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Abstract

The ability to accurately predict local pin powers in nuclear reactors is necessary

to understand the mechanisms that cause fuel pin failure during steady state and

transient operation. In the research presented here, methods are developed to improve

the local solution using high order methods with boundary conditions from a low

order global solution. Several different core configurations were tested to determine

the improvement in the local pin powers compared to the standard techniques, that

use diffusion theory and pin power reconstruction (PPR). Two different multiscale

methods were developed and analyzed; the post-refinement multiscale method and the

embedded multiscale method. The post-refinement multiscale methods use the global

solution to determine boundary conditions for the local solution. The local solution

is solved using either a fixed boundary source or an albedo boundary condition; this

solution is “post-refinement” and thus has no impact on the global solution. The

embedded multiscale method allows the local solver to change the global solution to

provide an improved global and local solution.

The post-refinement multiscale method is assessed using three core designs. When

the local solution has more energy groups, the fixed source method has some difficulties

near the interface; however the albedo method works well for all cases. In order to

remedy the issue with boundary condition errors for the fixed source method, a buffer

region is used to act as a filter, which decreases the sensitivity of the solution to the

boundary condition. Both the albedo and fixed source methods benefit from the use

of a buffer region.

Unlike the post-refinement method, the embedded multiscale method alters the

global solution. The ability to change the global solution allows for refinement in areas

where the errors in the few group nodal diffusion are typically large. The embedded

method is shown to improve the global solution when it is applied to a MOX/LEU

assembly interface, the fuel/reflector interface, and assemblies where control rods are

inserted. The embedded method also allows for multiple solution levels to be applied

in a single calculation. The addition of intermediate levels to the solution improves the

ix



accuracy of the method. Both multiscale methods considered here have benefits and

drawbacks, but both can provide improvements over the current PPR methodology.
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Chapter 1

Introduction

The determination of the neutron flux distribution in nuclear reactors is crucial for

both safety and economic reasons. This is because the power produced in the fuel is

directly proportional to the neutron flux. The ability to accurately predict the power

distribution inside the core is important in determining the cooling requirements of

the reactor during steady state operation and all hypothesized transients, including

severe accidents. Economically, the ability to accurately predict the pin power dis-

tribution allows for better utilization of the fuel and decreases conservatism applied

to the probability of fuel failures during overpower events. These requirements put a

heavy burden on the codes responsible for calculating the neutron flux under various

conditions.

Standard practice in the design and analysis of nuclear reactors is the use of nodal

diffusion codes coupled to one dimensional thermal-fluid codes. Such coupled code

systems have the ability to accurately predict the average assembly powers. Pin

power reconstruction methods have been developed to modulate the heterogeneous

pin power distribution for a single assembly lattice calculation onto the smooth full

core solution. The efficiency of nodal diffusion codes makes them ideal to evaluate

the neutron flux during both operational and accident analyses. Unfortunately, the

underlying assumptions of diffusion theory prevent a detailed power distribution to

be known with sufficient accuracy for complex geometries or in challenging transient

conditions. For this reason, interest has increased in the development of advanced

codes which are capable of solving the Boltzmann transport equation throughout the

core [1, 2].

Although these full core transport solvers yield a detailed distribution of pin powers

throughout the core, they are very computationally intensive. Full core transport

solvers generally require the use of a computer cluster in order to solve the flux

distribution in a reasonable time and hold the full problem domain in memory. Fur-

thermore, the ability to solve full core transport transient problems are even more
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computationally intensive, in some cases requiring weeks of computing time for a few

seconds of transient simulation.

An important advantage that full core transport solvers have over the standard

nodal diffusion codes is the ability to accurately describe the effects of neighboring

assemblies. In nuclear reactors, there are several locations where the effect of neigh-

boring assemblies can introduce errors into the calculation: the fuel-reflector interface,

the insertion of control rods, and the interface of different fuel types. In the standard

few group nodal diffusion methods, the homogenized cross sections are generated

using an infinite medium neutron spectrum which can be very different from the

conditions in a modern core that can have very different fuel types and compositions.

A basic assumption of current methods is the validity of an asymptotic spectrum to

generate homogeneous cross sections. Unfortunately, this has become less valid in

highly heterogeneous fuel loadings currently used in industry.

One of the most common locations where diffusion theory does not work well is

the fuel-reflector interface. For assemblies facing the reflector, the assumption of an

infinite assembly does not accurately describe the correct energy spectrum inside the

assembly. The reflector allows for a large leakage of high energy neutrons and a source

of thermal energy neutrons which cause fission. The ability to resolve this interface

requires special treatment during modeling. The most common practice is to use

a two assembly calculation, which is comprised of the fuel assembly and a reflector

region. In order to preserve the net current at the interface, a discontinuity factor

is defined. Although this methodology is practical and improves the accuracy of the

calculation of the fuel-reflector interface, the method is not robust. Generally, this

type of calculation is only performed for a single fuel type with zero burnup, but in

reality there are several fuel types that face a boundary and the burnup associated

with the peripheral fuel is also not uniform.

Another common location where diffusion theory is inaccurate is in the vicinity

of control rods. The introduction of control rods causes a sharp drop in the thermal

neutron flux. Although the diffusion core solution does a good job of approximating

the worth of a control rod, the pin power distribution in neighboring regions can

have significant errors. The ability to calculate the pin power around control rods

accurately can be very important when predicting the fuel performance during events

such as a control rod ejection. In this kind of accident, the fuel pins facing the control

rod can experience a higher deposition of energy then the assembly average.

Finally, another common region where diffusion theory introduces errors is at the

interface of unlike fuel types. In recent years, interest has grown in the ability to load
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mixed oxide (MOX) fuel into operating nuclear reactors in order to burn weapons

grade Plutonium. The addition of these assemblies into the nuclear reactors creates

a very heterogeneous system of standard low enriched Uranium (LEU) and MOX

assemblies. The computational issues with these simulations are the fact that the

energy spectrum of an LEU assembly and a MOX assembly can be very different.

The existence of Plutonium in the MOX assemblies adds a large absorption resonance

below 1 eV, which does not exist in standard LEU fuel. The LEU-MOX interface can

be a significant source of error in nodal diffusion calculations, and a special treatment

must be used in order to minimize the errors in the standard homogenized nodal

methods.

The error in few group nodal diffusion in each of the cases noted above is directly

attributable to localized transport effects. The objective of this work is to increase

the fidelity of the solver locally in regions where large errors are introduced by the few

group diffusion approximation by employing a set of higher order methods locally, yet

retaining the global nodal diffusion solution. This is achieved through two different

methods. The first is an a posteriori method in which the global solution is used

to determine the boundary conditions for a local problem. This method does not

provide any feedback to the global solver and will be referred to as the post-refinement

method. The second method is an embedded calculation in which the global and

local solutions are solved simultaneously to provide a consistent solution. The second

method is much more consistent with traditional adaptive multiscale methods and

will be referred to as the embedded method.

1.1 Multiscale Methods

Multiscale methods provide the framework to perform a detailed calculation locally

while still relying on a coarser solution globally. The essential idea behind the multi-

scale method is to decompose the solution into suitable scales; macro, meso, micro,

etc. The objective of these scales is to increase fidelity where important physics is

occurring or the mathematical model of the macroscale is insufficient to capture the

full physics. The goal is to optimize the computational cost of the multiscale scheme

with the cost of a detailed global solution. That is, we desire:

cost of multiscale method

cost of smallest scale method on the full domain
� 1 (1.1)

One of the classical examples of the multiscale method is the multigrid method [3].
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(a) Level 1 (b) Level 2 (c) Level 3

Figure 1.1: Composite grid corresponding to each level

In this method, the spatial grid is refined in order to decrease the discretization error.

The grid refinement can be done on a global scale (full multigrid) and the multigrid

scheme simply accelerates the solution of the smallest scale or it can be done on a

local scale (adaptive multigrid) where the grid is reduced where the discretization

error is large. The standard coarse mesh finite difference (CMFD) [4] procedure is an

example of a full multigrid method.

The refinement of multiscale methods is performed adaptively and can be done

either statically or dynamically. Static adaptive methods determine how to refine

the grid using a predefined map, generally defined by the user. Dynamic adaptive

methods, on the other hand, use criteria of the solution to determine if the grid

should be refined. The criteria used can vary depending on the physics of interest.

In principle, the two types of adaptive methods can be combined. In this case, the

user would specify a location of interest and the rest of the domain would be refined

dynamically. However, the focus of the work here is on static adaptive methods.

The adaptive multiscale method relies on a hierarchy of grids and methods. The

first level represents the global domain with the macro-scale method. As the grid level

increases, the grid is restricted to smaller and smaller subdomains and the method

also increases in fidelity. Figure 1.1 shows the composite grid. Level 1 contains a

coarse representation of the global domain. Levels 2 and 3 refine the grid and the

method. The remainder of the coarse grid is depicted but the grayed out and is not

used during the computation of the level.

In addition to determining and defining the levels, it is necessary to define an itera-

tion strategy between the levels. There are several iteration strategies for maneuvering

between levels [3]. The V cycle iteration is a basic iteration strategy which starts

4



Figure 1.2: Traditional V-Cycle Iteration Strategy

Figure 1.3: W-Cycle Iteration Strategy with Multiple Levels

at level 1 and gradually increases the levels until the maximum number of levels is

reached and then gradually reduces the level back to 1. This type of iteration scheme

is repeated until all levels reach their convergence as shown in Figure 1.2. Another

iteration scheme, the W cycle, strives to limit the number of calls to the higher levels

until the lower levels reach certain convergence criteria. This iteration strategy is

depicted in Figure 1.3.

1.2 Previous Work in Multiscale for Neutron Trans-

port Calculations

The ability to obtain detailed localized information in nuclear reactors has been the

goal of several researchers over the past several decades. Some of the first research in

this area was done in the 1970’s by Wagner, Koebke, Grill, and Jonsson. The methods
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they developed involved a posteriori imbedded calculations with more detail locally in

order to reconstruct pin powers.

Koebke and Wagner [5] proposed a method called the “flux-lupe” method. Lupe

appropriately is the German word for magnifying glass. In this technique, a full core

nodal method is used to define partial incoming current boundary conditions for a

local problem. The boundary conditions describe the coupling of the local problem to

the global problem. The local problem is solved using a collision probability method.

Overall, the results of the flux-lupe method show significant improvement over the

pin power modulation method.

Grill and Jonsson [6, 7] also investigated imbedded calculations for the code

ROCS/MC. The methods used are similar to Koebke, but instead of the local solver

being collision probability, fine mesh finite difference diffusion was used. Partial

incoming currents are still used as the boundary condition for the problem. In this

method, the global and local solutions both used two energy groups. The results from

this work also showed good agreement with the global fine mesh calculations.

Nissen [8] investigated several different methods for pin power reconstruction,

including the flux-lupe methods and the modulation method that is the basis for

current pin power reconstruction techniques. In addition to running cases with partial

incoming current boundary conditions, albedo type boundary conditions were also

considered. Several conclusions about the flux-lupe method were made in Nissen’s

work. The flux-lupe method is sensitive to the accuracy of the actual boundary condi-

tions. In cases where the boundary conditions are poorly approximated, the pin power

shape did not represent the true solution. Another conclusion is that the albedo type

boundary condition is a better method to determine accurate boundary conditions

compared to the incoming partial current. The final conclusion is that the method

is accurate if good boundary conditions can be applied but it is computationally

inefficient if pin powers are desired in more than a few assemblies.

In a paper discussing the framework of modern nodal codes, Smith [9] contrasted

the speed of the current pin power reconstruction methods to the computational bur-

den that imbedded methods require. Smith recognized the superior accuracy possible

with imbedded methods, but because of concerns with computational efficiency, he

recommended the development of pin power reconstruction methods which have since

become more popular than imbedded methods.

More recently, researchers have investigated refining one of the three independent

variables in neutron transport; space, energy, and angle. The spatial variable has been

considered by Jessee [10] and Wang [11]. Both of these methods looked at applying
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dynamically adaptive multigrid mesh refinement schemes to discrete ordinates dis-

cretization of the transport equation. The spatial refinement shows good improvement

in computational requirements in both studies.

The spatial and angular variable refinement has been considered by Yi [12, 13]. In

this work, an embedded MOC solver is considered inside a discrete ordinates global

solution. This allows for higher accuracy in the local region where the MOC solution is

solved with accurate boundary conditions from the discrete ordinates calculation. At

the interface between the two solvers, the angular flux is projected in space and angle

for each energy group. This method is similar to the method discussed in the research

here except the interface is between diffusion and transport, and the energy group

structure is mixed. Both of these differences complicate the interface. In addition,

different regions are allowed to have different quadrature sets. At the interface of two

quadrature sets, the angular flux is projection is based on interpolation in angle space.

The energy variable has recently been considered by Forget [14, 15, 16, 17]. The

discrete generalized multigroup method (DGMM) creates a framework to perform

calculations with mixed energy. This is done by performing an intermediate fixed

source calculation which solves for moments of a coarse energy structure to reconstruct

a fine energy structure. The intermediate calculation provides a consistent method to

reconstruct the projection operator while still maintaining the fidelity of the coarse

energy group solution.

Another method that has been considered to obtain more detailed pin by pin

information is to rerun the lattice code to generate few group cross-sections with a

more accurate energy spectrum [18, 19, 20, 21, 22]. In this method, a lattice calculation

is performed for every assembly several times. Each time the lattice calculation is

performed, the boundary conditions are adjusted in order to match the global diffusion

solution and the spatial, energy, and angular effects of the neighboring assemblies. At

convergence, the solution becomes very similar to the global transport solution. In

the case where the outgoing angular flux is transferred to the neighboring assembly,

these methods are effectively a method to decompose the transport domain to increase

parallelism and reduce computation time.

1.3 Overview of Current Work

The presentation of the research performed here is organized in four major sections:
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1. An overview of the current computational reactor physics methods
2. A discussion of the theory and implementation of the multiscale neutron transport

methods
3. A brief overview of the test cases and the methods for assessing the quality of

the solution
4. The results of the test cases

In the overview section, several currently used methods are discussed to provide a

background of standard definitions and methods used in computational reactor physics.

A more detailed discussion is focused on the methods relevant to the multiscale code

developed in this work.

The next section presents the theory of the multiscale method, including various

approximations needed to transition between scales. After the theory is presented,

the specifics of the multiscale methods for this work are presented. Two different

multiscale methods are detailed with contrasting benefits. The first method is call the

post-refinement method, and is similar to the flux-lupe method proposed by Koebke,

except that two improvements are made to provide more consistent results. The first

improvement is to allow for albedo type boundary conditions instead of incoming

partial currents. The second improvement is to allow for a buffer region around the

region of interest to minimize the impact of the boundary conditions. The second

multiscale method embeds the local solver into the global solver. This method is more

consistent with standard multiscale methods. In this section, a description of the

iteration strategy and all special treatments between levels is also provided.

The third section outlines the test cases that are used to assess the accuracy of the

method. Several cases are developed to test different attributes of the solvers. One-

and two-dimensional cases are performed to examine the effects of the fuel-reflector

interface, control rods, and the interface between different fuel types. Five different

figures of merit are also described to determine any improvements of the solution over

standard methods.

The fourth section contains the results of all the test cases. The results section

is separated into two chapters. The first chapter deals with the results from the

post-refinement method. After considering cases with and without a buffer region, a

sensitivity study is performed to determine how sensitive the solution is to each of the

boundary condition types (incoming partial current and albedo). The next chapter

investigates the use of embedded or “two-way coupling” methods which is similar to

the typical multiscale methods. In these cases, the global solution is changed by the

embedded local solution.

Finally conclusions about both methods are discussed and future work is proposed.
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Chapter 2

Current Reactor Analysis
Methodology

2.1 Neutron Transport Theory

The steady-state neutron transport equation, which describes how neutrons stream,

are lost through collision, and are born into six dimensional phase space, is shown in

equation (2.1).

Ω ·∇ψ (x,Ω, E) + Σt (x, E)ψ (x,Ω, E)

=

∫
4π

∫ ∞
0

Σs (x,Ω′ ·Ω, E ′ → E)ψ (x,Ω′, E ′) dE ′dΩ′

+
χ (E)

4πk

∫
4π

∫ ∞
0

νΣf (x, E ′)ψ (x,Ω′, E ′) dE ′dΩ′

x ∈ V, Ω ∈ 4π, 0 < E <∞ (2.1a)

ψ (x,Ω, E) = 0 x ∈ ∂V, Ω · n < 0, 0 < E <∞ (2.1b)

In this equation, ψ is the angular neutron flux as a function of space
(
x
)
, angle(

Ω
)
, and energy

(
E
)
. Σx is the macroscopic cross-section of type “x” which is total(

t
)
, fission,

(
f
)
, or scattering

(
s
)
. ν is the average number of neutrons generated

per fission, χ
(
E
)
dE is the probability that a fission neutron is created in dE about

energy E. k is the k-eigenvalue (multiplication factor) of the system. The k-eigenvalue

modifies the number of neutrons produced by each fission to preserve the global

balance of neutrons. The transport equation is complicated by the energy dependent

coefficients and cross-sections, as shown in Figure 2.1.

The complexities of the neutron transport equation make it difficult to solve for

full core problems. Several methods have been developed over the past decades to
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Figure 2.1: 235U and 239Pu Total Cross-sections

efficiently model standard reactor designs. Solutions of the transport equation can be

broken up into two categories: deterministic and stochastic. Deterministic methods

discretize each of the free variables, introducing discretization error into the solution.

Stochastic methods model the random nature of the transport equation and thus do

not have discretization errors, but instead have statistical errors.

Deterministic methods require the spatial, angular, and energy domain to be

discretized. The spatial domain is generally divided into finite volumes, in which the

transport equation is solved. The exact method of treating the spatial variables differ

between different methods. The angular variable is generally treated in two ways.

The first method is to discretize the angle across the unit sphere (discrete ordinates).

The second method is to solve for integral moments of the angular variable (spherical

harmonics). Almost all deterministic methods use the multigroup method to discretize

the energy variable.

The multigroup method defines energy groups on which an average cross-section is

defined for each group. The average cross-section is defined by preserving the reaction

10



rate inside the energy group.

ψg (x,Ω) =

∫ Eg−1

Eg

ψ (x,Ω, E) dE (2.2a)

Σx,g (x,Ω) =

∫ Eg−1

Eg
Σx (x, E)ψ (x,Ω, E) dE

ψg (x,Ω)
(2.2b)

χg (x) =

∫ Eg−1

Eg

χ (x, E) dE (2.2c)

Generally an extra assumption is made that the angular flux is separable in energy

and angle. This simplifies the definition of the multigroup cross-sections to only be a

function of space.

Σx,g (x) =

∫ Eg−1

Eg
Σx (x, E)φ (x, E) dE

φg (x)
(2.3)

These definitions yield the multigroup transport equation.

Ω ·∇ψg (x,Ω) + Σt,g (x)ψg (x,Ω)

=
χg

4πk

G∑
g′=1

∫
4π

νΣf,g′ (x)ψg′ (x,Ω
′) dΩ′

+
G∑

g′=1

∫
4π

Σs,g′→g (x,Ω′ ·Ω)ψg′ (x,Ω
′) dΩ′ (2.4)

The principal problem with the multigroup equations is the need to know the

continuous energy flux to correctly weight the continuous energy cross-sections. Several

methods have been proposed to calculate multigroup cross-sections but, the two major

methods are to assume an analytic shape for the flux or to calculate the point-wise

continuous flux. Generally a combination of these two methods are used; analytic

expressions where the flux solution is straightforward and well known, and point-wise

continuous numerical solution in regions where the flux solution is non-trivial, such as

the resonance region. The numerical solutions are generally computed on a significantly

reduced spatial domain, which generally is zero- or one-dimensional in nature.

Another common assumption is to rewrite the differential scattering cross-section
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as an infinite Legendre expansion:

Σs (x,Ω′ ·Ω) =
∞∑
n=0

2n+ 1

4π
Σs,n (x)Pn (Ω′ ·Ω) (2.5)

The differential scattering can normally be well-approximated by truncating the infi-

nite sum after the first or second moment. In this work, isotropic scattering, P0, will

be assumed for simplicity. The resulting multigroup transport equation with isotropic

scattering can be written as follows.

Ω ·∇ψg (x,Ω) + Σt,g (x)ψg (x,Ω)

=
χg

4πk

G∑
g′=1

νΣf,g′ (x)φg′ (x) +
1

4π

G∑
g′=1

Σs0,g′→g (x)φg′ (x) (2.6)

φ is the scalar flux which is simply the angle-integrated angular flux.

φg (x) =

∫
4π

ψg (x,Ω) dΩ (2.7)

2.2 Diffusion Theory

2.2.1 Nodal Diffusion

Nodal diffusion codes have been the workhorse of reactor design and analysis for the

past several decades. The nodal diffusion method is dependent on the diffusion form

of the transport equation.

The Diffusion Equation

The diffusion equation is derived from the Pn class of methods, which expand moments

of the angular flux using Legendre polynomials.

ψg (x,Ω) =
∞∑
n=0

2n+ 1

4π
Pn (Ω)φg,n (x) (2.8)
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The P1 equations are obtained by taking the zeroth and first angular moment of the

transport equation and discarding the second angular moments:

∇ · Jg (x) + Σt,g (x)φg (x) =
G∑

g′=1

(χg
k
νΣf,g′ (x) + Σs0,g′→g (x)

)
φg′ (x) (2.9a)

1

3
∇φg (x) + Σt,g (x)Jg (x) =

G∑
g′=1

Σs1,g′→g (x)Jg′ (x) (2.9b)

The P1 equations are written solely in terms of the scalar flux φ and the net

neutron current J , which are defined as follows.

φg (x) =

∫
4π

ψg (x,Ω) dΩ (2.10a)

Jg (x) =

∫
4π

Ωψg (x,Ω) dΩ (2.10b)

The diffusion equation and the P1 equations differ in two ways. The first is that

the time derivative of the current is assumed to be zero for the diffusion equation.

Since only the steady state equations are shown here, this approximation is exact. The

second assumption made is that the anisotropic scattering term, Σs1, can be simplified

into a diagonal matrix. Since the scattering is assumed to be isotropic, this term is

zero and this approximation becomes exact as well.

Σtr,g (x) = (Σt,g (x)− Σs1,g,g′ (x)) (2.11)

The diffusion equation is obtained by solving equation (2.9b) for the current and

substituting that into equation (2.9a).

− 1

3
∇ · Σ−1

tr,g∇φg (x) + Σt,g (x)φg (x)

=
χg
k

G∑
g′=1

νΣf,g′ (x)φg′ (x) +
G∑

g′=1

Σs0,g′→g (x)φg′ (x) (2.12)

Equivalence Theory

Most nodal methods today are based on Equivalence Theory proposed by Koebke

[23] and extended to Generalized Equivalence Theory by Smith [24]. In general, the
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equivalence theories developed by Koebke and Smith aim to accurately represent

a heterogeneous system using a homogeneous system through the introduction of

additional parameters. Generalized Equivalence Theory uses a three-step approach

for determining the power distribution in the reactor. The first step is to generate

the transport multigroup cross-section library using zero or one dimensional methods.

The transport library is generally between 50 to 200 energy groups but have special

treatment to deal with resonance parameters.

The second step is to perform a two-dimensional assembly-level calculation for

each assembly type using the transport library. Using the solution of this model, the

cross-sections are homogenized in space and used to generate a few-group library,

which typically has 2-8 energy groups. Other parameters are also computed to enforce

equivalence between the assembly and core level solutions. In many cases where

thermal hydraulic feedback is required, the few-group library is generated at different

reference conditions (coolant density, fuel temperature, boron concentration, etc.).

In the third and final step, the nodal diffusion code uses the few-group library

to solve the full core problem. The nodal diffusion code is normally coupled to one

dimensional thermal hydraulic codes to provide the thermal hydraulic feedback in the

core system.

Assembly-level (Lattice) Computation

The assembly-level computation relies on a code which is capable of solving the two

dimensional transport equation. The single assembly model should accurately account

for all of the geometric complexities in the lattice and have a sufficiently fine spatial

mesh to accurately resolve the angular flux distribution in the assembly. Several

methods have been used to solve the assembly-level problem, some of which are

discussed in the Transport Methods section.

Homogenization and Discontinuity Factors

The spatial and energy flux distribution obtained from the assembly-level calculation

is used to generate assembly homogenized few group cross-sections. The cross-sections

are collapsed to preserve the average reaction rates.

Σx,g =

∫ ∑
h∈g

Σx,h (x)φh (x)dV∫ ∑
h∈g

φh (x)dV
(2.13)
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where h is the fine group energy and g is the coarse group energy. The method-

ology to homogenize the transport cross-section is not as clear. Several methods

have been proposed to do this, including flux weighting, inverse flux weighting, and

current weighting. It has been found that flux weighting the transport cross-section

in space, equation (2.14a), and flux weighting the inverse cross-section in energy,

equation (2.14b), works best for reactor analysis [25].

Σtr,h =

∫
Σtr,h (x)φh (x)dV∫

φh (x)dV
(2.14a)

Σtr,g =

∑
h∈g

φh∑
h∈g

φh
Σtr,h

(2.14b)

Generalized Equivalence Theory [24] provides an extra degree of freedom to match

the assembly-level solution. This degree of freedom is captured in discontinuity factors,

which account for the loss of spatial resolution at the interface during homogeniza-

tion. Multiple discontinuity factors can be specified depending on the number of free

variables the nodal method can accept. Side discontinuity factors specify the ratio

of the surface flux calculated by the assembly-level calculation and the surface flux

predicted by the nodal method.

SDFg,f =
φHeterogeneous
g,f

φHomogeneous
g,f

(2.15)

Here SDF is the side discontinuity factor, g is the few energy groups, and f is the

surface. Other nodal methods can also utilize corner discontinuity factors; these are

the ratio of the point flux calculated by the assembly-level calculation and the point

flux predicted by the nodal method.

CDFg,c =
φHeterogeneous
g,c

φHomogeneous
g,c

(2.16)

Here CDF is the corner discontinuity factor and c represents the corner at which the

flux is calculated.

The last piece of information extracted from the assembly-level calculation is the

group-wise pin power form function (GFF). The GFF allows the pin powers to be
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reconstructed in the entire core.

Pi,j =
G∑
g=1

GFFg,i,jφ̃g,i,j (2.17)

Here GFFg,i,j is the group form function for group g and pin position i, j and φ̃g,i,j is

the reconstructed scalar flux from the homogeneous diffusion solution of the lattice.

The GFF is computed by taking the ratio of the power generated by group g as

calculated using the assembly level calculation to the average pin flux as calculated by

an equivalent diffusion model.

GFFg,i,j =
κΣf,g,i,jφ

Heterogeneous
g,i,j

φHomogeneous
g,i,j

(2.18)

Core-level Computation

Once the lattice physics code generates all the parameters needed, a core wide compu-

tation can be performed. The core computation starts with the spatial discretization

of the core. In the radial direction the assembly size is typically used. In the axial

direction a grid is typically set to 10− 20cm. There are two common discretizations

of the core wide diffusion problem. The first is to use the diffusion equation and apply

a fine mesh finite difference method. This requires a further internal discretization of

each assembly, which is typically made on a pin size level. The differential equation is

then discretized using the finite difference approximation to solve the full core system.

A second method that is commonly used is a transverse leakage method. These

methods convert the three dimensional differential equation into three one dimensional

differential equations coupled through transverse leakage terms.

−D d2

dx2
i

φ (xi) + Σtφ (xi) = Q (xi)− L (xi) (2.19a)

L (xi) = l0 + l1P1 (xi) + l2P2 (xi) (2.19b)

Here L (xi) is the transverse leakage sink and Pn (xi) is a function which defines

the distribution of the leakage inside the node. Typically the transverse leakage is

found by interpolating a shape function using the node average leakage of the current

node and the neighboring nodes. Once the solution is cast into a one dimensional

differential equation, the solution possibilities become much simpler.
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Two standard options exist for solving the flux distribution inside a node. The

first option is to expand the nodal flux and source using a polynomial basis set and

solve for the node balance constraints (continuity of surface flux and current) as well

as spatial moments of the differential equation. This method is known as the Nodal

Expansion Method (NEM) [26].

The second option is to solve for the analytic solution of the nodal flux (ANM) [27].

With one energy group, this solution is trivial, but for reactor problems a minimum of

two groups is needed. For two group problems, methods have been developed that

use a spectral decomposition of the coupled differential equations to solve the groups

simultaneously. For more energy groups, the spectral decomposition method is not

as easy to derive. In this case, the system of equations can be written in such a way

that solution becomes a matrix exponential. This can be evaluated using a variety of

methods, but it can easily become ill-conditioned, and it can be difficult to implement

boundary conditions.

The last option bridges the gap between the NEM and ANM. This method solves

the analytic solution to the differential equation in which the source is expanded using

a polynomial. This method is known as the Semi-Analytic Nodal Method (SANM) [28].

The group coupling is effectively removed from the analytic solution so groups do not

need to be solved simultaneously. Once the analytic form of the flux is found, it is

recast into a polynomial to update the source term. This method has advantages over

the other two because the solution resembles the analytic result, reduces overshoots and

undershoots from a pure polynomial method, and can be expanded to use an arbitrary

number of groups. The main downside is the complication of implementation because

the projection equations from analytic to polynomial can become quite complex.

All of the methods discussed above can be implemented with surface discontinuity

factors. In some cases the corner discontinuity factors will be used in the calculation

of the pin powers. The core calculation can produce very accurate results if the

cross-sections and discontinuity factors are generated correctly.

2.2.2 Fine Mesh Finite Difference Diffusion

The fine mesh finite difference method is a common computational method that is

used for many numerical solutions to partial differential equations. The methodology

is well known for classical diffusion equations and is very similar for neutron transport.

Like the classical solutions the node average flux is assumed to be the centroid flux

and the derivative of the flux needed to determine the neutron current is calculated

17



using the first two terms of the Taylor expansion. There are two main features of

neutron diffusion theory that differ from classical diffusion problems (such as heat

conduction). The first is the presence of the collision operator in the neutron diffusion

equation. The second difference is the use of discontinuity factors at the assembly

interface.

Fine Mesh Finite Difference Formulation

The FMFD method starts by integrating the diffusion equation over a rectangular

region. The neutron current at the surface of each face is balanced by the neutron

source minus collision losses in each node.

∑
f=n,e,s,w

(Jg ·A)f + Σt,P,gφP,gV =
G∑

g′=1

Σs,P,g′→gφP,g′V +
χP,g
k

G∑
g′=1

νΣf,P,g′φP,g′V (2.20)

Here n, e, s, w represent the north, east, south, and west faces respectively. The

flow of neutrons at the surfaces is written in two different equations describing how

neutrons flow from the node average values to the surface, then from the surface to

the neighboring node. At the interface the discontinuity factor is applied.

Je = DP
φP − φP,e

0.5hP
(2.21a)

Je = DE
φE,w − φE

0.5hE
(2.21b)

fP,eφP,e = fE,wφE,w (2.21c)

These three constraints are applied to construct the net current at the interface as

a linear combination of the centroid value and the centroid of the neighboring cell.

Je =
2DPDE (fP,eφP − fE,wφE)

DEfP,ehP +DPfE,whE
(2.22)

For the problems considered in this work the fine mesh is defined using the pin

cell geometry, but the side discontinuity factors are only defined on the assembly level.

In order to account for the difference in locations where the discontinuity factors are

defined, the discontinuity factors are assumed to be unity for interior faces of the
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assembly and adopt the assembly surface discontinuity factor for external faces of the

assembly. The corner discontinuity factors are not utilized in this method. Lastly, the

group form functions, which allow for the pin powers to be reconstructed from the

homogenized solution, simply uses the node average flux which has been defined to be

the average flux over the pin cell by nature of the FMFD method.

The last issue that must be addressed is the application of the boundary condi-

tions of the global system. Generally, the boundary condition specified is an albedo

boundary. For most diffusion codes the albedo is defined slightly different than the

methodology described in the previous chapter. Instead, the α albedo is defined as

the ratio of the net current and the surface flux for each energy group.

αg =
Jg,s · n
φg,s

(2.23)

The definition of the albedo is substituted into the FMFD definition of the current to

obtain a relationship between the boundary current and the node average flux.

Je = DP
φP − φP,e

0.5hP
(2.24a)

Je = αefP,eφP,e (2.24b)

Je =
2αeDPfP,eφP

2Dp + αefP,ehP
(2.24c)

Source Iteration

Now that the diffusion equation is discretized and written in terms of the the average

nodal flux and the average flux of the neighboring assemblies, the system of equations

can be compiled in matrix form. The matrix is of dimension NnodeG×NnodeG and

can be written in operator form as follows.

Dφ+ Tφ = Sφ+
1

k
χ
−−→
νΣf

ᵀφ (2.25a)

M = D + T− S (2.25b)

F = χνΣᵀ
f (2.25c)
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Mφ =
1

k
Fφ = λFφ (2.25d)

In these equations, D contains a matrix relating all of the streaming terms, T is a

diagonal matrix containing the total cross-section of each node and group, S is a block

diagonal matrix containing the scattering matrix of each node, F is the fission operator

defining the fission source in each node, and λ is the inverse of the multiplication

factor.

The final form of the operator notation for the diffusion equation is an eigenvalue

problem. Since the fundamental mode (largest multiplication factor) is the desired

quantity for steady-state core analysis, the inverse power method is used to calculate

the eigenvalue/eigenvector pair.

Mφ(k+1) = λ(k)Fφ(k) (2.26a)

λ(k+1) =
‖Fφ(k)‖
‖Fφ(k+1)‖

(2.26b)

Since φ(k) is known at the beginning of the k + 1 iteration, equation (2.26a) is of

the following form.

Ax = b (2.27)

This equation can be solved using a direct linear equation solver such as Gaussian

elimination, an iterative solver such as Gauss-Siedel or Jacobi methods, or using a

Krylov subspace method such as GMRES or BiCGstab. Several solvers were imple-

mented in the code developed and various methods were tested to determine the best

results.

Wielandt Shift Acceleration

The source iteration method is slowly converging for cases with dominance ratios (the

ratio of the second largest to the largest k) close to 1. One method that can accelerate

the convergence of the source iteration is to shift part of the fission source to the left

hand side of the equation.

(M− λshiftF)φ = (λ− λshift)Fφ (2.28)
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Here λshift is the amount of the fission source that is moved to the left hand side of

the equation and the inverse power method is applied to the shifted system.

Care must be taken when choosing the value of λshift. Since the inverse power

method finds the eigenvalue closest to zero, it is possible to overshift the system

and converge to an eigenvalue which does not represent the fundamental mode. One

method to specify λshift is to fix the value to be 1
kmax

where kmax is the maximum

multiplication factor that is possible (3 is the default kmax used because it represents

the average number of neutrons born per fission). Another method to specify λshift is

to allow the user to input a fixed value for the shifted eigenvalue. The last method

changes the shifted eigenvalue as the solution iterates to obtain an optimum shift.

This is obtained by using the current estimate of the eigenvalue and the change in the

eigenvalue between successive iterations.

λk+1
shift = α0λ

k − α1|λk − λk−1| (2.29)

Here, α0 is a constant less than 1 which does not allow the full eigenvalue to be shifted

otherwise the matrix would become singular at convergence and α1 is a constant which

scales the error to prevent overshifting during the iteration. The values used in this

work are α0 = 0.95 and α1 = 5.

2.3 Transport Methods

Limitations of nodal diffusion methods along with considerable advancements in

computing technology are two of the main reasons that transport methods have found

their way into reactor design and analysis. There are several classes of methods to

solve the transport equation. This discussion will focus on a few of these methods.

One of the most popular methods is the discrete ordinates method (SN) [29], which

assumes that the angular flux can be discretized into discrete angles each with a

corresponding weight. These angles and weights are defined by a quadrature set. The

quadrature sets used for 1-D problems are almost universally the Gauss-Legendre

sets [30] but in 3-D problems there are many proposed quadrature sets. One of the

most common quadrature sets for 3-D problems is the Level-Symmetric quadrature

set [30].

The other common method for solving the full core transport problem is the

Method of Characteristics, MOC [31]. In this method characteristic paths of flight

are drawn across the domain with a user specified spatial and angular discretization.
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The transport equation is then integrated along these characteristic directions. The

computational burden for the application of 3-D MOC methods [32] to core problems

is generally prohibitive for full core calculations. Approximate “2D-1D” methods have

been developed [33] that are based on the assumption that the solution is separable in

the radial and axial direction. The MOC equations are solved for each radial slice of

the reactor and are coupled by a nodal diffusion solver in the axial direction. Other

methods have been developed that model the axial direction using a one dimensional

SN solver [34].

2.3.1 Method of Characteristics

The Method of Characteristics is a solution to the transport equation in which rays

are drawn across the global geometry in discrete angles and the transport equation is

integrated along those rays.

Governing Equations

The MOC equations begin with the Boltzmann transport equation with isotropic

scattering.

Ω ·∇ψ (x,Ω, E) + Σt (x, E)ψ (x,Ω, E)

=
χ (E)

4πk

∫
4π

∫ ∞
0

νΣf (x, E ′)ψ (x,Ω′, E ′) dE ′dΩ′

+
1

4π

∫
4π

∫ ∞
0

Σs0 (x, E ′ → E)ψ (x,Ω′, E ′) dE ′dΩ′ (2.30)

or

Ω ·∇ψ (x,Ω, E) + Σt (x, E)ψ (x,Ω, E) =
Q (x, E)

4π
(2.31)

where Q is the isotropic fission and scattering source for position x and energy E.

In order to obtain a solution along the ray, the angular coordinate system is recast

in the direction of the ray, as shown in Figure 2.2.

ψ (x,Ω, E) = ψ (xm,0 + sΩm, E) (2.32a)

Ω ·∇ψ (x,Ω, E) =
d

ds
ψ (xm,0 + sΩm, E) (2.32b)
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Figure 2.2: Coordinate System for MOC Rays

Using this definition the transport equation can be written in direction Ωm as

follows.

d

ds
ψ (xm,0 + sΩm, E) + Σt (xm,0 + sΩm, E)ψ (xm,0 + sΩm, E)

=
Q (xm,0 + sΩm, E)

4π
(2.33)

The ordinary differential equation (2.33) has a solution which is shown below.

ψ (xm,0 + sΩm, E) = ψ (xm,0, E) exp

(
−
∫ s

0

Σt (xm,0 + s′Ωm, E) ds′
)

+
1

4π

∫ s

0

Q (xm,0 + s′Ωm, E) exp

(
−
∫ s

s′
Σt (xm,0 + s′′Ωm, E) ds′′

)
ds′ (2.34)

Thus far the integral along a single ray with an arbitrary angle has been discussed.

In reality, the solution is solved for a discrete number of angles. The angle is discretized

using a product quadrature set, meaning that the polar and azimuthal angles are

chosen separately and then combined. The azimuthal angles are chosen so that 4M

angles are represented between 0 and 2π and the polar angles are chosen such that 2L

angles between −1 and 1. Weights are assigned to each angle such that the following

relationship holds.

∫
4π

ψ (x,Ω, E) dΩ ≈
2L∑
l=1

ωl

4M∑
m=1

ωmψm,l (x, E) (2.35)
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Equation (2.34) is an exact representation of the transport equation along a line in

direction Ωm,l. Two major assumptions will now be applied to this equation in order

to obtain the final form. The first assumption is that the domain is two dimensional

and infinite in the axial direction. This simplification can allow the rays to be based

in a plane with a correction for the azimuthal dependence of the flux.

ψ (xm,0 + sΩm, ϕl, E) = ψ (xm,0, ϕl, E) exp

(
−
∫ s

0
Σt (xm,0 + s′Ωm, E) ds′

sinϕl

)
+

1

4π

∫ s

0

Q (xm,0 + s′Ωm, E) exp

(
−
∫ s
s′

Σt (xm,0 + s′′Ωm, E) ds′′

sinϕl

)
ds′ (2.36)

where ϕl is the polar angle.

The second assumption is that the ray is traced across a discrete geometry where

inside a computational node, the cross-sections and the neutron source are constant.

This assumption allows the integral over the entire ray to be broken up into segments

where the outgoing angular flux is an algebraic expression instead of an integral

expression.

ψ (xm,r,0 + sΩm, ϕl, E) = ψ (xm,r,0, ϕl, E) exp

(
−Σt,r (E) s

sinϕl

)
+

QR (E)

4πΣt,r (E)

(
1− exp

(
−Σt,r (E) s

sinϕl

))
(2.37)

Here r denotes a specific ray inside a flat source, flat cross-section node R. The

incoming flux is determined by the boundary condition for nodes on the boundary or

the outgoing angular flux from the previous region, which is determined by evaluating

equation (2.37) at the length of cell r, sm,r.

ψout
m,l,r (, E) = ψ (xm,r,0 + sm,rΩm, ϕl, E)

= ψin
m,l,r (E) exp

(
−Σt,r (E) sm,r

sinϕl

)
+

QR (E)

4πΣt,r (E)

(
1− exp

(
−Σt,r (E) sm,r

sinϕl

))
(2.38)

The average angular flux along a ray segment can be found by integrating equation

(2.37) from 0 to sm,r, the length of the cell, and dividing by the length of the cell.

ψm,l,r (ϕ,E) =

∫ sm,r

0
ψ (xm,r,0 + s′Ωm, ϕl, E) ds′

sm,r
(2.39a)
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ψm,l,r (E) =
ψin
m,l,r (E)− ψout

m,l,r (E)

Σt,r (E) sm,r

sinϕl

+
QR (E)

4πΣt,r (E)
(2.39b)

So far one a single ray has been considered but in reality, several parallel rays are

traced across the domain. The rays are laid out across the domain in each azimuthal

direction with spacing ∆m. In order to obtain the average angular flux in a region R,

the average flux of each ray is weighted by the volume that ray occupies.

ψm,l,R (E) =

∑
r∈R

ψm,l,r (E) ∆msm,r∑
r∈R

∆msm,r
(2.40)

The node average angular flux is used to calculate the node average scalar flux by

using the angular weights described in equation (2.35).

φR (E) = 2
L∑
l=1

ωl

4M∑
m=1

ωmψm,l,R (E) (2.41)

Since the problem is two dimensional, only half of the polar angles need to be simulated

and the weight is modified to account for the symmetry. The final step is to apply the

multigroup method.

ψg,m,l,r =
ψin
g,m,l,r − ψout

g,m,l,r

Σt,g,rsm,r

sinϕl

+
Qg,R

4πΣt,g,r

(2.42a)

ψg,m,l,R =

∑
r∈R

ψg,m,l,r∆msm,r∑
r∈R

∆msm,r
(2.42b)

φg,R = 2
L∑
l=1

ωl

4M∑
m=1

ωmψg,m,l,R (2.42c)

The last remaining issue is to use the scalar flux in each group and region to

determine the neutron source Qg,R.

Qg,R =
G∑

g′=1

Σs0,R,g′→gφg′,R +
χg,R
k

G∑
g′=1

νΣf,g′,Rφg′,R (2.43)
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Ray Tracing

So far we have assumed that the lengths of the rays, sm,r, are known. Generation of

all the ray segments for the whole core geometry requires enormous computational

memory and programming effort. To avoid this problem, the ray segments are gener-

ated only for each cell type, and the rays defined for each cell are linked to the rays of

the adjacent cells through path linking. For path linking, each ray must align itself

exactly with its reflective counterpart at the cell boundary. To meet this condition,

the ray spacing and azimuthal angle are adjusted from the evenly spaced initial angles

and uniform ray spacing determined by the input parameters. In order to achieve an

integer number of rays for a given angle the ceiling function is used which rounds up

to the nearest integer.

Nm
x = ceiling

(
P

∆m0

|sin (αm0)|
)

(2.44a)

Nm
y = ceiling

(
P

∆m0

|cos (αm0)|
)

(2.44b)

∆m =
P√

(Nm
x )2 +

(
Nm
y

)2
(2.44c)

tan (αm) =
Nm
x

Nm
y

(2.44d)

For PWR cores, the pin is normally the smallest repeated structure and is used as

the cell. In a BWR, the assembly is the smallest repeated structure and is used as the

cell. Since only PWR cores are considered in this work, the pin is always used as the

cell. Figure 2.3 shows a typical pin cell with the modular rays.

The choice of modular rays has an impact on the quadrature set that imposed in

the azimuthal direction. The weights chosen based on the solid angle represented by

the adjusted angles. The polar angles and weights remain unchanged.

The pin cell is broken into 8 azimuthal segments and the user defines an arbitrary

number of concentric circles located at the center of the pin cell. Each pin type is

traced for each modular ray and direction to obtain the lengths inside the pin. The

link between the incoming and outgoing ray is also stored in order to easily construct

the path linking between neighboring pins. Once each pin type has been traced, the

global rays are constructed using path linking. Instead of storing all of the structure

inside a global ray, only the local pin index and the local ray index are stored for each
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Figure 2.3: Modular Rays

part of the ray, greatly reducing the global storage requirements. As the global rays

are traced in the MOC subroutine, the local ray information is recovered.

Another inherent problem with discrete rays is that the volume that the rays rep-

resent are not equivalent to the cell volume. Each ray represents a beam of neutrons

that is rectangular. In curve-linear geometry, these rectangles do not accurately match

the true geometry. Therefore the ray lengths are adjusted to conserve the total volume

of each region. This is done by simply adjusting the lengths, sm,r to preserve the total

volume in region R.

scorr
m,r =

sm,rVR∑
r∈R

sm,r∆m

(2.45)

The corrected lengths are used for both the MOC ray sweeping routine and the

calculation of the region average angular flux.

Source Iteration

The source iteration for the MOC calculation is slightly different than the diffusion

equation because the scattering source is dependent on the angular flux from other

angles. The number of free variables in MOC makes it difficult to set up into a matrix

form. Two iteration loops are used in order to converge the scattering source and
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the fission source. The outer most loop is the typical fission source iteration power

method described for the FMFD case. Since the equations are not in matrix form,

the application of Wielandt shift acceleration is not practical. An inner iteration loop

is performed to converge the scattering source with a fixed fission source. It should be

noted that the power method requires that the fission source does not change during

a power iteration. Inside the inner loop, all rays inside each angle are swept from

beginning to end. To minimize memory access, the ray is also swept in the reverse

direction in the inner most loop.

2.3.2 Stochastic Methods

The Monte Carlo method is a stochastic method for solving the transport equation by

simulating individual neutrons and computing a solution based on statistical averages.

The Monte Carlo method is advantageous because there is no discretization error

introduced in space, energy, or angle. Therefore the error encountered in the solution

is purely statistical. The neutrons are simulated from their birth into the system

and pseudo-random numbers are used to sample probability distribution functions to

determine if; a reaction occurs, the type of reaction, and the secondary energy and

angle of the particle. This process is repeated for millions of neutrons in the system.

The statistical error in these calculations follows the Central Limit Theorem if N � 1.

ε ≈ C√
N

(2.46)

Therefore the statistical error decreases in inverse proportion, “inversely proportional”,

to the square root of the number of particles simulated.

2.4 Coarse Mesh Finite Difference Acceleration

The Coarse Mesh Finite Difference method [4] is an acceleration technique that can

take advantage of efficiency of the power method with Wielandt shift in the diffusion

solver. CMFD uses the standard definition of node balance from the FMFD solution

but a nonlinear correction factor is added to the current term at each nodes surface

to account for the deficiencies of the diffusion method.

Je =
2DPDE (fP,eφP − fE,wφE)

DEfP,ehP +DPfE,whE
+ D̂e (φP + φE) (2.47)
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The nonlinear correction factor D̂ is defined using the surface current from the MOC

calculation.

D̂e =
JMOC
e − 2DPDE(fP,eφP−fE,wφE)

DEfP,ehP +DP fE,whE

φP + φE
(2.48)

The goal of the CMFD system is to quickly converge the fission source, thus

limiting the number of times the MOC sweep algorithm is called. To do this efficiently,

several layers of CMFD can be used in series that target different aspects of the global

solution [1]. The layers of the iteration scheme are broken down into three main levels:

few group CMFD, multigroup CMFD, and MOC sweeping.

2.4.1 Few Group CMFD

The few group CMFD is the lowest level of the acceleration method. The goal of this

level is to contain the entire system into one matrix. In this work two group pin wise

regions are selected as the computational grid. Two groups are sufficient to accurately

couple the thermal and fast energy groups and allow for a quick and efficient solution

of the global system.

When various layers are used, it is useful to limit the implementation of the power

method to a single level of the method. The power method is implemented to the few

group CMFD level because it allows for Wielandt shift to be implemented. The few

group CMFD level determines the eigenvalue of the system and the spatial distribution

of the fission source. The remaining levels use the fission source defined by the few

group CMFD.

2.4.2 Multigroup CMFD

The multigroup CMFD solver uses the same number of energy groups as the MOC

solution and pin-wise spatial regions. Because the number of energy groups can be

very large, it is not efficient to solve the entire multigroup CMFD system at once

with group coupling. Therefore, the multigroup CMFD method is solved group-wise,

starting from the highest energy group and sweeping downward, and a second iteration

is performed over all groups that have upscattering sources.
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2.4.3 CMFD Iteration Scheme

The global CMFD iteration scheme is based on a V-cycle iteration. The few group

CMFD first solves for the eigenvalue with cross-sections homogenized based on a

uniform global flux and the nonlinear correction factors are assumed to be zero. This

gives a very good initial condition for the fission source. Then the multigroup CMFD

system is solved to resolve the global spectral effects. This is followed by the first

MOC sweep. Once the MOC sweep is complete, the pin average cross-sections, fluxes,

and surface currents are determined and nonlinear correction factors are determined

for the multigroup CMFD. The multigroup CMFD is solved again and the solution is

reduced to the few group CMFD. This method is repeated until the fission source stops

changing, the eigenvalue is converged, and the residual in the multigroup residual is

less than a given tolerance.
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Chapter 3

Multiscale Neutronics Method

3.1 Boundary Response Function

In order to determine how different levels of the multiscale solution interact, the

interface between the high order local solver, level l, and the low order global solution,

level l − 1, must be defined. The interface between level l and level l − 1 requires a

method to determine the boundary conditions for the local solution. The boundary

response function relates the incoming angular flux to the outgoing angular flux. In

this analysis the local domain is considered convex, so that neutrons leaving the local

system must interact with the surrounding medium to return into the local domain.

The assumption of domain convexity is consistent with practical problems that will

be solved in this work. The angular flux at boundary of the local domain can be

described in equation (3.1).

ψ (x,Ω, E) =∫ ∞
0

∫
Ω·n<0

∫
δR

A (keff ,x
′ → x,Ω′ → Ω, E ′ → E)ψ (x′,Ω′, E ′) dx′dΩ′dE ′

x ∈ δR, Ω · n > 0, 0 < E <∞ (3.1)

Here A is the boundary response function, which describes the relationship between

the outgoing angular flux and the incoming angular flux at all points on the surface

δR, all energies E, and all outgoing angles Ω. If the boundary response function is

known, the reduced domain transport problem can be run without approximation.

Unfortunately, the computational demand required to calculate the response function

is significantly greater than calculating the full domain with the transport solver.

Approximate response functions are constructed to preserve the level l−1 solution but

also model as much physics as possible. Various levels of approximation are introduced

in this work with increasing levels of complexity.
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3.1.1 Interface Approximations

The restriction of outgoing for level l at the boundary is can easily be done by cal-

culating the low order moments of the solution. The prolongation from the level

l − 1 solution to level l requires approximations to be made. The simplest method

for approximating the boundary function across multiscale levels is to preserve the

level l − 1 solution but assume the distribution is flat. In space the response function

is simply a delta function on the surface. A neutron leaving the local boundary is

assumed to reenter at the identical point in space. In angle the incoming angular flux

is assume to be isotropic but the net current across the interface is preserved, which

is equivalent to the double P0 or DP0 assumption. In energy the multigroup global

solution is assumed to be a histogram in energy. Since the multigroup angular flux is

an integral parameter in energy, the magnitude of the angular flux must be divided by

the width of the multigroup bin. Using these three approximations, the local solution

boundary equation can be written as follows.

ψ (x,Ω, E) ≈ φg (x) + 2n · Jg (x)

4π (Eg−1 − Eg)
x ∈ δR, Ω · n > 0, Eg < E < Eg−1 (3.2)

If the local solver is also a multigroup method with H energy groups, the response

function can be written as follows.

ψh (x,Ω) =
φg (x) + 2n · Jg (x)

4π

Eh−1 − Eh
Eg−1 − Eg

x ∈ δR, Ω · n > 0, Eh ∈ Eg (3.3)

This equation assumes that the coarse energy group structure is aligned with the

fine energy group structure. The remaining approximations discussed here focus on

improving the three variables; space, angle, and energy. The approximations in each

variable can generally be paired together to generate a response function that has the

desired level of detail.

Angle

An improvement to the DP0 approximation in angle is to use the P1 approximation,

where the angular flux is a linear function of angle. This is the natural form of the

diffusion equation which is likely to be the global solver. The form of the response

equation is very similar to the DP0 but is also a function of incoming angle.

ψ (x,Ω, E) ≈ φg (x) + 3Ω · Jg (x)

4π (Eg−1 − Eg)
x ∈ δR, Ω · n > 0, Eg < E < Eg−1 (3.4)
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Another improvement that can be made is to use the lattice calculation to de-

termine predefined angular shape factors which describe the ratio of the incoming

angular flux and the partial incoming current. Although this method gives a more

accurate description of the angular flux shape, it also requires a significant amount of

data to be saved in the lattice calculation.

ψ (x,Ω, E) ≈ φg (x) + 2n · Jg (x)

4π (Eg−1 − Eg)
f (Ω · n)

2
x ∈ δR, Ω · n > 0, Eg < E < Eg−1

(3.5)

So far the response function has not been a function of the outgoing angular flux.

In the next method, the shape of the incoming flux is influenced by the outgoing flux.

The simplest method is to reflect the outgoing flux back into the domain and scale

the magnitude to preserve the partial currents obtained from the global solution, as

shown in Figure 3.1.

ψ (x,Ω, E) =
φg (x) + 2n · Jg (x)

φg (x)− 2n · Jg (x)

ψg (x,Ω′)

Eg−1 − Eg
x ∈ δR, Ω · n > 0, Eg < E < Eg−1 (3.6a)

Ω′ = Ω− 2n (Ω · n) (3.6b)
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Figure 3.1: Reflective Boundary Condition

Energy

The energy variable is much more difficult to handle for two reasons. The first is

because the general multigroup formulation is only a zeroth order method, so no high

order moments exist to allow for reconstruction of the energy grid. The second reason
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is because of the tight coupling between energy groups. A good boundary response

function must be able to account for fast neutrons leaking out of the local domain to

return with lower energies as well as thermal neutrons leaving, causing fission, and

returning at higher energies. These two methods will be dealt with in separate sections.

First, methods to prolongate the energy variable from the few group structure to the

fine group structure will be discussed. After a fine group structure is obtained, the

methodology is developed to allow for the transfer of neutrons between energy groups

when interacting with the local system boundary.

The simplest method for expanding the few group global solution to a fine group

local boundary condition is to use a shaping function, fg (E), to reconstruct the energy

variable. This shaping function can be defined using an analytic shape or calculated

from the lattice calculation.

ψ (x,Ω, E) =
φg (x) + 2n · Jg (x)

4π
fg (E)

x ∈ δR, Ω · n > 0, Eg < E < Eg−1 (3.7)

The shape function can be used to describe the original method of assuming neutrons

were evenly distributed in energy.

fg (E) =
1

Eg−1 − Eg
Eg < E < Eg−1 (3.8)

The form of the multigroup shape function can be written as a discrete function

coupling few group energy g to the fine group energy h.

ψh (x,Ω) =
φg (x) + 2n · Jg (x)

4π
fg→h x ∈ δR, Ω · n > 0, Eh ∈ Eg (3.9)

Another method for the shape parameter is to use the outgoing angular flux to

define the shaping function. There is no physical reason for the outgoing and incoming

angular flux to have the same energy shape, but this approximation should provide

sufficiently accurate results if the flux is fairly asymptotic.

fg (E) =

∫
Ω·n>0

(Ω · n)ψ (x,Ω, E) dΩ∫ Eg−1

Eg

∫
Ω·n>0

(Ω · n)ψ (x,Ω, E) dΩdE
(3.10)

The final method considered is to solve an extra set of fixed source equations to

calculate flux moments in energy. One method for calculating these moments is the

Discrete Generalized Multigroup Method [15, 16, 17]. Forget has proposed a mixed
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energy calculation in which energy moments are tracked in a region surrounding

the multigroup region. These energy moments allow for the fine energy flux to be

reconstructed on the boundary of the fine/coarse energy interface without needing

to assume a shape for prolongation. In this case, the approximation is made at the

interface where the moments are chosen to be tracked. The region where the moments

are tracked provides an identical low level solution, but also provides a buffer region

to reconstruct the fine energy group fluxes.

Now that methods have been developed to determine the fine group energy struc-

ture at the interface, methods to describe the transfer of neutrons between energy

groups at the local interface are discussed. The simplest method is to not assume any

transfer between energy groups. Since the currents at the surface have already been

determined, this method simply enforces that condition.

Developing a method that allows the outgoing neutrons to change energy when

returning to the system is a much more difficult problem. Since the net incoming

and outgoing flow of neutrons across the local domain boundary are known, the

remaining unknown is a function that relates them. The construction of a G2 response

function from 2G inputs, where G is the number of energy groups, requires additional

information. The additional information in this case comes from the source term in

the neighboring assembly. The source term describes how neutrons appear in the

region close to the assembly. Since neutrons do not move very far from the boundary

before interacting, the source term of the adjacent assembly is a reasonable approach.

Space

The spatial variable is also difficult to accurately quantify. When neutrons leave the

local system, they move through the surrounding medium and can reenter the local

system. The distance a neutron travels is directly proportional to the mean free path

of a neutron in the system. In the reactor systems considered in this work, the mean

free path of a neutron is on the order of 2 − 3 cm. This suggests that the average

neutron will only move a few pins away from the point where the neutron leaves the

local system. High energy neutrons do have mean free paths that are significantly

longer than the average mean free path but it is difficult to determine where on the

surface these neutrons will interact, if they ever do.

The approach taken so far in this chapter is that the spatial response is treated as

a delta function. This means that a neutron reenters the local system at the exact

point it leaves. Although there are limitations to this assumption, it provides sufficient
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accuracy and is the only method used in this work.

A few methods have been considered to treat the spatial coupling and will briefly

discussed here. The first method is to pretabulate a spatial response function on a

limited domain. Since the neutrons are not expected to travel very far after leaving

the limited domain, a response function could be introduced to distribute the neutrons

across the pins close to the exiting location. The extent of this local response would be

determined by the ability of surrounding medium to transport a neutron away from the

point at which it leaves the local domain. A second method to determine the spatial

coupling is to use the global solution to calculate a series of fixed source problems

to determine the spatial response function. Since the global solution can be solved

efficiently, this method is not expected to greatly increase the computational burden.

The last method is to use the global solution but obtain a polynomial expansion at the

interface to better resolve high order details [35]. Since fine mesh details are already

known in the FMFD global solution, the polynomial expansion is not considered.

3.2 Post-Refinement Multiscale Method

Post-Refinement methods are one-way coupling methods from the nodal diffusion

solver back to the higher order transport solver, as shown in Figure 3.2. These methods

impose the core level solution by assigning either an albedo type boundary condition or

a fixed boundary source problem. These boundary assignments have a fundamentally

different solution technique which must be applied. The albedo boundary condition

provides the ratio of the incoming angular flux to the outgoing angular flux. With

these boundary conditions, the problem becomes an eigenvalue problem and a new

eigenvalue is determined which represents the scaling of the fission source for the local

domain. The fixed boundary source problem is not an eigenvalue problem. In this

method the angular flux at the boundary is specified and the fission source is scaled

with the eigenvalue from the global calculation. Both methods have advantages and

disadvantages in the solution technique and implementation.

The solution procedure for the post-refinement method begins with a full core

nodal diffusion calculation. Once the diffusion calculation has converged to the given

tolerance, the surface fluxes and net currents are extracted at the boundary of the

multiscale region. In the albedo method, the ratio of the incoming and outgoing

partial currents are used for all angles, and are assigned to all fine groups which the

coarse group solution represents. For the incoming angular flux, the surface flux and
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Figure 3.2: Flow Chart of the Post-Refinement Method

net current are used to project angular and energy shapes using one of the expansion

methods mentioned above. Finally, the local problem is solved, and the pin power

shape is normalized and projected onto the global solution. There are no changes

made to the global solution except the shape of the pin power distribution.

The projection of the pin powers onto the global solution is one of the main

shortfalls of the post-refinement method because it is completely dependent on the

global solution. For example, if the assembly power is off by two percent, then the pin

powers in that assembly will also be off by two percent. The post-refinement method

does have some benefits as well. First of all, the post-refinement method could be

implemented into any code system with only minor modifications. The second is that

the post-refinement method can allow the user to specify a buffer region where the

local solution may not be accurate. The buffer region only serves to decrease the

impact of the boundary condition on the solution. When the pin power projection is

determined, only the solution outside the buffer region is used.
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3.2.1 Post-Refinement Fixed Source Implementation

The post-refinement methods use the global CMFD solver to fully converge the global

FMFD linear system. The net current and surface flux from the global solution are

calculated on the boundary of the multiscale region. The incoming angular flux at the

boundary of the multiscale region is defined using the P1 angular distribution. The

energy projection is performed using a predefined flux distribution obtained from the

energy shape of the surface fluxes of the lattice calculation.

During the fixed boundary source calculation the fission source is scaled by the

eigenvalue calculated from the global solution. Since the fixed source problem is not an

eigenvalue problem, the acceleration scheme is slightly different. The CMFD solution

is rewritten to have boundary sources instead of albedo boundary conditions. Since an

eigenvalue iteration does not need to be performed, the fission and scattering sources

can be moved to the left hand side of the equation, leaving only the boundary source

on the right hand side of the system of equations.

(M− λglobalF)φ = C0Jin (3.11)

Here λglobal is the eigenvalue from the global calculations and must be used to scale the

fission source. There are physical cases where the a steady state solution does not exist

for the fixed source transport equation. This occurs when the production of neutrons

through fission is greater than or equal to the loss of neutrons through absorption and

leakage. This occurs when the eigenvalue of the scaled transport equation is greater

than or equal to one. Equation (3.12) shows the eigenvalue problem for k. Since

only the largest eigenvalue is required, the spectral radius of the matrix is taken to

determine k. (
M− 1

k
(λglobalF)

)
φ = 0 (3.12a)

k = ρ

(
M−1F
kglobal

)
(3.12b)

Since the maximum eigenvalue of M−1F is, by definition, the eigenvalue of the sub-

domain, k can be written as the ratio of the local high order and global low order

eigenvalue.

k =
ksubdomain

kglobal

(3.13)

Although it is possible for this ratio to be greater than one, the leakage from the

subdomain for most multiscale cases will make this ratio substancially smaller than 1.
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The matrix M is slightly modified to handle the fact that the boundary currents

are on the source side of the equations. The nonlinear correction factors from the

CMFD are still added into the migration matrix to preserve the higher order net

current.

3.2.2 Post-Refinement Albedo Boundary Implementation

The net current and surface flux from the global FMFD solution are combined to

calculate the ratio of the incoming and outgoing partial currents.

β =
φ+ 2Jnet · n
φ− 2Jnet · n

(3.14)

The albedos are applied to the local boundary and then a local eigenvalue calcula-

tion is performed. The local eigenvalue calculation is identical to the global, except

the extent of the domain is expanded. The albedo is applied uniformly for all fine

energy groups contained in the coarse energy groups.

3.3 Embedded Iteration Method

The embedded iteration method couples all simulation levels together to ensure that

the interface between the levels provide a consistent balance of neutrons. The local

solvers are directly embedded into the global solution and neutrons are strictly pre-

served at the interfaces. The iteration strategy for the embedded method is shown in

Figure 3.3.

The embedded iteration methodology can also be used to implement a more de-

tailed transport calculation such as 3-D MOC into a global transport solution such as

SN or 2D-1D MOC. The major difference would be preserving the angular flux at the

interface.

3.3.1 Embedded Iteration Method Implementation

The embedded iteration method implemented in the research here relies on three

major solvers to be interfaced together. The first is assembly-wise diffusion, in which

the assembly is collapsed into one homogeneous material with discontinuity factors

defined on the surfaces. The second solver is a pin-wise diffusion solver, in which
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Figure 3.3: Flow Chart of the Embedded Iteration Method

each pin cell is collapsed into a homogeneous material with discontinuity factors

defined on the surfaces of each pin cell. The third solver is the MOC, which solves the

transport equation with explicit geometry specifications. The diffusion based methods

are capable of being solved with any energy group structure during the simulation,

and the MOC only uses the finest energy group structure.

The levels are defined so that level 1 always solves 2 group assembly-wise diffusion,

which is consistent with the standard nodal methods. Levels 2 and 3 generally involve

pin-wise diffusion with more energy groups. The highest level MOC solver is used to

obtain the transport solution on a very localized region. Level 1 is the only level that

performs the eigenvalue search, because it is the only level that contains the global

information. All subsequent levels are solved as a standard fixed source problem with

fission sources defined by the level 1 solution.

The levels are coupled together using the CMFD framework. Similar to standard

multiscale methods, the higher levels provide information to the lower levels to ensure
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consistency between the levels. Standard multiscale methods do this through the use

of a source term, but since the original problem is an eigenvalue problem, another

method must be chosen. Instead of adding a source term, nonlinear correction factors,

D̂, are used here to preserve the neutron balance.

The integration of both the assembly-wise and pin-wise diffusion solvers into the

CMFD framework is straightforward. The projection of the partial currents between

level l and level l + 1 is simply an energy prolongation. For these energy prolongation

operators, the outgoing partial current spectrum is used.

The interface between a diffusion solver and the MOC solver is more difficult

because the differences between diffusion theory and transport must be defined con-

sistently. In order to do this correctly, a discontinuity factor must be defined on

the MOC side of the interface to ensure an accurate partial current is used for the

boundary condition of the interface. This discontinuity factor arises because of the

differences in the definition of the surface flux between the two different methods. In

diffusion theory, the surface flux is directly related to the two partial currents on the

interface as shown in equation (3.15), but in transport theory, these two quantities

are not algebraically related.

φs,diff = 2
(
J+ + J−

)
(3.15)

The difference in the definitions of the surface fluxes must be taken into account to

ensure the net current is calculated consistently at the interface.

fMOC =
φs,MOC

2
(
J+
MOC + J−MOC

) (3.16)

Since the MOC discontinuity factor is not known before the calculation begins, it is

iteratively obtained during the solution.

Then the incoming partial current can be calculated with the MOC discontinuity

factor.

J inMOC =
φs

4fMOC

± Jnet

2
(3.17)

Once the incoming partial current is obtained, it can be projected in energy and

angle. The energy projection uses the outgoing partial current spectrum and the angle

projection uses a predefined shape from the lattice calculation.

The last step required to complete the embedded iteration is to restrict the solution

from level l to level l − 1. The cross-sections are collapsed using the standard method

depending on the reaction type. Nonlinear correction factors are defined on the surface
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of each of each pin to preserve the net current from level l in most cases. However,

the interface again needs special treatment to ensure a smoothly converging solution.

In order to obtain the net current at the interface, the response of the level l − 1

solver to the level l outgoing partial current must be determined. This response is

obtained by doing a single node solve. A single node is constructed with two boundary

conditions: the incoming partial current on the interface and the average node flux

from the previous iteration. The FMFD method provides an algebraic relationship

between these two boundary conditions.

J indiff =
φs

4fdif
± Jnet

2
(3.18a)

Joutdiff =
2Dφ− (4D − h) J indiff

(4D + h)
(3.18b)

Jnet = ±
(
J indiff − Joutdiff

)
(3.18c)

φs = 2
(
J indiff + Joutdiff

)
fdiff (3.18d)

Once the partial currents are determined, the net current and surface flux can be

calculated and the nonlinear correction factors can be determined for the interface.

The iteration strategy used is the standard “V-cycle”. Level 1 is solved first to

obtain the global fission source and eigenvalue. The levels are increased step by

step until the maximum level is reached. The levels are then decreased back to 1.

This process is repeated until the global fission source norm and the eigenvalue both

reach their convergence tolerance. More sophisticated iteration strategies could be

implemented to minimize the computation in higher levels, such as the “W-cycle”,

but have not been considered in this work.
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Chapter 4

Assessment of the Post-Refinement
Multiscale Method

In order to test the accuracy and speed-up of the post-refinement multiscale method,

a series of one dimensional test problems have been developed to determine the per-

formance of these methods in various geometric regions. First, an all (Low Enriched

Uranium) LEU core will be analyzed; then two (Mixed Oxide / Low Enriched Ura-

nium) MOX/LEU cores will be examined to see how the method works with a more

heterogeneous flux shape.

4.1 Figures of Merit for Analysis

Six figures of merit are chosen to determine the effectiveness of the multiscale method.

The first figure of merit is the speedup factor. This is the the ratio of the time to

perform the full core transport solution divided by the time to run the multiscale

solution.

τ =
tMOC

tMS
(4.1)

The next figure of merit compares the eigenvalue calculated in the solution. For

the fixed boundary source method, the eigenvalue is identical to the global diffusion

eigenvalue but when the albedo boundary conditions are specified, a new eigenvalue is

calculated for the local region. When albedo boundary conditions are used, the local

eigenvalue will be compared but in all other cases, the global eigenvalue is compared.

The traditional way to display eigenvalue differences for nuclear reactor problems is

to show the difference in percent milli-k (pcm).

∆k =
(
kMOC − kMS

)
× 105 (4.2)

The next four figures of merit deal with the accuracy of the local and global
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solution by looking at the pin powers. The first FOM is the error in the peak pin

power. This is defined as the absolute difference between the maximum pin power

from the MOC solution and the multiscale solution.

Epeak = |max
(
PMOC

)
−max

(
PMS

)
| (4.3)

The second FOM is the maximum error in the pin powers. This is the maximum

absolute difference in any pin in the core between the MOC solution and the multiscale

solution.

Emax = max
(
|PMOC − PMS|

)
(4.4)

The third FOM is the root mean square of the pin power error in the whole core.

ERMS =

√∑Nglobal

i=1 |PMOC
i − PMS

i |2
Nglobal

(4.5)

The last FOM is the root mean square of the pin power shape in the peak assembly.

This figure of merit was developed to ensure that multiscale method improves the

shape, and the results are not due to cancellation of projection errors.

ERMS shape =

√√√√√∑Nlocal

i=1 |
PMOC
i

P̄MOC
−
PMS
i

P̄MS
|2

Nlocal

(4.6)

4.2 One Dimensional Analysis

Three different reactor core models are developed for the purpose of testing the various

methods. The assembly designs are based on the well established C5G7 benchmark

[36]. The assemblies are approximated into one dimensional assemblies by preserving

the pin pitch and the fuel to moderator ratio. Cross-sections provided for each ma-

terial from the C5G7 benchmark are used for 7 group calculations. Another set of

33 group cross-sections for the C5G7 benchmark were provided by Forget [37]. The

33 group cross-sections provide a more realistic representation of the group structure

traditionally used for transport calculations.
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Table 4.1: One Dimensional Assembly Geometry

Assembly Pitch 21.42 cm
Pin Pitch 1.26 cm

Fuel Radius 0.36 cm

4.2.1 Assembly Layouts

The assemblies shown in this work are based on 17x17 PWR fuel assemblies defined

in the C5G7 benchmark. The one dimensional assembly is comprised of 16 fuel pins

and a water hole which approximately preserves the ratio of water holes to fuel pins

in the actual assembly. In the case where a control rod is inserted into the assembly,

the water hole is filled with a control slab the same dimension as the fuel surrounded

by water. Table 4.1 describes the dimensions of the pins and assembly.

Two different assemblies are defined. The first is a LEU assembly. All of the pins

are uniformly enriched to 3.7%. The geometry can be seen in Figure 4.1. The second

Figure 4.1: LEU Assembly

assembly is a MOX assembly, three different pin enrichments are used to flatten the

power profile of the assembly and is shown in Figure 4.2. Lastly, a reflector assembly

Figure 4.2: MOX Assembly

is defined as an assembly pitch in width filled with the moderator material.
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4.2.2 LEU Core

The first core design is comprised of seven LEU assemblies with a reflector assembly

on the right side. A reflective boundary condition is imposed on the left boundary and

a vacuum boundary condition on the right. Figure 4.3 shows the assembly layout.

Figure 4.3: LEU Core Layout

Multiscale Regions

Three multiscale regions are run for the post-refinement cases. Figure 4.4 shows the

region of interest and buffer regions.

Figure 4.4: Multiscale Regions for 1-D LEU and MOX 1 Cores

The first multiscale region is a single assembly and does not have a buffer region.

The second multiscale region is two assemblies, one of which is a buffer. The last

multiscale region is three assemblies, one of which is a buffer. The inclusion of two

assemblies into the region of interest will help minimize the impact of assembly errors

by making the region larger.

Results for LEU Core

The one dimensional LEU core is the simplest case because of the fairly homogeneous

fuel loading. For this case, the current pin power reconstruction (PPR) methodology
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produces good pin powers in throughout reactor. The error in the diffusion solution

with pin power reconstruction is shown in Figure 4.5.
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Figure 4.5: Pin Power Error in PPR for Mixed Energy LEU Core

The largest error in the LEU core occurs at the core-reflector interface. Generally,

errors at this interface are acceptable because the peak power does not occur near the

reflector. Since the diffusion solution has very little error, the multiscale method does

not provide much advantage as seen in Table 4.2. The same energy multiscale cases

all slightly increase the accuracy of the LEU core, but with the mixed energy cases it

is possible to make the solution worse. Even though the solutions can get worse, it is

informative to examine the performance of all multiscale methods for cases where the

standard methodology is not sufficient.

4.2.3 MOX1 Core

Two MOX cores are designed to test different behaviors. The first is designed to

test the heterogeneity caused by the addition of MOX into the reactor. Four LEU

and three MOX assemblies are laid out in the core and a single reflector assembly is

located on the right side. Figure 4.6 shows the layout of the assemblies.
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Table 4.2: FOM for Mixed Energy LEU Core

τ Epeak Emax ERMS ERMS shape

Diffusion 262.2 -1.00% 5.13% 0.79% 0.03%
Fixed Source - without Buffer 2.7 -0.40% 5.13% 0.84% 0.57%

Fixed Source - with Buffer 1.3 -0.94% 5.13% 0.79% 0.00%
Albedo - without Buffer 7.7 -1.03% 5.13% 0.79% 0.10%

Albedo - with Buffer 3.9 -0.94% 5.13% 0.79% 0.01%

Figure 4.6: MOX 1 Core Layout

The multiscale regions used for the MOX1 core are identical to the LEU core,

Figure 4.4, because the assembly with the peak power is also at the center of the core.

Results for MOX 1 Core

The addition of MOX assemblies into the core adds heterogeneity that is difficult to

model with the current methodology. The assumption that the few group cross-sections

and form functions can be generated from an infinite assembly creates issues at the

LEU MOX interface because the assemblies are very different. Figure 4.7 shows the

pin errors in the diffusion solution for the same energy case.

Unlike the LEU core, the average pin power errors are much larger and spikes in

the pin error can be seen at all of the interfaces of LEU and MOX assemblies.

Same Energy Results for MOX1 Core

When the multiscale method is applied to the center assembly of the MOX 1 core,

all methods reduce the pin power errors. The same energy multiscale cases does not

use a buffer region because energy projection is not required. Table 4.2.3 shows the

figures of merit for the two multiscale methods.

The fixed source boundary method gives the best improvement on local quantities

such as the peak pin error and the local pin power shape RMS. It also runs the fastest

of the two methods. Figure 4.8 shows the spatial pin errors for diffusion, the fixed
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Figure 4.7: Pin Power Error in PPR for Same Energy MOX 1 Core

Table 4.3: Figure of Merits for Same Energy MOX 1 Core
τ ∆k1 Epeak Emax ERMS ERMS shape

2G Diffusion 29.3 59.8 2.69% 9.47% 2.01% 1.50%
2G Fixed Source 9.8 59.8 0.54% 8.10% 1.63% 0.33%

2G Albedo 6.0 -114.4 1.09% 8.10% 1.75% 0.86%

boundary source, and the albedo method.

Both multiscale methods perform well for cases in which the global and local

solvers are both solved with the same energy group structure. The next step is to

move toward a more realistic case in which the local solver uses more energy groups

than the global solution.

Mixed Energy Results for MOX1 Core

The mixed energy results without a buffer region are quite different from the results

with the same energy structure. Table 4.2.3 shows the error in the PPR solution for

the mixed energy multiscale methods without a buffer region.

1For albedo method, local eigenvalue is compared.
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Figure 4.8: Pin Power Error in Multiscale for Same Energy MOX 1 Core

Table 4.4: FOM for Mixed Energy MOX 1 Core without Buffer Region
τ Epeak Emax ERMS ERMS shape

Diffusion 256.6 -1.07% 15.03% 2.66% 1.47%
Fixed Source 10.9 -6.24% 40.96% 4.88% 5.84%

Albedo 7.6 -1.40% 15.03% 2.48% 0.48%

The results with mixed energy groups are in considerable contrast to the results

with the same energy groups. The fixed boundary source method is worse than PPR

in most of the figures of merit. The albedo method maintains a better solution than

diffusion. In order to understand why the fixed boundary source method is worse,

Figure 4.9 shows the spatial distribution of the pin power error for PPR, the fixed

boundary source method, and the albedo method. From this figure, the main source

of error can be seen to occur at the interface. For the fixed source boundary condition,

the source of the error is the assumption that the precalculated energy shape is

sufficient to project the flux. As indicated, this assumption results in large errors in

the pin powers near the boundary.

Another interesting observation of the fixed boundary source solution is that the

pin power error is large at the interface, but a few pins away from the interface the

50



0 1 2 3 4 5 6 7 8
−20

−10

0

10

20

30

40

50

Assembly Index

P
ow

er
 E

rr
or

 [P
M

O
C

−
P

M
S
] %

 

 
Diffusion
Fixed Source
Albedo

Figure 4.9: Pin Power Error in Multiscale for Mixed Energy MOX 1 Core without
Buffer

errors are comparable to the diffusion solution. This seems to suggest that a region

in which the solution is allowed to develop but is not applied to the final solution

would considerably increase the accuracy of these methods. In this work, this region

is called the buffer region. The next set of results show a buffer region applied to both

the albedo and fixed boundary source regions to provide a better angular and energy

distribution of the flux.

The inclusion of a buffer region in the post-refinement methods increases the

computational burden but provides a region where the boundary errors can adjust to

the local region geometry and energy group structure without negatively impacting

the solution. The method that seems to gain the most from the buffer region is the

post-refinement fixed boundary source problem. It was shown that the boundary

condition causes significant errors in the pins closest to the boundary. The buffer

region suppresses these errors by ignoring the solution in that region. Figure 4.10

shows the error when a buffer region is included in the local computation. In all cases

shown here, the buffer region is the size of a single assembly.

For both post-refinement methods the buffer region increases the accuracy of the

multiscale calculation. Even though the albedo solution was much better without the
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Figure 4.10: FOM for Mixed Energy MOX 1 Core with Buffer Region

buffer region, the two methods produce an almost identical result when the buffer

region is added.

The next extension is to increase the region of interest to two assemblies. This

will eliminate the dependency of the assembly error. Instead, the power generated in

the entire region of interest is used to determine the local pin powers. In general the

error associated with a larger region is less than the error of a smaller region. This

is because the power is normalized so as the region grows larger, the average error

approaches zero. There are cases in which the local diffusion error of a single assembly

is small but the surrounding assemblies have larger errors. In this case, making the

region of interest larger can increase the region average error and negatively impact

the pin power errors. This effect is not seen in either of the MOX cores but was

observed in the LEU core. Figure 4.11 shows the error in both methods over diffusion

when another assembly is added to the region of interest. In both cases, the error is

greatly reduced by expanding the region of interest.

A natural question is whether the buffer region is needed for the albedo method.

For the single assembly without a buffer region, the albedo method results show a

good improvement in the solution. It is advantageous if a buffer region is not needed

because the computational requirements are reduced. The post-refinement methods for
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Figure 4.11: FOM for Mixed Energy MOX 1 Core with Increased Region of Interest
and Buffer Region

the albedo case are repeated only if the buffer region is added to the region of interest.

The two assembly region of interest problem can be performed with computational

requirements similar to the single assembly problem with a buffer region, and the three

assembly region of interest problem can be performed with computational requirements

similar to the two assembly problem with a buffer region. The results of these cases

are shown in Figure 4.12.

It can be quickly seen that the boundary condition for the two-assembly region

of interest causes slightly larger pin power errors than the diffusion solution at the

boundary. These errors are considerably less than pin errors introduced by the fixed

source problem. The remainder of the solution shows considerable improvement over

the single assembly. The three assembly region of interest has a less accurate solution

than the equivalent computational demand case with a two assembly region of interest

and a buffer region. This is caused by a cancellation of assembly power errors in the

first two assemblies. The addition of a third assembly increases the region of interest

average power error and makes the powers worse. It should also be noted that the

error in the pin power shape of both cases are identical for the assembly containing

the peak pin, so increasing the region of interest is only an effort to try to reduce the
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Figure 4.12: Pin Power Error in Multiscale Mixed Energy MOX 1 Core with No Buffer
Region

effect of individual assembly errors and does not improve the shape. Ultimately, it

seems to be better to include a buffer region instead of increasing the region of interest

to eliminate the potential impact of the boundary condition onto the global pin power

solution.

The method is also analyzed with the 33 group cross-section library as shown

in Table 4.5. The size of this library is more consistent with the size of standard

cross-section libraries used for transport calculations. It is important to determine if

the post-refinement method can handle projections from 2 to 33 energy groups. Cases

are run with and without a buffer region using both the fixed boundary source and

albedo methods. In both cases, the buffer region is necessary to accurately capture

the difference in the spectral effects. In fact, the fixed source method did not converge

without a buffer region.

4.2.4 MOX2 Core

The second MOX core is designed to test the effect of the multiscale methods for the

case in which the peak assembly is not on the left boundary. This requires a two sided
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Table 4.5: FOM for Mixed Energy MOX 1 Core with 33 Groups

τ Epeak Emax ERMS ERMS shape

Diffusion 1220.6 -1.16% 18.55% 3.23% 1.70%
Fixed Source - with Buffer 4.5 -2.25% 18.55% 3.00% 0.10%

Albedo - without Buffer 6.4 -2.20% 18.55% 3.03% 0.65%
Albedo - with Buffer 2.5 -2.59% 18.55% 3.01% 0.17%

multiscale interface around the assembly with the peak power instead of a single sided

interface. Again, four LEU and three MOX assemblies are laid out in the core with a

single reflector assembly is located on the right side. Figure 4.13 shows the layout of

the assemblies.

Figure 4.13: MOX 2 Core Layout

Multiscale Regions

The MOX 2 core has a slightly different layout for the multiscale regions because the

peak power is not located near the boundary. Figure 4.14 shows the region of interest

and buffer regions that the post-refinement cases will use.

Figure 4.14: Multiscale Regions for 1-D MOX 2 Core

The first multiscale region is a region of interest in the assembly with the peak pin

power. The second multiscale region adds a buffer region on both sides of the peak
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Table 4.6: Figures of Merit for MOX 2 Core

τ Epeak Emax ERMS ERMS shape

Diffusion 256.6 -1.07% 15.03% 2.66% 1.47%
Fixed Source - MS 1 10.9 -6.24% 40.96% 4.88% 5.84%
Fixed Source - MS 2 2.8 -1.54% 15.03% 2.46% 0.04%
Fixed Source - MS 3 0.8 -0.14% 9.63% 1.49% 0.04%

Albedo - MS 1 7.6 -1.40% 15.03% 2.48% 0.48%
Albedo - MS 2 3.1 -1.46% 15.03% 2.46% 0.04%
Albedo - MS 3 2.6 0.28% 9.63% 1.49% 0.00%

assembly. The last multiscale region spans five assemblies with a buffer region in the

outer assemblies.

Results for MOX2 Core

The second MOX core is introduced to ensure that the multiscale methods work if

the region of interest does not coincide with a boundary. In this case, the boundary

condition must be estimated for both the left and right face of the local domain. When

a buffer region is added, it is added to both sides, and when the region of interest is

expanded, it is expanded in both directions. The MOX 2 core has a similar behavior

as the MOX 1 core. For the same energy cases, all methods show improvement over

the diffusion solution. In the more practical mixed energy case, the fixed boundary

source method without a buffer region does not perform well. The albedo method

performs well for all cases. The fixed boundary source method with a buffer region

also performs well. Since two boundary conditions must be approximated instead of

one, it makes sense that the improvements are less than the MOX 1 core. The figures

of merit are summarized in Table 4.6.

Overall, the one dimensional results provide several interesting insights about

the behavior of the multiscale methods. Using these insights, the number of two

dimensional tests is reduced to only consider the post-refinement albedo method with

mixed energy.
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4.3 Two Dimensional Analysis

The two reactors analyzed here are both based on a 156 assembly core modeled

with quarter core symmetry. The first core uses a uniformly enriched LEU assembly

surrounded by a water reflector. The second core contains both LEU and MOX

assemblies loaded in an arrangement to flatten the power shape and push the peak

pin power away from the center of the core. There are 64 MOX assemblies and 92

LEU assemblies loaded into the reactor.

4.3.1 Assembly Layouts

The layout of the two dimensional reactors is based on the assembly design from the

C5G7 benchmark. The assembly is designed with an array of 17x17 pins; 264 are fuel

pins, 24 are guide tubes for control rods, and the center pin contains a fission chamber.

The geometry is specified by the benchmark, but key dimensions are repeated in

Table 4.7.

Table 4.7: Two Dimensional Assembly Geometry

Assembly Pitch 21.42 cm
Pin Pitch 1.26 cm

Fuel Radius 0.54 cm

The LEU assembly is a uniform arrangement of fuel pins with the same enrichment.

The assembly layout is shown in Figure 4.15. The MOX assembly has three enrichment

zones and the layout is shown in Figure 4.16. Lastly, a reflector assembly is defined

to have an assembly pitch and filled with the moderator material. In the case where

control rods are inserted into the assembly, the guide tube is replaced by the control

rod material with the same radius as the fuel pin.
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Figure 4.15: 2-D LEU Assembly

Figure 4.16: 2-D MOX Assembly
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4.3.2 LEU Core

The LEU core is loaded completely with the same fuel type in all locations. The

computational model only considers one quarter symmetry which places reflective

boundary conditions on the left and bottom boundary of the computational domain.

The right and top boundaries have a zero incoming current boundary condition. The

LEU core is shown in Figure 4.17.

Figure 4.17: 2-D LEU Core Layout
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Multiscale Regions

Three multiscale regions are defined for each core. Since the peak power is in the center

assembly for the LEU core, the multiscale regions are based around the symmetry

boundary. Figure 4.18 shows the three trust regions.

Figure 4.18: 2-D LEU Core Multiscale Regions

The first multiscale region is a single assembly with no buffer region surrounding

it. The second multiscale region is a single region of interest with buffer region

surrounding it. The last is a two by two assembly region of interest with a buffer

region surrounding it.
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Results for LEU Core

The two dimensional LEU core is a designed to test the initial performance of the

post-refinement albedo method in two dimensions. As with the pure LEU case in

one dimension, the diffusion solution with PPR already produces very good results.

The major source of error occurs at the core reflector interface, where pin errors of

approximately 10 percent are found. Figure 4.19 shows the spatial distribution of pin

power error in the diffusion solution.

Figure 4.19: Pin Power Error in PPR for 2D LEU Core

The post-refinement albedo method shows marginal improvements in the solution

for all of the trust regions, as shown in Table 4.8. However, the error in the pin power

shape increases slightly over the diffusion solution. This means that the error in the

peak pin power is completely driven by the error in the assembly powers which the

post-refinement methods cannot change. The error in the assembly powers are shown

in Figure 4.20. The region of interest would have to be expanded several assemblies in

order for the region average error to become small.
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Table 4.8: FOM for 2D LEU Core

τ Epeak Emax ERMS ERMS shape

2G Diffusion 200.1 3.06% 10.72% 1.62% 0.03%
MS - 1 52.1 3.08% 10.72% 1.62% 0.01%
MS - 2 15.8 3.06% 10.72% 1.62% 0.01%
MS - 3 8.9 2.97% 10.72% 1.62% 0.01%
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Figure 4.20: Assembly Average Power Error in Diffusion Solution for 2D LEU Core
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4.3.3 MOX Core

The MOX core, Figure 4.21, is very similar to the LEU core except 16 of the LEU

assemblies are replaced by MOX assemblies. MOX assemblies are loaded in the center

of the core to push the peak power away from the center. This is done in order to test

the multiscale method for a peak power away from the symmetry boundary.

Figure 4.21: 2-D MOX Core Layout
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Multiscale Regions

The MOX core has the peak power in the (3,3) assembly and the region of interest

surrounds this point as shown in Figure 4.22. The first multiscale region is only the

single assembly without a buffer region. The second multiscale region surrounds the

assembly with a buffer region. The last multiscale region expands the region of interest

to include 9 assemblies and surrounds that region with a buffer region.

Figure 4.22: 2-D MOX Core Multiscale Regions
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Results for MOX Core

The two dimensional MOX core adds a considerable amount of heterogeneity that

diffusion with PPR does not handle well. The error in the pin powers are shown in

Figure 4.23. Errors occur at all of the LEU MOX interfaces, with pin errors ranging

from about 10 to 15 percent. At the core reflector interface, pin errors can be found

ranging up to 25 percent. Even with large errors at the assembly interface, the pin

power errors in the center of the assembly are small.

Figure 4.23: Pin Power Error in PPR for for 2D MOX Core

The multiscale method applied to the single assembly without a buffer region

slightly improves the pin power errors. Adding a buffer region around the single

assembly improves the shape of the solution but the error in the assembly power error

makes the peak pin power error worse than PPR. When the multiscale is applied when

the region of interest is increased to a three by three set of assemblies surrounded by a

buffer region, the pin power errors are greatly reduced in the entire region of interest

as shown in Figure 4.24.

Just as in the one dimensional cases, increasing the region of interest decreases

the error in the region-wise power, as shown in Table 4.9. Figure 4.25 shows the

assembly power errors in the diffusion solution for the MOX core. The assembly with

the peak power is about 5 percent below the MOC assembly average power, but the
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Figure 4.24: Pin Power Error of Multiscale Solution for 2D MOX Core with Increased
Region of Interest and Buffer Region

surrounding assemblies are a mix of errors above and below the MOC solution. The

average error for the three-by-three region of interest is 2.5 percent.

Table 4.9: FOM for 2D MOX Core

τ Epeak Emax ERMS ERMS shape

2G Diffusion 235.5 4.93% 26.65% 5.25% 2.13%
MS - 1 48.5 6.77% 26.65% 5.23% 0.26%
MS - 2 6.9 6.76% 26.65% 5.23% 0.24%
MS - 3 2.6 4.79% 26.65% 4.73% 0.24%

Another case that was considered is the three-by-three region of interest without a

buffer region. As seen in the one dimensional results, it is possible to obtain very good

results using the albedo method without a buffer region, but there are some cases

where not having a buffer region can cause local pin errors. Since the pin errors on

the periphery are already relatively large, it may be worthwhile to remove the buffer

region to reduce some of the computational burden. Figure 4.26 shows the resulting

pin power error for the case where the buffer is removed from the expanded region of

interest. The results from this case are improved over the case with a single assembly
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Figure 4.25: Assembly Average Power Error in Diffusion Solution for 2D MOX Core

with a buffer region which has similar computational cost, but the expanded region of

interest with a buffer layer still has better results in all categories.

Although these results show that the case without a buffer region can provide good

results, it is important to note that when a buffer region is not used, the results appear

to vary case by case. If the assembly power error distribution is known, it may be

practical to decide if a buffer region is needed. In the end, the user should be cautious

when not using a buffer region, because the influence of the boundary condition to

pins near the boundary could give solutions less accurate than the original diffusion

solution with pin power reconstruction (PPR).
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Figure 4.26: Pin Power Error in Multiscale Solution for 2D MOX Core with Increased
Region of Interest and No Buffer Region
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4.4 Discussion of Post-Refinement Methods

The results given in the previous section provide important insights into the behavior

of the post-refinement multiscale method. Several conclusions are drawn from the

information obtained, and the results are analyzed to offer a set of best practice

guidelines when developing post-refinement multiscale methods for reactor analysis.

4.4.1 Same Energy and Mixed Energy Results

The issue of energy projection is a crucial question of this work. In general, diffusion

codes are designed to solve 2, 4, or 8 energy group calculations, but the lattice codes

that are used to generate cross-sections in the multiscale approach use many more

energy groups (˜50-200). The projection in energy is a necessary step for the multiscale

method to work correctly.

In the one dimensional results, the same energy cases were performed to test the

impact of angular coupling. For the same energy cases, all of the cores and multiscale

configurations analyzed produced results that were improved over the diffusion solu-

tion with pin power reconstruction. This means that the angular dependence on the

solution is secondary to the spatial and energy dependence. Since the same energy

grid was used, no projection was necessary in the energy variable.

The mixed energy results were then considered, and the results were very different.

The post-refinement fixed boundary source method provided results that were consid-

erably worse than the diffusion solution with PPR, especially near the local domain

boundary. The albedo results showed modest improvements over diffusion by assuming

that the albedo is a constant function of energy for the projection. Without the use

of buffer regions, the energy projection methods discussed here cannot sufficiently

describe the energy distribution of neutrons at the interface.

4.4.2 Impact of Buffer Region

The use of a buffer provides a region in which the flux can adjust to all of the differences

in the local solution; different energy grid, different angular grid, and discrete pins

instead of homogenized cross-sections. Most importantly, the buffer region appears

to be able to filter out the impact of boundary conditions that have errors. From

the results, it appears as though a few pin pitches is a sufficient buffer to obtain a

correct energy distribution, but because of practical implementation issues in the test
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code used for these problems, only assembly size buffer regions could be used. The

thickness of a buffer for these methods is not limited by the method, but by the code

in which the method is implemented.

The one-way coupling methods showed consistent improvement when the buffer

was added. For this reason it is always suggested that a buffer region be used for

one-way coupling methods.

4.4.3 Comparison of Post-Refinement Methods

The post-refinement methods both suffer from the same flaws mentioned in the previ-

ous section. In order to choose the best method, the fixed boundary source and albedo

methods need to be examined in greater detail. The first category to consider is the

ease of implementation into existing high order methods. Many of the target high order

codes (DeCART, DENOVO, and MCNP) considered for implementation already have

the functionality to solve an eigenvalue problem given an albedo boundary condition.

In many cases, the albedo boundary condition is not as generalized as this method

requires. Development issues would involve making the albedo dependent on space

and energy at the pin cell level. The work required to do this is modest. Some of the

target lattice codes also have the ability to define an incoming angular flux. Again,

modification would need to be made to define the angular flux as a function of space,

angle, and energy on the entire domain. Another minor modification would be for the

fixed source solver to accept an arbitrary eigenvalue that would be determined by the

global solver. Ultimately, the implementation of the albedo method appears to be a

better fit for the lattice codes considered for implementation.

A second consideration is execution time. The computational cost for both methods

is approximately equal for the same size domain. The main difference is that for the

albedo method, it is not essential to have a buffer region. The removal of the buffer

region makes the method much more computationally advantageous.

A third consideration is the sensitivity of the method to errors in the input data.

The global solution has inherent errors in the solution, and thus the boundary condi-

tions of the local solver derived from the global solution also have errors. It is useful to

understand how these errors affect the solution. To better understand the difference in

the way the fixed boundary source and albedo methods propagate errors, a sensitivity

analysis was performed to determine which method is more stable.
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4.4.4 Sensitivity Analysis

To better understand the two methods, the solution methodology in both approaches

are analyzed using Matrix-Operator notation. After it is understood how the errors are

introduced in each method, several cases will be performed with small perturbations

in the solution to test the sensitivity of the figures of merit to the derived input data.

The impact of small perturbations on the solution has been studied by Rahnema et al.

[38, 39, 40, 41, 42]. However, the majority of this work focuses on sensitivities to the

eigenvalue using perturbation theory. Since the eigenvector is of more interest for this

analysis, spectral analysis of the matrices will be used.

The propagation of error in these method can best be understood by considering

a domain mapping problem shown in Figures 4.27(a) and 4.27(b). The mapping

begins by considering the physical location where the source term (left) is mapped

using matrix A to the solution (right). Then two cases are considered; the well

conditioned case, 4.27(a), where a small perturbation in the source term produces a

small perturbation in the solution (red line), or a small perturbation in the mapping

matrix A produces a small perturbation in the solution (green line). In both of these

cases the introduction of error does not have a significant impact on the solution.

The second case is considered to be ill conditioned, 4.27(b). This is where the same

small perturbation in the source term (red) or mapping matrix (green) creates large

changes in the solution. The same idea can be applied to the eigenvalue system, except

that the error occurs in A, and the solution error is in the eigenvalue/eigenvector

combination.

In order to analyze how the error propagates through the fixed source and albedo

problems, both multiscale methods are compared to the high order solution. The high

order solution for the full domain can be written in matrix-operator notation as shown

in equation (4.7). (
M̃H + λHF̃H

)
ψ̃H = 0 (4.7)

In this equation M̃H is the streaming, collision, and scattering operator for the trans-

port solution for the global domain, F̃H is the fission operator for the global solution,

λH is the eigenvalue of the high order solution, and ψ̃H is the flux distribution for the

entire domain. Similarly, equation (4.8) is written for the global low order solution.(
M̃L + λLF̃L

)
ψ̃L = 0 (4.8)

The local high order solution of the fixed source problem can be written in

71



(a) Well Conditioned System

(b) Ill Conditioned System

Figure 4.27: Domain Mapping Example

equation (4.9). (
MH + λHFH

)
ψH = ψH

b (4.9)

The matrices M and F are subsets of the global matrices M̃ and F̃ for the local solution.

If ψb is defined using the global high order solution, the local flux distribution ψ is a

subset of the global solution ψ̃. Unfortunately, the high order global solution is not

known. Instead, the low order global solution is used to determine the eigenvalue and
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boundary source as shown in equation (4.10).

(
MH − λLFH

)
ψFS = ψL

b (4.10)

The difference between the high order local solution (4.9) and the multiscale

approximation (4.10) can be rearranged to obtain the error in the flux distribution.

(
MH − λHFH

)
ψH −

(
MH − λLFH

)
ψFS = ψH

b − ψL
b (4.11a)

(
MH − λLFH

) (
ψH − ψFS

)
= ψH

b − ψL
b −

(
λH − λL

)
FHψH (4.11b)

(
ψH − ψFS

)
=
(
MH − λLFH

)−1 (
ψH
b − ψL

b −
(
λH − λL

)
FHψH

)
(4.11c)

Although it is useful to consider the complete error vector, it is more instructive

to consider some vector norm of the error. To obtain a bound on the error, a series of

operations are applied to equation (4.11c). First an arbitrary norm is taken of both

sides of equation (4.12a). Then the Cauchy-Schwartz inequality is applied, (4.12b),

which states that the norm of a product is less than or equal to the product of the

norms. The same inequality is applied to a rearranged version of the high order

solution, (4.12c). The error equation is then divided by the norm of the high order

solution to obtain an error bound for the multiscale fixed source system, (4.12d).

‖ψH − ψFS‖ = ‖
(
MH − λLFH

)−1 (
ψH
b − ψL

b −
(
λH − λL

)
FHψH

)
‖ (4.12a)

‖ψH − ψFS‖ ≤ ‖
(
MH − λLFH

)−1‖‖ψH
b − ψL

b −
(
λH − λL

)
FHψH‖ (4.12b)

‖MH − λLFH‖‖ψH‖ ≥ ‖ψH
b +

(
λH − λL

)
FHψH‖ (4.12c)

‖ψH − ψFS‖
‖MH − λLFH‖‖ψH‖

≤ ‖
(
MH − λLFH

)−1‖
‖ψH

b − ψL
b −

(
λH − λL

)
FHψH‖

‖ψH
b + (λH − λL)FHψH‖

(4.12d)

κ
(
MH − λLFH

)
= ‖MH − λLFH‖‖

(
MH − λLFH

)−1‖ (4.12e)
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‖ψH − ψFS‖
‖ψH‖

≤ κ
(
MH − λLFH

) ‖ψH
b − ψL

b −
(
λH − λL

)
FHψH‖

‖ψH
b + (λH − λL)FHψH‖

(4.12f)

The relative error norm in the angular flux is proportional to the condition number

of the coefficient matrix multiplied by the relative error from the low order solution.

The error bound provided by this relationship is similar to the standard error bound

for a linear system [43].

Now that the fixed boundary source has been examined, the albedo method will

be considered. This method requires a different approach because it is an eigenvalue

problem. The boundary conditions for the local multiscale problem are determined by

modifying the migration/collision matrix with the albedo boundary condition.

(
MH + ∆MH − λHFH

)
ψH = 0 (4.13a)

∆MHψH = −ψH
b (4.13b)

Unfortunately, in order to formulate the matrix ∆MH it is necessary to calculate

the global high order transport solution. Instead, the low order global solution can be

used to estimate the matrix, MH ≈ML.

(
MH + ∆ML − λβFH

)
ψβ = 0 (4.14a)

∆MLψL = −ψL
b (4.14b)

The last operation that must be done is to recast the albedo equations into a standard

eigenvalue problem. ((
MH + ∆MH

)−1 FH − 1

λH
I
)
ψH = 0 (4.15)

((
MH + ∆ML

)−1 FH − 1

λβ
I
)
ψβ = 0 (4.16)

A simplification to the notation is made to replace
(
MH + ∆MH

)−1 FH with AH,(
MH + ∆ML

)−1 FH with AL, and the inverse of λ with the k-eigenvalue.

Perturbation theory for eigenvalue systems is much more complex [44]. The per-
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turbation analysis gives two condition numbers, one for the eigenvalue and another

for the eigenvector.
kH − kβ

kH
≤ κk

(
AH
) ‖AH − AL‖
‖AH‖

(4.17a)

‖ψH − ψβ‖
‖ψH‖

≤ κψ
(
AH
) ‖AH − AL‖
‖AH‖

(4.17b)

The condition number for the eigenvalue, κk, is inversely proportional to the angle

between the left and right eigenvectors associated with the eigenvalue of interest. The

condition number of the eigenvector, κψ, requires a full spectral analysis of the matrix

AH. The determination of the eigenvector condition number can only be estimated

using numerical perturbations of the system since the full transport matrix is never

constructed for practical applications.

Numerical Results

In order to compare the sensitivity of the boundary conditions for the two different

methods, a series of perturbations are applied to the boundary condition. The one

dimensional MOX 1 core is used with a single multiscale region. Since the full core

MOC solution has been determined the exact boundary conditions are known for this

case. A weighting parameter is defined which provides a linear interpolation between

the true high order solution and the low order estimation of the boundary. For the

fixed source problem, the eigenvalue and boundary flux are determined using the

following relationships.

λ (γ) = λH + γ
(
λL − λH

)
(4.18a)

ψb (γ) = ψH
b + γ

(
ψL
b − ψH

b

)
(4.18b)

The boundary condition perturbation for the albedo method uses the following

relationship.

∆M (γ) = ∆MH + γ
(
∆ML −∆MH

)
(4.19)

Although the high order solution is known in both angle and energy, only the energy

shape will be used for the high order solution. This is because both methods always

rely on the accuracy of the diffusion solution for the angular shape. The high order

solution used preserves both partial currents for the each energy group. Also, the

assembly error that is associated with the post-refinement method is set to zero so
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there is not an offset in the error.

Calculations are performed with both methods for values of γ ranging from zero

to two. The peak pin power and pin power shape errors are plotted in Figure 4.28 for

both methods. It can be seen that the albedo method is much less sensitive to the

perturbations in the boundary condition. The errors in the albedo method increase

gradually from zero as the boundary condition error is increased. The errors in the

fixed source method are nonzero when the incoming current is identical to the high

order method. The sensitivity to the angular distribution cannot be remedied for

the multiscale methods discussed here. More importantly than the initial error, the

increase in the error is considerably greater with the fixed source method than with

the albedo method.

The sensitivity analysis shows that the albedo method is less sensitive to errors

in the initial boundary conditions. In addition, the albedo was perturbed uniformly.

Generally, errors to ratios tend to be much smaller than errors of the absolute value

of a measurement. This is because the incoming and outgoing currents tend to have

similar errors, causing the ratio to be much more reliable than the absolute incoming

current.

Because the albedo method could be easier to implement, is more computationally

efficient, and less sensitive to boundary condition errors, it was chosen to be imple-

mented into the two dimensional cases and is recommended for further use where the

multiscale method is applied. The post-refinement albedo method provides a flexible

framework in which the local solution can be obtained with very good accuracy for all

cases.
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Figure 4.28: Sensitivity of Local Solver
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Chapter 5

Assessment of the Embedded
Multiscale Method

Unlike the post-refinement method, the embedded method allows the global solution

to adjust to the refined local solution. Since the global solution is altered, it can be

beneficial to define refined local regions in which the standard nodal diffusion methods

have problems; not just around the peak assembly.

In this chapter the embedded multiscale method will be applied to several regions

in the reactor. The first cases that are considered are identical to the cases looked

at with the post-refinement method. Another location that can have a significant

impact on the global solution is the fuel-reflector interface, since calculating the correct

leakage in the core can have a significant impact on the global tilt of the error. By

embedding the solver into the reflector region, the leakage out of the system can be

calculated more accurately. The last location that is considered is around a control

rod, which can be important since a strong absorber causes a significant dip in the

local flux. Although the standard method can do reasonably well in predicting the

worth of the control rod, the pin powers around the control rod can have significant

errors.

5.1 One Dimensional Analysis

The same one dimensional cores used in the previous chapter are used to assess the

performance of the embedded method. As noted in the descriptions of the assemblies,

when a control rod is inserted into an assembly the center water hole is replaced with

control rod material.

Another difference between the post-refinement method and the embedded method

is that multiple levels can be embedded into the calculation. This analysis will in-

vestigate the use of up to four levels of embedded solvers. The first level’s solver is
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always the assembly homogenized two group diffusion solver. Three additional solvers

are added to increase the accuracy of the embedded calculation: a fine group MOC

solver, a fine group pin homogenized diffusion solution, and an intermediate group

pin homogenized diffusion solver. The MOC solver will be placed where the most

accuracy is desired, with the other two solvers surrounding to decrease the effects of

prolongation at the boundary. As in the previous chapter, a series of three multiscale

calculations are performed. The first is with the MOC solver in the region of interest.

The second adds the fine group pin homogenized diffusion solution on both sides of

the region, and the last adds the intermediate group pin homogenized diffusion solver.

In order to determine the choice of intermediate group structures to use between the

two group diffusion solver and the fine group MOC solver, the impact of intermediate

level energy group levels on the accuracy of the solution were evaluated using the

MOX1 core. Figure 5.1 shows the spatial distribution of the pin power errors in the

MOX 1 core for diffusion solvers with 2, 4, and 7 energy groups. The error in the

two group assembly homogenized diffusion solver with pin power reconstruction (2G

Diffusion in the Figure) is compared to the error in the pin homogenized diffusion

solver with 2, 4, and 7 energy groups.

At the interface between dissimilar fuel assemblies, the error is significantly re-

duced as the number of groups is increased. The difference in the assembly and pin

homogenized two group cross-sections is small, and the impact of pin homogeneous

cross-sections appears to be negligible in the one dimensional problem. The four group

cross-section set captures the majority of the spectral effects, but increasing to seven

groups does show some additional improvement in the solution. Even with seven

group cross-sections, the diffusion solution still has significant errors at the MOX/LEU

interfaces. These differences can be attributed to the effect of spatially homogenizing

cross-sections using a single infinite assembly spectrum, as well as transport effects

at the boundary. Because the seven group pin homogenized diffusion solver provides

a considerably improved solution, it is used in the region surrounding the MOC

region. In cases where the multiscale region needs to be expanded, the four group pin

homogenized diffusion solver will be added.

5.1.1 Embedded Region Around Peak Power Assembly

Like the post-refinement method, the embedded method can be used to resolve local

pin power peaking to obtain a more accurate prediction of the peak pin power. The

multiscale regions used for the LEU and MOX1 cores is shown in Figure 5.2.
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Figure 5.1: Pin Power Error Distribution for Diffusion Solvers

Figure 5.2: Embedded Multiscale Regions for LEU and MOX 1 Core
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Table 5.1: Figures of Merit for LEU Core with Embedded Multiscale Method

τ ∆k Epeak Emax ERMS ERMS shape

2G Diffusion 262.2 0.8 -1.00% 5.13% 0.79% 0.03%
MS - 1 5.6 1.3 -1.22% 5.13% 0.81% 0.07%
MS - 2 6.8 1.9 -1.33% 5.14% 0.85% 0.01%
MS - 3 6.4 2.4 -1.25% 5.16% 0.87% 0.01%

LEU Core

The solution of the nodal diffusion solver predicts the pin powers of the LEU core

very well. The multiscale results are shown in Table 5.1. In all cases, the embedded

solution is slightly less accurate than the original diffusion solution with the errors

introduced by the embedded method less than half a percent in all figures of merit for

the power shape.

MOX 1 Core

The PPR method have larger errors for the mox cores, and the impact of the embedded

method is more apparent. Similar to the LEU core, the peak pin power is in the center

assembly and embedded regions are gradually introduced to improve the solution.

Figure 5.3 shows the error in the pin power distribution for the diffusion solution and

the three multiscale cases. Although the peak pin power error increases slightly, the

embedded method reduces the maximum pin power error and the global RMS error.

The error in the pin power shape is also decreased.

As the multiscale regions are increased, the pin power errors in the center assembly

become constant. This is because the transport effects at the MOX/LEU interface

are not completely resolved. A fourth multiscale case is considered where the MOC

solver is used in the center two assemblies. The seven group pin homogenized diffusion

solver is also used in the third assembly. Figure 5.4 shows the multiscale levels used

in the additional calculation.

The impact of the extension of the MOC region is significant. All of the figures of

merit increase except the speedup, as shown in Table 5.2.

Figure 5.5 contrasts the original diffusion solution errors with the new multiscale

solution. The interface effects are completely removed between the first two assemblies

and are considerably reduced between the second and third assemblies.
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Figure 5.3: PPR in MOX1 Core for Embedded Method

Figure 5.4: Additional Embedded Multiscale Region for MOX 1 Core

Table 5.2: Figures of Merit for MOX1 Core with Embedded Method

τ ∆k Epeak Emax ERMS ERMS shape

2G Diffusion 256.6 -28.4 -1.07% 15.03% 2.66% 1.47%
MS - 1 5.5 -84.2 -0.23% 16.53% 2.58% 0.46%
MS - 2 5.3 64.0 -2.99% 10.68% 2.11% 0.51%
MS - 3 6.4 53.6 -3.30% 9.77% 1.94% 0.49%

MS - Extended 4.0 1.4 -0.44% 9.00% 1.22% 0.00%
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Figure 5.5: Impact of Extended MOC Region for MOX1 Core

Figure 5.6: Multiscale Regions for MOX2 Core

MOX 2 Core

The MOX2 core requires the embedded region to be moved away from the center of

the core, as shown in Figure 5.6.

The embedded method in this case decreases the RMS and shape errors, but
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Table 5.3: Figures of Merit for MOX 2 Core

τ ∆k Epeak Emax ERMS ERMS shape

2G Diffusion 191.6 -36.3 -1.77% 10.70% 2.60% 3.67%
MS - 1 5.2 -77.4 -1.58% 11.71% 2.66% 3.70%
MS - 2 4.6 -2.0 -1.40% 12.32% 2.23% 3.85%
MS - 3 5.0 34.5 -2.15% 8.05% 1.93% 1.37%

Figure 5.7: Multiscale Regions for 33 Group Embedded Calculation

as shown in Table 5.3 clear trends are not apparent in the peak pin error and the

maximum overall error. The maximum error can be difficult to quantify because

the location of the maximum pin error can change spatial location as the levels are

expanded. It is not until the majority of the solution uses a higher level that the

solution shows improvements in the maximum pin error. The principal issue with

this case is that the energy structure never reaches an asymptotic spectrum. The

prolongation condition relies on the energy shape to be close to symmetric at an

interface.

Embedded Method with More Energy Groups

The embedded method was then extended to more energy groups, with the 33 group

transport library used to assess the impact of using more energy groups. The 33 group

MOC solver was embedded in the assembly with the peak power. Two different levels

were examined to determine how important the energy group structure is around

the MOC region. The first was a series of 33 group and 7 group pin homogenized

diffusion solvers around the MOC region. The second was a series of 7 group and 4

group pin homogenized diffusion solvers around the MOC region. Figure 5.7 shows

the multiscale regions for two cases using the LEU and MOX 1 cores.

All three cores were considered with these regions, and both level structures gave
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Table 5.4: Comparison of Level Structure for 33 Group Embedded Calculation

τ ∆k Epeak Emax ERMS ERMS shape

2G Diffusion 1220.6 48.4 -1.16% 18.55% 3.23% 1.70%
MS - 1 – 59.7 -3.83% 11.45% 2.14% 0.69%
MS - 2 6.8 86.8 -2.35% 11.40% 2.03% 0.68%

Figure 5.8: Multiscale Regions in the Reflector for the Embedded Method

very similar answers in all cases. This suggests that the impact of the reduced energy

groups used in the second level structure is still sufficient to capture the spectral

effects caused by adding more groups to the transport library. Table 5.4 summarizes

the comparison of the two level structures for all three cores.

5.1.2 Embedded Region Around Fuel-Reflector Interface

Adding the embedded region at the fuel reflector interface is another way that the

embedded method can be used to increase the local accuracy and also the global accu-

racy. For all three cores, the MOC region is placed in the water reflector. Additional

cases are added to model the last assembly using the seven group pin homogenized

diffusion solver and the next assembly using the four group pin homogenized solver.

Figure 5.8 shows the three multiscale regions considered.

Although the LEU core already has a small pin power error, there is a noticeable

tilt in the pin power error across the core. This is primarily because the leakage

estimated at the fuel/reflector interface can have small errors that introduce a tilt in

the flux and power distributions. Adding the multiscale region to the reflector will

accurately model the correct effects at the boundary. Figure 5.9 shows the global

shape of the pin power errors as the multiscale region is increased.
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Figure 5.9: Impact of Embedded Regions in Reflector for the LEU Core

Although the pin power errors improve when the MOC region is added only in the

reflector, it should be noted that the energy spectrum shape used for the prolongation

operator at the core-reflector interface is approximate since the core solution is uses 2

groups and the reflector uses 7 groups. Also, since the multiscale calculation does not

have a direct impact on the fission source, the solution takes a long time to converge.

Adding another multiscale region at the core reflector interface increases the accuracy

of the calculation and actually decreases the run time because the energy levels of the

core and reflector are better coupled.

For the MOX 1 core, there is no improvement of the solution by adding multiscale

regions in the reflector region. This is generally because the errors in the core leakage

are overshadowed by the errors at the MOX/LEU interface.

Some improvements are observed in the MOX 2 core, as shown in Figure 5.10.

Although the reductions in error are modest, because the impact is overshadowed by

the MOX/LEU interface, the principal improvement is the impact of calculating the
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Figure 5.10: Impact of Embedded Regions in Reflector for the MOX 2 Core

correct discontinuity factor on the fuel/reflector interface. The reflector discontinuity

factor was calculated using a two node problem with an LEU assembly and the

reflector. Since the outgoing spectrum in LEU and MOX are different, the reflector

discontinuity factor should be different for the two cases. It is not practical to generate

a new discontinuity factor for every assembly facing the reflector, so the common

practice is to only generate one discontinuity factor for all assemblies at the periphery.

5.1.3 Embedded Region Around Controlled Assembly

Although the change in reactivity due to a control rod (control rod worth) movement

is important during transient simulations, the ability to predict the power of the

fuel pins around the control rod is also important to ensure when evaluating energy

deposition limits. In order to test the ability to calculate both control rod worth and

the pin power error around a control rod, the LEU core was used with a control rod
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Figure 5.11: Control Insertion Pattern

Figure 5.12: Multiscale Regions Used in Control Rod Analysis

inserted in the fourth assembly, as shown in Figure 5.11. The multiscale regions are set

up in a consistent manner with the proceeding cases, and can be seen in Figure 5.12.

The control rod worth is calculated using the rodded and unrodded eigenvalues as

shown in equation (5.1).

ρCR =
kUnrodded − kRodded

kUnroddedkRodded

(5.1)

For the LEU core all methods were able to accurately predict the worth of the control

rod as shown in Table 5.5.

Although the diffusion solution was able to predict the global solution accurately,

the local solution has significant errors, as shown in Figure 5.13. PPR has the largest

errors in pin power in the assembly with the control rod. The error in the PPR

Table 5.5: Control Rod Worth for the LEU Core

ρCR ∆ρ
MOC 357.3 –

2G Diffusion 358.8 1.5
MS - 1 341.8 -15.5
MS - 2 345.1 -12.2
MS - 3 347.2 -10.1
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Figure 5.13: Pin Power Errors with Control Rod Inserted

solution is caused by the modulation of the pin power distribution onto an assembly

where the control rod has been homogenized. The impact of the embedded region

reduces the local pin power errors and improves the global solution.

Although the pin power errors occur at regions around the control rod where the

power is low, the error can still be significant when considering an accident such as a

control rod ejection. When the control rod is ejected from the core, a very localized

power pulse occurs, and the pins closest to the control rod can experience a significant

energy deposition. The design limits of the reactor are evaluated in terms of the

highest energy deposition in any one fuel pin after a control rod ejection.
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5.2 Discussion of Embedded Method

The embedded method evaluated in this chapter is more consistent with traditional

multiscale methods used elsewhere in computational science and engineering than

the post-refinement method discussed in Chapter 4. The ability to influence the

global solution by locally refining the space, energy and angular mesh is a potentially

powerful technique for improving the analysis of nuclear reactor performance. Several

conclusions can be drawn from the results in this section to provide a set of best

practice guidelines for implementing and further developing embedded methods with

established computer codes such as PARCS [45] and DeCART [1].

5.2.1 Impact of Multiple Embedded Levels

As noted in the post-refinement method discussion, the energy prolongation operators

are much more significant than angle or space. The ability to use multiple embedded

levels provides a solution to this problem without significantly reducing runtime. The

use of a fine group pin homogenized diffusion solver surrounding the MOC region

decreases the impact of the prolongation operator near the MOC region and improves

the solution. The introduction of an intermediate group pin homogenized solver

also decreases the impact of the energy prolongation operator. By decomposing the

solution into three regions with different energies, the prolongation is a much smoother

transition. The impact of introducing multiple levels is very similar to the buffer

region used in the post-refinement method. Both the buffer region and adding multiple

levels both attempt to reduce the impact of the boundary conditions of the higher

scale solutions.

The analysis using 33 energy group library also showed that a fine group diffusion

solver was not necessary to capture the energy effects, and the 7 group diffusion solver

was sufficient to describe the energy spectrum with a low-level transport solution such

as diffusion theory. This suggests that the need for a pin homogenized diffusion solver

with the same number of energy groups as the transport solution is not necessary.

Reducing the size of the requirements of the homogenized diffusion solver will reduce

runtime and memory requirements for the multiscale methods.
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5.2.2 Prolongation Operators

The prolongation operator for energy was chosen to reflect the results of the post-

refinement method. The post-refinement method assessment concluded that the

albedo type boundary conditions were much more stable. For this reason, the energy

shape was chosen to use the outgoing current to define the shape of the incoming

current. Unfortunately, there are cases where this assumption is not valid. In these

situations, higher order methods need to be implemented to make the embedded

iteration method general enough to handle any arbitrary geometry. Methods such as

the discrete generalized multigroup method [16] could be used to better estimate the

energy spectrum at the interface but have yet to be demonstrated in multidimensional

cases.
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Chapter 6

Summary and Conclusion

6.1 Summary of Work

In the research here, two different multiscale methods have been investigated, which

rely on a global diffusion solution to provide boundary conditions for a local region of

interest. The local region is solved using a high order method which for the work here

was chosen to be an integral transport MOC solver. In the post-refinement multiscale

methods the boundary conditions are transferred in one direction from the low order

local solution to the high order global solution, and the local solution does not attempt

to correct the global solution. Two methods were investigated to implement the

post-refinement method, which employ different solution procedures. The first is a

fixed source problem where the flux distribution is solved for a given incoming angular

flux at the boundary. The second method provides an albedo boundary condition and

solves a local eigenvalue problem.

The post-refinement methods were assessed using a series of one dimensional

core models with a mixture of LEU and MOX assemblies. Cases were analyzed in

which the global and local solutions had the same energy group structure to analyze

the effect of angular prolongation. Then, mixed energy cases were solved in which

more energy groups were used in the local solution to test the energy prolongation

operations. For the cases with the same energy group structure, all methods performed

well and showed improvement over the standard methodology of diffusion with pin

power reconstruction. The mixed energy cases exposed some problems with the energy

prolongation operators. The albedo method showed improvement over the state of

the art method for most cases considered, but the fixed source method showed better

results only when a buffer region was included.

After analyzing the two different methods it was determined that the albedo

method is more robust and consistent at improving the estimations of the peak pin
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power and the shape of the pin power distribution. Therefore, the albedo method was

implemented into a two dimensional multiscale code system. Both the LEU core and

the MOX cores showed improved estimations of the local pin powers for the cases run.

The second multi-scale method investigated in the research here was the embedded

method, which is more consistent with multiscale methods currently used in compu-

tational science and engineering in which refinements in the local solution impact

the global solution. The embedded method implemented here was assessed using the

same one-dimensional core models used in the post refinement method. Cases were

examined where the embedded region is placed in the peak power assembly, at the

fuel-reflector interface, and around a control rod. The embedded method showed

the ability to reduce the global RMS pin power errors in almost every case analyzed,

but the impact on the peak pin power shape was not uniform. There were several

cases where the impact on the peak pin power did not change or errors even slightly

increased. Embedding the local solver into the reflector region demonstrated the

ability to more accurately model the leakage effects out of the reactor and significantly

decreased the tilt in the error across the LEU core. The MOX cores showed little or no

improvement in the global errors when the local solver was embedded into the reflector.

This is primarily because the MOX/LEU interface errors overshadowed any impact of

improvements in describing the core leakage. The last case considered was the impact

of embedding the local solver around a control rod. No noticeable improvements

were observed in the determination of the control rod worth, but improvements were

observed in the accuracy of local pin power predictions which is important during core

safety analysis.

Throughout the series of cases considered in this work, several observations were

made. For the post-refinement methods it was observed that the pin power accuracy

can only be as accurate as the global power distribution in the region of interest. If the

global assembly power has large errors, the pin powers will have similar errors. The

numerical stability of the fixed source and albedo methods were assessed by evaluating

the impact of small errors introduced in the boundary conditions. Numerical tests

of both methods showed that the albedo method is less sensitive to errors in the

boundary condition. For the embedded method, it was observed that the inclusion of

several solution levels increases the accuracy of the method. Specifically, the addition

of multigroup pin homogenized diffusion solvers around the region of interest can

decrease both local and global errors.
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6.2 Future Work

Throughout this research several areas for future work have been identified, some

of which are current areas of active research in the reactor physics community. A

variety of minor improvements to the low order diffusion solution could be made

which could improve the accuracy of the boundary conditions which have a significant

impact on the local solution. The energy spectrum in which the cross-sections are

homogenized can also have a significant impact and should be improved. In this work,

the infinite spectrum was used to homogenize cross-sections but many standard lattice

codes use the critical spectrum to estimate the impact of leakage on the homogenized

cross-sections. The critical spectrum calculation is most appropriate when considering

reactors where criticality is determined by changing the soluble boron concentration.

Also, only two group cross-sections for the standard diffusion solution were used in

this analysis, whereas in some cases a larger number of energy groups are being used

in MOX core analysis.

One of the conclusions in the work here is that prolongation in energy is a large

source of error in the determination of boundary conditions for the local problem.

Current research [17] is investigating methods to solve for moments in energy of

transport and diffusion solvers using the discrete generalized multigroup method. This

involves first solving the low order equation and then solving a series of fixed source

problems in energy to reconstruct the energy shape. The reconstruction of the energy

shape could provide a much better estimation of the boundary conditions for the local

problem.

The embedded multiscale method could also be a practical method for cases

where a more sophisticated transport solver is embedded into another transport solver

using the same energy grid [13]. Research is recommended into the application of

this method for high fidelity embedded transport calculations (such as 3D MOC)

into codes which are capable of calculating a full core transport solution with some

approximations (2D-1D MOC, such as the method is implemented into DeCART [1],

or 3D SN codes, like DENOVO [2]).

Another interesting area of research would be to develop criteria to dynamically

refine the multiscale region based on local error approximations. Dynamically adaptive

multiscale methods have been developed and used in other research areas, but are

not currently used in nuclear reactor analysis. This work provides the initial building

blocks of such a scheme by allowing the user to statically specify the adaptive regions.

A natural next step would be to allow the grid to refine itself dynamically.
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Although the multiscale methods here were considered as improvements over the

standard pin power reconstruction techniques, the true advantages of the multiscale

methods will address issues in which standard pin power reconstruction methods

are not effective. The prime example is the ability to couple the local problem to

tools of comparable fidelity to provide density and temperature distributions in the

region as well as dimensional changes. Current pin power reconstruction methods

assume a predefined temperature distribution and therefore are not as accurate when

the temperature distribution is different. When multiscale tools are used inside the

coupled physics framework, the user will be able to take full advantage of the multiscale

methods developed here.

Overall the multiscale methods considered in this work can be implemented into

current software used to solve the transport equation. The extension of these codes

to solve the full core with diffusion methods should be straightforward to implement.

Although there are cases in which all of the methods considered here may have some

advantages, the albedo method with buffer regions is suggested for implementation if

only local information is desired, because of the stability it provides for a wide variety

of different core configurations. If the ultimate goal of implementing a multiscale

method is to improve the global solution’s accuracy by modeling regions of the reactor

in which the standard methods introduce errors, then the embedded method is recom-

mended. Although there are some outstanding issues that have been identified during

this work, ongoing research shows promising methods to resolve many of these issues.

With the tools provided in this work and developments through ongoing research,

multiscale methods can provide reactor designers and analyst with a repertoire of tools

that have the ability to significantly reduce the computational burden and improve

the accuracy, in order to obtain detailed local information for nuclear reactors.
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