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ABSTRACT 

“Nanotheranostics” for Tumor Imaging and Targeted Drug Delivery 

 

The magnetic resonance imaging (MRI) technique is a promising tool that improves 

cancer detection, facilitates diagnosis and monitors therapeutic effects. 

Superparamagnetic iron oxide nanoparticles (SPIOs) have emerged as MRI contrast 

agents for tumor imaging and as potential vectors for targeted anti-cancer drug delivery; 

nevertheless, the application of SPIOs has been hampered due to a lack of specificity to 

tumor tissues and premature drug release. This project aims at developing multifunctional 

SPIOs for both cancer imaging and targeted drug delivery via conjugation of tumor 

specific antibodies with SPIOs. The application of anti-TAG-72 antibodies as tumor 

targeting modalities was evaluated in cultured colorectal cancer cells and in xenograft 

models by using fluorescent imaging and positron emission tomography (PET) imaging. 

It was demonstrated that antibody-labeled SPIOs were superior imaging agents and drug 

carriers for increased tumor specificity. The regulation and kinetics of intracellular drug 

release from SPIOs were explored by means of fluorescence imaging. In vitro and in vivo 

fluorescence resonance energy transfer (FRET) imaging was employed to investigate the 

mechanisms of premature drug release from nanocarriers. The large volume and high 

hydrophobicity of cell membranes were found to play an important role in premature 

drug release. The encapsulation of SPIOs into nanocarriers decreased drug release in a 

dose-dependent mode. This study provided future opportunities to improve the efficiency 

of nanocarriers by exploring the mechanism of drug release and disassembly of SPIO-

loaded polymeric nanoparticles. 
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CHAPTER I 

 
Background and Introduction 

 

1.1 Current challenges in nanoscale drug delivery platforms  

Chemotherapy is designed to kill cancer cells. Unfortunately, anticancer drugs often 

kill healthy cells and cause serious side effects. It is desirable to specifically deliver 

anticancer drugs to targeted cancer cells. Nanoparticles might act as carriers for 

anticancer drugs since the nanocarriers can accumulate in the tumors by the enhanced 

permeability and retention (EPR) effect and/or by the specific binding between targeting 

ligands and tumors tissues[1]. However, several challenges were encountered in the 

development of nanocarriers for targeted anticancer drug delivery.  

One of the top challenges of the nanocarriers is the lack of targeting efficacy. The 

passive accumulation of nanocarriers is driven only by the size of particles and EPR 

effect[1]. Although the conjugation with ligands, aptamers, and small peptides that bind 

to surface markers expressed in the tumor cells or tumor microenvironment can improve 

tumor targeting, the expression of makers and receptors in some normal tissues and 

nonspecific binding to normal tissues usually attenuate the cancer-specificity of target 

moieties and nanocarriers. Another strategy of targeted drug delivery is to trigger site-

specific drug release from nanocarriers by light, heat, pH and redox and amperometric 

reactions[2]. However, this strategy depends on the successful delivery of nanocarriers to 

tumor tissues.  
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The second challenge is the existence of various biological barriers which the 

nanocarriers need to bypass in the body, including biophysical barriers and functional 

barriers. Among these biophysical barriers are the endothelial and epithelial barriers in 

blood vessel walls, the placenta, brains and intestines, abnormal flow of blood, osmotic 

pressure gradients at target sites, hemodynamical aspects of particle margination [1, 3]. 

Furthermore, cell membrane and intracellular organelles are also obstacles to be bypass. 

For example, nanoparticles can be trapped in endosomes. The functional barriers include 

enzymatic degradation, uptake by scavenging phagocytic cells, and molecular and ionic 

efflux pumps that expel drugs from target cells [3]. Such barriers significantly prevent the 

successful delivery of nanocarriers and targeting moieties to tumor tissues. For example, 

only a small fraction of systemically administrated targeting moieties such as an antibody 

or peptide reaches tumors[1]. 

The third issue is the development of imaging modalities for visualizing the 

biodistribution of nanocarriers and drugs in real-time. Currently, the only technique that 

can quantitative detect nanocarriers in vivo is through radionuclide labeling [3]. Usually, 

radionuclides are labeled to nanocarriers through chemical conjugation and chelation. 

The radionuclide chelation may be unstable in the body, leading to unreliable results. 

Furthermore, current imaging techniques could not distinguish the released drug and 

unreleased drug, resulting in their inability to visualize the in vivo drug release.  

Premature drug release is another challenge for lipid and polymer-based nanocarrier 

such as micelles and liposomes[4]. Although the encapsulation of drug in the liposomal 

aqueous phase could decrease drug leakage[5], the burst drug release is still a limitation 



3 

 

of micelle nanocarriers. Additionally, the reasons for rapid premature drug release are 

still not clear. 

The fifth challenge is to develop new mathematical and computer models to predict 

the risk and benefit parameters of nanoparticles for targeted delivery[3]. The relationships 

between the biodistribution and the properties of nanoparticles such as size, shape, 

charges, composition, surface chemistry and level of aggregation should be established.  

Finally, to ensure the safety, more efforts should be made to address the 

biocompatibility and toxicity issues of nanocarriers. Because of quantum size effects and 

large surface area to volume ratio, nanoparticles have unique properties. A fundamental 

understanding of the relationship between the properties (size, shape, charges, 

composition, surface chemistry and level of aggregation) of nanoparticles and their 

toxicity (for example, immunotoxicity) will facilitate the design and optimization of safe 

nanoscale drug delivery systems[6].  

1.2 Application of MRI in tumor imaging 

The application of cancer imaging modalities such as magnetic resonance imaging 

(MRI) has advanced cancer detection, diagnosis and treatment options. When a magnetic 

field is applied to a human body, the protons of water align with the direction of the field. 

When this field is turned off, the protons release this energy at a resonance radio 

frequency which can be detected by a MRI scanner and manipulated by additional 

magnetic fields to build up enough information to construct an image of the body[7]. 

Different tissues can be distinguished because the protons in different tissues return to 

their equilibrium state at different rates. Although the tumors may be visualized in T1-and 

T2-weighted MRI images, the differences in T1 and T2 relaxation times with regard to 

http://en.wikipedia.org/wiki/Quantum
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benign and malignant changes are not significant, and therefore, false positives would 

arise. Paramagnetic gadolinium chelates which generate extremely bright T1-weighted 

images, have been used clinically as MRI contrast agents to image tumors because of 

tumor-mediated angiogenesis[8]. However, gadolinium chelates are not tumor-specific 

and the conjugation of adequate amounts of gadolinium to tumor-specific monoclonal 

antibodies is difficult to achieve [8, 9]. Furthermore, certain
 
gadolinium based contrast 

agents are likely to cause nephrogenic systematic fibrosis (NSF)[10].  A new MRI 

contrast agent is needed to be developed. 

1.3 Anti-TAG-72 monoclonal antibodies  

To improve the cancer-specific targeting of contrast agents for MRI and drug 

delivery, a cancer-specific targeting ligand is required. TAG-72 (Tumor Associated 

Glycoprotein-72) is a human mucin-like glycoprotein complex that is over-expressed in 

many epithelial-derived cancers including colorectal, pancreatic, breast, ovarian, non-

small cell lung, and gastric cancers [11-13]. 
125

I-labeled anti-TAG72 antibodies (murine 

CC49 and humanized HuCC49ΔCH2) combined with a handheld gamma detection probe 

have been used for intraoperative tumor detection. In xenograft models (with TAG-72 

expressing colon cancer cells LS174T) [11, 14-21], 
125

I-labeled anti-TAG-72 antibodies 

(B72.3 and CC49) localized 18-fold higher in tumors than in normal tissues [21-23]. In 

more than 300 colorectal cancer patients, anti-TAG-72 antibodies (CC49 and 

HuCC49∆CH2) localized 77% to 89% of primary colorectal tumors [24-26] and 78% to 

97% of metastatic lesions [27-29]. More importantly, anti-TAG-72 antibodies not only 

detect visible gross tumors but also clinically occult disease within lymph nodes in more 

than 70% of the cases [27-29], which are normally undetectable by traditional surgical 
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exploration and pathological examination. The detection of occult tumor and subsequent 

resection are critical for improving patient survival. In 97 patients with primary colorectal 

cancer with a 2.5 to 5 years follow up, survival rate is 87.5% for patients with no anti-

TAG-72- bound tissue remaining after surgery, while the survival rate is only 12.5 to 30% 

for patients with antibody-bound tissue remaining at the completion of surgery [30-33]. 

In 131 patients with recurrent colorectal cancer in a 2.5 year follow up, the survival is 55% 

for patients with no antibody bound tissue remaining, and 0% for patients with antibody 

bound tissue remaining[34].  Since the anti-TAG-72 antibodies can detect both early-

stage and late-satge colorectal tumors, we intend to utilize the antibodies as a targeting 

ligand to deliver MRI contrast agent and drug to tumors.   

1.4 Superparamagnetic iron oxide nanoparticles as an MRI contrast agent 

Recently, superparamagnetic iron oxide nanoparticles (SPIOs) have a surge of 

interest because of their potentials in MRI. Compared with paramagnetic ions, 

superparamagnetic iron oxide nanoparticles (SPIOs) can produce enhanced relaxation 

rates at significantly lower doses (μmol/kg) due to their larger magnetic moment, leading 

to a higher sensitivity of MRI. SPIOs decrease T2 relaxation time and appear dark on T2*-

weighted images[35]. SPIOs have been used to improve the diagnostic quality of MRI 

investigations of liver, bone marrow, splenic lymphomas, lymph nodes and tumors[36, 

37]. 

The magnetism properties and cell internalization of SPIO are strongly size-

dependent[38]. SPIOs less than 30 nm in size are superparamagnetic while larger SPIOs 

are ferromagnetic[39]. The magnetization value changes from 25 to 43, 80, and 102 

emu/(g Fe) as the size of SPIOs increases from 4 to 6, 9, and 12 nm, respectively [40]. 
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Size, charge and surface chemistry of the SPIOs also strongly influence their 

biodistribution[41, 42]. Due to the reticuloendothelial system (RES) clearance, SPIOs are 

eliminated very effectively from blood and distribute in the liver, spleen, bone marrow 

and lymphnodes[43]. SPIOs with a rational size, charge and surface coating are expected 

to localize in tumors due to the enhanced permeability and retention (EPR) effect [44]. 

Following systematic administration, SPIO larger than 200 nm are usually sequestered by 

the spleen as a result of mechanical filtration and are eventually removed by RES. SPIOs 

larger than 50 nm are considered to be liver-specific. Small SPIOs less than 50 nm are 

designed for extrahepatic targets, such as lymph nodes and tumors. On the other hand, 

smaller particles less than 10 nm are rapidly removed through extravasation and renal 

clearance[42, 45]. Charged SPIOs are uptaked by RES faster than low charged and 

uncharged SPIOs, positively charged ones faster than the negatively charged[42]. 

Increasing the surface hydrophilicity of SPIOs reduces the liver uptake[42]. Furthermore, 

surface coating with hydrophilic polymer polyethyleneglycol (PEG) significantly reduces 

the non-specific RES uptake by 86% and prolongs the circulation time [41, 46]. Hence, 

SPIOs with a diameter less than 50 nm and hydrophilic surface coating are expected to 

exhibit a longer circulation in the blood and accumulate in extrahepatic tissues.  

1.5 Preparation and surface coating of SPIOs 

A conventional chemical method coprecipitation was utilized to synthesize SPIOs, 

by adding a base to the Fe
2+

 and Fe
3+

 aqueous salt solutions [47]. Different pH, ionic 

strength, temperature, Fe
2+

 and Fe
3+

 ratio resulted in SPIOs with different size, shape and 

composition [47-49]. Although the coprecipitation technique was simple and low-cost, 

the size distribution and morphology of SPIOs were hard to control. Since the magnetic 
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properties and biodistribution of SPIOs are highly dependent on their size and shape, it is 

important to produce monodisperse SPIOs (size variation < 5%) [50]. Some other 

methods such as microemulsion, ultrasound irradiation, sol-gel syntheses, electrospray 

syntheses, hydrothermal synthesis and thermal decomposition have been developed to 

produce monodisperse SPIOs [49, 51-53].  Currently, thermal decomposition method is 

widely used for large-scale synthesis of SPIOs [50]. Basically, iron–oleate complex was 

produced from metal chlorides and sodium oleate. The iron–oleate complex was an 

excellent growth source for nanocrystals. In the presence of oleic acid, the iron–oleate 

complex in organic solvent such as 1-octadecene was slowly heated to 320 °C, and was 

aged at that temperature for 30 min, generating SPIO nanocrystals. The SPIO 

nanocrystals could easily be re-dispersed in organic solvents including toluene and 

chloroform. The particle size of SPIOs was controlled by the boiling point of the organic 

solvent (For example, 1-octadecene 317 °C and 1-hexadecene 274 °C), the concentration 

of oleic acid, reaction time and reaction temperature. As the boiling point of the solvent 

increased or the concentration of oleic acid increased, the diameter of the iron oxide 

nanocrystals increased. 

SPIOs synthesized by thermal decomposition are covered with a lipophilic oleic acid 

layer, resulting in aqueous insolubility. To improve the aqueous solubility and stability, 

reduce nonspecific binding and uptake, and incorporate functional groups to SPIOs, 

various materials have been applied to coat SPIOs and convert organic phase SPIOs to 

water-soluble SPIOs, such as silica [54], carbon [55], small surfactants[56], lipids[57] 

and amphiphilic polymers[58, 59]. For example, the lipophilic block of amphiphilic 

polymers interdigitates into the oleic acid surface of SPIOs through hydrophobic 
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interactions. The hydrophilic block faces outward, which makes SPIO surface 

hydrophilic, soluble, and stable in aqueous solution. Furthermore, surface coating has 

introduced functional groups such as carboxyls, amines and thiols to the surface of SPIOs, 

which make the conjugation with tumor targeting molecules possible. To improve the 

tumor targeting of SPIOs, various tumor targeting molecules have been attached to SPIOs, 

including antibody[41, 60, 61] and antibody fragments[62], peptides[63, 64], 

oligonucleotides[65], and receptor ligands, such as epithelial growth factor (EGF)[66], 

folic acid[67, 68], somatostatin analogues[69] and transferrin[70].  

1.6 SPIO as a drug carrier for image-guided target delivery 

Most MRI contrast agents only provide diagnostic advantage without offering 

therapeutic efficacy. In contrast, SPIOs or targeting ligand labeled SPIOs have been used 

for targeted delivery of anticancer drugs. Drug molecules are either entrapped in the 

SPIO surface layer through physical interactions (electrostatic interaction or hydrophobic 

interaction) or covalently conjugated to the functional groups (carboxyl, primary amine 

or thiol) on the SPIO surface and released in target tissues through pH or temperature 

dependent release or enzymatic cleavage. For example, phosphodiester[71], azido or 

alkyiie groups[72], and enzymatic cleavable peptides[73] may be used a cross-linker to 

conjugate drug molecules to SPIO. In addition, SPIO is also formulated into thermal 

sensitive magnetoliposomes as a drug carrier [74-76]. The thermal sensitive 

phospholipids outshell is ruptured to release the encapsulated drugs when encapsulated 

SPIOs are exposed to an exogenous magnetic field. 

SPIOs coated with oleic acid show excellent colloidal stability and solubility in 

organic solvents. Different procedures such as coating with amphiphilic polymers are 



9 

 

employed to convert the hydrophobic oleic acid coated SPIOs into hydrophilic SPIOs. 

The hydrophobic moiety of the amphiphilic polymer anchors on the oleic acid layer and 

form a hydrophobic layer, while the hydrophilic moiety of the polymer towards outside. 

The hydrophobic layer is utilized as a reservoir for the loading and pH-dependant release 

of anticancer drug doxorubicin (DOX) and paclitaxel[63, 77-81].  The hydrophobic DOX 

(logP1.85) and paclitaxel (logP 4)[77] will partition into the hydrophobic layer when 

pH>7.4. The aqueous solubility of DOX is dramatically increased at pH<6 due to the 

protonation of DOX (The pKa of the doxorubicin amino group is 7.6 at 37°C, ionic 

strength 0.15[82]). The encapsulated drug is released from SPIOs. Furthermore, the 

release of DOX and paclitaxel from SPIOs was observed to extend over three weeks [77], 

which is likely due to the slow dissociation of coating polymers from SPIOs. Hence, the 

drug encapsulated into SPIOs will exhibit prolonged circulation time, which is especially 

important for drugs with a short half-life. 

To be delivered to tumor tissues, the drug-loaded SPIOs should be biocompatible 

and stable in the circulation. However, the uncoated SPIOs tend to aggregate in blood 

stream through van der Waals attractions, leading to the rapid elimination by reticulo-

endothelial system (RES)[83]. Although coating with some hydrophilic polymers such as 

dextran or starch have improved the colloidal stability, reduced RES uptake and 

prolonged the circulation of SPIOs, the coated SPIOs have limited drug loading capacity 

and the drug rapidly dissociates in the circulation after i.v. administration [84]. To 

increase drug loading capacity and prevent the drug “leaking” from SPIOs in circulation, 

more rigid SPIO coating or drug loading methods should be employed.   
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1.7 Self-assemble block copolymer micelles for drug delivery  

During the past decade, block copolymers (BCP), especially pH sensitive 

amphiphilic (hydrophobic-polar) BCP have been used to form self-assembled micelles or 

vesicles for drug, gene and protein delivery [85-90]. Compared with lipid vesicles and 

micelles, BCP vesicles and micelles are more stable and robust while their morphologies 

are easier to be controlled[85]. BCP micelles possess a core-shell structure. When the 

organic solution (both blocks have good solubility in this common solvent) of BCP is 

diluted by water, the hydrophobic blocks of BCPs will be held together to form the 

micelle core, while the outside hydrophilic blocks of BCPs will suspend in aqueous 

media to form the corona. The morphology of the BCP micelles is maintained by a force 

balance between three factors: the degree of stretching of the core-forming blocks, the 

interfacial tension between the micelle core and the solvent outside the core, and the 

repulsive interactions among corona forming chains[91]. The particle size, shape, rigidity 

and loading capacity are controlled by molecular weight of polymer, hydrophobic to 

hydrophilic relative block length, lipophilicity of core-forming blocks, the width of the 

molecular weight distribution, polymer concentration, solvent nature and water content    

as well as the presence of additives such as surfactants and ions [92-94]. For example, to 

obtain spherical micelles with hydrophobic cores, the molecular weight of the corona-

forming block should not exceed that of the core-forming block[95]. 

Polymeric micelles as carriers of hydrophobic drugs have drawn increasing research 

interests, due to their advantages in drug delivery [96]. First, polymeric micelles are very 

stable in aqueous solution because of their low critical micelle concentration (CMC), 

which is expected to prevent micelles from disruption upon dilution in the blood stream 
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after intravenous injection. Furthermore, the PEG surface and nanoscale size of micelles 

protect them from non-specific reticuloendothelial uptake and renal clearance and extend 

their blood circulation halflife. Also, the nanoscale polymeric micelles can escape from 

blood circulation due to enhanced permeability and retention (EPR) effect and 

accumulate in the tumors. In addition, the aqueous solubility for hydrophobic drugs can 

be dramatically increased when they are encapsulated into the core of micelles.  

Hydrophobic drugs can be incorporated into the micelle core by either chemical 

conjugation or hydrophobic interaction[97]. For examples, paclitaxel was encapsulated 

into micelles consisting of poly(ethylene glycol)-distearoyl phosphoethanolamine 

conjugates (PEG-PE), solid triglycerides, and cationic lipids by hydrophobic 

interactions[98]. In this design, cationic lipids could help the micelles escape from 

endosomes and enter the cytoplasm. In contrast, Nakanishi and coworkers synthesized 

doxorubicin-conjugated poly(ethylene glycol)–poly (aspartic acid) block copolymer 

(PEG–PAsp-DOX) to form micelles and physically entrapped free doxorubicin into the 

PAsp-DOX core[99]. They found that the polymeric micelle with chemically conjugated 

DOX and physically entrapped DOX expressed high antitumor activity which was mainly 

caused by the physically entrapped DOX, while the chemically conjugated DOX showed 

negligible antitumor activity due to inability to escape endosomes/lysosomes[100]. To 

facilitate the escape from endosomes/lysosomes, DOX was conjugated to the micelle 

cores through acid-cleavable linkage, such as a hydrazone bond [101, 102]. The 

hydrazone linkage was cleaved in the endosomes/lysosomes to release free DOX 

molecules. 
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1.8 Stability of polymeric and lipid-based micelles 

For drug molecules physically entrapped and chemically conjugated in the core of 

polymeric and lipid-based micelles, their delivery efficacy depends on the integrity of 

nanoparticles in blood circulation and specific release in target tissues[103]. An 

intractable problem for micelle delivery system is the rapid, premature release of drugs 

before the micelles reach their targets[95]. For example, the clinical trial of poly(aspartic 

acid)–b–poly(ethylene glycol) micelles physically entrapped with DOX showed that the 

micellar formulation only slightly improved the pharmacokinetic parameters of 

doxorubicin compared with free DOX (2-fold increase in area under plasma 

concentration-time curve (AUC) and 1.5-fold decrease in volume of distribution 

(Vd))[104]. In contrast, liposomal formation of DOX resulted in a 556-fold increase in 

AUC and 300-fold decrease in Vd[105]. Furthermore, Pluronic
®

 block copolymer 

micelles non-covalently incorporated DOX showed similar AUC to free doxorubicin in 

patients [106]. All the pharmacokinetic data suggested the premature release of DOX. 

Similarly, premature drug release from lipid-based liposomes[107] and micelles[108, 109] 

is also reported.  

Thermodynamically, micelles are disassembled into unimers at a concentration lower 

than the critical micelle concentration (CMC). It’s generally believed that the premature 

release in blood stream is caused by dilution [103]. Micelle disassembly takes place in 

blood stream upon dilution even above the CMC with a decrease in the number of 

micelles, irrespective of the final concentration[110]. Hence, micelle modification such 

as stereocomplexation[111], cross-linking of the core/shell [112-115] and electrostatic 

interaction[110, 116] has been reported to prevent micelle disassembly and control the 
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kinetics of drug release. The core/shell cross-linked micelle which is constructed by 

linking the polymers with disulfides or other covalent bonds, behaves as a unimolecular 

micelle to exhibit stability independent of the concentration[110]. However, most of the 

modified micelles remain under in vitro investigation. In vivo study showed that modified 

polymeric micelles only slightly increased AUC of paclitaxel (two fold) compared with 

unmodified micelle formulation [116]. 

1.9 Assessment of cargo release from polymeric nanoparticles 

Although the comparable pharmacokinetic profiles of micelle-loaded drugs and free 

drug observed in clinical trials [104, 106] indicated possible premature cargo release 

from polymeric micelles, it is still a challenge to directly examine the in vitro and in vivo 

integrity of nanoparticles and visualize the premature drug release [95, 103]. Currently, 

there are few practical experimental methods available to differentiate intact drug-loaded 

nanoparticles, drug-released empty nanoparticles and disrupted nanoparticles (unimers) 

in the blood stream.  

Radiolabeling is the most efficient way so far of determining the in vivo fate of 

polymeric nanopaticles[117-120]. Usually, block copolymers are labeled with a 

radioactive agent and the biodistribution of nanoparticles is determined by the 

radioactivity of each tissue. The pharmacokinetic profiles of radiolabeled polymeric 

micelles in blood showed a fast distribution phase (1–2 h) followed by a slow elimination 

phase (2-90 h). Biliary and renal excretions are found to be major elimination routes of 

block copolymers. To detect the cargo release, cargo and the nanoparticle can be labeled 

with different radioactive tracers. For example, 
14

C and 
3
H were utilized to label the 

cargo ceramide and the liposome lipids[107]. The volume distribution of ceramide in 
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Sprague-Dawley rats was found to be 20-fold greater than that of liposome lipids. The 

hydrophobic ceramide was proposed to be released from liposomes to cell plasma 

membrane through a bilayer exchange mechanism [107]. Although the radiolabeling 

method detected different pharmacokinetics and biodistribution between cargos and 

nanoparticles, it failed to monitor the disassembly of nanoparticles by differentiating 

intact nanoparticles and their unimers. Furthermore, the cargo release process cannot be 

visualized in real-time. 

Fluorescence labeling of polymers have been utilized to investigate cell 

internalization and intracellular distribution of polymeric nanoparticles[95]. A red 

fluorescent dye tetramethylrhodamine-5-carbonyl azide (TMRCA) was used to label the 

end of hydrophobic block of poly(ethylene glycol)-b-poly(caprolactone) (PEO-b-PCL) 

polymer and a green dye 5-dodecanoylaminofluorescein (DAF) was loaded to the core of 

TMRCA-labeled micelles [121]. Fluorescent microscope revealed the distribution of 

micelles in cytoplasm and different subcellular distribution between micelle-loaded DAF 

and free DAF. However, the conjugation with TMRCA, a cationic dye, might change the 

stability and subcellular distribution of PEO-b-PCL nanoparticles[122]. For example, the 

nonionic PEO-b-PCL micelles and unimers are unlikely to escape endosomes/lysosomes. 

In contrast, TMRCA-labeled PEO-b-PCL is a cationic polymer in lysosomes, which may 

disrupt lysosomes and facilitate the escape of TMRCA labeled micelles. Hence, to 

minimize the influence on the stability and distribution of nanoparticles, a neutral 

fluorescent is recommended for polymer labeling. 

Quantitative fluorescence microscope techniques such as fluorescence resonance 

energy transfer (FRET) have been proposed to investigate the cargo release from 

http://en.wikipedia.org/wiki/Fluorescence_Lifetime_Imaging_Microscopy
http://en.wikipedia.org/wiki/Fluorescence_Lifetime_Imaging_Microscopy
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polymeric nanoparticles and nanoparticle-cell membrane interaction [95, 123-128]. The 

reason FRET can monitor drug release because it relies on the close physical interaction 

of two fluorophores. One fluorophore is called the donor and the other one is called the 

acceptor. The donor fluorophore is excited first and transfers energy to the acceptor 

fluorophore (in proximity, typically less than 10 nm and more than 2 nm) through 

nonradiative dipole–dipole coupling[129]. FRET does not occur if the distance between 

these fluorophores exceeds 10 nm. Meanwhile, to achieve FRET effect, the emission 

spectrum of the donor must overlap the excitation spectrum of the acceptor and the donor 

and acceptor must be appropriately orientated to allow energy transfer. Fluorescent 

proteins, fluorescent dyes and quantum dots have been successfully used as FRET donors 

and acceptors. FRET ratio is defined as IA/ (IA + ID), where IA and ID are the fluorescence 

intensities of the acceptor and donor, respectively. When the distance between donor and 

acceptor increases, FRET ratio will decrease.  

To monitor the cargo release, the hydrophobic donor dye and acceptor dye were 

entrapped into polymeric nanoparticles[125, 128]. When the donor and acceptor dyes 

were released from nanoparticles, FRET ratio was observed to decrease or disappear. 

Recent in vitro and in vivo studies have shown rapid release of hydrophobic dyes DiOC18 

(donor) and DiIC18 (acceptor) from PEG-b-PCL and poly(ethylene glycol)-block-

poly(D,L-lactic acid) (PEG-b-PDLLA) micelles in cell culture and blood circulation[128].  

Alpha- and beta- globulins were found to cause the rapid cargo release in blood [126]. In 

another study[125], FRET analysis was used to compare the stability of micelles 

composed of PEG-block-poly(N-hexyl stearate L-aspartamide) (PEG-b-PHSA) and 1,2-

distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)] (PEG-

http://en.wikipedia.org/w/index.php?title=Dipole%E2%80%93dipole_coupling&action=edit&redlink=1
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DSPE). PEG-b-PHSA micelles were found to be more stable than PEG-DSPE micelles in 

the presence of serum proteins, suggesting that the rapid cargo release can be reduced by 

increasing the hydrophobicity of the micelle core. 

Recently, a FRET based screening approach was reported to monitor the cargo 

exchange between two micelles individually loaded with DiOC18 and DiIC18 in test 

tubes[127]. FRET will not be detected if there is no exchange of DiOC18 and DiIC18 

entrapped in separate nanoparticles. FRET ratio will increase when the two kinds of 

nanoparticls are mixed if there are cargo release and cargo exchange. Based on this 

design, the authors found that cross-linked polymer nanogels exhibited higher 

encapsulation stability than pluronic block copolymer micelles and the leakage dynamics 

can be tuned by varying the cross-linking density. Similarly, in another study[124], a 

green dye 5-dodecanoylaminofluorescein (DAF) was used to stain cell membrane and a 

red dye nile red was encapsulated to PEG-b-PDLLA nanoparticles. FRET effect between 

DAF and nile red was detected on the cell membrane when the DAF stained cells were 

incubated with nile red-loaded nanoparticles, indicating the release of nile red to cell 

membrane. Compared with donor/acceptor co-loaded FRET nanoparticles, the 

individually loaded nanoparticles provide a more specific and sensitive method to 

monitor in vitro and in vivo cargo release. 

Metal nanoparticle quenching is another strategy to probe the kinetics of cargo 

release from nanocarriers[130]. In this design, both pyrene and gold nanoparticles 

(AuNPs) were encapsulated into polystyrene-block-poly(acrylic acid) (PS-b-PAA) 

micelle. Due to the strong absorbance of AuNPs at 200–600 nm, fluorescence of pyrene 

was quenched by AuNPs at close proximity. In the presence of nanoacceptors, pyrene 
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was released to nanoacceptors and exhibited fluorescence. The results showed that pyrene 

was quickly transfer from PS-b-PAA) micelles to nanoacceptors. The authors found that 

this nanoacceptor-induced fast release followed the Fickian spherical diffusion model and 

could be explained by the short-distance diffusion of pyrene through water[130].  

1.10 Assessment of polymeric nanoparticle disassembly 
 

In polymeric nanoassemblies, polymer unimers always exist in a dynamic 

equilibrium with the nanoparticles at concentrations above the CMC. It’s generally 

believed that the premature release in blood circulation is mainly caused by blood 

dilution and subsequent nanoparticle disassembly after i.v. administration [103, 131]. 

However, rapid cargo release was detected even when the blood concentration of 

polymer was much higher than their aqueous CMC[126], suggesting the rapid release 

was not caused simply by dilution. Meanwhile, in the same study, alpha- and beta- 

globulins were found to accelerate the cargo release. Although those two serum proteins 

were believed to be responsible for rapid cargo release and nanoparticle disassembly, no 

direct evidence was provided to support the nanoparticle disassembly. Furthermore, it 

was reported that Rhodamine was rapidly released from lipid-coated perfluorocarbon 

nanoparticles to cell plasma membranes without the need for entire nanoparticle 

internalization and nanoparticle disassembly[109].  Similarly, pyrene was observed to be 

rapidly released from gold nanoparticle-loaded PS-b-PAA nanoparticles to bovine serum 

albumin (BSA), L-alpha-phosphatidylcholine micelles, sodium dodecyl sulfate (SDS) 

micelles and PS-b-PAA micelles in aqueous solution, which was not caused by 

disassembly or fusion splitting of the polymer micelles[130]. 
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To prevent the premature release, it’s important to determine if the rapid release is 

caused by premature disassembly or leakage. It is generally believed that contacts with 

biological fluids, macromolecules, proteins, lipids and cells might cause the disassembly 

of polymeric nanoparticles. Although the disassembly of polymeric nanoparticles in 

simple aqueous solutions has been studied using classical microscopy-, spectroscopy-, 

and chromatography-based methods, the intracellular and in vivo disassembly is still hard 

to be monitored and direct evidence to support rapid in vivo disassembly is very 

limited[95, 132]. The only reported effort to monitor the intracellular and in vivo 

disassembly of polymeric nanoparticles is the development of a fluorogenic-based 

approach [132]. In this design, a fluorogenic dye fluorescein-5-carbonyl azide diacetate 

(F-5-CADA) was covalently conjugated to the hydrophobic block end of PEO-b-PCL. 

The fluorescence was not detectable until the PEO-b-PCL micelle was disrupted and the 

ester group of the dye was cleaved. Fluorescence corresponding to the spontaneous 

disruption of micelles was recorded at the end of incubation with media and cells. The 

maximal detectable fluorescence was determined by adding dimethylformamide (DMF) 

to disrupt the remaining intact micelles and sodium hydroxide to cleave the ester of F-5-

CADA. The percent of micelle disruption was calculated from the ratio of the 

fluorescence at the end of incubation and the maximum detectable fluorescence. The in 

vivo micelle disruption after intramuscular and subcutaneous injections was determined 

as the ratio of the detected fluorescence and that of the background. The results showed 

37% of disruption of PEO-b-PCL micelles after incubation in fetal bovine serum for 1hr. 

Only 20% of cell internalized micelles were disrupted after incubation with HTB-4 

cancer cells for 20 hr. In vivo results revealed that more disassembly of micelles after 
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subcutaneous administration than intracmuscular administration. However, the limitation 

of this fluorogenic-based approach is obvious since it requires an additional F-5-CADA 

activation step (ester cleavage). The accurate estimation of disassembly is based on two 

assumptions: F-5-CADA in the core of intact micelles cannot be activated and F-5-

CADA is rapidly and totally activated upon the micelle disassembly, which might not be 

true. Furthermore, fluorescein exhibits different fluorescence intensities in plasma, cell 

lysates and DMF as well as under different pH. The ratio of the fluorescence measured in 

the samples and DMF/NaOH solutions does not necessarily equal the percent of micelle 

disruption.  

FRET provides additional opportunities to monitor the disruption of polymeric 

nanoparticles. Quantum dots (QDs), due to their broad excitation spectra, narrow, 

symmetric and tunable emission spectra, high quantum yields of photoluminescence and 

high resistance to photobleaching, have been excellent donors in FRET-based studies for 

biological analyses and applications[133]. Recently, QD and Cy5.5, a fluorescent dye, 

were used as FRET pair to monitor lipid exchange between lipoprotein-based 

nanoparticles and macrophage plasma membrane[134]. Cy5.5 was conjugated to 

phospholipids and QDs was then coated with Cy5.5 labeled and unlabeled phospholipids. 

The QD-loaded phospholipid nanoparticle exhibited FRET. During the incubation with 

macrophages, the lipid exchange between nanoparticles and cells resulted in a decrease of 

FRET and detection of Cy5.5 fluorescence in the cell membrane. Furthermore, the 

disassembly of nanoparticles was observed once taken up by the cells. Similarly, in 

another study[135], FRET was utilized to investigate the intracellular disassembly 

kinetics of chitosan, polyethylenimine, and polyphosphoramidate by labeling plasmid 
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DNA and polymers with Cy5 dye and QDs, respectively. The QD-Cy5 FRET provides an 

effective tool to determine the stability and dissociation kinetics of polyplexes. 

Metal nanoparticle quenching can also be used to detect the disassembly of 

polymeric nanoparticles. Due to their strong absorbance, AuNPs and SPIOs are able to 

quench the fluorescence of dyes [130, 136] and quantum dots[137, 138] in close 

proximity by attenuating both the excitation beam and the fluorescence signal (inner filter 

effect). In current study, SPIOs are encapsulated into the core of polymeric nanoparticle. 

The SPIOs in the core quench the dyes conjugated to the hydrophobic block end of 

polymer. The quenched fluorescence will recover upon the disassembly of polymeric 

nanoparticles. This design is superior to the fluorogenic-based approach discussed above 

since it does not require an additional ester cleavage step. Although similar SPIO-loaded 

micelles were reported, the complete fluorescence quenching has not been achieved. For 

example, fluorescence of tetramethylrhodamine (TMR)[139] and sulforhodamine 

101[140] labeled to the hydrophobic block end of block copolymers could not be 

quenched by SPIOs since their positive charge prevent the close interaction with SPIOs. 

To acquire a potent fluorescence quenching by the core-loaded SPIOs, neutral and 

hydrophobic dyes are required. 

1.11 SPIO-loaded polymeric nanoparticles for tumor imaging and drug delivery 

SPIOs and therapeutic drugs have been encapsulated into various block copolymer 

nanoparticles as a platform for simultaneous MRI and drug delivery [58, 141-143].  Due 

the existence of PEO shell, SPIO-drug complex entrapped into the BCP micelles may 

escape the (reticuloendothelial system) RES uptake, resulting in longer blood circulation 
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and higher accumulation in tumors. Furthermore, the core-shell structure of the polymeric 

nanoparticle can increase the drug loading capacity[143].  

To minimize the toxicity of polymeric nanoparticles, SPIOs were encapsulated into 

biodegradable polymers such as poly(D,L-lactic-co-glycolic acid) (PLGA) [143, 144], 

poly(L,L-lactide-b-ethylene glycol) (PLLA-b-PEG) [139, 145, 146], poly(ethylene 

glycol)-b-poly(e-caprolactone) (PEO-b-PCL)[147], poly(lactic acid)-D-α-tocopherol 

polyethylene glycol (PLA-TPGS)[148] and poly(2-hydroxyethyl aspartamide) 

(PHEA)[149]. The biocompatible polymers are expected to be biodegraded by proteolytic 

enzyme in vivo and show low toxicity. 

SPIOs and small-molecule drugs were reported to be encapsulated into pH sensitive 

polymeric nanoparticles[60, 140, 150]. Under acidic condition, the amphiphilic polymer 

was hydrolyzed which triggered the release of SPIOs and drug, resulting in aggregation 

of hydrophobic SPIOs. The aggregation increased the sensitivity and rapid detectability 

by MRI since the SPIOs in aggregated state efficiently change the spin–spin relaxation 

time of adjacent water protons. 

Temperature-sensitive polymer was utilized for SPIOs encapsulation[151-154]. For 

example, nanocomposites were synthesized by incorporation of SPIOs and drug in the 

thermally sensitive poly (N-isopropylacrylamide) hydrogels[154]. The application of a 

high frequency alternating magnetic field resulted in the heating of the nanocomposites, 

which triggered the collapse of polymer coating and rapid drug release. 

One trend in nanomedicine research is the development of nanoparticles for multi-

modality imaging and drug delivery. One advantage of polymeric nanoaprticles is their 

capacity to encapsulate multiple components. Both SPIOs and QDs were encapsulated 
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into polymeric nanoparticles for simultaneous MRI, fluorescence microscopy imaging 

and drug delivery[145]. Similarly, a fluorescent and magnetic bioprobe was developed by 

encapsulating SPIOs and QDs into PS-b-PAA copolymer nanoparticles[59].  Recently, 

SPIOs were encapsulated into TMR and cRGD labeled PEG-b-PDLLA micelles for 

targeted dual-modality imaging [139].  All these nanoaprticles offer opportunities for 

multi-modality detection of solid tumors and chemotherapy or photothermal therapy. 

1.12 Intengrity of SPIO-loaded polymeric nanoparticles 

The successful delivery of SPIO-loaded polymeric nanoparticles and encapsulated 

drugs highly depends on the nanoparticle integrity during blood circulation. Although 

numerous SPIO-loaded polymeric nanopaticles have been developed and examined in 

vitro and in vivo, the knowledge of their in vivo integrity and drug release from SPIOs is 

still limited. Hydrophobic drugs can partitions into the oleic acid coating of SPIOs[78]. 

Sustained release of the incorporated drug from SPIOs to aqueous buffer was observed 

over 2 weeks. The encapsulation of hydrophobic SPIOs is expected to stabilize the 

polymeric nanoparticles[142] and decrease the drug release rate. However, recent studies 

showed that the drug release from nanocarriers in cellular environment was different 

from that in bulk solutions[130]. Rapid cargo release from polymeric nanoparticles to cell 

plasma membrane was observed[128]. It is important to examine if the hydrophobic 

SPIOs can decrease or prevent the drug release from polymeric nanoparticles.  

MRI has shown that polymeric nanoparticle successfully delivered SPIOs to 

xenograft tumors[139, 141, 155]. However, for SPIO-loaded polymeric nanoparticles, 

one concern is the in vivo stability because they are formed by dynamic selfassembly. 

The polymer concentration, temperature, pressure and interaction with blood proteins, 
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lipids and cells may affect their in vivo integrity [146]. Currently, it is still a challenge to 

monitor the in vivo integrity of SPIO-loaded polymeric nanoparticles. A noninvasive 

imaging approach is required to detect the disassembly of SPIO-loaded polymeric 

nanoparticles. 

1.13 Specific Aims 

The overall goal of this project is to develop cancer-specific multifunctional SPIOs 

for colorectal tumor imaging and targeted drug delivery. To realize our goal, we should 

focus on two critical issues: cancer-specific targeting and integrity of nanocarriers. We 

hypothesize that anti-TAG72 antibody will facilitate the cancer-specific delivery of 

SPIOs and anticancer drugs and SPIOs will decrease the premature drug release from 

nanocarriers.       

Aim 1: to develop anti-TAG72 antibody labeled SPIOs for colon cancer imaging and 

targeted anticancer drug delivery. 

Aim 2: to elucidate the mechanisms of premature drug release from SPIO-loaded 

polymeric nanoparticles. 

Aim 3: to monitor the in vitro and in vivo disassembly of SPIO-loaded polymeric 

nanoparticles in real-time. 
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CHAPTER II 

 
Near-Infrared Fluorescence Labeled Anti-TAG-72 Monoclonal Antibodies for 

Tumor Imaging in Colorectal Cancer Xenograft Mice 

 

2.1 Abstract 

 

Anti-TAG-72 monoclonal antibodies target the tumor-associated glycoprotein 

(TAG)-72 in various solid tumors. This study evaluated the use of anti-TAG-72 

monoclonal antibodies, both murine CC49 and humanized CC49 (HuCC49ΔCH2), for 

near-infrared fluorescent (NIR) tumor imaging in colorectal cancer xenograft models. 

The murine CC49 and HuCC49ΔCH2 were conjugated with Cy7 monofunctional N-

hydroxysuccinimide ester (Cy7-NHS). Both in vitro and in vivo anti-TAG-72 antibody 

binding studies were performed. The in vitro study utilized the human colon 

adenocarcinoma cell line LS174T that was incubated with Cy7, antibody-Cy7 conjugates, 

or excessive murine CC49 followed by the antibody-Cy7 conjugates and was imaged by 

fluorescence microscopy. The in vivo study utilized xenograft mice, bearing LS174T 

subcutaneous tumor implants, that received tail vein injections of Cy7, murine CC49-Cy7, 

HuCC49ΔCH2-Cy7, or non-specific IgG-Cy7 and were imaged by the Xenogen IVIS 100 

system from 15 minutes to 288 hours. The biodistribution of the fluorescence labeled 

antibodies was determined by imaging the dissected tissues. The in vitro study revealed 

that the antibody-Cy7 conjugates bound to LS174T cells and were blocked by excessive 

murine CC49. The in vivo study demonstrated that murine CC49 achieved a tumor/blood 

ratio of 15 at 96 hours post- injection. In comparison, HuCC49ΔCH2-Cy7 cleared
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much faster than murine CC49-Cy7 from the xenograft  mice, and HuCC49ΔCH2-Cy7 

achieved a tumor/blood ratio of 12 at 18 hours postinjection. In contrast, Cy7 and Cy7 

labeled non-specific IgG resulted in no demonstrable tumor accumulation. When mice 

were injected with excessive unlabeled murine CC49 at 6 hours before the injection of 

murine CC49-Cy7 or HuCC49ΔCH2-Cy7, both the intensity and retention time of the 

fluorescence from the tumor was reduced. In summary, the Cy7 labeled murine CC49 

and HuCC49ΔCH2 demonstrate tumor-targeting capabilities in living colorectal cancer 

xenograft mice and provide an alternative modality for tumor imaging. 

 

2.2 Introduction 

Tumor associated glycoprotein 72 (TAG-72) is a human mucin (MUC1)-like 

glycoprotein complex, which is over-expressed in many epithelial-derived cancers, 

including colorectal, breast, ovarian, non-small cell lung, gastric, and pancreatic cancers 

[1]. Anti-TAG-72 antibodies have been studied in preclinical animal model and clinical 

patients for cancer detection based on their high specificity against cancer antigens in 

various solid cancers [2]. As previously reported, we have utilized monoclonal antibodies 

against TAG-72 for tumor detection in radioimmunoguided surgery (RIGS) [3-7]. RIGS 

combines radioactive-labeled (i.e., I
125

) monoclonal antibodies and a handheld gamma 

probe, to identify tumor tissues for resection intraoperatively in colorectal and pancreatic 

cancer patients [5]. The successful detection of additional occult disease within regional 

lymph nodes and the subsequent complete resection of the antibody-bound tissues 

significantly improved survival rates [8-11]. Three generations of anti-TAG-72 

antibodies, i.e., murine B72.3, murine CC49, and humanized HuCC49ΔCH2, were 
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evaluated for RIGS in colorectal cancer patients for tumor detection to guide surgical 

procedure in a real-time [4]. B72.3 is a murine monoclonal antibody generated against 

TAG-72 using membrane-enriched extracts of human metastatic mammary carcinoma 

lesions, while CC49 is a second-generation murine monoclonal antibody generated 

against purified TAG-72 from colon cancer [12, 13]. To circumvent the shortcomings of 

B72.3 and CC49, including host antimouse antibodies (HAMA) response and slow 

plasma clearance, a humanized CH2 domain-deleted MAb (HuCC49ΔCH2) has been 

developed for RIGS [3, 4]. 

RIGS with anti-TAG-72 antibodies have been shown to detect 77% to 89% of 

primary colorectal cancers [13-15] and 78% to 97% of metastatic lesions in more than 

300 patients [3, 5, 8, 11, 14, 16-23].  Furthermore, RIGS detects both visible gross tumors 

and clinically occult disease within lymph nodes in more than 70% of the cases [11, 15, 

16, 19, 22-28], which are normally undetectable by traditional surgical exploration and 

pathological examination. This occult disease (i.e., RIGS-positive tissue) within “normal” 

appearing lymph nodes is itself responsible for the development of subsequent clinical-

evident metastatic relapse, and thus complete resection of this occult disease can translate 

into improved patient survival after surgical intervention [29].  

Despite the success of 
125

I-directed RIGS in multiple previously published clinical 

trials, the intraoperative and postoperative handling as well as disposal of I
125 

(which has 

a relatively long half-life of 60 days), are the major limitations to the widespread 

acceptance and implementation of this technology [29]. In addition, the use of 
125

I in 

RIGS does not allow for the generation of high-quality preoperative imaging, which is 

due to the extremely low gamma photon emission energy (i.e., 35 keV) of 
125

I, and results 
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in weak tissue penetration, and high soft tissue attenuation, and resultant poor image 

quality[30].  

The near-infrared fluorescence Cy dyes (NIR, 650-900 nm) have been used as 

imaging agents for living animals due to their strong tissue penetration ability [31-34]. 

Properties such as small size, good aqueous solubility, pH insensitivity between pH 3–10, 

and low non-specific binding, make Cy dyes good fluorescent agents for tumor imaging. 

Cy7 is especially suitable for the use in living animals secondary to its long excitation 

wavelength at 747 nm and emission wavelength at 776 nm, where autofluorescence of 

tissues is greatly reduced [35]. Although Cy7 is not approved for clinical use, a very 

similar compound (indocyanine green) has been used for human clinical applications 

without reported toxicity. Several intraoperative fluorescence imaging techniques have 

recently been described, such as endoscopic evaluation of gastrointestinal cancer [36, 37] 

and stereomicroscopic imaging of head and neck cancer and cervical metastases, which 

demonstrated the potential of fluorescent immunoguided surgery[38-41]. 

In this paper, we intend to study the feasibility of using Cy7 labeled CC49 and 

HuCC49ΔCH2 for fluorescent tumor imaging in colorectal cancer xenograft mice. We 

describe noninvasive fluorescent imaging of living mice and quantification of 

fluorescence intensities on xenograft tumors and livers. Tumor specificity and tumor 

accumulation of both fluorescence labeled CC49 and HuCC49ΔCH2 were observed. The 

images of the dissected organs showed the biodistribution and tumor-to-blood ratios of 

fluorescent antibodies. In addition, the emission spectra of Cy7, CC49-Cy7, and 

HuCC49ΔCH2-Cy7 were characterized by a non-invasive optical probe in tumors and 

various normal tissues/organs.  
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2.3 Materials and Methods 

2.3.1 Materials  

Cy7-NHS was purchased from Amersham Biosciences (Piscataway, NJ). The murine 

CC49 antibody was produced and purified by Rockland Immunochemicals, Inc. 

(Gilbertsville, PA). The HuCC49ΔCH2 antibody was supplied by National Cancer 

Institute (Bethesda, MD). Phosphate buffered saline (PBS, 0.01 mol/L; pH 7.4) was 

purchased from Invitrogen (Carlsbad, CA). The non-specific IgG antibodies from human 

and mouse serum as well as all other reagents were purchased from Sigma-Aldrich 

Chemical Co. (St. Louis, MO).  

2.3.2 Synthesis of Cy7 antibody conjugates  

The pH of 1.5 mL PBS solution containing CC49 antibody (20.5 nmol/mL) was 

adjusted to 8.3 by adding Na2CO3/NaHCO3 buffer (pH=10). A total of 1 mg of Cy7-NHS 

ester was dissolved in 400 µL of DMSO. 100.8 µL of Cy7-NHS ester DMSO solution 

(307.5 nmol) was gradually added to the CC49 solution while stirring. The solution was 

diluted to 2.5 mL using PBS and was stirred for 2 more hours at room temperature in the 

dark. The solution was loaded on a PD-10 desalting column (Amersham Biosciences, 

Piscataway, NJ) and washed with PBS. The CC49-Cy7 fraction (3.5 mL) was collected in 

a 10 kD cutoff Amicon Ultra-15 centrifugal filter (Millipore Corp, Billerica, MA) and 

was washed with 10 mL of PBS three times (each time 5000g× 20 min). 70 nmol of 

HuCC49ΔCH2, 20 nmol of murine non-specific IgG as well as 20 nmol of human non-

specific IgG were labeled with Cy7 and purified following a similar procedure. A Du640 

spectrophotometer from Beckman Coulter, Inc (Fullerton, CA) was used to determine the 

molar extinction coefficient of unlabeled antibodies at 280 nm (E
280nm

) and the 
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absorbance of the antibody-Cy7 at 280 nm (A280) and 747 nm (A747). The molar 

extinction coefficient at 747 nm and 280 nm of Cy7 was 200000 and 22000, respectively 

[42]. The ratio of the Cy7 and the antibodies of the final conjugates can be calculated 

with the following formula.
 

 747280

747

nm280

A22000A200000

AE

antibody

7Cy


  

2.3.3 Cell culture and reagents  

Human colon adenocarcinoma cells (LS174T) were obtained from the American 

Type Culture Collection (Manassas, VA) and cultured in Dulbecco’s modified Eagle high 

glucose medium (DMEM) supplemented with 10% fetal bovine serum (FBS) and 1% 

penicillin-streptomycin (Invitrogen Life Technologies, Carlsbad, CA). The cells were 

maintained in a humidified atmosphere of 5% CO2 at 37 ºC, with the medium changed 

every other day. A confluent monolayer was detached with 0.25% trypsin-EDTA 

(Invitrogen Life Technologies, Carlsbad, CA) and dissociated into a single-cell 

suspension for further cell culture.  

2.3.4 In vitro binding studies  

Cells were cultured on 4-well chamber slides (Thermo Fisher Scientific, Rochester, 

NY) and incubated in a humidified atmosphere of 5% CO2 at 37 ºC overnight. After 

washing twice with PBS, the cells were incubated in 3.7% paraformaldehyde for 15 

minutes and then washed again with PBS. Cy7 (0.5 nmol), murine CC49-Cy7 (0.49 nmol 

equivalent Cy7) or HuCC49ΔCH2–Cy7 conjugate (0.49 nmol equivalent Cy7) was added 

into each well and diluted to 0.3 mL with PBS. For the blocking study, murine CC49 

antibody (4 nmol) was added 1 hour before the addition of murine CC49-Cy7 or 

HuCC49ΔCH2 –Cy7 conjugate. After an incubation period of 2 hours at room 

temperature, cells were washed with PBS (5 mins × 4). The coverslips were mounted 
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with a drop of fluoromount G (Southern Biotech, Birmingham, AL). Microscopic 

examination was conducted on a Zeiss-Axiophot microscope (Carl Zeiss, Inc., Jena, 

German). The microscope is equipped with a RT KE slider digital camera (Diagnostic 

Instruments Inc. Sterling Heights, MI), a HBO 103 W/2 mercury lamp (Carl Zeiss, Inc., 

Jena, German), a Cy7 filter set with an excitation wavelength of 680-740 nm and an 

emission wavelength of 775-850 nm (Chroma Technology Corp., Rochingham VT), and 

a Metavue software (Molecular Devices, Downingtown, PA) for image acquisition, 

processing, and analysis. The image magnification is 100X.  The exposure time is 4000 

ms for the fluoresence images and 300 ms for the transparent images. The space 

resolution for all images is 1600×1200 pixels and image bit depth is 24 bit. The 

pseudocolor of Cy7 is red.   

2.3.5 Tumor xenografts  

The animal procedures were performed according to a protocol approved by the 

University Committee for the Use and Care of Animals (UCUCA) at The Ohio State 

University. Female athymic nude mice (nu/nu), obtained from National Cancer Institute 

(Bethesda, MD) at 4 to 6 weeks of age, were subcutaneously inoculated in the back with 

5×10
6
 LS174T cells suspended in a mixture of 50 µL of PBS and 50 µL of matrixgel 

basement membrane (BD Biosciences, San Jose, CA). When the tumor implants reached 

0.4 to 0.6 cm in diameter (approximately 14 days after implantation), the tumor-bearing 

mice were subjected to the in vivo studies.  

2.3.6 In vivo optical tumor imaging  

In vivo fluorescence imaging was performed with an IVIS 100 small animal imaging 

system (Xenogen, Alameda, CA). An ICG filter (excitation wavelength 710-760 nm and 
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emission wavelength 810-875 nm) was used for acquiring Cy7, murine CC49-Cy7, 

HuCC49ΔCH2-Cy7, and non-specific IgG-Cy7 fluorescence imaging in vivo. Identical 

illumination settings, such as exposure time (1s), binning factor (8), f/stop (1), and field 

of views (25 × 25 cm), were used for acquiring all images, and fluorescence emission 

was normalized to photons per second per centimeter squared per steradian (p s
-1

 cm
-2

 sr
-

1
). The imaging was acquired and overlaid. The pseudocolor image represents the spatial 

distribution of photon counts within the animal. Background fluorescence was measured 

and subtracted by setting up a background measurement. Images were acquired and 

analyzed using Living Image 2.5 software (Xenogen, Alameda, CA). 

Mice bearing LS174T tumor were injected via the tail vein with 1 nmol of Cy7-NHS, 

0.33 nmol of murine CC49-Cy7 (1nmol equivalent Cy7/mouse), 0.73 nmol of 

HuCC49ΔCH2-Cy7 (1 nmol equivalent Cy7/mouse), 0.38 nmol of non-specific murine 

IgG-Cy7, or 0.50 nmol of non-specific human IgG-Cy7 (1 nmol equivalent Cy7/mouse). 

For the blocking study, 3.3 nmol of unlabeled murine CC49 was injected (i.v.) 6 hours 

before injection of the conjugates. One mouse bearing the LS174T tumor was not 

injected and was used as a blank control. Mice were anesthetized with isoflurane (Abbott 

Laboratories, Chicago, IL) and images were obtained every 15 minutes for up to 3 hours 

after injection of each fluorescent antibody. Each mouse was imaged again 4, 5, 6, 7, 18, 

24, 48, 72, 96, and 288 hours after injection of each fluorescent antibody. Both the dorsal 

and ventral sides of each mouse were imaged. The tumor area and the liver area were 

designated as the two regions of interest (ROI). The relative mean fluorescent intensity of 

each ROI was obtained by subtracting the mean fluorescence intensity of the 
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corresponding ROI on the blank mouse from the measured mean fluorescent intensity and 

was plotted as a function of time.  

2.3.7 Optical imaging of fresh tissues  

As described above in in vivo tumor imaging, two additional groups of LS174T 

tumor xenograft mice were given Cy7-NHS, murine CC49-Cy7, murine CC49/murine 

CC49-Cy7, or non-specific murine IgG-Cy7. One group of mice was sacrificed at 2 hours 

and the other group of mice was sacrificed at 96 hours after intravenous injection of 

fluorescent marker tagged antibodies. Following the same procedure, two additional 

groups of LS174T tumor xenograft mice were given Cy7-NHS, HuCC49ΔCH2-Cy7, 

murine CC49/HuCC49ΔCH2-Cy7 or non-specific human IgG-Cy7 and sacrificed at 2 

hours and 18 hours post injection, respectively. The dissected tissues (tumor, spleen, 

kidneys, lung, heart, liver, stomach, and intestine) were imaged immediately. The mean 

fluorescent intensity of each tissue sample was obtained by subtracting the mean 

fluorescent intensity of corresponding tissue from the blank mouse. The fluorescent 

intensities in the heart were used to reflect the fluorescent intensities in the blood. The 

tissue to heart ratio for fluorescence was calculated. 

2.3.8 Non-invasive measurement of fluorescent emission spectra  

All the fluorescent emission spectra were measured using a USB4000-FL 

fluorescence spectrometer (Ocean Optics Inc., Dunedin, FL). A HL6738MG diode laser 

(Thorlabs, Newton, NJ) was used to excite the samples at the wavelength of 690 nm. To 

measure the emission spectra of contrast agents in cuvettes, the excitation laser beam was 

incident from one side of the cuvette. The detector and a 715 nm long pass filter 

(Thorlabs, Newton, NJ) were placed in a direction perpendicular to the excitation laser 

http://www.oceanoptics.com/products/usb4000fl.asp
http://www.oceanoptics.com/products/usb4000fl.asp
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beam. For the measurement of emission spectra from organs in living animals, the 

excitation laser source was oriented perpendicular to the animal skin above the specific 

organs. The detector and the 715 nm long pass filter were aligned at 45 degree to the laser 

beam. The measurement was carried out 24 hrs post injection of murine CC49-Cy7. The 

raw data was processed by the Matlab curve fitting toolbox (The Mathworks Inc, Natick, 

MA). Local regression with weighted linear least squares and a 1st degree polynomial 

model were used for curve fitting the spectrum.  

 

2.4 Results 

2.4.1 Synthesis of murine CC49-Cy7 and HuCC49ΔCH2-Cy7  

The antibody was labeled with Cy7-NHS ester by acylating the primary amines of 

the antibody. The 280 nm emission line, E
280nm

 of murine CC49 and HuCC49ΔCH2 were 

measured to be 157000 M
-1

cm
-1

 and 182400 M
-1

cm
-1

 respectively. The Cy7/murine CC49 

ratio, Cy7/HuCC49ΔCH2 ratio, Cy7/murine IgG ratio, and Cy7/human IgG ratio were 

determined to be 3.02, 1.36, 2.60, and 2.01, respectively.  

2.4.2 In vitro binding studies  

Figure 2.1 shows the fluorescent microscopic images of LS174T cells incubated with 

PBS, Cy7, murine CC49-Cy7 conjugate, murine CC49 plus murine CC49-Cy7 conjugate, 

HuCC49ΔCH2-Cy7 conjugate, and murine CC49 plus HuCC49ΔCH2-Cy7 conjugate. No 

autofluorescence was detected from the cells incubated with PBS and negligible signals 

were detected from cells incubated with Cy7. In contrast, fluorescent signals were 

observed from cells incubated with murine CC49-Cy7 or HuCC49ΔCH2-Cy7 conjugate, 

suggesting that both conjugates bound to the cells. Furthermore, binding of murine 
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CC49-Cy7 or HuCC49ΔCH2-Cy7 to the cells was completely blocked when the cells 

were pretreated with excessive murine CC49 antibody. 

2.4.3 In vivo optical tumor imaging  

As previously reported, the LS174T tumor has a high level of TAG-72 expression 
43

. 

Whole-body imaging of subcutaneous LS174T tumor xenograft mice was accomplished 

by using an IVIS 100 system to monitor in vivo biodistribution of murine CC49-Cy7 and 

HuCC49ΔCH2-Cy7. Figure 2.1A shows typical NIR images of mice bearing LS174T 

tumors 15 minutes and 96 hours after i.v. injection of Cy7 or murine CC49-Cy7. No 

autofluorescence was detected from the blank mouse. The fluorescent signal was detected 

from the whole body of a mouse 15 minutes after injection of Cy7, suggesting the rapid 

distribution of Cy7 in the mouse body. Subsequently, Cy7 is rapidly eliminated from the 

kidney and no fluorescence was detected on this mouse 96 hours post-injection. In 

contrast, a fluorescent signal was detected from the abdominal area of the mice injected 

with the murine CC49-Cy7 or murine IgG-Cy7, suggesting the distribution of the 

antibody-Cy7 in the liver or spleen immediately post-injection. 96 hours post injection, 

fluorescence of murine CC49-Cy7 was clearly visualized in the tumors of two mice while 

the fluorescence of non-specific murine IgG-Cy7 was hard to be detected. The previously 

observed fluorescence from the abdominal area did not present. When the mice were 

injected with the unlabeled murine CC49 before administration of the murine CC49-Cy7 

(i.e., blocked), the fluorescent intensity from the tumor was found to be significantly 

lower than that from the tumor of the murine CC49-Cy7 mouse. This suggests that the 

TAG-72 was blocked by excessive murine CC49 antibody.  
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Similar results were obtained when HuCC49ΔCH2-Cy7 was used as the imaging 

agent (Figure 2.1B). The tumor could clearly be visualized from the surrounding 

background tissues 18 hours post injection of HuCC49ΔCH2-Cy7 while no fluorescence 

signal was detected from the tumor of the mouse blocked with excessive murine CC49 

antibody and the mouse injected with non-specific human IgG-Cy7. Intense fluorescence 

signal was still detected from the abdominal areas of the mouse injected with 

HuCC49ΔCH2-Cy7 and the blocked mouse 18 hours after injection of HuCC49ΔCH2-

Cy7.  This data suggests that both HuCC49ΔCH2-Cy7 and murine CC49-Cy7 are able to 

target tumors for non-invasive fluorescent tumor imaging. Nevertheless, HuCC49ΔCH2-

Cy7 may have faster clearance than murine CC49-Cy7 in xenograft models.  

2.4.4 Non-invasive characterization of emission spectra  

The emission spectra from Cy7 and murine CC49-Cy7 solutions as well as from the 

tissues in the living mice were recorded with a USB4000-FL fluorescence spectrometer. 

As shown in Figure 2.3, the maximum emission wavelengths of Cy7 and murine CC49-

Cy7 solution were determined to be 770.3 nm and 777.1 nm, respectively. A shift in the 

maximum emission of 6.9 nm to longer wavelengths was detected when Cy7 was 

attached to the murine CC49 antibody. The maximum emission wavelengths of 

fluorescent signals from the liver, tumor and bladder of the mouse injected with murine 

CC49-Cy7 were determined to be 778.5 nm, 778.9 nm and 776.1 nm, respectively. 

2.4.5 Dynamic fluorescence intensities in tumors and livers  

The fluorescent intensities from the tumors and livers were measured non-invasively 

during a period of 0 to 288 hours after the injection of Cy7, murine CC49-Cy7, or 

HuCC49ΔCH2-Cy7. The measured intensities were then reduced to relative values by 

http://www.oceanoptics.com/products/usb4000fl.asp
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subtracting the mean fluorescence intensity from the tumor or liver of the blank mouse. 

Figure 2.4 shows the relative fluorescence intensity as a function of time for the regions 

of interest corresponding to tumors and livers. Both the maximum intensities (Cmax) and 

retention times (Tmax) of fluorescence from the tumor are different among Cy7, blocked, 

and murine CC49-Cy7 mice (Figure 2.4A). The concentration of Cy7 in the tumor 

decreased rapidly and Cy7 was completely eliminated from the tumor 4 hours post-

injection. The tumor fluorescence in the mouse injected with the murine CC49-Cy7,  

reached the highest intensity at 48 hours post-injection and remained so between 72 to 

120 hours. Tumor fluorescence was detected as far as 288 hours post-injection. In 

contrast, the peak fluorescent intensity from the tumor of the mouse with excessive 

unlabeled murine CC49 was detected at 24 hours post-injection after which the intensity 

decreased rapidly. The fluorescent intensity from the tumor of the mouse with excessive 

unlabeled murine CC49 was significantly lower than that from the tumor of the murine 

CC49-Cy7 mouse. Figure 2.4C shows the dynamic biodistribution of HuCC49ΔCH2-Cy7 

in the tumors. The mouse with HuCC49ΔCH2-Cy7 as well as the mouse with excessive 

unlabeled murine CC49 and HuCC49ΔCH2-Cy7 showed the highest fluorescent 

intensities from the tumors 5 hrs after injection of HuCC49ΔCH2-Cy7. The elimination of 

HuCC49ΔCH2-Cy7 from the tumors was much faster than the removal of murine CC49-

Cy7. When the mouse was pretreated with excessive murine CC49, the fluorescent 

intensities from the tumor was significantly lower than that in the tumor of the unblocked 

HuCC49ΔCH2-Cy7 mouse. The murine CC49 blockage also decreased the retention time 

of HuCC49ΔCH2-Cy7 in the tumor from 96 hours to 48 hours.  This data suggests that 

the HuCC49ΔCH2-Cy7 and murine CC49-Cy7 target LS174T tumors antigen-specifically.   
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In contrast, murine CC49-Cy7 and HuCC49ΔCH2-Cy7 exhibit maximum 

concentrations in the liver at 6 hours post-injection for both murine CC49-Cy7 and 

HuCC49ΔCH2-Cy7 mice, as well as the mice pretreated with excessive murine CC49 

(Figure 2.4B, 2.4D). No obvious difference in fluorescent intensity from the liver was 

found between the two groups of mice. Fluorescence from the livers of both mice 

disappeared 96 hours after the injection of murine CC47-Cy7 and HuCC49ΔCH2-Cy7. 

This data suggests that the accumulation of murine CC47-Cy7 and HuCC49 ΔCH2-Cy7 

in the liver is nonspecific. 

2.4.6 Analysis of fluorescence from fresh tissues  

Fluorescent signals from different freshly dissected tissues were quantified by optical 

imaging. Figure 2.5A shows the images of dissected tissues of blank, Cy7, murine CC49 

pretreated, murine CC49-Cy7, and non-specific murine IgG-Cy7 mice that were 

sacrificed at 2 hours or 96 hours post-injection of fluorescent agents. Figure 2.6A shows 

the images of dissected tissues of blank, Cy7, murine CC49 pretreated, HuCC49ΔCH2-

Cy7, and non-specific human IgG-Cy7 mice that were sacrificed at 2 or 18 hours post-

injection of fluorescent agents. The relative fluorescent intensity from each tissue, 

obtained by subtracting the mean fluorescent intensity from the corresponding tissue of 

the blank mouse, is labeled in Figures 2.5A and 2.6A. The tissue imaging data revealed 

that the fluorescent signals from the abdomen and pelvis of the mice were mainly due to 

the distribution of antibody-Cy7 in the liver, gastrointestinal tract, spleen, and kidneys. A 

low level of autofluorescence was detected from the stomach and intestines even though 

no fluorescent agent was injected to the blank mouse.  As shown in Figures 2.5A and 

2.6A, Cy7 was mainly distributed in kidneys, tumor, and stomach 2 hours post-injection. 
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A small amount of fluorescence was detected from the spleen and liver. Cy7 was 

completely eliminated from all tissues at 18 hours post-injection. In the murine CC49-

Cy7 mice, murine CC49-Cy7 was mainly distributed in the liver, lung, kidneys, spleen, 

heart and tumor at 2 hrs post-injection (Figure 2.5A). Most fluorescence from the spleen, 

kidneys, lung, and heart appeared to be cleared at 96 hrs post-injection. The fluorescence 

intensities from the tumors doubled while the fluorescence intensities from the livers 

decreased. The fluorescence intensity from the tumor of the murine CC49-Cy7 mouse 

was higher than that from the tumor of the mouse pretreated with excessive murine CC49. 

The non-specific murine IgG-Cy7 mainly localized in liver and kidneys 2 hours post 

injection and was cleared from the body 96 hours post injection. The fluorescent intensity 

from the heart was used to reflect the fluorescent intensity from the blood. Figures 2.5A 

and 2.5c show the tissue to heart ratios for the fluorescence at 2 hours and 96 hours after 

injection of Cy7, murine CC49-Cy7, or non-specific murine IgG-Cy7. From 2 hours to 96 

hours post-injection, the tumor to heart ratio for the murine CC49-Cy7 mouse increased 

from 1.3 to 15.5 and the tumor to heart ratio for the mouse pretreated with excessive 

murine CC49 increased from 0.7 to 9.9. In contrast, the tumor to heart ratio for the Cy7 

mouse decreased from 2.9 to 1.3 while the tumor to heart ratio for the non-specific 

murine IgG-Cy7 mouse slightly increased from 0.65 to 1.62. In the murine CC49-Cy7 

mouse as well as the mouse pretreated with excessive murine CC49, the spleen to heart, 

kidneys to heart, and lung to heart ratios decreased or remained unchanged while the liver 

to heart ratios increased.  

Much like murine CC49-Cy7, HuCC49ΔCH2-Cy7 was mainly distributed in the 

tumor, liver, spleen, kidneys, lung, and heart. The fluorescent signal detected from the 
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stomach and intestine of the mice may be due to autofluorescence. Figures 2.6B and 2.6C 

show the tissue to heart ratios for the fluorescence at 2 hours and 18 hours after injection 

of Cy7, HuCC49ΔCH2-Cy7 or non-specific human IgG-Cy7. From 2 hrs to 18 hours 

post-injection, only the tumor and the liver had a dramatic increase of fluorescent 

intensity. The tumor to heart ratio for the HuCC49ΔCH2-Cy7 mouse increased from 2.1 

to 12.0 and the tumor to heart ratio for the mouse pretreated with excessive murine CC49 

increased from 0.9 to 9.8. In contrast, the tumor to heart ratio for the Cy7 mouse 

decreased from 3.4 to 0.2 and the tumor to heart ratio for the non-specific human IgG-

Cy7 mouse decreased from 1.94 to 1.47.  For the murine CC49-Cy7 mice, the spleen to 

heart, kidneys to heart and lung to heart ratios decreased or showed no change while the 

liver to heart ratios increased.  

 

2.5 Discussion 

NIR fluorescence imaging is emerging as a powerful tool for noninvasive imaging for 

use in both preclinical and clinical investigations.  In this regard, it has great potential for 

use in the arena of clinical cancer diagnosis and monitoring of cancer therapeutics [43]. 

Our previous studies [11-19] have shown that human cancer cell lines LS174T and 

human colorectal cancer tissues express high levels of TAG-72. Radioisotope-labeled 

CC49 and HuCC49ΔCH2 antibodies localize and target more than 80% of colorectal 

cancer in both preclinical testing and clinical investigations. Encouraged by these results, 

we hypothesize that conjugation of the CC49 antibody with Cy7 will not change the 

cancer targeting ability of the antibody and that the conjugates can be used for tumor 
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imaging in living subjects. Therefore, the CC49-Cy7 and HuCC49ΔCH2-Cy7 conjugates 

were synthesized and evaluated in a colorectal cancer xenograft mice model. 

When labeling antibodies with NHS esters, it is necessary to optimize the ratio of 

NHS ester to antibody and pH in order to give the final Cy dye to protein (D/P) ratio that 

yields maximum fluorescence. A previous study on Cy5 found that the brightest 

antibodies had a D/P ratio of 2-3 [44]. However, no fluorescence was observed for a D/P 

ratio of 6 secondary to the self-quenching characteristics of the fluorescent dye. Another 

study conducted by GE Healthcare showed that Cy NHS ester to antibody ratios of 1:1, 

5:1, 10:1, and 20:1 gave final D/P ratios of 0.28:1, 1.16:1, 2.3:1, and 4.6:1, respectively 

(29). Considering all the above factors, we selected a ratio of Cy7 NHS ester to antibody 

of 10:1 in the synthesis reaction. In addition, the pH is also known to affect the D/P ratio. 

D/P ratios of 5–6 were obtained after ten minutes using a pH 8.5–9.4 [45]. To obtain D/P 

of 2-3, we used a pH of 8.3. The final Cy7/CC49 ratio was 3.02 and the final Cy7/ 

HuCC49ΔCH2 ratio was only 1.36. The low labeling efficiency of HuCC49ΔCH2 can be 

explained due to the fact that the HuCC49ΔCH2 was chelated by DOTA, which 

consumed some primary amino groups on the antibody.  

Cy5.5 is a widely used cyanine dye for NIR fluorescence imaging of living animals 

[31]. However, Cy5.5 may have low tissue penetration and autofluorescence from 

imaging larger tissue volumes [35]. Ke et al. [31] reported that the contents in the 

gastrointestinal tract from the mouse’s diet might cause intense autofluorescence and 

reduce the imaging efficacy of Cy5.5 labeled target protein. In our whole-body imaging 

with antibody-Cy7, no autofluorescence was detected from the abdominal and pelvic 

areas of the blank mice (Figure 2.2). Only limited autofluorescence was found in the 
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images of the dissected stomach and intestines of the blank mouse (Figure 2.5 and 2.6), 

which might have resulted from the mouse diet. Compared with Cy5.5, the longer 

excitation and emission wavelengths of Cy7 provide increased tissue penetration with 

minimal
 
tissue autofluorescence [35].  

The in vitro binding studies (Figure 2.1) showed the specific binding between the 

antibody-Cy7 conjugate and the LS174T cells. The possibility of nonspecific binding 

between free Cy7 and LS174T cells was excluded by the finding that negligible 

fluorescence was detected from the cells incubated with free Cy7. Furthermore, excessive 

CC49 antibody successfully blocked the binding of CC49-Cy7 or HuCC49ΔCH2-Cy7 to 

the LS174T cells, indicating that the binding was mediated through TAG-72. 

The dynamic imaging data revealed different pharmacokinetics and distribution of 

Cy7, CC49-Cy7 and HuCC49ΔCH2-Cy7. The rapid distribution and elimination of Cy7 

in the whole mouse body can be explained by its very small molecular weight (818 

Dalton). In contrast, only a limited amount of fluorescence was detected 15 mins after 

injection of the antibody-Cy7 conjugate, suggesting that its larger molecular size of may 

be responsible in slowing down its diffusion and distribution. The dynamic imaging data 

also illustrated that the HuCC49ΔCH2-Cy7 conjugate was cleared from the body of the 

mouse much faster than the CC49-Cy7 conjugate, which is consistent with the previously 

reported data. Previous studies with 
125

I- or 
177

Lu-labeled CC49 in non-tumor-bearing 

athymic mice gave t1/2α values ranging from 1.8 to 5.6 hrs and t1/2β values in the range of 

77.2–179.4 hrs [46]. Studies with 
177

Lu-labeled HuCC49ΔCH2 administered 

intravenously to LS174T tumor-bearing athymic mice yielded a t1/2α of 13.3 minutes and 

a t1/2β of 5.3 hrs [47]. Another study showed a shorter plasma clearance t1/2 of 
177

Lu-
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labeled HuCC49ΔCH2 at 2.7 hrs [48]. The faster clearance of HuCC49ΔCH2 is due to the 

CH2 domain deletion, which prevents the binding between HuCC49ΔCH2 and FcRn 

receptors. The unbound HuCC49ΔCH2 undergoes lysosomal degradation and cannot 

recycle into serum [46].     

CC49-Cy7 conjugate demonstrated a longer retention time in the tumor (288 hrs) 

compared to the HuCC49ΔCH2-Cy7 conjugate (96 hrs), likely due to the long plasma 

clearance half-life of the CC49-Cy7 conjugate. The slow plasma clearance increased 

tumor accumulation of CC49-Cy7. It has been reported previously that HuCC49ΔCH2 

has a modest decrease in tumor localization, as compared to the intact CC49 [48]. 

Interestingly, CC49-Cy7, HuCC49ΔCH2-Cy7 and non-specific IgG-Cy7 demonstrated a 

high level of distribution and long retention times in livers, which may be due to the 

chemical conjugation of the antibodies to the Cy7. The accumulation of CC49-Cy7 and 

HuCC49ΔCH2-Cy7 conjugates in livers was also similar to that reported in previous 

studies. For instance, the accumulation in the liver was also observed for chelated and 

radioisotope-labeled CC49 [49] and single-chain Fv of CC49 [50]. Mohsin et al. [49] 

suggested that the high accumulation in the liver was likely due to the metabolism of the 

chelated antibody in the liver. Clearance and metabolism of IgG antibody occur 

predominantly through the reticuloendothelial system (RES), primarily in the liver and 

spleen which contain the Kupffer cells. Furthermore, antibodies are bound and 

internalized by asialoglycoprotein receptors in the liver cells, increasing the retention of 

CC49 in the liver [49]. A long retention time for the antibodies in the liver and spleen 

were therefore expected. 
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Our dynamic imaging data also shows that pretreatment with excessive CC49 

antibody could reduce the accumulation and retention times of CC49-Cy7 and 

HuCC49ΔCH2-Cy7 conjugates in tumors (Figure 2.4). The results were confirmed by 

quantification of fluorescent signals in dissected tumor tissues (Figure 2.5A and 2.6A). In 

contrast, the accumulation of CC49-Cy7 and HuCC49ΔCH2-Cy7 conjugates in the liver 

did not show significant change when the mice were pretreated with excessive CC49. 

This data suggests that CC49-Cy7 and HuCC49ΔCH2-Cy7 specifically target the TAG-72 

antigen in xenograft tumor tissues with nonspecific accumulation in the liver. Consistent 

with our finding, fluorescence intensities in the tumors were also observed to decrease 

when the xenograft nude mice were pretreated with overdose trastuzumab or C225 

antibody to block HER2 [51] or EGFr 
[52]1

. However, it was also reported that antibody 

blockage with cetuximab did not decrease fluorescence intensity in xenograft tumors on 

SCID mice [38, 39]. The inconsistency may be caused by the different antibodies, tumor 

cells, animal models and dosages of unlabeled antibody.  

To optimize the efficacy of tumor detection, it is important to determine the point in 

time at which the maximum tumor to normal tissue ratio for the antibody is obtained. 

Mohsin et al. reported that the maximum tumor to blood ratios for 
149

Pm-, 
166

Ho-, and 

177
Lu-MeO-DOTA-CC49 conjugates were obtained between 96-168 hrs post-injection 

[49]. Our dynamic imaging data (Figures 2.4A and 2.4B) also show that fluorescent 

intensity in the tumor reaches a high level at 120 hrs after injection of the CC49-Cy7, 

while the fluorescence intensity in the liver decreases to a low level at 96 hrs post-

injection. Two additional groups of mice injected with the CC49-Cy7 conjugate were 

sacrificed at 2 hrs and 96 hrs post-injection for fresh tissue imaging. The concentration of 
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the CC49-Cy7 in the heart is regarded to be equal to the concentration of CC49-Cy7 in 

the blood. The tumor to heart ratio for CC49-Cy7 at 96 hrs post-injection was 15.5, which 

is comparable to previously reported data (34, 40). Chinn et al. [53] reported the tumor to 

blood ratio for 
111

In-CC49 at 24 hrs post-injection to be 3.7 and Slavin-Chiorini et al. [46] 

reported the tumor to blood ratios for the iodine-CC49 at 24, 48, and 72 hrs post-injection 

to be 2.4, 3.0, and 7.4, respectively. The high tumor to heart ratio for the CC49-Cy7 

obtained at 96 hrs post-injection suggests that 4 day after injection of the CC49-Cy7 is 

the optimal time for tumor detection and imaging using fluorescence.  

Dynamic imaging showed that the concentration of the HuCC49ΔCH2-Cy7 conjugate 

in the tumor decreased rapidly (Figure 2.4C). Therefore, we performed tumor imaging 

within 24 hrs post-injection of the HuCC49ΔCH2-Cy7. The plasma clearance t1/2 of the 

HuCC49ΔCH2 in the LS-174T tumor-bearing athymic mice has been reported previously 

to range from 2.7-5.3 hrs [47, 48], suggesting that more than 90% of the HuCC49ΔCH2 

has been cleared from blood circulation at 18 hrs post-injection. Two additional groups of 

HuCC49ΔCH2-Cy7 mice were sacrificed at 2 hrs and 18 hrs post-injection for fresh tissue 

imaging. The tumor to heart ratio for the HuCC49ΔCH2-Cy7 conjugate was determined 

to be 12.0. Our data are also consistent with previous findings which reported that 
177

Lu-

HuCC49ΔCH2 and 
111

In-HuCC49ΔCH2 demonstrated tumor-to-blood ratios of 12.3 and 

16.0 in LS174T xenograft mice at 24 hrs post-injection, respectively [47, 53, 54]. 

Both CC49-Cy7 and HuCC49ΔCH2-Cy7 conjugates accumulated to some extent in 

the spleen, kidneys, and lungs. However, the clearance of the antibodies from these 

tissues was faster compared to clearance from the tumor, suggesting that localization of 

CC49-Cy7 and HuCC49ΔCH2-Cy7 conjugates in the spleen, kidneys, and lungs was not 
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likely due to specific antigen-antibody interaction, as reported in a previous study [50]. 

The fluorescence observed from the kidneys was probably due to accumulation of 

metabolites of the antibody-Cy7 conjugates and non-specific binding between the 

metabolites and brush border of the renal proximal tubule [49].  

In summary, the CC49 monoclonal antibody targets the tumor-associated 

glycoprotein (TAG)-72 overexpressed on a wide spectrum of carcinomas, including 

colon, ovarian, pancreatic, breast, and prostate cancers. The CC49 antibody conjugated 

with a non-radioactive fluorescent marker may have many applications for tumor 

imaging and target drug delivery. Therefore we conjugated the murine CC49 monoclonal 

antibody (CC49 MAb) and humanized CH2 domain-deleted CC49 monoclonal antibody 

(HuCC49ΔCH2 MAb) with a near-infrared (NIR) fluorophore Cy7 and tested the 

feasibility of the CC49-Cy7 and HuCC49ΔCH2-Cy7 conjugates for NIR fluorescence 

imaging of tumors in a preclinical xenograft animal model. Tumor targeting and retention 

of the Cy7-NHS, CC49-Cy7, HuCC49ΔCH2-Cy7 and non-specific IgG-Cy7 in a 

subcutaneous LS174T tumor model have been evaluated and quantified using a Xenogen 

IVIS 100 optical cooled charged-coupled device system. The results showed that 

antibody-Cy7 was indeed localized in tumor tissues. CC49 antibody achieved a 

tumor/blood ratio of 15 at 96 hrs postinjection. In comparison, HuCC49ΔCH2 was 

cleared much faster than murine CC49 in xenograft mouse, and HuCC49ΔCH2 antibody 

achieved a tumor/blood ratio of 12 at 18 hrs postinjection. In contrast, Cy7 and non-

specific IgG-Cy7 had short retention times in the tumors. Additionally, for the mice 

pretreated with excessive CC49, the retention time of the CC49-Cy7 in the tumor was 

reduced from 288 hrs to 240 hrs and the retention time of the HuCC49ΔCH2-Cy7 was 
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reduced from 96 hrs to 48 hrs. These data suggest that both CC49-Cy7 and 

HuCC49ΔCH2-Cy7 conjugates targeted TAG-72, and the excessive CC49 blocked the 

TAG-72 on the tumor. In conclusion, the Cy7 labeled CC49 and HuCC49ΔCH2 

demonstrate tumor-targeting capabilities in colorectal cancer xenograft mice and provide 

an alternative modality for tumor imaging. 
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Figure 2.1 Fluorescence microscopic images of LS174T cells. The cells were fixed with 

3.7% paraformaldehyde and incubated for 1 hour at room temperature with 

PBS, Cy7, murine CC49-Cy7, murine CC49 followed by murine CC49-Cy7, 

HuCC49ΔCH2-Cy7, and murine CC49 followed by HuCC49ΔCH2-Cy7.    
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Figure 2.2 Typical in vivo fluorescence images of nude mice bearing LS174T xenografts 

after intravenous injection of Cy7-labeled antibodies. (A) 1 nmol of Cy7, 

excessive murine CC49 followed by 0.33 nmol of murine CC49-Cy7, 0.33 

nmol of murine CC49-Cy7, or 0.38 nmol non-specific murine IgG-Cy7; (B) 1 

nmol of Cy7, excessive murine CC49 followed by 0.73 nmol HuCC49ΔCH2-

Cy7, 0.73 nmol HuCC49ΔCH2-Cy7, or 0.50 nmol non-specific human IgG-

Cy7.  The location of the tumors was indicated by the circles. 
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Figure 2.3 Emission spectra of (A) Cy7 and murine CC49-Cy7 and (B) fluorescence 

signals from the bladder, liver and tumor of an athymic nude mouse bearing 

LS174T xenograft tumor 24 hours after i.v. injection of murine CC49-Cy7. 
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Figure 2.4 The relative mean fluorescence intensity in the tumor and liver regions of 

interest (ROIs) as a function of time after injection of (A, B) Cy7, excessive 

murine CC49 plus murine CC49-Cy7, or murine CC49-Cy7 and (C, D) Cy7, 

excessive murine CC49 plus HuCC49ΔCH2-Cy7, or HuCC49ΔCH2-Cy7. 
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Figure 2.5 (A) Representative images of dissected organs of athymic nude mice bearing 

LS174T xenograft tumor sacrificed 2 hours or 96 hours after intravenous 

injection of 1 nmol of Cy7, excessive murine CC49 followed by 0.33 nmol of 

murine CC49-Cy7, 0.33 nmol of murine CC49-Cy7, or 0.38 nmol non-

specific murine IgG-Cy7. The relative fluorescence intensity of each tissue 

was labeled near the corresponding tissue. Tissue-to-heart ratios for (B) the 

mice sacrificed 2 hours after injection and (C) the mice sacrificed 96 hours 

after injection. 
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Figure 2.6 (A) Representative images of dissected organs of athymic nude mice bearing 

LS174T xenograft tumor sacrificed 2 hours or 96 hours after intravenous 

injection of 1 nmol of Cy7, excessive murine CC49 followed by 0.73 nmol 

HuCC49ΔCH2-Cy7, 0.73 nmol HuCC49ΔCH2-Cy7, or 0.50 nmol non-specific 

human IgG-Cy7. The relative fluorescence intensity of each tissue was labeled 

near the corresponding tissue. Tissue-to-heart ratios for (B) the mice 

sacrificed 2 hours after injection and (C) the mice sacrificed 18 hours after 

injection. 
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CHAPTER III 
 

124
I-HuCC49ΔCH2 for TAG-72 Antigen-Directed Positron Emission Tomography 

(PET) Imaging of LS174T Colon Tumor Implants in Xenograft Mice  
 

 
3.1 Abstract 

 
18

F-fluorodeoxyglucose positron emission tomography (
18

F-FDG-PET) is widely 

used in diagnostic cancer imaging.  However, the use of 
18

F-FDG in PET-based imaging 

is limited by a variety of specificity and sensitivity issues.  In contrast, anti-TAG (tumor 

associated antigen)-72 monoclonal antibodies are highly specific for binding to a variety 

of adenocarcinomas, including colorectal cancer.  The aim of our current study was to 

evaluate a complimentary determining region (CDR)-grafted humanized domain-deleted 

anti-TAG-72 monoclonal antibody (HuCC49ΔCH2), radiolabeled with iodine-124 (
124

I), 

as an antigen-directed and cancer-specific targeting agent for PET-based imaging. 

HuCC49ΔCH2 was radiolabeled with 
124

I.  Subcutaneous tumor implants of LS174T 

colon adenocarcinoma cells, that express the TAG-72 antigen, were grown on athymic 

Nu/Nu nude mice as the xenograft mouse model.  Intravascular (i.v.) and intraperitoneal 

(i.p.) administration of 
124

I-HuCC49ΔCH2 was then evaluated in this xenograft mouse 

model at various time points from approximately 1 hour to 24 hours after injection using 

microPET imaging.  This was compared to i.v. injection of 
18

F-FDG in this same 

xenograft mouse model using microPET imaging at 50 minutes post injection. At 

approximately 1 hour after i.v. injection, 
124

I-HuCC49ΔCH2 was distributed within the 

systemic circulation, while at approximately 1 hour after i.p. injection, 
124

I-HuCC49ΔCH2  
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was distributed within the peritoneal cavity.  At time points from 18 hours to 24 hours 

after i.v. and i.p. injection, 
124

I-HuCC49ΔCH2 demonstrated a significantly increased 

level of specific localization to LS174T tumor implants (p=0.001) when compared to 1 

hour images.  In contrast, approximately 50 minutes after injection,
 18

F-FDG failed to 

demonstrate any increased level of specific localization to a LS174T tumor implant, but 

showed the propensity toward more nonspecific uptake within the heart, Harderian glands 

of the eye orbits, neck muscles, kidneys, and bladder. In summary,
 124

I-HuCC49ΔCH2 

demonstrates an increased level of specific localization to tumor implants of LS174T 

colon adenocarcinoma cells in the xenograft mouse model on delayed imaging, while 
18

F-

FDG failed to demonstrate this.  The antigen-directed and cancer-specific 
124

I-radiolabled 

anti-TAG-72 monoclonal antibody conjugate, 
124

I-HuCC49ΔCH2, has great potential for 

use in human clinical trials for preoperative, intraoperative, and postoperative PET-based 

imaging strategies, including fused-modality PET-based imaging platforms. 

 

 

3.2 Introduction 

The origin of positron imaging dates back to the early 1950’s [1], culminating in the 

development of positron emission tomography (PET) and its subsequent evolution over 

the last 40 years [1-4].  The clinical application of PET-based imaging strategies to the 

field of oncology has had a significant impact upon the care of cancer patients [5-11].  

Therefore, the development and selection of the most appropriate and specific radiotracer 

for PET-based imaging is critical to its success in oncology [12-15]. 

18
F-fluorodeoxyglucose (

18
F-FDG), by far, is currently the most widely used 

radiotracer for PET-based imaging strategies [16].  In this regard, 
18

F-FDG-PET-based 
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imaging is currently considered state-of-the-art for the diagnostic imaging, staging, and 

follow-up of a wide variety of malignancies, including colorectal cancer [10,11].  

However, there are several intrinsic limitations related to the use of 
18

F-FDG-PET 

imaging that remain a challenges and a concern to those involved in the care of cancer 

patients [6-9,16-24].  First, false positive results can occur with 
18

F-FDG-PET imaging in 

the presence of any pathologic conditions in which there is a high rate of glucose 

metabolism, such as inflammatory or infections processes.  Second, false negative results 

can occur with 
18

F-FDG-PET imaging secondary to poor avidity of 
18

F-FDG to certain 

tumor types and secondary to impaired uptake of 
18

F-FDG in patients with elevated blood 

glucose levels.  Third, due to system resolution limitations, 
18

F-FDG-PET imaging is 

generally limited in its ability to detect small-volume, early-stage primary disease or to 

detect microscopic disease within the lymph nodes.  Fourth, 
18

F-FDG-PET imaging can 

produce either false positive or false negative results secondary to the normal physiologic 

accumulation of 
18

F-FDG within certain tissues with an elevated level of glucose 

metabolism (most striking in the brain and heart, and to a lesser degree in the mucosa and 

smooth muscle of the stomach, small intestine and colon, as well as in liver, spleen, 

skeletal muscle, thyroid, and brown fat) and secondary to the excretion and accumulation 

of 
18

F-FDG within the urinary tract (kidneys, ureters, and bladder).  Overall, these factors 

have a negative impact on optimizing the specificity and sensitivity of 
18

F-FDG-PET for 

accurate diagnostic cancer imaging [6-9,16-24]. 

A PET-based imaging approach that specifically targets the cancer cell environment 

would clearly have a significant potential advantage for improving the accuracy of 

diagnostic cancer imaging over that of the more nonspecific nature of 
18

F-FDG.  In that 
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regard, tumor-associated glycoprotein-72 (TAG-72) is a mucin-like glycoprotein 

complex that is overexpressed by many adenocarcinomas, including colorectal, 

pancreatic, gastric, esophageal, ovarian, endometrial, breast, prostate, and lung [22,24-

27].  In xenograft mice bearing subcutaneous tumor implants of the TAG-72-expressing 

human colon adenocarcinoma cell line, LS174T [27-29], anti-TAG-72 monoclonal 

antibodies have been shown to localized up to 18-fold higher in LS174T tumor implants 

than in normal tissues [25,30,31].  Over the last 25 years, our group at The Ohio State 

University, as well as others, have evaluated a variety of radioiodine labeled anti-TAG72 

monoclonal antibodies for tumor-specific antigen targeting at the time of surgery for 

known primary, recurrent, and metastatic disease, as well as for targeting occult disease 

and affected lymph nodes in colorectal cancer patients [22,24,32-59].  Most recently, we 

have evaluated the complimentary determining region (CDR)-grafted humanized domain-

deleted anti-TAG-72 monoclonal antibody, HuCC49ΔCH2 [60-63], radiolabeled with 

iodine-125 (
125

I), for intraoperative tumor detection of colorectal cancer in both a 

preclinical xenograft mouse model and in a human clinical trial [22,24,57-59].  

Collectively, our experience with radiolabeled anti-TAG-72 monoclonal antibodies in 

combination with a handheld gamma detection probe has clearly shown that this 

technology provides the surgeon with real-time intraoperative information for more 

precise tumor localization and resection and has demonstrated improved long-term 

patient survival after surgery [22,24]. 

Because of the drawbacks of using 
125

I as the radioiodine label for anti-TAG-72 

monoclonal antibodies, including the extremely long physical half-life of 
125

I of 

approximately 60 days (which generates handling, storage, and disposal issues within the 
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operating room environment and in the surgical pathology department) and the inability 

of 
125

I to allow for diagnostic imaging capabilities, other radionuclides have been sought 

for use with anti-TAG-72 monoclonal antibodies.  One such alternative is iodine-124 (
124

I) 

[64].  In this regard, 
124

I is a positron emitting radionuclide that has a physical half-life of 

approximately 4.2 days, for which its positron emitting properties makes it well-suited for 

PET-based imaging and for which its shorter physical half-life simplifies the handling, 

storage, and disposal issues.  Therefore, the aim of our current preliminary study was to 

evaluate 
124

I-HuCC49ΔCH2 as a cancer-specific targeting agent for PET-based imaging.  

 

3.3 Materials and Methods 

3.3.1 Cell culture and reagents 

Cell culture medium (DMEM), fetal bovine serum (FBS), trypsin, and other tissue 

culture materials were purchased from Invitrogen (Carlsbad, California).  The human 

colon adenocarcinoma cells (LS174T) [27-29] were purchased from American Type 

Culture Collection (ATCC) (Manassas, VA).  LS174T cells were cultured in DMEM (10% 

FBS, 1% penicillin/streptomycin) at 37˚C under 5% CO2 for 24 hours.  LS174T cells 

were split every week. LS174T cells were trypsinized, collected, and washed with PBS, 

and then resuspended in DMEM (10% FBS) for subculture.  LS174T cells were stored in 

DMEM (20% FBS, 10% DMSO) in liquid N2.  DOTA chelated HuCC49ΔCH2 antibody 

was supplied by Dr. Jeffrey Schlom (Laboratory of Tumor Immunology and Biology, 

National Cancer Institute, National Institutes of Health, Bethesda, MD).  Phosphate 

buffered 
18

F-FDG (200 MBq/ml) was supplied by IBA Molecular (Dulles, VA).   
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3.3.2 Iodination (
124

I) of HuCC49ΔCH2  

Iodogen-coated Vials:  Iodogen (1,3,4,6-tetrachloro-3-6-diphenylglycouril) 

(Pierce, Rockford, IL) was dissolved in methylene chloride (1.0 mg/ml), and was pipetted 

into (1 ml) a sterile/pyrogen free 10 ml vial.  The vial was rotated and dried under 

nitrogen to evaporate methylene chloride.   

Anion Exchange Resin Filters: 100 to 200-mesh AG1X8 anion exchange resin (Bio-

Rad Labs, Richmond, CA) was washed using sterile, pyrogen free water.  The anion 

exchange resin was aseptically loaded onto a 0.22 µm filter disc (1.1 to 1.5 gram wet 

resin/filter unit) (Millipore Corp, Milford, MA).  The resin was washed using following 

solutions in a sequence: 10 ml sterile, pyrogen-free water; 10 ml sterile 0.1 N NaOH; 10 

ml pyrogen free water; 10 ml 0.1 N sodium phosphate buffer (pH 7.4); and finally by 3.3 

ml 0.1 N sodium phosphate buffer with 1% HSA.  

Labeling process [65,66]:  0.50 ml of HuCC49ΔCH2 antibody (1.5 mg/ml) was added 

to a 10 ml vial coated with 1 mg of iodogen.  Then, 0.8 ml of phosphate buffered Na
124

I 

(150 MBq/ml) (IBA Molecular, Dulles, VA) was added to the vial.  The reagents were 

allowed to react for 15 minutes.  Free 
124

I was removed using an exchange resin filter 

disc.  Then, 1 ml of 5% sucrose with 0.05% Tween 20 in saline was used to elute the 

labeled antibody.  The purified 
124

I-HuCC49ΔCH2 was passed through a 0.22 mm 

Millipore filter (Millipore Corp, Milford, MA) for in vivo applications.  Radiolabeling 

efficiency was monitored using radio thin layer chromatography (TLC), which was 

performed on silica-gel-impregnated glass fiber sheets (Pall Corp., East Hills, NY, USA).  

0.02 M citrate buffer (pH 5.0) was used as the mobile phase. 
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3.3.3 Xenograft mouse model  

The human colon adenocarcinoma cells, LS174T, were trypsinized for 2 minutes, 

collected, and washed with PBS under 1000 rpm x 2 minutes.  The washed cells (5×10
6
 

cells) were resuspended in a mixture of 50 μl of PBS and 50 μl of matrigel medium 

(Invitrogen, Carlsbad, California), and then injected subcutaneously into the dorsal 

surface (back) of female Athymic Nu/Nu nude mice (National Cancer Institute at 

Frederick, Frederick, MD) that were 4 to 6 weeks of age.  The resultant tumor implants 

on the xenograft mice were allowed to grow for approximately two weeks, reaching a 

tumor implant volume of up to 300 mm
3
.  The xenograft mice used in this preliminary 

study were not pretreated with an oral saturated solution of potassium iodide (SSKI). 

3.3.4 
124

I-HuCC49ΔCH2 and 
18

F-FDG administration  

Two xenograft mice were successfully injected intravenously (i.v.), by way of tail 

vein injection, with 
124

I -HuCC49ΔCH2, at a dose of 0.6 MBq and 0.75 MBq, respectively.  

Two additional xenograft mice were successfully injected intraperitoneally (i.p.) with 

124
I-HuCC49ΔCH2, at a dose of 1.4 MBq and 2.5 MBq, respectively.  As a control, one 

xenograft mouse was successfully injected i.v., by way of tail vein injection, with 7.4 

MBq of 
18

F-FDG.   

3.3.5 MicroPET tumor imaging  

Selection of imaging time points was based on historical data as well as the physical 

half-lives of 
18

F (110 minutes) and 
124

I (4.2 days).  For 
18

F-FDG, the standard accepted 

injection to scan time for humans and small animals is approximately 60±10 minutes [67-

69].  For 
124

I-HuCC49ΔCH2 injected xenograft mice, we used an initial 1 hour time point 

for baseline microPET imaging as well as a time range of delayed microPET imaging 
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from 18 hours to 24 hours after administration of 
124

I-HuCC49ΔCH2 to allow for 

distribution, uptake, and clearance.  At selected time points (ranging from approximately 

1 hour to 24 hours after injection of 
124

I-HuCC49ΔCH2), the xenograft mice were 

anesthetized with i.p. Ketamine (100 mg/kg)/Xylazine (10 mg/kg) and then scanned on 

an Inveon microPET scanner (Siemens Medical Solutions, Knoxville, TN).  Image 

acquisition and analysis were performed by using Inveon Acquisition Workplace 

(Siemens Medical Solutions, Knoxville, TN).  Xenograft mice initially underwent a 

transmission scan with a cobalt-57 source for 402 seconds for attenuation correction and 

quantification.  Xenograft mice then underwent a PET emission scan at approximately 1 

hour, 18 hours, and 20 hours after injection of 
124

I-HuCC49ΔCH2 with an acquisition 

time of 400 seconds and again at approximately 23 hours or 24 hours after injection of 

124
I-HuCC49ΔCH2 with an acquisition time of 800 seconds.  For the 

18
F-FDG injected 

xenograft mouse, a PET emission scan was obtained at approximately 50 minutes after 

injectionof 
18

F-FDG with an acquisition time of 400 seconds.  The energy window of all 

PET emission scans was set to 350 keV to 650 keV, with a time resolution of 3.4 

ns.  Each emission acquisition data set was attenuation corrected with the attenuation 

transmission scan taken of each individual mouse at each designated time point and 

arranged into sinograms.  The resultant sinograms were iteratively reconstructed into 

three dimensional volumes using an ordered-subset expectation maximization (OSEM) 

reconstruction algorithm.  The transmission acquisition yielded an approximation of body 

volume and anatomic localization, such that regions of interest (ROI) could be created to 

represent portions of the mouse anatomy, specifically, whole body, the LS174T tumor 

implant, and a designated background area (i.e., left lower quadrant of the abdomen).   



74 

 

The ROI, for determination of tumor implant volume, was drawn manually by 

qualitative assessment to cover the entire tumor implant volume by summation of voxels 

using the Inveon software (Siemens Medical Solutions, Knoxville, TN) in a manner 

similar to that previously published by Jensen et al [69].  In the study by Jensen et al, they 

compared the accuracy of xenograft measurement by in vivo caliper measurement versus 

microCT-based and microPET-based measurement and found microCT to be the most 

accurate measurement method [69].  We used a similar method in conjunction with the 

transmission image to generate the tumor implant volume.  PET activity within the 

volumetric ROI then yielded the resultant average intensity counts for the tumor implant 

and for the designated background area.  Finally, to generate a quantification 

measurement value for the activity of 
124

I-HuCC49ΔCH2 within the tumor implant and a 

measurement value for the activity of 
18

F-FDG within the tumor implant, we utilized the 

unitless value of the relative ratio of the average intensity counts, as determined by 

dividing the average intensity counts from the tumor implant volume by the average 

intensity counts of the designated background area.   

Fused microPET/CT imaging was obtained on one of the five xenograft mice. We 

imaged this xenograft mouse on the combined microPET/CT system in order to correlate 

anatomy with the transmission images and assist in accurate determination of tumor 

implant volume from the transmission scan. 

3.3.6 Statistical analysis 

The software program IBM SPSS® 18 for Windows® (SPSS, Inc., Chicago, Illinois) 

was used for the data analysis.  One-way analysis of variance (ANOVA) was utilized for 

the comparison of the relative ratio of intensity counts of the LS174T tumor implants.  
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3.4 Results 

After chromatographic purification, 98% of 
124

I was bound to the chelated 

HuCC49ΔCH2 antibody, as determined by thin layer chromatography. The radioactivity 

of 
124

I-HuCC49ΔCH2 obtained was 15 MBq/ml. 

Figure 3.1a and 3.1b show the xenograft mice injected i.v. with 
124

I-HuCC49ΔCH2 at 

a dose of 0.6 MBq and 0.75 MBq, respectively.  At approximately 1 hour after i.v. 

injection, 
124

I-HuCC49ΔCH2 was distributed within the systemic circulation, and 

demonstrated no significant localization within the LS174T tumor implants.  At the time 

points of 18 hours and 23 hours after i.v. injection, 
124

I-HuCC49ΔCH2 was found to have 

specific localization within the LS174T tumor implants.  The thyroid showed expected 

uptake of 
124

I, secondary to the lack of pre-treatment with SSKI.  The bladder exhibited 

accumulation of 
124

I, indicating the degradation of 
124

I-HuCC49ΔCH2 and the excretion 

of free 
124

I into the urine.   

Figure 3.2a and 3.2b show the xenograft mice injected i.p. with 
124

I-HuCC49ΔCH2 at 

a dose of 1.4 MBq and 2.5 MBq, respectively.  At approximately 1 hour after i.p. 

injection, 
124

I-HuCC49ΔCH2 was distributed only within the peritoneal cavity, and 

demonstrated no significant localization within the LS174T tumor implants.  At the time 

points of 20 hours and 24 hours after i.p. injection, 
124

I-HuCC49ΔCH2 was found to have 

specific localization within the LS174T tumor implants.  The thyroid showed expected 

uptake of 
124

I, secondary to the lack of pre-treatment with SSKI.  The bladder exhibited 

accumulation of 
124

I, indicating the degradation of 
124

I-HuCC49ΔCH2 and the excretion 

of free 
124

I into the urine.  
124

I-HuCC49ΔCH2 was also observed to accumulate within the 

liver on the microPET images and was most pronounced at the time points of 20 hours 
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and 24 hours after i.p. injection of 
124

I-HuCC49ΔCH2 at a dose of 2.5 MBq.  This was 

presumed to be secondary to use of the chelated form of the HuCC49ΔCH2 antibody.   

Figure 3.3 shows the xenograft mouse injected i.v. with 7.4 MBq of 
18

F-FDG and 

imaged by the microPET at approximately 50 minutes after injection.  Multiple sites of 

tumor-nonspecific 
18

F-FDG accumulation were noted in the xenograft mouse.  
18

F-FDG 

was noted to avidly accumulate in the heart and the Harderian glands of the eye orbits, 

secondary to the high rate glucose metabolism within these tissues.  
18

F-FDG was noted 

to accumulate in the neck muscles, secondary to procedural handling of the neck region 

of the mouse.  
18

F-FDG was noted to be rapidly eliminated from kidneys and bladder 

within 50 minutes after the i.v. injection.  Only very minimal localization of 
18

F-FDG to 

the LS174T tumor implant was noted in the xenograft mouse model. 

To generate a quantification measurement value for the localization of 
124

I-

HuCC49ΔCH2 within the LS174T tumor implant and a quantification measurement value 

for the localization of 
18

F-FDG within the LS174T tumor implant, we utilized the unitless 

value of the relative ratio of the average intensity counts, as determined by dividing the 

average intensity counts of the LS174T tumor implant by the average intensity counts of 

the designated background area.  For comparing the localization of 
124

I-HuCC49ΔCH2 

within the LS174T tumor implants at approximately 1 hour after injection versus at 18 

hours to 24 hours after injection, the mean relative ratio of the average intensity counts 

was determined to be 0.34 (SD ±0.29, range 0.06 to 0.64, n=4) at approximately 1 hour 

after injection, as compared to 2.58 (SD ±0.99, range 1.57 to 4.57, n=8) at 18, 20, 23, and 

24 hours after injection (p=0.001).  For comparing the localization of 
124

I-HuCC49ΔCH2 

within the LS174T tumor implants for the i.v. injection route versus the i.p. injection 
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route, the mean relative ratio of the average intensity counts was determined to be 2.31 

(SD ±0.71, range 1.83 to 3.356, n=4) for the i.v. injection route at 18 and 23 hours after 

injection, as compared to 2.85 (SD ±1.26, range 1.57 to 4.57, n=4) for the i.p. injection 

route at 20 hours and 24 hours after injection (p=0.481).  For comparing the localization 

of 
124

I-HuCC49ΔCH2 within the LS174T tumor implants at differing dosages of 
124

I-

HuCC49ΔCH2, the mean relative ratio of the average intensity counts was determined to 

be 2.03 (SD ±0.14, range 1.93 to 2.13, n=2) at the lowest dose administered (i.e., 0.6 

MBq), as compared to 3.70 (SD ±1.23, range 2.84 to 4.57, n=2) at the highest dose 

administered (i.e., 2.5 MBq) (p=0.195).  It is probable that both the comparison of the 

localization of 
124

I-HuCC49ΔCH2 within the LS174T tumor implants by the injection 

route (i.e., i.v. versus i.p.) and by the injection dose (i.e., 0.6 MBq versus 2.5 MBq) did 

not reach statistical significance secondary to the statistic restraints of the small sample 

size in our current preliminary study in which we used only four 
124

I-HuCC49ΔCH2 

injected xenograft mice and one 
18

F-FDG injected xenograft mouse.  Finally, for 

comparing the localization of 
124

I-HuCC49ΔCH2 versus 
18

F-FDG within the LS174T 

tumor implants, the mean relative ratio of the average intensity counts was 2.58 (SD 

±0.99, range 1.57 to 4.57, n=8) for 
124

I-HuCC49ΔCH2 at 18, 20, 23, and 24 hours after 

injection, as compared to 1.05 (n=1) for 
18

F-FDG at approximately 50 minutes after 

injection (p=0.188).  Although this demonstrates that there was 2.46 times greater 

localization of 
124

I-HuCC49ΔCH2 within LS174T tumor implants as compared to 
18

F-

FDG, this particular p-value similarly did not reach statistical significance, and this is 

likely attributable to the statistic restraints of comparing only one time point for a single 
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18
F-FDG injected xenograft mouse to that of 8 time points for 4 xenograft mice injected 

with 
124

I-HuCC49ΔCH2. 

 

3.5 Discussion 

In current study, 
124

I-HuCC49ΔCH2 demonstrated a significantly increased level of 

specific localization to LS174T tumor implants as compared to background tissues 

(p=0.001) in the xenograft mouse model at 18 hours to 24 hours after injection as 

compared to at approximately 1 hour after injection.  In contrast, in the same xenograft 

mouse model, 
18

F-FDG failed to demonstrate any increased level of specific localization 

to a LS174T tumor implant as compared to background tissues at approximately 50 

minutes after injection.  This re-enforces the limitations of an 
18

F-FDG-based PET 

imaging strategy as compared to an antigen-directed and cancer-specific 
124

I-

HuCC49ΔCH2-based PET imaging strategy. 

In the current preliminary report, both i.v. and i.p. administration of 
124

I-

HuCC49ΔCH2 resulted in specific localization on microPET imaging to the LS174T 

tumor implants in the xenograft mouse model at 18 and 23 hours and at 20 and 24 hours 

after injection, respectively, validating the use of both injection routes for use in 

preclinical animal studies evaluating 
124

I-HuCC49ΔCH2.  Therefore, the end result of the 

transport of 
124

I-HuCC49ΔCH2 from the peritoneal cavity to the LS174T tumor implants 

after i.p. administration was similar to the transport of 
124

I-HuCC49ΔCH2 from the 

systemic circulation to LS174T tumor implants after i.v. administration.  These results 

with 
124

I-HuCC49ΔCH2 are consistent with previous studies which have demonstrated the 

efficacy of i.p. administered anti-TAG-72 monoclonal antibodies in patients with 
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colorectal cancer [81,98].  Although not statistically significant secondary to the small 

sample size in our current preliminary study, it appeared that localization of 
124

I-

HuCC49ΔCH2 within the LS174T tumor implants was augmented by the i.p. injection 

route and by a higher dose of 
124

I-HuCC49ΔCH2.  Yet, these factors are somewhat 

difficult to sort out since the i.p. doses administered in our current preliminary study were 

higher than the i.v. doses administered.   

Overall, these preliminary results in the LS174T colon adenocarcinoma xenograft 

mouse model are very encouraging and lay the ground work for further investigations 

into the use of this antigen-directed and cancer-specific 
124

I-radiolabeled anti-TAG-72 

monoclonal antibody conjugate in human clinical trials related to preoperative, 

intraoperative, and postoperative PET-based imaging strategies [72].  Such an approach 

that utilizes PET-based imaging in conjunction with 
124

I-HuCC49ΔCH2 is clinically 

feasible and could potentially have a significant impact upon the current management of 

colorectal cancer, as well as upon other TAG-72 antigen-expressing adenocarcinomas. 

Despite the promising results of our current preliminary report that clearly show that 

the 
124

I-radiolabled anti-TAG-72 monoclonal antibody conjugate, 
124

I-HuCC49ΔCH2, 

shows high degree of specific localization to TAG-72 antigen expressing tumor implants 

in the xenograft mouse model, there are several shortcomings of our current experimental 

study design which led to non-optimization of our reported results and that will need to 

be further addressed in future experiments.  These shortcomings are the lack of thyroid 

block by oral administration of SSKI, the use of the chelated form of the HuCC49ΔCH2 

antibody, and the limited availability of the microCT scanner at the time of these 
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preliminary experiments for obtaining fused microPET/CT imaging of all the xenograft 

mice studied. 

First, as is shown in Figures 3.1a, 3.1b, 3.2a, and 3.2b, significant thyroid uptake was 

seen on microPET imaging at the time points of 18 hours and 23 hours after i.v. injection 

and at the time points of 20 hours and 24 hours after i.p. injection of 
124

I-HuCC49ΔCH2.  

It has long been well-known in the nuclear medicine literature that if the thyroid is not 

blocked by the oral administration of SSKI, then resultant thyroid uptake of circulating 

radioactive iodine will freely occur [73-75].  This has been previously experimentally 

evaluated with radioiodine labeled anti-TAG-72 monoclonal antibodies [76].  As such, in 

the current animal experiments, the lack of thyroid blockade resulted in significant 

thyroid uptake of free 
124

I as the unbound 
124

I-HuCC49ΔCH2 was metabolized in the 

body and before the free circulating 
124

I was excreted into the urine.  Therefore, pre-

treatment of the xenograft mice with oral administration of SSKI to minimize thyroid 

uptake of free 
124

I would have resulted in more optimal microPET imaging, thus better 

illustrating our take-home message of specific localization of 
124

I-HuCC49ΔCH2 to 

LS174T tumor implants by minimizing the degree of thyroid localization of free 
124

I.  

This shortcoming was an oversight on our part and will be subsequently re-addressed in 

future xenograft mouse model experiments in which the xenograft mice are pretreated 

with oral SSKI. 

Second, nonspecific liver uptake of 
124

I-HuCC49ΔCH2 was seen on microPET 

imaging.  As best illustrated in Figure 3.2b, significant nonspecific liver uptake was most 

pronounced at the time points of 20 hours and 24 hours after i.p. administration of the 

higher dose (2.5 MBq) of 
124

I-HuCC49ΔCH2.  This nonspecific liver uptake was less 
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intense on microPET imaging at the time points of 20 hours and 24 hours after i.p. 

administration of a lower dose (1.4 MBq) of 
124

I-HuCC49ΔCH2 (Figure 3.2a) and was 

minimally present on microPET imaging at the time points of 18 hours and 23 hours after 

i.v. administration of either dose (0.6 MBq or 0.75 MBq) of 
124

I-HuCC49ΔCH2 (Figure 

3.1a and Figure 3.1b).  A similar pattern of accumulation within the liver has been 

previously reported for various chelated radiolabeled CC49 monoclonal antibodies [77], 

as well as for a single-chain Fv version of the radiolabeled CC49 monoclonal antibody 

[78].  It has been suggested that the high accumulation of these radiolabeled monoclonal 

antibody in the liver is likely due to the metabolism of the chelated form of the antibody 

within the liver [77].  Clearance and metabolism of IgG antibodies occurs predominantly 

through the reticuloendothelial system (RES), primarily in the liver and spleen, which 

both contain Kupffer cells [77,78].  Furthermore, IgG antibodies are bound and 

internalized by asialoglycoprotein receptors in the liver cells, increasing the retention of 

IgG antibodies within the liver.  Therefore, it is our contention that the nonspecific liver 

uptake of 
124

I-HuCC49ΔCH2 seen on microPET imaging is explainable by our use of 

chelated form of the HuCC49ΔCH2 antibody.  It should be noted that our inadvertent use 

of the chelated form of the HuCC49ΔCH2 antibody was not recognized until after 

analysis of the microPET imaging, as is best exemplified at the time points of 20 hours 

and 24 hours after i.p. administration of 2.5 MBq of 
124

I-HuCC49ΔCH2.  Therefore, use 

of the non-chelated form of the HuCC49ΔCH2 antibody would have potentially 

eliminated the nonspecific liver uptake of 
124

I-HuCC49ΔCH2, thus better illustrating our 

take-home message of specific localization of 
124

I-HuCC49ΔCH2 to LS174T tumor 

implants.  This shortcoming was an oversight on our part and will be subsequently re-
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addressed in future xenograft mouse model experiments in which the non-chelated form 

of the HuCC49ΔCH2 antibody is utilized. 

Third, at the time of this preliminary experiment, there was limited availability of the 

microCT scanner for obtaining fused microPET/CT imaging of all the xenograft mice.  

Therefore, while all five xenograft mice were imaged by the dedicated microPET 

scanner, only one xenograft mouse (i.v. injection of 
124

I-HuCC49ΔCH2 at a dose of 0.75 

MBq) was also imaged with the microCT scanner, thus allowing for reconstruction of 

fused microPET/CT images.  An example of a preliminary image that was generated 

using a fused microPET/CT imaging platform is shown in Figure 3.4.  It is evident within 

the molecular imaging literature that fused-modality PET-based imaging is superior to 

PET alone-based imaging, both within the PET/CT platform and the PET/ MRI platform 

[72,79-82].  These fused imaging platforms can provide both molecular/functional 

information and structural information that can more accurately and more precise localize 

various disease processes.  It is our intention to subsequently re-address this shortcoming 

in future xenograft mouse model experiments by utilizing a fused microPET/CT imaging 

platform. 

 

3.6 Conclusions 

On microPET imaging,
 124

I-HuCC49ΔCH2 demonstrates an increased level of specific 

localization to tumor implants of LS174T colon adenocarcinoma cells as compared to 

background tissues in the xenograft mouse model, while 
18

F-FDG failed to demonstrate 

this same finding.  Clearly, a PET-based imaging approach that utilizes 
124

I-

HuCC49ΔCH2 is feasible and could potentially have a significant impact upon the current 
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management of colorectal cancer and other TAG-72 antigen-expressing adenocarcinomas.  

This antigen-directed and cancer-specific 
124

I-radiolabled anti-TAG-72 monoclonal 

antibody conjugate has great potential for use in human clinical trials for preoperative, 

intraoperative, and postoperative PET-based imaging strategies, including fused-modality 

PET-based imaging platforms. 
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Figure 3.1 Intravenous (i.v.) administration of 
124

I-HuCC49ΔCH2 for microPET imaging 

of the LS174T xenograft mouse model. 
124

I- HuCC49ΔCH2 at a dose of 0.6 

MBq (Figure 3.1a) and 0.75 MBq Figure 3.1b) was injected i.v. through the 

tail vein, and micoPET imaging is shown at approximately 1 hour and at 23 

hours after injection in coronal, sagittal, and transaxial views.  
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Figure 3.2 Intraperitoneal (i.p.) administration of 
124

I-HuCC49ΔCH2 for microPET 

imaging of the LS174T xenograft mouse model. 
124

I-HuCC49ΔCH2 at a dose 

of 1.4 MBq (Figure 3.2a) and 2.5 MBq (Figure 3.2b) was injected i.p., and 

micoPET imaging is shown at approximately 1 hour and at 24 hours after 

injection in coronal, sagittal, and transaxial views.   
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Figure 3.3 Intravenous (i.v.) administration of 
18

F-FDG for microPET imaging of 

LS174T xenograft mouse model. 
18

F-FDG at a dose of 7.4 MBq was injected 

i.v. through the tail vein.  MicroPET imaging is shown at approximately 50 

minutes after injection in coronal, sagittal, and transaxial views.   
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Figure 3.4 Fused microPET/CT image of a xenograft mouse at 26 hours after receiving 

an intravenous (i.v.) injection of 0.6 MBq of 
124

I-HuCC49ΔCH2. 
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CHAPTER IV 
 

Superparamagnetic Iron Oxide “Nanotheranostics” for Targeted Colon  

Cancer Imaging and pH-Dependent Intracellular Drug Release 

 

4.1 Abstract 

Superparamagnetic iron oxide nanoparticles (SPIOs) have emerged as a feasible 

“nanotheranostics” for tumor imaging and targeted anti-cancer drug delivery. The 

purpose of this study is to develop antibody- and fluorescence-labeled SPIO 

“nanotheranostics” for magnetic resonance imaging (MRI) and fluorescence imaging of 

cancer cells and pH-dependent intracellular drug release. HuCC49ΔCH2 and fluorescent 

dye 5-FAM were conjugated to SPIOs. Anticancer drugs doxorubicin (Dox), and azido-

doxorubicin (Adox), MI-219, 17-DMAG containing primary amine, azide, secondary 

amine, and tertiary amine, respectively, were entrapped into SPIOs. Fluorescent imaging, 

magnetic resonance imaging (MRI) and Prussian blue staining demonstrated that 

HuCC49ΔCH2-SPIO increased cancer cell targeting. HuCC49ΔCH2-SPIO 

“nanotheranostics” decreased the T2 values in MRI of LS174T cells from 117.3±1.8 ms 

to 55.5±2.6 ms. The loading capacities of Dox, Adox, MI-219, and 17-DMAG were 3.16 

± 0.77%, 6.04± 0.61%, 2.22± 0.42%, and 0.09±0.07%, respectively. Dox, MI-219 and 

17-DMAG showed pH-dependent release while Adox did not. Fluorescent imaging 

demonstrated the accumulation of HuCC49ΔCH2-SPIO “nanotheranostics” in 

endosomes/lysosomes. The entrapped Dox was released in acidic lysosomes and diffused  
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into cytosol and nuclei. In contrary, the entrapped Adox only showed limited release in 

endosomes/lysosomes. HuCC49ΔCH2-SPIO “nanotheranostics” targetedly delivered 

more Dox to LS174T cells than nonspecific IgG-SPIO and resulted in a lower IC50 (1.44 

µM v.s. 0.44 µM). The developed HuCC49ΔCH2-SPIO “nanotheranostics” provides an 

integrated platform for cancer cell imaging, targeted anticancer drug delivery and pH-

dependently drug release.  

 

4.2 Introduction 

One of the major challenges in cancer chemotherapy is the serious side effects 

caused by cytotoxicity of anticancer drugs. Novel strategies are needed to site-

specifically deliver anticancer drugs to tumor cells. Superparamagnetic iron oxide 

nanoparticles (SPIOs) have emerged as a feasible “nanotheranostics” for tumor imaging 

and targeted anti-cancer drug delivery[1-20]. SPIOs are a contrast agent for Magnetic 

Resonance Imaging (MRI) since it induces a shorter T2 relaxation (transverse or spin-spin 

relaxation), producing a decreased signal intensity on a T2-weighted image[21]. Various 

SPIO products have been clinically used as contrast agents due to their high contrast 

effects and biocompatibility[22]. The standard water-soluble SPIOs are composed of an 

iron-oxide magnetic core coated with hydrophobic oleic acid (OA) and a surface of 

amphiphilic polymers [8]. The surface polymers not only stabilize the nanoparticles, but 

also provide active functional groups for controllable bioconjugation of targeting ligands. 

Furthermore, surface coating with biocompatible polymers such as PEG can reduce 

reticuloendothelial system (RES) uptake of SPIOs as well as non-specific interaction with 

plasma membranes. It has been demonstrated that the cancer-targeting ligand labeled 
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SPIOs could specifically bind to cancer cells and accumulate in tumor tissues [1-3, 10, 

18]. 

SPIOs have been utilized as a carrier for targeted drug delivery [1, 2, 6, 8, 20, 23]. 

Drug molecules were either entrapped in the SPIO surface polymer layer using physical 

interactions (electrostatic interaction or hydrophobic interaction) or covalently conjugated 

to the functional groups on SPIO surface for pH dependent release or enzymatic cleavage 

release in targeted tissues[12, 24]. Doxorubicin (Dox) has been used as a model drug for 

targeted drug delivery since the hydrophobic compound can partition into the oleic acid 

shell of SPIOs [8] and its intracellular distribution can be visualized under a fluorescent 

microscope. Dox has been reported to exhibit pH dependent release from SPIOs[2, 4, 7, 

12]. Approximately 60% of the Dox was released within 50 min at pH 5.1 in acetate 

buffer[1].  

The reasons for the rapid release of Dox at low pH are still not clear. One 

explanation was the protonation of the primary amine of Dox which dramatically 

increased the solubility of Dox in aqueous solution[2]. Another explanation is the 

weakened interaction between Dox and the partially neutralized carboxyl groups of 

polymers or oleic acid [1, 4]. The pH dependent release of Dox suggests that Dox may be 

rapidly released from SPIOs in acidic environment of tumor tissues or 

endosomes/lysosomes after internalized into cancer cells.  

Ideally, “nanotheranostics” can be used for non-invasive cancer imaging, visualizing 

drug delivery, assessing the efficiency of targeted drug delivery, and monitoring the 

therapeutic responses. In this study, we developed a tumor-associated glycoprotein-72 

(TAG-72) targeted SPIO “nanotheranostics” for simultaneous MRI and fluorescent 
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imaging of cancer cells and targeted anticancer drug delivery. Our previous studies 

demonstrated that anti-TAG-72 antibody HuCC49ΔCH2 could specifically bind to TAG-

72 expressing LS174T colon cancer cells in vitro and in vivo [25]. HuCC49ΔCH2 and 

fluorescent dye 5-FAM were conjugated to the carboxyl groups of pegylated SPIOs. The 

targeting of the “nanotheranostics” to LS174T cells was assessed using MRI, fluorescent 

imaging and Prussian blue staining.  

To further study the mechanism of intracellular release of Dox, we prepared azido-

doxorubicin (Adox) by replacing the primary amine of Dox with a non-ionizable azido 

group. The intracellular release of Dox and Adox was compared to confirm their release 

mechanism. An HDM2 inhibitor (MI-219)[26] and an Hsp90 inhibitor (17-DMAG), 

which have a secondary amine and a tertiary amine, respectively, were used for 

comparison. The drug-loading capacity and drug release at various pHs among the four 

compounds were compared. The intracellular localization of SPIOs and pH-dependent 

drug release in endosomes/lysosomes were visualized by tracking the fluorescence of 5-

FAM, Dox and Adox. To our knowledge, our studies first visualized the pH dependent 

drug release from SPIOs in endosomes/lysosomes of cancer cells.  

 

4.3 Materials and Methods 

4.3.1 Materials 

SPIOs with a 10 nm iron-oxide core (Catalog No. SHP-10-50) and SuperMag 

Separator™ were supplied by Ocean NanoTech (Springdale, AR). SPIOs coated with 

oleic acid and amphiphilic polymer were dissolved in deionized water (5mg/ml). The 

oleic acid layer and polymer layer are approximately 2 nm in thickness, respectively. 
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Heterobifunctional PEG polymer (NH2-PEG-COOH) was purchased from JenKem 

Technology USA Inc. (Allen, TX). 5-FAM cadaverine was purchased from AnaSpec 

(Fremont, CA). HuCC49ΔCH2 antibody was supplied by National Cancer Institute 

(Bethesda, MD). Cell culture media and phosphate buffered saline (PBS) were purchased 

from Invitrogen (Carlsbad, CA). PD-10 desalting columns were purchased from GE 

Healthcare (Piscataway, NJ). 17-DMAG was purchased from LC Laboratories (Woburn, 

MA). The non-specific IgG antibodies from human serum, N-(3-Dimethyl aminopropyl)-

N′-ethylcarbodiimide (EDC), and N-Hydroxysulfosuccinimide sodium salt (Sulfo-NHS), 

as well as all other chemical reagents, were purchased from Sigma-Aldrich Chemical Co. 

(St. Louis, MO).  

4.3.2 SPIO pegylation and conjugation  

A total of 10 mg (9 nanomoles) of SPIOs were dissovled in 5 ml borate buffer (pH 

5.5). EDC (0.3 mg) and sulfo-NHS (0.4 mg) were added to the mixture and kept stirring 

to activate the carboxyl on the surface of SPIOs. After 20 min, excessive EDC and sulfo-

NHS were removed using a desalting column balanced with pH 5.5 borate buffer. 

HOOC-PEG-NH2 (MW 2,000, 0.3 g) was added to the eluted SPIO solution under 

stirring and immediately adjusted pH to >8.0 by adding 0.5 ml of 30 mM borax solution. 

Desalting columns were used to remove excessive PEG polymers. The pegylated SPIOs 

were concentrated using a superMag separator™ and dissolved in pH 5.5 borate buffer 

for antibody and 5-FAM conjugation. 

Pegylated SPIOs (2 mg/ml, 1 ml) was added with 30 µg EDC and 40 µg of sulfo-

NHS and stirred for 20 min. Excessive EDC and sulfo-NHS were removed using a 

desalting column. Antibody (1 mg, HuCC49ΔCH2 or non-specific IgG in PBS) was 
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added to the eluted solution under stirring. Five minutes later, 0.1 ml of 5-FAM 

cadaverine (2 mg/ml in 30 mM borax solution) was added to the mixture. The mixture 

was stirred at 4 °C and in dark for overnight. A PD-10 column was used to remove the 

excessive 5-FAM cadaverine and SuperMag Separator™ was used to remove the 

unlabeled antibody. SPIOs labeled with HuCC49ΔCH2 and 5-FAM were named MAb-

SPIOs and the SPIOs labeled with non-specific Human IgG and 5-FAM were named 

IgG-SPIOs. Similarly, 1 ml of pegylated SPIOs (2 mg/ml) was labeled with 5-FAM using 

the amide formation reaction. 

4.3.3 Characterization 

Hydrodynamic size and zeta-potential of nanoparticles in each preparation step were 

measured by Dynamic Laser light Scattering (DLS) and M3-PALS technology on a 

Zetasizer Nano ZS particle sizer (Malvern Instruments Ltd, Westborough, MA), 

respectively. Each sample was dispersed in deionized water (0.01 mg/mL) using a water-

bath sonicator for 2 min and measured in a disposable capillary cell cuvette (Malvern 

Instruments Ltd, Westborough, MA). Agarose gel electrophoresis was performed to test 

the migration of the SPIO and its conjugates. Agarose gel (1%) was prepared in 1×TAE 

buffer. The nanoparticles were mixed with bromophenol blue loading buffer (Sigma, St. 

Louis, MO) and 20 µl of sample was loaded into each well. The gel was run in 1×TAE 

buffer at a voltage of 100 V for 1 hr. 

4.3.4 Cell culture  

Human colon cancer cell line LS174T (TAG-72 positive) and human skin cancer cell 

line A375 (TAG-72 negative) obtained from American Type Culture Collection (ATCC, 

Rockville, MD) were cultured in Dulbecco’s modified Eagle high glucose medium 
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(DMEM) supplemented with 10% fetal bovine serum (FBS) and 1% penicillin-

streptomycin (Invitrogen Life Technologies, Carlsbad, CA). The cells were maintained in 

a humidified atmosphere of 5% CO2 at 37 ºC, with the medium changed every other day. 

4.3.5 In vitro MRI scan of cancer cells  

MRI scan of cancer cells was carried out as described previously [11, 27, 28]. Briefly, 

5×10
5
 LS174T cells per well were seeded in a 6-well plate and allowed to grow for 24 hr. 

Cells were incubated with MAb-SPIOs at a concentration equivalent to 0.03 mg/ml 

SPIOs at 37 °C for 1 or 4 hr. The unlabeled SPIOs and IgG-SPIOs were used as controls. 

Then cells were washed twice with PBS and digested by 0.25% trypsin. One million of 

cells were suspended in 1 ml of 1% agarose in 1.5 mL eppendorf tubes and vertexed for 

30 s. After 1% agarose was solidified, samples were then sealed with additional 1% 

agarose to avoid air susceptibility artifacts. The samples were scanned on a Varian 7T 

MRI scanner (Varian, Palo Alto, CA). A spin-echo pulse sequence with multi-echo 

acquisitions was selected from the Varian VnmrJ software package to acquire MR 

phantom images at multiple echo times. Sequence parameters used were: repetition time 

(TR) of 3000 ms, echo times (TE) of 15–150 ms, echo train length of 6 and echo spacing 

of 15 ms, respectively. The spatial resolution parameters were set as follows: an 

acquisition matrix of 128 x 64, field of view of 30 x 30 mm
2
, section thickness of 1 mm, 

and 1 average. The MRI signal intensity (SI) was measured using the Matlab software 

(MathWorks, Inc., Natick, MA). T2 values were obtained by plotting the SI of each 

sample over a range of TE values. T2 relaxation times were then calculated by fitting a 

first-order exponential decay curve to the plot. A copper pseudocolor was added to the 

MR phantom images using Matlab.  
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4.3.6 Prussian blue staining 

A total of 1×10
5
 LS174T cells were seeded in a 24-well plate and allowed to grow 

for 24 hr. Cells were incubated with MAb-SPIOs, SPIOs and IgG-SPIOs (equivalent to 

20 ug/ml of SPIO) at 37°C for 4 hr, washed with PBS twice, and fixed with 

formaldehyde (2%). Then, the cells were treated with a staining solution containing 1:1 

mixture of 5% potassium ferrocyanide and 5% HCl acid at 37 °C for 1hr. The cells were 

then examined under an Olympus BX-51 upright light microscope equipped with an 

Olympus DP-70 high resolution digital camera (Olympus Imaging America Inc., Center 

Valley, PA). 

4.3.7 Fluorescent microscopy 

A total of 2×10
4
 LS174T or A375 cells were seeded in a 96-well plate and allowed to 

grow for 24 hr. After incubated with 5-FAM labeled SPIOs, MAb-SPIOs and IgG-SPIOs 

for 4 hr, LS174T or A375 cells were washed and stained with Hoechst (10 µM) at 37 ºC 

for 1 hr and imaged using Nikon TE2000S epifluorescence microscope coupled with a 

standard mercury bulb illumination, a CCD camera (Roper Scientific, Tucson, AZ), a 20 

X objective, and a triple-pass DAPI/FITC/TRITC filter set (Chroma Technology Corp. 

86013v2). The acquired 12-bit grayscale images were background subtracted. The images 

obtained with DAPI and FITC channels were overlaid using MetaMorph® software 

(Molecular Devices Corporation, Sunnyvale, CA). To visualize the intracellular drug 

release, LS174T cells were incubated with Dox or Adox loaded MAb-SPIO for 1, 6 and 

24 hr and their nuclei were stained with Hoechst. The images obtained with DAPI, FITC 

and TRITC filters were overlaid.   
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4.3.8 Drug loading and release 

Dox and Adox were synthesized in water-insoluble base form. The hydrochloride 

salt of 17-DMAG and MI-219 was converted into water-insoluble free base. 5 mg of 

hydrochloride salt of 17-DMAG or MI-219 was dissolved in 2 ml of 0.1M sodium 

carbonate solution and vortexed for 1 min. 17-DMAG or MI-219 in free base was 

extracted by acetyl acetate (4 ml × 3). Acetyl acetate was evaporated using a Speedvac 

concentrator (Thermo Scientific, Waltham, MA) to obtain 17-DMAG or MI-219 in free 

base. Methanol solution (0.13 ml) of the drug in free base (5 mg/mL) was added 

dropwise with stirring to 2 ml of SPIOs or conjugates (equivalent to 1 mg/ml of SPIOs in 

pH 8.0 buffer). An air flow was used to evaporate methanol and the remaining aqueous 

solution was stirred overnight to allow the drug partition into the oleic acid shell. Drug-

loaded SPIOs or conjugates passed through a PD-10 desalting column to remove 

unencapsulated drug molecules. The eluted SPIO or conjugates were concentrated to 

1mg/ml using a SuperMag Separator™. To determine the loading capacity, a 50 µl 

aliquot of SPIOs or conjugate suspension was diluted with methanol (1 ml), sonicated for 

1 min and centrifuged at 21,000 g for 30 min to spin down nanoparticles. The supernatant 

was diluted with methanol and injected on a LC-MS/MS to quantify the amount of 

released drug. To test pH dependent drug release, a 50 µl aliquot of SPIOs or conjugate 

solution was suspended in 0.95 ml of a series of HOAc/ NH4OAc/ NH4OH buffers at pH 

3.21, 4.19, 4.95, 5.66, 6.65 and 7.21. After incubated for 1 or 24 hr, the buffer solutions 

were centrifuged at 21,000 g for 30 min and the supernatant was further diluted with 

methanol before LC-MS/MS analysis. The percentages of drug release at various pH 

were calculated as the ratios of the amount of released drug in buffers and methanol. 
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LogP of MI-219 was predicted by using MarvinSketch from ChemAxon (Budapest, 

Hungary). 

4.3.9 LC-MS/MS analysis  

LC-MS/MS analysis was performed on an Agilent 1200 HPLC system and a Qtrap 

3200 mass spectrometer (Applied Biosystems, MDS Sciex Toronto, Canada) equipped 

with an electrospray ionization (ESI) source. Aliquots (10 µL) were injected onto a 

reversed-phase Zorbax Bonus-RP column (5 cm x 2.1 mm I.D., 3.5 µm) (Agilent, Santa 

Clara, CA). The mobile phase consisted of 0.1% formic acid in water (A) and 0.1% 

formic acid in methanol (B). The mobile phase A was held at 10% for 1.0min, linearly 

increased from 10% to 90% over 0.1 min, held at 90% for an additional 2 min, and then 

immediately stepped back down to 10 for re-equilibration. The mobile phase flow rate 

was 0.4 mL/min. Quantification of Dox and 17-DMAG was performed by using positive 

multiple reaction monitoring (MRM) scan of the [M+H]
+
 ions and the product ions of 

each compound. The MRM transition channels were 544/361 and 617/58 respectively. 

The collision energy was set as 39 and 67, respectively. Adox and MI-219 were 

quantified using negative MRM scan and transition channels were 568/395 and 550/306, 

respectively. The collision energy was -18 for Adox and -38 for MI-219. HPLC and mass 

spectrometric parameters are optimized by using sample infusion and flow injection 

analysis (FIA). 

4.3.10 MTS assay 

LS174T cells were seeded at 4000 per well in 96-well plates 24 hr prior to the 

experiment. A series of solutions of Dox or Dox-loaded nanoparticles (MAb-SPIOs and 

SPIOs) were prepared in DMEM media and added to the wells. The final concentrations 
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of Dox ranged from 0.01 µM to 5 µM. Adox and Adox loaded nanoparticles were 

dissolved in DMEM media and incubated with LS174T cells. The final concentrations of 

Adox ranged from 0.01 µM to 20 µM. SPIOs without drug and blank medium were used 

as controls. Cell viability was determined after incubated for 4 days. The absorption of 

the cells in each well at 490 nm was measured using a plate reader before and after 

incubated with MTS and PMS (Promega, Madison, WI) for 2 hr. The first measured 

absorption was subtracted from the second measure absorption to minimize the errors 

caused by the absorption of SPIOs at 490 nm. The effect of drug on cell proliferation was 

calculated as the percentage of inhibition in cell growth with respect to the controls. IC50 

values were calculated using WinNonlin Version 5.2.1 (Pharsight, Mountain View, CA). 

 

4.4 Results 

4.4.1 Conjugation and characterization of antibody labeled SPIOs  

Figure 4.1 shows the schematic production of HuCC49ΔCH2 labeled SPIOs (MAb-

SPIOs) or non-specific IgG labeled SPIOs (IgG-SPIOs). The SPIOs contain an iron oxide 

core of 10 nm in diameter. Oleic acid shell, amphiphilic polymer coating and hydrated 

layer increased hydrodynamic size of SPIOs to 18.7 ± 5.1 nm (Figure 4.1). To reduce 

non-specific binding with cell membranes and stabilize SPIOs, SPIOs were pegylated 

using excessive heterobifunctional PEG polymer (NH2-PEG-COOH). The carboxyl 

groups on the surface of SPIOs were activated by EDC and sulfo-NHS and then 

covalently coupled to the primary amine of PEG by forming an amide bond. Pegylation 

of SPIOs resulted in a hydrodynamic size of 27.9 ± 7.7 nm but didn’t significantly 

change zeta-potentials (-35.3 mV v.s. -37.4 mV) (Table 4.1). The carboxyl group of PEG 
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on SIPO surface was covalently linked to the amines of antibody and 5-FAM cadaverine 

through amide formation. SPIOs labeled with antibodies and 5-FAM showed increased 

hydrodynamic sizes (44.6 ± 20.3 nm for MAb-SPIOs and 43.5 ± 22.4 nm for IgG-SPIOs) 

and zeta-potentials (-26.1 mV for MAb-SPIOs and -25.5 mV for IgG-SPIOs). Agarose 

gel electrophoresis was utilized to characterize pegylated SPIOs and nanoconjugates. It 

was found that MAb-SPIOs and IgG-SPIOs migrated slower than SPIOs and pegylated 

SPIOs (Figure 4.2), indicating that MAb-SPIOs and IgG-SPIOs have larger sizes and less 

surface charges. Consistent with DLS measurement, pegylated SPIOs migrated slower 

than SPIOs due to the increased particle size. The results from particle size and zeta-

potential measurement as well as electrophoresis suggested that SPIOs were successfully 

pegylated and labeled with antibodies.            

4.4.2 In vitro imaging of MAb-SPIOs bound to cancer cells  

In current study, fluorescence microscopy imaging, Prussian blue staining and MRI 

scan were used to test cancer cell targeting efficiency of SPIO conjugates. Figure 4.3 

shows the fluorescent microscope images of LS174 cells (TAG-72 positive) after 

incubated with 5-FAM labeled SPIOs (A, B), IgG-SPIOs (C, D) and MAb-SPIOs (E, F). 

Figure 4.3G and 4.3H show the fluorescent images of A375 cells (TAG-72 negative) 

after incubated with MAb-SPIOs. The green fluorescence in Figure 4.3A, 4.3C, and 4.3E 

was from 5-FAM. Nuclei were stained in blue using Hoechst. The merged image (Figure 

4.3F) shows that the incubation with MAb-SPIOs for 4hr resulted in binding and uptake 

of MAb-SPIOs to LS174T cells. However, the binding and uptake of non-targeted IgG-

SPIOs (Figure 4.3D) and SPIOs (Figure 4.3B) were limited. Furthermore, MAb-SPIOs 

didn’t exhibit specific binding to A375 cells with low TAG-72 expression. 
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Figure 4.4 shows Prussian blue staining of LS174T cells incubated with SPIOs (A), 

nonspecific IgG labeled SPIOs (B), and HuCC49∆CH2 labeled SPIOs (C). The blue color 

indicated the presence of SPIOs. The blue color in Figure 4.3C revealed that 

HuCC49∆CH2 greatly improved the cancer cell targeting and uptake of SPIOs.  

LS174T cells from the in vitro cellular uptake experiments were examined by MRI 

to evaluate the potential of MAb-SPIOs as a targeted MR contrast agent. The T2-weighted 

MR phantom images of the cells incubated with SPIOs, IgG-SPIOs, and MAb-SPIOs, 

respectively, for 1 and 4 hr are shown in Figure 4.5. The images of the cells incubated 

with MAb-SPIOs show a negative contrast enhancement (signal darkening) over other 

cells at both 1 and 4 hr. Slight darkening were also observed for cells incubated with 

SPIOs and IgG-SPIOs when compared with control cells. T2 transverse relaxation times 

of the samples were also measured, as shown in Table 4.2. All the nanoparticles exhibited 

a time-dependent uptake. More nanoparticle uptake was observed after 4hr incubation 

compared with 1 hr incubation. LS174T cells incubated with MAb-SPIOs have much 

lower T2 values (87.1-55.5 ms) than those incubated with SPIOs (113.9-91.9 ms) and 

IgG-SPIOs (106.2-100.9 ms), which is consistent with the increased MAb-SPIO uptake 

observed by fluorescence microscopy and Prussian blue staining.  

4.4.3 Drug loading and pH–dependent release from SPIOs 

Four anti-cancer drugs, doxorubicin (Dox), azido-doxorubicin (Adox), HDM2 

inhibitor (MI-219), and Hsp90 inhibitor (17-DMAG) were selected as the model drugs 

and their structures were shown in Figure 4.6A. The four compounds have diverse 

lipophilicity. Dox is a liphophilic compound with a logP of 1.85[10]. The lipophilicity of 

Adox is further increased by attaching a lipophilic azide group. MI-219 is also a 



106 

 

lipophilic compound. The predicted clogP of MI-219 by MarvinSketch was 3.12. In 

contrast, 17-DMAG is a hydrophilic compound with aqueous solubility of 1.4 mg/ml[29].  

Figure 4.6B shows the loading capacities (i.e. wt% of drug/SPIOs) of the four 

compounds. The data showed that 6.91±0.47% of Adox, 3.85±0.62% of Dox, 2.50±0.31% 

of MI-219 and 0.1±0.08% of 17-DMAG were encapsulated into SPIOs, suggesting that 

the loading capacity was correlated with lipophilicity of compounds. Compared with Dox, 

Adox has 1.8-fold loading capacity due to the replacement of NH2 with azide group. The 

loading capacity of MI-219 was lower than that of Adox and Dox. When SPIOs were 

pegylated and labeled with antibody, the loading capacities of Adox, Dox, MI-219 and 

17-DMAG were 6.04±0.61%, 3.16± 0.77%, 2.22 ± 0.42% and 0.09± 0.07%, which are 

similar to SPIOs. The hydrophilic PEG polymer and protein probably slightly affected 

the partitioning of drugs into the oleic acid shell, which is also observed in a previous 

study[2].  

Dox, MI-219 and 17-DMAG contain a primary amine, secondary amine, and tertiary 

amine, respectively, suggesting the compounds can be protonated under various neutral 

or acidic pH values. In contrast, the azide of Adox cannot be protonated. Since 

protonation increases aqueous solubility of lipophilic drugs, the four compounds loaded 

in SPIOs are expected to exhibit different drug release profiles.  

Figure 4.6C shows the percentages of released drugs in buffers of various pH in 1hr. 

Only 22.4% of Dox was released at pH 7.21. However, 55.5% of Dox was released at pH 

5.66 and Dox was almost completely released at pH 3.20. In contrast, the release of Adox 

didn’t change significantly in either neutral or acidic buffers (only 17.6-33.4% of Adox 

was released at these conditions). In spite of the similar structure, Dox and Adox 
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exhibited totally different release profiles, suggesting that the protonation of the primary 

amine resulted in the rapid release of Dox. MI-219 and 17-DMAG also showed pH 

dependent release from SPIOs. More MI-219 and 17-DMAG were released when buffer 

pH decreased. Compared with Dox, comparable percentages of MI-219 (30.7%) and 17-

DMAG (31.7) were released at pH 7.21, but less percentages were released at low pH 

buffers (77.0% of MI-219 and 52.1% of 17-DMAG were released at pH 3.20).   

Figure 4.6D shows the percentages of drug release in buffers of various pH after 

incubated for 24 hr. Compared with the incubation for 1 hr, all the four compounds 

exhibited increased release after 24 hr, suggesting the drug release from SPIOs was a 

dynamic process. The long-term incubation under low pH probably triggered the 

conformation changes and/or dissociation of polymers and oleic acid. Different from the 

other three compounds, the release of Adox was only slightly increased to 33.4-42.0% at 

various pH for 24 hr, indicating the release of Adox is not pH-dependent.  

4.4.4 Intracellular release of Dox and Adox from SPIOs 

Since Dox and Adox in SPIO “nanotheranostics” show different release profiles in 

buffers, Dox is expected to be released more rapidly than Adox after the 

“nanotheranostics” are internalized into the endosomes and lysosomes of cancer cells 

(LS174T). To visualize the intracellular release of Dox and Adox, LS174T cells were 

incubated with Dox-loaded SPIO “nanotheranostics” (Figure 4.7A) and Adox-loaded 

SPIO “nanotheranostics” (Figure 4.7C).  These SPIO “nanotheranostics” were labeled 

with tumor targeting antibody (HuCC49∆CH2) and fluorescent dye (5-FAM) in addition 

to loaded Dox or Adox.  
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The cells were imaged after incubated for 1 hr (first row), 6 hr (second row) and 24 

hr (third row). The images obtained with DAPI (first column), FITC (second column) and 

TRITC (third column) filters were overlaid to generate the merged images (fourth 

column). Green color showed the localization of 5-FAM labeled SPIO “nanotheranostics.” 

Nuclei were stained in blue color. Red color showed the distribution of Dox or Adox. The 

yellow color in the merged images indicated co-localization of 5-FAM-SPIOs and Dox or 

Adox. As a control, LS174T cells were also incubated with Dox alone (Figure 4.7B) and 

Adox alone (Figure 4.7D) for 1, 6 and 24 hr.  

As shown in Figure 4.7A, after incubated for 1 hr, the cell membrane was stained 

with weak green fluorescence, indicating the binding of “nanotheranostics” to TAG-72 

on the membrane. The red fluorescence from Dox also distributed on the membrane and a 

small fraction of the Dox was released into the cells. After 6 hr, the green fluorescence 

concentrated into bright dots, suggesting the accumulation of “nanotheranostics” in 

endosomes/lysosomes. The red fluorescence showed that Dox molecules were released 

from “nanotheranostics” and partitioned into cytosol but the limited co-localization (weak 

yellow color in merged image) of SPIOs and Dox was still observed. After 24 hr, almost 

all the green fluorescence localized in endosomes/lysosomes while most Dox 

accumulated in nucleus. As a comparison, the free Dox partitioned into cell cytosol in 1hr 

(Figure 4.7B), which was much faster than the Dox in SPIO “nanotheranostics.”  Most 

free Dox localized in nuclei after incubated for 6 hr and 24 hr.  

In a sharp contrast, when Adox-loaded SPIO “nanotheranostics” were incubated with 

LS174T cells, the staining pattern was different from that of Dox-loaded SPIO 

“nanotheranostics.” More co-localization of SPIOs and Adox was observed at 1 hr 
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(Figure 4.7C). After incubated for 6 hr and 24 hr, most Adox-loaded SPIO 

“nanotheranostics” localized in endosomes/lysosomes. However, different from Dox, a 

bright yellow color in the merged images was observed, indicating the co-localization of 

SPIOs and Adox in endosomes/lysosomes. This suggest that most Adox was not released 

from lysosome even at the low pHs, and only a fraction of Adox partitioned into cytosol 

even after 24 hr. Figure 4.7D showed the images of cells incubated with free Adox. 

Compared with Dox, the amount of Adox in nuclei was much lower even after 24 hr, 

which was also observed in cells incubated with Adox-loaded SPIO “nanotheranostics” 

(Figure 4.7C). 

4.4.5 Targeted SPIO “nanotheranostics” increase cytotoxicity  

 Dox-loaded SPIO “nanotheranostics” (HuCC49∆CH2 targeted) demonstrated a dose-

dependent cytotoxicity with IC50 of 0.44 µM in LS174T cells (Figure 4.8A), which is 

lower than that of Dox-loaded SPIO “nanotheranostics” (non-targeted) with IC50 of 1.42 

µM. These data suggest that targeted “nanotheranostics” delivered Dox into cancer cells 

and Dox is released from SPIO “nanotheranostics” for anticancer activity.  

In contrast, Adox with an azide group was less potent than Dox. When Adox was 

encapsulated into SPIO “nanotheranostics,” the IC50 was 19.46 µM (non-targeted) and 

13.25 µM (targeted). No significant different was observed. These data suggested that 

Adox was not efficient released from “nanotheranostics” even if they were targeted 

delivered to cancer cells. As a control, 0.1 mg/ml of SPIOs without drugs were incubated 

LS174T cells and no inhibition on cell growth was observed (data not shown).   

 

 



110 

 

4.5 Discussion 

The stability of amphiphilic polymer coated SPIOs in aqueous solution was 

maintained by the electrostatic repulsion between the negatively charged SPIOs. To avoid 

agglomeration, it is critical to maintain the electrostatic repulsion during conjugation of 

antibody and 5-FAM. SPIO agglomeration was observed when 5-FAM cadaverine was 

added to SPIOs  (pH 5.5) activated by EDC and sulfo-NHS. The agglomeration was 

probably caused by the positive charges of 5-FAM cadaverine since the amines of 

cadaverine were protonated at pH 5.5.  To reduce the positive charges, 5-FAM 

cadaverine was dissolved in 30 mM borax solution (pH 9.1) and then added to the 

activated SPIOs. The pH of the mixed solution was adjusted to >8.0, an optimal pH for 

EDC-mediated coupling reactions[30]. Positive charges of 5-FAM cadaverine were 

minimized at pH>8 and no agglomeration was observed. Meanwhile, the mass ratio of 5-

FAM cadaverine and SPIOs was reduced to 1:10 to avoid agglomeration. Additionally, 

the surface conjugation with proteins such as antibody[31, 32] and scFv fragment[33] 

have been reported to be able to stabilize nanoparticles due to the steric stabilization. 

Hence, antibody was first added to the activated SPIOs to stabilize the SPIOs and 5-FAM 

cadaverine was added 5 min later. By using this method, stable MAb-SPIOs, IgG-SPIOs 

and SPIO-5FAM conjugates were prepared. Although 5-FAM and antibody labeling 

increased zeta-potentials of the conjugates, the nanoconjugates still exhibited low zeta-

potentials (-25 to -26 mV) under which there was enough electrostatic repulsion to 

prevent flocculation. 

Although SPIOs can be accumulated in tumors through EPR effect[1] or by applying 

an external magnetic field[6, 34], coupling SPIOs with antibodies or targeting molecules 
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could be an approach to deliver the SPIOs and drugs more effectively[2-4]. Tumor 

associated glycoprotein 72 (TAG-72) is a human mucin like glycoprotein complex, which 

is over-expressed in many epithelial-derived cancers[35]. HuCC49ΔCH2 is a humanized 

CH2 domain-deleted anti-TAG-72 monoclonal antibody. Compared with murine CC49 

antibody, the humanized antibody will overcome immunogenicity problem in clinical 

investigation and the deletion of CH2 domain will decrease the size of nanoconjugates. 

Our previous studies [25, 36] showed that HuCC49ΔCH2 could specifically bind to 

LS174T colon cancer cells which had overexpression of TAG-72. The in vitro binding 

studies by fluorescence microscopy, Prussian blue staining and MRI scan showed the 

specific targeting of the HuCC49ΔCH2 labeled SPIOs (MAb-SPIOs) in LS174T colon 

cancer cells in comparison with SPIOs and IgG-SPIOs. 

SPIOs have been widely used as a negative contrast agent for MRI. Different sizes of 

SPIOs can lead to different magnetic properties. For instance, size dependent MR signal 

is in the range of 4-12 nm, where a continual decrease in the T2-weighted MR signal 

intensity correlated with the increase of the size of SPIOs [21, 37]. Hence, we chose 

SPIOs with an iron oxide core of 10 nm in diameter for cancer cell imaging and drug 

delivery. The T2-weighted phantom images of LS174T cells showed that the SPIOs could 

effectively decrease T2 relaxation time of cancer cells incubated with MAb-SPIOs, 

suggesting that it is feasible to use the nanoconjugate as a MRI contrast agent to image 

the tumors and monitor drug delivery. 

The iron oxide core of SPIOs is coated with a lipophilic oleic acid shell and an outer 

surface of amphiphilic polymer. Lipophilic molecules are expected to penetrate the 

polymer surface and distribute into the oleic acid shell. Hence, the drug loading 
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capacities are found to be correlated with the lipophilicity of the drugs. In this study, the 

loading capacity of Dox was determined as 3.85 wt%. Various Dox loading capacities 

into SPIOs have been reported such as 2%[1], 2.3%[2],and 3.7-8.2%[8, 10]. The 

variation of Dox loading capacities may be caused by the weight percentage of oleic acid 

in the SPIOs, particle size, the amount of added Dox and the separation process. For 

example, 5 nm SPIOs were found to have a slightly higher Dox loading capacity than 10 

nm SPIOs [2] due to the higher surface area/weight ratio or higher percentage of oleic 

acid. The weight ratio of added Dox and SPIOs may affect the drug loading. Since the 

electrostatic interaction between amine of Dox and carboxyl of SPIOs may change zeta-

potential of SPIOs and probably result in flocculation, a low weight ratio of added Dox 

and SPIOs of 1:3 was used as previously reported[2]. LC-MS/MS assays were used to 

quantify the four anti-cancer drugs in this study, which led to accurate and reliable 

estimations of drug loading capacity and release profile. LC-MS friendly acetic 

acid/ammonium acetate/ammonium hydroxide buffer was used for drug loading and 

release. 

pH-dependent release of Dox from nanoparticles have been previously reported[2, 4, 

7, 12], which has been explained by the protonation of NH2 group of Dox under low 

pH[2], weakened interaction between Dox and the partially neutralized carboxyl 

groups[4], and conformation change of amiphiphilic polymers or oleic acid[21]. In this 

study, Dox and Adox exhibited dramatically different release profiles in terms of both 

rate and extent. Furthermore, MI-219 and 17-DMAG which can be protonated at low pH 

also exhibited pH triggered release. The results suggested protonation play a major role in 

drug release at low pH. It was observed that more drugs were release from SPIOs after 
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incubated for 24 hr, indicating the conformation change or dissociation of amiphiphilic 

polymers and oleic acid may also contribute to the drug release. Although 17-DMAG has 

an aqueous solubility of 1.4 mg/ml and a very low loading capacity, it was not totally 

released even at pH 3.20, implying the existence of other interactions between 17-DMAG 

and SPIOs (i.e. electrostatic interaction).   

It has been reported that SPIOs are normally taken up by cells via endocytosis into 

phagosomes, which then eventually fuse with lysosomes for degradation[38]. Due to the 

acidic environment in endosomes and lysosomes, Dox and Adox were expected to show 

different release profiles. A fluorescent microscope was used to visualize the intracellular 

release of Dox and Adox from SPIOs. The very limited co-localization of Dox and 5-

FAM-SPIOs in endosomes/lysosomes at 6 hr suggested that most Dox were released 

from SPIOs and escaped into cytosol, which was consistent with the drug release 

observed in various pH buffers. For Adox release, the co-localization of 5-FAM-SPIO 

and Adox indicates that the release rate of Adox in endosomes/lysosomes was much 

slower than that of Dox. It is not surprising to observe the low accumulation of Adox in 

nuclei even after incubated with either Adox-loaded MAb-SPIOs or free Adox for 24 hr. 

The amino sugar residue especially the amine group was reported[39, 40] to be necessary 

to maintain the maximum van der Waals contact between Dox and DNA base pairs. 

MTS assays showed that HuCC49ΔCH2 labeled SPIO “nanotheranostics” could 

increase the cytoxicity of Dox by more than 3-fold (IC50 1.42 µM v.s. 0.44 µM) 

compared to non-targeted SPIO “nanotheranostics.”  This suggests that HuCC49ΔCH2 

labeled SPIO “nanotheranostics” was targeted to cancer cells, internalized, and drug was 

released to achieve anticancer effect. In contrast, the non-targeted SPIO 
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“nanotheranostics” which did not bind to cancer cells, were not efficiently internalized, 

and the drug was not efficiently released in the cell culture medium at pH 7.4. However, 

when SPIO “nanotheranostics” were loaded with Adox, the targeted SPIO 

“nanotheranostics” did not improve its efficacy compared to non-targeted ones, which 

suggested that Adox were not efficiently released intracellularly even the 

“nanotheranostics” were internalized into cancer cells.      

In summary, we prepared targeted SPIO “nanotheranostics”, which was labeled with 

fluorescence dye and TAG-72 targeting antibody, and loaded with anticancer drugs for 

both cancer cell imaging and anti-cancer drug delivery. The SPIO “nanotheranostics” 

could specifically target to LS174T colon cancer cells for fluorescent cancer imaging and 

effectively decrease the T2 relaxation times in MR imaging. Four anticancer drugs 

(Doxorubicin, azido-doxorubicin, MI-219 and 17-DMAG) were encapsulated into SPIO 

“nanotheranostics” and exhibited pH-dependent release in cancer cells, resulting in an 

improved anticancer efficacy. This targeted “nanotheranostics” provide an integrated 

platform for targeted drug delivery, cancer imaging and visualization of drug release. 
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Table 4.1 Zeta-potential of SPIOs, Pegylated SPIOs, and antibody-labeled SPIOs  

 

 Zeta-potential (mv) 

SPIOs -37.4 ± 1.1 

Pegylate SPIOs -35.3 ± 0.8 

IgG-SPIOs -25.5 ± 2.9 

MAb-SPIOs -26.1± 3.4 
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Table 4.2 T2 relaxation time of LS174T cells incubated with SPIOs and antibody-labeled 

SPIOs 

 

 T2 values (ms) 

 1 hr incubation 4 hr incubation 

Blank control 117.3 ± 1.8 118.9 ± 2.9 

SPIOs 113.9 ± 4.6 91.9 ± 6.3 

IgG-SPIOs 106.2 ± 4.5 100.9 ± 5.1 

MAb-SPIOs 87.1± 3.7 55.5 ± 2.6 
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Figure 4.1 SPIO pegylation and conjugation with antibody and 5-FAM 
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Figure 4.2 Migration of SPIOs, Pegylated SPIOs, and antibody-labeled SPIOs in agarose 

gel electrophoresis  
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Figure 4.3 Fluorescent microscope images of LS174 cells after incubated with 5-FAM 

labeled SPIOs (A, B), nonspecific IgG-SPIO (C, D) and HuCC49∆CH2-SPIOs 

(E, F) and A375 cells after incubated with HuCC49∆CH2-SPIOs (G, H). 

Nuclei were stained with Hoechst.  
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Figure 4.4 Prussian blue staining of LS174T cells incubated with SPIOs (A), nonspecific 

IgG labeled SPIOs (B); and HuCC49∆CH2 labeled SPIOs (C)  
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Figure 4.5 T2-weighted spin-echo MR phantom images of LS174T cells incubated with 

SPIOs, nonspecific IgG labeled SPIOs; and HuCC49∆CH2 labeled SPIOs 
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Figure 4.6 Anti-cancer drug loading capacities and pH-dependent release from SPIOs and 

HuCC49∆CH2 labeled SPIOs. Structures of anti-cancer drugs (A); Anti-

cancer drug loading capacities of SPIOs and HuCC49∆CH2 labeled SPIOs 

(B); Percentages of released drug at various pH in 1 hr (C) and 24 hr (D). 
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Figure 4.7 Intracellular distribution of doxorubicin (Dox), azido-doxorubicin (Adox), and 

HuCC49∆CH2-SPIOs in LS174T cells. Fluorescent images of cells incubated 

with HuCC49∆CH2-SPIOs loaded with Dox (A); free Dox (B); 

HuCC49∆CH2-SPIOs loaded with Adox (C) and free Adox (D). Green color 

shows the localization of SPIOs (5-FAM). Nuclei are stained in blue color. 

Red color shows the distribution of Dox or Adox. The yellow color in the 

merged images indicates co-localization of SPIOs and Dox or Adox. 
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Figure 4.8 Anti-proliferation activities of Dox-loaded HuCC49∆CH2-SPIOs (A) and 

Adox -loaded HuCC49∆CH2-SPIOs (B) on LS174T cells.  
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CHAPTER V 
 

Visualization of cell membrane-triggered premature cargo release  

from polymeric micelles   

 

5.1 Abstract  

The clinical application of polymeric micelles for anticancer drug delivery has been 

limited by the rapid premature release. Understanding the mechanisms of premature drug 

release is critical for design and optimization of nanoscale drug delivery systems. In this 

work, fluorescence resonance energy transfer (FRET) imaging was utilized to visualize 

the in vitro and in vivo release of hydrophobic cargos entrapped in polymeric micelles. 

For in vitro study, a pair of FRET dye, DiOC18(3)/DiIC18(3) (DiO/DiI) was encapsulated 

into poly(ethylene oxide)-b-polystyrene (PEO-PS) micelles separately and both 

physically entrapped DiO and DiI loaded micelles were mixed together and incubated 

with cancer cells. Our results indicated that the payload hydrophobic dyes could be 

rapidly released to cellular membrane as confirmed by increased FRET ratio from *** to 

*** on cellular membrane.  For in vivo study, another near-infra FRET dye, 

DiIC18(5)/DiIC18(7) (DiD/DiR) was applied. The near-infrared emission of DiD and DiR 

allowed their detection by in vivo FRET imaging in real time. In vivo data showed that 

DiD and DiR could be released within 10 minutes as FRET ratio was increased from 0.23 

to 0.32 after tail vein injection and further increased to 0.49 at 2 h post injection. Our 

results also indicated that when co-loaded with hydrophobic nanocrystals like iron oxide 

nanoparticles, this uncontrolled release could be slow down. FRET ratio increase from  
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donor and acceptor individually loaded micelles was an effective way to monitor cargo 

release. By comparing the average FRET ratios of mice treated with mixed donor 

micelles and acceptor micelles and donor/acceptor co-loaded micelles, the extent of  in 

vivo release was estimated.  

 

5.2 Introduction 

Nanoscale drug delivery systems have emerged as a promising tool for cancer 

therapy [1]. For drug molecules physically entrapped and chemically conjugated in the 

core of polymeric nanoparticles, lipid micelles and liposomes, their delivery efficacy 

depends on the integrity of nanoparticles in blood circulation and specific release in 

target tissues[2]. An intractable concern for these delivery systems is the premature 

release of drugs before the nanoparticles reach their targets [3-6]. To develop and 

optimize the drug nanocarriers, it is necessary to detect the possible in vitro and in vivo 

premature drug release. Dual radiolabeling of cargo and liposome with two different 

radio tracers was utilized to detect the in vivo premature drug release [4]. However, this 

approach was tedious and failed to visualize the drug release in real-time.  

Quantitative fluorescence resonance energy transfer (FRET) has been proposed to 

investigate the cargo release from polymeric nanoparticles and nanoparticle-cell 

membrane interaction [3, 7-12]. To monitor the cargo release, FRET micelles were 

prepared by encapsulating the hydrophobic donor dye DiOC18(3) and acceptor dye 

DiIC18(3) (referred to as DiO and DiI, respectively) into poly(ethylene glycol)-block-

poly(D,L-lactic acid) (PEG-b-PDLLA) micelles [10, 12]. During the incubation of FRET 

micelles with cancer cells, FRET efficiencies were observed to rapidly decrease on the 

http://en.wikipedia.org/wiki/Fluorescence_Lifetime_Imaging_Microscopy
http://en.wikipedia.org/wiki/Fluorescence_Lifetime_Imaging_Microscopy
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cell membrane, inside of cells and in the blood vessels, indicating a premature cargo 

release before cell internalization. However, the accumulation of released dyes in 

membrane of nanoscale subcellular organelles (3-4 nm) [13] caused the recovery of 

FRET and even increased FRET efficiency, which compromised the specificity and 

sensitivity of the approach for cargo release detection. Furthermore, the high background 

fluorescence from animal tissues at the emission of DiIC18 (570-580nm) made it difficult 

to visualize the cargo release in individual tissues. 

Superparamagnetic iron oxide nanoparticles (SPIOs) are increasingly used as 

contrast agents and nanocarriers for MRI and drug delivery [14]. Oleic acid-coated 

lipophilic SPIOs and therapeutic drugs were encapsulated into various block copolymer 

micelles for simultaneous MRI and drug delivery [15-18]. Since hydrophobic drugs 

partitioned into the oleic acid coating of SPIOs, sustained drug release from oleic acid 

layer of SPIOs to aqueous buffer was observed over 2 weeks [19]. Since rapid cargo 

release can be attenuated by increasing the hydrophobicity of the micelle core[9], it is 

reasonable to expect that the encapsulation of hydrophobic SPIOs will decrease the 

premature drug release rate. 

In this study, we investigated the in vitro and in vivo cargo release from 

poly(ethylene oxide)-b-poly(ε-caprolactone) (PEO-PCL) and poly(ethylene oxide)-b-

polystyrene (PEO-PS) nanoparticles and SPIO-loaded polymeric nanoparticles. By 

encapsulating donor dye and acceptor dye into the core of individual nanoparticles, the 

FRET efficiency increase on cell membrane and various tissues was found to be an 

effective way to visualize the in vitro and in vivo cargo release. A FRET pair of 

hydrophobic near-infrared dyes DiIC18(5) and DiIC18(7) (referred to as DiD and DiR, 
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respectively) were encapsulated into the core of polymeric nanoparticles to visualize the 

cargo release in xenograft mice. Meanwhile, hydrophobic SPIOs were encapsulated into 

the polymeric nanoparticles to examine if SPIOs can slow down the rapid premature drug 

release. 

 

5.3 Materials and Methods 

5.3.1 Materials 

Lipophilic SPIOs with a 10 nm iron-oxide core and SuperMag Separator™ were 

supplied by Ocean NanoTech (Springdale, AR). PEO-PCL (5.8 kD-b-22.5 kD) and PEO-

PS (9.5 kD-b-18kD) were purchased from Polymer Source Inc. (Dorval, Quebec, 

Canada). DiO, DiI, DiD, and DiR were purchased from Invitrogen (Carlsbad, CA). 

Sephadex LH-20 was purchased from GE Healthcare (Piscataway, NJ). Centrifugal filter 

units (MWCO 10 kD) were purchased from Millipore (Billerica, MA). Human plasma 

and CD-1 mouse plasma in sodium citrate, THF as well as all other chemicals, were 

purchased from Sigma-Aldrich Chemical Co. (St. Louis, MO).  

5.3.2 Polymeric nanoparticle preparation   

SPIO-loaded PEO-PS micelles were prepared by a precipitation method. 10 mg of 

PEG-PS was dissolved in 0.5 ml of THF with 0.075 mg of DiI and 1mg of SPIOs in 

50µL of THF. 2 mL of deionized water was dropped at a speed of 6 ml/min using a 

syringe pump (Fisher Scientific, Pittsburgh, PA) under vigorous stirring. The solution 

was then dialyzed against 2 liters of deionized water using Spectra/Por (MWCO 6-8 kD) 

(Spectrum OR, Irving, TX) for 2 days. Water was changed after 1 day. SPIO-loaded 

nanoparticles were isolated and concentrated using a magnetic separator (Ocean 
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NanoTech, Springdale, AR). Finally, the SPIO-loaded nanoparticles were resuspended in 

PBS and filtered through a 0.45 µm filter, and stored at 4°C. Following this procedure, 

0.75% of DiI and 0.75% of DiO were individually loaded or co-loaded into PEO-PS 

micelles. The micelles were concentrated using a 10 kD MWCO centrifugal filter unit 

and suspended in PBS.  10% of SPIOs and 0.75% or 2.5% of DiO or DiI or both were 

encapsulated into PEO-PS micelles. Similarly, PEO-PCL micelles were prepared by 

individually loading or co-loading 0.75% of DiO and 0.75% of DiI. For in vivo imaging, 

6% of DiD and DiR were individually loaded or co-loaded into PEO-PS micelles in the 

absence or presence of 10% of SPIOs. The concentrations were calculated according to 

the amount of polymers, dyes and deionized water used. 

5.3.3 Characterization of polymeric nanoparticles 

The average hydrodynamic sizes and zeta-potential of nanoparticles were measured 

by dynamic light scattering (DLS) and M3-PALS techniques on a Zetasizer Nano ZS 

particle sizer (Malvern Instruments Ltd, Westborough, MA).  

The morphology of SPIO-loaded polymeric nanoparticles was obtained on a Philips 

CM-100 transmission electron microscope (TEM). Nanoparticle dispersion was dropped 

onto a carbon-coated copper grid, dried in air at room temperature and imaged within the 

next 24 h. 

Fluorescence spectra of various nanoparticles were measured on an LS55 

PerkinElmer luminescence spectrometer (Waltham,MA) with an excitation at 480 nm 

(DiO) or 610 nm (DiD) and an emission scan from 490 to 600 nm (DiO and DiI) or 650 

nm to 850 nm (DiD and DiR). To monitor the possible cargo release or exchange, time-

resolved fluorescence study of nanoparticles individually loaded or co-loaded with donor 



133 

 

and acceptor dyes was performed in human plasma, mouse plasma and rat blood. 

Fluorescent spectra were recorded every 5 min over a 2 hr period. Fresh rat blood was 

collected from an anesthetized Sprague Dawley rat (Charles River, Wilmington, MA) by 

cardiac puncture.  

5.3.4 Cell culture and xenograft mice  

A breast cancer cell line MDA-MB-231 obtained from American Type Culture 

Collection (ATCC, Rockville, MD) was cultured in RPMI medium 1640 supplemented 

with 10% fetal bovine serum (FBS) and 1% penicillin-streptomycin (Invitrogen Life 

Technologies, Carlsbad, CA). The cells were maintained in a humidified atmosphere of 5% 

CO2 at 37 ºC, with the medium changed every other day. Cells were cultured on 8-well 

Lab-Tek glass chamber slides (Thermo Fisher Scientific, Rochester, NY) for FRET 

confocal imaging. 1×10
4
 cells per well were incubated for 2 days to allow cell adherence. 

The cells in 0.2 ml of culture medium were added with 20µL of nanoparticles and 

incubated at 37°C for the desired lengths of time before imaging. 

The animal procedures were performed according to a protocol approved by the 

University Committee for the Use and Care of Animals (UCUCA) at University of 

Michigan. Female athymic nude mice (nu/nu), obtained from National Cancer Institute 

(Bethesda, MD) at 8 weeks of age, were subcutaneously inoculated in the back with 

5×10
6
 MDA-MB-231 cells suspended in a mixture of 50 µL of PBS and 50 µL of 

matrixgel basement membrane (BD Biosciences, San Jose, CA). When the tumor 

implants reached 0.4 cm in diameter, the tumor-bearing mice were subjected to the in 

vivo studies.  
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5.3.5 FRET confocal  microscopy 

The confocal images were acquired by using a digital camera (C9100, Hamamatsu 

Photonics, Japan) mounted on a Visitech VT Infinity 3 array-scanning confocal system 

(VisiTech International Ltd., United Kingdom) attached to a Nikon TE-2000U 

microscope with a 60X Nikon Plan Apo water-immersion objective at room temperature. 

Images were recorded in DiO channel (488 nm excitation, 535 ± 20 nm emission), FRET 

channel (488 nm excitation, 620 ± 20 nm emission) and DiI channel (543 nm excitation, 

620 ± 20 nm emission). The exposure time was 200 ms for DiO and FRET channels and 

100 ms for DiI channel. Cells were incubated with 0.2 mg/mL of PEO-PS or PEO-PCL 

nanoparticles co-loaded with 0.75% of DiO and 0.75% of DiI. Additionally, cells were 

incubated with mixed 0.2 mg/mL of PEO-PS (or PEO-PCL) nanoparticles with 0.75% of 

DiO and 0.2 mg/mL of PEO-PS (or PEO-PCL) nanoparticles with 0.75% of DiI. 

Similarly, PEO-PS nanoparticles loaded with 10% of SPIO and FRET dyes were 

incubated with cells. After 2 hr incubation, images were obtained before and after PBS 

washing by using MetaMorph v6.5.3 (Universal Imaging, Malvern, PA). 

The images obtained after PBS washing were background-subtracted using the 

“Background Correction” tool in MetaMorph. Crosstalk correction and FRET ratios 

calculation were carried out using an in-house FRETCalculator program and Matlab. To 

correct crosstalk, correction coefficients α and β were determined from cells incubated 

with DiI micelles only (α = IFRET/IDiI) and DiO micelles only (β = IFRET/IDiO) [20-22]. 

IFRET, IDiI and IDiO were intensities in each region of interest (ROI) under FRET, DiI, and 

DiO filter sets, respectively. Net FRET was calculated as follows IFRET’= IFRET – α × IDiI – 
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β × IDiO and FRET ratio = IFRET’/( IFRET’+ IDiO’). Where IFRET’ and IDiO’ are the crosstalk 

subtracted IFRET and IDiO. 

5.3.6 In vivo FRET imaging 

In vivo fluorescence imaging was performed with an IVIS Spectrum imaging system 

(Xenogen, Alameda, CA). Images were recorded in DiD channel (640 nm excitation, 680 

nm emission), FRET channel (640 nm excitation, 780 nm emission) and DiR channel 

(710 nm excitation, 780 nm emission). The exposure time was 1s for all the channels. 

Identical illumination settings were used for acquiring all images. Images were acquired 

and analyzed using Living Image 2.5 software (Xenogen, Alameda, CA). 

To determine FRET ratios of various micelles under the IVIS Spectrum imaging 

system, 1 mL of micelles (0.05 mg/mL in PBS) in an eppendorf  tube were imaged using 

DiD (Ex/Em 640/680 nm) and FRET (Ex/Em 640/780 nm) filter sets. The average 

fluorescent intensities were calcuated using automatic ROI (Region of Interest) tool of 

Living Image 2.5 software. The FRET ratio was calculated as follows: FRET ratio = 

IFRET/(IFRET + IDiD), where IFRET and IDiD are the average intensities of micelles under 

FRET and DiD filter sets, respectively, 

Four mice bearing MDA-MB-231 tumors were injected via the tail vein with 1 mg of 

PEO-PS nanoparticles with 6% DiD, 1mg of PEO-PS nanoparticles with 6% DiR, mixed 

DiD nanoparticles (1mg) and DiR nanoparticles (1mg), and 1mg of PEO-PS 

nanoparticles with 6% DiD and 6% DiR. One untreated mouse was used as a blank 

control. The five mice were imaged at 10 min and 2 hr after injection. Similarly, four 

xenograft mice were i.v. injected with 1mg of SPIO-loaded PEO-PS nanoparticles with 6% 

of DiD, 6% of DiR or both DiD (6%) and DiR (6%). The mice were imaged at 10 min, 2 
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hr and 6 hr after injection. To monitor the FRET ratio on mice, the average IFRET and IDiD 

from the whole mouse body were calculated using ROI tool. 

At the end of experiment, the mice were sacrificed using CO2. Blood and tissues 

(tumor, lung, heart, spleen, liver and kidneys) were collected and tissues were rinsed with 

PBS. Blood and tissue samples as well as various nanoparticles in eppendorf tubes were 

imaged using the identical settings as in vivo imaging. The average IFRET and IDiD of each 

sample were calculated using automatic ROI tool and the average FRET ratio of each 

tissue or blood sample was obtained.  

 

5.4 Results 

5.4.1 Preparation and characterization of polymeric nanoparticles  

To visualize the cargo release from polymeric nanoparticles in real-time and 

investigate the release mechanism, a pair of FRET dyes, DiO and DiI, were encapsulated 

into PEO-PS or PEO-PCL micelles individually or together [12, 23]. Figure 5.1and Table 

5.1 show the hydrodynamic sizes of polymeric micelles loaded with donor and acceptor 

dyes in the presence and absence of SPIOs. The incorporation of 10% of SPIOs increased 

the average size of PEO-PS micelles from 46 nm to 142 nm and the incorporation of 6% 

of DiD and 6% of DiR further increased the average size to 160 nm. PEO-PCL micelles 

loaded with 0.75% of DiO and 0.75% of DiI showed an average size of 106 nm. TEM of 

SPIO-loaded PEO-PS micelles showed clusters of 10 nm SPIOs in the cores of micelles 

(Figure 5.1F).  

To examine the in vitro stability, polymeric micelles loaded with 0.75% of DiO 

(donor) and 0.75% of DiI (acceptor) were incubated in rat blood and human plasma at a 
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concentration of 0.2 mg/mL and the spectra were recorded every 5 min until 2 hrs. The 

FRET ratios were calculated as: FRET ratio = IFRET/(IFRET + IDiO) [12]. The release of 

DiO and DiI will increase the distance between the two dyes, resulting in a decrease of 

FRET ratio. As shown in Figure 5.2A and 5.2D, the FRET ratio (0.96) of PEO-PS 

micelles kept constant in rat blood and human plasma over 2 hr. Similarly, the FRET 

ratios of PEO-PCL micelles (0.93) and SPIO-loaded PEO-PS micelles (0.84) did not 

change over 2 hr (Figure 5.2B, C, E and F). The results revealed that no significant of 

cargos were released from PEO-PS and PEO-PCL micelles when they were incubated 

with blood and plasma.    

5.4.2 FRET imaging of cells incubated with DiO/DiI co-loaed micelles 

To visualize cargo release during micelle-cell interaction, PEO-PS micelles co-

loaded with 0.75% of DiO and DiI were incubated with MDA-MB-231cancer cells at a 

concentration of 0.2 mg/mL for 2 hrs. Images were obtained in the presence of micelles 

in the media (Figure 5.3, A1-4) and after washing with PBS (Figure 5.3, B1-4). As shown 

in A1 and A2, both DiI and DiO were detected on the cell membrane and intracellular 

organelles. It’s not surprising since DiO and DiI are designed to stain cell membrane by 

inserting their long alkyl tails into the cell membranes. Once applied to cells, the dyes 

diffused laterally within the plasma membrane and were then internalized in to cells [24]. 

The accumulation of DiI and DiO resulted in strong FRET signals in plasma membrane 

and endosomes/lysosomes (Figure 5.3A3). Meanwhile, FRET effect diminished 

fluorescence of DiO on cell membrane (Figure 5.3A2). The pseudo colors in Figure 

5.3A4 showed higher FRET ratios on plasma membrane and endosomes/lysosomes than 

that of micelles in the media, suggesting that DiO and DiO were released from micelles 
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to plasma membrane and accumulated in endosomes/lysosomes. Considering the 

thickness of cell membrane (3-4 nm) [13] and diameter of PEO-PS micelles (46 nm), it is 

understandable that the accumulation of DiO and DiI in cell membrane results in a higher 

FRET ratio in cell membrane than that of micelles in the media, which was decreased by 

the release of DiO and DiI. Furthermore, the accumulation of DiO and DiI in plasma 

membrane indicated that DiO/DiI release from micelles was faster than their cell 

internalization. Due to the existence of micelles in the media, background subtraction 

could not be performed and accurate FRET ratios were not obtained. Figure 5.3B1-4 

showed the images obtained after washing with PBS. After background subtraction and 

crosstalk correction, the average FRET ratio on plasma membrane was determined as 

0.99. Rapid cargo release was also observed when MDA-MB-231 cells were incubated 

with PEO-PCL micelles loaded with 0.75% of DiO and 0.75% of DiI (Figure 5.4). 

10% of SPIOs, 0.75% of DiO and 0.75% of DiO loaded PEO-PS micelles were 

incubated with MDA-MB-231 cells for 2hr. In the presence of micelles in the media, the 

FRET signals (Figure 5.3C3) and FRET ratios (Figure 5.3C4) on plasma membrane were 

observed to be lower than that on endosomes/lysosomes and micelles in the media, 

indicating lower concentrations of DiO and DiI in plasma membrane than that in 

endosomes/lysosomes. This suggested that DiO/DiI release from SPIO-loaded micelles 

was slower than DiO/DiI cell internalization. The incorporation of 10% of SPIOs 

decreased DiO/DiI release rate. After washing with PBS (Figure 5.3D1-4), the images 

showed low FRET signals on plasma membrane and an average FRET ratio of 0.86, 

which was due to the reduced DiO/DiI release and nonspecific binding between SPIO-

loaded micelles and cell membrane. 
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5.4.3 Cargo release from micelles individually loaded with DiO and DiI 

To monitor the cargo release, 0.75% of DiO or DiI were encapsulated into polymeric 

micelles individually. 0.1 mg/mL of DiO-loaded micelles was mixed with 0.1 mg/mL of 

DiI-loaded micelles. FRET spectra of the mixed micelles were recorded every 5 min over 

2 hr. The results (Figure 5.5) showed that the FRET ratios did not increase in cell culture 

media with 10% FBS over 2 hr, suggesting that DiO/DiI exchange between DiO micelles 

and DiI micelles was very slow. The fluorescence at 570 nm was caused by spectra 

crosstalk (DiI was slightly excited at 480 nm). 

Since the DiO/DiI exchange in media was very limited, the mixed PEO-PS DiO 

micelles (0.2 mg/mL) and PEO-PS DiI micelles (0.2 mg/mL) were incubated with MDA-

MB-231 cells for 2 hr. As shown in Figure 5.6A4, the increased FRET ratios on both 

plasma membrane and intracellular organelles indicated the release of DiO and DiI from 

PEO-PS micelles. Similarly, incubation with DiO loaded PEO-PCL micelles and DiI-

loaded PEO-PCL micelles resulted in higher FRET ratios on plasma membrane and 

organelles (Figure 5.6B4), suggesting that DiO and DiI were released from PEO-PCL 

micelles to cell membrane. Figure 5.6C3 and C4 showed that the incorporation of 10% of 

SPIOs almost totally eliminate FRET signal in the cells, indicating only a small fraction 

of DiO and DiI was released into cells. The fluorescence of DiO and DiI detected on the 

cells (Figure 5.6C1 and C2) were mainly from the internalized micelles and micelles 

nonspecifically bound to plasma membrane. To test if the effect of SPIOs on cargo 

release was dose-dependent, 2.5% of DiO and 2.5% of DiI were individually 

encapsulated into 10% SPIO-loaded PEO-PS micelles. Figure 5.6D1-4 showed the FRET 

effect on plasma membrane and endosomes/lysosomes when the cells were incubated 
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with 0.2 mg/mL of SPIO-loaded DiO (2.5%) micelles and 0.2 mg/mL of SPIO-loaded DiI 

(2.5%) micelles for 2 hr. The results suggested that SPIOs decreased the release of 

DiO/DiI at low concentration (0.75%) but did not prevent the release when DiO/DiI 

saturated the oleic acid coating of SPIOs.    

5.4.4 In vivo cargo release from DiD/DiR loaded micelles 

To visualize the in vivo cargo release, two near-infrared dyes, DiD and DiR 

(analogues of DiI), were used as FRET donor and acceptor, respectively. Considering the 

large volume of cell membrane in mice, 6% of DiD and 6% of DiR were co-loaded or 

individually loaded into PEO-PS micelles in the absence and presence of 10% of SPIOs. 

Time-resolved spectra of mixed DiD micelles and DiR micelles at 0.1 mg/mL in mouse 

plasma revealed that the DiD and DiR exchange between PEO-PS micelles was very 

limited during 2 hr incubation (Figure 5.7).  

Under the IVIS imaging system, DiD (6%) and DiR (6%) co-loaded PEO-PS 

micelles exhibited an average FRET ratio of 0.89 in the absence of SPIOs and 0.86 in the 

presence of 10% SPIOs. Due to the spectral crosstalk, the mixed DiD micelle (0.05 

mg/mL) and DiR micelles (0.05 mg/ml) showed an average FRET ratio of 0.23 in the 

absence of SPIOs and 0.19 in the presence of 10% of SPIOs. 

Figure 5.8 A and B showed the images of mice 10 min (A) and 2 hr (B) after i.v. 

injection of DiD micelles, DiR micelles, mixed DiD micelles and DiR micelles, and 

DiD/DiR co-loaded micelles. As shown in Figure 5.8A and B, FRET was detected on the 

mouse treated with mixed micelles in at 10 min and FERT signal dramatically increased 

at 2 hr, suggesting the rapid cargo release to cell membrane. Figure 5.8D showed the 

changes of FRET ratios from the mice treated with mixed micelles and co-loaded 
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micelles. At 10 min after injection, FRET ratio of mixed micelles increased from 0.23 to 

0.29 while the FRET ratio of co-loaded micelles decreased from 0.89 to 0.60. At 2 hr post 

injection, the FRET ratio of mixed micelles further increased to 0.48 while the FRET 

ratio of co-loaded micelles also decreased to 0.48. The comparable FRET ratios between 

the mice treated with mixed micelles and co-loaded micelles suggested that most DiD 

and DiR were released from PEO-PS micelles in 2 hr.  Figure 5.8C showed the images of 

blood and tissue samples of the mice scarificed 2 hr post injection of mixed micelles and 

co-loaded micelles. Figure 5.8E showed the FRET ratios of the blood and tissue samples. 

The similar FRET ratios in tissues of the two mice indicated the complete DiD/DiR 

release. Both high FRET intensities and high FRET ratios (0.61-0.69) were observed 

from liver and spleen of the mice treated with mixed micelles and co-loaded micelles, 

indicating a large amount of DiD/DiR in the tissues and high concentrations of DiD/DiR 

in the cell membrane, which was due to reticuloendothelial system (RES) uptake of 

nanoparticles by phagocytes in spleen and Kupffer cells in liver [25]. A high FRET 

intensity but a low FRET ratio (0.41) in the lungs of the mouse treated with co-loaded 

micelles sugested the accumulation of micelles in the lungs but low DiD/DiR 

concentrations in lung cell membrane, which might be explained by the large surface area 

of capillaries in the lungs. Both low FRET inentsities and low FRET ratios (0.27- 0.29) in 

blood of the two mice indicated limited DiD/DiR release to red blood cells, which was 

reported previously[10]. 

The effect of hydrophobic SPIOs on the cargo release was investigated in vivo. 

Figure 5.9A, B and C showed the images of mice 10 min (A), 2 hr (B) and 6 hr (C) after 

i.v. injection of SPIO/DiD micelles, SPIO/DiR micelles, mixed SPIO/DiD micelles and 

http://en.wikipedia.org/wiki/Phagocytosis
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SPIO/DiR micelles, and SPIO/DiD/DiR co-loaded micelles. Figure 5.9E showed the 

change of FRET ratios from the mice treated with mixed micelles and SPIO/DiD/DiR 

micelles. FRET signal was detected in 10 min from the mouse treated with mixed 

micelles (Figure 5.9A), indicating a rapid release of DiD/DiR from SPIO-loaded micelles. 

The FRET ratios of mixed micelles in the mouse increased from 0.22 (10 min) to 0.44 (2 

hr) and 0.47 (6 hr) while the FRET ratios of SPIO/DiD/DiR micelles decreased from 0.65 

(10 min) to 0.58 (2hr) and 0.56 (6 hr).  Even at 6 hr, FRET ratio from the mouse treated 

with mixed micelles (0.47) was still lower than that from the mouse treated with 

SPIO/DiD/DiR micelles, indicating that the incorparation of 10% of SPIOs slowed down 

the release of DiD/DiR. Images of blood and tissues of the two  mice (Figure 5.9D) 

showed the accumulation of DiD/DiR in liver and spleen. The low blood FRET ratio 

(0.22) of the mouse treated with mixed micelles (Figure 5.9F), which was similar to that 

of mixed micelles in PBS (0.19), suggested that the DiD/DiR exchange between SPIO-

loaded micelles and the cargo release to red blood cells were very limited. The tissue 

FRET ratios of the mouse treated with SPIO/DiD/DiR micelles were higher than that of 

the mouse treated with mixed micelles, suggesting that DiD and DiR were not completely 

released from the oleic acid layer of SPIOs. 

 

5.5 Discussion 

Clinical trails have revealed dramatically different pharmacokinetic profiles of 

doxorubicin (DOX) in liposomes and polyemric micelles[26, 27]. Liposomal formation 

of DOX resulted in a 556-fold increase in AUC and 300-fold decrease in volume of 

distribution [26]. In contrast, DOX encapsulated into Pluronic
®

 block copolymer 



143 

 

micelles showed similar AUC to free doxorubicin in humans [27]. To successfully 

deliver drug to its target, it is critical to understand the mechanisms of premature drug 

release.  

In current study, PEO-PS and PEO-PCL block copolymers were selected to prepare 

FRET micelles. Due the high glass transition temperature of polystyrene (107ºC) [28] and 

polycaprolactone (60ºC) [29], PEO-PS and PEO-PCL micelles were kinetically frozen 

with low liquidity at 37ºC. Thus, when DiO micelles and DiI micelles were mixed in cell 

culture media, the inter-micelles cargo exchange was very slow (Figure 5.5). Both PEO-

PS micelles  and PEO-PCL micelles showed limited cargo release in rat blood, human 

plasma (Figure 5.2) and mouse plasma (Figure 5.7). Although serum protein α- and β- 

globulins were reported to trigger the rapid disassembly of PEG-PDLLA micelles and 

release of DiO/DiI[10], it was also observed that DiO/DiI release in serum could be 

reduced by increasing the hydrophobicity of the core-forming block of copolymer [9]. 

The high hydrophobicity of PS and PCL blocks prevented the release of DiO/DiI to 

serum proteins. Furthermore, the accumulation of DiD/DiR in lungs, spleen and liver 

(Figure 5.8C), a typical biodistribution pattern of nanoparticles, suggested that DiD and 

DiR were not totally released in blood circulation and micelles were not disrupted by 

serum proteins.   

Consistent with previous reports [6, 8, 12], the rapid release of hydrophobic dyes to 

plasma membrane was visualized in current study by FRET imaging. The FRET ratios on 

plasma membrane depended on the cargo release rate and membrane internalization rate. 

For leaky micelles, the rapid cargo release caused the accumulation of DiO and DiI in 

plasma membrane. It was not surprising to observe high FRET ratio on plasma membrane 
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saturated with DiO and DiI since the thickness of the lipid bilayer is only 3-4 nm. When 

cells were incubated with DiO/DiI co-loaded micelles, the decrease in FRET ratio caused 

by the cargo release was attenuated by the FRET ratio increase on cell membrane. Hence, 

to monitor drug release, especially in vivo release, it is more sensitive and specific to 

detect FRET increase on cell membrane by using micelles individually loaded with FRET 

dyes. 

Since the incubation concentration of micelles (0.2 mg/mL) was much higher than 

critical micelle concentrations (CMC) of PEO-PS and PEO-PCL micelles, the rapid 

release was not likely caused by micelle disassembly or polymer exchange [8, 12]. 

Recently, the mechanisms of rapid cargo release from nanocarrier to nanoacceptors were 

investigated [30]. The rapid cargo release from nanocarriers which were stable in bulk 

solution, was found to be induced by abundant empty nanoacceptors. The cargo was 

translocated between carrier and acceptor through a short-distance (< 1µm) diffusion by 

following a Fickian spherical diffusion model. Hence, the rapid release of DiO/DiI was 

probably driven by the large volume of cell membrane. The Brownian motion of micelles 

in the media increased their short-distance ineraction with plasma membrane and 

facilitated cargo release. For nanoscale drug delivery systems, it is recommended that the 

cargo release assay should be conducted in the presence of abundant cell membrane or 

artificial lipid bilayer.   

As expected, oleic acid layer in SPIOs slowed down the release of DiO/DiI, 

especially for micelles with 0.75% of DiO/DiI. It is not surprising since oleic acid is as 

hydrophobic as oleate and palmitate, the hydrophobic tails of membrane phospholipids, 

which are more hydrophobic than PS and PCL blocks. Hence, the relative high 
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hydrophobicity of lipid bilayer also triggers the rapid cargo release from micelles. This 

can partially explain the less premature release of DOX from liposomes than that from 

polymeric micelles. For drugs with a low loading capacity, the encapsulation of 

hydrophobic nanoparticles into the micelles is an effective way to reduce premature drug 

release. However, for drugs with high loading capacity, increasing the core 

hydrophobicity to be comparable to that of cell membrane is another option.  

In current study, near-infrared FRET imaging was utilized to noninvasively visualize 

in vivo caro release. The FRET ratio increase from DiD/DiR individually loaded micelles 

was employed to monitor the DiD/DiR release and the FRET ratio decrease from 

DiD/DiR co-loaded micelles was used as a control. In theory, if two mice are given the 

same amount of FRET pair dyes and the volumes of phospholipid bilayer bteween the 

two mice are assumed to be equal, the avearge FRET ratios of the mice should be same 

when the dyes are totally released to cell membrane. Hence, the difference between the 

FRET ratios of mice treated with individually loaded micelles and co-loaded micelles can 

be used to monitor the extent of cargo release in real-time. For in vitro FRET imaging, 

FRET ratio on cell membrane was observed to increase since the membrane was rapidly 

saturated with DiO/DiI in the presence of abundant of micelles in the media. In contrast, 

due to the large volume of cell membrane in mouse tissues, the FRET ratios of all the 

collected tissues were lower than that of intact DiD/DiR co-loaded micelles.  

 

5.6 Conclusion 

 In summary, in vitro and in vivo FRET iamging was used to visualize the rapid 

cargo release from polymeric nanoparticles and SPIO-loaded polymeric nanoparticles. 



146 

 

SPIOs were found to be able to slow down in vitro and in vivo cargo release in a dose-

dependent mode. The large volume and high hydrophobicity of cell membrane were 

found to trigger premature cargo release of nanoparticles. The FRET ratio increase from 

donor and acceptor individually loaded micelles was an effective way to monitor cargo 

release. Although the FRET imaging method was designed to monitor the release of 

hydrophobic dyes physically entrapped into nanocarriers, it may be modified to detect the 

release of dyes covalently conjugated to nanoparticles.   
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Table 5.1 Hydrodynamic size of polymeric nanoparticles  

 Average hydrodynamic sizes (nm) 

PEO-PS with DiO/DiI 46 ± 9 

PEO-PCL with DiO/DiI 106 ± 30 

PEO-PS with SPIO, DiO/DiI 142 ± 50 

PEO-PS with DiD and DiR 54 ± 13 

PEO-PS with SPIO, DiD/DiR 160 ± 61 
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Figure 5.1 Hydrodynamic size of PEO-PS with DiO/DiI (A), PEO-PCL with DiO/DiI (B), 

PEO-PS with SPIOs and DiO/DiI (C), PEO-PS with DiD/DiR (D), PEO-PS 

with SPIOs and DiD/DiR (E), and TEM of SPIO-loaded PEO-PS micelles (F) 
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Figure 5.2 Time-resolved spectra of DiO and DiI co-loaded micelles in rat blood (A, B, C) 

and human plasma (D, E, F). Spectra were recorded every 5 min over a 2 hr 

period. (A) and (D): PEO-PS micelles with DiO/DiI; (B) and (E): PEO-PCL 

micelles with DiO/DiI; (C ) and (F): PEO-PS micelles with SPIO, DiO and 

DiI. 
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Figure 5.3 FRET images of MDA-MB-231 cells incubated with DiO/DiI co-loaded PEO-

PS micelles for 2 hr (Row A, with micelles in the media; Row B, micelles 

were washed with PBS), or SPIOs/DiO/DiI co-loaded PEO-PS micelles for 

2hr (Row C, with micelles in the media; Row D, micelles were washed with 

PBS)  

 

 
 

 

 

 

 

 

 

 



153 

 

Figure 5.4 FRET images of MDA-MB-231 cells incubated with DiO/DiI co-loaded PEO-

PCL micelles for 2 hrs (Row A, with micelles in the media; Row B, micelles 

were washed with PBS). 
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Figure 5.5 Time-resolved spectra of mixed micelles individually loaded with DiO and DiI 

in cell culture media with 10% FBS. Spectra were recorded every 5 min over 

a 2 hr period. (A) PEO-PS micelles; (B) PEO-PCL micelles; and (C ) SPIO-

loaded PEO-PS micelles. 
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Figure 5.6 FRET images of MDA-MB-231 cells incubated with mixed DiO micelles and 

DiI micelles for 2 hrs. A1-A4, mixed PEO-PS micelles with 0.75% of DiO 

or DiI; B1-B4, mixed PEO-PCL micelles with 0.75% of DiO or DiI; C1-C4, 

mixed SPIO-loaded PEO-PS micelles with 0.75% of DiO or DiI; and D1-D4, 

mixed SPIO-loaded PEO-PS micelles with 2.5% of DiO or DiI. 
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Figure 5.7 Time-resolved spectra of mixed DiD micelles and DiR micelles in mouse 

plasma. Spectra were recorded every 5 min over a 2 hr period. (A) PEO-PS 

micelles with 6% DiD or 6% DiR; (B) SPIO-loaded PEO-PS micelles with 6% 

DiD or 6% DiR. 
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Figure 5.8 In vivo and ex vivo FRET images of xenograft mice administered with 

DiD/DiR loaded micelles. Images were acquired at (A) 10 min and (B) 2 hr 

post i.v. injection. (C) Images of tissues collected 2 hr post i.v. injection; (D) 

Average FRET ratios measured on the whole mouse body. (E) Average FRET 

ratios measured on the dissected tissues. 
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Figure 5.9 In vivo and ex vivo FRET images of xenograft mice administered with 

SPIO/DiD/DiR loaded micelles. Images were acquired at (A) 10 min, (B) 2 

hr and (C) 6 hr post i.v. injection. (D) Images of tissues collected 6 hr post i.v. 

injection; (E) Average FRET ratios measured on the whole mouse body. (F) 

Average FRET ratios measured on the dissected tissues. 
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CHAPTER VI 
 

Assessment of the Integrity of SPIO-Loaded Poly(ethylene oxide)-b-Polystyrene 

Nanoparticles in Cancer Cells  and Xenograft Mice  

 

6.1 Abstract 

Premature drug release is one of the challenges which limit the clinical application of 

polymeric micelles for drug delivery. Investigating the micelle integrity is therefore 

essential to understanding the mechanisms of premature drug release. In this study, 

fluorescence-quecnhing by SPIOs and FRET analysis were used to assess in vitro and in 

vivo integrity of PEO-PS micelles and SPIO-loaded PEO-PS micelles. The micelle 

disassembly in cell culture media and FBS was limited over 24 h. PEO-PS micelles kept 

integrity during cell internalization and the micelles gradually lost integrity in 

endosomes/lysosomes of cancer cells. Rapid in vivo disassembly upon blood dilution was 

not observed and the gradual micelle disassembly mainly occurred in livers, spleens and 

tumors over 24h. In summary, the premature drug release from PEO-PS micelles was not 

caused by micelle disassembly. 
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6.2 Introduction 

In polymeric nanoassemblies, polymer unimers always exist in a dynamic 

equilibrium with the nanoparticles at concentrations above (Critical Micelle 

Concentration) CMC. It’s generally believed that the premature drug release in blood 

circulation is mainly caused by blood dilution and subsequent nanoparticle disassembly 

after i.v. administration [1, 2]. However, rapid cargo release was detected even when the 

blood concentrations of polymers were much higher than their aqueous CMC [3], 

suggesting the rapid release was not caused simply by blood dilution. To decrease 

premature drug release, it’s important to determine if the rapid release is caused by 

premature disassembly or leakage. It is generally believed that the contacts with 

biological fluids, macromolecules, proteins, lipids and cells might cause the disassembly 

of polymeric nanoparticles [4]. Serum proteins alpha- and beta- globulins were found to 

accelerate the cargo release from poly(ethylene glycol)-poly(D,L-lactic acid) (PEG-

PDLLA) micelles [3]. However, no direct evidence was provided to support the rapid in 

vivo disassembly of micelles. 

Although the disassembly of polymeric nanoparticles in simple aqueous solutions 

has been studied using classical microscopy-, spectroscopy-, and chromatography-based 

methods, the intracellular and in vivo disassembly is still hard to be monitored and the 

direct evidence for rapid in vivo disassembly of micelles is very limited [4, 5]. The only 

reported effort to monitor the intracellular and in vivo disassembly of polymeric micelles 

was the development of a fluorogenic-based approach [4]. In this design, a fluorogenic 

dye fluorescein-5-carbonyl azide diacetate (F-5-CADA) was covalently conjugated to the 

hydrophobic block end of PEO-b-PCL. The fluorescence was not detectable until the 
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PEO-b-PCL micelle was disrupted and the ester group of the dye was cleaved. The in 

vitro and in vivo micelle disruption was monitored by detecting fluorescence. However, 

the limitation of this fluorogenic-based approach is obvious since it requires an additional 

F-5-CADA activation step (ester cleavage). The estimation of disassembly was based on 

two assumptions: F-5-CADA in the core of intact micelles cannot be activated and F-5-

CADA is rapidly and totally activated upon the micelle disassembly, which might not be 

always true.  

Due to their strong absorbance, gold nanoparticles and SPIOs are able to quench the 

fluorescence of dyes [6, 7] and quantum dots[8, 9] in close proximity by attenuating both 

the excitation beam and the fluorescence signal (inner filter effect). In previous reports, 

cationic tetramethylrhodamine (TAMRA)[10] and sulforhodamine 101[11] were  

conjugated to the hydrophobic end of block copolymers and the fluorescent dye-labeled 

polymers were used to encapsulate SPIOs. However, fluorescent dyes could not be self-

quenched or quenched by SPIOs since the positive charges prevented their intramolecular 

interaction and close interaction with oleic acid-coated SPIOs. Furthermore, it was 

argued that the conjugation with cationic or anionic dyes changed cell internalization and 

intracellular distribution of nonionic block copolymers [12, 13]. To acquire a potent 

fluorescence quenching by the core-loaded SPIOs and monitor the integrity of nonionic 

micelles, neutral and nonpolar dyes are required.  

BODIPY dyes are relatively nonpolar and the chromophore is electrically neutral 

[14-16]. These properties tend to minimize dye-induced perturbation of conjugate 

functional properties. In current study, SPIOs were encapsulated into the core of 

poly(ethylene oxide)-b-polystyrene micelles to quench the BODIPY dyes conjugated to 
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polystyrene end. The quenched fluorescence recovered upon the in vitro and in vivo 

disassembly of polymeric micelles. Furthermore, a pair of FRET dyes BODIPY-FL 

(donor) and BODIPY-TMR (acceptor) was conjugated to polystyrene end of PEO-PS. 

The conjugation with neutral and nonpolar BODIPY dyes allowed the formation of a 

compact micelle core and a strong FRET effect between the two dyes. The FRET effect 

was utilized to monitor the in vitro disassembly of PEO-PS micelles.   

 

6.3 Materials and Methods 

6.3.1 Materials 

Lipophilic SPIOs with a 10 nm iron-oxide core and SuperMag Separator™ were 

supplied by Ocean NanoTech (Springdale, AR). PEO-b-PS-NH2 (5 kD-b-5kD) were 

purchased from Polymer Source Inc. (Dorval, Quebec, Canada). BODIPY-FL (ex/em 

504/513 nm), BODIPY-TMR (ex/em 535/574 nm), BODIPY-665 (ex/em 650/665 nm) 

succinimidyl ester and DiO were purchased from Invitrogen (Carlsbad, CA). Sephadex 

LH-20 was purchased from GE Healthcare (Piscataway, NJ). Centrifugal filter units 

(MWCO 10 kD) were purchased from Millipore (Billerica, MA). Dialysis tubing 

(MWCO 3.5-5 kD) was supplied by Spectrum Laboratories, Inc (Rancho Dominguez, 

CA). Tetrahydrofuran (THF) and other chemical reagents were purchased from Sigma-

Aldrich Chemical Co. (St. Louis, MO).  

6.3.2 Synthesis of BODIPY dye-labeled PEO-PS   

A total of 128.5 mg of PEO-PS-NH2 (12.8µmol) was dissolved in 2 ml anhydrous 

THF. 10 mg of BODIPY-FL succinimidyl ester (25.7 µmol) was added under stirring. To 

the mixture, 10 μL of triethylamine was added and the reaction continued overnight 

http://www.sigmaaldrich.com/catalog/ProductDetail.do?lang=en&N4=401757|SIAL&N5=SEARCH_CONCAT_PNO|BRAND_KEY&F=SPEC
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under stirring. BODIPY-FL labeled PEO-PS (PEO-PS-FL) was purified using Sephadex 

LH-20 columns in triplicate. The purified PEO-PS-FL in THF was filtered through a 

0.45µM filter and dried under vaccum. The powder was stored at -20ºC. The extent of 

BODIPY-FL conjugation was determined by 
1
H-NMR. PEO-PS polymer was labeled 

with BODIPY-TMR (PEO-PS-TMR) and BODIPY-650/665 (PEO-PS-665) following 

similar procedures. 

6.3.3 Polymeric nanoparticle preparation   

SPIO-loaded PEO-PS-BODIPY micelles were prepared by a precipitation method. 

10 mg of PEG-PS-FL, PEG-PS-TMR, or PEG-PS-665 was dissolved in 0.5 ml of THF 

and 1mg of SPIOs was added to the solution. 2 mL of deionized water was dropped at a 

speed of 6 ml/min using a syringe pump (Fisher Scientific, Pittsburgh, PA) under 

vigorous stirring and followed by 20 min of stirring. The solution was then dialyzed 

against 2 liters of deionized water for 2 days. Water was changed every day. SPIO-loaded 

nanoparticles were isolated and concentrated using a magnetic separator (Ocean 

NanoTech, Springdale, AR). Finally, the SPIO-loaded nanoparticles were resuspended in 

PBS (0.2 mM polymer) and filtered through a 0.45 µm filter, and stored at 4°C. By 

following this procedure, SPIO-free PEG-PS-FL, PEG-PS-TMR, and PEG-PS-665 

micelles were prepared. The micelles were concentrated using a 10 kD MWCO 

centrifugal filter unit and suspended in PBS (equivalent to 0.5 mM of polymer). To 

prepare FRET micelles, 10 mg of PEG-PS-FL and 10 mg of PEG-PS-TMR were 

dissolved in 0.5 mL of THF in the presence or absence of 2 mg of SPIOs. The FRET 

micelles were suspended in PBS at a concentration equivalent to 1 mM of polymer.  
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6.3.4 Characterization of polymeric nanoparticles 

The average hydrodynamic sizes were measured using a Zetasizer Nano ZS particle 

sizer (Malvern Instruments Ltd, Westborough, MA). The morphology of SPIO-loaded 

polymeric micelles was obtained on a Philips CM-100 transmission electron microscope 

(TEM). Nanoparticle dispersion was dropped onto a carbon-coated copper grid, dried in 

air at room temperature and imaged within the next 24 h. Fluorescence spectra of various 

micelles were measured on an LS55 PerkinElmer luminescence spectrometer (Waltham, 

MA) with an excitation at 480 nm for BODIPY-FL and FRET signal, 520 nm for 

BODIPY-TMR and 610 nm for BODIPY-665. To evaluate the quenching effect of SPIOs 

on fluorescence of BODIPY-TMR and BODIPY-665, SPIO-loaded micelles were 

suspended in PBS or THF (5µM) and the fluorescent spectra of micelles were recorded. 

6.3.5 Integrity of micelles in PBS, cell culture media and fetal bovine serum   

Aliquots of FL-TMR FRET micelles and SPIO-loaded FRET micelles were 

incubated in the medium (phosphate-buffered saline, RPMI 1640 with 10% fetal bovine 

serum (FBS), or 100% FBS) in triplicate in a 96-well plate for 0-24 h. The final polymer 

concentrations were 50 µM and 5 µM for FRET micelles and 20 µM and 2 µM for SPIO-

loaded FRET micelles. Fluorescence of BODIPY-FL (ex/em 488/520 nm) and FRET 

signals (ex/em 488/590 nm) were measured using a Synergy plate reader (BioTek, 

Winooski, VT) at the end of each time point. The FRET ratios were calculated as FRET 

ratio = IFRET/ (IFRET + IFL). Meanwhile, the FRET ratios of FRET micelles (50 µM) and 

SPIO-loaded FRET micelles (20 µM) in THF/water (50%/50%) were measured as a 

positive control. The FRET ratio of mixed PEO-PS-FL micelles and PEO-PS-TMR 

micelles (molar ratio 1:1) in PBS was also measured as a negative control. 
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6.3.6 Fluorescence and FRET confocal microscopy 

A prostate cancer cell line PC-3 obtained from American Type Culture Collection 

(ATCC, Rockville, MD) was cultured on an 8-well Lab-Tek glass chamber slides 

(Thermo Fisher Scientific, Rochester, NY) for FRET and fluorescent confocal imaging. 

10
4
 cells per well were incubated for 2 days to allow cell adherence. To detect the 

possible disassembly of micelles on plasma membrane, cells were incubated with 10 µM 

of PEO-PS micelles containing 1% of DiO for 1 h to stain cell membrane. After washed 

with PBS, cells were incubated with 50 µM of PEO-PS-TMR micelles or 50 µM of 

SPIO-loaded PEO-PS-TMR micelles for 0.5 h or 8 h, and then washed with PBS for 

imaging. Additionally, to monitor the possible intracellular disassembly of micelles, cells 

were incubated with 50 µM of PEO-PS-FL/TMR FRET micelles or SPIO-loaded FRET 

micelles for 8 h. In parallel, cells were incubated with mixed PEO-PS-FL micelles (25 

µM) and PEO-PS-TMR micelles (25 µM) or mixed SPIO-loaded PEO-PS-FL micelles 

(25 µM) and PEO-PS-TMR micelles (25 µM) for 8 h as a control. Finally, the cells were 

washed with PBS for imaging. 

  The FRET confocal images were acquired by using a digital camera (C9100, 

Hamamatsu Photonics, Japan) mounted on a Visitech VT Infinity 3 array-scanning 

confocal system (VisiTech International Ltd., United Kingdom) attached to a Nikon TE-

2000U microscope with a 60X Nikon Plan Apo water-immersion objective at room 

temperature. Images were recorded under DiO or BODIPY-FL channel (488 nm 

excitation, 535 ± 20 nm emission), FRET channel (488 nm excitation, 580 ± 20 nm 

emission) and BODIPY-TMR channel (543 nm excitation, 580 ± 20 nm emission). The 

exposure time was 200 ms. Images were obtained using MetaMorph v6.5.3 (Universal 
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Imaging, Malvern, PA). The images were background-subtracted using the “Background 

Correction” tool in MetaMorph. Crosstalk correction and FRET ratios calculation were 

carried out using an in-house FRETCalculator program and Matlab. To correct crosstalk, 

correction coefficients α and β were determined from cells incubated with DiI micelles 

only (α = IFRET/ITMR) and DiO micelles only (β = IFRET/IDiO or β = IFRET/IFL) [17-19]. IFRET, 

ITMR, IDiO and IFL were intensities in each region of interest (ROI) under FRET, TMR, and 

DiO filter sets, respectively. FRET ratios were calculated as: IFRET / (IFRET + IDiO) or IFRET 

/ (IFRET + IFL). 

To monitor the disassembly of micelles, PC-3 cells were incubated with 50 µM of 

PEO-PS- TMR micelles or 50 µM of SPIO-loaded PEO-PS- TMR micelles. Images were 

obtained in the presence of micelles in the media at 10 min, 2 h and 8 h. After 8 h 

incubation, cells were washed with PBS and imaged under a BODIPY-TMR channel 

(543 nm excitation, 580 ± 20 nm emission) 

6.3.7 Xenograft mice and in vivo fluorescent imaging 

The animal procedures were performed according to a protocol approved by the 

University Committee for the Use and Care of Animals (UCUCA) at University of 

Michigan. Female athymic nude mice (nu/nu), obtained from National Cancer Institute 

(Bethesda, MD) at 8 weeks of age, were subcutaneously inoculated in the back with 

5×10
6
 PC-3 cells suspended in a mixture of 50 µL of PBS and 50 µL of matrixgel 

basement membrane (BD Biosciences, San Jose, CA). When the tumor implants reached 

0.8 cm in diameter, the tumor-bearing mice were subjected to the imaging studies.  

In vivo fluorescence imaging was performed with an IVIS Spectrum imaging system 

(Xenogen, Alameda, CA). The exposure time was 1s. Images were acquired and analyzed 
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using Living Image 2.5 software (Xenogen, Alameda, CA). Images were recorded under 

an excitation of 610 nm and an emission of 680 nm at 2 h and 24 h after i.v. 

administration of PEO-PS-665 micelles (equivalent to 0.1 µmole of polymer) or SPIO-

loaded PEO-PS-665 micelles (equivalent to 0.1 µmole of polymer). Simultaneously, 0.2 

ml of PEO-PS-665 micelles or SPIO-loaded PEO-PS-665 micelles in an eppendorf  tube 

(10 µM in THF, PBS or mouse plasma) were imaged with mice. 

At the end of experiment, the mice were sacrificed using CO2. Blood and tissues 

(tumor, heart, lung, liver, spleen, and kidneys) were collected and tissues were rinsed 

with PBS. Blood and tissue samples were imaged using the identical settings as in vivo 

imaging.  

 

6.4 Results 

6.4.1 Preparation and characterization of polymeric nanoparticles  

To test the in vitro and in vivo integrity of PEO-PS micelles and SPIO loaded PEO-

PS micelles, lipophilic and neutral BODIPY dyes (FL, TMR and 665) were conjugated to 

amine at the end of polystyrene block. Oleic acid coated SPIOs were entrapped in the 

core of the micelles (Scheme 6.1). Figure 6.1 and Table 6.1 show the hydrodynamic sizes 

of various micelles. The average particle sizes of BODIPY labeled micelles ranged from 

35 nm to 46 nm. The incorporation of 10% of SPIOs increased the average size of PEO-

PS micelles to 115-178 nm. TEM of SPIO-loaded PEO-PS micelles showed clusters of 

10 nm SPIOs in the cores of PEO-PS-TMR micelles (Figure 6.1I).   

The formation of core-shell micelles caused autoquenching of BODIPY dyes in the 

core. For example, the PEO-PS-TMR polymers (5 µM) in THF exhibited a fluorescent 
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intensity 5-fold higher than that of micelles in PBS (5 µM) while SPIO-loaded PEO-PS-

TMR micelles (5 µM) showed a 21-fold higher fluorescence in THF than in PBS (Figure 

6.2A). Similar fluorescence quenching was also observed for PEO-PS-665 micelles and 

SPIO-loaded PEO-PS-665 micelles (Figure 6.2B).  Figure 6.2C showed the FRET spectra 

of various BODIPY-FL and BODIPY-TMR labeled micelles in PBS (10 µM). PEO-PS-

FL/TMR micelles showed a FRET ratio of 0.78 while the mixed PEO-PS-FL micelles 

and PEO-PS-TMR micelles (molar ratio 1:1) resulted in a FRET ratio of 0.23. 

6.4.2 Integrity of PEO-PS micelles in PBS, cell culture media and FBS 

To assess the in vitro integrity of micelles, FL/TMR FRET micelles were incubated 

in PBS, RPMI 1640 with 10% of FBS and 100% FBS at concentrations of 50 µM and 5 

µM while SPIO-loaded FL/TMR FRET micelles were incubated at concentrations of 20 

µM and 2 µM. Fluorescence of BODIPY-FL and FRET intensity of BODIPY-FL/TMR  

were measured at 0.5 h, 6 h and 24 h. FRET ratios of micelles were calculated as: FRET 

ratio = IFRET/(IFRET + IFL)[20]. The disassembly of FRET micelles was expected to result 

in a decrease of FRET ratio. As shown in Figure 6.3A, the FRET ratios of micelles in 

PBS were constant over 24 h. FRET ratios of FRET micelles were 0.75 at 5 µM and 0.77 

at 50 µM. The FRET ratios of SPIO-loaded FRET micelles were 0.70 at 2 µM and 0.73 at 

20 µM. The results revealed that micelles were not disrupted in PBS within 24 h. In 

RPMI 1640 media with 10% of FBS (Figure 6.3B), FRET ratio of FRET micelles (50 µM) 

decreased from 0.76 at 1h to 0.74 at 24h and the FRET ratio of SPIO-loaded micelles (20 

µM) decreased from 0.73 to 0.69, suggesting the disassembly of limited amount of 

micelles or a slight increase of the particle size of micelles. In 100% of FBS, the FRET 

ratios of FRET micelles keep constant over 24 h while the FRET ratio of SPIO-loaded 
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micelles (20 µM) slightly decreased from 0.69 to 0.67.  In contrast, FRET micelles and 

SPIO-loaded FRET micelles in 50% of THF showed FRET ratios of 0.48 and 0.44, 

respectively.  By using the plate reader, the FRET ratios of mixed PEO-PS-FL and PEO-

PS-TMR micelles in PBS were measured as 0.32 and 0.33 in the absence of SPIOs and 

presence of SPIOs, respectively. The results suggested that most micelles kept their 

integrity in PBS, RPMI 1640 and FBS within 24 h. 

6.4.3 FRET confocal imaging  

To visualize the possible disassembly of micelles on plasma membrane, PC-3 cells 

were incubated with PEO-PS-TMR micelles or SPIO-loaded PEO-PS-TMR micelles. 

After washed with PBS, cell membrane was stained with DiO, a green donor fluorescent 

dye. If micelle disassembly occurs on plasma membrane, the distance between DiO 

(donor) and TMR (acceptor) is short enough for FRET effect (the thickness of cell 

membrane is 3-4 nm) [21, 22]. As shown in Figure 6.4A1-4, cell uptake of PEO-PS-TMR 

was very low in 0.5h and no FRET signal was detected on cell membrane. After 

incubation with micelles for 8h and DiO for 1h, both the polymers and DiO accumulated 

in endosomes/lysosomes (Figure 6.4B1-4). FRET signals were not detectable from from 

plasma membrane, suggesting micelles kept integrity during cell internalization. 

However, FRET signals were detected from endosomes/lysosomes, indicating that 

micelles were disrupted in endosomes/lysosomes or DiO gradually partitioned into 

micelles in 8h. Similar results were observed when cells were incubated with SPIO-

loaded PEO-PS-TMR micelles (Figure 6.4 C and D). 

To monitor the possible intracellular disassembly of micelles, PC-3 cells were 

incubated with PEO-PS-FL/TMR FRET micelles (Figure 6.5A) and mixed FL and TMR 
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micelles (Figure 6.5B) in parallel. FRET signals were detected on both plasma membrane 

and organelle membrane after incubation with FRET micelles for 8h (Figure 6.5A3), 

indicating the integrity of micelles during cell internalization. The FRET ratios from 

endosomes/lysosomes were slightly lower than that from plasma membrane (Figure 

6.5A4), suggesting partial disassembly of micelles in endosomes/lysosomes. However, 

no FRET was observed from plasma membrane when the cells were incubated with 

mixed FL and TMR micelles (Figure 6.5B3). The weak FRET signal and low FRET ratio 

(Figure 6.5B4) in endosomes/lysosomes revealed the disassembly of micelles. Similar 

results were observed when the cells were incubated with SPIO-loaded FRET micelles 

(Figure 6.5C). For cells incubated with mixed SPIO-loaded FL and TMR micelles 

(Figure 6.5D), the FRET signals from endosomes/lysosomes reveled the intracellular 

disassembly of SPIO-loaded micelles.  

6.4.4 Fluorescent imaging of PC-3 cells 

PC-3 cells were incubated with PEO-PS-TMR micelles (Figure 6.6A-D) and SPIO-

loaded PEO-PS-TMR micelles (Figure 6.6E-H). Images were obtained at 10 min, 2h and 

8h in the presence micelles in the media. During the first 2h, the intracellular fluorescent 

intensities were found to be lower than that of micelles in the media (Figure 6.6 A, B, E, 

F). However, at 8h, the disassembly of micelles relieved the autoquenching of TMR and 

quenching by SPIOs. Both intracellular micelle disassembly and accumulation of 

micelles in endosomes/lysosomes resulted in the higher intracellular fluorescence than 

that of micelles in media (Figure 6.6C and G).   
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6.4.5 In vivo micelle disassembly in xenograft mice 

To assess the in vivo integrity of micelles and SPIO-loaded micelles, PEO-PS 

polymer was labeled with BODIPY-665, a neutral dye with an emission at 665 nm. 

Similar to PEO-PS-TMR micelles, compared with the PEO-PS-665 unimers in THF, the 

formation of micelles in PBS and mouse plasma decreased the fluorescence of BODIPY-

665 (Figure 6.7A). When SPIO-loaded PEO-PS-665 micelles were excited at 610 nm, 

SPIOs were found to be able to quench BODIPY-665 (Figure 6.7A). PEO-PS-665 

micelles and SPIO-loaded PEO-PS-665 micelles were i.v. injected to nude mice with 

xenograft tumors. At 2h following the injection of PEO-PS-665 micelles, due to the very 

limited disassembly of micelles and poor tissue penetration of BODIPY-665, only very 

low fluorescence was detected from the mouse. Fluorescence was not detectable from 

mouse treated with SPIO-loaded PEO-PS-665 micelles. However, after 24 h, both the 

mouse treated with PEO-PS-665 micelles and the mouse treated with SPIO-loaded PEO-

PS-665 micelles showed dramatically increased fluorescence. The large particle size of 

SPIO-loaded PEO-PS-665 micelles (167±43 nm) caused the rapid elimination from the 

mouse, which might explain the lower fluorescence than that of the mouse treated with 

PEO-PS-665 micelles. 

The mice were sacrificed at 2h and 24 h following the injection of micelles to collect 

the blood and tissues. Figure 6.7B showed the image of blood and tissue samples from 

blank control mouse and mice treated with SPIO-loaded PEO-PS-665 micelles. At 2h 

after the injection of SPIO-loaded micelles, the fluorescent intensities of the blood and 

tissues were similar to that of blank mouse, suggesting that most micelles kept integrity 

in 2h. At 24h post the injection of micelles, high fluorescence was detected in livers, 
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spleens, lungs and tumors, indicating the accumulation and disassembly of micelles in 

these tissues.   

 

6.5 Discussion 

Premature drug release is one of the challenges which limit the clinical application of 

polymeric micelles for drug delivery [23, 24]. It’s generally believed that polymeric 

micelles, upon administration into the blood stream, were diluted to a concentration lower 

than CMC by the large volume of blood, resulting in the disassembly of micelles and 

premature drug release [1, 2]. However, in our previous study, premature cargo release 

from PEO-PS micelles was observed although the polymer concentration was much 

higher than CMC. Investigating the micelle integrity is therefore essential to understating 

the mechanisms of premature drug release.  

One of the reasons for the limited understanding of in vivo integrity of micelles is 

currently there are no practical experimental methods available to trace the micelles and 

to detect the disassembly of micelles without micelle modification [1]. Various 

fluorescent dyes such as tetramethylrhodamine (TAMRA)[10, 12] and sulforhodamine 

101[11] have been used to label the hydropobic end of block copolymers. Although the 

formation of micelles was observed, the cationic dyes could not form a compact core and 

efficient fluorescence quenching was not achieved. In our experiment, PEO-PS was 

labeled with 5-FAM or TAMRA, SPIOs entrapped in the core of micelles were not able 

to quench 5-FAM or TAMRA (data not shown). In contrast, neutral and lipophilic 

BODIPY dye PEO-PS formed micelles with a compact core. The encapsulation of SPIOs 

could dramatically quench the fluorescence of BODIPY dyes. BODIPY-FL and 
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BODIPY-TMR in core of micelles showed effective FRET effect, which was utilized to 

monitor the disassembly of micelles in real time.   

The incubation of FL/TMR FRET micelles and SPIO-loaded FRET micelles with 

PBS showed that the micelles kept integrity in PBS within 24 h, which was consistent 

with previous report [4]. In RPMI 1640 media containing 10% of FBS and 100% of FBS, 

the FRET ratios of micelles only slightly decreased, suggesting that most micelles kept 

integrity and the decrease of FRET ratio was likely due to the particle size changes in 

different media. In a previous report [4], incubation with RPMI 1640 media and 100% of 

FBS for 24h caused 36% and 74% integrity loss of poly(caprolactone)-b-poly(ethylene 

oxide) (PEO-PCL) micelles. However, the micelles disassembly was probably 

overestimated since this method was based on the activation of a dye F-5-CADA (to 

cleave an ester of the fluorescent dye to generate fluorescence). Considering the dynamic 

equilibrium between PEO-PCL unimers and micelles in the incubations, the endogenous 

esterases in FBS could rapidly activitate F-5-CADA even without the disassembly of 

micelles. Additionally, compared with PEO-PCL, PEO-PS polymer has a much lower 

CMC and higher glass transition temperature of polystyrene (107ºC)[25], which also 

explained the less disassembly of PEO-PS micelles in FBS. 

FRET has been utilized to investigated the lipid exchange of micelles and liposomes 

[26, 27]. In current study, the FRET between BODIPY-FL and BODIPY-TMR was used 

to monitor the micelles disassembly. The FRET confocal imaging showed that PEO-PS 

micelles kept integrity during cell internalization and the micelles gradually lost integrity 

in endosomes/lysosomes of cancer cells. This was consistent with a previous study, in 

which 20% of internalized micelles were disrupted after incubation with HTB-4 cancer 
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cells for 20 h [4]. Ideally, FRET effect between BODIPY dyes can be used to visualize 

the in vivo disassembly of micelles. Unfortunately, a pair of near-infrared BODIPY dyes 

(emission > 750 nm) is still not commercially available. The available BODIPY dye with 

the longest emission is BODIPY-665. Although SPIO-loaded PEO-PS-655 micelles were 

assessed in mice, the poor tissue penetration limited its application to noninvasive 

imaging.  

 

6.6 Conclusion 

In this study, fluorescence-quecnhing by SPIOs and FRET analysis were used to 

assess in vitro and in vivo integrity of PEO-PS micelles and SPIO-loaded PEO-PS 

micelles. The micelle disassembly in cell culture media and FBS was limited over 24 h. 

PEO-PS micelles kept integrity during cell internalization and the micelles gradually lost 

integrity in endosomes/lysosomes of cancer cells. Rapid in vivo disassembly upon blood 

dilution was not observed and the gradual micelle disassembly mainly occurred in livers, 

spleens and tumors over 24h. In summary, the premature drug release from PEO-PS 

micelles was not caused by micelle disassembly.   
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Table 6.1 Hydrodynamic size of polymeric nanoparticles  

 Average hydrodynamic sizes (nm) 

PEO-PS-FL 35 ± 8 

PEO-PS-TMR 46 ± 15 

PEO-PS –FL/TMR 39 ± 11 

PEO-PS-665 40 ± 9 

PEO-PS-FL+SPIOs 115 ± 41 

PEO-PS-TMR+SPIOs 178±66 

PEO-PS-FL/TMR+SPIOs 149±45 

PEO-PS-665+SPIOs 167±43 
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Scheme 6.1 Structures of BODIPY dye labeled micelles, SPIO-loaded micelles and 

FL/TMR FRET micelles 
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Figure 6.1 Hydrodynamic sizes of various micelles: PEO-PS-FL(A), PEO-PS-TMR (B), 

PEO-PS-FL/TMR (C), SPIO-loaded PEO-PS-FL (D), SPIO-loaded PEO-PS-

TMR (E), SPIO-loaded PEO-PS-FL/TMR (F), PEO-PS-665 (G), and SPIO-

loaded PEO-PS-665 micelles (H); TEM image of SPIO-loaded PEO-PS-TMR 

micelles (I) 
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Figure 6.2 Fluorescent spectra of PEO-PS-TMR micelles (A), PEO-PS-665 micelles (B), 

and PEO-PS-FL/TMR FRET micelles (C). 
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Figure 6.3 Integrity of micelles and SPIO-loaded micelles in PBS (A), RPMI 1640 

medium (B), FBS (C) and 50% THF (D) 
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Figure 6.4 FRET images of PC-3 cells incubated with PEO-PS-TMR micelles (A1-A4 

and B1-B4) and SPIO-loaded PEO-PS-TMR micelles (C1-C4 and D1-D4). 

Cell and organelle membrane was stained with DiO. 
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Figure 6.5 FRET images of PC-3 cells incubated with PEO-PS-FL/TMR micelles (A1-

A4), mixed PEO-PS-PL and PEO-PS-TMR micelles (B1-B4), SPIO-loaded 

PEO-PS-FL/TMR micelles (C1-C4), and mixed PEO-PS-PL and PEO-PS-

TMR micelles with SPIOs (D1-D4). 
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Figure 6.6 Fluorescent images of PC-3 cells incubated with PEO-PS-TMR micelles (A-D) 

and SPIO-loaded PEO-PS-TMR micelles (E-H). 
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Figure 6.7 In vivo and ex vivo fluorescent images of xenograft mice administered with 

PEO-PS-665 micelles and SPIO-loaded PEO-PS-665 micelles.  
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CHAPTER VII 

 
Summary 

 

The overall goal of this project is to develop cancer-specific multifunctional SPIOs 

for tumor magnetic resonance imaging and targeted drug delivery. To realize our goal, 

we focused on two critical issues: cancer-specific targeting and integrity of nanocarriers.  

Tumor associated glycoprotein 72 (TAG-72) is a human mucin-like glycoprotein 

complex, which is over-expressed in many epithelial-derived cancers. To identify a 

colorectal cancer targeting ligand, tumor specific binding and pharmacokinetics of anti-

TAG-72 antibodies, murine CC49, and humanized, CH2 domain deleted HuCC49ΔCH2 

were examined on cultured LS174T colon cancer cells and xenograft mice. The results 

showed that near-infrared fluorophore Cy7 labeled antibodies were indeed localized in 

tumor tissues. Murine CC49 antibody achieved a tumor/blood ratio of 15 at 96 hours 

postinjection. In comparison, HuCC49ΔCH2 showed a short half-life in xenograft mice 

and achieved a tumor/blood ratio of 12 at 18 hours postinjection. The high tumor 

accumulation and fast plasma clearance make HuCC49ΔCH2 a good targeting ligand for 

tumor imaging and anticancer drug delivery. 

Although near-infrared fluorescent imaging detected the accumulation of 

HuCC49ΔCH2 antibody in xenograft tumor, the weak tissue penetration of fluorescence 

resulted in the difficulties in imaging and accurate quantitation of antibody in deep 

tissues HuCC49deltaCH2 was radiolabeled with 
124

I and its biodistribution in xenograft 
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mice was visualized by using PET imaging. 
124

I-HuCC49deltaCH2 demonstrated an 

increased level of specific localization to xenograft colon tumors after both i.v. and i.p. 

adminstration.   

To realize simultaneous MRI, fluorescent imaging and targeted drug delivery, SPIOs 

were conjugated with HuCC49ΔCH2 and fluorescent dye 5-FAM. Anticancer drugs 

doxorubicin (Dox), and azido-doxorubicin (Adox), MI-219 and 17-DMAG with various 

pKa were entrapped into the oleic acid layer of SPIOs. The SPIO “nanotheranostics” 

could specifically target to LS174T colon cancer cells for fluorescent cancer imaging and 

effectively decrease the T2 relaxation times in MRI. The drugs entrapped in SPIOs 

exhibited a pH-dependent release in cancer cells, which was visualized under a 

fluorescent microscope. The cancer-specific targeting and pH-dependent release resulted 

in an improved anticancer efficacy of SPIO-delivered Dox. 

Although Dox entrapped in SPIOs showed potent anticancer effect, its in vivo 

efficacy might be compromised by the premature release in blood circulation. 

Understanding the mechanisms of in vitro and in vivo drug release from nanocarriers is 

critical for design and optimization of nanoscale drug delivery systems. FRET imaging 

was used to investigate mechanisms of cargo release from polymeric nanoparticles and 

SPIO-loaded polymeric nanoparticles. Rapid release (10 min) of hydrophobic dyes from 

nanoparticles to cell membrane was observed in both cultured cancer cells and xenograft 

mice. FRET ratio increase from donor and acceptor individually loaded micelles was 

found to be an effective way to monitor cargo release. By comparing the average FRET 

ratios of mice treated with mixed donor micelles and acceptor micelles and the mice 

treated with donor/acceptor co-loaded micelles, the extent of  in vivo release was 
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estimated. The large volume of phospholipid bilayer and high hydrophobicity of cell 

membrane were found to trgger the premature drug release. The encapsulation of 

hydrophobic SPIOs could slow down in vitro and in vivo cargo release in a dose-

dependent mode. 

Investigating the micelle integrity was essential to understanding the mechanisms of 

premature drug release. In this work, fluorescence-quecnhing by SPIOs and FRET 

analysis were used to detect in vitro and in vivo disassembly of PEO-PS micelles and 

SPIO-loaded PEO-PS micelles. The micelle disassembly in cell culture media and FBS 

was limited over 24 h. PEO-PS micelles kept integrity during cell internalization and the 

micelles gradually lost integrity in endosomes/lysosomes of cancer cells. Rapid in vivo 

disassembly upon blood dilution was not observed and the gradual micelle disassembly 

mainly occurred in livers, spleens and tumors over 24h. The rapid premature drug release 

from PEO-PS micelles was not caused by micelle disassembly. 

In this work, cancer-specific antibody could facilitae the delivery of SPIOs to cancer 

cells. However, due to the rapid drug release from nanocarriers, targeted drug delivery 

was not realized by improving cacner-targeting. Since the rapid cargo release is trggered 

by the large volume of phospholipid bilayer, no drug leakage from nanocarriers in bulk 

solution does not guaranttee their integrity in vivo. It is recommended that the cargo 

release from nanocarriers should be examined in the presence of abundant cell membrane 

or artificial lipid bilayer. Considering the high hydrophobicity of cell membrane, the 

encapsulation of hydrophobic nanoparticles and increasing the core hydrophobicity of 

nanoparticles might be effective options to reduce premature drug release.  
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APPENDIX I 
 

Prediction of Human Pharmacokinetic Parameters of MI-219, a Novel Human 

Double Minute 2 (HDM2) Inhibitor, Using In Vitro Liver Microsome Metabolisms, 

Protein Binding, and In Vivo Animal Pharmacokinetics 

 

I.1 Abstract 

The purpose of this study is to predict clearance (CL) and volume of distribution at 

steady-state (Vdss) of MI-219 in humans using liver microsomal metabolisms, protein 

binding, and in vivo animal pharmacokinetics. Metabolic stability of MI-219 was 

assessed in liver microsomes of mouse, rat, dog, monkey and human. Pharmacokinetic 

studies were conducted on mice, rats, dogs, and monkeys. Human CL values were 

predicted using allometric scaling (SA), multi-exponential allometric scaling (ME), role 

of exponents (RoE), single species scaling, two-term power equation (TTPE), 

physiologically based in vitro-in vivo extrapolation (IVIVE), and fu corrected intercept 

method (FCIM). The predicted human clearance values ranged from 0.064 to 0.346 L*h
-

1
*kg

-1
.  Comparable CL values were obtained from TTPE (0.184 L*h

-1
*kg

-1
), FCIM 

(0.168 L*h
-1

*kg
-1

) and IVIVE (0.237 L*h
-1

*kg
-1

 for well-stirred model and 0.282 L*h
-

1
*kg

-1
 for parallel-tube model). The Vdss values predicted using SA, allometric scaling of 

unbound volume of distribution of tissues (VT/fuT) and Oie-Tozer method were 0.418, 

1.05 and 0.93 L*kg
-1

, respectively. The plasma concentration–time profile in humans was 

predicted using a two-compartmental model equation to fit transformed animal data 

following kallynochron, apolysichron and dienetichron time transformation (Dedrick 
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plots) and normalization with MRT and Vdss (Wajima’s method). Superimposition of rat, 

monkey and dog data and good curve fitting were observed after apolysichron time 

transformation and normalization with MRT and Vdss. Nonlinear mixed effects modeling 

(NONMEM) was applied to describe rat, monkey and dog data by a two-compartment 

model. Then, the plasma concentration–time profile in human was extrapolated from 

animals using the NONMEM model based on allometric scaling. The similarity of the 

estimated values of pharmacokinetic parameters from various prediction methods 

provides confidence for the prediction of human pharmacokinetics of MI-219. 

 

I.2 Introduction 

MI-219 is a potent, highly selective and orally active small-molecule inhibitor of the 

HDM2 (Human Double Minute 2)–p53 interaction [1-3]. MI-219 stimulates rapid but 

transient p53 activation in tumor tissues, resulting in inhibition of cell proliferation, 

selective induction of cancer cell apoptosis, and complete tumor growth inhibition in 

xenograft models. Preclinical studies have shown that MI-219 is a promising lead 

candidate for p53 wild-type cancer therapy.   

Prediction of human pharmacokinetics is an essential element in clinical 

development of a potential drug molecule. Over the past few decades, numerous 

empirical or physiological approaches have been developed for quantitative predictions 

of human clearance (CL) [4, 5], volume of distribution at steady-state (Vdss) [6, 7] and 

human plasma concentration-time profile from preclinical animal data [8, 9]. These 

predictive approaches typically use either in vivo preclinical animal data or in vitro 

metabolism and disposition data obtained from human tissue such as microsomes or 
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hepatocytes. However, there is not a standard method superior to other methods for each 

individual compound. Each approach has its unique advantages and disadvantages in its 

application to predicting human pharmacokinetics [5].  

The preclinical studies showed that the elimination of MI-219 was mainly due to 

drug metabolism. In the present study, various methods were utilized to predict a range of 

CL and Vdss values of MI-219 in human. The plasma concentration–time profile in 

humans was also predicted using Dedrick plots, Wajima’s method and nonlinear mixed 

effects modeling (NONMEM) [9-13]. A narrow distribution of the estimated values gave 

us greater confidence for the prediction of human pharmacokinetics of MI-219.    

 

I.3 Materials and methods 

I.3.1 Reagents 

MI-219 and MI-343 (internal standard) were synthesized using a previously 

published method [2, 14]. Mouse, rat, dog, monkey and human liver microsomes were 

supplied by Sigma (St. Louis, MO, USA) or Xenotech (Lenexa, KS, USA). All other 

chemicals and reagents were purchased from commercial suppliers and were of HPLC 

grade. 

I.3.2 Metabolic stability assay  

The metabolic stability of MI-219 was assessed in human (a pool of fifty subjects), 

CD-1 mouse (a pool of ten male mice), Sprague–Dawley rat (a pool of fifteen male rats), 

beagle dog (a pool of eight male dogs), and cynomolgous monkey (a pool of six male 

monkeys) liver microsomes. The enzymes were activated by beta-NADPH (reduced 

form). The incubation solution was diluted with 0.1 M phosphate buffer (containing 
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MgCl2) to 0.4 mL. The final concentrations of MI-219, liver microsomes, beta-NADPH, 

and MgCl2 were 1 µM, 0.5 mg/mL, 1 mM, and 3.3 mM respectively. An aliquot of 40 µl 

of mixture was collected at 0, 5, 10, 15, 30, 45 and 60 min, and then proteins were 

precipitated with 120 µl of ice-cold acetonitrile containing an internal standard (100 

ng/mL). The samples were centrifuged at 14000 rpm × 5 min and 10 µl of supernatant 

was injected into LC-MS/MS. All incubations were performed in triplicate. 

An Agilent 1200 HPLC system coupled with a Qtrap 3200 mass spectrometer 

(Applied Biosystems, MDS Sciex Toronto, Canada) was used to quantify the remaining 

MI-219 in the liver microsome samples. The processed samples were injected on a 

Zorbax Bonus-RP column (2.1 mm × 50 mm, 5 μm). The system was run in isocratic 

mode with mobile phase consisting of methanol and water in the ratio of 85:15 (v/v) at a 

flow rate of 0.3 mL/min. Mass spectrometric parameters were similar to those for plasma 

sample analysis. The peak area ratios (MI-219 peak area/ internal standard peak area) 

were plotted against time and the gradient of the line is determined as the elimination rate 

constant (k). 

I.3.3. Animals 

Male CD-1 (ICR) mice (n=33, body weight 18 ± 1.7 g), male Sprague Dawley rats 

(n=3, body weight 195 ± 15 g), male cynomolgus monkeys (n=6, body weight 2.5 ± 0.26 

kg), and male beagle dogs (n=3, bodyweight 8.0 ± 1.1 kg) were used for pharmacokinetic 

studies. Animals were maintained under a 12-h light/ dark cycle in cages with free access 

to commercial food pellets. Water was supplied ad libitum.   
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I.3.4 Mouse pharmacokinetic study 

Thirty three male CD-1 mice were given an intravenous dose of 10 mg/kg of MI-219 

dissolved in saline containing 20% polyethylene glycol (PEG 400) and 3% cremophor via 

the tail vein. Approximately 0.2 mL of blood was collected from each mouse by terminal 

cardiac puncture under isoflurane. Blood samples (n = 3 mice per time point) were taken 

from intravenously dosed mice at the following time points: before dosing and 

subsequently at 5, 15, 30, 45 min, 1, 2, 3, 5, 9, and 24 h after i.v administration. All blood 

samples were collected into heparinized polypropylene microcentrifuge tubes. Blood 

samples were centrifuged at 3,500 rpm for 10 min within 30 min of collection and plasma 

was harvested. Plasma samples were stored at -70°C until analysis. 

I.3.5 Rat pharmacokinetic study 

Two days before the initiation of the study, Sprague–Dawley rats were carotid 

cannulated using anaesthesia consisting of intraperitoneal administration of ketamine 

(100 mg/kg) and xylazine (10 mg/kg). Three male Sprague–Dawley rats were given an 

intravenous dose of 5 mg/kg of MI-219 in 30% PEG 400. Blood samples (approximately 

0.2 mL per sample) were collected from each animal via vein cannulae at pre-dose and 5, 

15, 30 min, 1, 2, 4, 6, 8, and 24 hours post-dose. Blood samples were centrifuged within 

30 min of collection and plasma was harvested. Plasma samples were stored at 

approximately -70°C until analysis. 

I.3.6 Monkey pharmacokinetic study 

Six male cynomolgus monkeys were given 10mg/kg of MI-219 in 80% PEG 400 via 

a saphenous vein. Blood samples (approximately 1 mL per sample) were collected from 

the femoral vein of each animal at pre-dose, 5, 15, 30, 60 min, and 1.5, 2, 3, 4, 6, 8, and 
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24 h post-dose. All blood samples were collected into heparinized polypropylene 

microcentrifuge tubes. Blood samples were centrifuged within 1 hr of collection and 

plasma was harvested and stored at approximately -70°C until analysis. 

I.3.7 Dog pharmacokinetic study 

Three male beagle dogs were given a single intravenous dose of 2 mg/kg of MI-219 

in 80% PEG 400 via a cephalic vein. Blood samples (approximately 2 mL per sample) 

were collected from the jugular vein of animals at pre-dose, 7, 12 and 30 min post-dose; 

and 1, 3, 4, 6, 8, 12 and 24 h postdose. All blood samples were collected in tubes 

containing heparin. Blood samples were centrifuged and plasma was harvested within 1 h 

of collection. Plasma samples were stored at approximately -70°C until analysis. 

I.3.8 Plasma sample preparation and LC-MS/MS analysis 

To prepare the plasma sample for LC-MS/MS analysis, ice-cold acetonitrile 

containing 100ng/mL internal standard (MI-343) was added to 50 µl mouse plasma 

samples or 100 µl of plasma samples of rats, monkeys or dogs to precipitate proteins. 

After centrifugation at 13,000 rpm for 5 min, 10 μL of the supernatant was introduced 

into the LC/MS/MS system. Chromatographic separation of MI-219 was achieved using a 

Luna C18 column (2 × 100 mm, 5 μM particle size) (Phenomenex, Torrance, CA, USA) 

and water: methanol (10:90 v/v) as the mobile phase. A Sciex API 3000 equipped with an 

electrospray source in the negative-ion multiple reaction monitoring (MRM) mode was 

used for detection. The MRM transition channel was m/z 550 to m/z 306 for MI-219 and 

m/z 596 to m/z 352 for IS. The ion spray voltage was set at -2700 V. Ionization 

temperature was set as 700 °C. Data acquisition and quantitation were performed using 

analyst software version 1.4.1 (Applied Biosystems, MDS Sciex Toronto, Canada). The 
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lower limit of quantitation (LOQ) ranged from 1.00 to 2.1 ng/mL in mouse, rat, monkey 

and dog plasma. 

I.3.9 Pharmacokinetic analysis 

All pharmacokinetic parameters were calculated by noncompartmental methods 

using WinNonlin® version 3.2 (Pharsight Corporation, Mountain View, CA, USA). 

Parameters are presented as a mean ± standard deviation (SD). 

I.3.10 Plasma and liver microsome protein binding 

Plasma protein binding was measured using a previously published method [15]. 

Plasma was spiked with MI-219 to yield a final concentration of 5 µM.  After incubation 

at 37°C for 1 h, an aliquot was transferred to a 10 kD cut-off ultrafiltration device 

(Millipore Corporation, Billerica, MA, USA), which was centrifuged at 2000g for 3 h at 

37°C. Samples were analyzed by LC-MS/MS as described above. The concentrations of 

MI-219 in the filtrate were determined by comparing with those of a standard curve 

containing known amounts of MI-219 dissolved in protein-free plasma (Macromolecules 

had been removed from the plasma by 10 kD cut-off ultrafiltration). The unbound 

fraction was estimated from the ratio of MI-219 concentration in the filtrate to that in the 

original plasma samples. Parallel studies using protein-free plasma instead of plasma 

indicated that MI-219 was bound minimally to the ultrafiltration device.  

To determine the protein binding of MI-219 in liver microsomes, liver microsomes 

were diluted with 0.1 M phosphate buffer to 1 mg/mL and spiked with MI-219 to yield a 

final concentration of 1 µM. After incubation at 37°C for 1 h, an aliquot was transferred 

to a 10 kD cut-off ultrafiltration device, which was centrifuged at 2000g for 3 h at 37°C. 

The concentrations of MI-219 in the filtrate were determined by comparing with those of 
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a standard curve containing known amounts of MI-219 dissolved in ultrafiltrated 

1mg/mL liver microsome solution. The unbound fraction was estimated from the ratio of 

MI-219 concentration in the filtrate to 1µM.   

I.3.11 Blood-plasma partitioning (BP ratio) 

MI-219 was added to whole blood to obtain a final concentration of 5 µM and 

incubated at 37°C for 30 min. Plasma was separated from blood samples and 

concentration of MI-219 was determined by comparing with a standard curve prepared in 

blank plasma. The blood/plasma concentration ratio (BP) was determined by dividing 5 

µM by that found in plasma separated from blood samples. 

The concentration of MI-219 in blood cells is assumed to be equal to its unbound 

concentration in plasma. The theoretical BP ratio was calculated according to the 

equation[15]. 

BP= 1 + H × (fu – 1) 

where fu is the fraction of unbound in plasma, and H is the hematocrit (mouse, 0.45; 

rat, 0.46; dog, 0.42; monkey, 0.41; rabbit, 0.36; human, 0.44)[16]. 

I.3.12 Prediction of pharmacokinetics of MI-219 in human 

Simple Allometric scaling (SA) 

The CL (L/h) and Vdss (L) values of MI-219 in animals and body weight W (kg) of 

animals after logarithmic conversion were fitted to log-transformed form of the following 

allometric equations [17] by linear regression: 

 
bWaCL                

cWaVdss  '  
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Where a and a’ are the coefficients; b and c are the exponents of simple allometry. 

Human clearance was extrapolated using the fitted line and an assumed body weight of 

70 kg. 

Allometric scaling after normalized by in-vitro metabolic data 

Human and animal in vitro intrinsic clearance (CLint,in vitro) was used to correct in 

vivo CL prior to allometric scaling. CLint,in vitro of MI-219 was derived from the in vitro 

T1/2 of the drug in various liver microsomes. 
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where Ke and Cprotein (1mg/mL) were the rate constant of drug elimination in liver 

microsomes and the concentration of liver microsomes respectively.

  
Rule of Exponents (RoE) 

The RoE method [18] was also utilized to predict CL of MI-219 in human. The 

following guidelines were proposed for the selection of correction factors: 

If 0.55< b <0.70, CL=a × (W)
b
 

If 0.71< b <0.99, CLhuman = a × (MLPanimal× CLanimal)
b 

/ MLPhuman  

If b ≥ 1, CLhuman = a × (BrWanimal× CLanimal)
b 

/ 1.53 kg  

If b >1.3, CL will be overpredicted 

If b < 0.55, CL will be underpredicted by allometric scaling  

where BrW is the brain wight (kg) and MLP (Year) is the maximum life-span 

potential. The values of brain weight (kg) were as follows: mouse 0.0004; rat, 0.0018; 
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monkey 0.052, dog 0.072 and human 1.53[19, 20]. MLP was calculated using the 

following equation: 

225.0636.04.185)(  WBrWyearsMLP  

Two-term power equation (TTPE) 

CL was scaled allometrically by using an empirical equation which contains two 

power terms. 

 BrWWaCL   

where BrW is the brain weight.  

Multi-exponential Allometric scaling (ME) 

To eliminate the uncertainty around the selection of correction factor used with SA, 

multi-exponential allometric scaling equation [21] was used to predict CL of MI-219 in 

human. 
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where a and b are the coefficient and exponent of SA; W is human body weight (70 

kg). 

Single species scaling 

The following single species scaling equations [22] were employed to predict CL of 

MI-219 in human:  

 kgCLkgCL doghuman /41.0/ 
   

kgCLkgCL rathuman /152.0/ 
  

kgCLkgCL monkeyhuman /407.0/ 
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fu corrected intercept method (FCIM)  

 

where Rfu is the ratio of unbound fraction in plasma between rats and humans and a 

is the coefficient of SA.  

Physiologically based in vitro-in vivo extrapolation (IVIVE) 

CL of MI-219 in humans was also predicted using the physiologically based in vitro-

in vivo extrapolation (IVIVE). To assess the prediction performance of this method, CL 

of MI-219 in mice and rats were also predicted using IVIVE. The in vitro intrinsic 

clearance of MI-219 in mouse, rat and human liver microsomes were scaled up to whole-

organ in vivo intrinsic clearance by using the following scaling factors: microsomal 

protein yield per gram of liver (mg/g): rat and mouse, 45; and human, 32; and liver 

weight (g/kg body weight): mouse, 87.5; rat, 40; and human, 26 [15, 16]. The in vivo 

intrinsic clearance was corrected with the fractions unbound in plasma and liver 

microsomes. Then, the corrected in vivo intrinsic clearance was used to calculate hepatic 

clearance in mice, rats and humans by using well-stirred model and parallel-tube model 

[23]. The values of liver blood flow (L/h/kg) were as follows: mouse 5.4; rat, 4.2; and 

human 1.24[15, 16]. The calculated hepatic clearance was then converted to plasma 

clearance by multiplying BP ratio of MI-219 (MI-219 was assumed to be cleared 

exclusively by hepatic metabolism). 

weightbodykg

weightliverg

weightliverg

proteinmg

C

K
CL

protein

e
invivo

26

1

32
int, 

 

vivoin

m

p
CL

fu

fu
CL int,int' 

 

77.0

min/35.33 











uRf

a
mlCL  



200 

 

Well-stirred model             
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Allometric scaling of unbound volume of distribution of tissues (VT/fuT) 

The correlation between human and rat unbound volume of distribution of tissues 

(VT/fuT) was utilized to estimate human Vdss.[24]  
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where VT was volume of tissue and fuT was the drug unbound fraction in tissue; Vb 

was the blood volume (human, 0.0743 L/kg; rat, 0.054 L/kg).

 
Oie-Tozer equation 

Oie-Tozer equation as used to calculate human Vdss from unbound fraction in plasma 

(fu,p) and tissue (fu,T), the plasma volume (Vp: 0.0313,  00448, 0.0515 and 0.0436 L/kg 

for rat, monkey, dog and human), the extracellular fluid volume (Ve: 0.265, 0.208, 0.216 

and 0.151 L/kg for rat, monkey, dog and human), the ratio of extravascular to 

intravascular proteins (Re/i : 1.4 for all the species), the tissue volume minus extracellular 

space (Vr : 0.364, 0.485, 0.450 and 0.38 L/kg)[25]. The unbound fractions in tissue fuT of 

rats, monkey and dogs were calculated from corresponding Vdss and the average value of 

fuT was used to calculate human Vdss. 
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Dedrick plots 

The plasma concentration–time profile of MI-219 in humans (assume an i.v 

administration of 5mg/kg of MI-219) was simulated by using four Dedrick plot methods 

(based on Kallynochrons, Apolysichrons, Dienetichrons and equivalent times)[8, 11, 26]. 

The equations of the four Dedrick plot methods were listed as below.  

 

Kallynochrons (elementary Dedrick plot): 
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Apolysichrons: 
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Dienetichrons (complex Dedrick plot): 
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Where W (kg) was the average body weight of animal or humans; Dose was in 

milligram. b and c were the exponents of simple allometry of CL and Vdss. The 

clearances in different animal species were multiplied by their respective MLP and 

plotted as a function of the body weight on a log-log scale to generate exponent d. The 

dWaMLPCL  ''
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superimposition of the transformed animal concentration-time curves was expected. A 

two-compartment model (WinNonlin, version 5.2.1) was used to fit the superimposed 

curves. The goodness of fit was evaluated by correlation of observed and predicted values 

(r
2
) and Akaike Information Criteria (AIC)[10]. 

Wajima’s method 

 The plasma concentration–time profile of MI-219 in humans was also predicted by 

normalizing concentration–time profiles in animals with MRT (MRT = Vdss/CL) and Css 

(Css = Dose/Vdss) [9]. The superimposition of the normalized animal concentration-time 

curves was expected. The normalized animal concentrations and times were transformed 

into human concentrations and times by multiplying the predicted human Css and MRT. 

Similar to Dedrick plot analysis, a two-compartment model (WinNonlin, version 5.2.1) 

was used to fit the predicted human plasma concentration–time profile of MI-219. 

NONMEM  

NONMEM (version VI; ICON Development Solutions, Ellicott City, MD, USA) was 

applied to describe the pooled rat, monkey and dog concentration-time data by a two-

compartment pharmacokinetic model (ADVAN3, TRAN4). The NONMEM parameters 

(THETAs, ETAs and ERRORs) were acquired based on the allometric relationship of 

pharmacokinetic parameters among rats, monkeys and dogs [27]. The concentration-time 

profile in human was simulated using the established NONMEM model.  Then, a two-

compartment model (WinNonlin, version 5.2.1) was used to fit the simulated human 

curve and calculate the pharmacokinetic parameters. 

To validate the allometric scaling-based NONMEM approach, 100 simulations of the 

concentration-time profile for each animal species were performed, resulting in 90% 
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confidence intervals. The simulations were then compared with the observations in 

animals. Furthermore, three NONMEM models were individually developed from rat, 

monkey and dog concentration-time data. The animal pharmacokinetic parameters (CL, 

V1, V2 and Q) estimated from individual models were compared with those obtained 

from combined model.  

 

I.4 Results  

I.4.1. Metabolic stability assay 

The percentages of MI-219 remaining in mouse, rat, dog, monkey and human liver 

microsomes (1mg/mL) after 5, 10, 15, 30, 45 and 60 min incubation are presented in 

Figure I.1. In all species tested, more than 50% of MI-219 was metabolized after 

incubation for 1 hr, suggesting MI-219 was extensively metabolized by CYP450 enzymes. 

During 0-15 min incubation, the clearance of MI-219 followed the first-order kinetics. 

The elimination rate constants and half-lives of MI-219 in mouse, rat, monkey, dog and 

human liver microsomes were shown in Table I.1.  

I.4.2 Plasma and liver microsome protein binding and blood-plasma partitioning 

As shown in Table I.2, the unbound fraction of MI-219 in mouse, rat, monkey, dog 

and human plasma at a concentration of 5 µM ranged from 1.39% to 4.45%. The 

unbound fractions of MI-219 (1µM) in 1 mg/mL of mouse, rat and human liver 

microsomes are 2.03%, 2.44% and 6.16% respectively. The BP ratios of MI-219 in mice, 

rats and humans are experimentally measured and range from 0.572 to 0.597, which 

agree with the BP ratio values calculated from corresponding fu,p.  
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I.4.3 Pharmacokinetics of MI-219 in rat, mouse, dog and monkey 

Figure I.2 is a semi-log plot of MI-219 plasma concentration versus time for mouse, 

rat, dog, and monkey following intravenous administration. The concentrations of MI-

219 in mouse plasma are lower than the limit of quantification of the LC-MS assay. The 

pharmacokinetic parameters of MI-219 in the four species are summarized in Table I.3. 

MI-219 has a high plasma clearance in mice and rats at 7.15 and 2.13 L*h
−1

*kg
−1

, 

respectively. The corresponding blood clearances in mice and rats are 12.31 and 3.57 

L*h
−1

*kg
−1

, respectively (more than 80% of hepatic blood flow). Especially, the blood 

clearance exceeds hepatic blood flow in mice. In monkeys, MI-219 had a moderate 

plasma clearance of 0.85 L*h
−1

*kg
−1

 and blood clearance of 1.42 L*h
−1

*kg
−1

 

(approximately 53% of hepatic blood flow) [16]. In dogs, MI-219 had a moderate plasma 

clearance of 0.36 L*h
−1

*kg
−1

 and blood clearance of 0.61 L*h
−1

*kg
−1

 (approximately 34% 

of hepatic blood flow). The terminal half-life (t1/2) ranged from 1.89 h in mice to 3.90 h 

in dogs. The volume of distribution at steady-state (Vdss) ranged from 0.60 L*kg
-1

 in 

dogs to 6.37 L*kg
-1

 in mice.  

I.4.4 Prediction of clearance of MI-219 in humans 

Simple allometric scaling (SA) was performed to provide a predicted clearance of 

MI-219 in humans. The predicted CL by SA was 0.146 L*h
−1

*kg
−1

. The coefficient and 

exponent for SA of CL were 0.0317 and 0.5301, respectively (Figure I.3A). According to 

Role of Exponents (RoE), the CL value 0.146 L*h
−1

*kg
−1

 is likely to be underpredicted 

since the exponent is less than 0.55 [4]. Animal CL was corrected by multiplying the 

ratio of elimination rate constants in human and animal liver microsomes 

(Ke,human/Ke,animal). Allometric scaling of the corrected animal CL resulted in an equation 
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with a higher coefficient of determination (0.9997 vs 0.9901) and a lower predicted CL 

(0.08 L*h
−1

*kg
−1

) (Figure I.3B). Similarly, maximum life-span potential (MLP) and brain 

weight (BrW) were used as the correction factors for allometric scaling of CL and also 

resulted in lower human CL values and r
2
 values compared with SA. The predicted CL 

values in humans were 0.086 and 0.064 L*h
−1

*kg
−1

 when incorporating MLP and BrW 

into the allometric scaling, respectively (Figure I.3C, I.3D).        

Figure I.4 shows the plot of CL against body weight (W) and brain weight (BrW) by 

using two-term power equation (TTPE). TTPE showed a good correlation among CL, W 

and BrW and the coefficient of determination (r
2
) was 0.9988. The predicted human CL 

was 0.184 L*h
−1

*kg
−1

. 

The coefficient (0.0317) and exponent (0.5301) obtained from SA of CL were 

applied to the multi-exponential allometric scaling (ME) equation to estimate CL in 

human. The predicted human CL was 0.342 L*h
−1

*kg
−1

.  

To simplify SA, single-species scaling methods proposed by Tang et. al. [22] were 

also applied to the prediction of CL of MI-219 in humans. A big variation was observed 

when the CL in humans was derived from rats (0.342 L*h
−1

*kg
−1

), dogs (0.148 

L*h
−1

*kg
−1

), and monkeys (0.346 L*h
−1

*kg
−1

).  

Considering the extremely high plasma protein binding of MI-219, the fu corrected 

intercept method (FCIM) was utilized to estimate CL of MI-219 in humans. The ratio of 

fu,p in rats and human (0.0387/0.0165 = 2.345) and coefficient of simple allometry 

(0.0317) were applied to FCIM equation. The resulted CL in humans was 0.168 

L*h
−1

*kg
−1

. 
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CL of MI-219 was also scaled from in vitro intrinsic clearance determined in human 

liver microsome incubation using physiologically based in vitro-in vivo extrapolation 

method. The elimination rate constant of MI-219 in 1 mg/mL human liver microsome 

was 0.04747 min
-1

. fu,m in human liver microsome and BP ratio in human blood were 

determined as 6.16% and 0.572. The predicted CL value in human was 0.237 or 0.282 

L*h
−1

*kg
−1 

when well-stirred model or parallel-tube model was employed. To assess the 

prediction performance of IVIVE, the CL of MI-219 in mice and rats were also scaled 

from in vitro intrinsic clearance in mouse and rat liver microsomes. The CL in rats was 

estimated to be 1.675 L*h
−1

*kg
−1

 (well-stirred model) and 2.172 L*h
−1

*kg
−1

 (parallel-

tube model). The later one agreed well with the observed value (2.13 L*h
−1

*kg
−1

), 

suggesting that parallel-tube model provided more accurate prediction than well-stirred 

model. The predicted CL values in mice by both well-stirred model (2.66 L*h
−1

*kg
−1

) 

and parallel-tube model (3.23 L*h
−1

*kg
−1

) were lower than the observed value (7.15 

L*h
−1

*kg
−1

), indicating other elimination mechanisms such as extrahepatic metabolism 

contributed to the total clearance in mice. CL values of MI-219 in humans predicted by 

various approaches were summarized in Table I.4. 

I.4.5 Prediction of Vdss of MI-219 in humans 

Estimates of Vdss from mouse, rat, dog and monkey pharmacokinetic studies were 

plotted against body weight (kg) to predict human Vdss. Human Vdss predicted by simple 

allometry was 0.418 L*kg
-1

 and the exponent of the equation was 0.9638 (Figure I.3E). 

As a comparison, unbound Vdss (Vdss/fup) determined in the four species exhibited a 

better allometric correlation (r
2
 = 0.98) with body weight than Vdss and the extrapolated 

Vdss in human was 0.694 L/kg (Figure I.3F).  
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Besides simple allometric scaling, interspecies scaling of the unbound volume of 

distribution of tissues (VT/fuT) was also used to estimate Vdss of MI-219 in human. 

VT/fuT in rats was derived from rat Vdss as 75.4 L*kg
-1

. VT/fuT in human was 61.0 L*kg
-1

, 

resulting in a Vdss in human of 1.05 L*kg
-1

.   

Physiologically based Oie-Tozer equation was used to predict Vdss in human. fuT in 

rats (0.00491), dogs (0.0131) and monkeys (0.00475) were derived from corresponding 

Vdss. The average fuT of the three species was used to calculate Vdss of MI-219 in human, 

which was determined as 0.93 L*kg
-1

.  

I.4.6 Dedrick plot analysis 

Three Dedrick plot methods were applied for the prediction of the plasma 

concentration–time profile for MI-219 in humans. The plasma concentration–time curves 

obtained from mice, rats, monkeys and dogs were normalized according to the 

pharmacokinetic times of kallynochrons (elementary Dedrick plot), apolysichrons 

(complex Dedrick plot) and dienetichrons. As shown in Figure I.5, reasonable 

superimposition was observed among the curves transformed from rat, monkey and dog 

plasma concentration–time profiles. However, the curve transformed from mouse plasma 

concentration–time profile was not superimposable to other curves. Hence, only the three 

curves derived from rats, monkeys and dogs were used to predict human 

pharmacokinetics. A two-compartment model was employed to fit the superimposed 

curves by using WinNonlin. The predicted human pharmacokinetic parameters (alpha, 

beta, A, B, CL, Vdss, MRT, and t1/2), coefficients of correlation and AIC were shown in 

Table I.5. According to r
2
 and AIC values, it is obvious that kallynochron and 

apolysichron time transformations resulted in a better superimposition and curve-fitting 
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than dienetichron transformations. The kallynochron transformation resulted in CL 

(0.148 L*h
−1

*kg
−1

) and Vdss (0.406 L*kg
-1

) comparable with that derived from SA. The 

CL in humans predicted by apolysichron time transformation (0.164 L*h
−1

*kg
−1

) was 

more comparable with those obtained by TTPE, FCIM and IVIVE methods. Compared 

with SA, apolysichron time transformation resulted in a lower Vdss (0.370 L*kg
-1

). The 

dienetichron time transformation resulted in a CL (0.091 L*h
−1

*kg
−1

) comparable with 

that predicted from the allometric scaling of CL×MLP (0.086 L*h
−1

*kg
−1

), and a Vdss 

(0.471 L*kg
-1

) comparable with that obtained from SA. 

I.4.7 Wajima’s method 

The concentration–time profiles in mice, rats, dogs and monkeys were normalized by 

MRT and Css. Reasonable superimposition was observed among the normalized curves 

from rats, monkeys and dogs (Figure I.6A). The normalized mouse curve was not 

superimposable to other curves. The normalized concentrations and times from rats, 

monkeys and dogs were transformed into human concentrations and times by multiplying 

the predicted human Css and MRT. Since allometric scaling tends to underpredict CL and 

Vdss, the average CL predicted from TTPE (0.184 L*h
−1

*kg
−1

), ME (0.342 L*h
−1

*kg
−1

) 

FCIM (0.168 L*h
−1

*kg
−1

), and IVIVE methods (0.237 and 0.282 L*h
−1

*kg
−1

) and the 

Vdss predicted from Oie-Tozer equation (0.93 L*kg
-1

) were utilized to generate MRT 

(3.85 h) and Css (5.38 mg*L
−1

) in humans. The transformed human concentrations and 

times were plotted (Figure I.6B) and fitted with a two-compartment model using 

WinNoNlin. The predicted human pharmacokinetic parameters (alpha, beta, A, B, CL, 

Vdss and MRT) were listed in Table I.5. The r
2
 (0.979) and AIC (543) values suggested a 

good curve-fitting. 
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I.4.8 NONMEM 

The allometric scaling-based NONMEM model (Supplementary Materials) was 

developed from rat, monkey and dog data. The model was then utilized to simulate 

human concentration–time profile (Figure I.7) and estimate human PK parameters. The 

predicted human CL and Vdss were 0.186 L* kg
−1

 and 0.843 L*h
−1

*kg
−1 

respectively 

(Table I.5), which are consistent with the predictions obtained from IVIVC, TTPE, FCIM 

and Oie-Tozer equation.  

As shown in Figure I.8, the observed dog concentration-time profile falls in the 5
th

 

and 95
th

 quantile of model simulations. Similarly, observations in rats and monkeys also 

fall in the 90% confidence intervals of simulations (data not shown). Meanwhile, animal 

pharmacokinetic parameters (CL, V1, V2 and Q) estimated from individual models were 

similar to those obtained from the combined model (Table I.6).  

 

I.5 Discussion 

The effective inhibition of p53 wild-type tumors in preclinical models makes MI-219 

an attractive candidate for anti-cancer drug development [1]. The accurate prediction of 

human pharmacokinetics of MI-219 is critical for the assessment of its potential to 

succeed as a drug. Numerous approaches based on in vitro and in vivo preclinical data for 

human pharmacokinetics are available but there is no universal approach that will work 

for every compound. Although the allometric scaling techniques are simple and most 

widely used in industry, the use of allometric scaling should be cautious due to its 

empirical nature. In current study, we intend to utilize and evaluate various approaches 
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including both empirical and physiologically based approaches for predicting 

pharmacokinetic parameters of MI-219 in humans. 

The results from animal pharmacokinetic studies showed that MI-219 has moderate 

to high plasma clearance in all species (EH >0.3). Especially, the plasma clearance in 

mice exceeds the mouse hepatic blood flow, implying the existence of non-hepatic 

clearance of MI-219 in mice. Since renal clearance did not contribute significantly to the 

systemic clearance of MI-219, the high clearance of MI-219 was likely due to both 

hepatic and extrahepatic metabolism. The rapid metabolic turnover of MI-219 in mouse, 

rat, monkey, dog and human liver microsome incubation suggested the extensive hepatic 

metabolism. The high protein binding in combination with the low-to-moderate volume 

of distribution did not suggest that MI-219 underwent extensive distribution to peripheral 

tissues. 

Considering the moderate to high hepatic extraction ratios of MI-219 in animals, it is 

not surprising  that simple allometric scaling (SA) of CL showed good correlation (r
2
 = 

0.9901) between the CL of MI-219 and body weights since clearance of compounds with 

high hepatic extraction ratios is limited by liver blood flow, which is well correlated with 

body weight across species [28]. As expected, the incorporation of elimination rate 

constants determined in live microsome incubations further improved the r
2
 of allometric 

scaling to 0.9997. However, it has been suggested that a high r
2
 value does not warrant 

the accuracy of CL prediction[29]. As declared in the Rule of Exponent (RoE), the CL of 

MI-219 in humans will be underpredicted by using SA since the exponent is less than 

0.55 and the application of correction factors will not improve the prediction [4]. As 

expected, the application of the correction factors such as BrW, MLP or in vitro 
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microsomal data definitely resulted in lower predicted CL values of MI-219 in humans 

(Table I.4). The CL (0.342 L*h
−1

*kg
−1

) of MI-219 in humans obtained from multi-

exponential allometric scaling (ME) is very likely to deviate since ME is inferior to SA 

when the exponent of SA is less than 0.7[30]. The CL values of MI-219 estimated using 

single-species scaling exhibited great variation when scaled from different species. The 

interspecies difference limits the application of single-species scaling in prediction of CL.  

CL of MI-219 in human predicted by two other empirical approaches, TTPE and 

FCIM, are higher than that obtained from SA. In TTPE, CL is allometrically correlated 

with both body weight and brain weight, which probably performs better than SA when 

CL is not correlated well with body weight. Compared with SA, FCIM is improved by 

incorporating interspecies difference in protein binding between rats and humans.    

Clearance predictions using empirical allometric scaling are challenging due to 

interspecies differences in protein binding and metabolism [31]. The physiologically 

based IVIVE method minimizes the errors caused by interspecies differences by 

incorporating in vitro intrinsic CL, fup and fum into the equations. The CL values of MI-

219 in humans predicted by IVIVE are comparable to those obtained from empirical 

approaches. To verify the predictability of IVIVE, CL of MI-219 in mice and rats were 

estimated using this approach. Although the predicted CL in rats agreed well with the 

observed value, the CL in mice was underpredicted due to the extrahepatic clearance of 

MI-219 in mice. Hence, to accurately predict CL of MI-219 in humans, more in vitro 

investigation is required to detect the possible extrahepatic clearance of MI-219 in 

humans. 
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Although the simple allometric scaling of Vdss shows a reasonable correlation 

between Vdss of MI-219 and body weight (r
2
=0.96), the interspecies differences in 

plasma and tissue protein binding probably cause prediction errors. The correction with 

plasma protein binding improved the correlation (r
2
=0.98) and resulted in a larger Vdss in 

human (0.694 L*kg
-1

). Mahmood suggested that allometric scaling is more likely to 

produce an accurate prediction of Vdss when the exponent is between 0.8 to 1.1 [4]. 

Hence, allometric scaling of unbond Vdss perhaps performed better than SA for the case 

of MI-219. Oie-Tozer method and allometric scaling of VT/fuT method minimize the 

effects of protein binding by incorporating unbound fractions in plasma and tissue into 

the equations and resulted in Vdss higher than that from SA. 

The Detrick plot methods were used to predict the plasma concentration-time profile 

of MI-219 in humans. After kallynochron, apolysichron and dienetichron transformation, 

the data from rats, monkeys and dogs were superimposable. Kallynochron and 

apolysichron transformations exhibited better superimpositions than dienetichron 

transformation. Essentially, Detrick plot method originated from the allometric scaling 

approach and its prediction performance depends on the allometric relationships of the 

pharmacokinetic parameters cross species. Therefore, it is not surprising that the CL and 

Vdss estimated by kallynochron and apolysichron methods are comparable to those 

obtained from SA. 

To avoid possible underpredictions of both CL and Vdss from allometric scaling and 

Detrick plots, Wajima’s normalization method was also employed to predict the 

concentration-time profile of MI-219 in humans. CL and Vdss derived from IVIVE, 

FCIM and Oie-Tozer equation instead of simple allometric scaling were used to estimate 
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human concentration-time profile, which fitted the two-compartment model better than 

the data transformed from Detrick plots. 

Allometric scaling-based NONMEM is a good alternative approach for human PK 

profile prediction. CL and Vdss predicted by NONMEM were comparable to those from 

IVIVC, TTPE, FCIM, Oie-Tozer equation and Wajima’s method. The prediction 

performance of NONMEM was successfully validated using animal observations.   

 

I.6 Conclusion 

In summary, the pharmacokinetics of MI-219 was studied in mice, rats, monkeys and 

dogs after i.v. injection. The pharmacokinetic parameters of MI-219 in humans were 

predicted using various empirical and physiologically based methods. The plasma 

concentration-time profile in humans was predicted using Detrick plot methods. These 

methods provide an approximate range of the systemic CL of 0.064 to 0.472 L*h
−1

*kg
−1. 

Comparable CL values were obtained from TTPE (0.184 L*h
-1

*kg
-1

), FCIM (0.168 L*h
-

1
*kg

-1
), and IVIVE (0.237 L*h

-1
*kg

-1
 for well-stirred model and 0.282 L*h

-1
*kg

-1
 for 

parallel-tube model), while CL from SA and ME methods were deviated from above 

methods due to low exponent values.  Superimposition of rat, monkey and dog data and 

good curve fitting were observed after apolysichron time transformation and 

normalization with MRT and Vdss. Human CL and Vdss values predicted by Wajima’s 

method and NONMEM were comparable to those from TTPE, FCIM, IVIVE and Oie-

Tozer equation. The similarity of the estimated values of pharmacokinetic parameters 

from various prediction methods may provide confidence for the prediction of human 

pharmacokinetics of MI-219. 



214 

 

I.7 References 

1. Shangary, S., et al., Temporal activation of p53 by a specific MDM2 inhibitor is 

selectively toxic to tumors and leads to complete tumor growth inhibition. Proc 

Natl Acad Sci U S A, 2008. 105(10): p. 3933-8. 

2. Ding, K., et al., Structure-based design of spiro-oxindoles as potent, specific 

small-molecule inhibitors of the MDM2-p53 interaction. J Med Chem, 2006. 

49(12): p. 3432-5. 

3. Shangary, S. and S. Wang, Targeting the MDM2-p53 interaction for cancer 

therapy. Clin Cancer Res, 2008. 14(17): p. 5318-24. 

4. Mahmood, I., Application of allometric principles for the prediction of 

pharmacokinetics in human and veterinary drug development. Adv Drug Deliv 

Rev, 2007. 59(11): p. 1177-92. 

5. Hosea, N.A., et al., Prediction of human pharmacokinetics from preclinical 

information: comparative accuracy of quantitative prediction approaches. J Clin 

Pharmacol, 2009. 49(5): p. 513-33. 

6. Fagerholm, U., Prediction of human pharmacokinetics--evaluation of methods for 

prediction of volume of distribution. J Pharm Pharmacol, 2007. 59(9): p. 1181-90. 

7. Oie, S. and T.N. Tozer, Effect of altered plasma protein binding on apparent 

volume of distribution. J Pharm Sci, 1979. 68(9): p. 1203-5. 

8. Shin, B.S., et al., Pharmacokinetic scaling of SJ-8029, a novel anticancer agent 

possessing microtubule and topoisomerase inhibiting activities, by species-

invariant time methods. Biopharm Drug Dispos, 2003. 24(5): p. 191-7. 

9. Wajima, T., et al., Prediction of human pharmacokinetic profile in animal scale 

up based on normalizing time course profiles. J Pharm Sci, 2004. 93(7): p. 1890-

900. 

10. Cho, C.Y., et al., Pharmacokinetic scaling of bisphenol A by species-invariant 

time methods. Xenobiotica, 2002. 32(10): p. 925-34. 

11. Mahmood, I. and R. Yuan, A comparative study of allometric scaling with plasma 

concentrations predicted by species-invariant time methods. Biopharm Drug 

Dispos, 1999. 20(3): p. 137-44. 

12. Shim, H.J., et al., Interspecies pharmacokinetic scaling of DA-8159, a new 

erectogenic, in mice, rats, rabbits and dogs, and prediction of human 

pharmacokinetics. Biopharm Drug Dispos, 2005. 26(7): p. 269-77. 

13. Dong JQ, et al., Quantitative Prediction of Human Pharmacokinetics for 

Monoclonal Antibodies. Clinical Pharmacokinetics, 2011. 50(2): p. 131-142. 

14. Ding, K., et al., Structure-based design of potent non-peptide MDM2 inhibitors. J 

Am Chem Soc, 2005. 127(29): p. 10130-1. 

15. Laufer, R., et al., Quantitative prediction of human clearance guiding the 

development of Raltegravir (MK-0518, isentress) and related HIV integrase 

inhibitors. Drug Metab Dispos, 2009. 37(4): p. 873-83. 

16. Davies, B. and T. Morris, Physiological parameters in laboratory animals and 

humans. Pharm Res, 1993. 10(7): p. 1093-5. 

17. Boxenbaum, H., Interspecies pharmacokinetic scaling and the evolutionary-

comparative paradigm. Drug Metab Rev, 1984. 15(5-6): p. 1071-121. 



215 

 

18. Mahmood, I., Prediction of human drug clearance from animal data: application 

of the rule of exponents and 'fu Corrected Intercept Method' (FCIM). J Pharm Sci, 

2006. 95(8): p. 1810-21. 

19. Boxenbaum, H. and J.B. Fertig, Scaling of antipyrine intrinsic clearance of 

unbound drug in 15 mammalian species. Eur J Drug Metab Pharmacokinet, 1984. 

9(2): p. 177-83. 

20. Bailey, S.A., R.H. Zidell, and R.W. Perry, Relationships between organ weight 

and body/brain weight in the rat: what is the best analytical endpoint? Toxicol 

Pathol, 2004. 32(4): p. 448-66. 

21. Goteti, K., et al., Estimation of human drug clearance using multiexponential 

techniques. J Clin Pharmacol, 2008. 48(10): p. 1226-36. 

22. Tang, H., et al., Interspecies prediction of human drug clearance based on scaling 

data from one or two animal species. Drug Metab Dispos, 2007. 35(10): p. 1886-

93. 

23. Chiba, M., Y. Ishii, and Y. Sugiyama, Prediction of hepatic clearance in human 

from in vitro data for successful drug development. AAPS J, 2009. 11(2): p. 262-

76. 

24. Sawada, Y., et al., Prediction of the disposition of nine weakly acidic and six 

weakly basic drugs in humans from pharmacokinetic parameters in rats. J 

Pharmacokinet Biopharm, 1985. 13(5): p. 477-92. 

25. Obach, R.S., et al., The prediction of human pharmacokinetic parameters from 

preclinical and in vitro metabolism data. J Pharmacol Exp Ther, 1997. 283(1): p. 

46-58. 

26. Shibayama, T., et al., Prediction of pharmacokinetics of CS-023 (RO4908463), a 

novel parenteral carbapenem antibiotic, in humans using animal data. 

Xenobiotica, 2007. 37(1): p. 91-102. 

27. Zheng N, et al., Interspecies Pharmacokinetic Scaling of Mycophenolic Acid., in 

FIP Pharmaceutical Sciences 2010 World Congress in Association with the AAPS 

Annual Meeting 2010: New Orleans, LA. 

28. Lave, T., P. Coassolo, and B. Reigner, Prediction of hepatic metabolic clearance 

based on interspecies allometric scaling techniques and in vitro-in vivo 

correlations. Clin Pharmacokinet, 1999. 36(3): p. 211-31. 

29. Tang, H. and M. Mayersohn, Utility of the coefficient of determination (r2) in 

assessing the accuracy of interspecies allometric predictions: illumination or 

illusion? Drug Metab Dispos, 2007. 35(12): p. 2139-42. 

30. Goteti, K., C.E. Garner, and I. Mahmood, Prediction of human drug clearance 

from two species: a comparison of several allometric methods. J Pharm Sci, 2009. 

99(3): p. 1601-13. 

31. Lin, J.H., Applications and limitations of interspecies scaling and in vitro 

extrapolation in pharmacokinetics. Drug Metab Dispos, 1998. 26(12): p. 1202-12. 

 

 

 

 



216 

 

Table I.1 Elimination rate constants and half-lives of MI-219 in liver microsomes 

Species Mouse Rat Monkey Dog Human 

Elimination rate constant (min
-1

) 0.04449 0.04935 0.07842 0.06535 0.04747 

Half-life (min) 15.6 14.0 8.8 10.6 14.6 
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Table I.2 Unbound fraction of MI-219 in plasma and liver microsomes and blood-plasma  

partition 

 

Species Unbound 

fraction in 

plasma(fup) 

Unbound fraction 

in liver 

microsome(fum) 

Blood-Plasma 

partition 

(calculated) 

Blood-Plasma 

partition 

(measured) 

Mouse 4.45%±0.04% 2.03%±0.29% 0.570 0.581±0.010 

Rat 3.87%±0.79% 2.44%±0.73% 0.558 0.597±0.008 

Monkey 1.96%±0.65% N.A. 0.598 N.A. 

Dog 1.39%±0.48% N.A. 0.586 N.A. 

Human 1.65%±0.27% 6.16%±0.58% 0.567 0.572± 0.006 
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Table I.3 Pharmacokinetics (mean ± standard deviation) of MI-219 in animals 

 

Species 

Body 

weight 

(kg) 

Dose 

(mg/kg) 

AUC(0-∞) 

(h*ng/L) 

MRT(0-∞) 

(h) 

T½ 

(h) 

Vdss 

(L/kg) 

CL 

(L/h/kg) 

Mouse 0.018 10 7046±760 0.9±0.04 1.89±0.04 6.37±0.40 7.15±0.76 

Rat 0.2 5 2349±30 1.38±0.12 2.20±0.34 2.95±0.31 2.13±0.03 

Monkey 2.5 10 11884±1714 2.41±0.28 3.35±0.09 2.07±0.35 0.85±0.12 

Dog 8 2 6236±2312 1.63±0.36 3.90±0.78 0.60±0.32 0.36±0.14 
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Table I.4 Predicted clearance of MI-219 in humans 

 

Methods Predicted human clearance (L/h/kg) 

Simple allometry 0.146 

Allometric scaling normalized by in vitro 

microsomal data 

0.080 

Allometric scaling with CL×MPL 0.086 

Allometric scaling with CL×BW 0.064 

Two term power  equation 0.184 

Multi-exponential allometric scaling 0.342 

Single species scaling 0.324 (rat), 0.148 (dog), 0.346 (monkey) 

Physiologically based in vitro-in vivo scaling 0.237 (well-stirred model) 

0.282 (parallel-tube model) 

fu corrected intercept method 0.168 
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Table I.5 Predicted pharmacokinetic parameters of MI-219 in humans by Dedrick plots,  

Wajima’s method and NONMEM modeling  

 

Parameters Kallynochrons Apolysichrons Dienetichrons Wajima’s 

method 

NONMEM 

alpha 5.671 4.521 1.587 4.644 2.839 

beta 0.225 0.274 0.109 0.253 0.161 

A 76308 56043 40934 32457 21714 

B 4554 4957 3165 3017 3109 

CL (L/h/kg) 0.148 0.164 0.091 0.265 0.186 

Vdss (L/kg) 0.406 0.370 0.471 0.679 0.843 

MRT (h) 2.74 2.25 5.16 2.57 4.53 

R
2
 0.958 0.952 0.894 0.979 N.A. 

AIC 556 619 643 543 N.A. 
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Table I.6 Pharmacokinetic parameters of rats, dogs and monkeys estimated from  

individual and combined NONMEM models 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Species 

 

CL 

(L/h/kg) 

V1 

(L/kg) 

V2 

(L/kg) 

Q 

(L/h/kg) 

Rats Combined 2.486 1.150 3.321 0.897 

 

Individual 2.374 0.989 3.437 0.958 

Dogs Combined 0.504 0.364 1.052 0.490 

 

Individual 0.515 0.353 1.024 0.409 

Monkeys Combined 0.834 0.523 1.511 0.593 

 

Individual 0.884 0.452 2.140 1.516 
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Figure I.1 Metabolic stability of MI-219 in animal and human liver microsomes  
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Figure I.2 Mean plasma concentration–time following single intravenous administration  

of MI-219. Mouse (n = 33; three animals per time point), rat (n = 3), dog (n = 

3), and monkey (n = 6).  

 
* The concentrations of MI-219 in mouse plasma at 24 hr postinjection were lower than 

LOQ. 
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Figure I.3 Allometric scaling of CL (A); CL corrected by microsomal data (B); CL  

corrected by MLP (C); and CL corrected by brain weight (D); Vdss (E); 

unbound Vdss (F).   
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Figure I.4 Predicted human clearance using two-term power equation 
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Figure I.5 The predicted plasma concentration-time profiles in humans following a single  

i.v. injection of MI-219 (5 mg*kg
-1

) based on Kallynochrons, Apolysichrons 

and Dienetichrons time transformation. 
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Figure I.6 Superimposition of normalized concentration-time profiles of MI-219 in  

animals using Css and MRT (Wajima’s method) (A) and predicted human 

concentration-time profile following a single i.v. injection of MI-219 (5 

mg*kg
-1

) (B) 
 

 
 

 
 

 

 

 

 

 

0.0001

0.001

0.01

0.1

1

10

100

0 5 10 15 20

Mouse

Rat

Monkey

Dog

Normalized time (t/MRT) 

N
o

rm
al

iz
ed

 c
o

n
c.

 (
C

/C
ss

) A 

1

10

100

1000

10000

100000

0 20 40 60 80

Human

Time (h) 

H
u

m
an

 p
la

sm
a 

co
n

c.
 (

n
g

/m
l)

 B 



229 

 

Figure I.7 Human concentration-time profile following a single i.v. injection of MI-219  

(5 mg*kg
-1

) predicted by allometric scaling-based NONMEM modeling. 
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Figure I.8 Model validation - Observations in dogs (n =3) fell in 90% confidence  

intervals of simulations 
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