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ABSTRACT

Unsupervised Graph-Based Similarity Learning Using Heterogeneous Features

by

Pradeep Muthukrishnan

Chair: Dragomir Radkov Radev

Relational data refers to data that contains explicit relations among objects. Nowa-

days, relational data are universal and have a broad appeal in many different ap-

plication domains. The problem of estimating similarity between objects is a core

requirement for many standard Machine Learning (ML), Natural Language Process-

ing (NLP) and Information Retrieval (IR) problems such as clustering, classification,

word sense disambiguation, etc. Traditional machine learning approaches represent

the data using simple, concise representations such as feature vectors. While this

works very well for homogeneous data, i.e, data with a single feature type such as

text, it does not exploit the availability of different feature types fully. For example,

scientific publications have text, citations, authorship information, venue information.

Each of the features can be used for estimating similarity. Representing such objects

has been a key issue in efficient mining (Getoor and Taskar, 2007). In this thesis, we

xiii



propose natural representations for relational data using multiple, connected layers of

graphs; one for each feature type. Also, we propose novel algorithms for estimating

similarity using multiple heterogeneous features. Also, we present novel algorithms

for tasks like topic detection and music recommendation using the estimated similar-

ity measure. We demonstrate superior performance of the proposed algorithms (root

mean squared error of 24.81 on the Yahoo! KDD Music recommendation data set and

classification accuracy of 88% on the ACL Anthology Network data set) over many

of the state of the art algorithms, such as Latent Semantic Analysis (LSA), Multiple

Kernel Learning (MKL) and spectral clustering and baselines on large, standard data

sets.
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CHAPTER I

Introduction

1.1 Introduction

Similarity is a measure of symmetry or resemblance between two concepts or

objects. It is a fundamental concept that exists since Aristotle. Aristotle stated the

study of what is similar is useful for inductive reasoning because it is by induction of

particulars on the basis of similars that we claim to bring in the universal.

Most machine learning algorithms represent the data using simple forms like fea-

ture vectors. For example, a document D in a corpus of M documents can be rep-

resented using a ~V (D) ∈ RN where N is the total number of unique words in the

corpus. ~V (D)i represents the presence of the ith term in document D.

While such a simple, concise representation form helps reduce space usage, they

are not very amenable for making complex inferences and learning, in general. For

example, publications, in addition to text, has many relational features like citations,

authorship information, venue information, etc. Another example is videos found on

the Internet. Usually, they have audio, video and a small text description, additional
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metadata information like the date of upload, uploader information, etc. Also, feature

vectors cannot be used for representing linked relational data. For example, citations

between two publications or links between two videos, etc.

Similarity plays a very important part in many Natural Language Processing

(NLP) and Information Retrieval (IR) tasks. It has been used for tasks like classifica-

tion, clustering, etc. Since similarity is such a fundamental concept, not surprisingly,

there are many different algorithms to compute similarity between different objects

described by different features. However, it is hard to evaluate similarity measures in

isolation. In fact, it is hard to even rigorously define similarity from first principles.

Thus, most of the algorithms to compute similarity scores are evaluated extrinsically,

i.e, the similarity scores are used for an external task like clustering or classification

and the performance on the external task is used as the performance measure for the

similarity measure. This approach of evaluation also shows the different applications

of the learned similarity measure.

Clustering is the task of grouping data points into clusters such that data points

within the same cluster are similar to each other while data points across two dif-

ferent clusters are dissimilar. Classification is the task of labeling all data points

with a label representing the category it belongs to. The key difference between

clustering and classification is the availability of training data. Classification is al-

most always a supervised task while clustering is an unsupervised task. In graph

clustering/classification,the input is a graph, G = (V,E) where V is the set of data

points, represented as nodes of the graph and the edge weight between two nodes,

w(u, v) → R+ : (u, v) ∈ E, represent the similarity between the two nodes. In gen-

2



eral, the computed similarity values are normalized so that all similarity values are

0 ≤ w(u, v) ≤ 1. If the computed similarity values are ideal, i.e, the similarity between

two data points belonging to the same cluster is 1 while the similarity between two

data points across two different clusters is 0, then the different connected components

(after removing zero-weighted edges) are the different clusters. Thus, computing the

similarity between the data points is an integral subtask for clustering which makes

clustering an ideal task for evaluating similarity measures. In this thesis, we study

different existing similarity measures in the context of clustering and classification.

In this thesis, we focus on learning similarity measures using multiple heteroge-

neous features like in the examples mentioned above. The problem setup is very

general: An object O is represented using m different (possibly) heterogeneous fea-

ture types , F = {F1, F2, . . . , Fm}. Each feature type, Fi consists of a set of features,

Fi = {f1i, f2i, . . . , fnii}. Also, we assume the existence of m initial similarity mea-

sures, Si (∀i = 1, 2, . . . ,m. Si) assigns a similarity value for any two features of

feature type i: S(fji, fki)→ R. The task is to refine all the similarity measures using

the available relational data.

The rest of the thesis is organized as follows. In Chapter II, we start with a

short survey of different string similarity measures, graph similarity measures and

the clustering and classification algorithms that will be used later for evaluating the

similarity measures

In Chapter III, we look at methods to augment existing similarity measures using

the different relations. The motivation behind this work is that, in many domains,

individual similarity measures cannot completely capture the true content similarity.

3



However, there are many independent sources of similarity because of the availability

of relational data. We can exploit the independence between the similarity measures

to construct a superior similarity measure. The ACL Anthology Network (AAN)

(Radev et al., 2009b) is a manually curated networked database of citations, collab-

orations, and summaries in the field of Computational Linguistics. The full AAN

includes the raw text of all the papers in addition to full citation and collaboration

networks. (See Appendix B for a full description of the AAN data set). Consider the

following three publications from the AAN data set

(1) Peter F. Brown, Vincent J. Della Pietra., Stephen A. Della Pietra, Robert

L. Mercer. The Mathematics Of Statistical Machine Translation: Parameter

Estimation. Computational Linguistics. 1993.

(2) Franz Josef Och. Minimum Error Rate Training In Statistical Machine Trans-

lation. In Proceedings of ACL. 2003.

(3) William A. Gale, Kenneth Ward Church. A Program For Aligning Sentences

In Bilingual Corpora. In Proceedings of ACL. 1991.

(4) Peter F. Brown, Stephen A. Della Pietra, Vincent J. Della Pietra, Meredith J.

Goldsmith, Jan Hajic, Robert L. Mercer, Surya Mohanty. But Dictionaries Are

Data Too. In Proceedings of HLT. 1993.

Publications (1) and (2) can be deemed similar using simple string similarity

measures. However, publications (3) and (4) also belong to the field of machine

translation but mention the phrase machine translation only once in their entire text.

4



So to attribute a high similarity value between the different pairs of publications we

need to look at similarity due to other relations. For example, the outgoing citation

from publication (3) to publication (1) can be exploited to learn a non-zero similarity

score between the two publications. Publication (1) and (4) have a lot of common

authors and hence using the hypothesis that authors write similar papers, we can infer

the similarity between them. Also, once we find that many papers written by two

authors are similar, we can increment the similarity value between the two authors.

This can further lead to inferring similarity between some other papers written by

them. Thus, we can learn how to compute citation similarity from author similarity,

keyword similarity and other similarity measures and vice-versa. We refer to this

learning as learning across feature types. We can also learn from the transitivity of

similarity measures which is best explained by the following example. For example,

consider the following three sentences

(5) Machine Translation is an active research field.

(6) Machine Translation makes use of bilingual grammars.

(7) We use the English-Spanish bilingual grammar.

Most string similarity measures depend on word overlap. Therefore, sentences (5)

and (6) share some similarity, and sentences (6) and (7) share some similarity while

(5) and (7) do not share any similarity. But, clearly, (5) and (7) share some semantic

similarity and this can be inferred through the transitivity of the similarity rela-

tion. This is achieved by using graph-based methods similar to label propagation and

graph regularization. Although the example is based on textual similarity, sparsity

5



of similarity relations in any domain can be dealt with using the proposed method.

In Chapter IV, we extend the proposed framework to allow simultaneous opti-

mization of feature weights and similarity learning. Estimation of similarity between

objects directly relies on the feature weights. For example, once we learn publications

4) and 5) also belong to the field of machine translation, we can use this information

to increase the feature weight of the keyword “machine translation” for publications

4) and 5). We also provide elaborate evaluations on three different tasks, cluster-

ing, classification and music recommendation. We compare the proposed similarity

measure with different baselines, state-of-the-art similarity measures based on multi-

ple kernel learning (Bach et al., 2004), Latent Semantic Analysis (LSA) (Deerwester

et al., 1990).

In Chapter V, we address a different problem, facet detection in blogs using the

proposed framework. A high-profile news event is usually followed by an outburst

of blog posts which can be mined for information related to the event. Specifically,

we identify a diverse, representative set of facets of any blog story. Each facet is

represented by a keyphrase. For example, let the news story be the Tragic Virginia

Tech Shooting, then the keyphrase ”‘Cho-Seung Hui”’ is a facet/topic. We formulate

the problem of choosing the set of phrases as an optimization problem over two

feature types, the set of documents and the keyphrases themselves. We also have

similarity estimates between the different feature types, keyphrases and documents.

There exists an edge between a keyphrase and a document if the document contains

the keyphrase. The task is to choose a set of facets such that all the important topics

of the news event are represented while no two chosen facets are too similar to each

6



other. We develop adaptive algorithms for this task in the proposed framework.

The key contributions of the thesis are as follows.

1. A representation model for representing objects with heterogeneous feature

types for efficiently estimating similarity. The proposed model has the following

advantages over feature vectors:

• The model is generic and is capable of representing different types of fea-

tures, including nominal, discrete, real-valued and link-based features.

• The model is capable of representing a wide variety of dependencies be-

tween different features. For example, if there is information available

regarding different feature types’ contribution to the overall similarity be-

tween objects, it can be easily incorporated.

• The model allows learning across feature types. For example, it can be used

to learn similarity between publications using similarity measures between

authors, keywords and venues and vice-versa.

2. A regularization framework for unifying different similarity measures and learn-

ing feature weights.

3. Completely unsupervised algorithms in the proposed framework to efficiently

estimate feature weights and compute similarity between objects with many

heterogeneous feature types.

4. Novel algorithms for tasks like music recommendation and topic detection using

the proposed similarity measures.

7



In Appendix A, we propose an active classification algorithm which augments ex-

isting similarity measures. Existing similarity measures like cosine similarity does not

exploit higher order dependencies. Consider the problem of document classification.

It is possible for two documents to be semantically similar but because of vocabulary

differences the two documents are assigned a very low similarity score. We can infer

that two documents are similar if there are many other documents that are similar to

both documents. We represent objects to be classified using a graph, where the set of

nodes correspond to the set of objects and the edge weights represent similarity be-

tween the objects. We increment the similarity value between two nodes in the graph

if many high similarity paths exist between them. We also present active learning

algorithms to pick representative nodes in a graph to be labeled by the user. We

compare the proposed active learning algorithm to existing active graph clustering

algorithms on many standard benchmarked data sets.

In Appendix B, we describe the ACL Anthology Network (AAN), a networked

database of publications. Citation data was obtained using text extraction from a

collection of PDF les with significant manual post-processing performed to clean up

the results. Manual annotation of the references was then performed to complete the

citation network. We also describe the derived data set from AAN which can be used

for further research in relational data learning.
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CHAPTER II

Related Work

2.1 Introduction

Similarity can be defined as ”some degree of symmetry in either analogy or re-

semblance between two or more concepts or objects”. A similarity measure quantifies

this notion of similarity, typically as a scalar value. Estimating similarity is one of

the oldest problems in Computer Science (Tversky, 1977; Findler and van Leeuwen,

1979; Nakatsu et al., 1982). The importance of similarity measures is rather obvious

given the number of problems that use similarity measures as a tool.

Similarity has different meanings in different fields. In Geometry, two objects

are considered to be similar if the objects are identical except for uniform scaling.

In the field of Philosophy, two objects are similar if they possess similar character-

istics/traits. For example, the sports Tennis and Squash can be considered similar

because a racquet is used in both the sports. In the field of publications, two pub-

lications can be considered similar if they belong to the same field of research. For

example, let p1, p2 be two publications on statistical machine translation, p3 be a pub-
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lication on machine translation and p4 be a publication on convex optimization. Let

Similarity between two publications, pi and pj, be represented as S(pi, pj). Then the

similarity measure should be such that S(p1, p2) > S(p1, p3) and S(p1, p3) > S(p1, p4).

In general, computing a similarity score requires identifying exact or approximate

matches of patterns in the objects being compared. For example, in the case of

documents, we look for matches of terms/words. Later, we will see in detail how the

different notions of similarity will be exploited to compute similarity scores between

documents, words and structured objects. The rest of the chapter is organized as

follows. The next four sections will cover the different similarity measures for simple

objects, words, documents and structured objects. Later, we go over the results of

evaluation of the different similarity measures.

2.2 Vector Similarity

Let ~Vi and ~Vj be two N -dimensional vectors, that is, ~Vi, ~Vj ∈ RN . The similarity

between the two vectors can be computed using the following methods.

1. Inner Product: The formula for the inner product similarity between the two

vectors, ~Vi and ~Vj is

Sim(~Vi, ~Vj) =
N∑
k=1

Vik · Vjk (2.1)

The problem with this formulation is that the similarity score is not upper

bounded and hence it is difficult to interpret the similarity value. To avoid this

problem, a simple solution is to normalize the document vector using the L2

norm. The resulting measure is called as the cosine similarity.
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2. Cosine Similarity (Salton et al., 1975):

Simij =

∑N
k=1 Vik × Vjk√∑N

k=1 Vik
2 ×

√∑N
k=1 Vjk

2
(2.2)

Notice that this is in line with the notion of similarity in the field of Geometry,

with a pair of document vectors having a similarity score of 1 if one of the

vectors is a uniformly scaled version of the other. The similarity between two

vectors is equal to the cosine of the angle between the two vectors.

2.3 Set Similarity

A set is a collection of distinct objects. Let X and Y be two sets containing n, m

elements, respectively. Then similarity between the two sets can be computed using

the following methods

1. Jaccard Index (Jaccard, 1901): The Jaccard similarity is defined as:

J(X, Y ) =
|X ∩ Y |
|X ∪ Y |

. (2.3)

2. Dice Coefficient (Dice, 1945): The Dice coefficient, named after Lee Raymond

Dice, is defined as,

S =
2 · |X ∩ Y |
|X|+ |Y |

. (2.4)

Note that the Dice coefficient is related to the Jaccard Index as, S = 2·J
1+J

.
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2.4 Word Similarity

2.4.1 String Match-based Similarity

In the free text representation, similarity is proportional to the number of common

characters between the two strings. Some of the earliest string similarity measures

were based on substring matches Longest Common Subsequence (Nakatsu et al.,

1982), (Kashyap and Oommen, 1983), Edit Distance or Levenshtein distance (Leven-

shtein, 1966a).

Let two strings be defined as follows: X = (x1, x2 . . . , xm) and Y = (y1, y2 . . . yn).

Let the length of the longest common substring be k1, then the susbtring similarity

between X and Y is defined as

Ssubstring(X, Y ) =
k1

max(N,M)
(2.5)

For example, the similarity between the two words “micro-computer” and “com-

puterized” which have the common substring “computer”, is 8
14

.

A subsequence is a sequence that can be derived from another sequence by deleting

some elements without changing the order of the remaining elements. For example,

ABD is a subsequence of ABCDEF. However, note that substring and subsequence are

not synonyms. Substrings are consecutive parts of a string, while subsequences need

not be. Subsequence based matching is used in bioinformatics, for computing simi-

larity between gene sequences. The similarity is proportional to the longest common

subsequence between X and Y . Let the length of the longest common subsequence
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be k2. The subsequence similarity is defined as

Ssubsequence(X, Y ) =
k2

max(N,M)
(2.6)

For example, the subsequence similarity between the two DNA sequences, S1 =

AGCAT and S2 = GAC is 2
5
. A näıve computation of the longest common sequence

between two sequences takes exponential time, O(2max(N,M)). However, it can be

more efficiently computed using dynamic programming in quadratic time O(N ∗M).

2.4.2 Knowledge-Based Approaches

WordNet(Miller, 1995) is a lexical database for the English language. It groups

English words into sets of synonyms called synsets, provides short, general definitions,

and records the various semantic relations between these synonym sets. The recorded

semantic relations vary based on the type of word. Some of the commonly used

relations in automatic text analysis are,

• Nouns

– hypernyms: Y is a hypernym of X if every X is a (kind of) Y (canine is

a hypernym of dog, because every dog is a member of the larger category

of canines)

– hyponyms: Y is a hyponym of X if every Y is a (kind of) X (dog is a

hyponym of canine)

– coordinate terms: Y is a coordinate term of X if X and Y share a hy-

pernym (wolf is a coordinate term of dog, and dog is a coordinate term of
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wolf)

– holonym: Y is a holonym of X if X is a part of Y (building is a holonym

of window)

– meronym: Y is a meronym of X if Y is a part of X (window is a meronym

of building)

• Verbs

– hypernym: The verb Y is a hypernym of the verb X if the activity X is a

(kind of) Y (to perceive is an hypernym of to listen)

– troponym: The verb Y is a troponym of the verb X if the activity Y is

doing X in some manner (to lisp is a troponym of to talk)

– entailment: The verb Y is entailed by X if by doing X you must be doing

Y (to sleep is entailed by to snore)

– coordinate terms: Those verbs sharing a common hypernym (to lisp and

to yell)

Knowledge-based approaches quantify the degree to which two words are seman-

tically related using information drawn from semantic networks like WordNet. All

the metrics we will discuss compute similarity between ”Concepts” or ”Synsets”. A

Synset or a Concept is represented by a set of words, each of which has a sense that

names that concept (and each of which is therefore synonymous with the other words

in the Synset).
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Leacock-Chodorow : (Leacock and Chodorow, 1998) relies on the shortest path

between two synsets in WordNet’s taxonomy for their measure of similarity. However,

they limit their attention to hypernymy links (other links are discarded when finding

the path between the two synsets) and scale the path length by the overall depth

D = 16 of the WordNet taxonomy:

simLC(c1, c2) = − log
path length(c1; c2)

2D
(2.7)

For example, consider the partial WordNet taxonomy in Figure 2.1. The Leacock-

Chodorow similarity between “car” and “truck” is− log 2
32

= 1.20, while the similarity

between “car” and “fork” is − log 11
32

= 0.463.

Resnik : (Resnik, 1995)’s approach uses WordNet and a corpus to compute the

similarity between two concepts. Specifically, it computes the information content of

the least common ancestor of the two concepts in the taxonomy. The Information

content of a concept is calculated as the probability of encountering the concept in a

large corpus.

simResnik(c1, c2) = − log p(lca(c1, c2)), (2.8)

where lca(c1, c2) is the least common ancestor of c1 and c2.

Jiang-Conrath : (Jiang and Conrath, 1997)’s measure computes the distance be-

tween concepts, therefore, the lesser the distance the more similar they are. The

measure builds on Resnik’s measure of similarity, but in the form of the conditional

probability of encountering an instance of a child-synset given an instance of a parent
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Figure 2.1: Example WordNet taxonomy for nouns
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synset. The measure as shown below uses the information content of the two concepts

themselves and the information content of the least common ancestor.

distJC(c1, c2) = 2 log(p(lca(c1, c2)))− log(p(c1))− log(p(c2)) (2.9)

Hirst-St-Onge : Most of the similarity metrics use only the hyponymy relationship

in the WordNet. However, (Budanitsky and Hirst, 2006) considers all the different

relations in WordNet like meronymy, hypernymy, etc. For this reason, they use

the term ”Semantic Relatedness” instead of semantic similarity to define what they

measure. They measure semantic relatedness between two concepts as a function of

the path length between the two concepts in the WordNet and the number of direction

changes along the path. A path is a sequence of between two and ve links between

synsets. Onnly specific patterns are allowed as part of the path. If a multi-link path

between two synsets is to be indicative of some reasonable semantic proximity, the

semantics of each lexical relation must be taken into consideration. Now, an upward

direction corresponds to generalization (hypernymy) For example, an upward link

from “apple” to “fruit” means that “fruit” is a more generalized synset than “apple”.

Similarly, a downward link corresponds to specialization (hyponymy). Horizontal

links are less frequent than upward and downward links. Such links are usually very

specic of meaning (synonymy). So, to ensure that a path corresponds to a reasonable

relation between the source and the target word, they define two rules

• No other direction may precede an upward link. Once a downward or horizontal

link has been used, it is not allowed to generalize again by using an upward link.
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• At most one change of direction is allowed. However, it is permitted to use a

horizontal link to make a transition from an upward to a downward direction.

The concepts are considered to be closely related if the path length is small and the

direction doesn’t change often. The semantic relatedness is computed as,

relHS(c1, c2) = C − path length− k ∗ d, (2.10)

where ci is a concept and C, k, are constants. d is the number of direction changes

along the path. If no such path exists, then the relatedness is zero. Let C = 8 and

k = 1 as in (Budanitsky and Hirst, 2006)’s experiments. Then relHS(“car′′, “truck′′)

is 8− 2− 1 = 5, while relHS(“car′′, “bike′′) is 4.

Pointwise Mutual Information Pointwise Mutual Information (PMI) was sug-

gested by(Turney, 2001) as an unsupervised measure of the semantic similarity be-

tween two words. It requires the existence of some large corpora like the Web or

Wikipedia. Given two words w1 and w2, the similarity between them is defined as,

sim(w1, w2) = log2
p(w1&w2)

p(w1)p(w2)
(2.11)

The above formula measures the degree of dependence between words w1 and w2. To

compute the p(w1&w2), Turney suggests four different type of search engine queries we

can use to estimate the probability values. The best one in terms of balance between

complexity and accuracy in the experimental evaluation turned out to be queries using

the “NEAR” operator. The “NEAR” operator in a search engine returns documents
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where the words are near each other. Then the probability values are estimated as

p(w1&w2) ≈ hits(w1NEARw2)

WebSize
(2.12)

P (wi) ≈
hits(wi)

WebSize
(2.13)

2.5 Document Similarity

It is quite easy to extract useful information from highly structured text, like

documents in XML format. However, extracting novel information from unstructured

text documents needs many sophisticated Natural Language Processing (NLP) and

Information Retrieval (IR) algorithms. At the heart of many of the NLP and IR

algorithms is the need for a good similarity measure. For example, many of the

algorithms for document clustering (Strehl et al., 2000), word sense disambiguation

(Karov and Edelman, 1998), document classification (Goldberg et al., 2007; Calado

et al., 2003), etc make use of similarity measures.

In this entire chapter, we will focus on the similarity measures and not on the

algorithms for specific problems like document clustering or word sense disambigua-

tion. Before discussing the similarity measures for documents, we need to decide how

to represent documents. We discuss some of the most commonly used representations

for documents below.
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2.6 Document Representation

Each similarity measure assumes an underlying representation of the text. The

representation defines the framework for the similarity measure. A few commonly

used representations are

2.6.1 Free Text

This is the most basic representation of documents which is the surface represen-

tation (i.e. the text itself). This representation is very sparse. No information is lost

because no automatic or manual transformations have been applied to the text. How-

ever, it is hard to extract information from this representation without sophisticated

techniques.

2.6.2 Bag of Words

In this model, a document is represented as a collection of words without consid-

ering the ordering of the words in the document. This simple assumption helps ease

the overhead of computation of similarity between two document vectors.

Assume a corpus consists of M documents: C = {d1, d2, . . . , dM}. Let the total

number of terms in this corpus be N : T = {t1, t2, . . . , tN}. A common representation

in this model is using a feature vector. For example, Let a N− dimensional vector,

~V (di), is used to represent the feature vector for document di. ~V (di)j, indicates the

presence of term tj in document di. A common choice is to weight each element of

the vector with the frequency of the corresponding term. For example, consider a

corpus consisting of the following two sentences.
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• D1: John likes cars manafactured by BMW. BMW cars are powerful.

• D2: BMW manafactures powerful cars and bikes.

The corpus consists of 11 unique terms: T = {John, likes, cars, manafactured,by,BMW

are, powerful, manafactures, and, bikes}. The feature vector description for the first

sentence is ~V (d1) = {1, 1, 2, 1, 1, 1, 1, 1, 0, 0, 0}.

2.6.3 Stemmed Representation

Stemming is one of the most natural ways to “normalize” text. For this reason,

it is commonly used as a rudimentary step in many NLP and IR algorithms. Most

of the stemmers can be classified as rule-based stemmers(Porter, 1997) or statistical

stemmers(Krovetz, 1993). Although stemming can improve the representation of

two documents for similarity comparison, it could also mislead into wrong matches.

For example, using the Porter stemmer, both “marinated vegetables” and “marine

vegetation” are normalized to ”marin veget”, which is clearly undesirable.Metzler

et al. (2007) In general, the number of meaningful conversions exceeds the spurious

matches which helps in computing a better similarity measure.

2.6.4 Knowledge Rich Representation

Though stemming allows us to overcome the effects of vocabulary mismatch to a

certain extent, it does not handle the effects of polysemy, a single word having multiple

senses. For example, two documents could have the word “bank”, but could use them

in very different senses. For example, the word “bank” in the first document refers

to a “river bank”, while the second document could use it in the sense of a “financial
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institution”. To overcome these effects, it is useful to build representations that

include contextual information. One common way of accomplishing this has been to

use an external source of knowledge like the Web, Wikipedia or WordNet

2.7 Document Similarity Measures

Similarity measures between documents can be broadly classified into five different

approaches based on the document representation and usage of external sources of

information. The five approaches are listed below.

2.7.1 String-based approach

In this approach, documents are considered as strings and we look for approximate

matches between the two strings and the degree of matching defines the similarity

score. Any of the similarity measures for words discussed before can be used.

2.7.2 Vector Space Similarity

In this approach, the document is represented as a vector and the similarity is

defined based on how close the two vectors are in N -dimensional space. According

to the Bag of Words (BoW) model, two documents di and dj can be represented as

N -dimensional vectors ~V (di) and ~V (dj), where ~V (Di)j is equal to the frequency of the

jth term in the ith document. Then, any one of the vector-based similarity measures

discussed before can be used to compute the similarity between the corresponding

documents. Cosine Similarity is the most commonly used similarity measure since

it is normalized and hence, easy to interpret. There have been a lot of variants on
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the Cosine Similarity based on the term weights. One of the best known methods is

Term Frequency - Inverse Document Frequency (TF-IDF) (Jones, 1972) weighting.

In this weighting scheme, let ṽd = [w1,d, w2,d, . . . , wN,d]
T be the document vector for

document Dd, where

wt,d = tft · log
|D|

|{t ∈ d}|
(2.14)

where, tft is term frequency of term t in document d and log |D|
|{t∈d}| is the inverse

document frequency. |D| is the total number of documents in the corpus; |{t ∈ d}| is

the number of documents containing the term t.

2.7.3 Knowledge-based approach

This approach is mostly used for short documents. Here, in addition to the docu-

ments being compared, we assume the existence of a knowledge source like WordNet,

thesauri and other such external resources to help overcome the effects of vocabulary

mismatch.

For example, if a document contains the word “car”, then to enrich the representa-

tion we can use the Wikipedia definition of car: “An automobile, autocar, motor car

or car is a wheeled motor vehicle used for transporting passengers, which also carries

its own engine or motor.” This approach is mostly used for enriching very short doc-

uments which do not have much content. For example, (Metzler et al., 2007; Sahami

and Heilman, 2006) use the Web to compute similarity between short texts. Consider

the following two short text snippets, “UN Secretary General” and “Kofi Annan”.

Clearly, in this case, any similarity measure using the free text or stemmed represen-

tations will not be able to assign a non-zero similarity score. (Sahami and Heilman,
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2006) use the following approach to assign a non-zero similarity score for the target

example. They submit each short document as a query to a search engine and use

the most frequently used words in the top 10 results as the enriched representation.

Any vector based similarity measure can be used to assign a non-zero similarity score

between the enriched representations.

2.7.4 Corpus-based approach

The effects of polysemy and vocabulary mismatch are handled using co-occurrence

statistics to help define similarity scores between terms. The hypothesis is that two

words which co-occur a lot of times (proportional to the frequency of the words them-

selves) are semantically similar. This approach can be further broken into approaches

based on linear algebra and probabilistic approaches. Approaches based on Latent

Semantic Analysis (LSA) (Deerwester et al., 1990) would fall into the linear algebra

based methods while approaches based on Probabilistic Latent Semantic Analysis

(PLSA) (Hofmann, 1999a), Latent Dirichlet Allocation (LDA) (Blei et al., 2003) fall

into the probabilistic approaches.

Latent Semantic Analysis (LSA) LSA is a technique to map terms and doc-

uments into a concept space and is not a similarity measure. But this mapping

makes simple similarity measures much more accurate by taking into account poly-

semy and synonymy. Synonymy and polysemy are handled by analyzing the relations

between terms through the mapping. The mapping is essentially a dimensionality

reduction technique using Singular Value Decomposition (SVD)(Golub and Reinsch,

1970). SVD refers to the technique of factorizing a m×n matrix X, into the following
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form,

X = UΣV T (2.15)

where U is an m ×m orthogonal matrix, the matrix Σ is an m × n diagonal matrix

with non-negative real numbers along the diagonal, and V T , an n × n orthogonal

matrix.

LSA uses the term-document matrix X, of the occurrence of terms in documents.

It is a sparse matrix where Xij indicates the presence of term ti in document dj.

Usually, the terms in a document are weighted using using the standard TF-IDF

method. Therefore X looks like,

dj

↓

tTi →


x1,1 . . . x1,n

...
. . .

...

xm,1 . . . xm,n


(2.16)

where xi,j = “TF-IDF weight of term ti in document dj. Now a row in this matrix

will be a vector corresponding to a term, giving its relation to each document:

tTi =

[
xi,1 . . . xi,n

]
(2.17)

Likewise, a column in this matrix will be a vector corresponding to a document,
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giving its relation to each term:

dj =


x1,j

...

xm,j

 (2.18)

Now the dot product tTi tp between two term vectors gives the correlation between the

terms over the documents. The matrix product XXT contains all these dot products.

XXT
i,j (which is equal to element (XXT

j,i) contains the dot product tTi tj(= tTj ti).

Likewise, the matrix XTX contains the dot products between all pairs of document

vectors, giving the cosine similarity between the document pairs: dTj dq = dTq dj.

Now assume that there exists a decomposition of X such that U and V are or-

thonormal matrices and Σ is a diagonal matrix. This is called a singular value de-

composition (SVD) of X:

X = UΣV T (2.19)

The matrix products giving us the term and document correlations then become

XXT = (UΣV T )(UΣV T )T = (UΣV T )(V TT
ΣTUT ) = UΣΣTUT

XTX = (UΣV T )T (UΣV T ) = (V TT
ΣTUT )(UΣV T ) = V ΣTΣV T

(2.20)

Since ΣΣT and ΣTΣ are diagonal, U must contain the eigenvectors of XXT and

V must contain the eigenvectors of XTX. Both products have the same non-zero

eigenvalues, given by the non-zero entries of ΣΣT .
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The decomposition looks like this:

X U Σ V T

(dj) (d̂j)

↓ ↓

(tTi )→



x1,1 . . . x1,n

...
. . .

...

xm,1 . . . xm,n


= (t̂Ti )→




u1


. . .


ul






σ1 . . . 0

...
. . .

...

0 . . . σl




[
v1

]
...[
vl

]


(2.21)

The values σ1, . . . , σl are called the singular values, and u1, . . . , ul and v1, . . . , vl

the left and right singular vectors. Notice how the only part of U that contributes

to ti is the ith row. Let this row vector be called t̂i. Likewise, the only part of V T

that contributes to dj is the jth column, d̂j. It turns out that when you select the k

largest eigenvalues, and their corresponding eigenvectors from U and V , you get the

rank k approximation to X. We write this approximation as

Xk = UkΣkV
T
k (2.22)

This approximation ensures the frobenius norm (Golub and Loan, 1996) between X
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and Xk is minimized . The Frobenius norm of a m× n matrix X is defined as,

‖X‖F =

√√√√ m∑
i=1

n∑
j=1

|Xij|2 (2.23)

The approximation also transforms the term and document vectors into a concept

space. The vector t̂i then has k entries, each giving the occurrence of term i in one

of the k concepts. Likewise, the vector d̂j gives the relation between document j and

each concept. Now we can compute the semantic similarity between two documents

using cosine similarity. In the transformed concept space, we have taken advantage

of correlations between terms. Even if Xij = 0 but term ti was semantically related

to dj, then in the transformed matrix, the (i, j) entry would be non-zero. Note that

term ti can be considered semantically related to document dj if term ti co-occurs a

lot with other terms appearing in document dj. There are two major disadvantages

of LSA. First, the concept space is hard to explain intuitively because the rows in the

transformed matrix do not correspond to actual terms appearing in the document,

but instead a linear combination of the term weights. Secondly, the computational

complexity of performing SVD on the original matrix is O(N3) , where N is the total

number of terms and documents, which makes it infeasible to apply on large data

sets. Also there is no easy way to determine the optimal number of eigenvectors, k,

to use for computing similarity.
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2.7.5 Kernel Methods

All kernel methods can be classified under the vector-based approaches, but the

large amount of literature on the Kernel methods warrants a separate section. Kernel

methods are used when the underlying data, for example, graphs or text, cannot be

easily represented using feature vectors for computing structural (graphs) or content

similarity (text). In such cases, the data is transformed into higher dimensional

space and then the inner product in the higher dimensional space is used to compute

similarity, which is called as the kernel function. Mathematically, a function that

calculates the inner product between mapped examples in a feature space is a kernel

function, that is for any mapping

φ : D → F , a kernel function is defined as,

K(di, dj) = 〈φ(di), φ(dj)〉 (2.24)

Note that the kernel computes this inner product by implicitly mapping the examples

to the feature space. The mapping φ transforms an n dimensional example into an

N dimensional feature vector. φ(d) = (φ1(d), . . . , φN(d)) = (φi(d)) for i = 1, . . . , N .

For example, even the cosine similarity is a kernel function where the words in the

string are the different dimensions.

The main idea of string kernels is to compare sentences based on the subsequences

they contain instead of words. For example, the word “car” would match both “card”

and “canary” but with different weights based on the length of the subsequence and

the degree of contiguity in the match. The advantage of this approach is that it can
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detect words with different suffixes or prefixes. For example, the words “Computer-

based”, “microcomputer”, “computers” have common subsequences. Of course, lots

of non-related word pairs, like (“Neanderthals” , “Netherlands”), too have common

subsequences, but the overall number of common subsequences between similar sen-

tences exceed the number in dissimilar. sentences. This is because a sentence will

contain more than one word, but the algorithm maps the whole sentence into one

feature space: the concatenation of all the words and the spaces (ignoring the punc-

tuation) is considered as a unique sequence. One of the most commonly used kernels

is the String Subsequence Kernel (SSK)(Lodhi et al., 2002).

Let
∑

be a finite alphabet. A string is a finite sequence of characters from Σ,

including the empty sequence. For strings s and t, let |s| denote the length of the

string s = s1...s|s|, with st the string obtained by concatenating the strings s and t

and with s[i : j] substring si...sj. We say that u is a subsequence of s if there exist

indices i = (i1, ..., i|u|) with 1 ≤ i1 < ... < i|u| ≤ |s| such that u = s[i]. The length l(i)

of the subsequence in s is i|u| − i1 + 1. Feature mapping φu for string s is given by

defining φu for each u ∈ Σn as

φu(s) =
∑
i:u=s[i]

λl(i) (2.25)

for some λ ≤ 1, the decay factor, weighing down the subsequences with larger gaps.

These features measure the number of occurrences of subsequences in the string s

weighting them according to their lengths. Hence, the inner product of the feature

vectors for two strings s and t gives a sum over all common subsequences weighted
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according to their frequency of occurrence and lengths.

Kn(s, t) =
∑
u∈
∑n

φu(s)φu(t) (2.26)

∑
u∈Σn

∑
i:u=s[i]

∑
j:u=t[j]

λl(i)+l(j) (2.27)

The problem with this Kernel function is that it becomes intractable when computed

näıve for n > 4. But it turns out that it can be computed efficiently using dynamic

programming. Instead of computing Kn(s, t) directly, we compute,

ki
′
(s, t) =

∑
u∈Σn

∑
i:u=s[i]

∑
j:u=t[j]

λ|s|+|t|−i1−j1+2, (2.28)

We can now recursively compute ki
′

and hence compute Kn.

k0
′
(s, t) = 1, for all s, t, (2.29)

ki
′
(s, t) = 0, if min(|s|, |t|) < i, (2.30)

ki(s, t) = 0, if min(|s|, |t|) < i, (2.31)

ki
′
(sx, t) = λKi

′
(s, t) +

∑
j:tj=x

ki
′
(s, t[1 : j − 1])λ|t|−j+2, (2.32)

i = 1, . . . , n− 1

ki(s, t) = λKn(s, t) +
∑
j:tj=x

kn−1
′
(s, t[1 : j − 1])λ2, (2.33)

One possible variant of SSK is to use syllables or words instead of characters. One

important advantage of this method is the reduction in the dimensionality of the

feature space . The advantage of using syllables over words is in detecting similarities
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between words with same prefixes and suffixes. The problem with this approach is in

breaking word into syllables.

2.8 Structured Object Similarity

Recently, there has been a surge in text being modeled using graphs, trees. The

idea is that this representation is useful for many natural language processing tasks.

Hence, similarity measures between such discrete data structures need to be devel-

oped. There has been considerable interest and growth in this relatively new field.

For example, similarity measures have been defined for graphs, nodes in the same

graph, trees, etc. Here we will go over two such similarity measures.

2.8.1 Graph Similarity

(Jeh and Widom, 2002) propose a similarity measure for any two objects which

have a notion of relationship defined between them, and therefore, they are not spe-

cific to text. In Simrank, the objects are represented as nodes and object to object

relationship as edges. The main idea of the algorithm is that two objects are similar

if the objects they are related to are similar themselves. For example, two scientific

publications are considered to be similar if they cite papers which are themselves sim-

ilar and the papers they are cited by are similar. In the domain of online shopping,

two users are similar if they buy similar products and two products are similar if they

are bought by similar customers.

Formally, let the objects and relationships be represented by a directed graph

G = (V,E), where nodes in V represent the objects and the edges in E represent the
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relationships. Let I(v) and O(v) represent the set of incoming neighbors and outgoing

neighbors for a vertex, respectively. Individual incoming neighbors are represented as

Ii(v), for 1 ≤ i ≤ |I(v)| and individual outgoing neighbors are represented as Oi(v),

for 1 ≤ i ≤ |O(v)|. Then the formula for SimRank can be written as

sim(a, b) =
C

|I(a)||I(b)|

|I(a)|∑
i=1

|I(b)|∑
j=1

s(Ii(a), Ij(b)) (2.34)

where C is a decay constant between 0 and 1. The contribution of any node x to the

similarity between a and b reduces with the number of hops from a and b to x.

The obvious and natural base case is sim(a, a) = 1. In the case of a bipartite

graph, we can use both the incoming edges and outgoing edges as shown below.

sim(a, b) =
C1

|I(a)||I(b)|

|I(a)|∑
i=1

|I(b)|∑
j=1

s(Ii(a), Ij(b)) (2.35)

sim(c, d) =
C2

|O(c)||O(d)|

|O(c)|∑
i=1

|O(d)|∑
j=1

s(Oi(c), Ij(d)) (2.36)

Depending on the specific problem, it might make sense to use either just the incom-

ing edges or both incoming and outgoing edges. For example, in the case of online

shopping, every user has only outgoing edges, which represent which items he/she

bought. Similarly, every item has only incoming edges, representing which users

bought it. In this case, only incoming edges are considered for computing similarity

between users. Similarly, only outgoing edges are used for computing similarity be-

tween items. Whereas, in the case of scientific papers, it makes sense to incorporate

the similarity between cited papers and papers which cite the papers in question to
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compute similarity. In this case, a combination of the similarity values using incoming

edges and outgoing edges should be used.

The algorithm for computing simrank scores is a simple iterative algorithm start-

ing with sim(a, a) = 0 and then apply the recursive equations 2.36 to update the

similarity values till they converge. The problem with the above formulation of sim-

ilarity is that we need to compute similarities between all pairs of nodes and this

makes the process computationally expensive. A simple solution to the problem is to

compute the similarity between nodes which are within a distance of k and assume

the similarity of a node with other nodes farther than k edges is zero. This helps

speed up the algorithm and makes it feasible on reasonable large data sets.

2.8.2 Tree Kernels

Tree kernels are used for many NLP tasks which benefit from the syntactic infor-

mation associated with the document. For example, part-of-speech tags and parse

trees have proven to be very useful in syntactic parsing(Collins and Duffy, 2001),

relation extraction(Bunescu and Mooney, 2005), named entity recognition(Cumby

and Roth, 2002), semantic parsing(Moschitti, 2004), etc. The main advantage of tree

kernels is the high number of rich syntactic features and the learning algorithm au-

tomatically selects the most relevant features for the task at hand. In many learning

algorithms, the features are selected manually, but this requires a lot of effort. To

overcome this problem, tree kernels provide a large number of features whose similar-

ity can be computed efficiently using Kernel methods. There are two main types of

tree kernels, the SubTree Kernel (STK) (Vishwanathan and Smola, 2003) and Sub-
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Figure 2.2: Example of Sub-Set Trees (Bloehdorn and Moschitti, 2007)

Set Tree Kernel (SSTK) (Bloehdorn and Moschitti, 2007). In this section, we will

describe tree kernels with reference to syntactic parse trees. But it must be noted that

the methods are general and they are not specific to parse trees. A subtree rooted at

any node is defined as that node and all nodes which are descendants of that node.

A sub-set tree is different from subtree in the sense that the leaves of a sub-set tree

can be associated with non-terminal symbols. The SSTs satisfy the constraint that

they are generated by applying the same grammatical rule set which generated the

original tree. It is best explained using an example as shown in Figure 2.2.

Having defined subtrees and sub-set trees, we can now discuss how to compute sim-

ilarity between two trees. Let the set of features be represented as F = {f1, f2, . . . fm},

and indicator function Ii(n) is equal to 1 if the target fi is rooted at node n and 0

otherwise. The tree kernel is defined as,

K(T1, T2) =
∑

n1∈NT1

∑
n2∈NT2

δ(n1, n2), (2.37)

where NTi is the set of nodes in tree Ti and δ(n1, n2) =
∑|F |

i=1 Ii(n1)Ii(n2). Clearly,

K(T1, T2) computes the number of common fragments (subtrees). δ(n1, n2) can be

35



computed using a simple recursive procedure as shown below

1. If the edges at n1 and n2 are different, then δ(n1, n2) = 0.

2. If the edges at n1 and n2 are same, and n1 and n2 have only leaf children

(pre-terminal), then δ(n1, n2) = 1

3. If the edges are same and n1 and n2 are not pre-terminals, then δ(n1, n2) =∏nc(n1)
j=1 (σ + δ(cjn1 , c

j
n2)

If σ = 0, then the above recursive procedure computes the Subtree Kernel and if

σ = 1, the procedure computes the sub-set tree kernel (Collins and Duffy, 2001).

The problem with the above formulation is that it is computationally expensive,

taking O(|NT1 ||NT2|). To compute it efficiently, (Moschitti, 2006) proposes computing

δ(n1, n2) for only (n1, n2) pairs whose edges are identical. This set of pairs can be

precomputed efficiently using a simple inorder traversal and then looking at the node

pairs in a linear fashion similar to the merge algorithm in mergesort. This simple

trick leads to an efficient linear time algorithm which runs in time O(|NT1|+ |NT2 |).

2.9 Machine Learning Approaches

Machine learning approaches are used to “learn” similarity functions given train-

ing data. Given training data in the form of pairs of similar objects and dissimilar

objects, the problem is to estimate parameters for a class of similarity/distance func-

tions such that the learnt similarity/distance function satisfies the training data. For

example, the Mahalanobis distance function (Mahalanobis, 1936), is used to compute

the distance between two vectors xi and xj as,
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dA(xi, xj) = (xi − xj)TA(xi − xj) (2.38)

The distance function dA(xi, xj) is parameterized by the positive definite matrix A.

Consider relationships constraining the similarity or dissimilarity between pairs of

points. Two points are similar if the Mahalanobis distance between them is smaller

than a given upper bound, i.e., dA(xi, xj) ≤ u for a relatively small value of u.

Similarly, two points are dissimilar if dA(xi, xj) ≥ l for sufficiently large l. Such

constraints are typically inputs for many supervised learning problems, and can also

be readily inferred in a classification setting where class labels are known for each

instance: distances between points in the same class can be constrained as similar,

and points in different classes can be constrained as dissimilar.Typically, this learned

distance function is used to improve the accuracy of a k-nearest neighbor classifier,

or to incorporate semi-supervision into a distance-based clustering algorithm.

(Davis et al., 2007a) learn a Mahalanobis distance metric by solving the following

optimization problem: Given pairs of similar points S and pairs of dissimilar points

D, the distance metric learning problem is

minA dist(A,A0) (2.39)

subject to dA(xi, xj) ≤ u (i, j) ∈ S (2.40)

dA(xi, xj) ≥ l (i, j) ∈ D (2.41)

where A0 is the given initial positive definite matrix and dist(A,A0) computes the

probabilistic distance between the two matrices with the assumption that both the
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matrices are samples of a Gaussian distribution using KL-divergence. They express

the objective function as a type of Bregman divergence and use Bregman’s method

(Censor and Zenios, 1997) to solve the metric learning problem

2.10 Avoiding Pairwise Similarity Computation

The previous sections contain different similarity measures. However, one of the

simplest operations required for most machine learning tasks like classification, collab-

orative filtering and clustering is computing the K-Nearest Neighbor (KNN) graph.

The KNN graph is a simple graph, G = (V,E) where V is the set of items and there

exists an edge, (u, v) ∈ E if and only if they are within the K most similar items

of each other. However, the biggest challenge in constructing the KNN graph is the

computation involved. A brute-force approach requires computing similarity between

all pairs of items which can be prohibitively large for most medium to large-scale data

sets.

Not surprisingly, the problem has attracted a lot of research and there are a

variety of ways to avoid the pairwise computation. For example, a KNN graph can

be constructed simply by repetitively invoking K-NN search for each object in the

dataset. Various tree-based data structures are designed for both general metric space

and Euclidean space (Beygelzimer et al., 2006; Liu et al., 2004) to avoid pairwise

computation of similarity. . Locality Sensitive Hashing (LSH) (Gionis et al., 1999)

is a promising method for approximate KNN search. Such hash functions have been

designed for a range of different similarity measures, including hamming distance,

lp with p (0, 2] (Datar and Indyk, 2004), cosine similarity (Charikar, 2002), etc.
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However, the computational cost remains high for achieving accurate approximation,

and designing an effective hash function for a new similarity measure is non-trivial.

(Dong et al., 2011) proposed a scalable, efficient and generalized algorithm to build

KNN graphs without the need for O(N2) computations. Assume the dataset, V , has

a size of N and let σ : V ×V → R be a similarity measure. For each v ∈ V , let BK(v)

be v’s KNN, i.e. the K objects in V (other than v) most similar to v. For the purposes

of theoretical analysis, they consider a metric space, d : V × V → [0,+ inf) . Since

smaller distance means higher similarity, we simply let σ = d. For any r ∈ [0,+ inf),

the r-ball around v ∈ V is defined as Br(v) = u ∈ V |d(u, v) ≤ r. A metric space V

is said to be growth restricted if there exists a constant c, such that

|B2r(v)| ≤ c|Br(v)|,∀v ∈ V. (2.42)

The smallest such c is called the growing constant of V ,which is a generalization

of the concept of dimensionality and captures the complexity of the dataset. The

algorithm is based on the following simple principle, a neighbor of a neighbor is very

likely to be a neighbor. Suppose there exists an approximate nearest-neighbor graph,

G, then the approximation can be improved by exploring the neighbors of neighbors

for every item.

The algorithm begins by initializing a random KNN graph. Then the approx-

imate graph is refined iteratively. In each iteration, for each object, the nearest

neighbor list is updated by computing the similarity between the object and neigh-

bors of neighbors. The algorithm is terminated when there are no updates performed

in the previous iteration. They report the empirical complexity of the algorithm as
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O(n1.14) when tested on the corel data set (662,317 objects) (Frank and Asuncion,

2010) and the DBLP data set (857,820 objects).

2.11 Evaluation

There are two ways of evaluating similarity measures, intrinsic and extrinsic. In

an intrinsic evaluation, similarity scores between the objects in context are obtained

from multiple human experts. The correlation between these similarity scores and the

scores outputted by the similarity measure is often used as an evaluation measure.

For example, (Rubenstein and Goodenough, 1965) obtained synonymy judgments of

51 human subjects on 65 pairs of words. The pairs ranged from “highly synonymous”

(gemjewel) to “semantically unrelated” (noonstring). Subjects were asked to rate

them on the scale of 0.0 to 4.0 according to their “similarity of meaning” and ignoring

any other observed semantic relationships (such as in the pair “journeycar”). (Miller

and Charles, 1991) subsequently extracted 30 pairs from the original 65, taking 10

from the “high level (between 3.0 and 4.0), 10 from the intermediate level (between 1

and 3), and 10 from the low level (0 to 1) of semantic similarity”, and then obtained

similarity judgments from 38 subjects. (Budanitsky, 2001) compare the different

similarity measures for words based on WordNet taxonomy using the correlation

between the similarity score obtained by similarity measure and the score given by

human experts. Table 2.1 shows the results of the comparison for the described

similarity measures.

One of the major criticisms against this approach is it is often very hard to obtain

similarity scores for a large number of object pairs. In an extrinsic evaluation, the
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Similarity Measure M&C R&G
Hirst and St-Onge .744 .786

Leacock and Chodorow .816 .838
Resnik .774 .779

Jiang and Conrath .850 .781

Table 2.1: The coefficients of correlation between human ratings of similarity (by
Miller and Charles and by Rubenstein and Goodenough) and the five computational
measures.

similarity scores are used in an external task and the performance in the task is used

as the evaluation metric of the similarity measure. A commonly used approach to

evaluate a word similarity measure is to use the similarity measure to find synonyms

in a standardized test like TOEFL. The most similar word among the given choices is

chosen as the synonym. For example, (Turney, 2001) evaluated the similarity measure

using PMI on the TOEFL synonymy tests and obtained a score of 72.5%, which is

higher than the accuracy obtained by LSA(64.4%) and the average non-English college

applicant(64.5%).

One of the commonly used tasks for extrinsically evaluating similarity measures

is Clustering. Clustering is the task of grouping similar data points into groups

(clusters). A common approach is to represent the data using a graph, G = (V,E),

where the set of nodes, V is used to represent data points. Usually the set of edges,

E, represents the similarity edges between the nodes and the edges are weighted

using a function, w(u, v) → R : (u, v) ∈ E. Mathematically, the clustering task is

,given a graph: G = (V,E) and the number of clusters k, to find a partition function

P (V ) = {C1, C2, . . . , Ck} such that it minimizes an objective function defined over

the partition function. In general, an objective function for clustering is minimized
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when points within each cluster are more similar to each other than to points across

clusters. A commonly used objective function is normalized cut (Kulis et al., 2009),

Ω(C1, C2, . . . , Ck) =
k∑
i=1

∑
u∈Ci,v∈V−Ci

w(u, v)∑
w∈V−uw(u,w)

(2.43)

When there is no ground truth information about the clusters, the value of the

objective function can be used as the evaluation measure for the clustering. However,

when there is ground truth information available, we use Normalized Mutual Infor-

mation as the measure of clustering accuracy. Mutual Information is a symmetric

measure which quantifies the statistical information between two distributions. Let

I(X, Y ) denote the amount of mutual information between the distributions X and

Y. Since I(X,Y) has a lower bound of zero and no upper bound, we normalize the

quantity using the entropy of X and Y. Thus the normalized mutual information used

is,

NMI(X, Y ) =
I(X, Y )√
H(X)H(Y )

(2.44)

We estimate NMI using the samples provided by the clusterings. Let n be the

total number of objects (nodes) to be clustered. Let k(A) be the number of clusters

according to clustering A and let k(B) be the number of clusters according to clus-

tering B. Let nAh denote the number of objects in cluster Ch according to clustering

A , and let nBl denote the number of objects in cluster Cl according to clustering B .

Let nh,l denote the number of objects that are in cluster Ch according to algorithm A

as well as in group Cl according to clustering B. Then, NMI is estimated according

to 3.46
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̂NMI(A,B) =

∑k(A)
h=1

∑k(B)
l=1 nh,llog(

n.nh,l

nA
h n

B
l

)√∑k(A)
h=1

nA
h

n

∑k(B)
h=1

nB
h

n

(2.45)

This evaluation measure has some nice properties such as NMI(X,X) = 1. Also

̂NMI(X, Y ) = 1 if the clusterings X and Y are the same except for a permutation

of the cluster labels. NMI(X, Y ) = 0 if the clustering X is random with respect to

Y or vice versa.

Therefore, we compare the clusterings obtained by an algorithm X against the

clustering Y , induced by the ground truth clusters using NMI. The higher the value

the better the clustering obtained. (Strehl et al., 2000) compares 5 different similar-

ity measures, including cosine similarity and Jaccard index using clustering as the

external task. They perform the clustering using weighted graph partitioning on the

Yahoo! industry web pages (966 web pages partitioned manually into 10 clusters)

and Yahoo! news data set (2340 documents partitioned manually into 20 clusters)

(Craven et al., 1998). They use NMI as the evaluation measure and find that cosine

similarity performs the best with NMI score of 0.192 on the Yahoo! industry data

and 0.240 on the Yahoo! news data set.

Another commonly used task to compare similarity measures is classification.

Classification accuracy is used to evaluate the performance of a similarity measure

on a classification task. For example, (Saunders et al., 2002) compares three different

variants of the string kernel and cosine similarity using TF-IDF weighting on a classi-

fication data set. The variation is due to the difference in feature mapping. The three

variants use characters, words and syllables as features with n = 3. They perform the
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classification on the acq-category of the Reuters-21578 collection. The acq-category

consists of 1000 documents. They use SVM as the classifier in conjunction with the

kernel methods. Classification error is used as the evaluation metric. The syllable

kernel performs the best among the string kernels with a classification error of 12.29%

while the cosine similarity kernel performs the best with a classification error of 8.00%.
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CHAPTER III

Integrating Mulitple Similarity Measures

3.1 Introduction

Nowadays, relational data are universal and have a broad appeal in many different

application domains. Similarity graphs are estimated from data and may not accu-

rately reflect the semantic relationship between the objects. It is trivially clear that

the more accurate the similarity graph reflects the true semantic relationship better

the performance of tasks like classification, clustering and other data mining tasks.

There exists many different similarity measures for text. Refer to II for a discussion

of the different similarity measures.

But currently, almost all data can be represented using much more than text.

For example, publications have many heterogeneous features like text, citations, au-

thorship information, publication venue information, etc. In most cases, similarity

is computed using just one feature type or similarity is computed using two feature

types individually and then combined in a linear weighted fashion.

In the case of publications, text is the most commonly used feature type for
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computing similarity. For example, (Hassan and Radev, 2010) use both citations and

text to compute similarity between publications . They compute textual similarity

using cosine similarity. Two papers are considered to be similar if one paper cites the

other. The authors combine the similarity between the two papers due to citation

(CS) and text (TS) in a linear fashion as follows

S(x, y) = αCS(x, y) + (1− α)TS(x, y) (3.1)

where, α ≤ 1 and S(x, y) represents the combined similarity between publications x

and y.

This formulation clearly does not take into account any dependency between the

different feature spaces (in this case, text and citation space).

Rocklin and Pinar (2011) proposes multi-type edges to represent similarity due to

different spaces. They use a graph to represent the objects and multiple edges between

any pair of nodes. Each edge represents similarity due to a particular feature type.

For example, there can be two edges between a pair of nodes, where the first edge

corresponds to similarity due to text while the second edge corresponds to similarity

due to citations. They propose algorithms to find how to aggregate the similarities

linearly so that the resulting graph can be clustered well. They measure the quality

of clustering using modularity (Clauset et al., 2004). In other words, they propose

algorithms to learn α in 3.1. Thus, it does not learn across feature spaces.

Even in the case of the same feature space, higher order dependencies are not

taken into account. For example, let publication X contain two words {w1, w2} and

publication Y contain {w2, w3} then this indicates that words w1 and w3 are similar to
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each other and should affect the similarity between two other publications containing

them.

Nevertheless, (Ganiz et al., 2009) takes these dependencies into account and rep-

resents each document in the classical vector space model. They use a Naive Bayes

classifier to classify text documents using an augmented representation of the docu-

ments. The new representation includes the words present in the document as well as

words which are present in higher order dependencies. For example, in the classical

vector space model, publication X’s vector representation would include only w1 and

w2, but not w3. Whereas, in the new representation all the words are weighted by

the number of higher order paths which contain the word. They demonstrate that

including higher order dependencies improves classification accuracy and most of the

information required for classification is contained in second order dependencies.

Let dataset D contain N documents belonging to classes {c1, c2, . . . , cK}. Let the

set of documents belonging to class ci be represented as Di. If document dl contains

terms {wi, wk} and document dr contains terms {wk, wj} then wi− dl−wk − dr −wj

represents a higher order path in dataset D. Let ψ(wi, D) denote the number of

higher-order paths that contain term wi given the dataset D, and let Φ(D) denote

the total number of higher-order paths in D. The parameter estimation equations of

the Naive Bayes classifier are:

P̂ (wi|cj) =
1 + ψ(wi, Dj)

2 + Φ(Dj)
(3.2)
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and

P̂ (cj) =
Φ(Dj)∑K
i=1 Φ(Di)

(3.3)

(Kontostathis and Pottenger, 2006) gives a mathematical proof for the depen-

dence of Latent Semantic Indexing (LSI)(Deerwester et al., 1990) on higher order

dependencies. If two documents X and Y have an initial similarity of zero (before

applying LSI) and if the similarity becomes non-zero after using LSI, then it implies

that there exists a higher order dependency between the two documents. Higher or-

der co-occurrences have also been used earlier in word sense disambiguation (Schütze,

1998) and stemming (Xu and Croft, 1998)

Although, there has been some work on using higher order dependencies it is not

easily extended for multiple feature spaces, especially for heterogeneous feature types

like citations, text, etc. In the case of using citations and text, it is not immediately

clear how to model higher order dependencies when using multiple feature types.

One possible approach is to represent all the objects and features in a single

graph. For example, in the case of publications, let G = (V,E) be used to represent

the publications and keywords. The set of nodes V = {p1, p2, . . . , pn, k1, . . . , km}

represents the publications and keywords. There is an edge (pi, pj) ∈ E if pi cites

pj. There is an edge (pi, kl) if publication pi contains keyword kl. This approach is

equivalent to merging multiple classifiers (each using a different feature type/view)

into a single classifier using all the feature types which is not recommended. There

could be data points where each of the classifiers is ”authoritative” (high confidence)

on but by merging them this confidence is diluted. (Dasgupta et al., 2001) prove that

a classifier has low generalization error if it agrees on unlabeled data with a second
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classifier based on different “view” of the data. This justifies the search for multiple

feature types to be represented separately.

(Abney, 2002) proposes a greedy algorithm to search for classifiers which have

provable advantages over the classifiers found using the co-training algorithm. The

greedy algorithm searches for complex classifiers which are essentially a list of atomic

rules H. Each atomic rule predicts a label l based on the presence of a single feature

h. Each atomic rule’s prediction gets one vote and the classifer’s output is the label

l that receives the most votes. In case of a tie, there is no prediction. However, even

this approach does not take care of dependencies across feature types and higher-

order dependencies between the same feature type. Our algorithm seeks to estimate

similarity between the objects and features by integrating all available sources of

similarity.

3.2 Problem Motivation

We motivate the need for a similarity measure which uses different feature types

using an example. In this example, we consider only two different feature types,

but the arguments naturally extend in the case of more than two feature types.

Consider the problem of multi-class classification of publications by research area.

Let there be three publications, P1, P2, P3 in the area of Machine Translation. Let

the publications contain two keywords, k1 =“ Statistical Machine Translation” and

k2 =“Bilingual Corpora”. Specifically, publications P1 contains k1, P2 and P3 contain

k2. Although the two keywords are enough for a human to clearly see that the two

papers are on Machine Translation, no textual similarity measure (without using
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external knowledge sources) will assign a non-zero similarity value between any pair

of publications.

However, there are other sources of similarity that can be useful in this case. It is

likely that two papers in the same area are similar due to the structure of the citation

graph. For example, it is possible that P1 and P2 are both cited by a lot of papers.

Assume that P1 and P2 are similar due to citation information. This information can

be used to assign a small amount of similarity between the keywords contained in

the two papers. Thus, keywords k1 and k2 have a non-zero similarity value. Once

again, this information can be used to induce a small amount of similarity between

P1 and P3. Therefore, two features which co-occur a lot are similar. Two objects

which have a lot of similar features are defined to be similar. Thus, we can learn to

estimate similarity in one feature space using similarity estimates from other feature

space. We refer to this type of learning as learning across feature types.

In the next two sections, we formalize and exploit this observation to improve

similarity in one feature space using other feature spaces in a principled way.

3.3 Problem Formulation

We assume that the data to be analyzed consists of many heterogeneous feature

types. The objects are represented by many heterogeneous feature types and an

initial coarse similarity measure between different feature types as well as objects

is estimated from the data. The estimated similarity values are represented using

multiple layers of graphs, where each graph corresponds to a particular feature type.

We now formally define the relevant concepts,
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Definition 1. Objects and Feature Types: we have a set of N objects,

O = {o1, o2, . . . , oN}. Each object is represented using m different feature types,

F = {F1, F2, . . . , Fm}. Each feature type, Fi consists of a set of features, Fi =

{f1i, f2i, . . . , fnii}. Let the set of features used to describe object oi be represented as

FV (oi)

Definition 2. Object Graph: The object graph, G0 = {V0, E0}, consists of the

set of objects as nodes and the edge weights represent the initial similarity between

the objects.

Definition 3. Feature Graphs: For each feature type Fi, we create a feature

graph, Gi = (Vi, Ei). The graph consists of features Fi as nodes, i.e, Vi = Fi. The

edge weights represent the similarity between features. In the case of feature types

like citations/links, the set of nodes in the graph is V0 and similarity can be estimated

using the citation/link graph structure using node similarity measures explained in

Chapter II.

The object graph and the feature graphs can be viewed as different layers of

graphs. Note that each layer of graph can be independently used for exploiting higher-

order dependencies. For example, let Gk = (Vk, Ek) be used to represent a keyword

feature graph, where Vk = {k1, k2, . . . , km) denotes the set of keywords and the edge

weight between ki and kj represents similarity between the two keywords which can

be used to infer similarity between two publications which contain the keywords, even

though they do not share the same vocabulary. These layers are connected using the

concept of layer connectivity as defined below,

Definition 4. Layer Connectivity: The two graphs, Gi and Gj, i 6= j are
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connected as follows. There exists an edge between fij and fkl if they co-occur in

some object’s feature vector representation. Let Z refer to the layer connectivity

function.

Zfij ,fkl =


1 if ∃m : fij ∈ FV (om) and fkl ∈ FV (om)

0 else

Thus we have a set of heterogeneous graphs each with an initial similarity measure.

We improve the similarity values in each graph layer using information from all other

layers. Specifically, we incorporate higher order dependencies in the same feature

type as well as dependencies across feature types to improve the initial similarity

estimates.

We define two features, fik and fjk of the feature type Fk to be similar if

• Two objects which contain both the features are similar, i.e, ox contains fik, oy

contains fjk and ox and oy are similar.

• Two features of a different type which co-occur with these features are similar,

i.e, fxl co-occurs with fik, fyl co-occurs with fjk and fxl and fyl are similar.

The problem is to obtain improved similarity estimates in all feature spaces. Fig-

ure 3.1 shows an example representation for objects with heterogeneous features. In

this example, the objects are documents with keywords features and authorship in-

formation as another feature. Nodes of the same type constitute a “layer” of the

graph and are separated by dotted lines. The edges between nodes of the same layer

correspond to initial similarity weights while inter-layer edge weights correspond to

feature weights.
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P2

P1 P3

K1

K2

K3

A1

A2

A3

Figure 3.1: An example graph: Proposed representation for representing objects
with heteregeneous features. For example, P1, P2, P3 are documents and K1, K2
and K3 are keywords and A1, A2, A3 represent authors. Objects of the same type
constitute a layer of graph. The different layers are separated by dotted lines. Intra-
layer edges represent initial similarity between the objects while inter-layer edges
represent feature weights. For example the edge between P1 and P2 is initialized to
the similarity between them while the edge between P1 and K2 represents the feature
weight of K2 in P1’s feature vector representation
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3.4 Regularization Framework

Our approach for incorporating information from different heterogeneous feature

types is inspired by the standard regularization framework for semi-supervised clas-

sification using label propagation (Mei et al., 2008; Goldberg et al., 2007). In this

framework, we define a single graph G = (V,E,w). The set of nodes is represented as

V = {x1, x2, . . . , xn}. The edge weights wij represent similarity between two nodes i

and j. Assume there exists a set of labeled nodes L ⊂ V whose label is given by y(x).

The problem is to classify all other nodes using a discriminant function f : X → R.

To compute f , (Zhu et al., 2003b) define an objective function as follows

Ω(f) =
1

2

n∑
i,j=1

wij(f(xi)− f(xj))
2 + µ

∑
x∈L

(f(x)− y(x))2 (3.4)

Essentially, the first term tries to regularize the node labeling over the network

such that similar nodes get similar labels while the second term tries to minimize the

difference between the true labels and the predicted labels. The first term can be

written in quadratic form as shown below,

Ω(f) =
1

2
fTLf + µ

∑
x∈L

(f(x)− y(x))2 (3.5)

where f = (f(x1, f(x2, . . . , f(xn) and L is the combinatorial graph Laplacian matrix,

defined as L = D −W where D is a diagonal matrix with dii =
∑n

j=1wij.

One reasonable approach to combine the different sources of similarity for perform-

ing classification is to combine the graph Laplacians in a convex fashion. For this
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purpose, we create m different graphs G1, G2, . . . , Gm, where each graph, Gi consists

of the set of objects as nodes and edge weights represent similarity computed using

only feature type Fi. Let the Laplacian corresponding to graph Gi be represented as

Li. Then we can perform regularization on all the graphs simultaneously as

Ω(f) =
1

2

m∑
i=1

αif
TLif + µ

∑
x∈L

(f(x)− y(x))2 (3.6)

where
∑

i αi = 1. This is equivalent to a convex combination of the similarity esti-

mates due to different feature types as in Equation 3.1. Therefore, even this formu-

lation does not exploit higher order dependencies in the same feature space. There

are a few problems with the above framework in the context of our problem setting

• The above framework does not take into account the edges introduced by layer

connectivity and hence does not use all the graphs together.

• The regularization is defined over nodes in the graph, whereas for improving

similarity estimates we want to define a regularizer over edge weights which can

be used for estimating similarity between objects using similarity information

between feature types.

We define a novel regularization framework over edge weights of multiple graphs

for estimating similarity between objects using similarity estimates between features

and vice-versa. Let W refer to the similarity measure to be computed between the

nodes in all the graphs, i.e, wfik,fjk gives the similarity between features fik and fjk

while w∗ij refers to the initial similarity value. Let V = V0 ∪ F1 ∪ F2 . . . Fm refer to

the set of vertices in all the graphs and E = E0 ∪ E1 . . . Em refer to the set of edges
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in all the graphs. The objective function is defined as

Ω(w) = α0

∑
u,v∈V

(wu,v − w∗u,v)
2

+
m∑

i,j=0

αijJ (Vi, Vj) (3.7)

where

J (Vi, Vj) =
∑

u1,v1∈Vi

∑
u2,v2∈Vj

Zu1,u2Zv1,v2(wu1,v1 − wu2,v2)
2 (3.8)

and α0 +
∑m

i,j=0 αij = 1

The optimization problem is to minimize the objective function. The objective

function consists of two parts. The first part ensures the optimized similarity values

remain close to the initial similarity values while the second term seeks to minimize the

dissimilarity between all the graphs. The second term directly models our intuition

of features co-occurring with other features being similar. The parameter α0 is used

to control the trade-off between the two terms. Note that if α0 = 1 then the minimal

solution is the initial similarity itself.

The significance of the second term is explained using a simple example. Consider

two graphs, G1 and G2. Let G1 be the graph containing publications as nodes and

edge weights representing similarity due to citation graph. Let G2 be the graph corre-

sponding to keywords and edge weights represent similarity between keywords. There

is an edge from a node u1 in G1 to a node v1 in G2 if the publication corresponding

to u1 contains the keyword corresponding to v1. According to this example, minimiz-
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ing the objective function essentially means updating similarity values between two

keywords in proportion to similarity values between the papers they are contained in

and vice versa. Therefore, even though keywords like Machine Translation and Word

Alignment are not similar according to textual similarity measures, they are assigned

a similarity value if two papers which contain them are similar because of citation

similarity.

3.4.1 Convex Optimization - Direct Solution

The objective function is a convex sum of squared differences. Hence, the objective

function is a convex function in M variables where M is the total number of edges,

i.e, M =
∑m

i=1 |Ei|. We can also add the constraint
∑

vWu,v = 1 for normalization.

Then the constrained convex optimization problem can be expressed in the form

shown below,

minimize
1

2
xTPx+Qx+ r (3.9)

subject to Ax = b

where x is a M × 1 vector representing the edge weights along each dimension of the

vector. The Karush-Kuhn-Tucker (KKT) conditions for the above problem are (Boyd

and Vandenberghe, 2004),

Ax∗ = b, Px∗ + q + ATv∗ = 0, (3.10)

This can be written as
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P AT

A 0


 x∗

v∗

 =

 −q
b

 (3.11)

In the above equation, v∗ refers to the dual solution while x∗ refers to the actual

solution. Hence, we can directly solve the optimization function to obtain the simi-

larity values by solving the above system of linear equations. Unfortunately, solving

that requires inverting a 2M ∗ 2M matrix which has a computationally complexity

of O(M3). This is prohibitively expensive in terms of computational complexity for

even moderate size data sets. Hence we need to find alternate optimization methods

to minimize the objective function.

3.4.2 An Efficient Algorithm

Although the direct optimization is prohibitively expensive, we can solve it using

approximate methods such as coordinate descent(Luo and Tseng, 1992). In this

method, we assume all other dimensions are fixed except one and perform a descent

along the chosen dimension iteratively. In the context of our problem, we assume

all edge weights are fixed except one edge weight and solve the minimization of the

function. For example, the partial derivative of the objective function with respect

to the edge, (uj, vk) ∈ Vi is shown below,
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∂Ω(w)

∂wuj ,vk
= 2α0(wuj ,vk − w∗uj ,vk)

+ 2
∑

l=0,1,...,i−1,i+1,...,m

αil×

∑
u2,v2∈Vl

Zuj ,u2Zvk,v2(wuj ,vk − wu2,v2) (3.12)

To perform the descent along the edge (uj, vk) ∈ Vi, we set the above partial

derivative to zero which gives us the following expression,

wuj ,vk =
1

C
α0w

∗
uj ,vk

+

+
∑

l=0,1,...,i−1,i+1,...,m

αil
∑

u2,v2∈Vl

Zuj ,u2Zvk,v2wu2,v2 (3.13)

(3.14)

where C is defined as

C = α0+

+
∑

l=0,1,...,i−1,i+1,...,m

αil
∑

u2,v2∈Vl

Zuj ,u2Zvk,v2 (3.15)

(3.16)

It can be seen that if the original similarity values are bounded in the range [0, 1],

then they will always remain bounded with C playing the role of a normalization
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constant. Note that C is a constant for a given pair of vertices and hence, C can be

incorporated in w∗ and w to obtain the following equation

wuj ,vk = α0w
∗
uj ,vk

+

+
∑

l=0,1,...,i−1,i+1,...,m

αil
∑

u2,v2∈Vl

Zuj ,u2Zvk,v2wu2,v2 (3.17)

If we represent the initial edge weights of graph Gi by matrix W ∗
i and Zij represent

the layer connectivity matrices for graphs, Gi and Gj, then the algorithm can be

written in terms of iterative matrix equations as follows,

W t
i = α0W

∗
i +

∑
l=0,1,...,i−1,i+1,...,m

ZilW
t−1
l Zil

T (3.18)

where W t
i refers to the matrix Wi at the end of the tth iteration and Zil

T is the

transpose of Zil. Now, we can iteratively apply the above equation to minimize the

objective function. We stop iterating when,

|wtu,v − wt−1
u,v | ≤ ε∀(u, v) ∈ E (3.19)

where ε is a small threshold. We set ε = 0.01 in all our experiments. We refer to this

Similarity measure using MUltiple Graphs as SMUG.

For example, in the context of publications, let T represent the similarity between

keywords and P represent the similarity between publications due to the citation

graph. We combine the two different sources of similarity using the following two
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iterative equations

Tt = α ∗ T ∗ + (1− α) ∗ (Z.P t−1.ZT )

Pt = α ∗ P ∗ + (1− α) ∗ (ZT .kTt−1.Z) (3.20)

3.4.3 Proof of Convergence

We can prove that equations 3.20 converge as the number of iterations tends to

infinity.

Theorem III.1.

Wt −Wt−1
t→∞−−−→ 0 (3.21)

where Wt is the similarity matrix at the end of the tth iteration.

Proof : In order to prove convergence, we need to show the following

Wt −Wt−1
t→∞−−−→ 0 (3.22)

Wt −Wt−1 = (1− α)Z(Pt−1 − Pt−2)ZT (3.23)

Pt−1 = αP0 + (1− α)ZTWt−2Z (3.24)

Pt−2 = αP0 + (1− α)ZTWt−3Z (3.25)
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Thus,

Pt−1 − Pt−2 = (1− α)ZT (Wt−2 −Wt−3)Z (3.26)

Substituting this in equation 3.26,

Wt −Wt−1 = (1− α)2ZZT (Wt−2 −Wt−3)ZZT (3.27)

= (1− α)4(ZZT )
2
(Wt−4 −Wt−5)(ZZT )

2
(3.28)

=
... (3.29)

= (1− α)t(ZZT )
b t
2
c
(W1 −W0)(ZZT )

b t
2
c

(3.30)

In the above equation, since α < 1 we can claim that Wt −Wt−1 = 0 as t → ∞

if none of the matrix terms tend to ∞. W1 −W0 is a constant matrix and ZZT is

a transition probability matrix, where ZZT (i, j) is the probability of random walk

of length starting at i and ending at j of length 2 . Hence (ZZT )
t
2 converges to the

stationary probability distribution as t→∞. Hence, Wt −Wt−1 = 0 as t→∞.

3.4.4 Layered Random Walk

The above algorithm, SMUG, has a nice intuitive interpretation in terms of ran-

dom walks over different layers of the graph assuming the initial similarity weights

are transition probability values and Zij matrices are normalized so that each row

sums to 1. Then the similarity between two nodes, u and v in layer i, is computed

as the sum of two parts. The first part is α0 times the original edge weight. This is

necessary so that the newly computed similarity estimates (after convergence) are not
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too far away from the initial estimates. The second part is a sum of m− 1 different

terms. The jth term is weighted by αij and is the probability of starting a random

walk from u and moving to layer j for a random walk of length 1 and then returning

back to vertex v in layer i. Thus, the jth term is the probability of a random walk of

length 3 with both intermediate vertices of the walk belonging to graph layer j.

We can see that SMUG exploits the dependencies across feature spaces to improve

similarity estimates. Consider the example of publication classification mentioned

in section 3.2. When we estimate similarity between the keywords in the keyword

feature layer, we perform a random walk over the citation feature layer. Therefore,

the similarity between the keywords k1 and k2 will be incremented by a value directly

proportional to the similarity between the publications due to citations. Note that

second and higher order dependencies are also taken into account by SMUG. That

is, two papers may become similar because they contain two keywords which are

connected by a path in the keyword feature layer, whose length is greater than 1.

This is due to the iterative nature of the algorithm. For example, consider a set of

semantically similar keywords K = {k1, k2, . . . , kn}. Assume that the initial keyword

similarity estimated the similarity between these keywords is 0. Then during the first

iteration, k1 and k2 could become similar because they are contained in publications

P1 and P2 (similar due to citation similarity). Then k2 could become similar to k3

because of another pair of similar papers which contain the keywords. In this fashion,

the similarity between all the keywords in the set are improved to a non-zero similarity

value.

The αij values are used to control the user’s knowledge about the dependency
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between features. For example, it is reasonable to assume that there is relatively low

dependency between the venue information and authorship information. In this case,

we set the corresponding value of αij to be low. This shows that we model a large

number of dependencies between different feature spaces using the rich representation

using heterogeneous graphs which are interconnected.

3.5 Experiments

It is very hard to evaluate similarity measures in isolation. Thus, most of the

algorithms to compute similarity scores are evaluated extrinsically, i.e, the similarity

scores are used for an external task like clustering or classification and the performance

in the external task is used as the performance measure for the similarity scores. This

also helps demonstrate the different applications of the computed similarity measure.

Thus, we perform three experiments on standard benchmark data sets to illustrate

the improved performance of SMUG.

3.5.1 Experiment I

We compare our similarity measure against other similarity measures in the con-

text of classification. We also compare against a state of the art classification algo-

rithm which uses multiple graphs to represent multiple similarity measures.

Specifically, we compare SMUG against three other similarity baselines in the

context of classification which are listed below.

• Content Similarity : Similarity is computed using just the feature vector repre-

sentation using just the text. We use cosine similarity after preprocessing each
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document into a tf.idf vector for the AAN data set (Radev et al., 2009b). For all

other data sets, we use the cosine similarity on the feature vector representation

that is available.

• Link Similarity : Similarity is computed using only the links (citations, in the

case of publications). To compute link similarity, we use a node similarity

algorithm (Harel and Koren, 2001). The algorithm computes similarity between

nodes in the citation graph using a random walk of length 3. Table 3.1 lists the

top 10 similar pairs of papers according to the computed link similarity.

• Linear combination: The content similarity and link similarity are combined in

a linear fashion as shown in equation 3.1. We report the performance of the

similarity measure parameterized by α.

We use a semi-supervised graph classification algorithm (Zhu et al., 2003b) to perform

the classification given the different similarity graphs mentioned above.

We also compare our algorithm against the following algorithm

SC-MV : We compare SMUG against the spectral clustering algorithm for data with

multiple views (Zhou and Burges, 2007). The algorithm tries to classify data when

multiple views of the data are available. The multiple views are represented using

multiple homogeneous graphs with a common vertex set, V . In each graph, the edge

weights represent similarity between the nodes computed using a single feature type.

For our experiments, we used the link similarity graph and the content similarity

graph as described above as the two views of the same data. Consider the problem

of spectral clustering of a single graph. Given a directed graph G = (V,E,w) with
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vertex set V ; edge set E; and corresponding edge weights w; assume a random walk

defined on G with transition probabilities p and stationary distribution π: Let S

denote an arbitrary subset of V ; and Sc the complement of S: Define the volumes

vol S =
∑
v∈S

π(v) , and vol ∂S =
∑

u∈S,v∈Sc

π(u)p(u, v) (3.31)

It can be shown that vol ∂S+vol ∂Sc = 1, and vol∂S =vol∂Sc. Then a clustering

can be obtained by

argmin∅6=S⊂V
vol ∂S

vol ∂Svol ∂Sc
(3.32)

The intuition behind this cut is as follows. Assume a random web surfer who

browses web pages by following hyperlinks and occasionally jumping to a randomly

chosen web page. Then the web surfer will regard a set of hyperlinked web pages as a

community if the probability of leaving the web page set is small while the stationary

probability mass of the same subset is large.

This approach is naturally extended to cluster multiple graphs. Assume two di-

rected graphs Gi = (V,Ei, wi) for i = 1, 2 which share the same set of vertices while

having different edges and weights. Suppose S to be a nonempty subset of V: Define

mvol S = αvol 1S + (1− α)vol 2S (3.33)

and

mvol ∂S = αvol 1∂S + (1− α)vol 2∂S (3.34)
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ACL id1 ACL id2 Link Simi-
larity Score

W05-0817 W05-0819 0.775
W05-0812 W05-0819 0.612
H05-1010 H05-1011 0.584
W06-2929 W06-2935 0.577
N07-1064 W07-0732 0.577
W06-2923 W06-2929 0.577
P98-1069 P99-1067 0.561
P91-1022 P91-1023 0.556
W07-0728 W07-0732 0.534
C86-1028 C86-1109 0.516

Table 3.1: Top similar pairs of papers according to link similarity in the AAN data
set

where α is a parameter in [0, 1]. Then we can cluster the vertex set V into two subsets

by

argmin∅6=S⊂V
mvol ∂S

mvol ∂Smvol ∂Sc
(3.35)

Clearly, the case of α = 0 or 1 reduces to the cut for a single graph. The basic

motivation of defining such a multiple graph cut is that we want to obtain a cut

which is good on average while it may not be the best for a single graph. The

parameter α is used to specify the relative importance of each graph in clustering.

It is not hard to imagine that the relative importance measure varies across different

clustering goals. Note that SMUG also has parameters to specify the importance of

each graph. In addition to that, SMUG also has parameters to specify the amount

of dependency between the different graphs.
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3.5.2 Experiment II

We illustrate the improved performance of our similarity measure in the context of

clustering. We compare our similarity measure against the three similarity baselines

mentioned above. We use a spectral graph clustering algorithm (Dhillon et al., 2007)

to perform the clustering. (Dhillon et al., 2007) formulate the clustering problem as

a k-way normalized cut problem. Given a graph G = (V,E,A), where V is the set of

vertices, E is the set of edges connecting vertices and A is the edge affinity matrix.

Therefore A[i][j] corresponds to the edge weight between vertices i and j. Assume

A is non-negative and symmetric. Suppose C1, C2 ⊂ V , the number of links between

the two sets, C1 and C2 is computed as,

L(C1, C2) =
∑

i∈C1,j∈C2

A[i][j] (3.36)

The Normalized Link Ratio (NLR) of C1, C2 is defined as,

NLR(C1, C2) =
L(C1, C2)

L(C1, V )
(3.37)

The k-way normalized cut problem is to minimize the links that escape a cluster

relative to the total weight of the cluster. For a k-way partitioning of the vertices

(C1, C2, . . . , Ck), they solve the following optimization problem

minimize
1

k

k∑
i=1

NLR(Ci, V Ci) (3.38)
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A spectral relaxation to this problem is obtained as follows: let D be the diagonal

matrix whose (i, i)th entry is the sum of the entries of row i in matrix A, D[i][i] =∑n
j=1 A[i][j]. The normalized cut criterion is equivalent to the following problem:

maximize
1

k
Trace(ZTAZ) (3.39)

where Z = X(XTDX)
− 1

2 , and X is an n× k indicator matrix for the partition. Note

that ZTDZ = Ik.

Letting Ẑ = D
1
2Z and relaxing the constraint that X is an indicator matrix

results in the following problem: maximize the trace of ẐD−
1
2AD−

1
2 Ẑ, where the

constraints on Ẑ are relaxed such that ẐT Ẑ = Ik. A well-known solution to this

problem is obtained by setting the matrix Ẑ to be the top k eigenvectors of the

matrix D
1
2AD−

1
2 . These eigenvectors are then used to compute a discrete clustering

of the nodes.

We compare the clustering against an unsupervised co-clustering algorithm (Dhillon

et al., 2003). Most clustering algorithms focus on one-way clustering, i.e., cluster one

dimension of the table based on similarities along the second dimension. For example,

documents may be clustered based upon their word distributions or words may be

clustered based upon their distribution amongst documents.It is often desirable to

co-cluster or simultaneously cluster both dimensions of a document-term occurrence

matrix by exploiting the clear duality between rows and columns. For example, we

may be interested in nding similar documents and their interplay with word clusters.

They treat the (normalized) non-negative document-term matrix as a joint prob-

ability distribution between two discrete random variables that take values over the
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rows and columns. We dene co-clustering as a pair of maps from rows to row-clusters

and from columns to column-clusters. Clearly, these maps induce clustered random

variables. Information theory can now be used to give a theoretical formulation to the

problem: the optimal co-clustering is one that leads to the largest mutual informa-

tion between the clustered random variables. Equivalently, the optimal co-clustering

is one that minimizes the difference (“loss”) in mutual information between the orig-

inal random variables and the mutual information between the clustered random

variables.

They propose an algorithm that intertwines both row and column clustering at

all stages. Row clustering is done by assessing closeness of each row distribution,

in relative entropy, to certain “row cluster prototypes”. Column clustering is done

similarly, and this process is iterated till it converges to a local minimum.

Let X and Y be discrete random variables that take values in the sets {x1, . . . , xn}

and {y1, . . . , ym} respectively. Let p(X, Y ) denote the joint probability distribution

between X and Y . We will think of p(X, Y ) as an n × m matrix. They propose

the problem of co-clustering as clustering X into k clusters and Y into l clusters.

The tuple (CX , CY ) is referred to as a co-clustering. Suppose we are given a co-

clustering. The rows of the joint distribution p can be re-ordered such that all rows

mapping into x̂1 are arranged rst, followed by all rows mapping into x̂2, and so on.

Similarly, the columns of the joint distribution p are re-ordered such that all columns

mapping into ŷ1 are arranged rst, followed by all columns mapping into ŷ2, and so

on. This row-column reordering has the effect of dividing the distribution p into little

two-dimensional blocks. Each such block is referred to as a co-cluster.
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Let the clusterings of X and Y be denoted as CX and CY respectively.

CX : {x1, x2, . . . , xn} → {x̂1, x̂2, . . . , x̂k} (3.40)

and

CY : {y1, y2, . . . , yn} → {ŷ1, ŷ2, . . . , ŷl} (3.41)

where x̂i and ŷj refer to a single cluster. A fundamental quantity that measures the

amount of information random variable X contains about Y (and vice versa) is the

mutual information I(X;Y ) (Cover and Thomas, 1991). The quality of a co-clustering

is judged by the resulting loss in mutual information, I(X;Y )− I(X̂; Ŷ ). Therefore,

an optimal co-clustering minimizes I(X;Y ) − I(X̂; Ŷ ) subject to the constraints on

the number of row and column. clusters. They show that the problem of minimizing

mutual information is equivalent to minimizing Kullback-Leibler divergence between

two distributions as follows

I(X;Y )I(X̂, Ŷ ) = D(p(X, Y )||q(X, Y )) (3.42)

where q(X, Y ) is defined as

q(x, y) = p(x̂, ŷ)p(x|x̂)p(y|ŷ), where x ∈ x̂, y ∈ ŷ (3.43)

They propose an iterative greedy algorithm for the minimization problem. For each of

the data sets used in our experiments, we use a word-document co-occurrence matrix

as the input to the co-clustering algorithm. We set the number of clusters for the
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Data Set #Nodes #Edges #Keywords #Classes
AAN 380 3 572 4221
WebKB 877 1608 1703 5
Cora 2708 5429 1433 7

Table 3.2: Statistics of different data sets

documents to the number of classes in the data set. However, it is not clear how to

set the number of word clusters. Therefore, we try l = 2, 4, 8, 16 word clusters. We

represent the algorithm which uses i word clusters as CoCi.

For all experiments, we set α0 = 0.4. This is because the initial similarity esti-

mates are very coarse and computed using naive methods like cosine similarity. The

similarity measures in all feature spaces are sparse. For example, there are 72, 010

pairs of publications in the AAN data set, of which only 15, 534 pairs of publica-

tions have a non-zero similarity using content similarity. There are 10, 233 pairs of

publications which have a non-zero similarity value when using citation similarity.

Therefore, we wanted to learn more similar pairs using the dependency between the

different feature space which leads to a lower value of α0.

We conducted all our experiments on the following data sets.

• AAN Data: The ACL Anthology(Bird et al., 2008) is a collection of papers from

the Computational Linguistics journal as well as proceedings from ACL confer-

ences and workshops and includes 17, 610 papers. To build the ACL Anthology

Network (AAN), (Radev et al., 2009b) manually performed some preprocess-

ing tasks including parsing references and building the network metadata, the

citation, and the author collaboration networks. A complete description of the
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Keyphrase Keyphrase Similarity Score
alignment error rate error rate aer 0.864
source language target language 0.792
source side target side 0.720
statistical machine translation translation model 0.730
statistical machine translation smt models 0.745
statistical machine translation word alignment 0.690
alignment models word alignment 0.688
bleu score statistical machine translation 0.669
alignment models statistical machine translation 0.657
machine learning training data 0.644
phrase-based translation translation model 0.641
dependency parser dependency parsing 0.621
dependency parsing dependency trees 0.612
statistical parsers statistical parsing 0.609
penn treebank statistical parsing 0.594
dependency parser head word 0.590
headline generation summarization system 0.572
document compressions important sentences 0.570
discourse structure dependency parsing 0.558
rouge score multidocument summarization 0.540

Table 3.3: Top similar pairs of keyphrases extracted from the publications in the
AAN data set
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AAN dataset can be found in Appendix B

We chose a subset of papers in 3 topics (Machine Translation, Dependency

Parsing, Summarization) from the ACL anthology. These topics are three main

research areas in Natural Language Processing (NLP). Specifically, we collected

all papers which were cited by papers whose titles contain any of the following

phrases, ”‘Dependency Parsing”’, ”‘Machine Translation”’, ”‘Summarization”’.

From this list, we removed all the papers which contained any of the above

phrases in their title because this would make the clustering task easy. The

pruned list contains 1190 papers. We manually classified each paper into four

classes (Dependency Parsing, Machine Translation, Summarization, Other) by

considering the full text of the paper. The manually cleaned data set con-

sists of 275 Machine Translation papers, 73 Dependency Parsing papers and 32

Summarization papers. Table 3.5 lists a few sample papers from each class.

For each publication, we created a feature vector description in order to compute

content similarity. We removed the reference and acknowledgments section

from each publication’s text as a preprocessing step. After removing stopwords,

all bigrams and trigrams with document frequency less than 10 were removed

to create a dictionary with 1072 n-grams. Each publication in the dataset is

described by the top 30 most frequent bigrams and trigrams in the text of

the publication. Note that only bigrams and trigrams which are present in

the dictionary are used for representing each publication. Table 3.4 shows the

extracted features from an example publication from each class. Table 3.3 shows

the top similar pairs of keyphrases in the dictionary.
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J03-3002 (Machine Transla-

tion)

C04-1159 (Dependency

Parsing)

P02-1057 (Summarization)

english arabic sentence boundaries perfect discourse
candidate pairs dependency structure discourse trees
english chinese structure analysis source model
translation lexicon sentence boundary summary quality
content based boundary detection mitre data
candidate pair dependency information shaky ground
parallel corpora boundary detection discourse units
same meaning structure analysis possible compressions
web pages dependency relationships syntactic constituents
language pair japanese speech longer documents
competitive linking dependency structure analysis channel model
parallel corpus sentence boundary detection discourse structure
word pairs target word important information
word level translation discourse relationship original text
language pairs long distance maximum likelihood
french english language models posterior probability
structural features machine learning document compression
statistical mt package intra sentential dependency document summarization
parallel data intra sentential single document summary
web based parallel crossed dependencies extraction based summarizers
candidate document pairs beam search important sentence
decision tree punctuation marks Headline based
english side surface expressions sentence simplification
cross language ir pause duration unimportant information
equiprobability assumption sentence boundary candidates hierarchical models
cross lingual text chunking syntactic structure
human translated using dependency information compression system
parallel web long distance dependencies statistical hierarchical model
dynamic programming japanese speech wall street
sentence pairs dependency probability statistically significant

Table 3.4: Example phrases extracted from a publication from each class in the AAN
dataset
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ACL-ID Paper Title Research Topic
W05-0812 Improved HMM Alignment Models for

Languages With Scarce Resources
Machine Translation

P07-1111 A Re-Examination of Machine Learning
Approaches for Sentence-Level MT Eval-
uation

Machine Translation

P03-1054 Accurate Unlexicalized Parsing Dependency Parsing
P07-1050 K-Best Spanning Tree Parsing Dependency Parsing
P88-1020 Planning Coherent Multi-Sentential Text Summarization

Table 3.5: Details of a few sample papers classified according to research topic

• WebKB(Sen et al., 2008): The data set consists of a subset of the original

WebKB data set. The corpus consists of 877 web pages collected from four

different universities. Each web page is represented by a 0/1-valued word vector

with 1703 unique words after stemming and removing stopwords. All words with

document frequency less than 10 were removed.

• Cora(Sen et al., 2008): The Cora dataset consists of 2708 scientific publica-

tions in the field of machine learning classified into one of the following seven

classes: Case Based, Genetic Algorithms, Neural Networks, Probabilistic Meth-

ods, Reinforcement Learning, Rule Learning, Theory. The papers were selected

in a way such that every paper cites or is cited by atleast one other paper.

The citation network consists of 5429 links. Each publication in the dataset is

described by a 0/1-valued word vector indicating the absence/presence of the

corresponding word from the dictionary. After stemming and removing stop-

words, all words with document frequency less than 10 were removed. The

dictionary consists of 1433 unique words.
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Machine Translation Dependency Parsing Summarization
machine translation natural language rhetorical structure
statistical machine translation wall street journal novel approach
machine translation system penn treebank system for generating
translation quality dependency structures summarization system
word alignment dependency structure analysis source document
bleu score kyoto university corpus newspaper articles
parallel texts dependency tree multidocument summarization
experimental results shared task headline generation system
parallel corpora dependency grammar important sentences
language pairs parsing accuracy proposed method
target Language training data discourse structure
ibm model lexical items document compressions

Table 3.6: Top few words from each cluster extracted from the keyword similarity
graph

Table 3.2 summarizes the statistics of the different data sets used in experiments.

For each of the data sets, we constructed two graphs, a kewyord feature similarity

graph and a link similarity graph. The keyword feature layer graph, Gf = (Vf , Ef , wf )

is a weighted graph where Vf is the set of all features. The edge weight between the

features fi and fj represents the similarity between the features. The edge weight

between two keywords are estimated using the co-occurrence data between the key-

words in the data set. Let keyphrase ki occur ni times and co-occur with keyphrase

kj, cij times, then the similarity between keyphrases, ki and kj is computed using the

generalized similarity index (van Eck and Waltman, 2009) as follows

sim(ki, kj) = 2
1
p

cij

(npi + npj)
1
p

(3.44)
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We set p = 0, which leads to

lim
p→0

sim(ki, kj) =
cij√
ninj

(3.45)

The link similarity graph, Go = (Vo, Eo, wo) is a weighted graph where Vo is the

set of objects. The edge weight represents the similarity between the objects and

is initialized to the link-based similarity. The link similarity between two objects is

computed using the similarity measure proposed by (Harel and Koren, 2001) on the

object link graph.

We evaluate SMUG in terms of classification accuracy for the classification task.

Classification accuracy is the percentage of objects which are correctly classified. Let

the true label of a document di be denoted by Y (di) and the label outputted by the

classification algorithm be represented as (̂Y )(di). A document is correctly classified

if Y (di) = (̂Y )(di). Let t be the number of documents that are correctly classified

and N be the total number of documents to be classified. The classification accuracy

CA = t
N

.

For the clustering task, we use Normalized Mutual Information (Strehl and Ghosh,

2002) as the measure of clustering accuracy. Mutual Information is a symmetric

measure which quantifies the statistical information between two distributions. Let

I(X, Y ) denote the amount of mutual information between the distributions X and

Y. Since I(X,Y) has a lower bound of zero and no upper bound, we normalize the

quantity using the entropy of X and Y. Thus the normalized mutual information used
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(a) AAN (b) Cornell

(c) Texas (d) Washington

(e) Wisconsin (f) Cora

Figure 3.2: Classification Accuracy on the different data sets. The number of points labeled is plotted along the
x-axis and the y-axis shows the classification accuracy on the unlabeled data.
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is,

NMI(X, Y ) =
I(X, Y )√
H(X)H(Y )

(3.46)

We estimate NMI using the samples provided by the clusterings. Let n be the

total number of objects (nodes) to be clustered. Let k(A) be the number of clusters

according to clustering A and let k(B) be the number of clusters according to clus-

tering B. Let nAh denote the number of objects in cluster Ch according to clustering

A , and let nBl denote the number of objects in cluster Cl according to clustering B

. Let nh,l denote the number of objects that are in cluster Ch according to algorithm

A as well as in group Cl according to clustering B. The NMI is estimated according

to 3.46

̂NMI(A,B) =

∑k(A)
h=1

∑k(B)
l=1 nh,llog(

n.nh,l

nA
h n

B
l

)√∑k(A)
h=1

nA
h

n

∑k(B)
h=1

nB
h

n

(3.47)

This evaluation measure has some nice properties such as NMI(X,X) = 1. Also

̂NMI(X, Y ) = 1 if the clusterings X and Y are the same except for a permutation

of the cluster labels. NMI(X, Y ) = 0 if the clustering X is random with respect to

Y or vice versa.

Therefore, in our setting, we compare the clusterings obtained by our algorithm X

against the clustering Y , induced by the correct cluster labels using NMI. The higher

the value the better the clustering obtained. Thus, we compare SMUG against the

two above mentioned baselines using NMI as the evaluation metric.

80



Figure 3.3: Classification accuracy of linear combination of textual similarity and link
similarity measures on the different data sets.
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Similarity Measure AAN Texas Wisconsin Washington Cornell Cora

Content Similarity (Cosine) 0.66 0.34 0.42 0.59 0.63 0.48
Link Similarity 0.45 0.49 0.39 0.52 0.56 0.52
Linear Combination 0.69 0.54 0.46 0.54 0.68 0.54
CoC2 0.53 0.42 0.42 0.45 0.46 0.41
CoC4 0.59 0.46 0.45 0.50 0.48 0.43
CoC8 0.63 0.48 0.50 0.54 0.52 0.47
CoC16 0.69 0.55 0.52 0.60 0.56 0.52
SMUG 0.78 0.69 0.54 0.66 0.72 0.64

Table 3.7: Normalized Mutual Information scores of the different similarity measures
on the different data sets

3.6 Results

Figure 3.2 shows the accuracy of the classification obtained using different simi-

larity measures. Figure 3.3 shows the accuracy obtained by the linear combination of

similarity measures parameterized by α when 10% of the data was used as training

data for the classifier. When α = 0, the linear combination of similarity measures

reduces to link similarity and at α = 0 the linear combination of similarity measures

is equal to the content similarity. In all the data sets, the link similarity achieves

higher accuracy than content similarity, except the Texas data set and the Wisconsin

data set. This is primarily due to the vocabulary mismatch in documents from the

same class. However, in the Texas and the Wisconsin data sets, there are relative

fewer links compared to other data sets and hence the link similarity graph is sparse.

It can be seen that SMUG outperforms all other baselines by a large margin.

Note that SMUG and the spectral clustering algorithm on multiple graphs is given

the same information and SMUG achieves better performance. We attribute this to

the rich representation of the data. In our algorithm, the data is represented as a set
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of heterogeneous graphs (layers) which are connected together. Thus, we were able

to iteratively improve our similarity estimates using similarity estimates from other

feature spaces. Whereas, in the case of the algorithm in (Zhou and Burges, 2007) all

the graphs are isolated homogeneous graphs. Hence there is no information transfer

across the different graphs.

Table 3.7 shows the NMI scores obtained by the different similarity measures on

the different data sets.

We also clustered the keyword feature layer of the AAN data set to show that

SMUG improves the similarity estimates in all the input graphs. Table 3.6 shows the

most frequent keywords from each cluster. It can be seen that the keyword clusters are

very cohesive and are indicative of the research area they belong to. This shows that

similarity estimates in the keyword feature layer are also improved using similarity

estimates from the citation similarity space.

An important property of this framework is that we enhance any coarse-grained

initial similarity measure. For example, similarity between keywords can be estimated

using more sophisticated methods which use external knowledge bases like Word-

Net, Wikipedia (Danushka Bollegala, 2007; Strube and Ponzetto, 2006). Although,

there exist lots of similarity measures for computing similarity between keywords

and phrases, there are relatively few approaches to compute similarity between entire

documents using pairwise similarities between keywords (Mihalcea and Corley, 2006).

Note that using the pairwise similarities between individual keywords alone, we can

estimate the similarity between entire documents using SMUG.

The work is also quite similar to co-training (Blum and Mitchell, 1998) in the sense
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of using multiple views (feature types). The cotraining framework is applicable for

any learning problem which uses labeled data. (Blum and Mitchell, 1998) formalize

the co-training setting and provide theoretical learning guarantees subject to certain

assumptions.

Let D be the distribution over the set of objects X. Each object can be represented

by two sets of features, X1 and X2. The object space can be represented as X = X1×

X2. Each object is represented as x = (x1, x2). Consider the problem of classification

using the sets of features. Let C1 and C2 define the set of target (classification)

functions over X1 and X2 respectively: f1 ∈ C1 and f2 ∈ C2. There are two main

assumptions made by the cotraining framework.

Definition III.2. The instance distribution D is compatible with the target function

f = (f1, f2) if for any x = (x1, x2) with non-zero probability, f(x) = f1(x1) = f2(x2).

The compatibility assumption states that each set of features independently is

sufficient for learning a perfect classifier. For most examples, the target functions

over each feature set predict the same label. For example, in the web page domain,

the class of the instance should be identifiable using either the link structure or the

page text alone. The second assumption is that the features in one set of an instance

are conditionally independent of the features in the second set, given the class of the

instance. Mathematically, a pair of views (x1, x2) satisfy view independence if,

Pr[X1 = x1|X2 = x2, Y = y] = Pr[X1 = x1|Y = y] (3.48)
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Input: a set L of labeled training examples
a set U of unlabeled examples
Create a pool U’ of examples by choosing u examples at random from U.
while loop for k iterations do

Use L to train a classifier h1 that considers only X1

Use L to train a classifier h2 that considers only X2

Allow h1 to label p positive and n negative examples from U’
Allow h2 to label p positive and n negative examples from U’
Add these self-labeled examples to L
Randomly choose 2p+ 2n examples from U to replenish U’

end while

Figure 3.4: Cotraining algorithm (Blum and Mitchell, 1998)

and

Pr[X2 = x2|X1 = x1, Y = y] = Pr[X2 = x2|Y = y] (3.49)

A classification problem instance is said to satisfy view independence if all pairs

(x1, x2) satisfy view independence. This assumes that the words in a publication are

not related to the links, except through the class of the publication, an unrealistic

assumption in practiceNigam and Ghani (2000); Balcan and Blum (2005). The co-

training algorithm is shown in Figure 3.4

The cotraining algorithm learns a classifier by comining classifiers learnt using

individual feature spaces using unlabeled data. Intuitively, the classifier h1 adds ex-

amples to the labeled set that h2 will be able to use for learning and vice-versa.

Similarly, in the SMUG framework, we use the information about which pair of fea-

tures are similar to learn object similarity.

However, there are a few fundamental differences between the SMUG framework

and the cotraining framework. SMUG is motivated by applications where the main
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assumptions of the cotraining framework do not hold. In most of the classification

data sets used in our experiments, the compatibility assumption does not hold, i.e,

no single feature can be used to build a perfect classifier. This is due to the sparsity

of similarity values in any feature space. For example, many pairs of publications

from the same class do not have a non-zero similarity value because of vocabulary

mismatch.

We also rely on the dependence between the feature spaces in order to learn simi-

larity using the different existing similarity measures. For example, we use the infor-

mation that two publications that are similar because of link similarity to increment

the similarity value between the publications’ corresponding features.

For example, when we apply the cotraining algorithm for classifying publications

using keywords and citations as the two feature spaces, we learn which publications

belong to a particular class in the citation feature space using labeled examples gener-

ated by the classifier trained using keyword features. However, the SMUG framework

uses feature similarity to learn object similarity. This is analogous to the compari-

son between feature labeling vs instance labeling in the active learning framework.

(Raghavan et al., 2006; Druck et al., 2009) show that intelligently soliciting labels on

multiple features facilitates more efficient annotation and leads to higher classification

accuracy. This shows that learning at the feature level can lead to better or at least

complement learning at the object level.
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CHAPTER IV

Simultaneously Optimizing Feature Weights and

Similarity

4.1 Introduction

There has been a lot of work on learning feature weights as part of similarity

metric learning (Schultz and Joachims, 2003; Davis et al., 2007b). To the best of our

knowledge, there exists no work which uses multiple sources of similarity to better

learn feature weights and use the same to reinforce similarity estimates in the different

feature spaces.

4.2 Motivation

First, we explain how similarity learning and feature weight learning can mutually

benefit from each other using an example. For example, consider the following two

publications in the field of Machine Translation
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• Peter F. Brown, John Cocke, Stephen A. Della Pietra, Vincent J. Della Pietra,

Fredrick Jelinek, John D. Lafferty, Robert L. Mercer, and Paul S. Roossin.

A Statistical Approach to Machine Translation. Computational Linguistics.

Volume 16. Number 2. 1990.

• William A. Gale and Kenneth Ward Church. A Program For Aligning Sentences

In Bilingual Corpora. In Proceedings of ACL. 1991.

• Daniel Marcu and William Wong. A Phrase-Based, Joint Probability Model for

Statistical Machine Translation. In Proceedings of EMNLP 2002.

Clearly, all the papers belong to the field of Machine Translation but the sec-

ond paper contains the phrase “Machine Translation” only once in the entire text.

However, we can learn to attribute some similarity between the first publication and

the second publication using the third publication’s data. The keywords “Bilingual

Corpora” and “Machine Translation” co-occur in the third publication’s text which

makes the keywords themselves similar. We attribute some similarity between the

first and second publication since they contain similar keywords. Of course, the at-

tributed similarity is proportional to the number of co-occurrences. This shows how

similarity learning can benefit from good keywords.

Now, assume that “Machine Translation” is an important keyword (high feature

weight) for the first and third publication while the keyword “Bilingual Corpora” has

a low feature weight for the second publication. We explained how to infer similarity

between the first and second publication using the third publication as a bridge.

Using the newly learned similarity measure, we can infer that “Bilingual Corpora” is
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an important keyword for the second publication since a similar keyword (“Machine

Translation”) is an important keyword for similar publications.

Let documents Di and Dj contain keywords Kik and Kjl. Then intuitively, the

similarity between two documents should be jointly proportional to

• The similarity between keywords Kik and Kjl

• The importance of Kik to Di and importance of Kjl to Dj.

Similarly the importance of candidate keyword Kik to document Di should be

jointly proportional to

• The similarity between documents Di and Dj.

• The similarity between keyphrases Kik and Kjl and importance of Kjl to Dj.

In the next two sections, we formalize and exploit this observation to simultane-

ously optimize similarity between documents and feature weights of keywords in a

principled way.

4.3 Problem Formulation

We assume that a set of keywords have been extracted for the set of documents

to be analyzed. Documents are represented by a set of keywords. In addition to that,

we have crude “initial” similarities estimated between documents and also between

keywords and an “importance score” (interchangeably used with feature weight) of

a keyword to the document. The similarities and importance scores are represented
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using two layers of graphs. We formally define the necessary concepts,

Definition 1: Documents and corresponding keywords

We have a set of N documents D = {d1, d2, . . . , dN}. Each document, di has a set of

mi keywords Ki = {ki1, ki2, . . . , kimi
}

Definition 2: Document Similarity Graph

The document similarity graph, G1 = (V1, E1), consists of the set of documents as

nodes and the edge weights represent the initial similarity between the documents.

Definition 3: Keyword Similarity Graph

The keyword similarity graph, G2 = (V2, E2), consists of the set of keywords as nodes

and the edge weights represent the initial similarity between the keywords.

The document similarity graph and the keyword similarity graph can be consid-

ered as two layers of graphs which are connected by the function defined below

Definition 4: Keyword Importance Scores (KIS)

There exists an edge between di and kij for 1 ≤ j ≤ mi. Let Z represent the keyword

importance function, i.e, Zdi,kij represents the importance score for keyword kij to

document di.
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4.4 Regularization Framework

The framework for mutual learning of similarity and feature weights is an extension

of the framework described in Chapter III. In this framework, objects with multiple

heterogeneous features are represented using multiple layers of graphs. One layer

is used to represent the objects and other layers are used to represent the different

feature types. The edge weights in the same layer are used to represent similarity

scores between objects or features. An edge exists between two features if they co-

occur in any particular object’s feature vector. An edge exists between an object

and a feature if the feature exists in the object’s description. However, the edges

across layers are unweighted and the objective function in Chapter III is defined only

over the edge weights in the same layer. Hence, the framework does not fully exploit

the available information and is not robust to noisy features, since all the features

are equally weighted. A keyword which is not related to the semantics of the paper

contributes equally to the similarity between two publications as much as a relevant

keyword. For example, the contribution of the keyword “Related Work” should be

minimal to the similarity between any two publications since it is often not relevant

to the publication’s research area. In order to learn feature weights, we define an

objective function over the edge weights in each layer and the KIS as follows

Ω(w,Z) = α0 ∗ ISC(w,w∗) + α1 ∗ IKC(Z,Z∗)

+α2 ∗KS(w,Z) + α3 ∗ SK(Z,w) (4.1)

where α0 + α1 + α2 + α3 = 1.
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ISC refers to Initial Similarity Cconstraint and IKC refers to Initial Keyphrase

importance Constraint. They are defined as follows

ISC(w,w∗) =
∑
u,v∈G1

(wu,v − w∗u,v)
2 (4.2)

IKC(Z,Z∗) =
∑

u∈G1,v∈G2

(Zu,v − Z∗u,v)
2 (4.3)

KS refers to Keyphrase importance induced Similarity and SK refers to Similarity

induced Keyphrase importance. They are defined as follows

KS(w,Z) =
∑

u1,v1∈G1

∑
u2,v2∈G2

Zu1,u2Zv1,v2(wu1,v1 − wu2,v2)
2 (4.4)

and

SK(w,Z) =
∑

u1,v1∈G1

∑
u2,v2∈G2

wu1,v1wu2,v2(Zu1,u2 − Zv1,v2)
2 (4.5)

The problem is to minimize the objective function defined in equation 4.1. The

objective function consists of four parts. The first and second parts are initial simi-

larity constraint and initial keyword constraint. They ensure that the optimized edge

weights are close to the initial edge weights. The weights α0 and α1 ensure that the

optimized weights are close to the initial weights, in other words, they represent the

confidence level in initial weights.

The significance of the third and the fourth parts of the objective function are

best explained by a simple example. Consider two graphs, G1 and G2. Let G1 be the

graph containing publications as nodes and edge weights representing initial similarity

92



values. Let G2 be the graph corresponding to keywords and edge weights represent

similarity between keywords. There is an edge from a node u1 in G1 to a node v1 in

G2 if the publication corresponding to u1 contains the keyword corresponding to v1.

Minimizing the keyword importance induced similarity part corresponds to updat-

ing similarity values between keywords in proportion to importance of the keywords

to the respective documents they are contained in and the similarity between the doc-

uments. keyword importance induced similarity part also helps updating similarity

values between documents in proportion to importance of keywords they contain and

the similarity between the contained keywords.

Minimizing the similarity induced keyword part corresponds to updating impor-

tance scores of keywords to documents in proportion to the following

• Similarity between v1 and other keywords v2 ∈ G2

• Importance values of v2 to documents u2 ∈ G1

• Similarity between u1 and u2

Therefore, even if the frequency of a keyword such as “Machine Translation” in

a publication is not high, it can achieve a high importance score if it contains many

other similar keywords such as “Bilingual Corpora” and “Word alignment” and is

similar to other publications which contain the keyword “Machine Translation” in

another feature space.
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4.5 Efficient Algorithm

We seek to minimize the objective function using Alternating Optimization (AO)

(Bezdek and Hathaway, 2002), an approximate optimization method. Alternating

optimization is an iterative procedure for minimizing (or maximizing) the function

f(x) = f(X1, X2, . . . , Xt) jointly over all variables by alternating restricted minimiza-

tions over the individual subsets of variables X1, . . . , Xt.

In this optimization method, we partition the set of variables into a set of mutually

exclusive, exhaustive subsets. We iteratively perform minimizations over each subset

of variables while maintaining the other subsets of variables fixed. Formally, let

the set of real-valued variables be X = {X1, X2, . . . , XN} be partitioned into m

subsets, {Y1, Y2, . . . , Ym}. Let si = |Yi|. Then we begin with the initial set of values

{Y 0
1 , Y2

0, . . . , Ym
0} and make restricted minimizations of the following form,

min
Yi∈Rsi

{f(Y1
r+1, . . . , Yi−1

r+1, Yi, Yi+1
r, . . . , Ym

r)} (4.6)

where i = 1, 2, . . . ,m. The underline notation Yj indicates that the subset of

variables Yj are fixed with respect to Yi. In the context of our problem, we update each

edge weight while maintaining other edge weights to be a constant. Then the problem

boils down to the minimization problem over a single edge weight. For example, let

us solve the minimization problem for edge weight corresponding to (ui, vj) where

ui, vj ∈ G1 (The case where ui, vj ∈ G2 is analogous). Clearly the objective function

is a convex function in wui,vj . The partial derivative of the objective function with

respect to the edge weight is given below,
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∂Ω(w,Z)

∂wui,vj
= 2α0(wui,vj − w∗ui,vj)

+2α2 ∗
∑

u2,v2∈G2

(wui,vj − wu2,v2)Zu1,u2Zvj ,v2

+α3 ∗
∑

u2,v2∈G2

(Zui,u2 − Zvj ,v2)
2wui,vjwu2,v2 . (4.7)

To minimize the above function, we set the partial derivative to zero which gives us

the following expression,

wuj ,vk =
1

C1

(α0w
∗
ui,vj

+ α2

∑
u2,v2∈G2

Zui,u2 wu2,v2 Zvj ,v2) (4.8)

where

C1 = α0 + α2

∑
u2,v2∈G2

Zui,u2 Zvj ,v2

+
α3

2

∑
u2,v2∈G2

(Zui,u2 − Zvj ,v2)
2wu2,v2

Similarly, we can derive the update equation for importance scores, Zui,uj as below

Zui,uj =
1

C2

(α1Z
∗
ui,uj

+

α3

∑
v1∈G1

∑
v2∈G2

wui,v1 wuj ,v2 Zv1,v2) (4.9)
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where

C2 = α1 + α3

∑
v1∈G1

∑
v2∈G2

wui,v1 wuj ,v2

+
α2

2

∑
v1∈G1

∑
v2∈G2

(wui,v1 − wuj ,v2)
2Zv1,v2

The similarity score between two nodes is proportional to the similarity between

nodes in the other layer. For example, the similarity between two documents and

keywords is proportional to the similarity between the keywords and the documents

they are contained in respectively. C1 and C2 play the role of a normalization constant.

Therefore, for similarity between two nodes to be high, it is required that they not

only contain a lot of similar nodes in the other graph but the similar nodes need to

be important to the two target nodes.

Similarly, a particular keyword is important to a document if similar keywords

are important to similar documents. It is necessary that the similarity between the

keywords and the documents is high.

It can be shown that equations 4.8 and 4.9 converge q-linearly since the minimiza-

tion problem is convex in each of the variables individually and hence has a global

and unique minimizer (Bezdek and Hathaway, 2002).

4.5.1 Layered Random Walk Interpretation

The above algorithm has a very nice intuitive interpretation in terms of ran-

dom walks over the two different graphs. Assume the initial weights are transition

probability values after the graphs are normalized so that each row of the adjacency
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matrices sums to 1. Then the similarity between two nodes u and v in the same graph

is computed as the sum of two terms. The first term is α0 times the initial similarity.

This is necessary so that the optimized similarity values are not too far away from the

initial similarity values. The second term corresponds to the probability of a random

walk of length 3 starting at u and reaching v through two intermediate nodes from

the other graph.

The semantics of the random walk depends on whether u, v are documents or

keywords. For example, if the two nodes are documents, then the similarity between

two documents d1 and d2 is the probability of a random walk starting at document

d1 and then moving to a keyword k1 and then moving to keyword k2 and then to

document d2. Note that keywords k1 and k2 can be the same keyword which accounts

for similarity between documents because they contain the same keyword.

Note that second and higher order dependencies are also taken into account by

this algorithm. That is, two papers may become similar because they contain two

keywords which are connected by a path in the keyword graph, whose length is

greater than 1. This is due to the iterative nature of the algorithm. For example, the

keywords “Machine Translation” and “Bilingual corpora” occur often together and

hence any co-occurrence based similarity measure will assign that pair a high initial

similarity value. Hence two publications which contain these words will be assigned

a non-zero similarity value after a single iteration. “Bilingual corpora” and “SMT”

(abbreviation for Statistical Machine Translation) can have a high initial similarity

value which enables assigning a high similarity value between “Machine Translation”

and “SMT”. This leads to a chain effect as the number of iterations increases which
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helps assign non-zero similarity values between semantically similar documents even

if they do not contain common keywords.

4.5.2 Relation to Node Label Regularization

In this section, we explore connections to node label regularization (Zhu et al.,

2003b). Specifically, we would like to know if there exists a transformation to the input

graph which would make node label regularization and edge-weight regularization

equivalent. Node label regularization is a technique proposed in (Zhu et al., 2003b)

for semi-supervised graph classification. The set of labeled and unlabeled nodes in a

graph G = (V,E) is denoted as L and U respectively. The label of node i is denoted

as y(i). In order to ensure that similar points have similar labels, an energy function

is defined over the node labels as follows

E(y) =
1

2

∑
i,j

wij(y(i)− y(j))2 (4.10)

A low energy corresponds to a slowly varying function over the graph. One of the

key differences between our technique and the technique in (Zhu et al., 2003b) lies in

the values being regularized: edge weights or node labels. We apply a transformation

over the graph such that in the transformed graph, the nodes correspond to edges

in the original graph. Specifically, we create a new graph G′ = (V ′, E ′) such that

there exists a node u ∈ V ′ for every edge (u1, v1) ∈ E in the original graph. There

exists an edge (u, v) ∈ E ′ if and only if the edges corresponding to u and v share

a common node. Figure 4.1 shows a sample graph and the transformed graph.The

nodes corresponding to intra-layer edges are labeled using the corresponding node
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labels in the original graph while nodes corresponding to inter-layer edges in the

original graph are labeled as Li.

Figure 4.1 shows that for the purposes of similarity learning, in the context of node

regularization we would like to minimize the squared difference between u’s value

and v’s value. However, they are not neighbors in the transformed graph. Therefore,

at the outset it looks like node regularization and edge-weight regularization are

fundamentally different. In Chapter III, the inter-layer edge weights or feature weights

are maintained constant and the optimization is strictly defined over the intra-layer

edge weights. We explore the relation to node label regularization in the following

cases.

• Case 1: Assume the optimization is strictly defined over the edge weights in

each layer or the similarity weights and not the edge weights across layers or

feature weights. Let the label of a node corresponding to an intra-layer edge,

for example, P1,2, be denoted as yP1,2 while the weight of nodes corresponding

to inter-layer edges, for example, L1, as wL1 Then the objective function for the

sample graph can be rewritten in terms of node labels.

Ω(y) =(yP12 − yK12)
2(wL1wL2) + (yP13 − yK12)

2(wL1wL4)

(yP13 − yK13)
2(wL1wL3) + (yP23 − yK23)

2(wL2wL4) (4.11)

Equation 4.11 shows that it is possible to have a transformation of the original

graph such that edge weight regularization in the original graph is equivalent to

node label regularization in the transformation. The proof is by construction.
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Figure 4.1: The graph at the top is the original graph while the transformed graph is
on the bottom. P1, P2 and P3 are objects and K1, K2 and K3 are features. P12, P23,
P13 correspond to edges e1, e2 and e3 respectively. K12, K13 and K23 correspond to
edges e4, e5 and e6. L1, L2, L3 and L4 are inter-layer edges corresponding to e7, e8,
e9 and e10.
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The transformed graph, G′′ = (V ′′, E ′′) is a bipartite graph and is constructed

as follows. A node is constructed for every edge in each layer of graph. Let

us denote the node corresponding to an edge between ui and uj as uij. There

exists an edge between two nodes uij and vkl if and only if there exist inter-

layer edges (ui, vk) and (uj, vl) or (uj, vk) and (ui, vl). Note that there exists no

edges between nodes of the same layer in the transformed graph and hence, the

transformed graph is bipartite. The node labels are initialized to the similarity

value of the corresponding edges. The edge between uij and vkl is weighted as

Zui,vk ∗ Zuj ,vl

wuij ,vkl =


Zui,vk ∗ Zuj ,vl , if ∃ edges (ui, vk) and (uj, vl)

0 else

(4.12)

• Case 2: Assume the inter-layer edge weights or feature weights are also part

of the optimization as in equation 4.1. In this case, consider the dual graph,

G′. The node labels corresponding to the inter-layer edges, Li are also vary-

ing. Hence it is not possible to collapse the corresponding nodes as in the

previous case. However, we can create two different bipartite graphs, G′′ and

G′′L. G′′ is constructed as before while G′′L = (V ′′L , E
′′
L) is constructed as fol-

lows. V ′′L is the set of nodes corresponding to inter-layer edges, Li ∈ G′. There

exists an edge between two nodes Li and Lj if and only if there exists edges
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(Li, uab), (uab, Lj), (vcd, Li), (Lj, vcd) ∈ E ′. The weights are assigned as follows,

wLi,Lj
=


wua,ub ∗ wvc,vd , if ∃ edges (ua, ub) and (vc, vd)

0 else

(4.13)

Thus, the optimization is expressed as a node regularization problem over two

decomposed graphs, G′′ and G′′L. However, note that after each iteration of node

label regularization over the two graphs, the edge weights in both graphs need

to be updated using the newly updated node labels.

4.5.3 Computational Complexity

For each iteration, the computation consists of a random walk of length 3 for

each node in the graph. Let us assume that the average number of similar neighbors

for every node is K and the total number of nodes in all the layers of graphs is N.

Therefore the complexity of the algorithm is O(K3 ∗ N ∗ t), where t is the number

of iterations. Note that, the average number of neighbors can be set to a constant if

we prune the graph after every iteration to make it a K-nearest neighbor graph. In

this case, each iteration runs in linear time and hence, the overall time complexity is

O(N ∗ t).

4.5.4 MapReduce Implementation

SMUG can be easily implemented under the MapReduce framework. Each itera-

tion of the algorithm is realized in three MapReduce operations. In the first operation,
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a record consists of a key node and its neighbors in another layer of graph each at-

tached with the inter-layer edge weight. The mapper outputs a pair of the original

key node and the neighbor with the value being the inter-layer edge weight. The sec-

ond MapReduce operation performs a join operation in the mapper phase with one

record being the output of the previous MapReduce operation and the other record

being the neighbors of the key node in the same layer. This mapper too outputs a

pair of the original key and the neighbor of neighbor as the key with the value being

the product of the similarity and the value of the inter-layer edge weight. The third

MapReduce performs the reverse of the first MapReduce operation. All the different

MapReduce operations use an identity reducer.

4.6 Experiments

It is very hard to evaluate similarity measures in isolation. Thus, most of the

algorithms to compute similarity scores are evaluated extrinsically, i.e, the similarity

scores are used for an external task like clustering or classification and the performance

in the external task is used as the performance measure for the similarity scores. This

also helps demonstrate the different applications of the computed similarity measure.

Thus, we perform a variety of experiments on standard data sets to illustrate the

improved performance of SMUG. There are three natural variants of the algorithm,

• SMUG : We compare against SMUG, the edge-weight regularization algorithm

described in Chapter III.

• SMUG-binary : In this variant, we initialize the importance scores to 1, i.e,
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Zij = 1 whenever document i contains the keyword j and zero otherwise.

• SMUG-TFIDF : We initialize the importance scores to the TFIDF scores, Zij is

set to the TFIDF score of keyword j for document i.

4.6.1 Experiment I

We compare our similarity measure against other similarity measures in the con-

text of classification. We also compare against a state of the art classification algo-

rithm which uses different similarity measures due to different feature types without

integrating them into one single similarity measure. Specifically, we compare SMUG

against three other similarity baselines in the context of classification which are listed

below.

• Content Similarity : Similarity is computed using just the feature vector repre-

sentation using just the text. We use cosine similarity after preprocessing each

document into a tf · idf vector for the AAN data set. For all other data sets,

we use the cosine similarity on the binary feature vector representation that is

available.

• Link Similarity : Similarity is computed using only the links (citations, in the

case of publications). To compute link similarity, we use the node similarity

algorithm described in (Harel and Koren, 2001) using a random walk of length

3 on the link graph.

• Linear combination: The content similarity (CS) and link similarity (LS) be-

tween documents x and y are combined in a linear fashion as αCS(x, y) + (1−
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α)LS(x, y). We tried different values of α and report only the best accuracy

that can be achieved using linear combination of similarity measures. Note that

this is a special case of Multiple Kernel Learning (MKL) (Bach et al., 2004).

In MKL, the α value is learnt using training data. Note that the number of

parameters is linear in the number of different layers.

We also compare SMUG against the following algorithms.

• SC-MV : We compare all variants of SMUG against the spectral clustering al-

gorithm for data with multiple views (Zhou and Burges, 2007). The algorithm

tries to classify data when multiple views of the data are available. The multi-

ple views are represented using multiple homogeneous graphs with a common

vertex set.

In each graph, the edge weights represent similarity between the nodes com-

puted using a single feature type. For our experiments, we used the link sim-

ilarity graph and the content similarity graph as described above as the two

views of the same data

• LSA: Latent semantic analysis (LSA), also known as latent semantic indexing

(LSI), can also deal with synonymy and the use of related words. LSA can be

used to cluster documents even if they do not use the exact same vocabulary.

It makes use of a term-document matrix, X, which describes the occurrences

of terms in documents. The (i, j)th entry corresponds to the TF-IDF weight of

term i in document j. Clearly, in this matrix, related terms are treated as two

different terms. In order to overcome this, LSA tries to find a low-dimensional
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embedding of the documents so that two terms or documents which are close

in the resulting embedding be semantically similar. First, we perform singular

value decomposition (SVD) as follows

X = UΣV T (4.14)

We compute a K-rank approximation to X using the K largest singular values

of Σ, using a truncated SVD (Golub and Loan, 1996). Let k be an integer and

k << min(m,n).We define Uk to be the first k columns of U , and V T
k be the

first K rows of V T . We let Σk = diag[σ1, . . . , σk] contain the first k largest

singular values, and define

Xk = UkΣkV
T
k (4.15)

The ith column, di in V t
k corresponds to the representation of the ith document

in the latent (concept) space spanned by the k dimensions. Let d̂i = Σkdi. Now,

the semantic similarity between the ith and the jth document can be computed

as follows

sim(Di, Dj) =
k∑
c=1

d̂icd̂jc (4.16)

We use the semi-supervised graph classification algorithm (Zhu et al., 2003b) to

perform the classification. Refer to Chapter III for a description of the algorithm.
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Figure 4.2: Classification Accuracy on the different data sets. The number of points labeled is plotted along the
x-axis and the y-axis shows the classification accuracy on the unlabeled data.
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Similarity Measure AAN Texas Wisconsin Washington Cornell Cora

Content Similarity (Cosine) 0.66 0.34 0.42 0.59 0.63 0.48
Link Similarity 0.45 0.49 0.39 0.52 0.56 0.52
Linear Combination 0.69 0.54 0.46 0.54 0.68 0.54
SMUG 0.78 0.69 0.54 0.66 0.72 0.64
SMUG-Binary 0.80 0.68 0.56 0.69 0.74 0.66
SMUG-TFIDF 0.84 0.70 0.60 0.72 0.78 0.70

Table 4.1: Normalized Mutual Information scores of the different similarity measures
on the different data sets

Item Size
Users 1,000,990
Tracks 507,172
Albums 88,909
Genres 992
Artists 27,888
Training Ratings 252,800,275
Validation Ratings 4,003,960
Test Ratings 6,005,940

Table 4.2: Sample Statistics of the Yahoo! KDD Cup 2011 Data Set

4.6.2 Experiment II

We evaluate the performance of SMUG and its variants in the context of clustering.

We compare against the three similarity baselines mentioned in section 4.6.1. We use

a spectral graph clustering algorithm proposed in (Dhillon et al., 2007) to perform

the clustering.

We performed the classification and clustering experiments on the three data sets

used in Chapter III.
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4.6.3 Experiment III

We illustrate an application of similarity measures using heterogeneous features

in the context of recommendation systems. For this purpose, we report results on the

recently concluded Yahoo! KDD cup 1. The task is learning to predict user ratings of

musical items. Items can be tracks, albums, artists, or genres. The key difference from

other recommendation data sets like Netflix Recommendation data set or Movielens

data set, lies in the availability of metadata for computing similarity. We leverage

upon the multiple views of the data to compute an unified similarity measure between

items.

We reserve special indexing letters for distinguishing users from items: for users u,

v, and for items i, j. A rating rui indicates the preference by user u of item i, where

high values mean stronger preference. In this data set, the values are integers ranging

from 0 indicating no interest to 100 indicating a strong interest. We distinguish

predicted ratings from known ones, by using the notation r̂ui for the predicted value

of rui. The (u, i) pairs for which rui is known are stored in the set κ =(u, i)|rui is

known. A large majority (99.99%) of the possible ratings are unknown in the KDD

cup dataset. Table 4.2 shows some statistics of the KDD cup dataset.

The most common approach to collaborative filtering is neighborhood models

(Koren, 2008). We use an item-based neighborhood model instead of an user-based

model to predict the ratings because of ease of computation. The basic hypothesis in

item-oriented neighborhood models is that similar items receive similar ratings.

We create the following sets of graphs:

1http://kddcup.yahoo.com
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1. Rating Similarity Graphs (RSG): Similarity due to ratings is computed based

on the Pearson correlation coefficient ρij, which measures the tendency of users

to rate items i and j similarly. The Pearson correlation coefficient between two

items is computed as follows,

ρij =

∑ηij
u=1(rui − r̄i)(ruj − r̄j)√∑ηi

u=1(rui − r̄i)2
√∑ηj

u=1(ruj − r̄j)2
(4.17)

where ηij denotes the number of users who rated both i and j and ηi is the

number of users who have rated item i. Also r̄i is the mean rating of item i. The

above correlation coefficient gives a value between -1 and 1. Since many ratings

are unknown, it is expected that some items share only a handful of common

raters. Computation of the correlation coefficient is based on the common user

support. Accordingly, similarities based on a greater user support are more

reliable. Therefore, We use the similarity measure as defined in (Koren, 2008)

as follows,

Sij =
ηij

ηij + λ1

ρij (4.18)

The value of λ1 is found by cross-validation and is set to 150 in our experiments.

Note that if there are no common raters, the similarity is equal to 0.

Now, we can create the following graphs,

• Album Similarity Graph: Gb = (Vb, Eb), where Vb = {b1, b2, . . . , bnb
} is the

set of albums and nb is the number of albums.
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• Artist Similarity Graph: Ga = (Va, Ea), where Va = {a1, a2, . . . , ana} is the

set of artists and na is the number of artists

• Genre Similarity Graph: Gg = (Vg, Eg), where Vg = {g1, g2, . . . , gng} is the

set of artists and ng is the number of genres.

• Track Similarity Graph:Gt = (Vt, Et), where Vt = {t1, t2, . . . , tnt} is the set

of artists and nt is the number of tracks.

In all of the above graphs, the edge weights are initialized with the similarity

function described in Equation 4.18 and there exists an edge between two items

in any graph if and only if the two items are among the K most similar items

of each other.

2. Genre Similarity Graphs (GSG): We compute similarity between items in an

intrinsic fashion using the available metadata, specifically, the genres associated

with different items. For every track and album, the metadata contains an

ordered list of genres. The weight of genre for a track or album is computed as

follows,

wgi,item =
1

exp−k
(4.19)

where gi is the kth genre in the ordered list of genres for item.

Though the metadata does not contain genre information for artists, we create

a genre vector for each artist by aggregating the list of genres for the artist’s

albums and tracks. The weight of a particular genre is equal to the frequency

count in the aggregated list of genres.
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We use the following graphs to compute similarity between items, Gbg = (Vb, Ebg),

Gag = (Vb, Eag) and Gtg = (Vt, Etg). The edge weights in all these graphs are ini-

tialized to the cosine similarity between the genre vectors of the corresponding

items. We use Gg for genre similarity.

The edges across the different graphs are initialized using the metadata. There

exists an edge between two different items if they are related due to the meta-

data. For example, there exists an edge between a track and a genre, if the track

belongs to the particular genre according to the metadata. All the inter-layer

edges are unweighted.

3. Combined Similarity Graphs (CSG): We combine the above two sets of graphs

by simply setting the similarity between the items to the mean of rating simi-

larity and genre similarity.

We ran SMUG and SMUG-binary on all the above sets of graphs to unify the

different graphs.

The goal is to predict rui − the unobserved rating by user u for item i. Using the

similarity measure, we identify the K items rated by u, which are most similar to i.

This set of k neighbors is denoted by Sk(i;u). The predicted value of rui is taken as

a weighted average of the ratings of neighboring items, while adjusting for user and

item effects through the baseline estimates as follows,

r̂ui = bui +

∑
j∈Sk(i;u) Simij(ruj − buj)∑

j∈Sk(i;u) Simij

(4.20)

where bui is a baseline rating estimate for item i by user u. We refer to the recommen-
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dation system described by equation 4.20 as Indentity. Let µ be the overall average

rating. The baseline rating is computed as

bui = µ+ bi + bu (4.21)

The parameters bu and bi indicate the observed deviations of user u and item i,

respectively, from the average. For example, suppose that we want a baseline estimate

for the rating of the song “Hotel California” by user X. Now, say that the average

score over all tracks, µ, is 58. Furthermore, “Hotel California” is better than an

average track, so it tends to be rated 15 stars above the average. On the other hand,

X is a critical user, who tends to rate 10 points below the average. Thus, the baseline

estimate for “Hotel California”’s rating by X = 58 + 15− 10 = 63.

We compute bu and bi by solving the following least squares problem

∑
u,i∈κ

(rui − µ− bu − bi)2 + λ2(
∑
u

b2
u +

∑
i

b2
i ) (4.22)

Let the test set be denoted by TS. We use Root Mean Squared Error (RMSE) to

measure the quality of predicted ratings. RMSE is computed as follows

RMSE =

√ ∑
u,i∈TS

(rui − r̂ui2)/|TS| (4.23)
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Algorithm Similarity Source
RSG GSG CSG

Identity 26.78 27.92 26.50
SMUG 25.54 26.50 25.44

SMUG-Binary 25.12 26.14 24.81

Table 4.3: RMSE scores obtained by the different similarity measures on the 2011
KDD cup test set

4.7 Results and Discussion

Figure 4.2 shows the accuracy of the classification obtained using different simi-

larity measures. It can be seen that SMUG (both the variants) performs much better

than other similarity measures by a large margin. SMUG-TFIDF performs better

than all other variants. For every different size of the training set, we chose the train-

ing set randomly 5 times. For example, for a training set of size 10, we chose 10 points

randomly 5 times and averaged the five accuracy values to obtain a single accuracy

value corresponding to a training set size 10. We also conducted 1−tailed t tests

with the following null hypotheses: The baselines/other algorithms’ classification ac-

curacy is better than our algorithm’s classification accuracy. All the hypotheses are

rejected with a p-value of 0.01 which means our algorithm’s classification accuracy is

higher than all other algorithms’ classification accuracy and the result is statistically

significant at the 99% confidence level. The algorithm performs much better when

more information is provided in the form of TF-IDF scores. We attribute this to the

rich representation of the data. In all variants of SMUG, the data is represented as

a set of heterogeneous graphs (layers) which are connected together instead of the

feature vector representation. Thus, we can leverage using the similarity between the
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features (keywords) and the objects (documents) to iteratively improve similarity in

both layers. Whereas, in the case of the algorithm in (Zhou and Burges, 2007) all

the graphs are isolated homogeneous graphs. In other words, there are two graphs

created with the same set of vertices. Each graph is created by a different similarity

measure. The spectral clustering algorithm tries to find a clustering which is close to

optimal for both the graphs. However, each feature space similarity could result in

many different graphs. For example, consider the following scenario. There are four

publications: p1, p2, p3, p4. Let publications p1 and p2 be similar according to content

similarity while p1 and p3 are similar according to link similarity. In this case, the

spectral clustering algorithm cannot cluster the two graphs because it does not merge

the information from the two graphs before attempting to cluster the two graphs.

Hence there is no information transfer across the different graphs.

In an attempt to understand how the topology of the graphs relates to the classi-

fication accuracy, we computed the clustering coefficient of the different graphs. We

computed the Newman Clustering Coefficient (NCC) (Newman, 2003c) as follows,

NCC =
3 ∗ number of triangles in the network

number of connected triples in the network
(4.24)

Table 4.4 shows the clustering coefficient scores of the different graphs. It can be

seen that the classification accuracy obtained by the different similarity measures is

proportional to the clustering coefficient. We also computed the Pearson correlation

coefficient between the clustering coefficient of a similarity graph and the normalized

mutual information obtained using the particular graph. The correlation coefficient

lies between 0.77 and 0.79 for the content similarity graph and the link similarity
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Similarity Measure AAN Texas Wisconsin Washington Cornell Cora

Content Similarity (Cosine) 0.54 0.29 0.38 0.54 0.56 0.4
Link Similarity 0.41 0.36 0.36 0.48 0.50 0.45
Linear Combination 0.63 0.52 0.45 0.52 0.63 0.5
SMUG 0.69 0.63 0.50 0.57 0.69 0.61
SMUG-Binary 0.75 0.65 0.54 0.63 0.68 0.63
SMUG-TFIDF 0.79 0.69 0.60 0.69 0.72 0.68

Table 4.4: Clustering Coefficient of the different similarity graphs on the different
data sets

graph across all datasets. However, the clustering coefficient of the SMUG-induced

graphs is more correlated with the NMI values with a correlation coefficient of 0.90.

This shows that SMUG does improve the clustering coefficient of the similarity graphs

by using the relation (edges) between the graphs.

Table 4.1 shows the NMI scores obtained by the different similarity measures on

the different data sets. Table 4.3 shows the RMSE scores obtained by the different

similarity measures on the KDD cup test set.

We use two different feature types to compute the similarity between items in the

recommendation task: user ratings and genres. Every item is associated with a set

of genres and user ratings. The edge weights in the RSG graphs represent similarity

computed using user ratings while the edge weights in GSG graphs represent similarity

computed using genre information. It can be seen that all the algorithms perform

better when the similarity between items is computed using user ratings instead of

genres. This is because there is a large number of available ratings to compute

similarity between items. Hence, it is possible to obtain a reliable similarity estimate

between a large number of items. However, in the case of computing similarity using
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genres, there is a large number of items which use a few specific genres. Hence, the

similarity computed between the items is artificially high.

Nevertheless, the combined similarity graphs perform the best irrespective of the

similarity learning algorithm. This shows that there is some amount of information

contained in the genres that cannot be extracted from the user ratings. Note that,

both variants of SMUG outperform the baseline system irrespective of the set of

graphs being used and SMUG-binary performs the best.
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CHAPTER V

Topic Detection in Blogs

5.1 Introduction

In chapters 3 and 4, we show how the proposed framework can be used to integrate

multiple similarity measures by learning from one another. In this chapter, we present

another example application of the proposed framework in chapter 3, topic detection.

Topic detection is the problem of nding the set of most prominent topics in a collection

of documents. We define a topic as a cohesive collection of documents discussing

the same topic. We use keyphrases to represent topics. For example, consider the

“Virginia Tech Shootings” event 1, the keyphrase “Gun Ownership” represents a topic

since the documents containing the keyphrase are a cohesive set of documents. Given

a set of documents about a particular event, the goal is to find a set of representative

and discriminative (non-redundant) topics in the given set of documents. We create

two connected layers of graphs. The first graph is a keyphrase graph, where the nodes

1The Virginia Tech massacre was a school shooting that took place on April 16, 2007, on the
campus of Virginia Polytechnic Institute and State University in Blacksburg, Virginia, United States.
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correspond to keyphrases and the edge weight represents the similarity between the

keyphrases. The second graph is a document graph where each node represents a

document and the edges correspond to document similarity. There is an edge between

a document and a keyphrase if the document contains the keyphrase. We formulate

the task of selecting representative keyphrases as a weighted set cover problem defined

over the two layers of graphs.

Finding a list of topics that a collection of documents covers is an important

problem in information retrieval. These topics can be used to describe or summarize

the collection, or they can be used to cluster it. Topics also provide a short and

informative description of the documents that can be used for quickly browsing and

finding related documents. In essence, a collection of documents has an underlying

set of topics and we want to identify the topics by clustering related topics and

documents. Individual documents can contain multiple topics.

Traditionally, information retrieval systems return a ranked list of documents

based on the IR similarity to the user’s query. Unfortunately, the results returned are

often redundant. Users may need to reformulate their search to find the specific topic

they are interested in. This active searching process leads to inefficiencies, especially

in cases where queries or information needs are ambiguous. For example, a user

wants to get an overview of the virginia tech shootings, then the first query he/she

might try is “virginia tech shooting”. Most of the results returned would be posts

just mentioning the shootings and the death toll. But the user might want a more

detailed overview of the shootings. Thus this leads to continuously reformulating the

search query to discover all the topics in the event.
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5.2 Related Work

Topic detection and tracking was studied extensively on newswire and broadcast

collections by the NIST TDT research program (Allan et al., 2003). The large number

of people blogging on the web provides a new source of information for topic detection

and tracking.

The TDT task defines topics as “an event or activity, along with all directly

related events and activities.” In this work we will stay with this definition of topic.

(Zhai et al., 2003) proposed several methods for dealing with a related task, which

they called topic retrieval This is an information retrieval task where the goal is to

retrieve and return documents that cover the different topics of a given query. As

they point out, the utility of each document is dependent on the other documents in

the ranking, which violates the independent relevance assumption traditionally used

in IR.

To reduce the complexity of this task, a candidate set of topics needs to be gen-

erated that cover the document collection. We choose to use a keyphrase detection

algorithm to generate topic labels. Several keyphrase extraction algorithms have

been discussed in the literature, including ones based on machine learning methods

(Turney, 2000), (Hulth, 2003) and tf-idf (Frank et al., 1999). Our method uses lan-

guage models and pointwise mutual information expressed as the Kullback-Leibler

divergence.

Kullback-Leibler divergence has been found to be an effective method of finding

keyphrases in text collections (Tomokiyo and Hurst, 2003). But identification of

keyphrases is not enough to find topics in document. The keyphrases identified may
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describe the entire collection, or aspects of the collection.

The problem of topic detection is also related to novelty detection in (Allan et al.,

2003). In this problem, given a set of previously seen documents, the task is to

determine whether a new document contains new or novel content. A document is

considered not novel or “redundant” if all of the relevant information in the docu-

ment is covered by relevant documents delivered previously. Note that this definition

includes “duplicate” and “near duplicate” documents as well as documents that are

redundant in content but very different in presentation. In the TREC 2002 novelty

track, the task was to discard sentences that did not contain new material. This is

similar to our goal of reducing redundancy in the list of returned topics.

In most cases, novelty detection is implemented as an online algorithm. The

system has a set of existing documents they have seen up until a certain point.

The task is to determine whether a new document is novel based on the previous

documents. Once a decision has been made, the label of that document is fixed.

Mathematically, the approach can be formulated as follows,

• dt: a document that arrives at time t and that is being evaluated for redundancy.

• D(t): the set of all documents delivered to the user by the time dt arrives, not

including dt.

• DR(t): the set of all relevant documents delivered till time t. DR(t) ⊂ D(t).

• R(dt): the measure of redundancy for document dt.

• di: usually refers to a relevant document that was delivered before dt arrived.
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The redundancy of document dt depends on the set of previously seen documents,

D(t). Specifically, it depends on the set of previously seen relevant documents, DR(t).

Therefore, R(dt) = R(dt|DR(t))

There is a subtle difference between novelty detection and topic detection in that

topic detection is an offline task. Therefore, the topic detection algorithm typically

has access to the entire document set.

5.3 Existing redundancy measures

(Zhang et al., 2002) examine five different redundancy measures for information

filtering. Given a document stream, the task of information filtering is to return

the documents relevant to a user. Examples of information filtering systems include

traditional information retrieval systems that return relevant documents depending

on the user’s query. Adaptive information filters change their behavior based on

changes in the document stream or feedback from the user.

The redundancy measures examine are based on online analysis of documents.

They identify two different methods of measuring redundancy:

• Let i documents in the stream have been processed and clustered into k clusters.

In order to process the i+1st document, we compute the similarity of the i+1st

document to each of the k clusters and add the document to the closest cluster

if the similarity is above a threshold, else we create a new cluster with only the

i+ 1st document.

• Measure similarity between the new document and each previously seen docu-
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ment and label the document as redundant if the maximum similarity to any pre-

viously seen document is above a threshold, i.e, R(dt|DR(t)) = argmaxdi∈DR(t)R(dt|di)

(Zhang et al., 2002) compare the following measures of redundancy.

• Set difference: Set difference measures the novelty of a document using the

number of new words that occur in the new document compared to the previous

documents. If a word wi occurred frequently in document dt but less frequently

in an old document di, it is likely that new information not covered by di is

covered by dt They smooth word counts using word counts from all previously

seen documents and previously seen relevant documents to account for stop

words and topic-specific stop words respectively.

• Geometric distance: Geometric distance refers to distance metrics between doc-

uments represented as vectors, such as Euclidean distance and cosine similarity.

• Distributional similarity: Distributional similarity refers to computing similar-

ity between language models using probabilistic distribution similarity measures

such as KL divergence. They use two different smoothing methods in order to

account for rare, unseen words.

– Bayesian smoothing with Dirichlet priors: Language models are multi-

nomial distributions. The conjugate prior for a multinomial distribution

is the Dirichlet distribution, which can be used to smooth the language

models (MacKay and Peto, 1994).

– This approach smooths by shrinking parameter estimates in sparse data

towards the estimates in rich data. For estimating the language model
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of document d, we can shrink its MLE estimator θd MLE with the MLE

estimator of a language model for general English θE MLE and the MLE

estimator of a language model for the topic θT MLE:

θd = λdθd MLE + λT θT TMLE + λEθE MLE (5.1)

where λd + λT + λE = 1

• Mixture model: They also propose a new algorithm based on generative models

of document creation. Their algorithm combines language models with KL

divergence. Their model assumes documents are generated by three language

models: a general English language model, a topic model, and an individual

document-specific information model. They find coefficients for each term by

using the EM algorithm.

They evaluated the systems on the dataset obtained by combining AP News and

Wall Street Journal data from TREC CDs 1, 2, and 3. The relevance judgments

for the dataset are available from NIST. They found that cosine similarity was the

most effective measure with an F1-score of 0.625, followed by the new mixture model

measure (F1-score: 0.61).

5.4 Data

The data was collected from the Blogocenter bloglines database The Blogocenter

group at UCLA has been retrieving RSS feeds from the Bloglines, Blogspot, Microsoft

Live Spaces, and syndic8 aggregators for the past several years.
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Event Description Posts Dates
iphone iPhone release hype 48810 June 20, 2007 - July 7, 2007
petfoodrecall Recall of Melamine tainted petfood 4285 March 10, 2007 - May 10, 2007
spitzer Eliot Spitzer prostitution scandal 10379 March 6, 2008 - March 23, 2008
vtech Virginia Tech shooting 12256 April 16, 2007 - April 30, 2007

Table 5.1: Major events summarized

After the Virginia Tech murders, there’s the usual outcry for something to be done, and in particular, for more
gun control. As usual, I am not persuaded. The Virginia Tech campus had gun control, which meant that Cho
Seung-Hui was in violation of the law even before he started shooting, and also that no law-abiding citizens
were able to draw ...

Figure 5.1: Example blog post discussing video games (Hoopdog, 2007)

We choose four news events that occurred in 2007 and 2008 based on our expec-

tation of discussion level in the blogosphere. Table 5.1 shows the number of posts

collected for the chosen events.

We will use the Virginia Tech shooting as a running example. People throughout

the blogosphere posted responses expressing support and condolences for the people

involved, along with their own opinions on what caused the rampage.

Figures 5.1 and 5.2 show two different responses to the event. The quote in figure

5.1 shows an example post from LiveJournal, a popular blogging community. In this

post, the user is discussing his view on gun control, a hotly debated topic in the

aftermath of the shooting. Figure 5.2 expresses another person’s emotional response

to this event. Both posts show different aspects of the same story. Our topic detection

system seeks to automatically identify these and other distinct discussions that occur

around an event.

Figure 5.3 shows a generalized Venn diagram (Kestler et al., 2005) of the cluster
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... Predictably, there have been rumblings in the media that video games contributed to Cho Seung-Hui’s mas-
sacre at Virginia Tech. Jack Thompson has come out screaming, referring to gamers as “knuckleheads” and
calling video games “mental masturbation” all the while referring to himself as an “educator” and “pioneer”
out to “right” society. ...

Figure 5.2: Example blog post discussing video games (Hoopdog, 2007)

Figure 5.3: Generalized Venn diagram of topic overlap in the Virginia Tech collection

overlap between different keyphrases from the Virginia Tech event.

Preprocessing: For each news item, relevant posts were retrieved, based on key-

word searching and date of blog post. Posts from the date of occurrence of the event

to the day when less than 50 relevant blog posts were posted were gathered. We

removed all posts which had less than 5 sentences of text.
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5.5 Method

The task is to find discriminative labels for the different topics that exist in a

collection of documents. Taken together, these labels should satisfy the following

conditions:

• Describe a large portion of the collection

• The overlap between the topics should be minimal

This problem is similar to Minimum Set Cover, which is NP-complete (Garey and

Johnson, 1990). Therefore, trying to find the optimal solution by enumerating all

possible phrases in the corpus would be impossible, instead we propose a two-step

method for topic detection.

The first step is to generate a list of candidate phrases. These phrases should be

informative and representative of all of the different topics. The second step should

select from these phrases consistent with the two conditions stated above.

5.5.1 Generating Candidate Phrases

We want to generate a list of phrases that have a high probability of covering the

document space. There are many methods that could be used to find informative

keyphrases. One such method is using the standard information retrieval TF-IDF

model (Jones, 1972). Another method is using Kullback-Leibler divergence.

(Tomokiyo and Hurst, 2003) developed a method of extracting keyphrases using

statistical language models. They considered keyphrases as consisting of two features,

phraseness and informativeness. Phraseness is described by them as the “degree to
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which a given word sequence is considered to be a phrase.” For example, collocations

have a high phraseness. Informativeness is the extent to which a phrase captures the

key idea or main topic in a set of documents.

To find keyphrases, they compared two language models, the target document

set and a background corpus. Pointwise KL divergence was chosen as the method of

finding the difference between two language models.

The KL divergence D(p||q) between two probability mass functions p(x) and q(x)

with alphabet χ is given in equation 5.2.

D(p||q) =
∑
x∈χ

p(x)log
p(x)

q(x)
(5.2)

KL divergence is an asymmetric function. D(p||q) 6= D(q||p).

Pointwise KL divergence is the individual contribution of x to the loss of the entire

distribution. The pointwise KL divergence of a single phrase w is δw(p||q):

δw(p||q) = p(w)log
p(w)

q(w)
(5.3)

The phraseness of a phrase can be found by comparing the foreground n-gram

language model against the background unigram model. For example, if we were

judging the phraseness of “gun control”, we would find the pointwise KL divergence

of “gun control” between the foreground bigram language model and the foreground

unigram language model.

ϕpδw(LMfg
N ||LMfg

1) (5.4)
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The informativeness of a phrase can be found by finding the pointwise KL diver-

gence of the foreground model against the background model.

ϕi = δw(LMfg
N ||LMbg

N) (5.5)

A unified score can be formed by adding the phraseness and informative score:

ϕ = ϕp + ϕi (5.6)

Once keyphrases have been extracted from the document set, they are sorted

based on their combined score. We select the top n-ranked keyphrases as candidate

phrases.

Based on our chosen task conditions regarding coverage of the documents and

minimized overlap between topics, we need an undirected mapping between phrases

and documents. A natural representation for this is a bipartite graph where the two

sets of nodes are phrases and documents. Let the graph be: G = (W,D,E) where W

is the set of candidate phrases generated by the first step and D is the entire set of

documents. E is the set of edges between W and D where there is an edge between

a phrase and a document if the document contains the phrase.

We formulate the task as a variation of Weighted Set Cover problem in theoretical

computer science. In normal Set Cover we are given a collection of sets S over a uni-

verse U , and the goal is to select a minimal subset of S such that the whole universe,

U is covered. Unfortunately this problem is NP-complete (Garey and Johnson, 1990),

so we must settle for an approximate solution. But fortunately there exist very good
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Figure 5.4: Bipartite graph representation of topic document coverage

α-approximation algorithms for this problem (Cui, 2007).

The difference between weighted set cover and set cover is that each set has an

associated real-valued weight or cost and the goal is to find the minimal cost subset

which covers the universe U .

In our problem, each phrase can be thought of as a set of the documents which

contain it. The universe is the set of all documents.

5.5.2 Greedy Algorithm

To solve the above problem, we use a greedy algorithm. which computes a cost

for each node iteratively and selects the node with the lowest cost at every iteration.

The cost of a word should be such that we do not choose a phrase with very high cov-

erage, like “virginia” and at the same time not choose words with very low document

frequency since a very small collection of documents can not be judged a topic.

130



Based on these two conditions we have come up with a linear combination of

three cost factors, similar to Maximal Marginal Relevance (MMR) (Carbonell and

Goldstein, 1998).

1. Relative Document Size:

f1(wi) =
|adj(wi)|

N
(5.7)

where adj(wi) is the set of documents that the keyphrase wi occurs in. |adj(wi)|

is the document frequency of the word.

This factor takes into account that we do not want to choose words which

cover the whole document collection. For example, phrases such as “virginia”

or “virginia tech” are bad topics, because they cover most of the document set.

2. Redundancy Penalty:

We want to choose elements that do not have a lot of overlap with other ele-

ments. One measure of set overlap is the Jaccard similarity coefficient:

J(A,B) =
|A ∩B|
|A ∪B|

(5.8)

f2(wi) = 1−
∑

wj∈W−wi
J(wi, wj)

|W | − 1
(5.9)

This factor is essentially 1− average jaccard similarity.
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We calculate the pairwise Jaccard coefficient between the target keyphrase and

every other keyphrase. The pairwise coefficient vector provides information on

how much overlap there is between a keyphrase and every other keyphrase.

Phrases with a high average Jaccard coefficient are general facets that cover the

entire collection. Phrases with a low Jaccard coefficient are facets that cover

specific topics with little overlap.

3. Subtopic Redundancy Memory Effect

Once a keyphrase has been chosen we also want to penalize other keyphrases

that cover the same content or document. Equation 5.10 represents a redudancy

“memory” for each keyphrase or topic. This memory is updated for every step

in the greedy algorithm.

R(wi) = R(wi) + J(wi, wj) (5.10)

where wj is the newly selected phrase.

A general cost function can be formed from a linear combination of the three

cost factors. We provide two parameters, α and β to reprsent the tradeoff between

coverage, cohesiveness and intersection. For our experiments, we found that an α

value of 0.7 and a β value of 0.2 performed well.
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cost(wi) = α× f1(wi)

+β × f2(wi)

+(1− (α + β))×R(wi)

(5.11)

The pseudocode for the greedy algorithm is given in Figure A.1 .

Algorithm A.1

(∗ A greedy set-cover algorithm for detecting sub-topics ∗)

Input: Graph G = (W,D,E), N: number of documents to cover

Output: Set of discriminative phrases for the different topics

1. W = {w1, w2, . . . , wn}

2. Wchosen = ∅

3. num docs covered = 0

4. while num docs covered < N

5. do for wi ∈ W

6. do cost(wi) = α× f1(wi)

7. +β × f2(wi)

8. +(1− (α + β))×R(wi)

9. wselected = argmax
w

cost(wi)

10. for wi ∈ W

11. do R(wi) = R(wi) + J(wselected, wi)

12. num docs covered = num docs covered+ |adj(wselected)|

13. Wchosen = Wchosen ∪ {wselected}
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14. W = W − {wselected}

15. D = D − adj(selected)

16. return Wchosen

5.6 Adaptive Algorithm

There are two problems with the above greedy algorithm. First, there is no easy

way to tell how many documents should be covered so that the set of topics chosen are

distinct and informative. Secondly, even if there is an oracle to tell us the right number

of documents to be covered, identifying which documents to be covered is an issue.

Not all documents are equally good. For example, in the V irginia Tech Tragedy

example, there are a lot of documents which merely report the tragedy and the death

toll. These documents are good candidates to be covered if the number of topics

required by the user is small. Therefore, the utility of a document depends on the

number of topics required by the user. If the user requires just two topics, then good

representative terms are ”Virginia Tech Tragedy” and ”mass shooting”. However, the

same two terms are not good representative topics if the number of topics requested

by the user is, say 20. This suggests that we need a scoring function for the documents

which depends on the number of topics to be chosen and the scores of the keyphrases

it contains. The score for each keyphrase would still be computed using the same

function as in the greedy algorithm, but each factor would be a weighted sum with

the weights being the scores of the documents. Thus, the algorithm is recursive with

the scores of the words being computed using the scores of the documents, which is

in turn computed using the scores of the keyphrases.
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The scoring function should be such that when the number of topics requested by

the user is small, then the scoring function should prefer documents which contain

a lot of high-scoring keyphrases and prefer keyphrases which cover a lot of high-

scoring documents. When the number of topics requested is low, then the scoring

function should prefer documents which are focussed, or in other words, contain few

keyphrases and prefer keyphrases, which are focussed topics, or in other words, are

contained in a few number of documents. Therefore we iteratively compute the scores

of keyphrases and documents until they converge. After each iteration, we normalize

the score vectors of keyphrases and documents so that they sum to 1.

Let the score of the keyphrase wi be W scorei and the score of document dj

be D scorej. Initially we set the score of all documents to 1/N where N is the

total number of documents to be covered. Let the score vector for keyphrases and

documents be denoted as W score and D score respectively. The weighted version

of the formulae for the relative document size factor and the redundancy penalty is

shown below.

f ′1(wi) =
∑

dk∈adj(wi)

D scorek (5.12)

f ′2(wi) = 1−
∑

wj∈W−wi
J ′(wi, wj)

|W | − 1
(5.13)

where J ′(wi, wj) is the weighted jaccard similarity coefficient between keyphrases wi

and wj as given below.
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J ′(A,B) =

∑
dk∈adj(wi)∩adj(wj)D scorek∑
dk∈adj(wi)∪adj(wj)D scorek

(5.14)

The formula for the topic redundancy memory remains the same. Now the scoring

function for the keyphrase is

W scorei = α× e|
K

max topics
−f ′1(wi)|

+β × f ′2(wi)

+(1− (α + β))×R(wi)

(5.15)

where K is the number of topics remaining to be chosen and max topics is the

maximum number of topics the user might request. In our experiments, we set this

value to 30. The scores for the documents is calculated using the following formula,

D scorei = e|
K

max topics
−g(di)| (5.16)

where g(di) is the sum of the scores of the keyphrases the document contains, as

shown below.

g(di) =
∑

wj∈adj(di)

W scorej (5.17)

The adaptive algorithm is given in A.2 .

Algorithm A.2

(∗ A greedy set-cover algorithm for detecting sub-topics ∗)

Input: Graph G = (W,D,E),K: number of topics to choose
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Output: Set of K discriminative phrases for the different topics

1. W = {w1, w2, . . . , wn}

2. Wchosen = ∅

3. num topics to cover = K

4. for i← 1 to m

5. do D scorei = 1
m

6. while num topics to cover > 0

7. repeat

8. (W ′ score,D′ score) = Update Scores(W score,D score)

9. until (||W score−W ′ score||2 ≤ ε and ||D score−D′ score||2 ≤ ε)

10. wselected = argmax
w

cost(wi)

11. for wi ∈ W

12. do R(wi) = R(wi) + J ′(wselected, wi)

13. num topics to cover = num topics to cover − 1

14. Wchosen = Wchosen ∪ {wselected}

15. W = W − {wselected}

16. D = D − adj(selected)

17. return Wchosen

5.7 Experiments

There are two phases in our algorithm, the first phase consists of extracting

keyphrases from the corpus of documents and the second phase consists of pruning

the set of keyphrases which can be used to represent topics. As a baseline measure,

137



we implemented a very simple algorithm similar to the Maximal Marginal relevance

method (Carbonell and Goldstein, 1998). The algorithm is shown in A.3 As a gold

standard, we manually annotated four different collections of blog posts. Each anno-

tator generated a list of topics.

Algorithm A.3

(∗ A simple algorithm based on Maximal Marginal Relevance for finding topics ∗)

Input: T Ranked list of keyphrases,k number of topics required

Output: k discriminative keyphrases for the different topics

1. L = ∅

2. U = T

3. ctr = 0

4. while ctr < k

5. t = argmaxxscore(x)

6. L = L
⋃
t

7. U = U − t

8. for x ∈ U

9. score(x)∗ = (1− Sim(x, t))

10. ctr + +

11. return L

5.8 Evaluation

We compare our weighted set cover approach for extracting topics with the current

state-of-the-art topic modeling approach using Latent Dirichlet Allocation (LDA)
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(Blei et al., 2003). The topic model based on LDA, like all other topic models, has

the same fundamental idea that a document is a mixture of topics. It is a generative

model for documents: it specifies a probability distribution over topics and then, for

word in a document, a topic is chosen at random according to this distribution and

then a word from that topic is chosen. Using approximate inference technics, this

process is inverted and topics responsible for generating this set of documents are

inferred. Let P (z) represent the probability distribution over topics in a particular

document and P (w|z) for the probability distribution of words over the given topic,

z. Then let P (zi = j) represent the probability that the jth topic is chosen for the

ith term in a document and P (wi|zi = j) represent the probability of word, wi, given

topic j. Then the model specifies that probability of a word in a document as,

P (wi) =
T∑
j=1

P (wi|zi = j)P (zi = j), (5.18)

where T is the number of topics. If we denote φj = P (w|z = j) and θd = P (z)

as the probability distribution of topics for document d, then the parameters, φ

and θ indicate which topics are important for which document and which words are

important for which topic. The estimation of these two parameters is done using

efficient estimation procedures like Gibbs Sampling.

Another method similar to topic modeling for extracting semantically related top-

ics is Latent Semantic Analysis (LSA) (Deerwester et al., 1990). LSA uses a low-rank

approximation, using Singular Value Decomposition (SVD), to the term-document

matrix with minimal error according to the Frobenius norm. The topic model, can
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also be viewed as matrix factorization as pointed by (Hofmann, 1999b). In LDA,

the word-document co-occurrence matrix matrix is split into two factors, a topic ma-

trix φ and a document matrix θ. This suggests that both LSA and LDA perform a

dimensionality reduction on the term-document co-occurrence matrix based on the

term-term correlations.

In the same sense, our algorithm too performs dimensionality reduction. The

difference is that our algorithm performs this dimensionality reduction in two stages.

In the first stage, with the help of a background corpus and using the keyphrase

detection module, we prune out most of the words that are not very relevant to the

set of documents. In the second stage, we make use of the co-occurrence statistics

between the n-grams to extract a set of distinct topical n-grams.

To strengthen our argument for using the keyphrase detection module as a dimen-

sionality reduction step, we compare the performance of LDA using all the n-grams in

the document and the performance of LDA using just the top k terms outputted by

keyphrase detection module. In this experiment, we use the same number of n-grams

as used for our algorithm, k = 300.

In evaluating the topic detection part, there exists two categories of methods,

intrinsic and extrinsic (Liddy, 2001). Extrinsic methods evaluate the labels against

a particular task, intrinsic methods measure the quality of the labels directly. We

provide intrinsic and extrinsic evaluations of our algorithm.

To evaluate our facet detection algorithm, we created a gold standard list of facets

for each data set. A list of the top 300 keyphrases generated by the KL divergence

module was given to two evaluators. The evaluators labeled each keyphrase as a

140



Data set
Coverage Average Normalized Evaluator

pairwise KL rating
JC divergence

iphone
Gold standard 12,977 0.02 2.81 3.13
MMR-variant 10,321 0.04 2.45 2.20

Graph-based method 9,850 0.01 1.98 2.82
Adaptive Graph-based method 11,232 0.03 2.62 3.05

petfoodrecall
Gold standard 2,659 0.05 4.30 3.43
MMR-variant 3,087 0.09 2.54 2.34

Graph-based method 2,055 0.01 1.75 2.81
Adaptive Graph-based method 2,972 0.04 3.42 3.12

spitzer
Gold standard 4,036 0.03 2.29 3.31
MMR-variant 4,217 0.07 2.09 2.12

Graph-based method 2,468 0.01 1.60 2.88
Adaptive Graph-based method 4,108 0.05 2.12 3.22

vtech
Gold standard 5,058 0.03 2.79 3.76
MMR-variant 8,536 0.11 2.45 2.27

Graph-based method 4,342 0.01 1.66 3.28
Adaptive Graph-based method 5,511 0.04 2.58 3.23

Table 5.2: Coverage, overlap and relevance and evaluation scores for the gold stan-
dard, baseline and graph-based method and the improved graph-based method
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Data set Precision Recall F-score
iphone

MMR-variant 0.32 0.30 0.31
LDA 0.41 0.39 0.40

LDA using Keyphrase Detection 0.48 0.59 0.53
Graph-based method 0.52 0.60 0.56

Adaptive Graph-based method 0.66 0.58 0.62
petfoodrecall
MMR-variant 0.42 0.49 0.45

LDA 0.50 0.62 0.55
LDA using Keyphrase Detection 0.59 0.68 0.63

Graph-based method 0.61 0.57 0.59
Adaptive Graph-based method 0.69 0.60 0.64

spitzer
MMR-variant 0.47 0.48 0.47

LDA 0.59 0.65 0.62
LDA using Keyphrase Detection 0.67 0.70 0.68

Graph-based method 0.79 0.59 0.68
Adaptive Graph-based method 0.83 0.72 0.77

vtech
MMR-variant 0.45 0.56 0.50

LDA 0.57 0.62 0.59
LDA using Keyphrase Detection 0.67 0.75 0.70

Graph-based method 0.72 0.76 0.74
Adaptive Graph-based method 0.82 0.74 0.78

Table 5.3: Precision, recall and F-score for the baseline, LDA, LDA using keyphrase
detection,graph-based algorithm, and the Improved graph-based method
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iPhone petfoodrecall spitzer vtech
0.62 0.86 0.77 0.88

Table 5.4: Kappa scores for the gold standard

positive example of a topic or a negative example of a topic.

Cohen’s Kappa coefficient(Cohen, 1960) was calculated for the gold standard.

Table 5.4 lists the κ value for the four data sets.

The kappa scores for the petfoodrecall and vtech datasets showed good agreement

among the raters, while the spitzer dataset had only fair agreement. For the iPhone

data set, both evaluators had a large amount of disagreement on what they considered

topics.

A separate group of evaluators was given the output from our graph-based algo-

rithm, a list of the top KL divergence keyphrases of the same length, and the gold

standard for all four datasets. Evaluators were asked to rate the keyphrases on a scale

from one to five, with one indicating a poor topic, and five indicating a good topic.

The number k of topics for the algorithm was cutoff where the f-score is maximized.

The same number of phrases was chosen for KL divergence as well. Table 5.6 lists

the cutoffs for the four datasets.

In addition, the precision, F-score, coverage and average pairwise Jaccard coef-

ficient were calculated for the four data sets. Precision, recall and the F-score are

given in table 5.3. The precision, recall and F-score for the gold standards is one.

The others are shown in table 5.2. Average pairwise Jaccard coefficient is calculated

by finding the Jaccard coefficient between every pair of topics in the output and av-

eraging this value. This value is a measure of the redundancy. The average relevance
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Spitzer Petfood recall
Ashley Alexandra Dupre Under Wal-Mart

Oberweis Xuzhou Anying
Emperor’s club People who buy

Governor of New Cuts and Gravy
Spitzer’s resignation Cat and Dog

Dr Laura Cats and Dogs
Mayflower hotel Food and Drug

Sex workers Cyanuric acid
former New york recent pet

High priced prostitution industrial chemical
McGreevey massive pet food

Geraldine Ferraro Royal canin
High priced call Iams and Eukanuba

legally blind Dry food
money laundering

Virginia Tech shooting iPhone
Korean American Photo sent from
Gun Ownership Waiting in line

Holocaust survivor About the iPhone
Mentally ill Unlimited data

Shooting spree From my iPhone
Don Imus Cell Phones

Video Games Multi-touch
Gun free zone Guided tour

West Ambler Johnston iPhone Launch
Columbine High school Walt Mossberg

Self defense Apple Inc
Two hours later Windows Mobile

Gun violence June 29th
Seung Hui Cho Web Browser

Second Amendment Activation
South Korean

Table 5.5: Different topics chosen by the graph-based algorithm for the different
datasets. Each data set contains a different number of documents, hence the number
of topics chosen for each data set is diferent.
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iphone petfoodrecall spitzer vtech
25 30 24 18

Table 5.6: Number of generated topics for each collection.

2 Topics 5 Topics 10 topics 20 topics
Virginia Tech Virginia Tech Massacre at Virginia Korean American
Shooting Cho Seung Gun Control Columbine

West Ambler Johnston Norris Hall Tragic
Deadliest Shooting West Ambler Johnston Imus
Tragic Video Games Video Games

Gun Laws Cho Seung
Holocaust Survivor West Ambler Johnston
Cho Seung Hui Norris Hall
Korean American Email
Mental Health Two hours later

Massacre at Virginia
High School
Gun Laws
Holocaust Survivor
People
Guns
Media
Gun Control
Self Defense

Table 5.7: Different topics chosen by the adaptive algorithm for the Virginia Tech
Tragedy data set

145



0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

10

20

30

40

50

60

70

80

Number of documents to be covered

A
v
e
ra

g
e
 p

a
ir
w

is
e
 i
n
te

rs
e
c
ti
o
n
 o

f 
to

p
ic

s

 

 

iPhone

Spitzer

petfoodrecall

vtech

Figure 5.5: Subtopic redundancy vs. coverage. Each data set contains a different
number of documents, hence the number of topics chosen for each data set is diferent.

is a normalized version of the combined “phraseness” and “informativeness” score

calculated by the KL divergence method. This value is normalized by dividing by the

KL divergence for the entire 300 phrase list. This provides a relevancy score for the

ouput.

5.9 Results

Table 5.5 shows the different topics chosen by the graph-based algorithm for the

different data sets. Our graph-based method performs very good and almost achieves
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the gold standard’s rating. The F-score for the iPhone data set was only 0.56, but we

believe part of this may be because this dataset did not have clearly defined topics,

as shown by the low agreement (0.62) among human evaluators.

Table 5.7 shows the different topics chosen by the improved graph-based algorithm

for the Virginia Tech Tragedy data set. It can be seen that when the number of topics

requested is small, the chosen topics are representative yet diverse. The chosen topics

are much more fine-grained as the number of topics increases.

Figure 5.5 shows the tradeoff between coverage and redundancy. This graph

clearly shows that the overlap between the topics increases very slowly as compared

to the number of documents covered. The slope of the curves increase slowly when

the number of documents to be covered is small and later increases rapidly . This

means that initially there are a lot of small focused topics and once we have selected

all the focused ones the algorithm is forced to pick the bigger topics and hence the

average pairwise intersection increases.
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CHAPTER VI

Conclusion

6.1 Summary of Contributions

Similarity plays a very important role in many machine learning and natural

language processing algorithms. We had three main goals in this thesis:

• Develop representation frameworks for similarity learning of relational data.

• Unsupervised similarity learning algorithms for relational data that uses the

heterogeneous features

• Illustrate the usability of the learned similarity and representation framework

in different applications.

This chapter summarizes our main contributions and describes future directions

for research. In Chapter II, we describe different existing similarity measures for

words, documents and structured objects like graphs and trees. Evaluating similarity

measures is very hard since similarity measures are almost never used directly, but
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are rather used as a tool in many algorithms. Therefore, we describe both intrinsic

and extrinsic evaluation approaches. In the intrinsic approach to evaluating simi-

larity, similarity scores between selected pairs of objects are obtained from human

experts. The correlation between the similarity scores outputted by the algorithm

and the scores given by humans is used to evaluate similarity measures. If the simi-

larity scores were obtained from more than one person, then the correlation between

similarity scores by humans is used as an upper bound. In an extrinsic evaluation, the

similarity scores are used in an external task and the performance in the task is used

as the evaluation metric of the similarity measure. Some of the commonly used tasks

for evaluating similarity measures are classification, clustering and recommendation

systems. We describe the different algorithms for tasks which are used for evaluat-

ing similarity measures and the evaluation metrics for the tasks. To the best of our

knowledge, there are no unsupervised learning algorithms which learn similarity using

heterogeneous features which are present in relational data.

Chapters III and IV address the first two goals of the thesis. In Chapter III, we

proposed a novel framework to represent objects with heterogeneous features which

enables complex similarity learning. Assuming each object can be described by mul-

tiple features, we represent the objects using multiple graphs. Each graph is used to

represent a single feature type. For example, in the case of publications, the pub-

lications form the vertex set of one graph while the associated keyphrases form the

vertex set of another graph. Similarly, the associated authors, venues can be repre-

sented using multiple graphs. The edge weight in each graph represents the similarity

between the different features. We formalized the problem of similarity estimation
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as an optimization problem induced by a regularization framework over edges in the

multiple graphs. We show that there exists a direct solution to the convex optimiza-

tion problem, albeit too expensive in terms of computational complexity. Therefore,

we present an alternate algorithm for the optimization using the coordinate descent

approach. We denote the proposed Similarity Measure using MUltiple Graphs as

SMUG. We also illustrated the superior performance of SMUG in tasks like clus-

tering and classication over baseline similarity measures: cosine similarity, citation

similarity and linear combination of similarity measures. We also show that SMUG

outperforms state of the art classication algorithm which uses spectral clustering of

multiple graphs and co-clustering.

In Chapter IV, we extend the SMUG framework to allow real edge weights for

edges across different layers of the graph. We explained the connection between sim-

ilarity learning and feature weight learning. iteratively and simultaneously learn fea-

ture weights. We formalized the problem of similarity estimation as an optimization

problem induced by the regularization framework over edges in multiple graphs. We

developed an efficient, iterative algorithm based on Alternating Optimization (AO)

which has a neat, intuitive interpretation in terms of random walks over multiple

graphs.

We also presented theoretical equivalence results between node label regularization

and edge weight regularization. We showed that all variants of SMUG can be easily

parallelized under the MapReduce framework using a sequence of three MapReduces.

We showed that the variant of SMUG which incorporates feature weight learning, in

addition to, similarity learning outperforms SMUG, the baseline similarity measures
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and other standard similarity measures like Multiple Kernel Learning and Latent Se-

mantic Analysis. We also illustrated the applicability of SMUG in a recommendation

task using the Yahoo! KDD cup data set. In this problem, the task is to recom-

mend different objects like tracks, genres, artists and albums to users based on past

user preferences provided in the form of user ratings. We built a recommender system

which incorporates user preferences and generalizes well using the available metadata.

The recommender system accurately predicts user preference over genres, artists using

the ratings for tracks. We compare the system against neighborhood models which

do not differentiate between the different items (tracks, genres, artists and albums).

The recommender system built on top of the SMUG framework outperforms models

which do not exploit the available metadata.

In Chapter V, we develop adaptive algorithms which use the SMUG framework for

topic detection in blogs. We present two new algorithms based on weighted set cover

for finding topics in a corpus of blog posts. The algorithm uses the SMUG framework

to represent documents and extracted candidate topic labels. We developed algo-

rithms which adapt to the requested number of topics and selects representative and

discriminative set of topics which can be used to describe the entire story. If the user

selects a small number of topics, then the algorithm selects broad topics which convey

the big picture of the story and if the user selects a large number of topics, the algo-

rithm picks many fine-grained topics which shows the many different aspects/facets

of the story Our algorithm provides a new method of ranking keyphrases that can

help users find different facets of an event.
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The identification of facets has many applications to natural language processing.

Once facets have been identified in a collection, documents can be clustered based

on these factets. These clusters can be used to generate document summaries or for

visualization of the event space. The selected topics provide a succinct summary of

the different topics.

We started with the problem of representing relational data for the purpose of

learning similarity. We have shown that it is beneficial to represent objects using

the different heterogeneous features and exploit the dependency between different

features to learn similarity. We have also shown that multiple feature types can be

used to learn similarity from each other and this further boosts the performance of

the similarity measure.

6.2 Future Work

In this section, we outline some possible directions for future work. A possible

avenue for future research is in applying active learning in the SMUG framework.

(Raghavan et al., 2006; Druck et al., 2009) show that intelligently soliciting labels on

multiple features facilitates more efficient annotation and leads to higher classification

accuracy. We can combine the advantages of active learning and the availability of

heterogeneous features to reduce annotation effort to obtain labeled data for tasks

like classification. One possible idea is to represent the different feature similarity

graphs as in Chapter III for active classification. A potential hypothesis is that we can

exploit existing correlations between class labels of objects and features. For example,

consider the problem of classifying scientific publications into three research areas:
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Machine Translation, Dependeny Parsing and Summarization as in the AAN data

set. Labeling the keyphrase “Statistical Machine Translation” as belonging to the

class “Machine Translation” may be more helpful than labeling multiple publications

if many publications contain the keyphrase “Statistical Machine Translation”.

The key idea is to represent the different feature similarity graphs as in Chapter

III for active classification. Essentially, once some of the object nodes are labeled,

they impose soft-labels on the nodes in the other layers. The hypothesis is that if

the features are useful in expressing the cluster structure of the object layer graph,

then there exist consistent clusterings across the different layers. This can be best

explained with help of an example. For example, consider the problem of classifying

publications by research area. Let the features in consideration be authors, venues

and keywords. Let the different research areas be “Machine Translation”, “Sum-

marization” and “Dependency Parsing”, then once some publications are labeled as

belonging to “Summarization” and written by “Dragomir Radev” or similar authors,

then we can label another publication by “Dragomir Radev” as a summarization pa-

per with high confidence. In other words, once some publications are labeled, it can

be used to cluster other graph layers like the author layer. Once the different layers

are classified using the initial set of labeled data, we can find how consistent are the

different clusterings are. Using the consistency of different clusterings as the objec-

tive function, we can identify the set of nodes to be labeled so that other nodes can

be labeled with high confidence while maintaining consistency of clusterings across

different layers.

One of the concerns of the SMUG framework is the number of parameters (αi) that
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need to be tuned. The number of parameters grows quadratically with the number of

layers. In order to learn these parameters, we need training data in the form of class

labels for a small fraction of the nodes. A possible extension to incorporate training

data is to regularize node labels, in addition, to the edge weights. Thus, the modified

algorithm can be used to regularize the node labels and edge weights. We can develop

a new learning algorithm that can be used to tune the parameter values using the

training data.
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APPENDIX A

Graph Clustering Using Active Learning

Introduction

Clustering is a very important problem with many applications in different areas.

In general, clustering is an unsupervised task of grouping data points into groups

(clusters). The research problem has been approached by researchers in many fields

reflecting its broad appeal and usefulness in different areas. It is considered to be

an ill-defined problem (Jain and Dubes, 1988) which in addition to its combinatorial

nature makes it a very hard problem.

In many machine learning scenarios, there is a lot of unlabeled data whereas

labeled data is very expensive. Active Learning is a learning technique which actively

queries the user for labels. In general, the number of training samples required is

much lower when active learning is used since the learning algorithm gets to pick the

data which need to be labeled. In this paper, the main idea is to let the clustering
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algorithm pick a few data points to be labeled. Based on the labels provided by

the user, the remaining points are clustered. The clustering algorithm tries to pick

points which are mutually far away from each other and hence the set of points

chosen form a representative set of points for the underlying community structure.

As a preprocessing step, the algorithm augments the similarity matrix by propagating

similarity values along edges. The only input to our algorithm is the similarity matrix

and the cluster labels for the nodes selected by our algorithm.

The rest of the paper is organized as follows. Section 2 reviews the previous work

in this area. In section 3, we describe the new algorithm and then we introduce

our data set in section 4. Section 5 describes the experiments conducted and in

section 6 we explain our evaluation process followed by a discussion of the results.

We conclude this paper in section 8 with a brief summary of the performance and

possible directions for future work.

Related Work

There has been a lot of previous work (MacQueen, 1967; Heyer et al., 1999; Shi

and Malik, 2000) in Clustering. A good recent survey of the different approaches can

be found in (Grira et al.). Semi-supervised learning is a class of machine learning

algorithms that make use of both unlabeled and labeled data. They have been found

to perform very well (Belkin et al., 2004; florina Balcan et al., 2005; Blum and Chawla,

2001) with a limited amount of labeled data and a large amount of unlabeled data.

This makes semi-supervised learning algorithms fall in between unsupervised and

supervised learning algorithms . Due to the success of semi-supervised approaches,
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there has been a lot of work in semi-supervised clustering (Bilenko et al., 2004; Basu

et al., 2004b). In this setting, the supervision (training data) has been in the form

of constraints. The constraints are given in the form of answers to questions of the

following form, “should the ith and the jth object be in the same cluster or not?”

It has been shown (Davidson et al., 2006; Wagstaff, 2006) that a larger number of

constraints does not necessarily yield a better performance in semi-supervised clus-

tering, i.e, most of the work on semi-supervised clustering algorithms report only

“average” behavior when different constraint sets are used while it is possible that

a particular set of constraints decreases performance over a smaller constraint set.

This issue has led to the scarcity of active learning approaches for semi-supervised

clustering(Mallapragada et al., 2008; Basu et al., 2004a). Therefore, in all the active

clustering algorithms till now, the algorithm sequentially asks questions of the form

“should the ith object and the jth object be linked together or not?” Both active

learning algorithms have two phases, the Explore phase and the Consolidate phase.

The explore phase selects must-not link constraints using a farthest-first strategy.

The explore phase continues until k points are chosen such that no two points should

link together, where k is the number of clusters. The two algorithms vary in the

Consolidate phase. (Basu et al., 2004a) choose points randomly such that they are

not selected as part of the k points and queries them against each of the k points,

until a must-link query is obtained. In other work, (Mallapragada et al., 2008) assigns

each unselected point to the closest point among the k chosen points. According to

the active learning principle, points which are farthest away from the chosen points

are selected during the Consolidate phase for querying.

158



Active Learning Algorithm

Given is a graph G = (V,E,W ) where V represents the set of nodes and E

represents the set of edges. The function W gives the weight of an edges between two

nodes. The edge weights represent the similarity between the nodes. We can view

the similarity between two nodes as the probability that the two nodes belong to the

same cluster. Therefore, once we know the class of one node, we can label nodes

adjacent to it which are connected by an edge with weight above a threshold.

Definition A.1. If two nodes a and b are connected by an edge with weight wab ≥ ε,

where ε is the threshold, then we say a is covered by b and vice versa.

We can also label nodes which are more than one hop away as long as the product

of the edge weights along the path is greater than the threshold. We define the

augmented similarity between two nodes a and b as the maximum product of edge

weights along the path between a and b.

S
′
= maxp∈path(a,b)path product(p) (A.1)

where, path(a, b) is the set of all the paths between a and b. Let the path p be

represented as (a, v1, . . . , vk, b) and let path product(p) be defined as

path product(p) = wa,v1 ×
k−1∏
i=1

wvi,vi+1 × wvk,b (A.2)

Thus we need to select a set of nodes such that every node in the graph can be

labeled. There are two phases in our algorithm. In the first phase, we compute the
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covering relation between all nodes. To compute the covering relation, we need to

compute the augmented similarity S
′
(a, b) for all pairs of vertices (a, b). We use the

Floyd-Warshall algorithm on a transformed graph to compute the covering relation.

Specifically, the graph is transformed by modifying the edge weights. Let the edge

weight between two nodes, a and b, be wa,b, then this edge weight is transformed as

shown below,

w
′

a,b = − log(wa,b) (A.3)

Then clearly,

S
′
(a, b) = e−d(a,b) (A.4)

where d(a, b) is the shortest path distance between a and b in the transformed graph.

Now given the sets of nodes covered by every node, we find the minimum set cover.

The minimum set cover selects the minimum set of nodes, which when labeled can

help label all the nodes in the graph. In traditional Set Cover we are given a collection

of sets S over a universe U , and the goal is to select a minimal subset of S such that

the whole universe, U is covered. In the case of our problem, both the universe, U

and S is the set of nodes in the graph V .

For example, consider a graph G with 7 nodes {v1, v2, v3, v4, v5, v6, v7} and assume

the covering relation is as shown in Table A.1. It can be seen that the covering

relation is reflexive, i.e, if vi covers vj, then vj covers vi as well. A minimum set cover

solution for this example is C = {v1, v4, v5}, i.e, 3 is the size of the smallest set that

can cover all vertices.

Unfortunately finding the minimal set cover is NP-hard (Garey and Johnson,
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Vertex label Vertices Covered
v1 v2, v3

v2 v1, v4

v3 v1, v5

v4 v2

v5 v6, v7, v3

v6 v5

v7 v5

Table A.1: Example showing the covering relation for a toy graph

1990), so we must settle for an approximate solution. But fortunately there exist very

good α-approximation algorithms for this problem (Cui, 2007). The greedy algorithm

for set covering chooses sets iteratively; it chooses the set which contains the largest

number of uncovered elements until all the elements are covered. It can be shown

(Cui, 2007) that this algorithm achieves an approximation ratio of H(s) = O(log |s|),

where s is the size of the largest set and H(n) is the nth harmonic number. Let A

be the set of nodes selected for labeling and let R(A) denote the number of nodes

covered by A using a particular threshold. Now clearly the following theorem holds

true:

Theorem A.2. For all sets, A ⊆ B ⊆ V and a node v ∈ V −B, it holds that

R(A ∪ v)−R(A) ≥ R(B ∪ v)−R(B) (A.5)

Hence, the function R is submodular. Therefore, the greedy algorithm that picks

the set that covers maximum number of remaining nodes at every iteration is near

optimal after every iteration (Nemhauser et al., 1978).
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Let the set of nodes selected by our algorithm be defined as S. Then, once the

selected set of nodes are labeled by the user, the remaining nodes are labeled using

the following equation:

label(vi) = label(arg max
v∈V−Sk

S
′
(v, vi)) (A.6)

Essentially, all the unlabeled points are assigned the cluster label of the closest

point as given by the user. Unfortunatel, this algorithm has a time complexity of

O(|V |3) which is prohibitively high for most real networks. Hence instead of using

Floyd-Warshall’s algorithm to compute the covering relation between vertices, we

use a simple breadth first search to find out all vertices which are located within an

augmented similarity score of ε. Since the product of the similarity values falls very

quickly with the number of hops, this algorithm runs much faster empirically than

the O(|V |3) algorithm using Floyd-Warshall.

In the ideal case, the algorithm should select exactly k nodes where k is the

number of clusters in the graph. This will happen if the similarity function is an ideal

similarity function. An ideal similarity function gives a score of 1 for any two nodes

which should be in the same cluster and 0 otherwise. Clearly, we can see that when

we have an ideal similarity function, the algorithm behaves ideally by selecting just

k nodes for labeling.

In general, the clustering algorithm will perform well as long as the similarity

function satisfies a very intuitive and basic property. The similarity function should

give a high similarity score for inter cluster pairs as compared to intra cluster pairs.

The amount of training data required depends on the gap between the similarity
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values between inter cluster pairs and intra cluster pairs. The bigger the gap between

the similarity values of inter cluster pairs and intra cluster pairs, the more nodes are

covered by each node in its own cluster. Hence, the number of nodes selected to be

labeled goes down as the gap between the similarity value of inter cluster and intra

cluster pairs increases.

To illustrate the working of our algorithm (Alg. A.1), consider the toy graph shown

in Figure A.2. The edges are shown with varying width and darkness depending on

the weight of the edge. The larger the edge weight, the thicker and darker the edge.

Intuitively, there are three clusters in the graph. Vertices (1, 2, 3, 4) form one cluster,

(5, 6, 7) form another cluster and the remaining three vertices form the third cluster.

The augmented graph when we use a threshold value of 0.3 is shown in A.3. The

larger vertices are the vertices chosen for labeling. The edge weight between vertices,8

and 10, has been incremented to 0.576 because of the path (8− > 9− > 10). Clearly

the cluster structure becomes more prominent after the augmentation of similarities.

Now we apply minimum set cover on the augmented graph and vertex 3 is chosen

first since it covers the maximum number of vertices. Then vertices 9 and 6 are chosen

successively to cover the remaining vertices. Therefore (3, 9, 6) is the set of chosen

vertices for labeling. Once the user labels the vertices with different class labels, the

remaining vertices are labeled using the closest labeled vertex.
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Input: Graph G = (V,E,W ), threshold ε.
Output: Set of nodes selected for labeling.
N = |V |
Augment graph G using Equation A.1
Let W

′
be the modified similarity function.

for i = 1 to N do
for j = 1 to N do

if w
′
vjvi > ε then

cover(vi) = cover(vi) ∪ vj
end if

end for
end for
nodes remaining = {v1, v2, . . . , vN}
selected nodes = ∅
while nodes remaining 6= ∅ do
vselected = arg max

u
|cover(u)|

selected nodes = selected nodes ∪ vselected
cover(vi) = cover(vi)− cover(vselected)∀i ∈ [1, n]

end while
return selected nodes

Figure A.1: Active Learning Algorithm for Clustering Using Minimum Set Cover
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Figure A.2: Toy Graph

Data

We performed experiments on a wide variety of data sets. Below is the list of data

sets.

• AAN: We use the classification data set derived from AAN (Radev et al., 2009b)

described in Chapter III.

• We use three binary classification tasks derived from the 20 newsgroups data.

The three binary classification tasks are, rec.sport.basketball (994 documents)

vs. rec.sport.hockey (999 documents); comp.sys.ibm.pc.hardware (982 docu-

ments) vs. comp.sys.mac.hardware (961 documents); talk.religion.misc (628

documents) vs. alt.atheism (799 documents). Two documents u, v are con-
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Figure A.3: Modified Graph

nected if u is among the 10 nearest neighbors of v or v is among the 10 nearest

neighbors of u as measured by the cosine similarity (CS). We computed the

cosine similarity between the documents after converting each document into

a “tf.idf” vector without any preprocessing like header removal, stopword re-

moval, stemming, frequency cutoff. We applied the following weight function

on the edges wuv = e(CSuv−1)/0.03 before computing the nearest neighbor graph.

• An interaction network between 216 yeast genes, where each gene is labeled with

one of three KEGG (Ogata et al., 1999) functional pathway labels. This data

is a subgraph of a high-quality probabilistic functional network of yeast genes

(Lee et al., 2004). Each edge weight in this network represents a probability of
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linkage between two genes, estimated by integrating diverse functional genomic

data sources.

• The handwritten digits data set originates from the Cedar Buffalo digits database

(Hull, 1994). The digits were initially preprocessed to reduce the size of each

image down to a 16× 16 grid by down-sampling and Gaussian smoothing, with

pixel values in 0 to 255 (LeCun et al., 1990). The standard deviation of the

Euclidean distance between the images is 380. The edge weights between the

images xi and xj is calculated as,

wxixj = e(−
∑256
d=1 (xi,d−xj,d)2/3802) (A.7)

Experiments

We compare our “Greedy Algorithm” against the following algorithms

• Zhu: (Zhu et al., 2003a) algorithm employs active learning algorithm on top

of semi-supervised learning. The algorithm uses a simple Bayes Classifier and

a harmonic function to ensure label smoothness over the nodes in the graph.

They define the true risk of the bayes classifier based on the harmonic function

h as,

R(h) =
n∑
i=1

∑
yi=0,1

[sgn(hi) 6= yi]p
∗(yi) (A.8)

where sgn(hi) is the Bayes decision rule with threshold 0.5, such that sgn(hi) =

1 if hi > 0.5 and sgn(hi) = 0 otherwise and yi is the true label of the ith node.
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Here p∗(yi) is the unknown true label distribution at node i, given the labeled

data. p∗(yi = 1) is approximated as the probability of reaching 1 in a random

walk on the graph. For performing the active learning, they greedily choose the

point which will minimize the expected estimated error as the next point to be

labeled. The user provides the true cluster label for the chosen point and they

continue the process iteratively.

• Random: The Random baseline uses the graph updated with the augmented

similarity as described in Section 3. Instead of using the minimum set cover to

compute the set of nodes to be labeled, we pick nodes randomly to be labeled.

Results

Given that we have the cluster labels for all the nodes, we compare the quality

of the clusterings obtained by the different algorithms using classification accuracy

on the unlabeled data when different number of nodes are labeled. Classification

accuracy is defined as the percentage of total number of nodes that are correctly

labeled. Figure A.4 shows the classification accuracy obtained on the different data

sets by all the algorithms when different number of points are labeled. It can be seen

that our algorithm outperforms both Zhu et al’s algorithm and the random baseline

on all the data sets. On all the data sets, only a handful of data points need to be

labeled to obtain more than 80% accuracy. The set of points picked by our algorithm

to be labeled depends on the distribution of the cluster sizes, i.e, if a particular cluster

is bigger, then there are more points picked to be labeled in that particular cluster.
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Discussion

We compared our algorithm against the semi-supervised algorithm by (Kulis et al.,

2009) too. Since the supervision for semi-supervised algorithms is not in the form of

cluster labels for specific nodes, we cannot use accuracy as the metric of evaluation.

Instead, we use Normalized Mutual Information(NMI) (Strehl and Ghosh, 2002) as

our evaluation metric for comparison with semi-supervised algorithms. However, the

semi-supervised algorithm achieved poor performance on all the data sets except the

Gene Network. For example, the semi-supervised algorithm achieved a NMI score of

0.001 on the Hockey vs. Baseball data set with 500 constraints. We show that our

setting and the semi-supervised algorithm’s setting are equivalent in the following

theorem which helps us compare algorithms in the active learning setting with semi-

supervised clustering algorithms.

Theorem A.3. Labeling n nodes in a graph G with k clusters is equivalent to answer-

ing a worst-case of O(nk) pairwise constraints, where the constraints are answers to

questions of the form “Should vertices u and v be in the same cluster or in different

clusters?”.

PROOF: Given n nodes to be labeled in a graph G with k clusters, let the first

node be labeled as C1. The second node can be compared against the first node and if

they should be in the same cluster, then label the second node as C1, else as C2. Let

the second node be labeled as C2. Now, the third node can be compared against both

the first node and the second node and can be labeled as C1 or C2 or C3 depending on

the comparisons. Thus, it can be seen that labeling the ith node requires answering
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max(i− 1, k − 1) queries. Therefore, in the worst case, it takes O(nk) queries to be

answered to label n nodes in a graph G with k clusters.

Therefore, for the Hockey vs. Baseball data set answering 500 queries is equivalent

to labeling 250 nodes with cluster labels. Our algorithm achieves the maximum NMI

score of 1.0 when 250 nodes are labeled. The semi-supervised algorithm does not

perform well because the data set contains a total of 1993∗1992
2

= 1, 985, 028 edges and

labeling 500 of the edges is very little supervision compared to labeling 250 nodes.

Querying nodes iteratively for the cluster label is not conducive for active learning

for clustering since it requires the user to have a broad overview of the entire data

and the underlying clusters. To illustrate this clearly, consider the following scenario.

Suppose, we are trying to cluster publications in two fields, Medicine and Engineering.

Let the Medicine cluster consist of two subclusters, Cardiology and Ophthalmology.

Let the Engineering cluster consist of two subclusters, Electrical Engineering and

Computer Science. Now if the first query posed by the active learning algorithm is

“Should an Electrical Engineering publication and a Computer Science publication

be linked together?”, the user has no idea about how it should be answered because

the user does not know the resolution of the clustering he/she needs. Therefore, for

active learning in this setting to be useful, the user needs to get a broad overview of

the entire data set and the underlying community structure. On the contrary, our

algorithm would select a set of representative points from all the clusters (Electrical

Engineering, Computer Science, Cardiology and Ophthalmology) for being labeled by

the user. This provides the user with a compressed snapshot of the entire data set and

the user can choose the resolution of clustering he/she needs. Hence our algorithm
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helps visualize a set of points by reducing the total number of points to a few points

representative of each cluster. Therefore, it is better to ask the cluster labels of a set

of points at once instead of asking the queries sequentially which requires the user to

know the underlying clusters.

Conclusions and Future Work

In this work, we developed an active graph clustering algorithm. We formulated

the clustering problem as an optimization problem and proposed a greedy algorithm

with strong performance guarantees. We have shown that since the objective we are

optimizing is submodular, the greedy algorithm achieves an optimal solution within

a constant factor.

We evaluated our algorithm on many different datasets and our algorithm outper-

forms baseline algorithms and a state of the art clustering algorithm.
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(a) Baseball vs Hockey (b) PC vs MAC

(c) Religion vs Atheism (d) OCR 10 Digits

(e) Gene Network (f) AAN

Figure A.4: Classification Accuracy on the different data sets. The number of points labeled is plotted along the
x-axis and the y-axis shows the classification accuracy on the unlabeled data.
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APPENDIX B

ACL Anthology Network (AAN) Corpus

Introduction

The ACL Anthology is one of the most successful initiatives of the ACL. It was ini-

tiated by Steven Bird and is now maintained by Min Yen Kan. It includes all papers

published by ACL and related organizations as well as the Computational Linguistics

journal over a period of four decades. It is available at http://www.aclweb.org/anthology-

new/ . One fundamental problem with the ACL Anthology, however, is the fact that

it is just a collection of papers. It doesnt include any citation information or any

statistics about the productivity of the various researchers who contributed papers

to it. We embarked on an ambitious initiative to manually annotate the entire An-

thology in order to make it possible to compute such statistics. In addition, we were

able to use the annotated data for extracting citation summaries of all papers in the

collection and we also annotated each paper by the gender of the authors (and are
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currently in the process of doing similarly for their institutions) in the goal of creating

multiple gold standard data sets for training automated systems for performing such

tasks.

Curation

The ACL Anthology includes 17,610 papers (excluding book reviews). We con-

verted each of the papers from pdf to text using an OCR tool (www.pdfbox.org).

After this conversion, we extracted the references semi-automatically using string

matching. The above process outputs all the references as a single block of continu-

ous running text without any delimiters between references. Therefore, we manually

inserted line breaks between references. These references were then manually matched

to other papers in the ACL Anthology using a “k-best” (with k = 5) string matching

algorithm built into a CGI interface. A snapshot of this interface is shown in Figure

B.1. The matched references were stored together to produce the citation network.

In the case of the citation not being found, we have 5 different options the user can

choose from. The first option is Possibly in the anthology but not found which is used

if the string similarity measure failed to match the citation to the paper in AAN. The

second option, Likely in another anthology is used if the citation is for a paper in

a related conference. We considered the following conferences as related conferences

AAAI, AMIA, ECAI, IWCS, TREC, ECML, ICML, NIPS, IJCAI, ICASSP, ECIR,

SIGCHI, ICWSM, EUROSPEECH, MT, TMI, CIKM and WWW.

The third option is used if the cited paper is a journal paper or a technical report

or PhD thesis or a book. The last two options are used if the reference is not readable
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because of an error in the PDF to text conversion or if it is not a reference. Only

references to papers within AAN are used in the computation of statistics. In order to

fix the issue of wrong author names and multiple author identities we had to perform

a lot of manual post-processing. The first names and the last names were swapped for

a lot of authors. For example, the author name “Caroline Brun” was present as “Brun

Caroline” in some of her papers. Another big source of error was the exclusion of

middle names or initials in a number of papers. For example, Julia Hirschberg had two

identities as “Julia Hirschberg” and “Julia B. Hirschberg”. There were many spelling

mistakes, like “Madeleine Bates” was misspelled as “Medeleine Bates”. There were

about 1000 such errors that we had to manually correct. In some cases, the wrong

author name was included in the metadata and we had to manually prune such author

names. For example, “Sofia Bulgaria”, “Thomas J. Watson” was incorrectly included

as author names. Also, there were cases of duplicate papers being included in the

anthology. For example, C90-3090 and C90-3091 are duplicate papers and we had to

remove such papers. Finally, many papers included incorrect titles in their citation

sections. Some used the wrong years and/or venues as well. For example, here is one

reference to a paper with the wrong venue. “Hiroshi Kanayama Tetsuya Nasukawa.

2006. Fully Automatic Lexicon Expansion for Domain-oriented Sentiment Analysis.

In ACL.” The cited paper itself was published in EMNLP 2006 and not ACL 2006

as shown in the reference. In some cases, the wrong conference name was included in

the metadata itself. For example, W07-2202 had “IJCNLP” as the conference name

in the metadata while the right conference name is “ACL”. Conference names were

normalized to canonical names. For example, joint conferences like “COLING-ACL”
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had “ACL-COLING” as the conference name for some papers and “COLING-ACL”

in some other papers.

Figure B.1: CGI interface used for matching new references to existing papers

Basic Statistics

Using the metadata and the citations extracted after curation, we have built three

different networks. The paper citation network is a directed network with each node

representing a paper labeled with an ACL ID number and the edges representing a

citation within that paper to another paper represented by an ACL ID. The paper

citation network consists of 17,610 papers and 77,048 citations. The author citation

network and the author collaboration network are additional networks derived from

the paper citation network. In both of these networks a node is created for each unique

author. In the author citation network an edge is an occurrence of an author citing
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Figure B.2: Snapshot of the different statistics for a paper
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Year Network
Paper Citation Network Author Citation Network Author Collaboration Network

2006 n 8898 7849 7849
m 38,765 137,007 41,362

2007 n 9767 9421 9421
m 44,142 158,479 45,878

2008 n 13,706 11,337 11,337
m 54,538 196,505 57,614

2009 n 14,912 12,499 12,499
m 61,527 230,658 63,772

2010 n 16,962 13,398 13,398
m 72,463 278,366 73,044

2011 n 17,610 13,692 13,692
m 77,048 297,924 76,206

Table B.1: Growth of Citation Volume

another author. For example, if a paper written by Franz Josef Och cites a paper

written by Joshua Goodman, then an edge is created between Franz Josef Och and

Joshua Goodman. Self citations cause self loops in the author citation network. The

author citation network consists of 13,692 unique authors and 515,593 edges. There

exist many duplicate edges, that is, the same author citing another author. The

author citation network consists of 297,924 edges if duplicates are removed. In the

author collaboration network, an edge is created for each collaboration. For example,

if a paper is written by Franz Josef Och and Hermann Ney, then an edge is created

between the two authors. Table B.1 shows some brief statistics about the different

releases of the data set (2006, 2007, 2008, 2009. 2010 and 2011). Table B.2 shows

statistics about the number of papers in some of the renowned conferences in Natural

Language Processing. Figure B.2 shows statistics for an example paper.
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Venue Number of Papers
COLING 3482
ACL 2653
Computational Linguistics 900
EACL 782
EMNLP 1172
CoNLL 482
ANLP 334

Table B.2: Statistics for popular venues

Text Classification

We created a relational data set for text classification. We chose a subset of

papers in 3 topics (Machine Translation, Dependency Parsing, and Summarization)

from the ACL anthology. These topics are three major research areas in Natural

Language Processing (NLP). Specifically, we collected all papers which were cited

by papers whose titles contain any of the following phrases, “Dependency Parsing”,

“Machine Translation”, “Summarization”. From this list, we removed all the papers

which contained any of the above phrases in their title because this would make

the classification task easy. The pruned list contains 1190 papers. We manually

classified each paper into four classes (Dependency Parsing, Machine Translation,

Summarization, Other) by considering the full text of the paper. The manually

cleaned data set consists of 275 Machine Translation papers, 73 Dependency Parsing

papers and 32 Summarization papers for a total of 380 papers.

This data set is different from other text classification data sets in the sense that

there are many relational features that are provided for each paper, like textual infor-

179



mation, citation information, authorship information, venue information. Recently,

There has been a lot of interest in computing better similarity measures for objects by

using all the features ”together” [Zhou et al., 2008]. Since it is very hard to evaluate

similarity measures directly, they are evaluated extrinsically using a task for which a

good similarity measure directly yields better performance, such as classification.

Downloads

The text files, metadata of all the publications can be downloaded. In addition to

that, the paper citation network, author citation network and collaboration network

are available for download. Figure B.3 shows a snippet of the data available for

download.

We also include a large set of scripts which use the paper citation network and

the metadata file to output the auxiliary networks and the different statistics. The

scripts are documented here: http://clair.si.umich.edu/anthology/ .The data set has

already been downloaded from 6930 unique IPs since June 2007. Also, the website

has been very popular based on access statistics. There have been nearly 1.1M hits

between April 1, 2009 and March 1, 2010. Most of the hits were searches for papers

or authors.
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id = {C98-1096}

author = {Jing, Hongyan; McKeown, Kathleen R.}

title = {Combining Multiple, Large-Scale Resources in a Reusable

Lexicon for Natural Language Generation}

venue = {International Conference On Computational Linguistics}

year = {1998}

id = {J82-3004}

author = {Church, Kenneth Ward; Patil, Ramesh}

title = {Coping With Syntactic Ambiguity Or How To Put The Block

In The Box On The Table}

venue = {American Journal Of Computational Linguistics}

year = {1982}

A00-1001 ==> J82-3002

A00-1002 ==> C90-3057

C08-1001 ==> N06-1007

C08-1001 ==> N06-1008

Figure B.3: Sample contents of the downloadable corpus
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Ferrer i Cancho, R., and R. V. Solé (2001), The small-world of human language,
proceedings of the Royal Society of London B, 268(1482), 2261–2265.

Filatova, E., and V. Hatzivassiloglou (2004), Event-based extractive summarization,
ACL Workshop on Summarization, pp. 104–111.

Findler, N., and J. van Leeuwen (1979), A family of similarity measures between two
strings, PAMI, 1(1), 116–118.

florina Balcan, M., A. Blum, P. P. Choi, J. Lafferty, B. Pantano, M. R. Rwebangira,
and X. Zhu (2005), An application of person identification in webcam images, in
ICML Workshop on Learning from Partially Classified Training Data, pp. 1–9.

Fowler, J. H., and D. W. Aksnes (2007), Does self-citation pay?, Scientometrics, 72(3),
427–437.

Frank, A., and A. Asuncion (2010), UCI machine learning repository.

Frank, E., G. W. Paynter, I. H. Witten, C. Gutwin, and C. G. Nevill-Manning (1999),
Domain-specific keyphrase extraction, in IJCAI, pp. 668–673, Morgan Kaufmann
Publishers Inc.

Freeman, L. C. (1977), A set of measures of centrality based on betweenness, Sociom-
etry, 40(1), 35–41.

Frey, B. J., and D. Dueck (2007), Clustering by passing messages between data points,
Science, 315(5814), 972–976.

Fukuhara, T., T. Murayama, and T. Nishida (2005), Analyzing concerns of people
using weblog articles and real world temporal data, in WWW.

189



Fung, P., G. Ngai, and C.-S. Cheung (2003), Combining optimal clustering and hid-
den markov models for extractive summarization, ACL workshop on Multilingual
summarization and question answering, pp. 21–28.

Gamon, M. (2006), Graph-based text representation for novelty detection, in ACL
Workshop on Graph Based Methods for Natural Language Processing, pp. 17–24,
Association for Computational Linguistics, New York City.

Ganiz, M. C., N. I. Lytkin, and W. M. Pottenger (2009), Leveraging higher or-
der dependencies between features for text classification, in ECML PKDD ’09,
Springer-Verlag, Berlin, Heidelberg.

Garey, M. R., and D. S. Johnson (1990), Computers and Intractability; A Guide to
the Theory of NP-Completeness, W. H. Freeman.

Garfield, E. (1955), Citation indexes for science: a new dimension in documentation
through association of ideas, Science, 122(3159), 108–111.

Garfield, E. (1972), Citation analysis as a tool in journal evaluation, Science,
178(4060), 471–479.

Garfield, E. (1979), Citation Indexing: Its Theory and Application in Science, Wiley,
New York.

Getoor, L., and B. Taskar (2007), Introduction to Statistical Relational Learning
(Adaptive Computation and Machine Learning), The MIT Press.

Giles, C. L., K. D. Bollacker, and S. Lawrence (1998), CiteSeer: An automatic citation
indexing system, in DL, pp. 89–98, ACM, Pittsburgh, Pennsylvania, United States.

Gionis, A., P. Indyk, and R. Motwani (1999), Similarity search in high dimensions via
hashing, in VLDB, pp. 518–529, Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA.

Glänzel, W. (2004), Towards a model for diachonous and synchronous citation anal-
yses, Scientometrics, 60(3), 511–522.

Goldberg, A. B., X. Zhu, and S. Wright (2007), Dissimilarity in graph-based semi-
supervised classification, Journal of Machine Learning Research, 2, 155–162.

Golub, G., and C. Loan (1996), Matrix computations, Johns Hopkins studies in the
mathematical sciences, Johns Hopkins University Press.

190



Golub, G., and C. Reinsch (1970), Singular value decomposition and least squares
solutions, Numerische Mathematik, 14, 403–420.

Goodrum, A. A., K. W. McCaina, S. Lawrence, and C. L. Giles (2001), Scholarly
publishing in the Internet age: A citation analysis of computer science literature,
IPM, 37(6), 661–675.

Griffith, B. C., and P. N. Servi (1980), A method for partitioning the journal litera-
ture, JASIS, 31, 36–40.

Grira, N., M. Crucianu, and N. Boujemaa (), Unsupervised and semi-supervised clus-
tering: a brief survey, in The Review of Machine Learning Techniques for Process-
ing Multimedia Content, Report of the MUSCLE European Network of Excellence
(FP6), year = 2005.

Gruhl, D., R. Guha, D. Liben-Nowell, and A. Tomkins (2004), Information diffusion
through blogspace, pp. 491–501, ACM, New York, NY, USA.

Hall, D., D. Jurafsky, and C. Manning (2008), Studying the history of ideas using
topic models, in EMNLP.

Harel, D., and Y. Koren (2001), On clustering using random walks, in Foundations of
Software Technology and Theoretical Computer Science 2245, pp. 18–41, Springer-
Verlag.

Harzing, A.-W. (2008), Publish or perish version 2.5 (software),
http://www.harzing.com/pop.htm.

Hassan, A., and D. R. Radev (2010), A mixture of networks approach to combining
link based and content based networks, in Preparation.

He, X., C. H. Q. Ding, H. Zha, and H. D. Simon (2001), Automatic topic identification
using webpage clustering, ICDM, pp. 195–202.

Heyer, L. J., S. Kruglyak, and S. Yooseph (1999), Exploring expression data: Identi-
fication and analysis of coexpressed genes., Genome Research, 9, 1106–1115.

Hirsch, J. E. (2005), An index to quantify an individual’s scientific research output,
PNAS, 102, 16,569.

Hirsch, J. E. (2007), Does the h-index have predictive power?, PNAS, 104, 191–193.

Hofmann, T. (1999a), Probabilistic latent semantic analysis, in UAI, pp. 289–296.

191



Hofmann, T. (1999b), Probabilistic latent semantic indexing, in SIGIR, pp. 50–57,
ACM, New York, NY, USA.

Hoopdog (2007), Follow-up: Blame game. http://hoopdogg.livejournal.com/39060.html.

Hu, M., A. Sun, and E.-P. Lim (2007), Comments-oriented blog summarization by
sentence extraction, pp. 901–904.

Hull, J. J. (1994), A database for handwritten text recognition research, PAMI, 16(5),
550–554.

Hulth, A. (2003), Improved automatic keyword extraction given more linguistic
knowledge, EMNLP, pp. 216–223.

Ikeda, D., T. Fujiki, and M. Okumura (2006), Automatically linking news articles to
blog entries.

Jaccard, P. (1901), Distribution de la flore alpine dans le bassin des dranses et dans
quelques régions voisines, Bulletin de la Société Vaudoise des Sciences Naturelles,
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