel), which may facilitate detection of 

sulfenic acid modifications in low-abundance signaling proteins.   

 

DYn-2 detection of sulfenylated proteins in A431 cells was EGF-responsive (Figure 

4.2g), and dependent on probe dose and time of incubation (Appendix 4.6.5b and c).  

Controls performed with or without catalase in lysis buffer further confirmed that DYn-2 

labeling did not occur post cell disruption (Appendix 4.6.5d).  Furthermore, 

phosphorylation of EGFR and downstream targets was unaffected by DYn-2 addition to 

cells, before or after EGF treatment (Appendix 4.6.3h,i).  The lack of inhibition by DYn-2 

contrasts that observed for dimedone and may be rationalized in terms of decreased 

reactivity inherent to certain 4- and 5-functionalized analogs16,34.  Lastly, probe-treated 

cells showed no loss of viability and maintained normal redox homeostasis relative to 

vehicle control (Appendix 4.6.6).  Taken together, these results validate DYn-2 as a 

robust chemical reporter for protein sulfenylation in cells and provide further support for 

our general approach of tagging oxidized proteins in situ.  

 

4.3.5  DYn-2 reveals that A431 cells exhibit dynamic protein sulfenylation in 

response to EGF stimulation 

The preceding studies reveal growth factor-dependent changes in cellular protein 

sulfenylation (Figure 4.2g).  This observation is the first of its kind and thus, we 

investigated this discovery in greater detail.  Addition of EGF to A431 cells increased 

intracellular ROS (Figure 4.3a) and protein sulfenylation (Figure 4.3b and c) in a dose-

dependent manner; the maximal increase in sulfenic acid modification was apparent at 

100 ng/ml EGF, which fell to the basal level at 500 ng/ml.  ROS generation (Figure 4.3d) 

and protein sulfenylation (Figure 4.3e and f) were also dynamic temporal events,  
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Figure 4.3. Profiling EGF-mediated ROS production and global protein sulfenylation in A431 cells.  
A431 cells were incubated with EGF at the indicated concentrations (a, b) or for the indicated times (d,e).  
In (a), A431 cells were stimulated with EGF or vehicle for 5 min, after which intracellular ROS was 
measured by DCF fluorescence.  In (b), A431 cells were stimulated with EGF or vehicle for 2 min and 
sulfenic acids were detected by streptavidin-HRP Western blot as in Figure 4.2g.  (c) Densitometric 
quantification of each electrophoretic lane in b to analyze the total amount of protein sulfenylation.  In (d), 
A431 cells were stimulated with 500 ng/ml EGF or vehicle, after which the generation of ROS was 
measured by DCF fluorescence.  In (e), A431 cells were stimulated with 100 ng/ml EGF or vehicle and 
sulfenic acids were detected as in b.  (f) Densitometric quantification of each electrophoretic lane in f to 
analyze the total amount of protein sulfenylation.  Western blots were reprobed for GAPDH as loading 
controls.  (b,e) Filled circles denote endogenously biotinylated proteins.  Error bars show ± s.e.m.  
Statistical analysis was by a two-tailed Student's t test; *** indicates that P < 0.001, ** indicates that P < 
0.01, and * indicates that P < 0.05 as compared against vehicle control.  (g) Confocal fluorescence images 
of sulfenylation in A431 cells before (T0) and after stimulation with 100 ng/mL EGF for 0.5, 1, 1.5, or 2 min, 
then treated with 5 mM dimedone for 5 min at 37 °C in EGF-containing media; the total time of exposure to 
EGF was 5.5, 6, 6.5 and 7 min (identified as T1, T2, T3, and T4, respectively).  Cells were fixed and 
stained as described in Methods with rabbit anti-2-thiodimedone antibody (1:3000) followed by Alexa594-
conjugated (red) goat anti-rabbit secondary antibody (1:1000).  Nuclei were counterstained with DAPI 
(blue).  In (h), A431 cells were stimulated with 100 ng/mL EGF or vehicle for 0.5 min, then treated with 5 
mM dimedone for 5 min at 37 °C in EGF-containing media.  Cells were fixed as in g and double stained 
with rabbit anti-2-thiodimedone antibody (1:3000) and PE-conjugated (red) mouse anti-Nox2 antibody 
followed by Alexa488-conjugated (green) goat anti-rabbit secondary antibody (1:1000).  The merged image 
reveals partial co-localization (yellow). 
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peaking 5 min after EGF (100 ng/ml) stimulation and declining thereafter.  EGF-

dependent protein sulfenylation was then imaged by immunofluorescence microscopy 

using an antibody that recognizes the thio-dimedone adduct (Figure 4.3g)20.  

Unstimulated cells exhibited low intracellular fluorescence (T0, Figure 4.3g).  Treatment 

with EGF markedly increased the signal intensity (T1, Figure 4.3g) with a peak at 6 min 

(T2, Figure 4.3g) that decayed over time (T3/T4, Figure 4.3g), whereas control samples 

omitting the primary antibody showed no specific signal (Appendix 4.6.7a), further 

highlighting the dynamic nature of growth factor-mediated protein sulfenylation.  The 

apparent 1 min difference between the peak of sulfenylation levels observed by Western 

blot (and of ROS levels by DCF; Figure 4.3d-f) and immunofluorescence analyses 

(Figure 4.3g) is most likely related to minor variations in sample handling that are 

inherent to each assay procedure (see Methods and Supplementary Methods).  We then 

investigated the effect of EGFR inhibitors and redox modulating agents on global protein 

sulfenylation levels.  Treatment with reversible (gefitinib) and irreversible (afatinib, 

canertinib, and pelitinib) EGFR inhibitors, PEG-catalase, NAC, wortmannin, apocynin, 

but not L-NAME, attenuated protein sulfenylation (Appendix 4.6.8a-d).  Taken together, 

these data show that EGF-stimulated generation of H2O2 leads to global changes in 

protein sulfenylation. 

 

4.3.6  Nox is an important source of ROS in stimulated A431 cells 

The foregoing experiments indicate that Nox activity is important for production of H2O2 

and global protein sulfenylation during EGF signaling.  There are seven known isoforms 

of Nox (Nox1-5 and Duox1 and 2) that exhibit unique activation mechanisms and tissue-

specific expression43.  To determine which Nox isoforms are present in A431 cells we 

used Western blotting and immunofluorescence, in combination with a panel of isoform-

specific and selective antibodies.  In aggregate, these studies show that Nox2 is the 
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most abundant isoform, in conjunction with very low levels of Nox1, Nox4, and Nox5 

(see Appendix 4.6.9a and b for representative data).  Because proteins in the vicinity of 

Nox are prime targets for oxidation, we wondered whether Nox2 might colocalize with 

sites of protein sulfenylation.  To test this possibility, A431 cells were stimulated with 

EGF or vehicle, fixed and then costained with antibodies against Nox2 and the thio-

dimedone adduct.  Immunofluorescence of Nox2 (red, Figure 4.3h) indicates distribution 

at the plasma membrane and perinuclear area, similar to other cell types44,45.  

Immunofluorescence labeling of an extracellular Nox2 epitope under nonpermeabilized 

conditions also confirmed its plasma membrane association (Appendix 4.6.7b).  Protein 

sulfenylation (green, Figure 4.3h) increased with EGF stimulation and, remarkably, the 

merged image reveals abundant colocalization with Nox2 (yellow, Figure 4.3h).  These 

findings indicate that Nox2 is the major isoform in A431 cells and its distribution shows 

overlapping regions with EGF-dependent protein sulfenylation. 

 

4.3.7  Differential sulfenylation of protein tyrosine phosphatases (PTPs) in A431 

cells stimulated with EGF 

Having established that EGF-induced H2O2 generation results in dynamic, global protein 

sulfenylation we next sought to identify potential targets of H2O2 within the EGFR 

pathway.  Along these lines, we noted that growth factor-induced ROS generation has 

been attributed to oxidation and inactivation of an essential active site cysteine in protein 

tyrosine phosphatases (PTPs), which would promote signaling.  This model is supported 

by seminal work from Rhee and others vis-à-vis alkylation and enzyme activity studies in 

cell lysates17,46-49.  However, the reaction between H2O2 and PTP thiolate is ~105 times 

slower than the equivalent reaction with H2O2-metabolizing enzymes, such as 

peroxiredoxin (Prx), raising the question as to whether such oxidation occurs in a cellular 

context2,14,50.  In view of the fact that no direct evidence is available as to whether PTP 
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oxidation occurs directly in cells we used DYn-2 to probe for possible sulfenylation of 

three phosphatases implicated in EGFR signaling: PTEN, PTP1B and SHP2.  PTEN is a 

cytoplasmic dual-specificity phosphatase that functions as a negative regulator of 

phosphatidylinositol-3,4,5-triphosphate (PIP3) levels reciprocal to PI3K51.  PTP1B is 

localized exclusively to the cytoplasmic face of the ER and dephosphorylates 

endocytosed RTKs, including EGFR, thereby modulating signal duration52.  Lastly, SHP2 

interacts directly with EGFR through its SH2 domains and regulates interaction with 

downstream signaling components53.   

 

To overcome issues associated with detection of low abundance endogenous signaling 

proteins, for these experiments, we immunoprecipitated PTPs from A431 cells treated 

with DYn-2 or vehicle control in the absence or presence of increasing concentrations of 

EGF.  Streptavidin-HRP Western blot analysis of these reactions showed that each PTP 

 
 
Figure 4.4. Differential sulfenylation of protein tyrosine phosphatases (PTPs) in EGF-stimulated 
A431 cells.  (a-c) Western blots showing sulfenylated and total immunoprecipitated PTEN, PTP1B, and 
SHP2.  A431 cells were stimulated with EGF or vehicle for 2 min at the indicated concentrations, washed, 
collected as described in Methods, and then incubated with 5 mM DYn-2 or vehicle for 1 h at 37 °C.  
Following treatment, lysates were prepared as in Figure 4.2g and immunoprecipitated with mouse anti-
PTEN (a), mouse anti-PTP1B (b), or rabbit anti-SHP2 (c) antibodies and recovered with protein A or G 
coated beads as described in Methods.  Sulfenylation of PTPs was detected by streptavidin-HRP Western 
blot as in Figure 4.2g.  To verify equivalent recovery of immunoprecipitated protein, Western blots were 
reprobed for total PTP as indicated.  (d-f) Confocal fluorescence images of A431 cells stimulated with 
vehicle or 100 ng/ml EGF for 5 min.  Cells were fixed and stained with anti-PTEN (d), anti-PTP1B (e), or 
anti-SHP2 (f) antibodies at 2  µg/ml, followed by Alexa488-conjugated goat anti-mouse (green) (d,e) or 
Alexa594-conjugated goat anti-rabbit (red) (f) secondary antibodies (1:1000).  Nuclei were counterstained 
with DAPI (blue).  The white arrows in (f) highlight the change in subcellular localization of SHP2 after 
stimulation with EGF.  
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underwent EGF-dependent sulfenylation in cells (Figure 4.4a-c).  Moreover, individual 

PTPs displayed distinct oxidation profiles as a function of growth factor concentration 

(Figure 4.4a-c and Figure 4.6a): SHP2 sulfenylation peaked at a relatively low level of 

EGF (20 ng/ml), followed by PTEN (500 ng/ml), and finally PTP1B (750 ng/ml).  

Unfortunately, the SHP2 homologue, SHP1 was not abundant enough in A431 cells to 

permit detection (data not shown).  As discussed below, the apparent decrease in the 

sulfenic acid state of SHP2 and PTEN at higher EGF concentrations may reflect the 

formation of intramolecular disulfide bonds (Appendix 4.6.10d).  Next, we investigated 

PTP localization in A431 cells before and after EGF treatment.  Immunofluorescence 

staining showed that SHP2 underwent a dramatic change in localization in response to 

EGF, concentrating at sites of plasma membrane ruffling, whereas the growth factor had 

no apparent effect on PTEN or PTP1B (Figure 4.4d-f).  Overall, these data show that 

PTPs undergo EGF-mediated oxidation within cells and suggest that relative sensitivity 

to H2O2 may be related to subcellular protein location. 

 

4.3.8  Identification of EGFR as a new target of H2O2 produced for EGF signaling in 

A431 cells 

The foregoing data show that EGF-mediated H2O2 production is required for EGFR 

autophosphorylation (Figure 4.1e and f).  In general, the degree of EGFR tyrosine 

phosphorylation reflects the balance between opposing kinase and PTP activities.  H2O2-

induced inhibition of PTPs would shift the balance toward phosphorylation; however, the 

increase in receptor phosphorylation could similarly be accounted for by H2O2-mediated 

activation of intrinsic EGFR kinase activity.  To test this possibility, we examined whether 

EGFR was a target of H2O2 in cells using the immunoprecipitation approach outlined 

above.  Strikingly, these experiments revealed that EGF treatment lead to robust sulfenic 

acid modification of EGFR (Figure 4.5a), a finding that was replicated by exogenous  
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H2O2 (Figure 4.5b).  EGFR sulfenylation peaked at the lowest concentration of EGF 

employed in this study (4 ng/ml; Figure 4.6a) and at ~10 µM exogenous H2O2 

(Appendix 4.6.9c).  Given the marked increase in EGFR oxidation at lower EGF 

concentrations, we wondered whether the receptor might form a complex with Nox2.  

 
 
Figure 4.5. EGF-mediated sulfenylation of EGFR active site Cys797 in cells.  (a,b) Western blots 
showing sulfenylated and total EGFR.  A431 cells were stimulated with EGF at the indicated 
concentrations or vehicle for 2 min (a) or H2O2 for 10 min (b) and sulfenic acids were detected by 
streptavidin-HRP Western blot as in Figure 4.4a-c, except that rabbit anti-EGFR antibody was used for 
immunoprecipitation.  (c,d) Western blots showing coimmunprecipitation of Nox2 and EGFR.  A431 cells 
were stimulated with 100 ng/ml EGF or vehicle for the indicated times, harvested in native lysis buffer to 
preserve protein-protein interactions, and subjected to immunoprecipitation using goat anti-EGFR antibody 
(c) or rabbit anti-Nox2 antibody (d) as described in Methods.  (c) The presence of Nox2 was evaluated 
using a goat anti-Nox2 antibody and comparable recovery of immunoprecipitated EGFR was confirmed by 
probing the Western blot with rabbit anti-EGFR antibody.  IC, isotype control.  (d) The presence of EGFR 
was evaluated using rabbit anti-EGFR antibody and comparable recovery of immunoprecipitated Nox2 was 
confirmed by probing the Western blot with goat anti-Nox2 antibody.  (e) Crystal structure of EGFR kinase 
domain with irreversible inhibitor, 13-JAB bound covalently to Cys797 (top panel; PDB 2J5E) or non-
covalently associated with the ATP analog, AMPNP and Mg2+ (bottom panel; PDB 3GT8).  Molecular 
images were generated with Pymol (http://pymol.sourceforge.net).  (f) Western blot showing sulfenylated 
and total EGFR.  A431 cells were incubated with 1 or 5 µM afatinib (labeled as + and ++, respectively), 10 
µM canertinib, 1 µM pelitinib or vehicle for 25 min before treatment with H2O2 for 10 min and EGFR 
sulfenylation was detected as in b.  (g) Extracted ion (ion current at m/z 402.8) chromatogram (left) and 
MS/MS spectrum (right) of the precursor ion m/z of 402.80 [M + 2H]+2 corresponding to dimedone-tagged 
peptide (MPFGC*L) from native EGFR.  A431 cells were stimulated with 4 ng/ml EGF for 2 min, washed, 
incubated with 5 mM dimedone for 1 h at 37 °C, immunoprecipitated with anti-EGFR antibody as in a, and 
resolved by SDS-PAGE.  The band corresponding to EGFR (~170 kDa) was excised, digested with pepsin, 
and analyzed by ESI-LC/MS/MS as described in Methods.  (h) Measurement of EGFR tyrosine kinase 
activity in vitro.  Recombinant EGFR kinase domain (amino acids 695-end) was untreated or exposed to 
H2O2 at the indicated concentrations and assayed for kinase activity at 25 °C for 60 min as described in 
Methods.  Error bars show ± s.e.m.  Statistical analysis was by a two-tailed Student's t test; *** indicates 
that P < 0.001, ** indicates that P < 0.01, and * indicates that P < 0.05 when compared against vehicle 
control. 
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This proposal was confirmed by co-immunoprecipitation, which demonstrated EGF- and 

time-dependent association of Nox2 with EGFR and visa versa (Figure 4.5c and d).  In 

addition, we also found that SHP2 co-immunoprecipitates with the EGFR/Nox 2 complex 

in EGF-stimulated cells (Appendix 4.6.9d). 

 

4.3.9  EGF-mediated sulfenylation of EGFR active site Cys797 in A431 cells 

Having shown that EGFR undergoes growth factor-dependent oxidation in cells, we then 

sought to identify the specific site(s) of sulfenic acid modification.  The intracellular 

portion of EGFR contains nine cysteine residues; in particular, the kinase domain is 

distinguished by Cys797, which is positioned at the edge of the active site cleft at the top 

of an α-helix formed by residues 798-804 (top, Figure 4.5e).  This residue is selectively 

targeted by irreversible inhibitors, such as afatinib, which is extensively used in basic 

science research and clinical trials for breast and non-small cell lung cancers54,55.  On 

this basis, we hypothesized that Cys797 may represent the site of EGF- and H2O2-

mediated sulfenylation.  To test this possibility, we pretreated A431 cells with afatinib, 

canertinib, or pelitinib and assessed the effect of these irreversible inhibitors on the 

ability of DYn-2 to detect EGFR oxidation by exogenous H2O2.  Each compound 

prevented H2O2-mediated sulfenylation of EGFR, as evidenced by the loss of DYn-2 

labeling (Figure 4.5f), suggesting that Cys797 may be susceptible to oxidation.  To 

examine this possibility in further detail, we directly mapped the site of oxidation using 

mass spectrometry.  In these experiments, A431 cells were stimulated with EGF, pulsed 

with dimedone, immunoprecipitated for EGFR, and resolved by SDS-PAGE.  The EGFR 

band was excised and digested in situ with pepsin.  ESI-LC/MS/MS analysis of the 

resulting cleavage products confirmed Cys797 as the site of covalent modification from 

the doubly-charged peptide ion at m/z 402.80 corresponding to H2N-MPFGC*L-OH 

(Figure 4.5g, left) and the series of b- and y-type ions observed in the MS/MS spectrum 
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(Figure 4.5g, inset).  Of note, the unmodified peptide was also detected in these 

experiments and the ratio of peak areas of the dimedone-modified peptide ion relative to 

the unmodified version was approximately 6:1 (Appendix 4.6.4b). 

 

Given the proximity of Cys797 to the ligand and associated Mg2+ ion in the active site 

(bottom, Figure 4.5e), we wondered whether oxidation of this residue would affect 

intrinsic kinase activity.  To test this possibility, we performed activity assays with the 

purified tyrosine kinase domain of EGFR.  First, we verified that activity increased as a 

function of enzyme concentration and decreased with inhibitor treatment (Appendix 

4.6.9e-g).  Subsequent studies revealed a biphasic dose-dependent effect of H2O2.  

Kinase activity increased when EGFR was exposed to 0.05–0.5 µM of H2O2 followed by 

a decline at higher concentrations (1-50 µM) eventually leading to inhibition relative to 

untreated enzyme (100µM, Figure 4.5h).  In this regard, we note that incubation with the 

reducing agent dithiothreitol (DTT) mitigated H2O2 inhibition (Appendix 4.6.9h), 

suggesting that the decline in EGFR activity at higher peroxide concentrations may 

involve reversible thiol oxidation.  Control experiments showed that H2O2 had no 

significant effect on other components of the assay system (Appendix 4.6.9i).  These 

results demonstrate that EGFR Cys797 is a direct target of H2O2 in A431 cells stimulated 

by EGF, ostensibly through growth factor-dependent association with Nox2.  

Furthermore, we show that low levels of H2O2 enhance EGFR kinase activity, and this 

stimulatory effect was lost at higher, likely cytotoxic levels of H2O2. 

 

4.4  Discussion 

In this work, we have investigated EGF-mediated redox signaling and cysteine oxidation 

in A431 cells using DYn-2, a new alkyne-functionalized chemical probe for detecting  
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Figure 4.6. Model for redox regulation of EGFR signaling.  (a) Densitometric quantification of EGFR and 
PTP sulfenylation from Western blots in Figure 4.4a-c and Figure 4.5a.  Error bars show ± s.e.m.  * indicates 
that P < 0.05, ** indicates that P < 0.01 and *** indicates that P < 0.001 when compared against vehicle 
control.  (b) Receptor activation by EGF induces association with Nox2 and ROS production.  The transient 
increase in ROS leads to oxidation of active site cysteine residues in EGFR, PTEN, PTP1B, SHP2 and other 
proteins that remain to be identified.  EGF-mediated ROS stimulates intrinsic EGFR tyrosine kinase activity, 
whereas oxidation inhibits tyrosine phosphatase activity.  Augmentation of EGFR activity and inhibition of 
PTEN potentiates signaling through the PI3K/AKT and RAS/ERK pathways.  The cellular function of SHP2 is 
complex, however, oxidative inactivation of this protein leads to increased phosphorylation of EGFR and 
modulates the RAS/ERK cascade.  Notably, EGFR and the aforementioned PTPs exhibit differential dose-
dependent effects of EGF on sulfenylation.  This finding may be related to the relative proximity of target 
proteins to the oxidant source, Nox2.  EGFR signal duration is regulated by receptor internalization and de-
phosphorylation by PTP1B, located on the cytoplasmic face of the ER membrane.  Although PTP1B does not 
appear to be the most sensitive target of EGF-induced ROS, the present study shows that PTP1B undergoes 
oxidation in cells, which prolongs EGFR signaling, and could be particularly relevant in diseases associated 
with chronic oxidative stress.  Dashed lines are relevant to receptor internalization.  (c) Model for H2O2-
dependent increase in EGFR autophosphorylation in A431 cells.  EGF stimulation induces production of H2O2 
in A431 cells, which can oxidize and activates the intrinsic tyrosine kinase activity of EGFR, and also serves to 
deactivate PTPs, which promotes signaling through downstream pathways.  Collectively, our findings indicate 
that sulfenylation, as well as phosphorylation, modulates EGFR activity. 
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protein sulfenylation.  We now turn to a more detailed discussion of the results of this 

paper. 

 

EGF stimulation of A431 cells modulates cell morphology, receptor localization, and 

protein phosphorylation.  We also found that EGF treatment increases intracellular ROS, 

consistent with prior studies4,24,56.  Moreover, using small-molecule inhibitors, we show 

that EGFR tyrosine kinase activity is required for growth factor-induced ROS generation.  

These data complement and extend earlier observations in NIH-3T3 cells expressing a 

C-terminally truncated mutant of EGFR24.  To facilitate a comparison between our results 

and those obtained in other studies24,56 DCF fluorescence was used to monitor the 

generation of ROS.  In this regard, we note that DCF does not provide information as to 

the exact nature of ROS being measured in cells57.  A key advance in this area has been 

the development of fluorescent probes for selectively imaging H2O2 based on boronate 

deprotection57,58.  Use of these probes in A431 cells4,59 as well as another study 

employing SOD inhibitors60 distinctly implicates H2O2 in EGF-mediated signal 

transduction.  

 

Further indication that redox homeostasis is important for EGFR signaling comes from 

modulation of intracellular ROS levels.  NAC, a precursor to glutathione and a general 

ROS scavenger, inhibits protein phosphorylation in PDGF61 and FGF27 signaling as well 

as in Ras-transformed cells62.  In this study, NAC suppressed global changes in EGF-

mediated protein phosphorylation, including EGFR and AKT.  To investigate the role of 

H2O2 in growth factor signaling, catalase has been introduced into A431 cells by 

electroporation and transfection.  Our study indicates that pretreating A431 cells with 

PEG-catalase achieves the same result without any genetic or mechanical manipulation 

to the cells, akin to other cell types63.  Indeed, EGF-dependent protein phosphorylation, 
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particularly of EGFR, AKT, and ERK was attenuated in A431 cells loaded with PEG-

catalase, providing additional support for the proposed role of endogenous H2O2 in EGF 

signaling.  This link is further strengthened by the observation that exogenous H2O2 

mimics EGF stimulation by inducing phosphorylation of EGFR, AKT and ERK in A431 

cells.  However, because treatment with exogenous H2O2 may not always recapitulate 

the effect of endogenous ROS due to differences in overall dose and localized 

concentration we have focused our analysis on growth factor-induced H2O2.  

 

Growing evidence indicates that Nox is primarily responsible for receptor-dependent 

H2O2 generation43,64,65.  Consistent with this proposed role, we show that Nox inhibitors 

apocynin and DPI diminished EGF-stimulated ROS production and phosphorylation of 

EGFR, AKT, and ERK in A431 cells.  While apocynin is a potent inhibitor of Nox 

assembly in neutrophils66 and epithelial cells67 the effects of this methoxy-substituted 

catechol should be interpreted with care as this mode of action may not apply to all cell 

types68.  Western blot and immunofluorescence analyses indicate that Nox2 is the most 

abundant isoform in A431 cells; however, very low levels of Nox1, Nox4 and Nox5 are 

also present.  Despite repeated attempts, we failed to knock down Nox isoforms in A431 

cells by siRNA-mediated gene targeting (data not shown).  Among other issues, these 

experiments were thwarted by low transfection efficiency and toxicity associated with 

cationic liposome-mediated gene transfer.  Because Nox3-5 and Duox1-2 do not seem 

to depend on PI3K/Rac1, the requirements for PI3K activation in EGF-induced H2O2 

observed in the present study and earlier work69-71 provide further support for Nox2 

involvement.  Even so, we cannot rule out contributions from Nox1 and other, less 

abundant isoforms regarding EGF-mediated ROS production in A431 cells; this general 

issue highlights the urgent need for isoform- and class-selective Nox inhibitors.  
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Given the importance of cysteine oxidation to human health and disease, indirect and 

direct chemical methods have been developed to investigate these modifications32.  The 

majority of indirect methods to monitor changes in the redox state of cysteines rely on 

the loss of reactivity with thiol-modifying reagents or restoration of labeling by reducing 

agents (Appendix 4.6.10a and b).  Such approaches require that free thiols are 

completely blocked by alkylating agents prior to the reduction step and, for this reason, 

are restricted to analysis of cell lysates or purified proteins.  Alternatively, individual 

cysteine modifications, such as sulfenic acid or nitrosothiols, can be detected on the 

basis of their distinct chemical attributes using selective small-molecule probes 

(Appendix 4.6.10c).  Provided that the probe is membrane permeable, direct chemical 

methods enable cysteine oxidation to be examined in cells.  This is not a trivial 

consideration since redox potentials differ markedly among subcellular compartments37.  

When the finely tuned redox balance of the cell is disrupted by the lysis procedure, 

proteins can undergo artifactual oxidation, which increases the challenges associated 

with detecting low-abundance modifications and interpreting biological significance.  

Strategies to decrease oxidation artifacts in lysates have been reported72,73; however, 

limitations inherent to studies in lysates, such as protein denaturation with concomitant 

loss of labile modifications, are not addressed.  On the other hand, cellular probes can 

perturb the underlying biological processes being examined.  This can be addressed, at 

least in part, by fine-tuning chemical reactivity, addition of probe after triggering the 

process of interest, and by examining relevant biological markers in probed and 

unprobed cells, analogous to studies of nonredox phenomena. 

 

With the development and application of DYn-2, we expand the chemical toolbox with 

which to probe protein sulfenic acid formation in cells.  Like its prototypes, DYn-2 is 

equipped with a 1,3-cyclohexadione moiety to permit selective reaction with protein 
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sulfenic acids, but is uniquely functionalized with an alkyne chemical handle.  Compared 

to the reverse orientation, DYn-2 showed a modest increase in sensitivity that might 

facilitate detection of sulfenic acid modifications in low-abundance proteins.  No extrinsic 

probe can ever be a truly inert spectator, but DYn-2 is non-toxic and did not significantly 

perturb cellular redox balance or EGF-signaling in A431 cells, consistent with this goal.  

The synthetic route presented for DYn-2 eliminates several steps and tedious 

intermediate purifications, and can be conducted on a gram scale.  Key to the success of 

our synthetic strategy is the solubility of the dianion generated from 1,3-cyclohexadione 

in THF and enhanced reactivity compared to the monoanion. 

 

Application of DYn-2 in A431 cells shows that protein sulfenylation is a dynamic process 

during growth factor signaling and likely has broader implications for other receptor-

mediated processes.  Consistent with this proposal, alterations in sulfenic acid 

modifications have been observed in lysates generated from HEK293 cells treated with 

the cytokine TNFα33 and CD8+ T cells stimulated with CD3/CD28 antibodies17.  The 

relative changes in cysteine oxidation that we observe depend on EGF dosage and time 

of stimulation, and show a strong positive correlation with ROS levels.  One interesting 

exception is the case of 500 ng/ml EGF, wherein we routinely observe a decrease in 

sulfenylation.  Our findings are consistent with the absence of global disulfide bond 

formation at this EGF concentration in A431 cells, as reported by Winterbourne and 

colleagues56.  The apparent lack of sulfenylation at the highest level of growth factor 

tested may result from oxidation of sulfenic to sulfinic acid, upregulation of drug efflux 

transporters, dissociation of EGFR clusters from lipid rafts, and/or activation of alternate 

pathways that function independent of cysteine oxidation.  While additional studies will 

be required to distinguish among these possibilities, it is important to note that 500 ng/ml 

EGF well exceeds physiological levels and has been associated with apoptosis74.  
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Attenuation of EGF-dependent protein sulfenylation with inhibitors of EGFR, Nox and 

PI3K underscores the importance of receptor and Nox activation for intracellular H2O2 

generation and concomitant cysteine oxidation.  Curiously, DPI-treated A431 cells reveal 

a complex effect of this reagent on protein sulfenylation (Appendix 4.6.8e).  When 

applied at 25 µM, DPI decreased sulfenic acid modification of proteins; however, higher 

doses were associated with an increase in sulfenylation relative to control samples.  DPI 

is a general inhibitor of flavin-containing enzymes, including the thioredoxin-thioredoxin 

reductase system that returns oxidized protein thiols to their reduced state.  This may 

explain the apparent paradox of elevated protein sulfenic acid formation at higher 

concentrations of DPI.  Cellular sulfenylation and Nox2 exhibit a high, but not complete, 

degree of colocalization.  Areas of protein oxidation that do not overlap with Nox2 may 

indicate diffusion of H2O2 and/or EGF-mediated activation of other oxidases.  The ability 

of NAC and PEG-catalase to mitigate sulfenic acid formation in cells, as detected by 

DYn-2, further highlights the selectivity and sensitivity of this new probe. 

 

In this study, we use sulfenic acid as a marker of cysteine oxidation in cells.  As first 

pointed out by Poole12, an early pioneer in this field, detection of sulfenic acid in proteins 

has the advantage of targeting the direct product of cysteine modification by H2O2.  

Detection of sulfenic acid also enables identification of the reactive site where oxidation 

chemistry was originated, while detection of downstream products, such as disulfides, 

may be more difficult to dissect.  Moreover, not all sulfenic acids are converted to other 

oxidation states16.  On the other hand, some sulfenic acids in proteins may be short-lived 

and therefore, more difficult to detect.  For clarity, we note that the sulfenic acid detected 

by our experiments is a function of the rate of thiolate oxidation by H2O2, probe trapping, 

and competing reduction or condensation reactions (Appendix 4.6.10d).   
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To gauge the propensity of PTPs toward oxidation in cells we monitored sulfenylation as 

a function of H2O2 produced endogenously by EGF stimulation.  PTPs analyzed in our 

study exhibit varying basal levels of oxidation and sensitivity to EGF-mediated oxidation 

in cells (Figure 4.6a).  Because the rate of PTP oxidation is quite similar in biochemical 

studies75,76 their disparate susceptibility to oxidation in cells is notable.  One likely 

explanation is that PTPs do not encounter equivalent amounts of intracellular H2O2.  As 

first proposed by Tonks48, the proximity of proteins to the oxidant source may play a 

major role in determining which cysteine residues become oxidized (Figure 4.6b).  

Consistent with this model, we observe that SHP2, which preferentially localizes to 

membrane ruffles and associates with the EGFR/Nox2 complex, undergoes a robust 

increase in oxidation at low growth factor concentrations.  At the other extreme, PTP1B 

is localized to the cytoplasmic face of the ER membrane and oxidation is not observed 

until higher EGF concentrations.  In further support of our findings, Keaney and 

colleagues have shown that oxidation of PTP1B by Nox4 in aortic endothelial cells 

requires ER localization of both proteins26.  The absence of PTP1B oxidation at lower 

EGF concentrations could also stem from sulfenyl-amide formation outcompeting the 

DYn-2 trap (Appendix 4.6.10d).  However, this scenario seems unlikely as the sulfenyl-

amide condensation in PTP1B is expected to be at least 100-fold slower than 

intramolecular disulfide formation77,78 in PTEN and SHP2.  Finally, we point out that PTP 

oxidation is detected at 500 ng/ml EGF, despite the overall decrease in global 

sulfenylation and may indicate that endogenous low-abundance targets are not 

effectively observed without immunoprecipitation using a protein-specific antibody.   

 

Our results, in conjunction with other studies24,29,61, demonstrate that exogenous and 

endogenous H2O2 leads to an increase in EGFR autophosphorylation.  In addition to 

inactivation of PTP activity through oxidation, it is also conceivable that intrinsic RTK 
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activity is stimulated by H2O2 (Figure 4.6b,c).  Consistent with this proposal, our data 

show that EGF- and H2O2-stimulation of A431 cells leads to sulfenylation of EGFR; 

moreover, a robust increase in receptor oxidation was evident at the lowest 

concentration of EGF tested (4 ng/ml).  The relative sensitivity of EGFR to oxidation may 

be rationalized on the basis of association with Nox2, an important source of H2O2.  To 

the best of our knowledge, this is the first documented example of Nox interaction with a 

growth factor receptor and, since redox regulation appears to be widespread in 

mitogenic signaling, this finding may apply to other RTKs.  To date, the only other 

documented case of Nox-receptor interaction is with a member of the tumor necrosis 

receptor subfamily, TNFR1, and is mediated by riboflavin kinase that binds both to the 

receptor and to p22phox, the common subunit of NADPH oxidase isoforms79.  At 

present, it is not known whether the association between EGFR and Nox2 is direct or 

mediated by another protein and additional experiments will be required to define this 

interaction.    

 

Competitive labeling experiments and LC-MS/MS analysis establish Cys797 as the site 

of EGFR sulfenylation in cells.  When cells were stimulated with 4 ng/ml EGF, the ion 

intensity for the dimedone-modified peptide, relative to the unmodified form, was nearly 

6:1.  Because the effect of dimedone on the ionization efficiency of this peptide is not 

known, this analysis may not reflect absolute quantification, but is useful for qualitative 

comparison.  Although exact rates have not been reported, Haber and colleagues report 

that Cys797 is not essential for catalytic activity80.  Nonetheless, its location in the active 

site suggests that oxidation could modulate kinase function, by analogy to redox 

regulation of GTPases, such as Ras.  To isolate the effect of H2O2 on EGFR activity from 

oxidative PTP inhibition, we performed a direct kinase assay using purified, recombinant 

EGFR.  These biochemical studies show that low H2O2 concentrations stimulate intrinsic 
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EGFR kinase activity and this finding is supported by studies in crude membrane 

fractions isolated from NA cells, which show that H2O2 treatment stimulates EGFR 

autophosphorylation29.  The following decline in kinase activity that we observe at higher 

peroxide concentrations may reflect formation of a disulfide bond with another cysteine 

in this domain, and future studies are required to address this possibility.  The biphasic 

response of EGFR activity with exogenous H2O2 parallels that of receptor sulfenic acid 

modification in cells; however, the peroxide concentration required for maximal rate 

enhancement is approximately 20-fold lower than for cellular sulfenylation.  The most 

likely explanation for this difference is that antioxidant enzymes and other biomolecular 

targets consume the H2O2 applied to cells.  Another noteworthy aspect of this behavior is 

that both cellular sulfenylation and kinase activity decrease above ~50 µM H2O2, 

whereas EGFR autophosphorylation increases at peroxide levels above 500 µM.  These 

findings suggest a complex interplay between EGFR kinase activity and PTP inhibition at 

different concentrations of H2O2, wherein low levels stimulate catalysis, an effect that is 

lost at higher doses, but is compensated for by PTP inactivation.  Additionally, oxidation 

of Cys797 could positively regulate other aspects of EGFR function, including protein-

protein interactions. 

 

It is intriguing to consider the possibility that cysteine oxidation may serve as a general 

mechanism to regulate RTK activity.  Of the ~95 receptor and non-receptor protein 

tyrosine kinases (PTKs) in the human genome, nine additional members harbor a 

cysteine residue at the position that corresponds to Cys797, including two additional 

EGFR family members, Her2 and Her4.  Another subfamily of PTKs, which includes 

cytoplasmic Src as well as FGFR1, have a cysteine residue within a conserved glycine 

rich loop that interacts with the γ-phosphate of ATP.  Interestingly, cellular studies 

implicate cysteine oxidation in Src regulation81-83, albeit with apparently contradictory 
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results.  Furthermore, biochemical analysis of Src shows that the glycine loop cysteine is 

reactive and that addition of DTT to recombinant FGFR1 stimulates kinase activity84.  To 

date, however, it has not been ascertained whether Src is a direct target of signaling-

mediated H2O2 in cells; nor has the reaction of peroxide with FGFR1 been reported. 

 

EGFR is mutated or amplified in a number of human carcinomas including breast and 

lung cancers, which has motivated the development of selective kinase inhibitors, 

including analogs that covalently modify Cys79755.  Indeed, several irreversible inhibitors 

of EGFR, including Afatinib, are now under preclinical or clinical trials54.  We have 

recently reported that overexpression of EGFR and Her2 in breast cancer cell lines 

correlates with elevated H2O2 and global protein sulfenylation20.  Coupled to the 

discovery that EGFR Cys797 undergoes sulfenic acid modification, these findings raise 

several fundamental questions vis-à-vis cysteine oxidation and thiol-targeted irreversible 

inhibitors.  For example, the acrylamide moiety of the aforementioned EGFR inhibitors 

undergoes Michael addition with Cys797 in its thiol form, but these inhibitors would not 

react with the sulfenic acid or disulfide states, which could influence the potency of these 

drugs.  In addition, can the propensity for a particular cysteine residue to undergo 

oxidation be exploited in the design of irreversible inhibitors with a nucleophilic warhead 

targeting the sulfenylated protein?  Taking this one step further, could this strategy be 

exploited to selectively target proteins in cells under oxidative stress, a condition that is 

associated with cancer, diabetes, and neurodegeneration?  These topics represent new 

and exciting avenues for future research. 

 

In closing, we have developed a new sulfenic acid-specific probe, DYn-2 and applied 

this reagent to reveal dynamic sulfenylation associated with growth factor signaling.  

During the course of these studies, we have profiled PTP oxidation directly in cells and 
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discovered EGFR as a previously unknown target of signal-mediated H2O2, ostensibly 

through its association with Nox2.  From a broader perspective, our findings shed new 

light on mechanisms of redox signaling, allude to new redox-based strategies for 

targeted therapy development, and presage the establishment of comprehensive 

sulfenomes that will continue to expand the scope and biological role of sulfenylation, 

wherein rich research frontiers lie ahead. 

 

4.5  Experimental procedures 

 

4.5.1  Synthetic materials and methods 

All reactions were performed under a nitrogen atmosphere in oven-dried glassware.  

Tetrahydrofuran was distilled over sodium hydride prior to use.  All other reagents and 

solvents were purchased from Sigma and were used without further purification.  

Analytical thin layer chromatography (TLC) was carried out using Analtech Uniplate 

silica gel plates and visualized using a combination of UV and potassium permanganate 

staining.  Flash chromatography was performed using silica gel (32-63 µM, 60 Å pore 

size) from Sorbent Technologies Incorporated.  NMR spectra were obtained on a Bruker 

Avance 400 (400 MHz for 1H; 100 MHz for 13C) in CDCl3 (Cambridge Isotope 

Laboratories).  1H and 13C NMR chemical shifts are reported in parts per million (ppm) 

referenced to the residual CHCl3.  Low-resolution electrospray ionization (ESI) mass 

spectra were obtained with an Agilent 6120 Single Quadrupole LC/MS. 
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4.5.2  3-ethoxy-6-(prop-2-yn-1-yl)cyclohex-2-enone (3) 

 

 

To a lithium diisopropylamide (LDA) solution, prepared from diisopropylamine (1.66 mL, 

12 mmol) and n-BuLi (4.8 mL of a 2.5 M solution in hexanes, 12 mmol) in anhydrous 

THF (45 mL) at -78 °C under argon, was added 3-ethoxycyclohex-2-enone (1.4 g, 10 

mmol) in THF (20 mL), dropwise over 0.5 h.  The reaction was stirred for an additional 2 

h at -78 °C.  Stirring was followed by the dropwise addition of propargyl bromide (1.3 mL, 

12 mmol).  The reaction was allowed to warm to rt and stirred for 8 h.  The reaction was 

quenched with water (20 mL) and sat. NH4Cl (20 mL).  The aqueous phase was 

extracted with DCM (3x50 mL), and the organic phases were combined, washed with 

brine (20 mL), dried over Na2SO4, and concentrated.  The resulting syrup was purified 

with silica gel column chromatography using 6:4 Hexanes: ethyl acetate resulting in a 

yellow oil 3 (1.6 g, 8.99 mmol) in 89% yield.  Rf: 0.6 (1:1 hexanes: ethyl acetate).  1H 

NMR (400 MHz, CDCl3) 5.31 (s, 1H), 3.98 – 3.78 (m, 2H), 2.76 (dt, J = 16.6, 3.2 Hz, 1H), 

2.59 – 2.41 (m, 2H), 2.41 – 2.20 (m, 4H), 1.95 (q, J = 2.3 Hz, 1H), 1.82 (dtd, J = 16.8, 

11.5, 5.1 Hz, 1H), 1.45 – 1.27 (m, 3H).  ESI-LRMS: m/z for C11H14O2 calculated 178.10; 

observed 179.1 [M+H]+. 

 

4.5.3  4-(prop-2-yn-1-yl)cyclohexane-1,3-dione (4) 

 

 

To a solution of 3 (0.05 g, 0.29 mmol) in acetonitrile (2 mL) and water (2 mL) was added 

CAN (0.015 g, 0.028 mmol).  The solution was heated to reflux for 2 hr.  The reaction 

mixture was then diluted with brine (20 mL), and extracted with EtOAc (3x20 mL).  The 

organic phases were combined, washed with brine (30 mL), dried over Na2SO4, and 
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concentrated in vacuo.  The resulting orange solid was purified by silica gel column 

chromatography using 1:1 Hexanes:EtOAc to give compound 4 as a pale yellow solid 

(0.042 g, 0.28 mmol) in 96% yield.  Rf: 0.3 (1:1 Hexanes:EtOAc).  1H NMR (400 MHz, 

dmso-d6) δ 11.05 (s, 1H), 5.25 (s, 1H), 3.43 – 3.14 (m, 1H), 2.76 (d, J = 24.8 Hz, 1H), 

2.37 – 2.16 (m, 4H), 2.04 (dt, J = 28.7, 11.9 Hz, 1H), 1.81 – 1.57 (m, 1H).  ESI-LRMS: 

m/z for C9H10O2 calculated: 150.07; observed: 151.1 [M+H]+. 

 

4.5.4  DYn-2 (2) 

Lithium diisopropylamide (LDA) was prepared by the dropwise addition of 2.5 M solution 

of n-BuLi (15.7 ml, 39.2 mmol) to a solution of diisopropylamine (3.97 g, 39.2 mmol) in 

THF (40 ml) and the resulting pale yellow mixture was stirred at -78 °C for 30 min in a 

250 ml flask equipped with a magnetic stir bar under N2 pressure.  A solution of 1,3-

cyclohexadione (1, 2.0 g, 17.8 mmol) in THF (20 ml) and HMPA (10 ml) was added 

dropwise to the LDA solution at -78 °C.  The resulting mixture was allowed to stir at -78 

°C for 1.5 h.  The temperature was increased to 0 °C briefly to facilitate the stirring, and 

then cooled again to -78 °C.  To this dianion slurry, a solution of 5-iodopent-1-yne (3.81 

g, 19.6 mmol) in THF (20 ml) was added dropwise at -78 °C.  The reaction was stirred 

and allowed to warm to rt over 2 h.  The mixture was then neutralized with 1.0 M HCl (22 

ml) and concentrated under reduced pressure.  The residue was diluted with H2O 

extracted with ethyl acetate (3 x 50 ml).  The organic phase was then washed with brine, 

dried over anhydrous MgSO4, and concentrated.  Purification by column chromatography 

(gradient: dichloromethane/methanol from 100:0 to 98:2) afforded compound 2 as a 

mixture of the keto and enol forms (3.0 g, 96% yield).  The product was further purified 

by reversed-phase preparative HPLC (Varian Polaris 5 C18-A 150 x 21.2 mm column) 

using a gradient of water/acetonitrile from 95:5 to 5:95 over 30 min.  1H-NMR (400 MHz, 

CDCl3): δ 5.42 (s, 1H), 3.41 (d, J = 4.0 Hz, 2H), 2.75 – 1.72 (m, 16H), 1.68 – 1.45 (m, 
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6H).  13C-NMR (100 MHz, CDCl3): δ 204.9, 204.4, 197.0, 189.2, 104.2, 84.4, 84.1, 69.1, 

68.9, 58.5, 49.1, 41.8, 39.9, 30.1, 29.6, 28.5, 26.4, 26.2, 26.1, 24.7, 18.8, 18.7.  ESI-

LRMS: m/z for C11H14O2 calculated: 178.23; observed: 179.1 [M+H]+. 

 

4.5.5  Synthesis of 5-iodo-pent-1-yne, alkyne-biotin and azide-biotin 

5-iodopent-1-yne was synthesized according established literature procedures85.  

Alkyne-biotin was synthesized according to established literature procedures86.  Azide-

biotin was synthesized according to established literature procedures87.  In all cases, 

ESI-MS, 1H and 13C NMR NMR spectra matched literature values85-87. 

 

4.5.6  Stocks 

All stocks were stored at -20 oC, unless otherwise indicated.  The stock EGF (BD 

Biosciences) solution was prepared at 30 µg/ml in ddH2O.  H2O2 was purchased from 

Sigma and lower concentrations were made by dilution of the stock solution with ddH2O.  

Gefitinib (1 mM, Santa Cruz Biotechnology), Afatinib (100 µM and 500 µM, Chemietek), 

Canertinib (1 mM, Chemietek), Pelitinib (100 µM, Santa Cruz Biotechnology), Apocynin 

(10 mM, Calbiochem), Wortmannin (10 mM, Cayman Chemicals), and DPI (100x, 

Sigma) stocks were prepared in DMSO at the indicated concentrations.  DAz-2 was 

synthesized and purified as previously described88.  DAz-2 and DYn-2 were prepared in 

DMSO at 250 mM.  Dimedone was prepared as a 50:50 mixture of DMSO and 0.5 M 

Bis-Tris HCl (pH 7.0) at 250 mM.  Catalase (20,000 U/ml, Sigma) included in lysis 

buffers and PEG-catalase (100,000 U/ml, Sigma) were prepared in 50 mM Tris-HCl (pH 

7.4) and stored at -80 °C or made up fresh, respectively.  L-NAME (10 mM, Calbiochem) 

and NAC (1 M, Research Products International) were freshly prepared in serum-free 

DMEM at the indicated concentrations.  Azide- or alkyne-biotin were prepared at 5 mM 
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in DMSO, TBTA ligand was prepared at 2 mM stock in 4:1 DMSO:tBuOH, and TCEP-

HCl (Sigma) and CuSO4 (Sigma) were freshly prepared at 50 mM in ddH2O. 

 

4.5.7  Expression, purification, and labeling of sulfenylated Gpx3 

Recombinant Cys82Ser Gpx3 and Cys64Ser Cys82Ser Gpx3 were expressed and 

purified as previously described89.  Cys82Ser Gpx3 and Cys64Ser Cys82Ser Gpx3 were 

previously stored in 50 mM Tris HCl pH 7.4, 300 mM NaCl, 10% glycerol, and 5 mM 

DTT.  DTT was removed from Gpx3 mutants via spin filtration using P-30 micro BioSpin 

columns (BioRad) pre-equilibrated with Gpx3 buffer (50 mM Tris HCl pH 7.4, 300 mM 

NaCl).  50 µM Cys82Ser Gpx3 was treated with 1 mM DAz-2, 1 mM DYn-2 or vehicle in 

the presence or absence of 100 µM H2O2 for 15 min at 37 °C.  Excess probe was 

removed by spin filtration, and azide- or alkyne-modified Cys82Ser Gpx3 was 

biotinylated and analyzed as described in Methods.  After click chemistry, the reactions 

were quenched by addition of an equal volume of Laemmli sample buffer.  To verify the 

DYn-2 adduct by mass spectrometry, Cys64Ser Cys82Ser Gpx3 was incubated with 

H2O2 and 10 mM DYn-2 for 1 h at 37 °C with gentle rocking.  The concentrations of 

Cys64Ser Cys82Ser Gpx3 and H2O2 used are indicated in the figure legends.  Excess 

reagent was removed by spin filtration as described above. 

 

4.5.8  Cell culture 

HeLa cells were cultured as previously described16.  A431 cells (American Type Culture 

Collection) were maintained at 37 °C in a 5% CO2 humidified atmosphere.  Unless 

indicated otherwise, cells were cultured in high-glucose DMEM medium (Invitrogen) 

containing 10% FBS (Invitrogen), 1% GlutaMax (Invitrogen), 1% MEM nonessential 

amino acids (Invitrogen), and 1% penicillin-streptomycin (Invitrogen), hereafter referred 

to as DMEM complete culture medium (DMEM-CCM).  For EGF treatment, cells were 



110 

cultured until 80-90% confluent, rinsed with PBS, and placed in high-glucose DMEM 

medium without serum for 16-18 h.  Following serum-deprivation, cells were treated with 

the indicated concentration of EGF for the indicated time period.  EGF treatment was 

stopped by the removal of the medium and washing with PBS. 

 

4.5.9  Sulfenic acid labeling in cell culture 

HeLa cells were labeled as previously described16.  A431 cells were lifted with 0.25% 

trypsin-EDTA, harvested by centrifugation at 1500g for 2 min, washed, and resuspended 

in serum-free DMEM at a density of 3-4 x 106 cells/ml.  Intact cells in suspension were 

incubated with DMSO vehicle (2% v/v) or the indicated concentration of sulfenic acid 

probe (DYn-2, DAz-2, or dimedone) at 37 °C in a 5% CO2 humidified atmosphere with 

periodic gentle agitation.  Following treatment for the indicated time, cells were collected, 

and washed with PBS.  The resulting cells were routinely counted using a 

hemocytometer and uniformly displayed greater than 90% viability by trypan blue 

exclusion.  Lysates were prepared by resuspending washed cell pellets in lysis buffer as 

described in Methods.  Western blot analysis confirmed EGF-dependent tyrosine 

phosphorylation of EGFR and downstream targets under these conditions (Appendix 

4.6.2h and i). 

 

4.5.10 Lysate preparation 

Cells were harvested in modified RIPA lysis buffer [50 mM triethanolamine, pH 7.4, 150 

mM NaCl, 1% NP-40, 1% sodium deoxycholate, 0.1% SDS, 1x EDTA-free complete mini 

protease inhibitors (Roche), 200 U/ml catalase (Sigma)].  After 20 min incubation on ice 

with frequent mixing, unlysed cell fragments were removed by centrifugation at 14000g 

for 15 min at 4 °C, and protein concentration was determined by BCA assay (Pierce).  

For analysis of protein phosphorylation, cells were harvested in phosphorylation lysis 
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buffer [50 mM triethanolamine, pH 7.4, 150 mM NaCl, 1% NP-40, 1% sodium 

deoxycholate, 0.1% SDS, 5 mM sodium pyrophosphate, 50 mM sodium fluoride, 10 µM 

 β-glycerophosphate, 1 mM sodium orthovanadate, 0.5 mM DTT, and 1x complete mini 

protease inhibitors (Roche)].  For co-immunoprecipitation of Nox2 with EGFR, cells were 

harvested by gentle scraping with a rubber policeman in native lysis buffer A (50 mM 

Tris-HCl, pH 7.4, 150 mM NaCl, 0.1% Triton X-100, 0.1% NP-40, 4 mM EDTA, 1 mM 

sodium orthovanadate, 2.5 mM sodium pyrophosphate, 1 mM β-glycerophosphate and 

1x complete mini protease inhibitors) and lysed with gentle rotation at 4 °C for 1 h.  

Coimmunoprecipitation of EGFR with Nox2 was performed as described above, except 

in native lysis buffer B (50 mM Tris-HCl, pH 7.4, 150 mM NaCl, 3 mM EDTA, 0.5% NP-

40, 20 mM β-glycerophosphate, 1 mM sodium orthovanadate, 1x complete mini protease 

inhibitors). 

 

4.5.11 Click chemistry 

Cell lysate (200 µg, 1 mg/ml) was pretreated with 75 µl NeutrAvidin-agarose (Pierce) to 

remove endogenously biotinylated proteins.  The precleared lysate was incubated with 

100 µM azide- or alkyne-biotin, 1 mM TCEP-HCl, 100 µM TBTA ligand, and 1 mM 

CuSO4 for 1 h at 25 °C with gentle rocking (final reaction volume of 200 µl).  The 

reaction was quenched by 40 mM EDTA, followed by methanol precipitation of the 

proteins.  The resulting protein precipitate was then resolubilized in Laemmli sample 

buffer containing 5% of SDS in PBS.  To analyze immunoprecipitated proteins, the resin 

was treated with 20 µl click chemistry mix (100 µM azide-biotin, 1 mM TCEP, 100 µM 

TBTA, 1 mM CuSO4 in PBS) as above; reactions were quenched by boiling with 20 µl 

Laemmli sample buffer for 10 min. 
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4.5.12 Immunostaining and fluorescence imaging 

A431 cells were seeded on collagen-coated coverslips (BD Biosciences) and cultured as 

described above.  The cells were then fixed with 4% paraformaldehyde in PBS for 15 

min, washed three times with PBS, followed by blocking in 5% horse serum, 0.1% Triton 

X-100 in PBS for 30 min at 25 °C (blocking solution).  The cells were then treated with 

rabbit anti-EGFR (1005, Santa Cruz Biotechnology), mouse anti-PTEN (A2B1, Santa 

Cruz Biotechnology), mouse anti-PTP1B (FG6, Calbiochem), or rabbit anti-SHP2 (Santa 

Cruz Biotechnology), at 2 µg/ml in blocking solution for 1 h at 25 °C.  Control cells were 

treated with PBS only.  The cells were washed three times in PBS and incubated with 

Alexa594-conjugated goat anti-rabbit (Invitrogen), Alexa488-conjugated goat anti-rabbit 

(Invitrogen), or Alexa488-conjugated goat anti-mouse (Invitrogen) secondary antibodies 

diluted to 1:1000 in blocking solution for 1 h at 25 °C in the dark.  For experiments 

involving dimedone, cells were fixed in cold methanol:acetone (1:1), blocked, and 

treated with rabbit anti-2-thiodimedone (1:3000) as previously described20.  The cells 

were then washed three times with PBS and stained by Alexa594-conjugated goat anti-

rabbit secondary antibody (1:1000) for 1 h at 25 °C in the dark.  To visualize Nox2, cells 

were double stained with rabbit anti-2-thiodimedone antibody (1:3000) and PE-

conjugated mouse anti-Nox2 antibody (7D5, MBL International, 1:1000), followed by 

Alexa488-conjugated goat anti-rabbit secondary antibody (1:1000).  Cells were then 

washed three times with blocking solution, counterstained with 0.1 mg/ml DAPI, washed 

with PBS, and mounted with Fluoromount G (Southern Biotech).  Confocal fluorescence 

imaging studies on A431 cells were performed with an Olympus FV1000 microscope 

and an x100 oil-immersion objective lens.  Excitation of Alexa488-conjugate was carried 

out with an argon laser and emission was collected using a 488- to 515-nm filter set.  

Excitation of Alexa594- or PE-conjugate was carried out with a HeNe laser, and 

emission was collected using a 548- to 644-nm filter set. 
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4.5.13 Western blot 

Protein samples were separated by SDS-PAGE using Mini-Protean TGX 4-15% Tris-

Glycine gels (BioRad) and transferred to a polyvinylidene difluoride (PVDF) membrane 

(BioRad).  After transfer, the membrane was blocked with 3% BSA or 5% milk 

(pAKT/AKT blotting) in TBST for 1 h at 25 °C.  The membrane was washed with TBST 

and immunoblotting was performed with the following primary and secondary antibodies 

at the indicated dilutions in TBST, unless otherwise noted: phospho-EGFR (pY1068, 

Abcam, 1:1000), EGFR (1005, Santa Cruz Biotechnology, 1:200), phospho-AKT (pS473 

XP, Cell Signaling Technology, 1:2000 or pT308, Cell Signaling Technology, 1:1000), 

AKT (Cell Signaling Technology, 1:2000), phospho-ERK (pT185/pY187, Invitrogen, 

1:1000), ERK (Invitrogen, 1:1000), Streptavidin-HRP (GE Healthcare, 1:8000 – 

1:80000), His-HRP (Pierce, 1:50000), GAPDH (Santa Cruz Biotechnology, 1:200), PTEN 

(A2B1, Santa Cruz Biotechnology, 1:200), PTP1B (Calbiochem, 1:1000), SHP2 (Santa 

Cruz Biotechnology, 1:200), Nox2 (ab31092, Abcam, or Santa Cruz Biotechnology, 

1:500 – 1:1000 in PBST), Nox1 (ab55831, Abcam, 1:500 in PBST), phospho-Tyrosine 

(Millipore, 1:1000), goat anti-rabbit IgG-HRP (Calbiochem, 1:2000 – 1:50000), rabbit 

anti-mouse IgG-HRP (Invitrogen, 1:30000), and donkey anti-goat IgG-HRP (Santa Cruz 

Biotechnology, 1:30000 in PBST).  PVDF membrane was developed with 

chemiluminescence (GE Healthcare ECL Plus Western Blot Detection System) and 

imaged by film.  Data was quantified by densitometry with ImageJ (Wayne Rasband, US 

National Institutes of Health, http://rsbweb.nih.gov/ij/).  PVDF membranes were stripped 

using mild stripping buffer (200 mM glycine pH 2.2, 0.1% SDS, 1% Tween-20) according 

to established protocol (www.abcam.com) before reprobing. 
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4.5.14 Immunoprecipitation 

EGFR was immunoprecipitated from 500 µg cell lysate (1 mg/ml) with 1 µg of anti-EGFR 

antibody.  PTPs were immunoprecipitated from 1 mg lysate prepared from A431 cells 

cultured in low-glucose DMEM with 1 µg anti-PTEN antibody, anti-PTP1B antibody (BD 

Transduction Laboratories), or anti-SHP2 antibody overnight at 4 °C with gentle rocking.  

The immunocomplexes were isolated by incubating 20 µl protein A sepharose (EGFR 

and SHP2; GE Healthcare) or protein G agarose (PTEN and PTP1B; Roche) for an 

additional 2 h at 4 °C with rocking.  The resin was collected by centrifugation at 100g for 

2 min at 25 °C, washed three times with cold RIPA buffer (Boston BioProducts), 

subjected to click chemistry as described in Methods, and proteins were eluted by 

boiling with Laemmli sample buffer for 10 min.  Nox2 was co-immunoprecipitated with 

EGFR from 500 µg of lysate with 20 µl goat anti-EGFR antibody-conjugated agarose 

(Santa Cruz Biotechnology) or isotype control (normal goat IgG) in a total volume of 500 

µl for 4 h at 4 °C with gentle rocking.  The resin was collected as above and washed 

three times with cold native lysis buffer, and eluted as above.  EGFR was 

coimmunoprecipated with Nox2 as above, except using 20 µl rabbit anti-Nox2 antibody-

conjugated agarose (Santa Cruz Biotechnology) or normal rabbit IgG as an isotype 

control.  For ESI-MS analysis in Figure 4.5g, A431 cells were stimulated with 4 ng/ml 

EGF for 2 min, harvested by trypsinization, and treated with dimedone as in Methods.  

Following treatment, EGFR was immunoprecipitated from 6 mg cell lysate as described 

above.  The EGFR was eluted by boiling for 10 min in 10% SDS in ddH2O and then 

precipitated by acetone.  The resulting protein precipitate was resuspended in Laemmli 

sample buffer, and resolved by SDS-PAGE. 
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4.5.15 Intracellular ROS detection 

Intracellular ROS were measured in a 96-well plate using the fluorescent probe DCF (the 

intracellular product of H2-DCF diacetate that fluoresces in the presence of ROS, 

including H2O2).  A431 cells were seeded at 1.5x104 per well, grown and stimulated with 

EGF as described in Methods.  Inhibitors/scavengers were added to culture medium 

prior to treatment for the period of time indicated in figure legends.  Following 

stimulation, cells were washed twice with PBS, and incubated in the dark for 30 min at 

25 °C with 10 µM 2',7'-dichlorodihydrofluorescein diacetate (H2DCF-DA, Sigma) in PBS.  

H2DCF-DA is a cell permeable indicator for ROS that is a nonfluorescent compound that 

can enter cells and is trapped by intracellular esterase cleavage of the diacetate group.  

DCF is converted into a fluorescent product upon interaction with intracellular ROS.  

After incubation, the intensity of fluorescence was measured at 488 nm (excitation) and 

525 nm (emission) using a SpectraMax M5 microplate reader (Molecular Devices).  To 

examine the effect of DYn-2 on intracellular ROS, serum-deprived A431 cells were 

washed three times with PBS and then harvested by 0.25 % trypsin/EDTA.  The trypsin 

was neutralized with DMEM and cells were collected by centrifugation at 1500g for 2 

min.  Cells were aliquoted at 6 x 105 cells per microcentrifuge tube and treated with 5 

mM DYn-2 or DMSO vehicle (2% v/v) for 1 h at 37 °C.  Following treatment, the cells 

were washed three times with PBS, seeded into 96-well plates at 1 x 105 cells/well in 

triplicate, and analyzed for DCF fluorescence as described above. 

 

4.5.16 Cell viability 

Serum-deprived A431 cells were labeled with 5 mM DYn-2 or DMSO vehicle (2% v/v) as 

described in Methods.  After labeling, the cells were washed three times with PBS and 

resuspended in 500 µl PBS with an equal volume of trypan blue solution (0.4 % w/v).  
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The mixture was incubated at 25 °C for 3 min, and 10 µl of the cell suspension was 

loaded onto a hemocytometer and counted under a microscope. 

 

4.5.17 Quatification of glutathione in A431 cells 

Serum-deprived A431 cells were treated with 5 mM DYn-2 or DMSO vehicle (2% v/v) as 

described in Methods.  After labeling, the cells were washed three times with PBS and 

lysed in 1x GSH MES buffer (Cayman Chemicals).  Levels of total, reduced, and 

oxidized glutathione were measured using the Glutathione Assay kit (Cayman 

Chemicals) according to the manufacturer’s instructions. 

 

4.5.18 Quantification of peroxiredoxin SO3 in A431 cells 

Serum-deprived A431 cells were treated with 5 mM DYn-2 or 2% (v/v) DMSO as 

described in Methods.  After labeling, cells were lysed in modified RIPA lysis buffer, 

resolved by SDS-PAGE, and analyzed by anti-Peroxiredoxin-SO3 (Abcam, 1:1000) 

Western blot. 

 

4.5.19 In-gel trypsin digestion of Gpx3 

DYn-2 labeled Gpx3 was resolved by SDS-PAGE and stained with SimplyBlue 

SafeStain (Invitrogen).  After staining, the gels were washed with H2O and bands of 

interest were excised.  The excised bands were dehydrated in 2:1 ACN: 25 mM 

ammonium bicarbonate (Ambic), pH 8.0 and subsequently rehydrated with 25 mM 

Ambic pH 8.0 twice prior to reducing with 10 mM DTT for 1 h at 56 °C.  DTT was 

removed and the samples were alkylated with 55 mM iodoacetamide for 45 minutes at 

25 °C in the dark.  Iodoacetamide was removed by and the excised bands were washed 

with 25 mM Ambic pH 8.0 then dehydrated and rehydrated two additional times.  

Sequencing grade modified trypsin (Promega) was added to the excised bands at a ratio 
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of 1:25 (w/w), and the samples were incubated overnight at 37 °C.  Peptides were 

extracted from the gel by collecting the supernatant and by dehydrating and rehydrating 

the excised bands.  Peptide samples were concentrated via vacuum centrifugation and 

analyzed by ESI-LC-MS/MS. 

 

4.5.20 In-gel pepsin digestion of immunoprecipitated EGFR 

The band corresponding to EGFR was excised and the gel slice was processed as 

above with the following modifications.  After iodoacetamide removal, the excised bands 

were washed with 75 mM K2HPO4/75 mM KH2PO4 pH 2.5 then dehydrated and 

rehydrated two additional times with 2:1 ACN: 75 mM K2HPO4/75 mM KH2PO4 pH 2.5 

and 75 mM K2HPO4/75 mM KH2PO4 pH 2.5, respectively.  Sequencing grade pepsin 

(Princeton Separations) was added to excised bands at 20 ng/µL and incubated 

overnight at 37 °C. 

 

4.5.21 ESI-LC/MS/MS analysis 

Gpx3 peptides were analyzed on an electrospray linear ion trap mass spectrometer 

(LTQ-XL, Thermo Scientific) after separation on an Agilent Eclipse XDB-C8 2.1 mm x 15 

mm trap with mobile phases A (0.1% formic acid in water) and B (0.1% formic acid in 

acetonitrile) which was used to trap, desalt, and elute peptides onto a Vydac Everest 

reverse-phase C18 monomeric column (2.1 mm x 150 mm, 300 Å, 5 µm) with a gradient 

of 5% to 60% B in 60 min at a flow rate of 200 µL/min. 

 

4.5.22 In vitro EGFR kinase assay 

The tyrosine kinase activity of recombinant human EGFR kinase domain (Promega) was 

assayed using the ADP-Glo™ Kinase Assay (Promega) according to the manufacturer’s 

protocol (www.promega.com), except that DTT was not included in the reaction buffer.  
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In brief, the ADP-Glo™ Kinase Assay is a luminescent assay that measures ADP formed 

from the EGFR kinase reaction; ADP is converted into ATP, which is a substrate in a 

reaction catalyzed by Ultra-Glo™ Luciferase that produces light.  The luminescent signal 

positively correlates with ADP amount and kinase activity.  Poly (4:1 Glu, Tyr) (Promega) 

was used as a peptide substrate.  When present, EGFR inhibitors, H2O2 or DTT were 

added to the reaction mixture for the period of time indicated in figure legends. 

 

4.6  Appendices 

 

4.6.1  EGF-dependent morphological changes in A431 cells.  Top images: Bright-

field images of A431 cells before (T0) and after 100 ng/ml EGF stimulation for 2, 15, 30, 

and 60 min (labeled as T1, T2, T3, and T4, respectively). Bottom images: Combined 

bright-field and confocal fluorescence image of A431 cells (Figure 4.1b depicts the 

confocal fluorescence image alone).  Cells were fixed and stained as described in 

Methods with rabbit anti-EGFR antibody (2 µg/ml) followed by Alexa594-conjugated 

(red) goat anti-rabbit secondary antibody (1:1000).  Nuclei were counterstained with 

DAPI (blue).  White arrows highlight changes in receptor localization (T0, plasma 

membrane; T1, membrane ruffles; T2, regions of cell stretching and migration; T3, 

perinuclear and endosomal membranes; T4, plasma membrane and ruffles). 
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4.6.2  Structures of compounds used in this study.  DAz-2 and DYn-2, sulfenic acid 

probes; alkyne-biotin and azide-biotin, biotinylation reagents; gefitinib, reversible EGFR 

kinase inhibitor; afatinib, canertinib and pelitinib, irreversible EGFR kinase inhibitors; N-

acetyl cysteine (NAC), antioxidant; apocynin and DPI, reversible NOX inhibitors; 

wortmannin, reversible PI3K inhibitor. 

 

4.6.3  Effect of inhibitors, antioxidants, and sulfenic acid probes on EGF-mediated 

signaling. (a-h) Western blots showing global tyrosine phosphorylation (pTyr) or 

phosphorylated (p) EGFR, AKT and/or ERK and total EGFR, AKT, and/or ERK as 

loading controls.  (a) A431 cells were stimulated with 100 ng/ml EGF or vehicle for 5 

min.  Where indicated, A431 cells were pretreated with 10 µM gefitinib, 100 µM afatinib 

or 100 µM wortmannin for 25 min.  (b,c) A431 cells were treated with the indicated 

concentrations of PEG-catalase for 5 min (b) or 30 min (c) and then stimulated with 100 

ng/ml EGF or vehicle for 5 min.  Gefitinib treatment was as in a.  (d,e) A431 cells were 

stimulated with 100 ng/ml EGF or vehicle for 5 min in the presence of the indicated 

concentrations of NAC.  Gefitinib treatment was as in a.  (f) A431 cells were stimulated 

with 100 ng/ml EGF or vehicle for 5 min.  Where indicated, A431 cells were pretreated 

with the indicated concentrations of apocynin for 25 min before stimulation.  (g) A431 
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cells were stimulated with 100 ng/ml EGF or vehicle for 5 min.  Where indicated, A431 

cells were pretreated with the indicated concentrations of DPI for 5 min before 

stimulation.  (h) A431 cells were stimulated with 100 ng/ml EGF or vehicle for 5 min.  

Where indicated, A431 cells were pretreated with the indicated concentrations of DYn-2 

or dimedone for 25 min before stimulation.  (i) A431 cells were stimulated with 100 ng/ml 

EGF or vehicle for the indicated times, washed, harvested, resuspended in serum-free 

DMEM, and incubated with 5 mM DYn-2 or DMSO vehicle (2% v/v) for 15 min at 37 °C 

as described in Methods. 

 

4.6.4 Detection of sulfenic acid modification with DYn-2.  (a) LC/MS intact mass 

analysis shows the covalent attachment of a single DYn-2 molecule to Gpx3 (♦, 

22916.39 Da).  The inset shows the deconvoluted mass spectrum.  The observed mass 

shift is 177.48 Da, whereas the expected mass shift for a single DYn-2 adduct is 176.08 
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Da.  The slight discrepancy is well within range of the mass accuracy for the LTQ-XL 

instrument (100 ppm or ± 2.29 Da at 22916.39).  Over-oxidation of the catalytic cysteine 

to sulfinic acid (–SO2H) is also observed (, 22776.36 Da).  25 µM Gpx3 was treated 

with 37.5 µM H2O2 and labeled with 10 mM DAz-2 for 1 h at 37 °C.  (b) Top spectrum: 

Extracted ion (ion current at m/z 333.48 [M+2H]+2) chromatogram corresponding to the 

unmodified peptide (MPFGCL) from native EGFR.  Bottom spectrum: The extracted ion 

(ion current at m/z 402.80 [M+2H]+2) chromatogram corresponding to the dimedone-

tagged peptide (MPFGC*L) from native 

EGFR.  The ratio of dimedone-modified 

to unmodified peptide was determined 

by taking the areas under the curves 

and was determined to be 

approximately 6:1.  A431 cells were 

stimulated with 4 ng/ml EGF for 2 min, 

washed, incubated with 5 mM 

dimedone for 1 h at 37 °C, 

immunoprecipitated with anti-EGFR 

antibody, and resolved by SDS-PAGE.  

The band corresponding to EGFR 

(~170 kDa) was excised, digested with 

pepsin, and analyzed by ESI-LC-

MS/MS as described in Methods. 

 

 



122 

4.6.5  DYn-2 labeling of 

protein sulfenic acids in 

A431 cells. (a) Densitometric 

quantification of 

electrophoretic lanes from 

Figure 4.2f and g.  Right 

graph: The numbers situated 

above indicate the fold-

increase in sulfenylation signal 

between unstimulated and 

EGF-treated cells.  (b,c) 

Western blot showing dose- 

and time-dependent detection 

of protein sulfenic acids in 

A431 cells and total GAPDH 

as loading controls.  A431 

cells were stimulated with 100 

ng/ml EGF for 5 min, washed, 

lifted as described in Methods 

and then treated with vehicle 

or the indicated concentrations 

of DYn-2 for 1 h at 37 °C (b), 

or with 5 mM DYn-2 for the indicated times (c), and protein sulfenic acids were detected 

by streptavidin-HRP Western blot as in Figure 4.2g.  Densitometric quantification of 

each electrophoretic lane from dose (b) and time (c) dependencies are shown at the 

right of their respective Western blots and data were normalized to the maximal signal 
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observed in each case.  (d) A431 cells were treated with 5 mM DYn-2 or vehicle for 1 h 

at 37 °C, washed, harvested in the presence or absence of 200 U/ml catalase, and 

protein sulfenic acids were detected by streptavidin-HRP Western blot as in Figure 4.2g.  

For all graphs, error bars show ± s.e.m. 

 

4.6.6  DYn-2 treatment of A431 cells does not trigger cell death or oxidative stress. 

A431 cells were stimulated with 100 ng/ml EGF for 5 min, washed, and incubated with 5 

mM DYn-2 or vehicle for 1 h at 37 °C as described in Methods.  Following treatment: (a) 

A431 cell viability was evaluated by cell counting using trypan blue exclusion after DYn-2 

or vehicle treatment and results were expressed as the percentage of viable cells.  (b,c) 

Production of intracellular ROS was measured by DCF fluorescence as described in 

Methods.  Where indicated, H2O2 was added at a final concentration of 400 µM.  In (c), 

data were normalized to vehicle control as 100% DCF fluorescence.  (d) Reduced 

glutathione (GSH) and oxidized glutathione (GSSG) levels were measured in DYn-2 and 

vehicle-treated samples as described in Methods.  (e) GSH represented as a percentage 

of total glutathione pool.  (f) Samples were resolved by SDS-PAGE and analyzed by 

anti-Prx-SO3 Western blot (left).  Comparable protein loading was confirmed by anti-

GAPDH Western blot.  Prx-SO3 signal was quantified by densitometry, and normalized 

to the vehicle control (right).  For all graphs, error bars show ± s.e.m. 
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4.6.7  Secondary antibody only 

control and imaging of Nox2 in 

A431 cells that are not 

permeabilized. (a) Confocal 

fluorescence images of A431 cells 

labeled with secondary antibody 

only.  Cells were fixed and stained 

as described in Methods with 

Alexa488-conjugated goat anti-

rabbit secondary or Alexa594-

conjugated (red) goat anti-rabbit 

secondary antibodies (1:1000).  

Nuclei were counterstained with 

DAPI (blue).  (b) A431 cells were fixed but not permeabilized and stained with PE-
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conjugated (red) mouse anti-Nox2 antibody.  Nuclei were counterstained with DAPI 

(blue). 

 

4.6.8  EGF-mediated sulfenylation requires EGFR activity and is modulated by 

cellular redox status in A431 cells. Western blots showing protein sulfenic acids in 

A431 cells and total GAPDH.  (a) A431 cells were stimulated with 100 ng/ml EGF for 2 

min after pretreatment with 10 µM gefitinib, 1 µM afatinib, 10 µM canertinib, 1 µM 

pelitinib, 100 µM apocynin, 100 µM wortmannin, 100 µM L-NAME or vehicle for 25 min.  

In (b), A431 cells were stimulated with 100 ng/ml EGF for 2 min after pretreatment with 

PEG-catalase at the indicated concentration for 5 min.  In (c), A431 cells were 

stimulated with 100 ng/ml EGF for 5 min after pretreatment with NAC at the indicated 

concentration for 5 min.  

In (d), A431 cells were 

stimulated with 100 

ng/ml EGF for 2 min 

after pretreatment with 

apocynin at the 

indicated concentration 

for 5 min (d).  In (e) 

A431 cells were 

stimulated with 100 

ng/ml EGF for 5 min 

after pretreatment with 

DPI at the indicated  



126 

concentration for 5 min.  Following treatment, cells were incubated with DYn-2 or vehicle 

for 1 h (a) or 15 min (b-e) at 37 °C and sulfenic acids were detected by streptavidin-HRP 

Western blot as in Figure 4.2g. 

 

4.6.9  Nox2 expression, H2O2-mediated EGFR oxidation and modulation of 

recombinant EGFR tyrosine kinase activity. (a, b) Expression of Nox1 and Nox2 in 

A431 cells was analyzed by Western blot with rabbit anti-Nox1 and rabbit anti-Nox2, with 

GAPDH as a loading control (a) or immunofluorescence microscopy (b).  In (b), cells 

were fixed and stained with rabbit anti-Nox1 or rabbit anti-Nox2 antibodies at 2 µg/ml, 

followed by Alexa594-conjugated goat anti-rabbit (red) secondary antibodies (1:1000).  

Nuclei were counterstained with DAPI (blue). (c) Western blot showing sulfenylated and 

total EGFR.  A431 cells were stimulated with H2O2 at the indicated concentrations for 10 

min and sulfenic acids were detected by streptavidin-HRP Western blot as in Figure 

4.5b. (d) Western blot showing coimmunoprecipitation of SHP2, EGFR, and Nox2.  

A431 cells were stimulated with 100 ng/ml EGF or vehicle for the indicated times and 

samples were processed as in Figure 4.5c.  The presence of SHP2 was evaluated 

using a rabbit anti-SHP2 antibody and comparable recovery of immunoprecipitated 

EGFR was confirmed by probing the Western blot with rabbit anti-EGFR antibody.  IC, 

isotype control.  (e-g,i) Measurement of EGFR tyrosine kinase activity in vitro as 

described in Methods.  (e) Recombinant EGFR (rEGFR) kinase activity titration.  (f,g) 

rEGFR was incubated with gefitinib (f) or afatinib (g) at the indicated concentrations and 

assayed for kinase activity.  (h) rEGFR was incubated with H2O2 or vehicle for 15 min, 

and then 1 mM DTT or vehicle was added for an additional 10 min and assayed for 

kinase activity.  Data were normalized to the untreated control and error bars show ± 

s.e.m.  (i) The ATP-regenerating system from the EGFR kinase activity assay was 
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untreated or co-incubated with the indicated concentrations of H2O2 and assayed for 

kinase activity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.6.10  Indirect and direct chemical techniques to monitor cysteine oxidation and 

PTP oxidation/trapping scheme. (a) Loss of reactivity with thiol-modifying reagents 

indirectly monitors cysteine oxidation. ROS and RNS oxidize reactive protein thiols (red 

protein).  Addition of a thiol-specific alkylating agent such as NEM or IAM derivatized 

with a detection handle covalently modifies free thiols.  Increased cysteine oxidation 

exhibits a decrease in probe signal.  (b) Restoration of thiol-labeling by reducing agents 

indirectly monitors cysteine oxidation.  Initially samples are incubated with NEM or IAM 

to irreversibly alkylate free thiols.  Next a reducing agent returns oxidized cysteines to 

free thiols.  Addition of NEM or IAM derivatized with a detection handle covalently 

modifies nascent thiols.  Increased cysteine oxidation exhibits an increase in probe 
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signal.  (c) Direct detection of specific cysteine oxoforms.  Samples are incubated with a 

chemoselective alkylating agent for a specific cysteine oxoform (i.e. nitrosothiols and 

sulfenic acids) derivatized with a detection handle.  Visualization of probe incorporation 

results in an increase in signal with increased oxidation.  (d) Reaction of H2O2 with the 

catalytic cysteine thiolate of PTPs generates sulfenic acid (second order reaction).  Once 

formed, the sulfenic acid can condense with a backbone amide to form a sulfenamide in 

PTP1B, or with a second cysteine residue to form an intramolecular disulfide in PTEN 

and SHP2 (first order reaction).  Alternatively, the sulfenic acid intermediate can be 

trapped by dimedone or DYn-2 

(second order reaction).  The 

amount of sulfenic acid detected 

is a function of the: (i) rate of 

oxidation (~2-10 M-1s-1)75,76, (ii) 

rate of dimedone/DYn-2 trap 

(~103 M-1s-1)90,91, and (iii) rate of 

intramolecular condensation 

(~10-3 s-1 for sulfenamide78 and 

~10 s-1 for intramolecular 

disulfide77).  Note: the 

aforementioned rates were 

measured in vitro with 

recombinant proteins.  In some 

cases, the sulfenic acid may be 

directly reduced back to the thiol. 
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Chapter 5 

 

Conclusions and future directions 

5.1 Abstract 

The data presented in the previous chapters provide the first direct evidence for the role 

of sulfenylation in regulating the function of proteins involved in vital eukaryotic signaling 

pathways and the design and development of a new probe for selective sulfenic acid 

detection.  The present chapter summarizes these findings and the significance of this 

work.  Moreover, we discuss future directions aimed at the discovery of additional novel 

targets of growth factor-derived hydrogen peroxide (H2O2), development of novel 

irreversible inhibitors for epidermal growth factor receptor (EGFR) and the continued 

investigation of redox regulation of protein tyrosine kinases (PTKs).   

 

5.2 Conclusions: Elucidating the role of protein sulfenylation in eukaryotic signal 

transduction 

H2O2 acts as a second messenger that can modulate intracellular signal transduction via 

chemoselective oxidation of cysteine residues in signaling proteins.  Unfortunately, the 

protein targets of H2O2, as well as how oxidation influences protein activity has remained 

largely unknown.  The overall goal of this thesis was to use chemical tools developed in 

our lab that are chemoselective for sulfenic acid to shed light on how protein 

sulfenylation can regulate activity within the context of cellular signaling.  Mechanistic 

insights into signal-mediated H2O2 production, an overview of techniques used to detect 
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reactive oxygen species (ROS) and reversible cysteine oxidation, and diverse examples 

of how H2O2 can regulate protein function was provided in Chapter 1.   

 

In Chapter 2, we used our first generation sulfenic acid probe, DAz-1, to uncover an 

essential role for sulfenic acid modification of Gpx3 in its communication of conditions of 

oxidative stress to the transcription factor Yap1 in S. cerevisiae.  This study constituted 

the first direct evidence that cysteine oxidation to sulfenic acid in Gpx3 was essential for 

yeast to sense oxidative stress and, more broadly, shed light on the growing roles of 

sulfenic acid modifications in biology.  From a chemical perspective, this study also 

highlighted the utility of our sulfenic acid probes to investigate redox signaling in living 

cells.  

 

In addition to regulating signal transduction in healthy cells, ROS production and 

cysteine oxidation are also implicated in a number of pathologies including 

neurodegenerative disorders.  In Chapter 3, we used our second generation sulfenic 

acid probe, DAz-2, which exhibits enhanced reactivity in comparison to DAz-11 to 

develop a method to globally profile protein sulfenylation in S. cerevisiae.  We intended 

to use this methodology to investigate the correlation between mutant huntingtin (Ht) 

aggregation, ROS production, and cysteine oxidation using a yeast model of 

Huntington’s disease (HD).  Unfortunately, our methodology suffered from low 

sensitivity, likely due to low permeability of the yeast cell membrane, and irreproducibility 

and the study was ultimately discontinued.  

 

Finally, in Chapter 4, we present the design and characterization of an alkyne-based 

sulfenic acid probe, DYn-2.  DYn-2 is used to reveal, for the first time, dynamic changes 

in global protein sulfenylation in response to epidermal growth factor (EGF) signaling in 
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the human epidermoid carcinoma A431 cell line.  We additionally identified three protein 

tyrosine phosphatases (PTPs) and EGFR as direct protein targets of H2O2 produced for 

EGF signaling.  Moreover, we demonstrated that each of these enzymes exhibits 

differential sensitivities to oxidation and rationalized these sensitivities based on 

proximity to the H2O2 source.  Lastly, we provided the first evidence that H2O2 can 

directly regulate receptor tyrosine kinase function.  The results of this study shed new 

light on the molecular mechanisms underlying redox signaling pathways and have broad 

therapeutic implications.  

 

5.3 Future directions in the exploration and exploitation of redox signaling 

 

5.3.1 Proteomic identification and quantification of proteins oxidized in response 

to EGF signaling 

The results in Chapter 4 demonstrate, for the first time in cells, that EGF signaling 

stimulates dynamic changes in global protein sulfenylation.  These results, in 

combination with the recent publication of additional studies that demonstrate increased 

protein sulfenylation in response to peptide growth factors,2,3 motivate a proteomics 

study to broadly identify protein targets of H2O2 produced for EGF signaling.  Indeed, our 

sulfenic acid probe, DAz-2, was previously used to identify nearly 200 oxidized proteins 

in HeLa cells 1.  A limitation to current proteomics methodology, however, is that while a 

substantial number of proteins can be identified, no functional significance for oxidative 

modifications is provided.  One approach to identify potentially significant protein targets 

of redox signaling is to quantify the extent of cysteine oxidation in response to different 

cellular conditions.  For such studies, however, methods would be required that 

eliminate the contribution of fluctuation in protein expression to differences in protein 

oxidation such that relative differences could be revealed.  Herein, the expectation is that 
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proteins that exhibit larger changes in cysteine oxidation after EGF stimulation are more 

likely to be significant targets of redox regulation.  Towards this end, our lab has 

developed a ratiometric method that permits relative quantification of cysteine oxidation 

of a sample between two conditions 4.  This method, isotope-coded dimedone and 2-

iododimedone (ICDID), utilizes deuterium-labeled dimedone (d6-dimedone) to label 

protein sulfenic acids and 2-iododimedone to label reduced protein thiols 4.  The 

resulting covalent adduct generated by each reaction is the same, differing in mass by 6 

Da that can be readily detected by mass spectrometry and the relative amount of 

oxidized protein in a given sample can be quantified from the ratio of heavy/light isotype 

peak intensities.  This relative quantification can then be used to compare the extent of 

protein oxidation between conditions.  To apply this methodology more broadly to redox 

proteomics, our lab is in the process of generating d6-DYn-2 and 2-iodoDYn-2 that can 

be used in conjunction with alkyne-biotin reagents containing an acid-cleavable linker5 to 

facilitate enrichment and enhanced recovery of modified proteins.  Quantification of 

protein oxidation in response to EGF signaling will help to prioritize protein targets of 

signal-derived H2O2 for further biochemical characterization of redox regulation.    

 

5.3.2 Development of irreversible redox-based inhibitors for EGFR 

The findings in Chapter 4 mark the first demonstration that EGFR is susceptible to redox 

regulation, which has broad implications for therapeutic intervention.  EGFR is mutated 

or amplified in a number of human cancers including breast6 and lung7 cancer, which 

has motivated the development of selective irreversible inhibitors that covalently modify 

Cys797 in this receptor tyrosine kinase (RTK) (Figure 5.1a).  These inhibitors compete 

with ATP, which is present at millimolar concentrations in the cell, for binding to EGFR 

and thus high concentrations must be used to achieve desired pharmacological effects.  

Unfortunately, these inhibitors cannot discriminate between “cancerous” and “normal” 
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cells and their use is associated with numerous undesirable side effects 8.  Interestingly, 

overexpression of EGFR in breast cancer cell lines correlated with increased global 

protein sulfenylation 9.  We have demonstrated that EGFR Cys797 is susceptible to 

oxidation, which necessitates the consideration of the oxidation state of this residue in 

irreversible drug development.  While the acrylamide warhead of irreversible EGFR 

kinase inhibitors reacts with the thiol form of Cys797, these inhibitors would not be 

expected to react with the sulfenic acid or disulfide oxoforms.  In this way, oxidation of 

Cys797 might impact the efficacy of the irreversible EGFR kinase inhibitors, particularly 

in states of high stress as is associated with cancer 10,11.  Sulfenylation of Cys797 could 

be exploited, however, to develop redox-based inhibitors akin to probes recently 

developed for PTPs 12.  Towards this end, our lab is currently synthesizing derivatives of 

the irreversible inhibitors shown in Figure 5.1a that are equipped with a 1,3-

cyclopentadione moiety for selective reaction with oxidized receptor (Figure 5.1b).  

These redox-based inhibitors will be examined for their ability to inhibit recombinant 

EGFR kinase activity subsequent to H2O2 treatment.  Importantly, these redox-based 

inhibitors, if successful, would be expected to exhibit enhanced selectivity for cancer 

 
Figure 5.1. Structures of irreversible EGFR kinase inhibitors.  a) Structures of acrylamide-based 
irreversible EGFR kinase inhibitors in clinical trials.  b) Structures of redox-based irreversible EGFR 
kinase inhibitors.  These inhibitors are based on the structures in (a), but incorporate a 1,3-
cyclopentadione moiety (red) to facilitate reaction with the sulfenylated receptor.  
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cells due to their association with oxidative stress10,11 and may therefore reduce the 

toxicity observed with acrylamide-based inhibitors.   

 

5.3.3 Investigation of redox regulation of additional receptor and protein tyrosine 

kinases 

Of the 96 known human protein tyrosine 

kinases (PTKs), 9 additional kinases, 

including Her2 and Her4, share a cysteine 

that structurally corresponds to EGFR 

Cys797 (Figure 5.2) 13.  The presence of 

a structurally homologous cysteine residue in these additional PTKs entertains the 

possibility that they may be similarly regulated by oxidation.  Cys797 and its structural 

analogues serve as the N-terminal end of an alpha helix, deemed the Ncap
 position.  

Interestingly, cysteine is the most sparsely occurring Ncap residue in natural proteins, 

comprising less than 1% of all of these positions 14.  Interaction of a cysteine residue 

with the helical dipole in an Ncap context reduces the pKa of the thiol under physiological 

conditions, which would increase the reactivity of that residue 15.  Indeed, this Ncap effect 

has been attributed to the reactivity of the human peroxiredoxin I peroxidatic cysteine 16.  

Therefore, localization of Cys797 and its structural analogues to the Ncap position may 

influence their reactivity making them more susceptible to redox regulation, though 

continued experiments are required to investigate oxidative modification of these PTKs.  

Interestingly, one of these PTKs, Btk, which is involved in the proliferation, development, 

differentiation, and survival of B-cells is also targeted by irreversible kinase inhibitors and 

thus, if redox regulated akin to EGFR, would have the same therapeutic implications.  

 

 
 
Figure 5.2. Ten kinases unified by sequence 
alignment of cysteine in EGFR.  
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A second set of PTKs including Src, which interacts with EGFR, and FGFR1 have a 

cysteine residue in the glycine loop, a conserved structural motif in kinases that 

contributes to catalysis by interacting with the γ-phosphate of ATP.  Interestingly, cellular 

studies indicate a role for cysteines in Src activity 17-19 and a recent study with purified 

Src implicated the glycine loop-residing cysteine as the site of redox regulation20.  In 

addition, DTT was found to activate recombinant FGFR1, indicating that this class of 

RTK may be regulated differently than EGFR20.  To date, however, neither Src nor 

FGFR1 have been confirmed as direct targets of signaling-derived H2O2 in cells and the 

cellular significance of their oxidation remains unknown.  These combined observations 

open the door to the possibility of diverse mechanisms for redox regulation of key 

enzymes involved in eukaryotic signal transduction and underscore the extensive cross-

talk that occurs between cysteine oxidation and protein phosphorylation.  

 

5.4 Concluding remarks 

Prior to the commencement of this work, the role of protein sulfenylation in eukaryotic 

redox signaling was highly speculative and had only been considered within the context 

of oxidant metabolism and oxidative stress responses.  By utilizing the sulfenic acid-

specific probes developed in the Carroll lab, we have provided the first direct 

demonstrations of functional roles for sulfenylation in regulating protein function in cells.  

Moreover, the work outlined in this thesis has uncovered EGFR as a novel target of 

H2O2 produced for growth factor signaling, which has broad implications for redox 

regulation of vital signaling pathways and provides new avenues for therapeutic 

intervention.  Implementation of quantitative proteomics will expedite the discovery of 

additional novel protein targets of growth factor-mediated H2O2 that will expand upon our 

current understanding of the mechanisms through which sulfenylation regulates protein 

activity and cellular signaling in normal and diseased states.  
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