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CHAPTER 1 

INTRODUCTION 

 

1.1 Risk Assessment in the Nuclear Industry 

The safe operation of nuclear power plants (NPPs) requires a careful analysis of the 

consequences of all events that can lead to the release of radionuclides to the environment. 

The initiating events can range from the failure of key safety systems which may not be 

immediately detectable to breaks in the primary coolant pipes which can cause damage to 

the fuel rods within a short period after the accident. Safety analysis, performed both 

before the construction of the NPPs and during the operation whenever there is a change 

in the configuration of the plants, can give a quantitative estimate of the risk that 

accidents or unforeseen events that occur in the plant will lead to offsite consequences.  

 Risk is estimated as a combination of the frequency of the initiating event (for 

instance, an accident) and the consequence of that event. Risk analysis attempts to 

determine how the initiating event will progress in time, incorporating the information on 

the responses of plant personnel and plant equipment. Risk analysis is especially crucial 

in the nuclear industry since failures of the safety barriers in an NPP may lead to a large 

release of radiation to the general public. Even if the plant were shut down immediately 

after an accident, the decay heat generated in the core will still require the operation of 

the cooling system at an adequate capacity. This level of dependence on the proper 

function of plant equipment long after shutdown means that there are many possible 
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evolution paths that an initiating event may follow with time. Risk analysis would 

therefore require a careful prediction of these evolution paths that may result in the 

undesirable consequences. 

 One of the earliest comprehensive probabilistic risk assessment (PRA) studies of 

nuclear power plants is WASH-1400 [NRC75]. This study focused on two representative 

power plants: Surry Power Station Unit 1 (a pressurized water reactor), and Peach 

Bottom Atomic Power Station Unit 2 (a boiling water reactor). The methodology 

employed in the study involves combining the fault tree and event tree structures. Fault 

trees are used to determine the combination of equipment faults that will lead to the 

failure of plant systems while the event trees are used to determine how different paths in 

accident evolution can lead to releases of radioactivity. Both the accident sequence and 

amount and mode of radioactivity releases are grouped into categories to make the 

analysis manageable. The WASH-1400 is also notable in its use of probabilistic density 

functions (PDFs) to account for uncertainties of event probabilities [Lee11]. The Zion 

and Indian Point probabilistic safety assessment studies [Hay99] were conducted around 

1982. These studies used the impact vector methodology to simplify the PRA analysis 

and focused on evaluating the safety of these two plants considering their location near 

the urban centers. 

 The next major NRC-sponsored PRA study of nuclear power plants occurred a 

little over a decade after WASH 1400 and is commonly referred to as NUREG-1150 

[NRC90b]. This study looks at three additional NPPs in addition to the two studied in 

WASH-1400. NUREG-1150 examines the accidents starting from any event that can lead 

to plant damage and follows the evolution until the release of radionuclides to the public 
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and evaluates the consequences of such a release in terms of fatalities.  The accident 

progression event tree (APET) is constructed based on both expert solicitation and 

simulation codes (which in turn are validated through experiments and operation logs). 

Accident progression analysis generates a large number of possible accident pathways 

and is simplified by grouping of the sequence into bins based on the similarity of 

containment failure mode, probability, and time [Hak08]. The consequence analysis 

includes the use of radionuclide transport model to predict the spread of radioactivity 

after containment failure.  The final risk integration gives the overall risk of the NPP to 

the public and is based on both the probability of the accident or malfunction and the 

consequences associated with them [Lee11]. 

 

1.2  Limitation of Static Risk Analysis 

One of the limitations of PRA conducted using the static fault tree (FT) and event tree 

(ET) is that the dynamic response of the plant over time from an initial perturbation is not 

explicitly represented [Buc08]. The plant dynamics, arising from the interaction of 

different plant components and from the interaction between the operator and the plant 

control equipment, cannot be easily predicted during the construction of the static PRA 

models. The FT/ET approach usually assumes that the accident scenario can be 

represented as a static grouping of equipment failures or operator failures [Ald92]. 

Although during the construction of the ET, plant simulations are used to determine the 

different accident progression paths that the plant may take, it cannot easily account for 

how parameters such as the time delays in the actuation of safety systems will affect the 

accident progression. Furthermore, the actions of the automatic control systems depend 
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on both the time-dependent plant parameters and the corrective actions performed by the 

operator, whose state of knowledge depends on the path of the accident evolution [Kun08, 

Lab05]. These dependencies make it difficult to predict ahead of time the most likely set 

of paths in which the accident will evolve. 

 All the possible dependencies of the accident progression mentioned above means 

that an ideal risk analysis model should account for: 

(1) the current status of all the relevant plant components, 

(2) the current status of the plant variables (e.g., pressure and temperature), 

(3) the current state of knowledge of the operator ,  

(4) the evolution history during the transient of the plant variables, and 

(5) the response model of both the automatic control systems and the operators. 

The conventional FT/ET approach can account for the plant component status, the 

anticipated response of the control systems, and to some extent, the anticipated change in 

the system variables. However, it ignores how observations made by the operators during 

the transient can impact the action of the operators. Also, since the response of the plant 

variables is assumed during the construction of the model, it is based on the most likely 

plant configuration and configuration changes that the modeler thinks will occur during 

the accident. Any deviation from these assumptions can lead to changes in the plant 

response that can render the model invalid [Kop05].  

 The  limitations mentioned above were recognized  as far back as in the 1980s, 

when the concept of dynamic PRA was first developed in detail [Aco92]. However, many 

of the dynamic PRA techniques that have been proposed have found limited applications 

in the risk analysis of large, complex systems. For any system, the evolution of the 
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accident can take many different paths, each leading to different undesirable 

consequences (e.g., core damage) at different times. For large systems, this leads to 

situations where the complexity of the model grows exponentially with time. Today, 

detailed dynamic PRA studies are usually done for a smaller subsystems in situations 

where either the interactions between the process variable and the control systems are 

critically important, or in cases where human behavior needs to be explicitly modeled.   

 Over the past few years, there have been recognitions that even though static PRA 

may be insufficient for certain instances where the interaction between plant processes 

and control systems is important, we often do not need the full power of dynamic PRA 

methodologies and their associated complications. Several authors have proposed the use 

of analysis techniques borrowed from the study of artificial intelligence such as the Petri 

net, artificial neural network, and Bayesian networks to bridge the gap between static and 

dynamic PRA [Mur02, Por10, Shi08]. Due to their ease of construction and use, 

graphical methods such as the Bayesian network are especially attractive, especially 

compared to dynamic PRA methodologies such as the continuous event tree where the 

construction of the model can be difficult and time consuming. In this dissertation, we 

will show an extension on the use of the Bayesian network in risk analysis to include the 

incorporation of the reactor transient code surrogate that can model the dynamics of the 

reactor during accidents. This linking of the Bayesian network to a fast-running code 

surrogate will allow risk analysis to be performed in such a way that plant dynamics are 

directly incorporated into the model. The technique can serve as a bridge between 

conventional static PRA techniques and a full blown dynamic PRA model. 

 

5 
 



1.3  Research Scope 

The research presented in this dissertation will focus on developing an appropriate code 

surrogate that can accurately represent the behavior of the reactor during a loss-of-

feedwater (LOFW) transient and linking it to the dynamic Bayesian network model 

representing the system. Using such a combination will allow the risk analysis to be 

performed in such a way as to directly account for the dynamics of the plant while 

maintaining the simplicity (as least for model construction) of static PRA. As mentioned 

in the previous section, although there exist various dynamic PRA methodologies that do 

explicitly use system dynamics in the risk analysis, the models using these techniques are 

either too difficult to construct for large systems or will take too long to solve using 

today’s computing capabilities. The work presented here is not meant to replace either the 

static or dynamic PRA. Rather, it is one additional tool that will be available to risk 

analysts should situations arise where the application of this method will help reduce the 

burden of the analysis of the safety of dynamic systems. 

 The dissertation will introduce the use of Bayesian network in dynamic PRA over 

several chapters. Chapter 2 will cover the currently existing methods for dynamic PRA 

and a simple problem that is commonly used to benchmark new dynamic PRA 

methodology. It will also describe some previous uses of the Bayesian network in risk 

analysis. Chapter 3 will describe the theory of the Bayesian network and its extension to 

the time domain in the form of dynamic Bayesian network (DBN). It will also revisit the 

simple problem introduced in chapter 2 and shows how this problem can be modeled with 

the BN. Chapter 4 will introduce the alternating conditional expectation (ACE) technique, 

a nonparametric regression technique that we will use to develop simplified models (i.e., 
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the code surrogate) to represent system dynamics during an accident. Chapters 5 and 6 

describe the LOFW transient in the pressurized water reactor and a RELAP5 model that 

is used to study the behavior of the plant during this accident. Chapter 7 presents the 

results of the risk analysis during the LOFW transient performed with a DBN. The 

dissertation concludes with chapter 8 with a discussion and ideas for possible extension 

of the DBN model to include applications in both diagnostics and real time monitoring 

and updating of data. 



CHAPTER 2 

Dynamic Probabilistic Risk Analysis 

 

2.1 Survey of Available Techniques 

Dynamic PRA methodologies that are available today are divided into three broad classes: 

dynamic event tree, discrete event transition models, and Monte Carlo simulation. The 

concept of the dynamic event tree extends the static event tree by allowing for branching 

at arbitrary times during the transient. The branching can be based on both the 

deterministic changes of the plant process variables and the stochastic transitions (failures) 

of plant components. The discrete event transition models are based on the discretized 

state of the plant. The plant state is defined by plant parameters (since these parameters 

are usually continuous, discretization is required) and the state of the components. 

Generally, the transition rate between plant states are dependent on the paths that the 

plant takes to reach the current state. However, keeping track of such a history would 

require an enormous amount of memory and may be impractical. Therefore, a Markov 

assumption is usually used. Under this assumption, the probability of transition to another 

system state is taken to be only dependent on the current state and is independent of how 

the system reaches the current state.  

The Monte Carlo simulation represents the plant evolution based on component 

state transition probabilities. Although the simulation technique can be used to analyze a 

large variety of dynamic problems with very little assumptions, the main drawback is that 
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a proper sampling technique is required so that rare events (which cover the 

majority of the accident scenarios in the NPP) are adequately sampled.  

 

2.1.1 Dynamic Event Tree 

The dynamic event tree (DET) technique traces the plant state as it evolves in time after 

an initiating event [Hak08]. Within a certain time interval, the plant state may change 

from either the stochastic change of the component state (for instance, from an equipment 

failure) or from the deterministic change of the system variable as governed by plant 

physics. These deterministic changes can be obtained either from a suitable plant 

simulation code or from sets of equations governing the physical parameters. For cases 

where the plant behavior follows the Markov assumption (no dependence on evolution 

history), the dynamic event tree technique requires little computer memory. However, for 

cases where the history dependence is important (for instance, cases where observations 

of the operators play a role in future behavior [Hol99]), storing all the pathways of the 

accident evolution can be memory intensive.  The dynamic event tree technique is also 

not suitable for sensitivity analysis since any change in the rule set or failure probability 

will require reanalyzing the entire scenario. 

 The DET methodology has been applied to many problems. Acosta looks at the 

application in the analysis of the steam generator tube rupture accident [Aco93].  

Amendola and Reina applied the idea to the DYLAM code [Coj93] which allows the 

analysis of small subsystems of the NPP [Ald92]. Labeau [Lab050] extends the idea of 

the DET to include cases where the branching can be induced by the occurrence of 

certain stimuli which can be specified during the model construction. 
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2.1.2 Monte Carlo Simulation 

Direct simulation of the plant behavior involves sampling the possible branching of the 

plant state based on a specified probability distribution. Unlike the case of the dynamic 

event tree approach which determines the branching based on a pre-specified set of 

branching rules, the Monte Carlo simulation samples from a large number of possible 

branches. This method of sampling leads to one major disadvantage for the Monte Carlo 

simulation: the difficulty of adequately representing rare events. Appropriate biasing is 

required to ensure that the result represents all the paths that can lead to core damage 

during the time interval of interest. Another disadvantage of the Monte Carlo method is 

that since the final result is an overall probability of reaching a particular end state, it is 

difficult to gather information about any particular progression pathway. Like the 

dynamic event tree approach, perturbation of the failure probability usually requires 

running a completely new simulation. 

 The Monte Carlo simulation technique applied to the water tank demonstration 

problem is often used in benchmarking other PRA techniques [Mar96].  This problem 

will be discussed in more detail in section 2.2 and will be used as a benchmarking case 

for the DBN technique in chapter 3. 

 

2.1.3 Discrete Transition Models 

The discrete transition model discretizes the system state and component state into 

different bins [Bel06]. The system evolution itself is represented by the transition of this 

combined state between different bins. Under the Markov assumption, the transition rate 
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depends only on the current state, and possibly on the transient time, but not on the detail 

of how the plant reaches its current state.  

 Risk analysis using Markov chains for static systems defines the system state as 

the state in which the system (i.e., all the components) resides. However, for dynamic 

systems, we usually make a distinction between the component state and system state.  

Let 1 2( , ,..., )T
Nx x x x= be the vector describing the state of the system variables kx ,

.  These system variables are plant parameters such as pressure, 

temperature, and water level that evolve deterministically with time, given a certain plant 

configuration. The time evolution of the system variables is described by 

{1,2,..., }k N∈

  

 ( ),i
dx f x
dt

=   (2.1) 

where ( )if x is the function describing how the system vector x will evolve with time, 

given the component state i.  Here, the component state refers to a vector describing the 

state of the plant equipment such as valve position, pump speed, or control rod position.  

At any given time t, the NPP can be described by the pair ( ),t tx i . Our goal is to find the 

conditional probability density 0 0 0( , , | , , )x i t x i tπ , where 0 0 0( , , )x i t is the initial state of the 

plant. If we now assume that the system is Markovian, Eq. (2.1) will satisfy the 

differential Chapman-Kolmogorov equation: 

 
( )0 0 0

0 0 0 0 0 0

0 0 0
,

( , , | , , ) ( ) ( , , | , , ) ( ) ( , , | , , )

                               ( | ) ( , , | , , ) 0.

x i i

j j i

x i t x i t f x x i t x i t x x i t x i t
t

p j i x x i t x i t

π π λ π

π
≠

∂
+∇ +

∂
− → =∑

i
 (2.2) 
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Note that the probability ( | )p j i x→  that the component state vector will change from 

state j to state i depends on the system state x. An example of this dependence is when the 

failure probability of a valve depends on the coolant temperature. The transition 

probability ( )i xλ is the probability that the component state leaves state i, given the 

system state x: 

 
,

( ) ( | ).i
j j i

x p i j xλ
≠

= →∑  (2.3) 

We should note that in the case where the component failure probability is independent of 

the system state, we can integrate Eq. (2.2) over all system state 0x . Defining the 

component transition probability integrated over system states 

 ( , ) ( , , ) ,i t x i t dxπ π= ∫  (2.4) 

Eq. (2.2) becomes 

 
,

( , ) ( , ) ( ) ( , ).i
j j i

d i t i t p j i j t
dt
π λ π π

≠

= − + →∑  (2.5) 

Equation (2.5) is the Markov equation commonly used for reliability analysis problems 

with failure rates that are independent of the deterministic system state [Dev92]. 

Suppose Eq. (2.1) has the solution 0( ) ( , ).ix t g t x=  Equation (2.2) can be 

converted to an integral equation [Dev92, Lab05]: 

 
( ) ( ) ( )( ) ( )( )

( ) ( ) ( )
( ) ( )( ) ( )

0

0, , , , , 1 ,

|1 , , , , ,
( )

i i

t

j i
i jt

x i t u i t x g t u F t u du

p j i u
u u j t x g u dF u du

x u

π π δ

λ π τ δ τ τ
λ λ

= − −

→
+ − −

∫

∫ ∫ i

.

 (2.6) 

where 

 ( )
( )

0

,

, 1

t

i
t

g s u ds

iF t u e
λ−∫

= −  (2.7) 
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The integral equation (2.6) can be solved using Monte Carlo methods [Ald92]. 

 To avoid the need for working with continuous state space, we can discretize Eq. 

(6). We start by defining the cell-averaged probability as: 

  (2.8) ( , ) ( , , ) ,
k

k
D

i t x i t dxπ π= ∫

where kD is the partition of the state variable x: k
k

x D∈∪ . Defining the indicator 

function 

  (2.9) 
1,  x D

( )
0,  otherwise

k
kH x

∈⎧
= ⎨
⎩

we can integrate Eq. (6) over the cell  kD and obtain 

  

 (2.10) 

( )

( )

0

0 0

0

,

( , ) ( , , ) ( , ) exp ( , )

           ( , , ) ( , ) ( | ) exp ( , ) .

t

k k i i i
t

t t

k i i i
j j i t t

i t u i t H g t u g s u ds

du d u j t H g t u p j i u g s u ds

π π λ

τπ τ λ
≠

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞

+ − → −⎜ ⎟⎜ ⎟
⎝ ⎠

∫ ∫

∑ ∫ ∫ ∫

It is possible to replace the transition probability ( | )p j i u→ by ( )| lp j i u→ < > , where 

 is the average value of the system state over the cell lu< > lD . Furthermore, we can 

replace the indicator function kH by its cell average. These approximations lead to an 

averaged form of Eq. (2.10) which forms the basis of the cell-to-cell mapping technique 

[Wan04]. 

The Monte Carlo method and the dynamic event tree approach to solving dynamic 

PRA problems are not exclusive of one another. A combination of these two methods 

called the MCDET (Monte Carlo Dynamic Event Tree) was proposed by Hofer and 
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described in [Hof10]. In MCDET, the continuous event tree is discretized by means of 

Monte Carlo simulations. Discretization here refers to the sampling of the transition time 

and output state from the continuous event tree. The simulation yields groupings of the 

sampled paths which can then be analyzed. 

Recently, interest in the use of graphical techniques in dynamic PRA analysis has 

led to a new class of techniques [And09]. Dynamic reliability analysis methods that are 

based on an extension of the static method includes the dynamic fault tree (DFT). A DFT 

is essentially a conventional static fault tree with several new dynamic gates added 

[Shi08]. The new gates include the functional dependency (FDEP) gate, the warm and 

cold spare gates, the priority AND (PAND) gate, and the sequence enforcing (SEQ) gate. 

The FDEP gate sets the output to true if the trigger is true. The warm and cold spare gates 

are used for components that are in standby. The PAND gate is true only if the basic 

event is true in a predetermined order. An extension of the PAND gate to more than two 

basic events is the SEQ gate. Each of the gates in the DFT can be converted to an 

equivalent Markov model and solved via the standard methods such as the matrix 

equation and Monte Carlo simulations [Pou08]. 

 

2.2  The Water Tank Problem 

The water tank problem and its variation are often used to benchmark new dynamic PRA 

methodologies [Mar96]. The problem is based on a water tank with a prescribed inlet and 

outlet flows. The controller controls both flows based on the current water level of the 

tank. 
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Figure 2.1. Water tank problem. Picture adapted from [Puc08]. 

 

Figure 2.1 shows the basic set up of the problem. We start from an initial value where the 

liquid level is at 0 m. Each of the three control units can be in one of four states shown in 

Table 1.1. We assume for simplicity that there is no repair and so if the controller fails 

either to state 3 or state 4, it will remain in that state forever (i.e., states 3 and 4 are 

absorbing states). Each of the three controllers will adjust its state (between state 1 and 2) 

based on the water level in the tank, with the goal of maintaining the water level between 

the lower set point lsp and the high set point hsp. This control behavior is summarized in 

Table 2.2. 
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Table 2.1. State space for each controller. 

Controller State Identifier Controller State Description 

1 OFF 

2 ON 

3 Failed OFF 

4 Failed ON 

 

Table 2.2. Response of the controller to water level. 

Water Level h Controller 1 Controller 2 Controller 3 
lsp < h < hsp 1 1 1 

h < lsp 2 2 1 
h > hsp 1 1 2 

 

We will assume that the probability of failure into either states 3 or 4 is independent of 

the original state. The failure time is assumed to be exponentially distributed with the 

time constants of 219 hr, 175 hr, and 320 hr for controllers 1, 2, and 3, respectively. The 

pump connected to each of the controllers has the capacity to change the water level by 

0.6 m/hr. For this problem, the differential equation governing the water level has a 

simple analytic solution: 

 1 2 3( ) ( ) ( )( ),jh t h t Q a a a t t j= + + − −  (2.11) 

where 

  (2.12) 
1, if  is in state 1 or 3
0,if  is in state 2 or 4,i

i
a

i
⎧

= ⎨
⎩
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tand is the previous time step. The mission time is 1000 hr. The goal of the problem 

is to find the time dependent probability that the tank will be in either the dryout (

jt <

h L< ) 

or overflow ( ) state. h H>

 In the problem described above, the failure rate is independent of the system 

variable (the water level). This means that classical static PRA methods such as ET/FT 

and Markov chain can be easily used to solve the problem. However, complications will 

arise if we allow for cases where the component failure rate depends on the component 

state or the process variable. In these latter two cases, using static PRA to analyze the 

problem will present more difficulty. Marseguerra [Mar96] discusses several variations to 

the water tank problem and how the Monte Carlo approach to dynamic PRA can be used 

to evaluate the probabilities of overflow and dryout. In chapter 3, we will solve the basic 

water tank problem with the dynamic Bayesian network.  



CHAPTER 3 

THE BAYESIAN NETWORK 

 

The Bayesian network (BN) is used in many diverse areas of application ranging from 

medical diagnosis to speech recognition. In this chapter, we will describe the basics of a 

BN, how they are constructed, and how they can be solved. The theory that is available to 

support the analysis of the BN is very broad and most will not be needed for a successful 

application of the BN to certain specific problems.  Nevertheless, we will briefly touch on 

the major developments and applications of the BN so that the versatility of this model 

can be appreciated.  

 The application of BN to reliability analysis is a relatively recent development. 

The static form of the network has been applied to study the risk associated with nuclear 

waste disposal [Lee06] and to study the impact of equipment maintenance on reliability 

[Web10]. Montani and Portinale [Mon08] developed a reliability tool called RADYBAN 

which uses the BN to solve dynamic fault tree problems. Boudali [Bou05] looks at the 

formulation of the continuous form of a temporal BN to calculate the time to failure of an 

equipment network. In this sense, the BN can be applied to problems that are traditionally 

analyzed using static fault trees. In their review paper, Langseth [Lan05] discusses how 

the BN can be used to incorporate the quality of opinions of different experts directly into 

a risk model.  
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A key feature of the BN that is appealing to many analysts is that the network 

itself can be constructed based on intuition that is developed through experience without 

the need for detailed knowledge of the analysis techniques. Although this feature is 

shared by other graphical techniques, BN is perhaps the most developed in terms of the 

underlying theoretical framework. In contrast, powerful techniques such as the Markov or 

semi-Markov models can give similar (sometimes more detailed) results compared to the 

BN, but with a greater effort required for their construction and analysis. 

 We will divide the presentation of BN theory into several sections. Section 3.1 

discusses the basics of the static BN including the interpretation of the independency 

statement and the use of conditional probability function to quantify the network. Section 

3.2 extends the static BN to include a time domain. There are several different ways of 

including time into the BN, each with their own advantages and disadvantages. 

Methodologies available to solve the BN is discussed in Section 3.3. Today, there are a 

number of commercial and open source software available for BN analysis. The most 

suitable method used to solve the network can depend on the size of the network, the type 

and amount of data available to populate the network, and the type of information we 

wish to obtain from the network. In Section 3.4, we will present an application of the BN 

to solving a dynamic fault tree problem using a continuous formulation of the network. 

Finally, we will end the chapter by applying the BN to analyze the water tank problem 

that we presented in Chapter 2.  
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3.1 Static Bayesian Network 

A Bayesian network is a directed acyclic graph with nodes representing random variables, 

and directed arcs linking the nodes, representing conditional dependencies between 

different variables.  It is convenient to classify the nodes as either a parent node or a child 

node. The parent node is a node that has one or more arc originating from it and pointing 

towards another node. A child node is a node with incoming arc from another node.  A 

node with no parent is referred to as the root node and a node with no children is the leaf 

node. For instance, in Figure 3.1, nodes A and B are the parents of node D (this implies D 

is the child node for nodes A and B). Nodes A and B are root nodes while nodes C and E 

are leaf nodes.  

Each parent node N in a BN is associated with the marginal probability 

distribution P(N) and each child node M has an associated conditional probability 

P(M|pa(M)), where pa(M) is a set of all the parents of M. Referring again to the BN in 

Figure 3.1, a complete description of the BN would include, in addition to the graph in 

Figure 3.1, specification of the probabilities P(A),P(B), P(C), P(C|A), P(D|A,B), and 

P(E|D). 

 

Figure 3.1. A representative Bayesian network. 
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 A graphical representation of the BN like the one in Figure 3.1 shows the 

conditional independence among the random variables. Generally, a node in a BN is 

conditionally independent of its non-descendants given the parent nodes. (A node F1 is a 

descendant of node F2 if there is a directed path from F2 to F1.) In Figure 3.1, the node E 

is conditionally independent of nodes A and B given that the state of node D is known: 

 ( | , , ) ( | ).P E A B D P E D=  (3.1) 

             

Conditional independence statements like the one in Eq. (3.1) can be used to simplify the 

joint probability of a system. For any random variables X1, X2,..,Xn we can factorize the 

joint probability, without any assumption, using the chain rule as: 

  (3.2)                        1 2 1 1
1

( , ,..., ) ( | ,..., ).
n

n i
i

P X X X P X X X −
=

=∏ i

)i

However, if we exploit the property of the BN that a variable is independent of its non-

descendants given the parents, then Eq. (3.2) reduces to: 

  (3.3)               ( ) (( )1 2
1

, ,..., | .
n

n i
i

P X X X P X pa X
=

=∏

The key property of the BN technique is that it factorizes the joint probability 

distribution. If we have a set of N random variables , all the information that 

we can ever know about these variables can be obtained by knowing the joint distribution 

function of the variables. However, specifying the joint distribution function is a 

complicated task. For a discrete random variable, suppose we assume that each of the 

in the set above can be in any one of m possible states. This means that to completely 

specify the joint distribution, we need to provide 

1{ ,.., }NX X

1N

iX

m −  numbers. There are several 

problems associated with this.  The most obvious problem is that it will be hard to use 

21 
 



this information, especially if m and N are both large. Even with today’s computer, the 

processing and storage of this amount of information will be slow and expensive. 

Oftentimes, we do not need all the information that is contained in the joint distribution. 

However, it is difficult to select the information that we do need without at least some 

preliminary analysis of the full distribution.  

The second problem is the difficulty of obtaining the information needed to 

specify the 1Nm − probabilities. Information from expert elicitation usually does not 

come in the form of probabilities, and even if they do, most likely not in the form that can 

be directly entered into the joint distribution. An alternative is to automatically update the 

probabilities with data. However, it will take a lot of data, which may not be 

available, to update the probabilities enough times that the resulting joint distribution 

accurately represents the true distribution. 

1Nm −

 A BN allows the joint probability distribution to be factored by exploiting the 

conditional independence relations among the different variables.  For instance, consider 

the BN shown in Figure 3.1. For simplicity, we will assume that each of the 5 nodes in 

the network can be in one of two states: TRUE or FALSE. If we were to specify the joint 

conditional distribution ( , , , ,P A i B j C k D l E m)= = = = = , we would need to specify 

25-1=31 probabilities. However, using the conditional independence assumption of 

Figure 3.1, we can write: 

 ( , , , , ) ( ) ( ) ( | ) ( | , ) ( | ).P A B C D E P A P B P C A P D A B P E D=  (3.4) 

 

The number of probabilities needed to specify  is one: we need to only specify 

. For the term , we only need to specify two 

( )P A

P C( TRUE) 1 ( FALSE)P A P A= = − = ( | )A
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probabilities:  and ( TRUE | FALSEP C A= = ) )( TRUE | TRUEP C A= =

)k n

. Using a 

similar reasoning for the other terms, we see that the total number of probabilities that we 

need to specify to determine the RHS of Eq. (3.4) is 1+1+2+4+2=10.  Therefore, we see 

that the assumption of conditional independence can be used to simplify the network. 

More generally, for a BN with n nodes with k parents or less, the complete specification 

of the joint distribution requires an order of (2 numbers. The unfactorized form of the 

joint probability requires an order of numbers. 2n

 

3.2 Dynamic Bayesian Network 

A dynamic Bayesian network (DBN) is a BN that incorporates nodes that can change 

with time. The simplest way to account for the time dependence is to divide the time line 

into different time “slices” and assign one complete static BN to each slice. The time 

dependence then is represented by an arc from the lower numbered slice to a higher 

numbered one. If the nodes for slice at time t is dependent only on nodes from slice t-1, 

then we say that the  DBN is a two-slice DBN. For a general case, the dependencies may 

extend to any time slice in the past. 

 

Figure 3.2 A simple dynamic BN expanded over two time slices. 
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A simple DBN is shown in Figure 3.2. For any given slice, node C is completely 

determined by its parents (nodes A and B). The parent node B at any given slice depends 

on the value of node A at the preceding slice. The arc linking A at slice 0 to B at slice 1 is 

referred to as an interslice arc. Interslice arcs indicate the dependence of the nodes that 

are time dependent.  

 The methods that are available to solve a static BN can be applied to dynamic 

DBN. The interslice arcs are treated as any regular arcs. Nodes representing the same 

variables but located in a different time slice are considered to be distinct for the 

algorithm.  

 The description of the DBN above applies for what is called an instant-based 

approach to temporal analysis. Another approach of introducing time into the BN is 

called the interval-based approach. In this approach, the random variables themselves 

represent events that are time dependent. The time line is usually divided into different 

disjoint intervals with the node (representing the random variable) defined according to 

the intervals in which it is located. The DBN models used for our work are all instant-

based. 

 

3.3 Continuous Bayesian Network 

So far, we have limited our discussion to BNs with nodes that represent discrete random 

variables. Generally, a BN has no limitation on the type of node it can have. A BN that 

contains both discrete nodes and continuous nodes are known as mixed or hybrid BN. 

Most of the inference algorithms that have been developed over the last few decades only 

apply to a discrete BN or to continuous BN with certain specific distributions. 
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Nevertheless, a continuous BN has several advantages over its counterpart. First, there is 

no need to discretize the sample space of the variables. This means that common 

problems that are associated with discrete BNs such as the state space explosion do not 

exist with the continuous version. Second, since many applications of the BN involve the 

use of continuous variables, the continuous form of the network is the natural choice to 

represent these variables. In these instances, the only real reason to discretize the 

variables is to have access to a greater selection of inference algorithms that can be used. 

Finally, the solution of continuous BNs can be expressed as integral equations which may 

be solved by various standard techniques. The ability to write an analytic solution to a 

BN problem may provide insights into the solution which are more difficult to obtain if 

we limit to only the numerical relations. 

 In this section, we will present a simple illustration on the use of the continuous 

BN. The problem is to use the continuous BN formalism to analyze the AND gate in a 

fault tree. The solution technique is based on the work by Boudali [Bou05] in which he 

presents the conversion of different dynamic fault tree gates to the BN equivalent.  The 

simple BN model representing an AND gate is shown in Figure 3.3 below. 

 

Figure 3.3. The BN representation of an AND gate. 

 

The variables A and B represents to components, each of which can be in either the 

operational (FALSE) or failed (TRUE) state. The node C is TRUE only if A and B are 
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both TRUE, otherwise it is FALSE. Let nodes A and B have the time-to-failure 

distributions ( )A Af t and ( )B Bf t , respectively. The function ( )A Af t  is the probability 

density function for component A to fail in the neighborhood of time At . A similar 

interpretation applies to ( )B Bf t . Next, we need to find the conditional time-to-failure 

distribution for the node C, given the states of nodes A and B. We note that if node A 

enters a failed state before node B, then the time to failure of the node C will be equal to 

the time-to-failure of node B. Conversely, if node B enters the failed state before node A, 

then the time to failure of node C will be the time to failure of node A. These two 

statements suggest that the conditional time-to-failure distribution for the node C will be: 

 | , ( | , ) ( ) ( ) ( ) ( ),C A B C A B B A C B A B C Af t t t u t t t t u t t t tδ δ= − − + − −  (3.5) 

where u(x) and ( )xδ are the unit step function and the Dirac delta function, respectively. 

The first term on the RHS is nonzero only when A fails before B while the second term is 

only nonzero when A fails after B. The delta function selects the failure time for C based 

on the component that fails last. If we now assume that components A and B are 

independent, we can form the joint time-to-failure density function as: 

 | ,( , , ) ( | , ) ( ) ( ).ABC C A B A Bf a b c f c a b f a f b=  (3.6) 

 Armed with the joint distribution shown in Eq. (3.5), we can calculate the density 

function for gate C. This can be done by marginalizing (integrating) Eq. (3.5) with 

respect to both a and b: 

 

[ ]

| ,0 0
( ) ( | , ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ,

C C A B A B

A A B B

A B

f c f c a b f a f b dadb

f c F c f c F c
d F c F c
dc

∞ ∞
=

= +

=

∫ ∫
 (3.7) 
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where and are the cumulative time-to-failure distribution for components A 

and B, respectively.  Let us compare this solution to the result from the Markov chain 

analysis. To do this, we will first need to assume that the time-to-failure for both 

components A and B are exponentially distributed: 

( )AF x ( )BF x

  (3.8) ( ) 1 ,Aa
AF a e λ−= −

  (3.9) ( ) 1 ,Bb
BF b e λ−= −

where iλ is the failure rate of component i. Substituting Eqs. (3.8) and (3.9) into Eq.(3.7), 

we obtain the cumulative time-to-failure distribution of the AND gate: 

  (3.10) ( )( ) 1 .A B A Bt t
CF t e e eλ λ λ λ− − − += − − + t

We note that Eq. (3.10) agrees with what we would expect if we approach the problem 

directly using a Markov chain approach. 

 A similar approach can be used to derive the time-to-failure distribution for other 

gate types of both the static and dynamic fault trees. For cases involving more than two 

states, the manipulation of the associated equations becomes much more complicated. 

For large real world problems, the continuous BNs are usually either discretized and 

converted to the static BN or solved via Monte Carlo simulations. 

  

3.4 Application of Bayesian Network to the Water Tank Problem 

We now consider the water tank problem described in Chapter 2. The objective of this 

exercise is to calculate the probability of overflow and dryout as a function of time. 

Figure 3.2 shows the BN associated with this problem. The dependence of the variables 

vary over two time slices. The states of the three control units determine the changes in 

water level as governed by Eq. (2.11). The water level in the tank at any time step is the 
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level in the previous step plus any changes based on the configuration of the control units. 

In the network, this relation is presented by one interslice arc from each of the control 

unit in the previous slice and another interslice arc from the water level in the previous 

time step. Since the control units themselves have a constant failure probability, the state 

of these units at any one time slice depends on the state at the previous slice. The 

probabilities associated with these interslice arcs are the stochastic failure probabilities of 

the control units over the time interval represented by the slice. In addition to the 

possibility of failure, the control units also respond to the water level. These response are 

represented by the arcs from the water level node to the control units node. However, 

unlike the arcs representing the control failure, the control arcs are deterministic. 

 

Figure 3.4. A DBN representing the control functions of the water tank problem. 
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 The network in Figure 3.4 can be solved by starting at time 0 and solve the BN 

problem at time 0 with a prescribed initial condition. The result of this analysis will give 

the values to be used in the calculation of the network in the second slice. This process is 

repeated over all the time slices. The probability density for the water level in slice 1 can 

be written as: 

 , 1, 2, 3
( #) ( # | , 1, 2, 3) ( )

                 x ( 1) ( 2) ( 3),
W CU CU CU

P W P W W CU CU CU P W

P CU P CU P CU

= ∑
 (3.11) 

where the “#” symbol denotes the value in slice 1. At each time slice, the conditional 

probability function for the control unit i can be expressed in terms of the corresponding 

probability of the previous time slice: 

 
,

( #) ( # | , ) (
CUi W

P CUi P CUi CUi W P W= ).∑  (3.12) 

 The joint probability density can be summed over all the ancestor nodes: 

 , 1, 2, 3
( #) ( # | , 1, 2, 3) ( )

                              x ( 1) ( 2) ( 3),
W CU CU CU

P W P W W CU CU CU P W

P CU P CU P CU

= ∑
 (3.13) 

The conditional probability function  that appears in Equation (3.13) 

is specified by the behavior of the control units as shown in Table 2.2.  For instance, the 

control probability for control unit 1 is shown in Table 3.1. Here, we are assuming that 

each time slice represents a time step of 

( # | , #P CUi CUi W )

Δ . The transition probabilities include both the 

effect of stochastic failures and deterministic controls. If the unit is already in any of the 

two failed states, we assume that it remains in that state (no repair).  

At any particular point in time (at any particular slice), the analysis yields a fixed 

probability for the tank to be at a certain level. These levels are then used to determine 

whether or not the tank overflows or dries out. The probabilities at each time slice are 

29 
 



shown in Figures 3.5 and 3.6. The data from the Monte Carlo simulation are taken from 

[Mar96] and are generated from 105 simulations. The agreement between the two 

techniques is very good. 

 

Table 3.1. Conditional probability function for control unit 1. 

State at t State at t  +Δ
W CU 1 XU1# 

  ON OFF FAILED 
ON 

FAILED 
OFF 

hsp W H< <  ON 0 1-2 1λ Δ  1λ Δ  1λ Δ  
hsp W lsp≤ ≤  ON 0 1-2 1λ Δ  1λ Δ  1λ Δ  
L W lsp< <  ON 1-2 1λ Δ  0 1λ Δ  1λ Δ  

hsp W H< <  OFF 0 1-2 1λ Δ  1λ Δ  1λ Δ  
hsp W lsp≤ ≤  OFF 0 1-2 1λ Δ  1λ Δ  1λ Δ  
L W lsp< <  OFF 1-2 1λ Δ  0 1λ Δ  1λ Δ  

any FAILED OFF 0 0 0 1 
any FAILED ON 0 0 1 0 

 

 

0.0

0.5

1.0

1.5

2.0

2.5

0 200 400 600 800 1000 1200

D
ry

ou
t P

ro
ba

bi
lit

y 
(1

0^
-4

)

Time (hr)

Monte Carlo

BN

Figure 3.5. Dryout probability calculated using BN and Monte Carlo. The Monte Carlo 
result is from [Mar96]. 
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Figure 3.6. Overflow probability calculated using BN and Monte Carlo. The Monte Carlo 
result is from [Mar96]. 
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CHAPTER 4 

Alternating Conditional Expectation 

 

In this chapter, we will introduce the use of the alternating conditional expectation (ACE) 

to construct a surrogate for any transient analysis code. ACE is a nonparametric, 

nonlinear multivariate regression technique that determines the optimal functional 

transformation of both the dependent variable and a set of independent variables such that 

a linear relationship between the transformed dependent and independent variables is 

maximized. However, before we discuss ACE in more detail, we will start explaining in 

Section 4.1 why a code surrogate is needed in our work. Section 4.2 will present the ACE 

algorithm and some of the physical interpretations that can be associated with the 

technique. We will also give a brief outline of the algorithm that is used to implement 

ACE. The final section of this chapter will apply the ACE technique to a simple function 

so that the benefit of ACE will become clearer. 

 

4.1 Need for a Code Surrogate 

Generally, the behavior of a reactor during accident-induced transients depends on the 

configuration of the plant components which themselves will vary with time. Advanced 

reactor analysis codes often will have the ability to automatically adjust the state of the 

components in response to a change in the reactor state variable. For instance, the 

auxiliary feedwater pumps can be set to automatically turn on when the water level in a 
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steam generator drops below a limit. This capability of these analysis codes to model 

automatic control means that it is easier for the analyst to focus on specific components 

important to the study and let the code adjusts the state of the other components. 

However, in risk analysis, we are interested in finding the overall probability of core 

damage, given any possible configuration changes of the reactor. This means that we 

need to specify probabilities of having a component transitioning to different states (e.g., 

a valve changing its state from OFF to ON) given the state of the plant. To perform this 

type of analysis, the analysis code needs to be run at all the possible (or at least most 

likely) combinations of plant component states and then determine how the transient 

behavior is affected. Considering that a detailed model of a reactor will include many 

components with many states, the number of all possible combinations is quite large. The 

run times for these analysis codes for a given case can vary from 10 minutes to several 

hours. It would take an impractical amount of time to use these codes to study all the 

possible variations of component states and determine the impact on reactor safety. 

 The idea behind a code surrogate is that we can replace the detailed but slow 

running analysis code with a somewhat less detailed but much faster representation. A 

surrogate is basically a function that specifies a deterministic relationship between a 

dependent variable of interest and a set of independent variables. For instance, we may be 

interested in a function that expresses the peak clad temperature in terms of coolant flow 

rate, pressure, and temperature. This surrogate will then be used instead of the simulation 

code if we want to know how the clad temperature changes as a function of variations in 

the coolant flow rate, pressure, and temperature.  
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 A given surrogate will most likely have a range of applicability. It is important 

that if we use values of the independent variables that are far outside the range that we 

use to construct the surrogate, then the surrogate be checked against the original code. 

The work presented in this dissertation uses several layers of surrogates. In the example 

above, we pick the flow rate, pressure, and temperature as the independent variables. 

However, these are not variables over which we have direct control. Therefore, these 

variables are in turn expressed as a function of other independent variables. The choice of 

independent variables to use for a given surrogate is made mostly from experience or 

judgments made from understanding of the basic physics. In this regard, the accuracy of a 

particular surrogate model will vary from case to case. 

 In the next section, we will present the ACE algorithm which we use to build the 

various surrogates used in this work. We will defer the discussion of the actual surrogate 

construction until Chapter 6. 

 

4.2 Overview of ACE 

In linear regression analysis over p independent variables, we are interested in finding the 

coefficients such that the equation 0 1, ,..., pa a a

 0
1

p

i i
i

Y a a X ε
=

= +∑ +  (4.1) 

holds. Here, ε is the error, Y is the dependent variable and ’s are the independent 

variables. Linear regression works well if the relationship between the independent and 

dependent variables are known to be linear. However, in a more general case, linear 

regression may give erroneous results. This leads to the development on nonparametric 

iX
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regression techniques which do not assume the functional form of the relationship. These 

nonparametric techniques are divided into two broad classes: those that perform some 

kind of transformation on the dependent variable, and those that do not. The ACE model 

falls into the former class. The ACE algorithm is first proposed by Breiman and 

Friedman [Bre85] as a way to estimate the optimal transformations of both the dependent 

and independent variables. By optimal transformation, we mean a transformation that 

reduces the mean squared error. A different criterion for optimality will lead to a different 

regression algorithm. 

 The ACE model expresses the transformed function θ of the dependent variable Y 

in terms of the transformed functions iφ of the independent variables ,  iX {1,2,.., }:i p∈

 
1

( ) ( ) ,
p

j j
j

Y Xθ φ
=

ε= +∑  (4.2) 

where the noise ε has a zero mean and is independent of all the ’s. The ACE 

algorithm aims to minimize the squared error 

iX

  (4.3) 
2

2
1

1
( , ,..., ) ( ) ( ) .

p

p
j

er E Y Xθ φ φ θ φ
=

⎛ ⎞
= −⎜

⎝ ⎠
∑ j j ⎟

For a given value of θ and ,j j i,φ ≠ the value of iφ that minimizes Eq. (4.3) (i.e., the 

solution of the minimization problem) is: 

 
,

( ) ( ) ( ) |
p

i i j j i
j j i

.X E Y X Xφ θ φ
≠

⎛ ⎞
= −⎜

⎝ ⎠
∑ ⎟  (4.4) 

Likewise, for a fixed jφ , the θ  that minimizes Eq. (4.3) is: 
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1

( ) |
( ) ,

( ) |

p

i i
i

p

i i
i

E X Y
Y

E X Y

φ
θ

φ

=

=

⎛ ⎞
⎜ ⎟
⎝=
⎛ ⎞
⎜ ⎟
⎝ ⎠

∑

∑
⎠  (4.5) 

where ( )• is the square-norm. The name “alternative conditional expectation” comes 

from the fact that the ACE algorithm alternates between solving the minimization 

problem with θ fixed [Eq. (4.4)] and keeping jφ fixed [Eq. (4.5)]. The discussion above 

can be cast into an algorithmic form shown below [Bre85]: 

(i) Initialize: set [ ]( )
var[ ]

Y E YY
Y

θ −
=  

(ii) Obtain new φ :  
1,

( ) ( ) ( ) |
p

k k i i k
i i k

X E Y X Xφ θ φ
= ≠

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑  

(iii) Obtain new θ : 1

1

( ) |
( )

var ( ) |

p

i i
i

p

i i
i

E X Y
Y

E X Y

φ
θ

φ

=

=

⎛ ⎞
⎜ ⎟
⎝ ⎠=
⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦

∑

∑
 

(iv) Alternate between (ii) and (iii) until ( 2( ) ( ))E Y Xθ φ− does not change. 

 

4.3 Data Smoothing 

Data smoothing is performed when we are interested in finding the behavior of the 

dependent variable Y as a function of a set of N independent variables . 

The term “smoothing” is used since the output of a smoother generally has less 

fluctuation (i.e., smoother) than the original variable. In the derivation of the ACE 

algorithm in Section 4.2, we used the conditional expectation value of the transformed 

function given the original variable to perform the iteration. However, this works only if 

, {1,.., }iX i N∈
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we know the joint distribution functions of these variables. Without the distribution 

functions, we will not be able to calculate the conditional expectation and hence use ACE 

directly. This is where a smoother comes into play. The results of the smoothing process 

is used to replace the conditional expectations in the ACE algorithm. Note that since the 

smoothing process itself is nonparametric, its use in the ACE algorithm does not remove 

the nonparametric nature of the algorithm. 

 To formalize the notion of data smoothing, we will follow the development in 

[Bre85]. Suppose we have N sets of p independent variables. Mathematically, we can 

define this data set to be the set whose elements is a point in the p-

dimensional space. For this data set, define  to be a space of all real-valued 

functions Y whose domain is our data set . We can think of  as a space 

of all the possible dependent variables. Also define 

1{ ,..., }NX X

1{

iX

{1,

( )F X

,...,X }NX

(

( )F X

), .., }jF x j p∈ to be a space of all 

real-valued functions defined on the set 1{ ,...,j }NjX X . We can think of as a space 

of all possible functions of the independent variable 

( )jF x

.jx  The data smooth S of X on jx  is a 

mapping : ( ) ( )jS F X F X→ that is defined for every data set. For every Y in , we 

write the corresponding element in  as and its values as  Note 

that with this definition of smoothing, a linear regression that fits a line through a set of 

data point can be considered a smoothing technique. However, since linear regression 

assumes a linear relationship, it is not usually considered to be a real smoother.  

(F X

).kjX

)

( )jF x ( |S Y )jX ( |S Y

 An example of a simple smoothing technique is a running-mean smoother. 

Suppose we have a set of N data points of the form ( , ), {1,.., }i ix y i N∈ where ix is the 

independent variable and is the dependent variable. For any given value of iy ix , we can 
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define a set that contains k points closest to the left of ( )S
iN x ix  and k points closest to 

the right of ix . A running mean smoothing function is then defined as: 

 
( )

( ) ( ).
S

i
i

j N x
S x Ave y

∈
j=  (4.6) 

The set is referred to as the symmetric nearest neighborhood.  What we are doing 

here is essentially averaging the values of the dependent variables within a certain 

neighborhood. The averaging process will smooth out any variations in the dependent 

variable. A big disadvantage of this technique is that in cases where the values of the 

outliers are very different from the values at the interior points, we will lose the 

information on the behaviors of the dependent variables near those outliers. To alleviate 

this problem, the running mean smoothing technique can be generalized to use other 

forms of neighborhood selection (including non-symmetric ones). 

( )ix

1 2ay by

SN

 The choice of the smoothing technique to use determines the output of the ACE 

algorithm. In this dissertation, we will use the technique originally used in [Bre85]  

known as a “supersmoother” which basically performs a linear fit within a neighborhood 

of the point of interest. The size of the neighborhood (i.e., the window width) is allowed 

to vary, being governed the median of the neighborhood [Fri82]. 

 We will conclude this section by noting that the ACE technique has only been 

proven to converge if the smoother used in the algorithm is linear. (A linear smoother 

satisfies for any constants a and b.) Nevertheless, 

the ACE algorithm has been successfully employed in many applications even with a 

more general choice of smoothers [Bre85].  

1 2( | ) ( | ) (S x aS y x bS y x+ = + | )
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4.4  A Simple Demonstration of ACE 

In this section, we will demonstrate the use of the ACE technique to analyze a data set 

that is synthetically generated from a known functional relationship. This example is 

adapted from [Wan04]. Consider the equation: 

 2 3
1 2 3 4 54 sin(4 ) 0.1 .Ye X X X X X ε= + + + + + +  (4.7) 

The variables are assumed to be independent  with a uniform 

distribution between -1 and +1. The noise 

, {1,2,3,4,5}iX i∈

ε is independent of and is assumed to be 

normally distributed with a zero mean and unit variance. We now sample 500 data points 

from this distribution to generate a set of independent variables and their associated 

dependent variable Y. With the data set generated, we wish to apply the 

ACE algorithm to try to recover the functional dependence of Y on the ’s and compare 

the results to Eq. (4.7). Of course in practice, we will only have the 500 sample points of 

the set ( without knowing the relationship between the variables. 

iX

1 2 5( ,..., , )X Y,X X

iX

1 2 5,..., , )X Y,X X

 Faced with an unknown relation between the dependent variable Y and the 

independent variables , one naïve approach may be to look at the 

scatter plot of Y versus the individual  with the hope of guessing a functional form of 

the dependence. Such a plot is shown in Figure 4.1. Looking at the plots, we may perhaps 

guess that Y may be a sinusoidal function of while the dependence on the other 

variables may be linear.  

, {1,2,3,4,5}iX i∈

iX

1X

 If we now apply the ACE algorithm to the data set, we arrive at the relations 

shown in Figure 4.2.  As can be seen from the figure, the ACE technique is able to 

recover the functional form of the dependent variables: sinusoidal function for , 1X
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absolute value function for , quadratic function for , cubic function for , and a 

linear function for  The dependent variable Y is transformed to an exponential 

function, as expected from the relations in Eq. (4.7).  

2X 3X 4X

5.X

 

 

Figure 4.1. Plots of the dependent variable Y against each of the five independent 
variables . iX
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Figure 4.2. ACE tranformations of the dependent and independent variables. 

 

From the discussion in the previous section, we know that the degree in which ACE can 

determine the proper correlation can be seen by examining the plot of vs ( )Yθ ( )i i
i

Xφ∑ . 

In the ideal case, the plot should be linear since that is the assumption made in the 

development of the theory. Figure 4.3 shows that for our example, the relationship is 

indeed very close to linear. 
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Figure 4.3. Transformed dependent variable θ as a function of the sum of the transformed 
independent variables iφ . 
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CHAPTER 5 

MODELING THE LOSS OF FEEDWATER TRANSIENT 

 

5.1 Overview of the Feed and Bleed Operation 

In a pressurized water reactor, the primary means of removing heat from the core 

during both the normal operation and after shutdown is via the steam generator (SG). 

Depending on the specific plant, the secondary system is composed of either 3 or 4 closed, 

two-phase loops that is operated at a pressure of about 800 psi (compared to ~2200 psi 

for the primary loop). During operation, heat generated from the core is transported via 

the primary water to the steam generator. The energy is transferred to the feedwater in the 

secondary loop causing the water to boil. The water-iiiiiiiiiiisteam mixture that is 

generated is then passed through steam separators which extract the liquid water back 

into the steam generator. The dried steam is fed to the turbine which extracts energy from 

the steam (this energy is converted to electricity); the steam passes through the main 

condenser which converts the steam into liquid water. The water is then pumped back 

into the steam generator via the feedwater system. The diagram of the secondary system 

is shown in Figure 5.1.  

For the reactor during a post-trip, the flow of the steam exiting the steam 

generator is redirected via the main turbine bypass system and flows directly into the 

condenser. In the event of a loss of main feedwater in accidents such as feedwater pump 

failure or leak in the main feedwater loop, the steam generator will receive water from the 
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auxiliary feedwater (AFW) system. The AFW system draws water from various 

available water sources or from the condensate storage tank and feeds the water into the 

steam generator. However, unlike the case of the main feedwater, steam produced from 

the boiling of the AFW is usually vented directly into the atmosphere through the 

atmospheric dump valve. 

 

 

Figure 5.1. Normal pathway of feedwater flow. Diagram adapted from [NRC90a]. 

 

On the primary side, there are also systems in place to provide backup water 

needed for heat removal from the core. In the event of a loss of coolant (through a pipe 

break, for example), the emergency core cooling system (ECCS) can inject borated water 

from the refueling water storage tank (RWST). The ECCS system comprises three 
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distinct modes of water injection. If the primary system pressure is near the operating 

pressure, the high pressure safety injection (HPSI) pumps can supply water to the cold 

leg of the primary loop. These pumps can deliver water at a relatively low rate compared 

to the other ECCS injection modes, but can operate at a relatively high system pressure. 

At lower pressure, the low pressure safety injection (LPSI) pumps can provide further 

injection via the cold leg. There is also a third ECCS component in place called the 

accumulator or the safety injection tank. This is basically a pressurized tank filled with 

water that is connected to the primary system. When the primary pressure drops below a 

setpoint pressure, water will be discharged from the tank into the primary loops.  Note 

that in our discussion in the remainder of the dissertation, the HPSI pump is also referred 

to as the centrifugal charging pump (CCP) while the LPSI pump is called the SI pump.   

 In the event of the loss of main feedwater coupled with the failure of the AFW 

system to actuate, the reactor will automatically scram from either the low SG level 

signal or high primary pressure signal. In either case, the water level in the steam 

generator will gradually be depleted due to boiling since the decay heat generated by the 

core will remain relatively high. If no action is taken by the operator, all the secondary 

water in the SG will eventually be depleted which will lead to a severely degraded heat 

removal capacity of the secondary system. The primary water will eventually reach 

saturation temperature and boiling will occur. Ultimately, the core will be uncovered, 

leading to fuel cladding damage. 

 To prevent the scenario described above from occurring, the feed and bleed (F&B) 

operation can be initiated to provide an alternate means of heat removal. This involves 

injecting water into the primary system via the ECCS pumps while venting the steam 
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from the power-operated relief valves (PORVs) located at the top of the pressurizer. The 

boiling that occurs in the primary will remove the decay heat. The water discharged 

through the PORVs is stored in the pressurizer quench tank. However, with prolonged 

F&B operation, the tank will become full, at which point the rupture disks on the tank 

will burst, releasing the water into the containment sump. In some plants, this water may 

be pumped back through the LPSI if necessary [Poc02]. Figure 5.2 shows the relevant 

pathways involved in the F&B operation. 

 

Figure 5.2. Coolant flow path during the feed and bleed operation. Diagram adapted from 
[NRC90a]. 
 

 The F&B operation is usually done at the primary pressure near the PORV set 

point [Rev07]. This pressure is above the shutoff head for the LPSI pumps, therefore only 
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the HPSI pumps will be available. On some PWRs, even the HPSI pump will not have 

enough power to inject water at high pressure. In this case, the PORVs may be manually 

opened to relieve the pressure before the feed operation is initiated. This is known as 

bleed and feed [Rot94]. 

 The emergency guideline for plant operators in the loss of heat sink event is 

shown in Figure 5.3.  The major indicators to initiate the F&B operation include a low 

steam generator level (<27% of wide range level in any 3 SGs) and a high pressurizer 

level (pressure > 2335 psi which is the PORV set point). Note that the HPSI pump is first 

actuated, and if that fails, the procedure calls for the actuation of the LPSI pump. Once at 

least one pump is verified to be functioning, the PORVs are manually opened to provide 

the bleed path. 

 The success of the F&B operation depends on the time in which the operation is 

initiated and on the primary water temperature at the time of initiation [Rev07]. In 

addition, the number of pumps that are available for the injection, the number of PORVs 

that can be opened, and the injection rate will be important in determining the heat 

removal capacity of the F&B operation. In a static event tree that is used to analyze the 

success criteria of the F&B operation, the dependence of the outcome on the number of 

PORVs or pumps that are available for the F&B operation can be represented. However, 

the required feed rate depends on the primary water temperature which is a function of 

both the F&B initiation delay, the scram delay, and the system pressure. To include these 

parameters into the analysis, the ET would need to find a limit for these parameters above 

which the outcome is assumed to be a failure. For example, suppose that a transient 

simulation indicates that the F&B initiation delay time above 40 minutes will result in the  
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Figure 5.3. Emergency guideline associated with the loss of feedwater event. The 
flowchart is adapted from [Wes93]. 
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clad temperature exceeding some safe limit. In the event tree, this criteria will be used to 

test the branching of the accident progression. However, if the plant condition is different  

from that assumed during the ET construction (for instance, suppose the reactor was not 

operating at full power), then the 40 minutes limit will no longer be valid. In this case, a 

new ET with a different branching criterion will be required.  

 If the ET model is aware of the plant state and changes accordingly, then the 

problem will have been solved. However, it is difficult for the analyst to estimate all the 

possible conditions of the plant and construct a risk model for every case. One way to 

alleviate the problem is to couple the risk model with the plant dynamic model. This way, 

the success or failure criteria can be updated automatically inside the model. In chapter 7, 

we will show how the code surrogate using ACE (which serves as the plant dynamic 

model) can be used in conjunction with the Bayesian network (which serves as the risk 

model) to perform risk assessment in a way that accounts for different plant behaviors. 

 

5.2 The Zion Plant Description 

The Zion Station-Unit 1 plant is a 4-loop pressurized water reactor of the Westinghouse 

design. It is located in northern Illinois and Commonwealth Edison began its operation in 

1974. However, it was shut down in 1998. The plant had a rated capacity of 1095 MWe 

or 3411 MWth.  Some basic plant data, including information on the ECCS system, is 

shown in Table 5.1.  

The plant is equipped with three trains of AFW pumps, each with enough capacity 

to feed all four steam generators. Two of these trains are fed by motor driven pumps 
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while the third train is fed by a steam turbine driven pump. Failure of the AFW system 

means that none of the three trains delivers the auxiliary feedwater at their rated capacity. 

One feature of the Zion-1 ECCS is that during the recirculation phase, the ECCS 

pump can realign its suction valve so that water is drawn from the containment sump 

instead of the RWST. This water is pumped into the inlet of the LPSI pumps which can 

be injected back into the primary system. For a prolonged F&B operation, the pressurizer 

sump tank will overflow and the water will be collected in the containment sump. The 

ability to draw water from the sump means that the available supply of the water for the 

injection portion of the F&B operation will not be depleted even when the RWST is 

empty.  

 

Table 5.1. Some data for the Zion-1 reactor. Data from [NRC90a] and [Com82]. 

Thermal Capacity 3411 MWth 
Electric Capacity 1095 MWe 
Number of Fuel Assemblies 193 
Number of Fuel Elements in Assembly 264 
Number of RCS PORV 2 
Number of RCS SRV 3 
Number of Charging Pump 2 Centrifugal, 1 Positive Displacement 
Charging System Capacity - Centrifugal 150 gpm at 2800 psig 
Charging System Capacity - PD 98 gpm 
Number of SI Pump 2 
SI Pump Capacity 400 gpm at 1084 psig 
PORV Capacity 64.6 lb/hr/MWth 
PORV Lowest Setpoint 2335 psig 
SRV Capacity 129,200 lb/hr 
SRV Lowest Setpoint 2485 psig 
 



CHAPTER 6 

Modeling of Zion-1 Using RELAP5 

 

This chapter will introduce RELAP5, the system analysis code that we use to simulate the 

loss-of-feedwater accident in the Zion-1 nuclear power station.  In section 6.1, we will 

briefly discuss the main features, the representation of key physics, and the modeling 

capabilities of RELAP5 and how some these capabilities are used in our analysis. In 

section 6.2, we will describe the modeling of the Zion-1 plant starting from the “typical 

PWR” input deck that is included in the RELAP5 installation CD and the modifications 

that were necessary. The “typical PWR” input file itself is based on a detailed Zion-1 

model, but it has some important parameters and tables removed due to proprietary 

considerations. This original model of Zion-1 is designed for the analysis of a loss-of-

coolant (LOCA) accident, so some details that are important for the loss-of-feedwater 

(LOFW) transient (for instance, the pressurizer safety valves) are not included. Some 

additions and changes described in section 6.3 are necessary to make the deck applicable 

to the LOFW transient.  In section 6.4, we describe the steady state and transient 

benchmark of our model against the published results. 

 

6.1 Overview of RELAP5 

RELAP5/MOD3.3 (Reactor Excursion and Loss of Coolant Analysis Program) [NRC01] 

is a one-dimensional analysis code designed for the analysis of the transient behaviors of 
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light water reactors during postulated accident conditions. The code allows the modeler 

to construct hydrodynamic volumes which can be connected via different types of 

junction with a prescribed boundary condition such as flow rate or temperature. 

Conductive heat transfer between several adjacent (but hydrodynamically isolated) 

volumes can be specified via the use of heat structure. Heat structures are also used in the 

solid structure that generates heat such as in the fuel rod or pressurizer heater. Using the 

appropriate connections of the hydrodynamics volume and heat structure, both the 

primary and secondary systems of the light water reactor can be modeled.  

Controls of the reactor component can be achieved by the use of trip cards. Trips 

are basically logic statements that specify when the trip will be true based on a set of 

inputs. The input to a trip statement can be either other trips or variables that describe the 

state of a plant component. For instance, a trip logic can be used to represent the pressure 

where the valve should open or the point in time when a pump should start to coast down. 

Through the use of appropriate trip combinations, a sophisticated set of control functions 

and settings can be specified in the RELAP5 model.  

Internally, the RELAP5 modeling is broken into the fluid model, the heat transfer 

model, and the reactor kinetics mode. The code uses a two-fluid, six-equation model to 

describe the fluid behaviors. The two-fluid model allows the treatment of the water/steam 

mixture and any non-condensable gases that may be present. For reactor kinetics, a point 

kinetics model is used. Point kinetics treats the neutron flux as a product of the space-

dependent and the time-dependent functions. The flux shape function is assumed to be 

constant in time, while the function describing the magnitude of the flux is time 

dependent. Heat conduction is modeled using the standard integral formulation of the 
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conduction equation. In addition to the three physics models mentioned above, RELAP5 

also allows analysts to build control systems which will automatically control certain 

plant components such as valves and heaters based on plant variables. Unlike trips whose 

output are binary, a controller allows the specification of the boundary condition at a 

node based on values at another node. For instance, the flow rate of the feedwater can be 

automatically adjusted based on the mass balance of the steam generator. This capability 

for modeling of the control system allows automatic plant controls and equipment 

setpoints to be accurately represented. 

 

6.2 Modeling of Relevant Physics in RELAP5 

This section will briefly mention some of the main physics models that are used in 

RELAP5. Since most of these models use the volume and time-averaged value of the 

variables as the parameter, all the variables listed in this section are cell-averaged 

quantities and will not be explicitly designated in the individual equations. 

 

6.2.1 Conservation Equations 

The description and equations presented in this section are adapted from [Ran89] and 

[NRC01]. RELAP5 uses a six-equation model to represent the behavior of the fluid. 

These six equations represent the conservation of mass, momentum, and energy for each 

of the two phases of the fluid. The conservation of mass for the kth phase is represented 

by: 

 1( ) ( )k k k k k kv A
t A x
α ρ α ρ ,∂ ∂

+ = Γ
∂ ∂

 (6.1) 

where 
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 volume fraction of phase ,
 density of phase ,
 fluid velocity of phase ,
 cross sectional area, and
 mass generation rate per unit volume for phase .

k

k

k

k

k
k

v k
A

k

α
ρ

=

=
=

=
Γ =

 

 Here, the subscript denotes either the fluid or the gas phase. The first term on 

the LHS represents the change in mass due to a change in density. This change may be 

due to the thermal expansion of the coolant following an increase in temperature or a 

contraction due to a pressure drop after a relief valve is opened. The second term 

describes the balance between mass inflow and outflow from a unit volume. The mass 

generation term accounts for phase change (boiling or condensation) of the coolant. Note 

that since there can only be two phases in Eq. (6.1), we also require: 

{ , }k f g∈

 .f gΓ = −Γ  (6.2) 

Generally, the phasic momentum equations are a set of three equations, 

representing each of the three directions in a 3-dimensional space. However, with the 

assumption that the flow is only aligned in one direction, we can neglect the average 

velocity in the other two coordinates. The conservation of momentum equation in the 

flow direction becomes, for the gas phase: 

 

( )
( )

( )

21 FWG( )
2

( ) FIG( )

,

g g
g g g g g g g X g g

g gI g g g g f

g f g f
g f f g

v v P
gA A A B A A

dt x x
A v v A v v

v v v v
C A v v

t x x

α ρ α ρ α α ρ α ρ

α ρ

α α ρ

∂ ∂ ∂
+ = − + −

∂ ∂
+Γ − − −

∂ − ∂ ∂
− + −

v

∂ ∂ ∂

 (6.3) 

and for the liquid phase: 

54 
 



 

( )
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( )

21 FWF( )
2

( ) FIF( )

,

f f
f f f f f f f X f f

f fI f f f f g

f g f g
f g g f

v v P
fA A A B A A

dt x x
A v v A v v

v v v v
C A v v

t x x

α ρ α ρ α α ρ α ρ

α ρ

α α ρ

∂ ∂ ∂
+ = − + −

∂ ∂
+Γ − − −

∂ − ∂ ∂
− + −

v

∂ ∂ ∂

 (6.4) 

where 

pressure,
 coefficient of virtual mass,

FWG, FWF = wall frictional drag coefficient for the gas and liquid phases, respectively,
FIG, FIF = interphase drag coefficient for the gas and liquid phases, 

P
C
=
=

respectively,
 body force in the flow direction

, interfacial velocity for the gas and liquid phases, respectively.
x

gI fI

B
v v

=
=

 

The terms on the right side of Eqs. (6.3) and (6.4) represent, in the order shown in the 

equations, the pressure gradient, the body force (such as from pump head), wall friction, 

momentum  transfer due to interphase mass transfer, interphase friction drag, and the 

force due to mass acceleration (also called the virtual mass). Note that the interphase drag 

coefficients are linear in the relative phase velocity. 

 The thermal energy conservation equation is: 

 
* '

1( ) ( ) ( )

                                                         DISS ,

k
k k k k k k k k k wk ik

ig k w k k

PU U v A P v A Q
t A x t A x

h h

Qαα ρ α ρ α∂∂ ∂ ∂
+ = − − +

∂ ∂ ∂ ∂
+Γ +Γ +

+
 (6.5) 

where 
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* *

' '

, phasic wall heat transfer rates per unit volume

, phasic enthalpies associated with bulk interface mass transfer

, phasic enthalpies associated with wall interface mass transfer

v

wf wg

g f

g f

ig

Q Q

h h

h h

=

=

=

Γ = apor generation from energy exchange

vapor generation due to wall heat transfer effects
Q , interface heat transfer

DISS ,DISS phasic energy dissipation (wall friction, pump effects).

w

if ig

f g

Q
Γ =

=

=

 

The first term on the LHS describes the heat added into the control volume (for instance, 

through a heat structure). The second term represents the net heat flow into the control 

volume by mean of the motion of the fluid (convective heat transfer). The RHS describes 

the various looses due to friction or the transfer of energy between the two phases. 

 
 
6.2.2 Heat Conduction Representation 

A heat conduction model is used in RELAP5 to calculate the heat transfer across the solid 

portion of the reactor components such as across the fuel cladding and across the U-tubes 

carrying the primary coolant inside the steam generator.  The integral form of the heat 

conduction equation is: 

 ( , )( , ) ( , ) ( , ) ( , ) ,T x tx T dV k x T T x t dA S x t
t

ρ ∂
= ∇ • +

∂∫ ∫ ∫ dV  (6.6) 

where 

volumetric heat capacity,
 thermal conductivity,
 temperature,
 heat source.

k
T
S

ρ =
=
=
=

 

The surface heat flux required to specify the boundary condition can be calculated as: ''q
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'' ( )

,

surfaceq h T T

Tk
z

= −

∂
= −

∂

 (6.7) 

where it is assumed that the z vector is the outward normal vector relative to the surface 

of the boundary. RELAP5 has several correlations built into the code which are used to 

calculate the heat transfer coefficient h, depending on the flow condition of the 

hydrodynamics volume. Once the appropriate flow type is selected by the code and the 

heat transfer coefficient calculated, the surface heat flux in Eq. (6.7) is used as a 

boundary condition to the heat conduction equation (6.6).  

 
6.3  Modeling of the Zion Plant 

Figure 6.1 shows the nodalization of the hydrodynamic volumes of the “typical PWR” 

input deck that is included as a sample input deck in the RELAP5 installation. The 

reactor pressure vessel is modeled with 15 volumes comprising the inlet annulus 

(volumes 300, 305, 310), the downcomer, the downcomer bypass (volumes 315, 320), the 

lower plenum (volumes 322-325, 330), the upper plenum (volumes 340, 345, 350), the 

upper head (volumes 355, 356), and the core (volume 335).  

The core volume is represented with a PIPE component and is subdivided into 6 

nodes. Two heat structures are connected to volume 335. The first heat structure, divided 

into 6 axial and 2 radial segments, models the core barrel. This structure connects volume 

335 with the downcomer bypass represented by volume 320. No heat generation is 

present in this heat structure. The second heat structure represents the fuel pins. It is 

divided into 6 axial and 16 radial segments. The 16 radial segments represent the fuel 

material (6 segments), the air gap (2 segments), and the fuel cladding (8 segments). 
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Even though Zion-1 is a 4-loop reactor, the “typical PWR” model only has two 

loops. One of the loops, labeled as the “intact loop”, actually represents a merging of the 

3 physical loops. The “broken loop” is one physical loop. This means that parameters 

such as flow area and flow rate for the “intact loop” is three times that of the “broken 

loop”. (The reason for this merging is that the original deck is designed for a LOCA 

analysis and so the loops that do not contain the break are merged to reduce run time.) 

Except for the pressurizer, the layout of the broken and intact loop is identical. 

The pressurizer, represented by volume 150, is a PIPE component that is divided 

into 6 segments. It is connected to the hot leg of the intact loop (it is moved to the broken 

loop in the final model) via the surge line (volume 152). The top portion of the 

pressurizer contains an outlet to the PORV (represented by a trip valve 157) which drains 

into volume 158, representing the quench tank. 

For each of the steam generators in the two loops, the U-tubes (volume 204 and 

108) are modeled with a PIPE component and are each divided into 8 segments. The loss 

coefficients and hydraulic diameters for these volumes are explicitly specified using 

appropriate values so that the total flow rate and area computed by the code agree with 

plant data.  

The ECCS is represented by two charging pumps (volumes 193 and 293), two 

LPSI pumps (volumes 191 and 291), and two accumulators (volumes 190 and 290). The 

sources of the water for all the ECCS pumps are assumed to be infinite for the purpose of 

the simulation. The dependence of the flow capacity of both the HPSI and LPSI systems 

are specified via the time-dependent junction which specifies the inject rate as a function 
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of the primary pressure. These junctions are activated by the appropriate trip signal that 

can be triggered either manually or automatically via a low pressure signal. 

The secondary side is modeled by 12 volumes. Volumes 170 and 270 have a heat 

structure connection to volumes 108 and 204, respectively. This connection represents 

the heat exchanger portion of the steam generator. The heat structure connecting the 

primary and secondary systems has 16 axial and 8 radial segments. The main feedwater 

(volumes 182 and 282) and the AFW (volumes 184 and 284) are connected to the steam 

generator via a branch node (volumes 174 and 274). As in the case of the ECCS, the 

source of water for these systems is assumed to be infinite.  The steam dome is 

represented by two volumes for each steam generator: a BRANCH component (volumes 

180 and 280), and a PIPE volume (volumes 178 and 278) .The steam separator is 

modeled by the steam separator component (volumes 171 and 271). 

Five materials are defined in the model: the uranium oxide fuel, the air gap, 

zircaloy-4 (fuel clad), inconel (U-tubes), and stainless steel (structural components). Each 

of these materials has a corresponding table for the temperature-dependent thermal 

conductivity and specific heat capacity.  

We made modifications to the typical PWR input deck described in the preceding 

paragraphs to improve the agreement between our model and the data in various 

published reports for both the steady-state benchmarking and the LOFW transient 

scenario.  

1. The first modification is the addition of the pressurizer heater and spray line. In the 

original input file, these two components necessary for pressure control are absent and we 

noticed that it was difficult to achieve a steady state with the correct pressure. The spray 
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line is added so that it draws water from the cold leg (volume 212) and sprays water from 

the top of the pressurizer (segment 1 of volume 150). Both the heater and the spray are 

controlled via a proportional controller which takes input from the pressure error at the 

pressurizer volume.  

2. The second modification involves moving the pressurizer from the “intact loop” to the 

“broken loop”. Recall that the intact loop is really three physical loops merged into one. 

We felt that the behavior of the pressurizer will be more accurate if it is connected to a 

loop whose flow condition is closer to the physical loop. 

3. The original deck has one PORV to represent the two PORVs that are actually present 

in the plant. However, for the LOFW transient, there are situations where the PORVs do 

not have sufficient relief capacity to drain the expanding primary coolant which leads to 

an increase in the primary pressure large enough so that the code safety valves open. 

These safety valves were not originally included in the model and had to be added. The 

control setpoints for the PORVs and the safety relief valves are shown in Table 6.1. 

Table 6.1. Setpoints for primary relief valve operation. 

 Setpoint Pressure (psia) 
PORV open 2350 
PORV close 2330 
Relief valve open 2535 
Relief valve close 2460 

 

4. The control systems for the feedwater system, the steam dump valves, the emergency 

injection system, and the PORVs were also modified to make them more consistent with 

the actual behavior of these components. Trip controls were attached to these components 

so that they actuate when control setpoints are reached. We also had to decrease the pump 
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velocity by 3% to get a better agreement  with the steady state values in the final safety 

analysis report (FSAR) [Com82].  

5. Finally, the control parameters for the steam separator in the steam generator were 

adjusted to make the separator function properly in a low flow rate situation. The 

VOVER parameter specifies the void fraction above which the steam will be treated as 

pure vapor. Similarly, the VUNDER parameter specifies the void fraction limit below 

which the steam-water mixture will be treated as pure liquid. During the LOFW transient, 

the steam flow rate drops low enough so that the default values of these parameters were 

not adequate. We decreased the limit to 1.0E-3 for both parameters. 

 

6.4  Benchmarking of the RELAP5 Model 

The benchmarking for both the steady-state case and the LOFW transient case is done to 

ensure that our Zion-1 model adequately represents the transient behavior during the 

accident. In the tables and description below, our Zion-1 model will be referred to as the 

TPWR model.  The steady state comparison of the TPWR model and the values from the 

FSAR is shown in Table 6.2. We see that for most parameters, the agreement is within 1% 

of the FSAR values.  

 Figures 6.2 through 6.6 compare the LOFW transient results between the 

TPWR model and the values obtained using the TRAC code as presented in [Dem82]. 

(The FSAR does not have results for the complete LOFW transient.) Table 6.3 lists the 

sequence of event for the case used in this benchmarking. The transient starts with the 

loss of main feedwater, followed by the reactor coolant pump trip and the reactor scram 

at 1 second. The AFW should come on 15 seconds after the loss of main feedwater but in 

62 
 



this case, it fails to do so. At 60 seconds into the transient,  the atmospheric relief valve 

on the secondary side opens in response to high steam generator pressure. Note that the 

closing of the main steam isolation valve occurs coincident with the reactor scram. 

 

Table 6.2. Comparison of key parameters between the RELAP5 model and the FSAR. 

  FSAR TPWR Model 
Vessel Inlet Temp (F) 530 529 
Vessel Outlet Temp (F) 594 593 
Coolant Flow Rate (lbm/s/loop) 9374 9431 
Pressurizer Pressure (psia) 2248 2252 
Pressurizer Temp (F) 653 653 
SG Steam Exit Temp (F) 506 505 
SG Pressure, shell side (psia) 719 719 
SG Steam Exit Flow Rate (lbm/s) 972 971 

 

Table 6.3. Sequence of event for the loss-of-feedwater transient benchmark. 

Time (s) Event 
0.0 Loss of main feedwater 
1 RCP trip 
1 Reactor scram 
15 AFW system fails 
60 Atmospheric relief valves open 

 

Figure 6.2 shows the reactor power as a function of time. Both the TPWR model 

and the TRAC model that is used in [Dem82] use the American Nuclear Society Standard 

ANS 5.1 to represent the decay power generated by fission products so we do not expect 

too much difference in the decay power between the two models. Figure 6.3 shows the 

average reactor coolant temperature as a function of time. After the RCP trip at 1 second, 

the primary coolant flow rate decreases as the coolant pumps gradually coast down to 

about 5% of the flow rate at full power (Figure 6.5).  This drop in flow rate will cause the 
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temperature of the coolant to briefly increase (this behavior is called the power-to-flow 

mismatch in [Dem82]). However, by about 10 minutes into the transient, natural 

circulation will become the dominant form of primary coolant flow and the temperature 

will reach its quasi-steady state value. During this time, the primary means of heat 

removal is through the boiling of the water inventory that remains in the steam generator 

after the loss of main feedwater. By 80 minutes, the steam generator will have depleted 

its water inventory and  the primary coolant temperature will increase until it reaches 

saturation temperature. In the period between the dryout of the steam generator and the 

boiling of the primary coolant, we see an increase of the volume of the coolant due to 

thermal expansion. This is shown in Figure 6.6, where the pressurizer becomes solid 

about 100 minutes into the transient. 

For the most part, the behavior of the reactor during the transient as calculated by 

our model agrees with the prediction from [Dem82]. The time of the steam dryout is 

different by about 10-20 minutes but we feel that this difference is small enough so that 

we can assume our model can adequately model the behavior of Zion-1 during a loss of 

feedwater transient. 
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Figure 6.2. Reactor power as a function of transient time. 
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Figure 6.3. Average coolant temperature as a function of transient time. 
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Figure 6.4. Steam generator void fraction (shell side) as a function of transient time. 
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Figure 6.5. Primary coolant mass flow rate as a function of transient time. 
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Figure 6.6. Pressurizer level as a function of transient time. 
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CHAPTER 7 

DYNAMIC RISK ANALYSIS FOR THE LOSS-OF-FEEDWATER TRANSIENT 

 

In this chapter, we will present the analysis results of loss-of-feedwater transients coupled 

with the implementation of the F&B operating procedure for the Zion-1 plant. The 

objective of the analysis is to calculate the time-dependent core damage probability 

resulting from the LOFW transient. The RELAP5 model used for the analysis is 

described in chapter 6. Unlike the water tank example of Chapter 2, we will consider 

several independent variables simultaneously. The number of independent variables 

presents a problem in that an adequate sampling of all the possible combinations of these 

variables will take a prohibitively large number of code runs. However, using the 

appropriate conditional independence assumption, we can construct a Bayesian network 

model which will allow us to reduce the number of RELAP5 cases necessary for good 

sampling to a more manageable level.  

 The determination of the conditional independence relationships within a set of 

variables can be a subjective exercise. As we have shown in Chapter 3, conditional 

independence and (pair-wise and joint) independence do not imply one another. This 

means that even for variables that are independent, conditional independence may not 

hold given some other variable. Complicating the matter further, for a given set of 

conditional independent variables, it is often possible to construct a Bayesian network in 

many different ways, depending on the selection of the root nodes. In cases like this, the 
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choice of the appropriate network will be reduced to selecting a model that is the most 

intuitive given the knowledge of the physics of the problem. 

 

7.1 The Dynamic Bayesian Network Model for Feed and Bleed Operation 

The construction a DBN model requires us to make certain assumptions about the 

conditional independence relations of relevant plant equipment. As we have mentioned in 

Chapter 3, a DBN model that is constructed without exploiting conditional 

independencies will have little advantage over other common time-dependent analysis 

techniques such as the Markov chain in terms of efficiency. Even in situations where it is 

difficult to make a blanket statement about the conditional independency of a set of 

variables, we may still be able to construct a useful DBN model if we limit ourselves to 

an appropriate subset of the state space where the conditional independence assumption 

does apply (or at least, where conditional dependency is weak enough to ignore).   

The ability to define suitable sub-region in the state space where a particular DBN 

model is valid is exploited in the construction of the network shown in Figure 7.1. The 

dynamic network model in the figure is expanded over two time slices for clarity. Recall 

from Chapter 3 that one time slice may be thought of as one time step in the 

discretization of the time variable. For instance, slice 0 can be any time step n while slice 

1 is the next time step n+1. We should again note that unlike in numerical analysis, the 

size of the time step does not play a role in a DBN model. Rather, time difference 

between any two slice is only important when constructing the inter-slice transition 

probability.  
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The DBN model in Figure 7.1 has the variable core damage as its only leaf node. 

For simplicity, we will assume that this node has only two states: failed (representing 

core damage), and OK (representing no core damage). We are interested in the 

probability that the node will be in the failed state at any given time during the transient.  

The parent of Core Damage is the node Clad Temp. The interpretation of this statement is 

that whether or not core damage occurs depends only on the maximum clad temperature. 

Note that even though this assumption may not be valid in the general sense (other 

factors may affect the chance of core damage in other types of accidents), high clad 

temperature is the dominant indicator of core damage in the LOFW transient which 

justifies the assumption. The next step is to specify quantitative relationships between the 

root and child nodes via appropriate conditional probability functions. From the Final 

Acceptance Criteria [NRC74], the upper temperature limit for Zircaloy clad before clad 

damage occurs is 2200oF. This motivates our next assumption that any temperature 

higher than this limit will result in core damage with a probability of 1.0. We will also 

assume that clad temperatures below 1600oF will not cause core damage. The damage 

probability increases linearly between these two limits.  The relationship described here 

is shown in Figure 7.2. The triangular probability density function represents the 

uncertainty in the core damage probability. The corresponding cumulative distribution 

function is also represented for the RHS ordinate of Figure 7.2.  

Moving on to the next level in Figure 7.1, we see that Clad Temp has three 

parents: the primary coolant temperature, primary coolant pressure, and the coolant flow 

rate. This selection of parent variables will be validated in Section 7.3 when we construct 

the ACE model for Clad Temp. Unlike the case of the Core Damage node, the  
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conditional probability function for Clad Temp is deterministic in the sense that given a 

value for each of the three parent variables, we assume that we may determine the clad  

 temperature uniquely. Therefore, the conditional “probability” function needs to be 

constructed based on this deterministic relationship.  For our model, this deterministic 

function is obtained via the ACE regression.  As an aside, we note that even though the 

relationship is deterministic, the use of a probability function also allows us to use “noisy” 

or “leak” probability which can be used if Clad Temp has additional parents which are 

not modeled.  
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Figure 7.2. Relationship between the maximum fuel clad temperature and the probability 
of core damage. 
 

The node Injection Flow Rate represents the rate at which the injection system 

(both the high pressure and low pressure injection system) pumps water into the primary 

system for the feed portion of the F&B operation. The injection rate depends on the 
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number of pumps operating (represented by the nodes No. Low P SI pump and No. Hi P 

SI pump) as well as the pressure of the primary system. The dependence on the primary 

pressure arises from the pressure-dependent pumping capacity for the two pump types. 

As mentioned in Chapter 6, the Zion plant has two types of pump that can be used to 

inject water into the primary system during normal operation. The high pressure 

centrifugal charging pump can inject water at a higher primary system pressure but with a 

relatively low flow rate. The low pressure injection pump has a lower shutoff pressure 

but can inject water at a higher rate. The pressure dependent flow rates of the these two 

pump types are shown in Table 7.1.  

Table 7.1 Flow rate capacity for the low and high pressure injection pumps. 

Primary pressure (psia) Low pressure SI pump High pressure charging 
pump 

Liquid Injection Rate (lbm/s) 
2620 0 2.65 
1685 0.333 7.03 
1529 1.00 7.43 
839 9.00 9.30 
15 53.6 9.70 

 

 Figure 7.1 show that the nodes  Low P SI pump and No. Hi P SI pump are also 

parents of the corresponding node in the next time slice. This is represented in the 

network by arcs originating from slice 0 pointing to nodes in slice 1. The interslice 

dependency is introduced into the model to account for possible failure of the pumps. For 

the sake of discussion, let us assume that one time slice represents 1 hour. If the failure 

rate of the SI pump is 1.37E-3/hr, then the conditional probability table associated with 

the node Low P SI is shown in Table 7.2. Note that if the pump were ON in the current 
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time step, we assume that it will remain ON in the next time step. If this were not the case, 

then the last row in Table 7.2 will need to be adjusted accordingly. 

 
Table 7.2. Conditional probability table for the SI pump, assuming a failure probability of          
      1.37E-3 during 1 hour of operation. 
 

 Time T 
Time T-Δ OFF ON 

OFF 1 0 
ON 1.37E-3 0.99863 

 

The root nodes representing the failure time of the auxiliary feedwater system 

(AFW Fail time), the trip time of the primary coolant pump (RCP Trip Time), the time 

delay between the loss of feedwater and the reactor scram (Scram Delay), and the F&B 

initiation delay (Feed Delay and Bleed Delay) are all constant across different time slices. 

This is intuitive since these variables do not change across time slice. Note that these 

constant nodes appear under the black line in Figure 7.1 to indicate that they are not 

specifically part of any one slice but are shared among all slices. 

In the model, we decided to allow the nodes No. PORV Opened, Low P SI pump 

and No. Hi P SI pump to vary with each time slice. Physically, this means that the number 

of pumps and PORVs that are operational may change with time slice. The change in the 

state of these nodes between different time slices may be caused by stochastic failures, or 

by deterministic automatic and manual controls. For instance, if we are interested in 

including human behavior modeling into the network, we may treat the manual control as 

stochastic to account for variation in operator response time. Human behavior is not 

considered in this example. To complete the Bayesian network model, we need to specify 

the root node probability or probability distribution. Table 7.3 shows the values that we 
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use in the model. The choice of the root node and their probabilities are based on [She11], 

although some numbers are adjusted for our model. We will next describe the 

significance of some of these variables.  

In normal circumstance, the reactor is automatically set to scram when the water 

level in the steam generator falls to about 30% of the narrow range indicator. In the Zion-

1 plant, this occurs approximately 30 s after the loss of main feedwater if there is no 

auxiliary feedwater flow. There are situations where the operator may be aware of the 

feedwater loss before the steam generator water level drops to the automatic trip setting 

and in these cases, the reactor may be manually tripped before automatic scram occurs. It 

is also possible that the loss of main feedwater is not abrupt, leading to a longer delay 

between the start of the loss-of-feedwater event and the steam generator low level signal. 

To account for these possible scenarios, we model the reactor scram delay time as a 

uniform distribution between 0 and 90 s.  

Table 7.3. Adjustable parameters in the Bayesian network model. 

Description  Probability Distribution 
Reactor scram delay  Uniform between 0 and 90 s 

F&B initiation delay Lognormal with mean = 4 mins and sigma = 
2 mins 

Number of SI pump available Failure prob=0.012/demand per pump, 
Failure rate=1.37E-3/hr 

Number of charging pump 
available 

Failure prob=0.0078/demand per pump, 
Failure rate=1.37E-3/hr 

Number of PORV opened Failure to open prob=0.014 per valve 
Delay between feed initiation and 
bleed initiation Normal with mean=20s and sigma=10s 

Time of RCP trip Not tripped 

AFW failure time Failure prob on demand=0.9. Probability of 
successful actuation but fails <30 mins=0.1 
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Another variable that will affect the core temperature is the delay between the loss 

of feedwater and the initiation of the F&B procedure. As can be seen in Figure 5.3, 

following the loss of main feedwater, the plant operator has to go through a series of 

procedural steps before F&B operations are initiated. These steps, including verification 

of the loss of feedwater and implementing the various methods to manually activate the 

AFW system, will cause some delay in the initiation of the primary feed. Since the exact 

timing that the operator will enter the F&B emergency operating procedure will depend 

on the plant state and indicators in the control room, there is a large distribution in the 

time delay before the feed is initiated. Following the recommendation from [She11], we 

will model the time to initiate F&B distribution as a log-normal distribution, with a mean 

of 4 mins.  

After the F&B operation is implemented, the bleed rate is another important 

parameter that will affect the time evolution of the primary coolant temperature. If the 

bleed rate is too low, the primary coolant pressure will increase, leading to a decrease in 

the injection capacity and heat removal from the fuel. Conversely, a bleed rate that is 

higher than the injection rate will lead to a loss of coolant scenario. In our analysis, the 

coolant bleed rate from the primary system is determined mainly by the number of 

PORVs that are opened. We assume that the probability that any one of the PORVs will 

fail to open is 0.014. Note that in addition to the PORVs, the pressurizer also has safety 

valves that will automatically open on high pressurizer pressure. These safety valves are 

not normally used in the F&B operation, although there can be situations when the relief 

capacity of the PORVs is too low to relieve the primary system pressure. In these 

situations, the safety valves will open and provide additional relief paths. 
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Generally, for analysis of the feed-and-bleed scenario, we are interested in 

situations where the AFW system does not actuate. In an operating power plant, after the 

loss of main feedwater, the operator will try to manually start the AFW system if it does 

not come on automatically. The entry into the emergency operating procedure which 

prescribes the F&B operation will not occur unless attempts to start the AFW fail. 

Nevertheless, data from the NUREG/CR-6928 [NRC07] indicate that even in situations 

where the AFW system successfully operates, the F&B operation may still be necessary 

if the auxiliary pumps fail before the core cools down sufficiently. In an attempt to 

account for this scenario, we will assume that there is a 10% chance that the AFW system 

will successfully actuate on demand, but will fail within 30 minutes of the actuation.  

One last parameter that we should mention is the reactor coolant pump (RCP) trip 

delay. Generally, the coolant pump is not tripped until the core power is below a certain 

fraction of the rated power (usually 1%). The trip is initiated to reduce a source of heat 

addition to the primary coolant water. However, in scenarios such as a station blackout, 

the coolant pump trip will coincide with the loss of feedwater. In most published studies 

of the feed-and-bleed scenario, the coolant pump is tripped at the beginning of the 

transient to ensure that the results are conservative. However, in our analysis, we will not 

trip the pump in most of the cases presented in Section 7.2. This decision means that the 

feed-and-bleed procedure in our model will cool the core more effectively than would be 

suggested in other studies.   
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7.2 RELAP5 Results for Representative Cases 

In this section, we will present the behavior of the reactor after the loss of main feedwater 

as obtained from RELAP5 calculations. The results obtained here will be used to 

construct the code surrogates from which we can construct the deterministic conditional 

“probability” function needed to solve the Bayesian network. The surrogates will also 

allow us to perform a Monte Carlo sampling and obtain the probability distribution of the 

non-root nodes much more efficiently than through repetitive RELAP5 runs. 

In our RELAP5 model, the location of the maximum clad temperature occurs at 

node 5 of volume 335 (see Figure 6.1). The initial sequence of events for all the cases in 

this section is based on the reference sequence shown in Table 7.4. Any deviations from 

this baseline case will be noted in the description of the individual cases. Following the 

loss-of-main feedwater at 0 s and the associated failure of the AFW system to engage, the 

reactor will automatically scram when narrow range water level in the steam generator 

reaches 25%. For the reference case, the scram time is assumed to be 30s. 

 

Table 7.4. Sequence of event following the loss of main feedwater for the reference case. 
The RCP is not tripped in this scenario. 

 

Event Time [s] 
Loss of Main Feedwater 0 s 

Failure of Auxiliary Feedwater System 0 s 
Reactor Trip 30 s 

Turbine Valve Closed 30 s 

A plot of the fuel cladding temperature as a function of transient time is shown in 

Figure 7.3 for the baseline case where F&B is not initiated.  For all scram delay times up 

to 90 s, the clad temperature remains relatively constant until the secondary water 

inventory in the steam generator is depleted. The time of depletion varies with the scram 
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delay. With a 0 s delay (scram is coincident with the loss of feedwater), the steam 

generator dryout occurs approximately 90 minutes into the transient. With a 90 s delay, 

the dryout occurs much earlier at around 30 minutes. After the dryout occurs, the clad 

temperature rises rapidly for all delay times. The rate of temperature increase after the 

steam generator dryout is relatively independent of the scram delay. As expected, the 

case of a 90 s scram delay leads to the highest clad temperature of 1800 oF after 4 hours.  

 

Figure 7.3. Peak clad temperature as a function of transient time for the scram delay time 
of 0 s, 30 s, 60 s, and 90 s. F&B is not initiated. 
 

Figures 7.4 and 7.5 show the variation of the average coolant temperature and 

pressure as a function of transient time. From the plot, the primary pressure remains 

essentially constant until the F&B operation is initiated at around 7200s. The opening of 

the PORVs associated with this operation causes the pressure to drop by over 50%. The 

coolant temperature rises steadily after the LOFW until the time of the F&B operation. At 

7200 s, the temperature drops sharply as an extra heat removal pathway is established. 
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The dependence of the clad temperature on the scram delay is weaker in the case 

where the F&B operation is initiated early in the transient. Figure 7.6 shows the case 

where the F&B operation is initiated 10 minutes after the loss of feedwater. The clad 

temperature drops initially following the scram, then briefly rises over the next 600 s 

before the F&B operation is initiated. Once the feed flow starts, the temperature begins to 

fall at a rate that is almost independent of the scram delay time. A steam generator dryout 

does not occur in this scenario since the F&B operation provides the main path of decay 

heat removal. 

In Figure 7.7, we see the effect of the time delay for the initiation of F&B on the 

clad temperature. With a delay of 10 minutes, the clad temperature does not rise much 

from the initial value, and it falls at a constant rate once the primary feed starts. As 

expected, the peak for the clad temperature during the transient is highest in the case 

where the F&B operation is delayed the longest.  

The effect of the number of PORVs that are successfully opened for the bleed 

operation is shown in Figure 7.8. The rate of cooling provided by the F&B operation is 

lower for the case where one of the PORVs failed to open. The lower bleed flow rate 

results in a higher primary pressure which in turn results in lower feed rate (since the feed 

rate is pressure dependent).  The effect of primary system pressure on the total feed rate 

is shown in Figure 7.9. At pressures near the steady state operating pressure of 2252 psia, 

only the charging pump has enough power to inject water into the core. Fig 7.10 shows 

the effect of feed flow rate on the clad temperature. As expected, cooling is achieved at a 

faster rate in situations where the feed rate is high. 
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Most studies on the viability of the F&B operation use a conservative assumption that the 

AFW system fails to initiate immediately following the loss of feedwater. However, if the 

auxiliary system does actuate but fails early into the transient, the impact on fuel 

temperature will be similar to the cases described in the preceding paragraphs. Figure 

7.11 looks at how a delayed AFW system failure will affect the scenario. The plot 

suggests that an AFW system failure delay merely prolongs the initial period where the 

clad temperature remains relatively constant. After the failure, the behavior is similar to 

all the previous cases. Thus, the AFW delay merely shifts the clad temperature profile to 

a later point in the transient. 

In this section, we looked at how some of the parameters listed in Table 7.3 

impact the time evolution of the peak clad temperature. The results shown in this section 

all assume that only one parameter changes while all the other parameters remain 

constant. However, if we need to either perform any type of sampling for a Monte Carlo 

simulation or to construct a conditional probability function for the Bayesian network, we 

need to be able to predict how the clad temperature responds, given any random values of 

the independent variables. To achieve this goal, we will need to use the conditional 

independence assumptions that were made when constructing the Bayesian network 

model in Figure 7.1. The next step in building the conditional probability function will be 

to develop surrogates for all the RELAP5 cases so that we can avoid the need to run the 

RELAP5 case for every parametric case. These surrogates will be discussed in the next 

section. 
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Figure 7.4. Primary coolant pressure as a function of time for 30 s scram delay and 2 
hours F&B initiation delay. 
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Figure 7.5. Primary coolant temperature as a function of time for 30 s scram delay and 2 
hours F&B initiation delay. 
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Figure 7.6. Peak clad temperature as a function of transient time for the scram delay time 
of 0 s, 30 s, and 60 s. F&B is initiated 10 mins after the LOFW. 
 

 

Figure 7.7. Peak clad temperature as a function of transient time for the F&B initiation 
delay of 10 mins, 2 hrs, and 3 hrs after the loss of feedwater. The scram delay time is 60 s 
for all three cases. 
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Figure 7.8. Peak clad temperature as a function of transient time for cases where 1 and 2 
PORVs successfully opened. The scram delay time is 60 s and the F&B operation is 
initiated 2 hours after the loss of feedwater. 
 

 

Figure 7.9. Feed flow rate (from both high and low pressure injection systems) as a 
function of primary pressure. 
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Figure 7.10. Peak clad temperature as a function of transient time for cases where 33%, 
50%, and 100% of the makeup flow (from both the high and low pressure injection 
systems) are available. The scram delay time is 60 s and the F&B operation is initiated 2 
hours after the loss of feedwater. 
 

 

Figure 7.11. Peak clad temperature as a function of time for the case where the AFW fails 
immediately and 20 mins after the loss of feedwater. The scram delay time is 60s and the 
F&B operation is initiated 2 hours after the loss of feedwater. 
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7.3 Constructing the RELAP5 Surrogates using ACE 

Referring to Figure 7.1, we wish to find the relationship between the clad temperature 

(dependent variable), and the primary coolant pressure, primary coolant temperature, and 

the coolant flow rate (three independent variables). We compile the RELAP5 cases that 

were run varying these three independent variables (about 20 cases) and tabulate the 

functional behavior of the clad temperature on changes in the primary coolant pressure, 

temperature, and flow rate. This procedure generates about 5000 data points which give 

the relationship between the four variables. The matrix containing these data is then used 

in the ACE algorithm to generate the transformed variables. Figure 7.14 shows the result 

of the transformation. The  R2 = 0.997 value for the fit suggests that the linear additive 

relationship 

 1 1 2 2 3 3( ) ( ) ( ) ( )Y X X Xθ φ φ φ= + +  (7.1) 

is valid.  

Earlier in this chapter, we mentioned how some parent node may contribute less 

to the behavior of a child node compared to other parents. From Figure 7.14, we see that 

the variable X2 (Primary Water Pressure) contributes less than 1% of X1, and 10% of X3 

to the transformed dependent variable ( )Yθ .  This means that the coolant temperature 

and hence the clad temperature is relatively independent of the primary coolant pressure, 

at least within the scope of our model. However, for the sake of completeness, we will 

keep Primary Coolant Pressure as a parent of Primary Coolant Temperature.

Next, we need to determine the functional behavior of the primary coolant 

temperature on its dependent variables as specified in Figure 7.1. Using the same step 

that we used to develop Figure 7.14, we obtain the transformations shown in Figures 7.15 
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and 7.16. The R2 value associated with the surrogate is 0.979. Note that unlike the case of 

the clad temperature model in Figure 7.10, the primary coolant pressure is the dominant 

parent in determining the state of the coolant temperature.  The relationship between the 

transformed water temperature and the untransformed temperature is shown in Figure 

7.16. Note that we do not need a RELAP5 surrogate for the Injection Flow Rate node. 

The dependence of the feed flow on the number of pumps operating and the primary 

system pressure can be taken directly from Table 7.1. 

Figures 7.12 and 7.13 show scattered plots of the clad temperature and coolant 

temperature versus their respective independent variables. The data from these plots were 

obtained by combining the 50 RELAP5 cases that were used to generate the surrogates. 

From these plots, we expect to see a mostly linear relationship between clad temperature 

and coolant temperature, but the relationship of the other variables are less clear. Note 

that the multi-valued nature of these plots suggest that each of the independent variables 

are not sufficient to determine the dependent variable by itself. The surrogates obtained 

from Figures 7.12 and 7.13 are shown in Figure 7.14 and 7.15. As expected, we see that 

the relationship between the clad and coolant temperatures are mostly linear. The 

relationship for the other variables are more well defined in the transformed function 

space compared to the original data. 

Figures 7.17 through 7.19 show the benchmarking of the surrogates for the 

coolant pressure, clad temperature, and coolant temperature against the values obtained 

from RELAP5. 
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Figure 7.12. Scatter plots of clad temperature as a function of its independent variables. 
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Figure 7.13. Scatter plots of coolant temperature as a function of its independent 
variables.
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Figure 7.14. Clad temperature as a function of three transformed variables obtained via 
the ACE algorithm. are the coolant temperature, pressure, and flow rate, 
respectively. The dependent variable is Y, the clad temperature. 
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Figure 7.15. Transformed dependent variables as a function of the original variable for 
the Primary Coolant Temperature node. 
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Figure 7.16. Transformed primary coolant temperature as a function of the original 
variable. 
 

  We note that although we used a quasi-static state assumption in the DBN structure of 

Figure 7.1 to generate these surrogates, we are able to reproduce the time-dependent 

behavior of the plant variables.  Generally, we may not expect that a quasi-state state 

assumption will allow the surrogates to track the process variables well during periods of 

large changes (for instance, the large drop in pressure after opening of the PORVs). 

However, Figures 7.17 - 7.19 show that even when there are large variations in the 

variables, the surrogate still perform adequately. The values of the independent variables 

that are used in the benchmarking in the above figures cover the entire range covered in 

the sampling. For instance, the scram delay varies from 30 s to 90 s and the F&B 

initiation delay ranges from 10 mins to infinity (no F&B operation). Therefore, we are 

relatively confident that the surrogates provide a good approximation for RELAP5, at 

least in the interval of interest. 
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Figure 7.17. Benchmarking of the coolant pressure surrogate. From left to right, the cases 
are: 33% feed rate (60 s scram delay and 2 hrs F&B delay), 50% bleed rate (60 s scram 
delay and 2 hrs F&B delay), 100% feed and bleed rates (60 s scram delay and 2 hrs F&B 
delay), 10 mins F&B delay (60 s scram delay), 10 mins F&B delay (30 s scram delay), 
and 90 s scram delay without F&B. 
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Figure 7.18. Benchmarking of the clad temperature surrogate. From left to right, the cases 
are: 33% feed rate (60 s scram delay and 2 hrs F&B delay), 50% bleed rate (60 s scram 
delay and 2 hrs F&B delay), 100% feed and bleed rates (60 s scram delay and 2 hrs F&B 
delay), 10 mins F&B delay (60 s scram delay), 10 mins F&B delay (30 s scram delay), 
and 90 s scram delay without F&B. 
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Figure 7.19. Benchmarking of the coolant temperature surrogate. From left to right, the 
cases are: 33% feed rate (60 s scram delay and 2 hrs F&B delay), 50% bleed rate (60 s 
scram delay and 2 hrs F&B delay), 100% feed and bleed rates (60 s scram delay and 2 hrs 
F&B delay), 10 mins F&B delay (60 s scram delay), 10 mins F&B delay (30 s scram 
delay), and 90 s scram delay without F&B. 
 

7.4 Risk Analysis Result for the Loss of Feedwater Transient 

With the data presented in the previous two sections, we now have sufficient information 

to calculate the core damage probability given the root event probability distribution in 

Table 7.3. This distribution is generated by weighting the distribution of the fuel clad 
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temperature that we obtained with the Monte Carlo sampling of the ACE surrogates for 

the probability of core damage. The plot, shown in Figure 7.20, represents the probability 

of having core damage at each time step. At 15000 s into the transient, the core damage 

probability peaks at 5E-3. From Figure 7.7, we can see that the peak clad temperature can 

occur anywhere from 10 mins, in the case of early F&B initiation, to over 3 hours if the 

F&B operation is delayed. In all of these cases, the clad damage probability will either 

increase or remain constant after the peak temperature is reached.  

 Looking at the root node probabilities, we expect that the dominant contributions 

to clad failures will come from cases where both the scram delay and the F&B initiation 

delay are large. Since we use a uniform distribution for the scram delay time, the Monte 

Carlo history which has a large delay time occurs relatively frequently. The F&B 

actuation delay largely determines when the peak clad temperature will occur. After the 

F&B operation is initiated, the clad temperature falls rapidly, leading to a near constant 

fuel damage probability. 

The Bayesian network is solved using 80,000 Monte Carlo samples from the distributions 

given in Table 7.3 . Figure 7.20 shows the time-dependent failure probability for the 

LOFW transient. The plot indicates that about 3.5 hours into the transient, we can expect 

approximately a 0.5% probability of core damage. Unlike the event tree method, it is 

difficult to determine the cut set or the relative contributions of different sequences to the 

final core damage probability via the Bayesian network method. Nevertheless, we can 

make an educated guess on the qualitative behavior of the plot. The rise in the damage 

probability after 3.5 hours is likely a result of a combination of high scram delay time, 

low injection rate, and the long F&B initiation delay.  
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Figure 7.20. Core damage probability as a function of transient time. The Max plot is the 
result of the one case with no F&B initiation and 90 s scram delay. 
 

  In Fig. 7.20, we have also included the core damage probability associated with 

the case of no F&B operation and with a 90 s scram delay. This case gives the highest 

clad temperature at any point in time among at the cases that are included in the 

simulation. Therefore, this case serves as the upper bound for our core damage 

probability. 

 In our analysis, we have shifted the threshold of core damage downward by 

approximately 200 oF. This was done to allow more of our Monte Carlo samples to have 

a nonzero probability of core damage so that we obtain adequate number of cases that 

produce core damage. One way to avoid this modification will be to increase our end 

time for the analysis of 15000 s. This will allow the clad temperature in more Monte 

Carlo cases to produce core damage. The narrowing of the density function in Figure 7.2 
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will result in a shift of the time for the onset of core damage to the right. In Figure 7.20, 

this will translate to a faster rise in core damage probability after about 3.5 hours. We 

also expect the damage probability to increase beyond 15000 s and it will be interesting 

to investigate when the peak probability occurs. 

  



CHAPTER 8 

SUMMARY AND CONCLUSIONS 

 

Probabilistic risk analysis methods can generally be divided into two groups: the classical 

static techniques and the newer dynamic techniques. Static PRA makes certain 

simplifications regarding the time evolution of the process variables in the reactors and 

analyzes the effects of different initiation events by using these assumptions. Reactor 

analysis codes can be employed during the construction of the model to determine the 

behavior of the reactor under the assumed reactor configuration and how the 

configuration changes during the accident. Static PRA techniques work well when the 

accident evolution falls under the range of validity for the simplifying assumptions. 

However, in situations where the changes in plant state have a large impact on the 

accident progression, the static methodologies may yield erroneous results. These 

situations include cases where the operator action may be a strong function of the process 

history or in cases of standby systems where the exact plant configuration at the time of 

demand may be variable. In these instances, a dynamic PRA approach is the preferred 

method. 

 A brief overview of some commonly known dynamic PRA techniques are 

discussed in Chapter 2. Most of these techniques have a common drawback that they are 

quite complicated for applications in large systems. In the dynamic PRA approach, the 

process variable evolution is incorporated directly into the models, leading to a direct 
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coupling of risk analysis with plant state changes. However, with the a large number of 

path that the plant state may follow and the complex response behavior of the accident 

progression, the calculations involved in applying these techniques are very CPU and 

memory intensive. Therefore, in most practical applications, these techniques are only 

used to analyze subsystems of the entire plant where the use of static PRA is inadequate. 

 With the two extremes of the PRA methodologies mentioned above, there are 

recognitions that in some situations, the analysts may not need the full power of dynamic 

PRA methodologies and yet want to incorporate the plant response directly into the 

analysis. The work presented in this dissertation aims to bridge this gap between static 

and dynamic techniques. In this dissertation, we present a method where the core damage 

probability is calculated as a function of time by using a DBN model in conjunction with 

the RELAP5 code surrogates constructed via the ACE algorithm. The use of the DBN 

allows the dependencies among the plant components to be broken into smaller models 

which are easier to analyze than the full model. For each of these small subsets in the 

DBN, the number of independent variables that need to be considered is greatly reduced. 

The use of the ACE algorithm now becomes more efficient since only selected variables 

need to be considered. 

 A major drawback of our proposed method is its sensitivity to the conditional 

independence assumption. If we do not consider the correct parent in the network or if we 

miss important independent variables during the construction of the surrogate, then the 

results we obtain will give inaccurate results. Furthermore, the use of the surrogate is 

restricted to analyses that are performed within its range of validity. If a transient takes 

the reactor along a path that causes the parameters to fall outside the scope of our 
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surrogate, then the prediction of the network will no longer be accurate. In these cases, 

our model will not give any indications that something is wrong, and it will be up to the 

analyst to ensure that all the parameters used in the DBN are within the range of validity. 

 In this work, we have applied the DBN model to the calculation of the time-

dependent core damage probability associated with a LOFW accident. The conditional 

independence statements of important plant components are used to construct the DBN 

model which links the clad temperature to independent variables such as the scram delay 

time and the F&B initiation time. The conditional probability functions associated with 

the nodes in the DBN are a combination of the deterministic ACE surrogates of the 

RELAP5 code and probability densities describing the failure rates of various plant 

components. The use of the ACE surrogates inside the DBN allows the network to be 

solved much faster than possible  if a direct coupling with RELAP5 were made.  The 

results of our calculation show that the core damage probability begins to increase from 0 

at about 3 hours into the LOFW transient, corresponding to the time when the peak clad 

temperature in most Monte Carlo samples exceeds 1600oF. We note that if we allow the 

RELAP5 runs to exceed 15000 s, then mostly likely the core damage probability will 

continue to increase. 

The work in this dissertation focuses on using the RELAP5 surrogate and the 

factorization property of the DBN to allow an integration of the system dynamics with a 

PRA analysis in a simplified manner. The quasi-state ACE surrogates are able to 

represent dynamic behavior of the system accurately. Further study in this area will 

involve extending the analysis to beyond 15000 s and looking at how the core damage 

probability increases beyond this period. Due to a time limitation, we have restricted our 
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analysis up to 15000 s after the LOFW and we have shifted the temperature at which core 

damage starts by 200 oF. Should the transient be allowed to continue past 15000 s, we 

expect that this modification will no longer be necessary as the clad temperature will 

exceed the threshold for clad damage in many more Monte Carlo samples. 

An aspect of DBN that is not covered in this research is its potential use in 

diagnostics and real-time monitoring. With the ability of DBN to update both the 

conditional independence functions and the root node probabilities with real data, a DBN 

risk model will be useful for monitoring the risk of the reactor in real time. In this type of 

application, we can envision the linking of all the control room instrumentation readings 

into the network and continuously update the risk of the reactor in real time. During an 

accident or unanticipated transients, the operators will have access to real time 

information on the risk as emergency procedures are implemented. The use of our 

DBN/ACE model in this way could be one possible area of future research. 
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