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Preface 

When looking back on this thesis, I am reminded of one of my favorite readings as a 

young adult.  This well-known scientific novel/novella, ―Flatland‖, depicts the adventure 

of a triangle who is whisked out of his two-dimensional reality into three dimensions by 

an ambitious and instructive sphere.  The actions and thoughts of the triangle are bounded 

within the two-dimensional reality of his plane (via both geometric and philosophical 

constraints).  However, the perceptions of his existence change as he views his life and 

family from a new perspective, within a third dimension. 

This book is such a fascinating view about the limitations put on ourselves 

through our life experiences and, more pervasively, the boundaries of our minds.  For 

example, I often debate matters such as the existence of God, or other deities, and the 

boundaries of our existence.  Is it possible that the presence of a higher level of existence 

(e.g. post-mortem) may be entirely hidden from our current reality as due to the set rules 

and foundations of our existence?  The ways that we conceptualize our reality may be 

flawed or, at the very least, simplistic compared to the actual reality.  As a toy example, 

the number 5 itself does not exist as 5 in a modulus 3 rule, but rather as the number 2 

(e.g. 5%3=2).  It is interesting to question how such mathematical abstractions and 

conceptions relate to existence.  Our reality likely exists as a defined set of rings and 

fields within, adjacent to, or even overlapping other realities and as yet inconceivable 
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domains.  With this in mind, our ideal goal is to somehow extend beyond these rules and 

expand our perceptions and understanding of the universe(s) despite such limitations. 

This thesis attempts to tackle comparatively simpler problems within defining 

reality.  We will embark on an excursion through the realms of machine learning, systems 

biology, and pathway analysis, with the hopes of furthering our understanding within 

biology and medicine.  A novel set of computational approaches are introduced which 

attempt to draw us, the triangles (and sometimes squares and circles, puns as 

necessitated) away from traditional approaches within our dogmatic plane to achieve new 

perspectives.   

One of the foundational questions giving rise to our specific aims is how we can 

conceptualize the reality of biology using a set of computational (and more or less 

philosophical) rules.  How do we identify as yet uncharacterized biological interactions 

and molecular entities which interact with sets of known molecular entities and their 

biological roles and interactions?  How might we generate such predictions using 

minimal knowledge in order to save some knowledge for later comparison and validation 

(e.g. non-circular reasoning)?  Finally, how are our computationally-predicted 

representations of the biological reality similar to and/or different from existing 

biological knowledge, and how do they both compare to the ―real‖ underlying biology? 
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Abstract 

This thesis focuses on the computational analysis of cellular and immune 

pathways of living cells in response to molecular signals using machine learning 

approaches such as Bayesian networks.  Bayesian networks (BN) have been applied to 

the reconstruction of these pathways (e.g. gene regulatory and protein signaling 

pathways) as network models using existing biological data.  However, many biological 

interactions and molecular entities (e.g. genes and proteins) are not yet known which 

participant in the pathways of interest.  For example, understanding the key biological 

interactions and participants of Jak/Stat pathway members in progressive kidney disease, 

a complication of diabetes, is necessary for refined understanding of the disease as well 

as future drug development.  In order to resolve this issue, two major Bayesian network 

approaches are presented and applied in this thesis to allow refinement and expansion of 

known biological pathways to identify new interactions and molecular entities involved 

in the pathway model for future experimental analysis.   

   In Chapters One and Two, an overview of modeling approaches and assumptions 

for pathway refinement and expansion, including Bayesian network analysis, is 

presented.  I introduce the major assumptions used when generating computational 

models such as Bayesian networks for known biological pathways from existing 

knowledge repositories.  The major pathways analyzed in the thesis, including synthetic, 

the reactive oxygen species (ROS) pathway in E. coli, B cell receptor signaling pathway 
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in Mus musculus, and Jak/Stat signaling pathway in the H. sapiens’ progressive kidney 

disease, are also introduced.  Chapter Two specifically focuses on the Bayesian network 

theory implemented in the thesis and two major developed approaches. 

 In Chapter Three, the issue of how to refine existing Bayesian networks to 

identify the well-supported interactions predicted using underlying biological data and 

also remove false positive interactions is explored.  I introduce a refinement algorithm 

called EdgeClipper which was developed to identify the most well-supported network 

edges in a distribution of saved Bayesian networks.  The EdgeClipper algorithm 

implements a posterior weighting-based approach to prioritize these hypothesized 

interactions, and includes methods to remove poorly-supported interaction hypotheses.  

The approach was tested using synthetic and Escherichia coli reactive oxygen species 

(ROS) pathways and shown to faithfully identify many of the known interactions, as well 

as improve specificity with some sensitivity loss.  The algorithm was demonstrated to 

have comparable performance to bootstrapping approaches with significantly faster 

computational time, and is effective for Bayesian network modeling with small datasets. 

 In Chapter Four, I introduce an effective expansion approach to identify yet 

unknown though potentially novel pathway members which likely influence the 

biological activities of the pathway.  I developed an algorithm called BN+1 which can 

prioritize and identify which unknown pathway entities (e.g. genes, proteins) are involved 

in the biological pathway functions and activities.  BN+1 was applied to the expansion of 

several synthetic, prokaryotic, and eukaryotic pathways.  Major findings included the 

identification of genetic interactions between genes gadX and uspE and their direct 
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regulation of biofilm activities in E.coli, all of which were verified experimentally. Other 

novel findings were achieved for a B cell receptor (BCR) signaling pathway using 

eukaryotic murine data. 

In Chapter Five, the expansion and refinement algorithms were combined to 

achieve powerful predictions in both prokaryotic and eukaryotic pathways.  As a test 

example, a small ROS pathway sub-network generated by EdgeClipper and later 

expanded by BN+1 recovered a known acid fitness island and new putative acid fitness 

regulators in the ROS pathway.  This finding established the combinatorial approach of 

both methods.  The EdgeClipper and BN+1 approaches were then applied in tandem 

towards understanding the roles of Jak/Stat pathway regulation during progressive kidney 

disease in two kidney compartments in H. sapiens.  Our results revealed that Jak/Stat 

pathway shows relatively low overlap in supported interactions for the glomerular and 

tubule compartments, though the expanded pathway genes identified through BN+1 

reflect the appropriate biological functions and stages of disease progression for the 

respective kidney compartments. 

In Chapter Six, a novel web infrastructure (MARIMBA, 

http://marimba.hegroup.org) developed to facilitate Bayesian network, EdgeClipper 

refinement, and BN+1 expansion analysis is discussed.  This tool, developed and used 

exclusively for the previous thesis chapters, allows researchers to freely execute all of the 

BN expansion and refinement methods and visualize and interpret results.  The web-

based tools are being improved and updated for increased public use. 

http://marimba.hegroup.org/
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In Chapter Seven, a summary of the major findings and results are discussed 

along with future directions.  The refinement and expansion methods and their 

applicability to other next-generation and high-throughput datasets are discussed.   

Overall, my results demonstrate that it is possible to refine and expand a protein-

level signaling pathway representation using transcriptional microarray data, Bayesian 

network-based expansion and refinement algorithms, as well as other relevant 

bioinformatics approaches.  The overlap between the generated and computational 

networks may vary according to the extent and type of biological data and type of 

selected pathway, though novel pathway members and interactions are discoverable using 

these approaches and underlying assumptions.  The methods have been applied to a 

variety of biological systems with varying biological complexity, and are applicable to a 

wide variety of other biological and computational systems as well as high-throughput 

datasets. 
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Chapter 1  

 

Introduction and Overview 

 

1. Introduction 

This thesis focuses on novel computational strategies for investigating biological 

pathways in a variety of living organisms.  A set of powerful techniques will be explored 

which can identify likely interactions amongst sets of molecular components and 

elucidate novel mechanisms of disease and biological change.  First, the increased need 

for computational models in pathway analysis is discussed.  Second, common 

terminology and ideas will be introduced.  Third, after defining some of the major 

dogmatic concepts throughout the thesis, the major questions and aims are introduced.  

Finally, an overview of the upcoming chapters is presented.   

1.1 Driving Philosophical Questions 

How are biological and computational networks (e.g. Bayesian networks) similar to and 

different from each other?  Which entities in the biological networks are predicted by the 

computational networks (and vice versa), and which are missed?  How can we identify 

novel interactions and interactors via computational analysis which are not yet included 

in existing biological models and knowledge repositories, or is this even feasible? 
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1.2 Defining computational and biological models of reality 

1.2.1 Common Terminology and Definitions 

In this section, some of the major terms and definitions which appear throughout the 

thesis are defined. 

Dataset: a collection of data which represent selected experimental or synthetic data 

collected under specified conditions.  Mathematically, the dataset can be considered a 

matrix with one dimension defined by experimental conditions or observations, and the 

other defined as the variables or nodes of interest (e.g. genes, proteins). 

Network:  a graphical model or concept which includes nodes that may be connected by 

edges or arrows.  Networks are often used to model biological or other processes such as 

genetic regulatory and protein signaling pathways. 

Edge: usually a directed or undirected arrow, this will represent some type of relationship 

between two nodes or variables in a network model.  In the Bayesian network dogma, 

edges reflect a statistical influence from one node towards another node.  These 

influences can also be represented via conditional probability tables. 

Nodes:  sometimes referred to as variables, these are both mathematical and graphical 

representations of some biological entity.  Nodes are commonly used to represent 

selected genes, probes/probesets, proteins, various phenotypic measurements, or other 

entities.  The actual type of node in each network may vary, and will be defined within 

the respective study. 
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Biological model: a network model generated using a combination of curated literature, 

database, and experimental data which reflect experimentally-derived results and 

conclusions.  Biological models are often defined within specific experimental contexts 

or studies, and as such are considered to be more contextual. 

Computational model: a variety of network models which incorporate information from 

a variety of experimental, literature, and other sources to study and infer behavior 

amongst network nodes and variables.  Computational models require some prior or 

starting information as well as a set of mathematical rules to predict biological behaviors. 

1.2.2 Defining Computational Models Based on Existing Biological Knowledge 

A common approach for computational modeling is the generation of mathematical and 

programmatic models which can simulate some known set of variables and their 

interactions.  These models require certain assumptions about the biological system, such 

as what biological entities (e.g. genes, proteins, miRNA) to represent as variables in the 

models, the types of interactions, as well as the type(s) of data included as either training 

or test information.   

Figure 1.3 provides one such example of a biological model, the Nf- B signaling 

pathway, and the assumptions imposed to construct a computational model.  Figure 1.3A 

represents the sequence of events required for gene Nfkb1 to regulate some target gene in 

the pathway.  After transcription of mRNA, mRNA translocation to the cytosol, protein 

translation and post-translational modifications (a good example of the classical central 

dogma in biology), the Nfkb1 protein can heterodimerize with other proteins.  Activation 

of the Nfkb1 to induce transcription and translation of downstream target genes (―target‖) 
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requires extracellular signaling through a cascade of kinases and other molecules to 

eventually phosphorylate the attached I B monomer and allow translocation of the freed 

Nfkb1 protein into the nucleus.  There, Nfkb1 acts as a transcription factor and initiates 

the transcription of mRNA at a variety of target binding sites for various genes. 

In terms of computational modeling, this large sequence of signaling, 

transcription, translation, and translocation events can be simplified into a relatively 

smaller representation (Fig. 1.3B).  Namely, the Nfkb1 gene influences target, which is 

represented as Nfkb1target.  This relationship which is represented graphically as a 

grey box in (Fig. 1.3A-B) is assumed by computational models which associate and 

sometimes correlate the mRNA expression levels for the two genes obtained via gene 

expression microarray studies and other related approaches. 
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Figure 1.1 Defining hypotheses and computational representations for biological 

networks.   (A) Schematic representation of molecular events linking transcription factor 

Nfkb1 to mRNA regulation of selected target genes. (B) Major hypothesis that Nfkb1 

influences or regulates target variable at the transcriptional level, as might be represented 

in a Bayesian network or other approach.  (C-D) Known members of the Nf- B protein 

signaling pathway which can be hypothesized to regulate the target gene and its mRNA 

expression.  (E) Hidden or unknown factors which may also influence the regulation of 

the target gene expression.  Note that not all interactions and entities shown in KEGG 

[1]or literature are represented in this conceptual model. 

 

However, the figure illustrates other important interactions.  For example, various 

signaling proteins may also affect the mRNA expression of the target if they are 

perturbed or absent (e.g. transmembrane proteins, various cytosolic proteins and 

macromolecules, other kinases and signaling molecules, transcriptional and translational 
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machinery, etc).  Hence, the possibility of other interacting proteins and their underlying 

mRNA expression profiles guiding the target expression must be considered (Fig. 1.3C-

E).  Thus, a major question is how to identify the most relevant interactions guiding 

target gene expression.   

1.2.3 Comparing Computational and Biological Models 

Defining computational and knowledge-based biological models can be problematic and 

relatively biased.  In general, biological models are reductionist representations of 

underlying biology based upon experimental studies and traditional experimental biology 

approaches.  These classical approaches are prevalent in literature and the various 

biomedical repositories in NCBI (http://ncbi.nlm.nih.gov), the European Molecular 

Biology Laboratory EMBL (www.ebi.ac.uk/embl/), and other online resources.  A major 

strength of the knowledge-based biological models is that they can generate strongly-

supported interactions within controlled environments.   

However, such reductionist and controlled studies can be problematic when 

attempting to identify novel interactions or behaviors, such as in different environmental 

contexts.  For example, predicting whether those interactions will occur in different 

experimental conditions not yet studied may prove problematic without computational 

analysis.  Furthermore, generating biological models for much larger phenomena, such as 

those interactions spanning multiple tissues, organs, and even organisms are generally too 

large and complex for integrated experimental analysis. 

Computational models allow additional insight into existing and potentially novel 

interactions.  The computational models, which encompass a variety of different 

http://ncbi.nlm.nih.gov/
http://www.ebi.ac.uk/embl/
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assumptions regarding biological behaviors and rules, can be used to model existing 

interactions, predict what effects may be observed if the existing rules, parameters, and 

entities in the model change (e.g. over time), and even bridge the analysis of changes 

across multiple biological compartments and hierarchical scales of organization. 

   

Figure 1.2 Venn diagram of computational versus knowledge-based networks and 

their relationship with underlying ‘real’ or existing networks.  The target in this 

thesis is to expand the central (red) region in the figure for more comprehensive and 

integrative biological understanding.  To achieve this goal, computational methods are 

introduced to identify new biological knowledge not yet present in existing repositories. 

 

Ideally, the biological and computational modeling approaches (Fig. 1.1) can be 

bridged to generate comprehensive models of biological phenomena and change.  This, 

however, cannot be accomplished until a detailed understanding of how the 

computational and biological models are similar to and different from each other.  Figure 

1.4 illustrates a conceptual overlap of biological and computational models and how they 

relate to their biological target realm.  In both approaches, the computational and 

biological models might focus upon understanding the roles of components of the Nf-kB 

signaling pathway (or another of the hundreds of known pathways in H. sapiens and 

other species).   
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Computational and biological models may sometimes disagree.  In some cases, 

the biological models will uncover interactions not predicted by the computational 

approaches.  Likewise, in some situations the computational approaches may predict or 

infer novel interactions not yet seen in existing biomedical studies or literature.  As 

mentioned earlier, Figure 1.1 lists common methods and resources for computational and 

biological modeling.  A common theme in computational biology and bioinformatics is in 

determining the extent to which one can recover known interactions.  This type of 

analysis, often referred to as benchmarking, assumes that a known gold standard is 

available for comparison.  However, whether or not these disparate interactions are 

actually ‗real‘ or purely a false positive result generated by the respective modeling 

technologies is itself another problem that surfaces in contemporary research, since the 

underlying biology is often hidden.  Furthermore, the absence of some entities (e.g. 

‗hidden players‘ or ‗hidden variables‘) may influence the results of either or both the 

computational and biological models and enhance such disparities.  These issues give rise 

to the major questions and aims present in this thesis. 

1.3 Specific Aims 

Specific Aim 1:  Develop the EdgeClipper algorithm to identify the most well-conserved 

or supported interactions from Bayesian networks trained on high-throughput data. 

Specific Aim 2:  Develop the BN+1 algorithm to identify novel hidden factors which are 

involved in the regulation of specified pathway entities using high-throughput data. 
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Specific Aim 3: Integrate the EdgeClipper and BN+1 algorithms to compare the 

mechanisms of genetic regulation in two kidney compartments during progressive kidney 

disease. 

The three major aims and their final products are illustrated in Figure 1.5.  Given 

some known biological information from existing biological pathway and public 

microarray repositories, starting networks are generated using Bayesian network analysis.  

These Bayesian networks are then refined and/or expanded to identify the most well-

supported interactions and novel factors, respectively, which relate to the pathway 

activities.   

 

Figure 1.3 Developed approaches for BN refinement and expansion.  An existing, 

underlying biological pathway is assumed to be present (A).  A priori, the set of known 

pathway components (B) are included as variables in a Bayesian network model (C).  

This core network can then be refined via EdgeClipper algorithm to identify the most 

well-supported interactions including novel testable interaction hypotheses (D), expanded 

via BN+1 algorithm to identify the most relevant and influential entities not yet ‗known‘ 

in the pathway (E), and refined and expanded using EdgeClipper and BN+1 to filter 

down to the most well-supported core network interactions and then identify novel 

factors (F). 
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Two major algorithms are introduced in this thesis.  The first approach is an algorithm 

which can prioritize sets of interactions from Bayesian network analyses from the most to 

the least likely and reduce false positive prediction rates.  This novel approach is 

comparable to E-value methods in BLAST analysis [2], and can be used to identify 

interactions which do not appear in literature yet have a high probability or affinity as 

predicted by the Bayesian networks.  Second, we introduce a powerful and novel 

expansion algorithm called BN+1 which can identify novel sets of interactors and their 

regulatory roles within a specified pathway context.  These approaches allow both the 

comparison of computational and biological networks, the initial aim of this thesis, as 

well as to extend the achievable knowledge in the computational and biological models to 

increase the amount of overlap with yet undiscovered biological reality. 

1.3.1 Selecting Biological Pathways for Analysis 

The definition of a pathway depends greatly upon dogmatic and contextual views.  One 

common method of defining pathways is identifying and associating the sets of molecular 

entities which are involved in specified biological processes.  For example, the NF- B 

signaling pathway includes a set of cytoplasmic proteins which, following a series of 

protein-level interaction events, induce a series of transcriptional regulatory changes in 

the nucleus.  The NF- B signaling pathway has many effects on cellular behavior and 

survival, and has been associated with many unfavorable effects on cellular survival 

when perturbed.  The naming of this pathway reflects the major molecular entities or 

‗players‘ which have a major role in the biological outcomes and not all of the possible 
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biological roles.  Other pathways are named specifically for their biological outcome(s), 

such as the apoptotic pathway.   

Classical definitions of pathway assume that a pathway has some input of 

information, a sequence of steps or processes, and some eventual outcome.  This 

definition is more generalized for a variety of computational and biological pathways, 

and parallels some of the definitions for information flow and Shannon entropy 

({Ma'ayan, 2006 #250;{Lungarella, 2006 #251};Gatenby, 2007 #229}).  In this thesis, 

the majority of pathways discussed are protein-level signaling pathways which interact to 

some measurable degree with an underlying transcriptional regulatory pathway.  This is 

an important distinction, since transcriptional regulatory and protein signaling pathways 

may have differential regulation and activities.  Several studies have focused on modeling 

the interactions and flow of information between the transcriptional regulatory and 

protein signaling pathways [3];[4].  Interestingly, in many of the traditional gene 

expression microarray studies, researchers have assumed that the expression levels of 

selected genes were sufficient to predict protein activities and phenotypic outcomes [5].  

As I will show later in this thesis, such assumptions are partially biased and naïve.  Other 

studies have shown that this assumption may not be valid [6,7]. 

The selection of pathways in this thesis was, admittedly, biased according to 

publicly or internally available datasets.  We selected an interesting set of such data from 

the Many Microbes Microarray (M3D) repository [8] which combined data from multiple 

published studies.  In their papers, oxidative stress pathway genes were a few of several 

types of genes which were differentially regulated either up or down in some of the 
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studies.  Our selection of the ROS pathway reflected our individual interests in the 

oxidative stress pathway and its roles in bacterial survival and defense. 

Many other approaches are available for the selection of pathways.  A common 

method for selecting pathways involves the identification of the most highly differentially 

expressed mRNA transcripts [9] across a set of microarray experiments.  In these studies, 

a set of control experiments are conducted along with some perturbation or other 

experimental modification.  The log difference between the two conditions is calculated 

to determine the extent of up- or down-regulation of the gene with respect to the control 

experiment.  These studies have often assumed that the most highly up or down-regulated 

genes were the most meaningful biologically.  

Other approaches have not even assumed pathway-specific contexts for sets of 

genes.  Instead, these approaches have either attempted to reconstruct entire networks 

starting with only a single seed gene or variable (e.g. bottom-up approach in [10,11,12]), 

or built entire global interactions networks (e.g. top-down ‗interactome‘ or ‗exome‘ 

analysis [12]) based on specified computational assumptions and then mined into local 

pathway-like subnetworks.  These approaches often do not assume any starting prior 

knowledge about what constitutes a pathway, though tend to rely on computationally 

naïve assumptions and often miss more complex hidden interactions and factors. 

However, we admit our bias towards studying known biological pathways of 

documented biomedical relevance and instead use this knowledge to our advantage.  The 

initial studies with synthetic and E. coli ROS pathways are used as gold-standard 

references to test our Bayesian network approaches.  Later applications of the approaches 
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are shown in the murine B cell receptor signaling and human progressive kidney disease 

studies.  By studying our approaches in the context of known biological pathways, it was 

possible to benchmark and validate the approaches, as well as offer insights towards their 

application to other biological pathways and high-throughput datasets. 

1.4 The Need for Innovative Computational and Experimental Approaches 

1.4.1 Extending beyond the genome sequence 

One of the most significant developments in biomedical research was the advent of the 

genome sequencing era.  This advent began with the whole-genome sequencing of 

Haemophilis influenza in 1995 [13], and after progressing through multiple species, 

resulted in the sequencing of the human genome.  Major competitive efforts between the 

Human Genome Consortium and Venter groups to generate the first human genome map 

resulted in a wealth of new knowledge for genomic analysis [14,15,16] at the onset of the 

new millennium.  One result of sequencing the various genomes was the applicable 

integration of approaches in genetics, comparative genomics, and bioinformatics to 

analyze health and disease in a variety of organisms [14].   

However, a major challenge following the generation of the genome sequences 

was how to interpret and understand the genome, such as characterization of the exome 

or functional sequences in each genome.  Collins et al. stated in 2003 that new 

technologies would be needed to catalogue all of the components in the human genome, 

interpret how those components interact to perform biological functions, as well as 

understand how genomes might change their components and/or functionality over 

(evolutionary) time [14].  At that time, a variety of new and existing experimental 
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approaches were implemented to assign biological functions to predicted genomic 

components, including microarray analysis, RNA-seq and other high-throughput 

sequencing technologies, mass spectrometry, cloning, PCR, microfluidics, and other 

relevant technologies [14].  Each of these technologies would later play important roles in 

establishing biological functions of the components and implicate them in various disease 

and pathway models, as well as provide potential links between the molecular 

components, their functional roles, their involvement in various pathways, and, most 

desirably, their interplay and potential causative roles in targeted diseases [14]. 

 Two grand challenges were posed by Collins et al. in the context of genomics and 

biomedical research [14].  The first goal was to comprehensively identify and 

functionally characterize components of the human genome.  One major initiative 

launched in this regard was the ENCODE project, which sought to characterize all of the 

genetic components for a targeted 1% of the human genome [14,17,18].  The second goal 

was to elucidate the organization and roles of protein pathways and genetic networks in 

the context of cellular and organismal phenotypes [14].  This was initially achieved by 

assigning genes and proteins to pathways given evidence from knockout or knockdown, 

gain of expression, and targeted small molecule experiments.  Figure 1.1 lists several 

databases which store these types of information in pathway-related contexts.  

Computational methods would also serve as an important method for achieving both 

goals.  Given that many high-throughput datasets would be acquired from different 

biological scales (e.g. molecular, tissue, organ) using a variety of experimental 

approaches and technologies, the need for computational approaches to analyze this data 
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was envisioned quite early.  This need is even more important today, as described in the 

future directions section of Chapter Seven. 

 

Figure 1.4  Methods and data resources for computational network analysis.  Listed 

knowledge-based pathway databases include Kyoto Encyclopedia of Genes and Genomes 

[1,19,20], Biocarta [21], RegulonDB [22], EcoCyc [23], and the Michigan Molecular 

Interactions (MiMI) portal [24].  These pathway repositories incorporate a variety of 

information from different biological levels and experimental methodologies, as well as 

some inferred information from existing computational approaches. 

 

 These early driving goals in the human genome highlight the major concepts in 

this thesis.  First, the definition and refinement of a biological pathway given certain 

types of biological data is necessary and important in understanding organismal biology, 

health, and disease.  Pathways are defined using selected types of interactions and 

molecular entities, though they are often incomplete and require additional investigation.  

The identification of novel interactions and components could be achieved 

computationally, though more work is needed to both develop and verify such 

approaches. 
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1.4.2 Reactive oxygen species (ROS) detoxification pathway in E. coli 

We hypothesized that Bayesian networks derived from microarray gene 

expression data are largely consistent with known pathway models and can be used as a 

basis to predict novel factors and interactions that influence a given pathway.  In this 

study, the hypothesis was examined using the Escherichia coli reactive oxygen species 

(ROS) pathway.  The E. coli ROS pathway has been well studied [25,26,27,28] and 

includes a variety of catalases and superoxide dismutases which are regulated at the 

transcriptional level by several known transcription factors and are involved in the 

processing of oxygen stressors such as oxygen ions, superoxides, and peroxide which are 

harmful to bacteria and living cells. 

This particular pathway which was identified using the EcoCyc database [23], a 

BioCyc database designed specifically for Escherichia coli annotation and other 

knowledge.  This particular pathway is especially interesting, since it relates protein-level 

interactions directly to transcriptional information.  The model provides a more simple 

transition when comparing transcriptional regulatory networks generated by the Bayesian 

networks and microarray data to the pathway represented in EcoCyc.  Twenty-seven 

variables or nodes were identified at the time of analysis, which included the five 

catalases and superoxide dismutases and twenty-two transcription factors represented on 

the corresponding gene expression microarray platform. 

1.4.3 B cell receptor signaling pathway 

As another example of the challenge of merging a pathway model and gene 

expression data, one study in this thesis focuses on the B-cell receptor pathway (BCR) as 
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described by KEGG [1,19].  The BCR pathway is an integral component of the adaptive 

immune response mechanism by which B cells respond to foreign antigens [29].  While 

the KEGG pathway database includes a manually curated BCR pathway, this pathway is 

still considered incomplete [29].  

A subset of genes was selected from the BCR pathway and studied using our 

developed BN+1 expansion algorithm.  One question we addressed was whether the 

BN+1 algorithm could recover all components of the BCR pathway given the selected 

subset of genes.     

1.4.4 Progressive Kidney Disease and Diabetes 

One of the major focuses of systems biology and bioinformatics is on the analysis of 

complex biomedical phenomena such as diabetes.  Roughly 2.3x10
8
 humans (and an 

estimated 5.1% of the global population) currently have Type 1 or 2 diabetes [30,31], 

establishing diabetes types 1 and 2 as major and prevalent diseases in the world.  

Furthermore, despite multiple treatment and preventative initiatives, there is no cure yet 

available for either form of diabetes [31]. 

Many biological processes in different tissues and organs, such as the immune 

system, are perturbed in diabetes.  For example, both forms of diabetes involve the loss of 

beta-cells (differing in cause and rate of loss) with some concurrent inflammatory 

processes in the pancreatic islet [31].  It has been proposed that various regenerative and 

anti-inflammatory treatments which target the beta-cells could benefit patients with types 

1 and 2 diabetes [31].  Other important complications following from diabetes include 
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diabetic nephropathy and progressive kidney disease (a major focus of this thesis), as 

well as diabetic neuropathy. 

Progressive kidney disease, a major complication of diabetes, includes a sequence 

of detrimental effects to the afflicted human patient.  Progressive kidney disease is 

defined into classes based upon histological markers which represent the respective stage 

of disease progression.  One significant aspect of the kidney disease progression is the 

order of histological changes in the distinct kidney microarchitecture.  Major changes to 

the glomerular compartment are observed followed by changes to the interstitial tubule 

architecture [32].  Diabetes nephritis is considered a major cause of progressive kidney 

disease [32]. 

In terms of the progressive kidney disease (PKD), we are most interested in how 

the kidney compartments change their mRNA expression and regulation during the 

disease.  Do the glomerular and tubulointerstitial compartments share the same predicted 

interactions between Jak/Stat pathway genes and hence not perturbed as a function of 

disease state, or are they different and reflective of the different stages of progressive 

kidney disease?  What additional biological entities or factors, such as genes and 

proteins, are likely involved in the regulation or downstream activities of the Jak/Stat 

signaling pathway for each compartment and are yet unknown or not implicated in the 

disease?  Figure 1.2 illustrates these two questions. 
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Figure 1.5 Jak/Stat regulation in two compartments during PKD. 

 

In order to understand these questions and provide a systematic means of analysis, 

a set of computational approaches will be introduced and implemented to study the 

selected biological system.  One major challenge is the selection of an appropriate set of 

molecular entities such as genes which can be compared fairly and methodologically 

between the two compartments.  Another challenge is the identification of both novel 

entities and interactions may be important for either of both compartment.  I will 

introduce two major methods which can be used independently or in combination to 

refine and/or expand the selected computational networks and allow comparison across 

the two compartments.   Before that final analysis, simpler synthetic, prokaryotic, and 

eukaryotic networks are used initially in order to benchmark the developed approaches 

and to identify their advantages and caveats. 

1.5 Major Biological Studies in This Thesis 

The driving philosophical questions listed in Section 1.2 are studied in the context of 

several biological and conceptual studies.  First, synthetic networks, a set of 
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computational models, are used to test or benchmark some of our derived algorithms.  

Second, we acquired several publicly-available datasets from prokaryotic and eukaryotic 

studies involving gene expression microarray data.  The most widely-studied biological 

system in this thesis is that of the prokaryotic Escherichia coli reactive oxygen species 

(ROS) detoxification pathway.  This pathway, which was relatively well-studied yet still 

missing important interactors, was used as a representative system to test our developed 

algorithms.  In a more complex organism, Mus musculus, the BN+1 algorithm was 

implemented to better understand mechanisms of genetic and protein-level regulation of 

the Nf- B subnetwork in B cell receptor signaling.  Finally, the approaches were 

combined and used to study an important and complex system, two major kidney 

microenvironments which change during progressive kidney disease.  This disease is a 

major complication of Diabetes types I and II. 

In all of the four studies, we asked which molecular entities not yet appearing in 

the known literature or knowledge repositories were most likely interacting with the 

selected biological pathways.  In the synthetic, ROS, and progressive kidney disease 

pathways, we asked which known interactions were recovered by the Bayesian networks, 

and which disparate edges were best supported by the Bayesian networks and worthy of 

further investigation.  We also asked whether the two microcompartments within the 

kidney showed similar genetic regulation for a selected pathway, and whether the 

predicted lists of novel interactors for each compartment were similar or different.  In this 

regard, we were able to test whether the two compartments undergo similar or perturbed 

and different genetic regulation during progressive kidney disease.  Our results suggest 
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that not only are the two compartments different in terms of their gene regulatory 

network for the same set of pathway genes, but that their predicted interactors are also 

fundamentally different and follow known biological roles and functions already listed in 

the literature.    

1.6 Summary of Chapters 

In Chapter 2, the notion of Bayesian networks is introduced along with the two 

developed major algorithms, EdgeClipper and BN+1 approaches.  Major assumptions 

and computational formulas are introduced, though described more formally in later 

chapters. 

In chapter 3, EdgeClipper network refinement is described in detail and applied to 

the E. coli ROS pathway and developed synthetic networks. A novel equation which 

incorporates both posterior-based and frequency-based methods for edge weighting and 

prioritization was developed which allows direct comparison across these traditionally 

disparate methods. The approach was shown to be significantly faster computationally 

and comparable in performance to bootstrapping analysis. 

In Chapter 4, the BN+1 algorithm is described in detail for three of the major 

biological studies in this thesis.  BN+1 was benchmarked using synthetic networks. Then, 

BN+1 was used to expand and identify novel factors regulating the prokaryotic reactive 

oxygen species (ROS) and later the Nf- B subnetwork in murine B cell receptor 

signaling.  Novel findings included the identification and validation of genetic 

interactions between genes uspE and gadX, as well as their involvement in biofilm 

formation and activities. 
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In Chapter 5, the EdgeClipper and BN+1 approaches were combined to revisit 

previous models of the ROS detoxification pathway and then study progressive kidney 

disease in the two compartments of H. sapiens’ kidney.  The effective combination of 

these two approaches was established through an EC refinement and BN+1 expansion of 

ROS pathway genes which resulted in identification of an entire known acid fitness 

island. 

  In Chapter 6, the online implementation of the EdgeClipper and BN+1 approaches 

in MARIMBA is described.  MARIMBA was implemented for all of the previous 

approaches, including three published BN+1 papers and an upcoming EdgeClipper paper.  

Furthermore, the two approaches are being developed as open-source Python code for 

greater public used. 

 In Chapter 7, a discussion of the major approaches and findings from the thesis 

appears.  The various methods are then described in the context of their future 

applications and directions.  References follow chapter 7. 
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Chapter 2  

 

Introduction to Bayesian Networks 

2.1 Introduction 

One exciting development in bioinformatics research was the advent and application of 

Bayesian networks (BN) in biological research. Basically, BNs are graphical 

representations of statistical interdependencies amongst sets of nodes. BNs model 

interactions amongst sets of variables (e.g. genes, proteins) as probabilistic dependencies 

or influences. Judea Pearl introduced the notion of Bayesian networks in 1985 [33,34] to 

emphasize three aspects: (i) Often subjective nature of the input data information; (ii) 

Reliance on Bayes‘s conditioning as the basis for information updating; and (iii) 

Distinction between causal and evidential modes of reasoning. Bayesian networks were 

later implemented by Heckerman et al, Friedman et al, and various other research labs 

towards biological research [35,36,37].  

Specifically, a BN for a set of variables X = {X1, X2, ...,Xn} consists of (1) a 

network structure S that encodes a set of conditional independence assertions about 

variables in X, and (2) a set P of conditional probability distributions associated with 

each variable [38]. Together, these components denote the joint probability distribution 

for X. The BN structure S is a directed acyclic graph, meaning that the network is 

hierarchical and has both top-level and terminal nodes and no directed paths which 

eventually return to them. We use Pai to denote the parents of node Xi in S as well as the 



 

24 

 

variables corresponding to those parents. Given structure S, the joint probability 

distribution for X is given by      

.                                                 (2.1) 

However, the scoring for the overall network can vary depending upon the input data and 

assumptions used to generate the conditional probabilities for the child nodes and their 

parents.  This concept as well as the implementation to handle this issue is described later 

in the chapter.  In the next section, different methods developed to learn BN structures 

are introduced in detail.  

2.2 Learning Bayesian networks (BNs) 

The problem of learning a Bayesian network (BN) can be stated as follows: given a 

training dataset of independent instances, find a network that best matches the dataset. 

The common approach to this problem is to introduce a statistically sound scoring 

function that evaluates each network with respect to the training dataset and to search for 

the optimal network based on this score.   

To dissect the processes of learning BNs, we summarize five major steps as follows:  

 Data selection and pre-processing   

 Prior definition (including variables and edges) 

 Network searching strategy selection (e.g., simulated annealing, greedy)  

 BN execution with a specific scoring method 

 Results output and analysis 

These steps will be introduced in detail here for gene expression data analysis. 



 

25 

 

2.2.1 Data selection and preprocessing  

BN analysis is a powerful tool for analyzing high throughput data, e.g., DNA microarray 

data. Pre-processing is usually required to normalize raw data and possibly filter out 

those genes that do not show significant changes over all conditions.  Some probes or 

probesets appearing in the microarray dataset may be considered uninformative if their 

signal-to-noise ratio is especially low, such that no significant changes in the overall 

expression of the biological entity (here, expressed and measured mRNA abundance) are 

observed across the set of microarray experiments or samples.   

One method to filter out such uninformative microarray probes or probesets is by 

using a coefficient of variation (c.v.) [39] greater than at least 1.0.  The coefficient of 

variation is generally defined as the absolute value of the standard deviation divided by 

the mean of the expression values for the microarray set.  It has been demonstrated and 

assumed that the variation of transcripts when compared to other transcripts across the 

genome is relatively fixed, and that the c.v. is appropriate in this situation when 

considering signal-to-noise levels [39].  The inclusion of such cutoff criteria is important 

when later considering the discretization of the same datasets, since a faithful and 

accurate binning of the data cannot be achieved for data assumed to be ordered at random 

(e.g. not extending beyond the noise).  Other filtering approaches assume minimum 

allowable values for log fold expression changes when comparing control and 

experimental groups in the data. 

In this thesis, we analyze a variety of static datasets.  Static datasets are assumed 

to be independent of each other, even if temporal data are present.  One reason for this 
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assumption is that we generate static Bayesian networks (BNs) which do not infer 

temporal relations between genes.  More amenable approaches for temporal modelling 

include dynamic Bayesian networks (DBNs)  and neural networks (NNs) [40].   

2.2.2 Prior definition (including variables and edges) 

After selecting appropriate data and variable sets for investigation, settings for the BN 

simulation must be chosen.  Initially, assumptions must be made as to whether structural 

priors (e.g. the requirement of certain interactions to appear in a model) should be 

included or not in the BN analysis. It is not necessary to assume any structural priors for 

the initial set of variables. However, structural priors can be implemented, especially in 

cases where the biological interactions to be represented are well-established and also 

fully represented in the underlying biological data used for modelling.  

2.2.3 Set up network searching strategy 

Once the prior is specified, the BN learning becomes finding a structure that maximizes 

the BN score according to a BN scoring function. This problem is proven to be NP-hard 

[41]. Thus heuristic search is needed. The decomposition of the score is crucial for the 

optimization problem. For example, a local search procedure that changes one edge at a 

time can efficiently evaluate the gains of a specified score made by adding, removing, or 

reversing an edge. An example of such a procedure is a greedy random search algorithm 

with random restarts. Although this procedure does not necessarily achieve a global 

maximum, it reaches a local maximum and does perform well in practice [36]. Another 

commonly used method is simulated annealing search algorithm with a temperature 
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schedule that allows for ―reannealing" as the temperature is lowered [37].  Other BN 

searching strategies include stochastic hill-climbing and genetic algorithm [36]. 

2.2.4 Bayesian network scoring approaches 

The key part of BN learning is to determine a scoring metric that compares networks and 

identifies the most likely or ‗best supported‘ networks. Bayesian network scoring is based 

upon conditional probabilities. One commonly used scoring method is the Bayesian 

Dirichlet (BDe) score [35,37], which is a posterior probability defined as: 
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where n is the number of variables, qi is the number of parent configurations for given 

variable i, ri is the arity of variable i, Nij is the number of observations with selected 

parent configuration qi, Nijk is the number of observations of child in state k with parent 

configuration qi [35]. The calculation of this score is implemented in many software 

programs such as BANJO [40]. 

Another BN scoring method is the Bayesian Information Criterion (BIC), which 

was specifically designed to compensate for overfitting [42].  In the BIC method, the  

data is exponentially distributed, and the BIC is computed as: 

 -2 ln p(x|k) ~ -2 ln L + k ln(n)                                               (2.3) 

Where x is the observed data, n is the number of observations or data points, L is the 

maximized likelihood for the model, and k is the number of parameters to estimate.  The 
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BIC is closely related to other information criterion such as Akaike, deviance, and 

Hannan-Quinn information criterion [43,44].  

2.2.5 BN result output and analysis 

To visualize BN results, different methods can be performed. For example, BANJO uses 

DOT type of BN result output. MARIBMA uses DOT and can also export networks as 

*.sif format for use in Cytoscape (http://www.cytoscape.org). Since different BNs are 

available, it is crucial for a user to select ‗best-scoring‘ networks and/or generate 

consensus networks. Often methods are also needed to build weighted networks based on 

computational analysis or from literature and other database queries.  

2.3 Bayesian network refinement methods 

Although the BN provide are robust framework for biological pathway modeling, 

many factors such as insufficient or noisy data [19] and the influence of hidden variables 

(e.g., unknown miRNAs and genes) can still generate missed or erroneously-included 

interactions in Bayesian and other network models [12,19,45]. To generate a reliable 

network given noisy data, consensus networks can be generated to increase the modeling 

specificity. A consensus network is defined as a network topology with edges that are 

conserved based on a list of calculated networks. Two basic approaches can be used to 

generate consensus BNs: (i) bootstrapping-based BN method with resampling of the 

original data [46,47,48], and (ii) identification of conserved edges within top ranked BN 

networks without data resampling [49]. The bootstrapping-based BN method obtains a 

consensus network by generating the best BN networks via sampling the original data 

with replacement and calculating the frequency of an edge present in the best networks 

http://www.cytoscape.org/
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obtained from BN modeling with different resampled datasets. This bootstrapping 

method has been proven to be reliable and consistent in consensus network generation 

and edge prioritization [46,50,51,52]. However, the central disadvantage of bootstrapping 

is that it is computationally intensive. This restriction limits the wide usage of 

bootstrapping in consensus network generations.  

The other approach that uses the same data without resampling requires saving 

more than one top network. In this strategy, consensus networks include those variables 

and edges which appear at or above some selected frequency or weighting cutoff across a 

set of stored ―top-scoring‖ networks with posterior probability scores. While this method 

has been frequently used as an ad hoc technique, the details of why it works and how it 

can be optimized with specific cutoffs have not been thoroughly studied. For example, by 

scoring 8 billion possible networks, a consensus network of the Her2-Neu signaling 

pathway was obtained by analyzing top 500 networks using proteomics and protein–

protein interaction data [49].  Those edges that were conserved in >400, >300, and >200 

of the 500 highest scoring networks were then recorded in the final consensus network. 

However, this method has not been justified rigorously. In addition, these numbers were 

chosen empirically, and each interaction edge in the consensus network was not assigned 

any score to indicate the prediction accuracy.     

2.4 Bayesian network expansion methods  

Bayesian network (BN) expansion is an approach that is built on the BN method and 

aims to identify new pathway elements that participate in a specified network. In this 

section, we will introduce basic BN expansion methods and then focus on describing our 
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internally developed BN+1 algorithm and its implementation. Compared to the other 

network expansion methods described above, Bayesian network-based expansion 

methods provide distinct advantages, such as prediction of both linear and nonlinear 

functions, robustness in noise data analysis, and identification of causal or appearly 

causal influences representing interactions among genes. In general, Bayesian network 

expansion can be defined as the addition of new variables to an existing network, 

followed by rescoring and ranking of those variables.  

BN-based expansion has been used for gene expression data analysis [11,53]. For 

example, Pena et al. reported an algorithm AlgorithmGPC that also grows BN models 

from seed genes [11]. This approach starts with one single gene and builds networks 

around this gene through expansion and pruning with a set number of genes. Gat-Viks et 

al. also generated a Bayesian network-based refinement and expansion method [53]. A 

main limitation of this approach is that it requires high-quality prior knowledge on the 

signaling pathways. The topology of the biological pathways may not be consistent with 

networks learned from transcriptional gene expression data obtained via DNA microarray 

studies. Therefore, a fixed topology as initial seed network may not be appropriate for 

robust network expansion simulations.   Other BN expansion methods have also been 

published [54,55]. These approaches differ from each other but all showed different 

levels of success in identifying new pathway elements. In the following two sections, we 

will introduce our BN+1 algorithm [56,57], and how it can be implemented in the 

MARIMBA software.     
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 Recently, we developed an algorithm termed ―BN+1‖ which implements Bayesian 

network expansion to predict new factors and interactions that participate in a specific 

pathway. Broadly, the BN+1 algorithm  iteratively tests to see if any single variable 

added to a given pathway will significantly improve the likelihood of the overall network.  

This approach is based on the observation that those variables which are hidden and 

regulate or are regulated by a network are more likely ranked with high posterior 

probability scores. Using a compendium of microarray gene expression data obtained 

from Escherichia coli, the BN+1 algorithm predicted many novel factors that influence 

the E. coli reactive oxygen species (ROS) pathway. Some of the predicted new ROS and 

biofilm regulators (e.g., uspE and its interaction with gadX) were further experimentally 

verified [56]. In another study, a synthetic network was also designed to further evaluate 

this algorithm. Based on the synthetic data analysis, the BN+1 method is able to identify 

both linear and nonlinear relationships and correctly identify variables near to the starting 

network [57].  

 Two major assumptions are included in my implementation.  These include:  

(1) The selection of seed (or called core) genes is an important step. The seed genes can 

be selected from an existing pathway database, from literature survey, or from internal 

experimental results. Since it is computationally expensive to calculate BNs using a large 

number of variables, it is often necessary to filter out some genes from an initial list using 

different criteria, for example, filtering out those genes that do not have significant 

changes among all microarray chips.  
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(2) While we use a top network structure generated from initial core gene simulation as 

prior, we prefer not to fix the core network structure for next network expansion. This 

preference makes our approach differ from a commonly used method of fixing the prior 

structure. One argument is that the prior structure is often determined by many layers of 

studies, including DNA, RNA and protein data analyses. When only RNA transcriptomic 

data are used, such prior structure may not hold. The fixture of a prior structure would 

result in obtaining suboptimal networks that do not match the datasets used for BN 

simulation.  

These assumptions have important ramifications for some of the biological 

entities and behaviors predicted by our system.  Comparison to some of the existing 

approaches may be limited due to the nature of these imposed assumptions. 

2.5 Bayesian network refinement and expansion 

The designed refinement and expansion algorithms were designed to be independent 

approaches to answer separate questions about how to refine the BN models generated 

for selected pathway entities (EdgeClipper, EC) or to expand the network representation 

to include novel hidden factors (BN+1 expansion).  In this regard, our combination of 

refinement followed by expansion algorithms presents an approach similar to the Pena et 

al. AlgorithmGPC that also grows BN models from seed genes [11], with several distinct 

advantages. 

First, our approach allows a target analysis of the pathway of interest.   The Pena 

et al. algorithm [11] can continually contract and constrict to change the core network for 

expansion.  However, this approach may also lose some sense of biological 
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meaningfulness or function.  An extreme case could involve losing all of the original core 

network genes after multiple iterations of refinement and expansion.  A second advantage 

of our approach includes a more thorough analysis of the neighborhoods around the core 

network, which includes many of the top predicted expansion genes for each core 

network.  This type of approach can be used to verify conserved biological functions and 

activities using annotation information and a naive natural language processing (NLP) 

technology.  Such considerations were vital to the identification of novel genetic 

regulatory mechanisms and their directed biological funcions and  later experimental 

validation. 

In order to tackle the progressive kidney disease question of differential Jak/Stat 

pathway regulation in two compartments assuming minimal data (described in detail in 

Chapter 5), the EdgeClipper and BN+1 approaches would need to be combined in 

sequence (refinement first followed by expansion).  The choice of ordering was selected 

to first establish the set of most conserved interactions shared in the pathway models for 

the two compartments, and then use those models as well-supported core networks for 

subsequent expansion.   
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Chapter 3  

 

The EdgeClipper Algorithm for BN Refinement 

3.1 Overview 

To increase the specificity of Bayesian network (BN) modeling, consensus networks are 

often generated to identify the best supported edges in an empirically-generated set of 

top-scoring BNs. For better identification of consensus BNs and prioritization of 

predicted edges (i.e., interactions), we developed an algorithm called EdgeClipper that 

sorts and analyzes the posterior distribution of high scoring BNs and identifies the most 

well-supported influences or edges across the posterior distribution.  The EdgeClipper 

algorithm includes a unique B-value for network selection and a separate C-value for 

edge or interaction weighting and ranking. 

As a cutoff for selecting the number of top BNs for inclusion in consensus 

network generation, a B-value score was defined as the right-tail cumulative density of 

the distribution of weighted posterior probabilities of selected top networks when 

considering all saved networks.  Since some edges may not appear with 100% frequency 

in all of the saved Bayesian networks and/or may not appear in the top-scoring networks, 

we devised three versions of the EdgeClipper algorithm (EC-L, -R, and –F) with different 

criteria for network selection and edge inclusion.  The loose EdgeClipper (EC-L) 

approach assumes all networks are included (B-value = 0) and no cutoff regarding edge 

frequency, whereas a restrictive EdgeClipper (EC-R) approach introduces more stringent 
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assumptions (e.g. sliding B-values).  The EC methods assign a C-value metric to each 

edge, based upon the weights and/or frequencies of the edges assigned during the 

respective approaches.  This C-value is then used to rank the respective edges.  

EdgeClipper was tested and validated using synthetic data and E. coli microarray data 

analyses.  

Our results indicate that decreasing B-values result in increased specificity and 

decreased sensitivity of predicting edges in consensus networks.  Furthermore, the 

developed formulas can also represent the existing frequency cutoff methods.  The edge 

ranking by C-values largely correlates with and is sometimes superior to the rankings 

produced by bootstrapping. EdgeClipper provides a systematic method for defining 

consensus Bayesian networks and assessing the relative support for edges in the network. 

3.2 Introduction 

In this study, we generalize the posterior probability-based method and develop a new 

algorithm called EdgeClipper for calculating consensus BNs and prioritizing edges in a 

network. The EdgeClipper algorithm can be adjusted to be more or less strict according 

to the number of BNs included in the consensus generation, as well as by defining the 

minimum frequency of edge occurrence in that set of networks.  A B-value is used to 

define how many top networks (e.g., 500 networks in the above example) to include in 

consensus network generation based upon the posterior distributions of networks.   

Two major implementations of the EdgeClipper algorithm for posterior-based 

weighting were designed.  The first method, the loose EdgeClipper (EC-L) approach, 

assumes all networks are considered or included during consensus network generation 
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(B-value = 0) and no minimum cutoff for edge occurrence is present.  In the restrictive 

EdgeClipper (EC-R) approach, a subset of networks can be selected using the B-value 

metric (sliding-window selection of networks) as a cutoff, followed by selection of only 

those edges appearing with 100% frequency.  The EC-R method also assumes that the set 

of considered interactions or edges is obtained from the top networks with the same best 

score.  To achieve edge ranking and prioritization, a novel equation was generated which 

is robust and can incorporate both posterior probability-based and frequency-based 

weighting methods.  The equation is significant since it can incorporate existing 

frequency methods into our EdgeClipper framework (as an EC-F function).  All versions 

of the EC algorithm generate a C-value which weights the edges in the selected Bayesian 

networks and can be used for edge prioritization or ranking and as a cutoff criteria for 

consensus network generation. 

Using synthetic network and E. coli pathway analyses with a compendium of E. 

coli microarray data, the EdgeClipper algorithm was verified to successfully predict 

consensus networks and conserved edges.  The EC-L and EC-R approaches were 

compared to the prevalent bootstrapping approach in both synthetic and biological cases 

to benchmark and understand the algorithm, as well as to better understand the 

predictions generated for the ROS detoxification pathway.  

3.3 Methods  

3.3.1 Bayesian network scoring and top network search 

In our study,  the probability of a particular Bayesian network given a set of data was 

scored using log of the BDe score [35,37] which is the natural log of posterior probability 
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( DMPS |ln ) and is listed in Equation 2.2 in Chapter 2.  A random sampling 

approach (e.g., simulated annealing) can be used to provide a broad search of possible 

networks during the BN analysis [56,57]. In the reported study, the calculation of the 

BDe score and network sampling by simulated annealing were implemented using the 

open source software BANJO [40].  Other searcher approaches have been used in other 

studies though were not explored in this analysis. 

3.3.2 Derivation of B-value metric for constructing consensus BNs 

The Bayes factor describes the relative improvement or loss of score for one network 

relative to another network.  In this regard, the Bayes factor is represented as the ratio of 

posterior probabilities for two models, Mm and Mn.  Given that Scorex = ln(P(Mx|D)), the 

Bayes factor (BF) can be represented as follows for two candidate models: 

(3.1) 

(3.2) 

After saving a set of top-scoring Bayesian networks, the set of unique (non-

redundant) scores {Si | i=1..x} are saved and then sorted from the highest to the lowest 

posterior probability.  A Bayes factor is then calculated for each score to the top score 

(i.e., 
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where x is the number of unique scores in the saved set.   

A unique B-value is introduced by considering all considered networks using each 

of the weighted probabilities.  The B-value represents the right-tail cumulative density of 

the distribution of weighted posterior probabilities: 

(3.4) 

 

Here j is the number of top unique scores (natural log of posterior probability) chosen for 

inclusion in the consensus network calculation, while x is the number of all unique scores 

saved for network analysis.  Sk is the natural log of posterior probability for a unique 

score k that appears for at least one saved network.  P = 1-Bval is the sum of posterior 

probabilities for the top j scores normalized across all unique posterior probabilities 

(scores); i.e. P is a cumulative density function (CDF) value that represents the coverage 

of the best networks relative to all possible networks. Pk is defined above in Equation 3.3.  

The B-value measures the strictness of a ―top‖ network compared to the total networks 

stored.   

3.3.3 The EdgeClipper Algorithm 

The EdgeClipper algorithm is shown in Figure 3.1, with pseudo-code presented in Figure 

3.2.  First, the algorithm requires as input a set of top-scoring networks from some 

Bayesian network analysis results.  The networks are grouped according to identical log 

posterior scores, and then the scores are ranked from best to worst (where best is defined 

as closest to the value zero).  This set of networks is used in total for the loose analysis 
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(EC-L), whereas a subset of networks is used for the restrictive approach (EC-R).  The 

set of networks with log posterior score mapped to B-values greater than some specified 

input B-value is the subset obtained for the EC-R approach.  The classical frequentist 

approach for edge selection is represented as a third method, EC-F, and also appears in 

the figure (more details described later in this chapter).  After network selection, the set 

of all edges or interactions appearing in the selected networks is determined, as well as 

their frequency of occurrence in the set and their overall C-value weight.  C-values are 

only assigned to those edges appearing in a selected network set.  Finally, following C-

value assignment, a consensus network is derived by including all edges with C-value 

above some selected threshold.  

 

Figure 3.1  Schema for the EdgeClipper algorithm. 
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3.3.4 Defining C-values for representation of edge consensus level 

B-values were defined previously to select sets of best-scoring networks from large-scale 

Bayesian network simulations.  However, another approach was needed to prioritize 

edges given the support from the best-supported networks.  C-values were designed to 

show the overall weight for each network edge given certain assumptions on the set of 

networks and posterior probability distributions.  The C-value for a given edge is 

generalized for the loose and strict assumptions as follows: 

EdgeClipper  

Input: Networks N from a BN analysis with unique scores S, method: EC-L,R, or F, B-

value cutoff  B (B-value = 0 for EC-L method), c-val cutoff 

Data Preprocessing (Optional) 

Group networks by unique scores in S 

Computing C-values for edges in BNs 

Save edges appearing in all included networks N as edge set E. 

For each edge e in E, 

 Compute C-value using N and e  using 

Equations 3.6 and 3.7 if EC-L 

Equations 3.6 and 3.8 if EC-R 

Equations 3.6, 3.9, and 3.10 if EC-F 

(Optional, e.g. EC-R): For each edge w not_contained_in E, 

C-value = ―NA‖ or not defined 

Generating consensus networks 

For each edge e, 

 Include edge in consensus if C-value > cutoff  

Output: C-values defined for selected edge sets, consensus network generation 

Figure 3.2 Pseudocode for the BN+1 expansion algorithm 
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                                                         (3.5) 

where i represents the indexes into the respective scores for included networks (with 

maximum index Nmax), Wi is a weight calculated for each edge, and function f generates 

a binary value of zero or one depending on the presence of the edge ( ) in the networks 

with same score.   

The EC-R, EC-L, and EC-F approaches define Wi and  differently 

(Equations 3.6-9 and Figure 3.3).  In EC-L, Wi is defined as the normalized probability Pi 

(Equation 3.3) for a selected score.  This weight is then added to the cumulative 

weighting if the edge does not appear in one of the networks with that score, as 

determined by Boolean function : 

 if , else 1.                                          (3.6)   

This procedure is repeated for all scores (and hence mapped networks) to give a 

cumulative reverse weighting for an edge given the set of saved networks.  Those edges 

with defined C-values closest to zero have the most support.  This formulation allows 

direct comparison to the EC-R approach and B-value metric (which attempts to minimize 

the right-tail distribution of normalized posterior scores). 

In the EC-R formulation, Wi is also defined as the normalized probability for a 

given score.  However, the Boolean function  is defined iteratively as follows: 

  if  ( , and  ( )), else 1.      (3.7) 
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Here, the Boolean function incorporates all previous decisions about an edge‘s presence 

when traversing from highest log posterior score (best supported) to lowest (least 

supported).  The weights in Equation 3.5, representative of the right-tail cumulative 

density function, accumulate after encountering the first network set lacking the edge of 

interest.  Those interactions not appearing in the top-scoring network are currently not 

defined (e.g. ―NA‖), since we assume that the set of edges to consider come from the top-

scoring networks (another possibility is to assume that the Boolean function always gives 

value 1). This formulation allows direct comparison of the EC-R and EC-L approaches. 

 The above methods and Equation 3.5 are also applicable towards describing the 

predominant frequency-based edge selection.  We define this method as EC-F, and 

generate a simpler representation of the Wi and  as follows: 

 if , else 0                                                (3.8) 

Wi  =                                                         (3.9) 

Hence, assuming that =1 for all I, .  Then, the C-values generated are 

bounded between 0 and 1 and contain equal weights for all of the networks.  Thus, the 

EC-F method is exactly the frequency of edge occurrence across the set of uniquely-

scoring networks assuming equal weights of networks (independent of posterior 

distribution). 

 After computation of the C-value for each method, the edges can be ranked 

according to their computed C-values.  C-values are sorted from 0 to 1 (reflecting the 

weights of networks either not including an edge or not deemed significant in weight 
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such as in the EC-R design) since it is easier to compare C-values such as 1x10
-6

, 1x10
-7

, 

etc. and not 0.999999 and 0.9999999 (though they related by subtracting each from the 

value 1.0).  Those edges which have C-values greater than some cutoff can then be 

included as undirected edges in the consensus networks. 

 

Figure 3.3 Comparison of EC-L, -R, and –F methods for two edges.  Plots are shown 

for nine hypothetical networks sorted by log posterior scores.  Two edges are selected 

from the networks, such that an edge may either appear in a network (box) or not 

(ellipsoid).  Then C-values are calculated for each edge (A-C and D-F, respectively) 

using the three EC methods and listed in the top-right corner of each plot.  For EC-L and 

EC-R, the C-value is computed using the sum of the area under curve for the indicated 

plot regions.  For EC-F, this is instead the frequency of edge presence (or number of 

boxes divided by nine).  In this example, interactions (or edges) #1 and #2 share the same 

frequency (EC-F) yet differ greatly in EC-R and EC-L values.  Edge #2 will be ranked 

higher than #1 due to its smaller C-value in EC-R and EC-L. 

 

3.3.5 EdgeClipper software   

We have developed an EdgeClipper software package in Python to interpret Bayesian 

network simulation results and generate both B- and C-values for networks.  This 
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software uses a BANJO (http://www.cs.duke.edu/~amink/software/banjo/ [40]) output 

file as the input to the EC algorithms, and calculates C-values for each possible edge.  

BANJO provides both static and dynamic Bayesian network analysis.  Both EC-L and 

EC-R methods are implemented for the static Bayesian network analysis. The  Python 

source code for the EdgeClipper software program is available at: 

http://code.google.com/p/edgeclipper/. In addition, the MARIBMA program 

(http://marimba.hegroup.org) implements both EC-L and EC-R methods in PHP code. 

This program is open-source software with the Apache License version 2.0.  

3.3.6 Synthetic data generation 

A synthetic network with nine variables was designed for simulating microarray gene 

expression data. The synthetic data were generated based on a previous study by Luo et 

al. [58] with modifications. Specifically, the following mathematical formulae were used: 

A= N(0, 1)         (3.10) 

B = N(10, 5)         (3.11) 

C = N(0, 10)         (3.12) 

D = A
3
+ N(0, 0.1)        (3.13) 

E = A + N(0, 0.1), while (A+10>=B); E = B/10 + N(0, 0.1) otherwise. (3.14) 

F = (B-C)/(B+10) + N(0, 0.1)       (3.15) 

 G = A + sin(C) + N(0, 0.1), while (A+10>=B);       

http://www.cs.duke.edu/~amink/software/banjo/
http://code.google.com/p/edgeclipper/
http://marimba.hegroup.org/
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else E = B/10 + sin(C) + N(0, 0.1).       (3.16) 

H = log(e
A
 + e

F
) + N(0, 0.1)       (3.17) 

I = (D + H) * (F/2) + N(0, 0.05)      (3.18) 

Separate datasets with 10, 50, 100, 250, 500, and 1,000 observations were 

sampled independently using the synthetic network topology and rules encoded in R 

[59].  These data were used in the subsequent synthetic network analysis. The five 

synthetic datasets with different numbers of observations or conditions were used in 

separate Bayesian network simulations.  The EdgeClipper algorithm was applied 

towards refining the network results from each of these five BN analyses.  

Sensitivity and specificity were plotted as a function of the B-value cutoff variable 

for the different simulations.   

3.3.7 E. coli ROS pathway data analysis using EdgeClipper  

A compilation dataset comprising 305 gene expression microarray observations and 

4,217 genes from Escherichia coli MG1655 was obtained from the M3D database [8]. A 

coefficient of variation threshold (c.v. ≥ 1.0) was used to select 4,205 genes for analysis.  

Twenty-seven genes were identified from the EcoCyc ROS detoxification pathway 

(downloaded on March 26, 2008) and matched to unique features found in 305 available 

gene expression microarray chips.  Expression profiles for each gene were discretized 

using a maximum entropy approach that uses three equally-sized bins.  To maximize the 

network search space, 4,000 independent simulations with random starts were used to 

search 2.5 x 10
7
 networks per start for a total of 1 x 10

11
 networks.  Five top networks 

were saved from each run, thereby generating a final list of 20,000 top-scoring networks. 
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To reduce the large 27 gene network down to medium and small networks, we trimmed 

the networks using different B-values.   

3.3.8 Analysis of selected EcoCyc pathways using EdgeClipper algorithm  

All EcoCyc pathways were checked for the number of genes or corresponding proteins 

which successfully mapped to genes on the microarray platform.  Seven pathways were 

then randomly selected from sets of pathways with 5, 10, 15, and 20 genes.  These genes 

were then included as variables in the EdgeClipper analyses. 

3.3.9 Bootstrapping analysis of consensus networks and edge prioritization  

The standard bootstrapping method [60] was used to generate multiple datasets given 

some starting datasets from the synthetic and E. coli datasets. Specifically, bootstrapping 

with replacement was used to generate multiple data files with the same number of 

conditions or observations as the starting dataset.  Each condition had an equal chance of 

being selected (uniform probability across all of the conditions), with the possibility that 

each condition could be selected zero, one, or more times and represented in the 

bootstrapped data file.   

For synthetic data bootstrapping simulations, five major analyses were conducted.   

A set of 1,000 bootstrapped datasets (bootstrap with replacement) was generated for each 

synthetic datasets (10, 25, 50, 100, 250, and 500 conditions) to give 5,000 total 

bootstrapped datasets. Each set of 1,000 observation data files with identical numbers of 

observations was used in independent Bayesian network simulations.  In each simulation, 

5 x 10
7
 networks were searched using simulated annealing for the nine variables and one 
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of the 1,000 data files.  The top 1,000 networks from the simulated annealing approach 

were then saved.  Bootstrap results were compiled for the 1,000 independent simulations 

with selected data size, giving a total of 1x10
6
 saved networks per data size. 

A bootstrapping test was also used to compare the result obtained from 

EdgeClipper for the analysis for E. coli ROS pathway.  For this bootstrapping analysis, a 

―re-shuffled‖ dataset was first generated from the original dataset using the method of 

resampling with replacement. The new dataset was used for BN analysis by simulating 

2.5 x 10
7
 networks. In each of the independent BN simulations with resampled data, the 

top one BN model was saved. This procedure was also repeated 1,000 times. Confidence 

in a particular edge is defined as the frequency of how often an edge actually appears in 

the set of reconstructed top BN models [60]. 

3.3.10 Comparison between EdgeClipper and bootstrapping in consensus network 

generation and edge prioritization  

The correlation between results obtained from EdgeClipper methods EC-L and EC-R, 

and the bootstrapping was measure via Spearman rank correlation analysis [61].  

Specifically, the cor.test function in the R ‗stats‘ library was used [59].  Approximate P-

values were recovered since some ranking ties were observed for the top results in both 

EdgeClipper C-values and bootstrap rankings.   
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3.4 Results 

3.4.1 EdgeClipper algorithm  

EdgeClipper was developed to increase the specificity (i.e., reduce false positive rate) in 

the prediction of edges appearing in a selected consensus network while retaining as 

many true positive edges as possible.  Furthermore, a key question in biological modeling 

is which of the many interactions predicted by the Bayesian network are likely to be 

verified experimentally, and which networks should be included when assigning these 

interaction weights and priority.  At the start of the EdgeClipper workflow, a standard BN 

analysis is first used. Specifically, high throughput data (e.g., microarray data) are pre-

processed, various network topologies are searched (e.g., by simulated annealing), and 

the posterior probability of each network topology given the data is calculated (e.g., BDe 

score) (Figure 3.4). Instead of selecting only one network with the best score, 

EdgeClipper requires the storage of a large number of top ranked BNs to generate a 

posterior probability density (Figure 3.4).  

Based on the set of non-redundant ranked scores from those saved networks, a B-

value is computed as a normalized probability that gives a relative weighting for a BN 

score. The B-value can be considered as the relative or normalized weighting of networks 

scoring worse than a selected score. Specifically, the B-value represents the right-tail 

cumulative density of the distribution of weighted posterior probabilities, i.e., the 

cumulative weighting from the best score (and hence best-scoring networks) to a BN 

score is subtracted from one to give a unique B-value. The primary reason of the 

selection of the right-tail instead of the left-tail cumulative density is that the right-tail 
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density is more sensitive to the change in the number of networks selected for consensus 

network generation. Figure 3.4 illustrates the concept of B-value as compared to the 

original BDe distribution. When B-value = 0, all saved networks are selected for 

consensus network generation. A B-value of 1 represents that no saved network is 

selected. In practical application, at least one top network score is selected. In this case, 

the B-value is directly associated with the weighting of the first top network score. In a 

typical sorted BN result, the top networks have much higher posterior probabilities than 

the networks with low scores.  

     

(A)                      (B)              (C) 

Figure 3.4 Comparison of B-value and BDe distributions.  (A) BDe score distribution 

from a set of BN simulations sorted from best to worst score with score index i.  (B-C) B-

value distributions for the same scores with index i plotted using standard (B) and semi-

log (C) y-axis.  Here, (B) illustrates the severe drop-off of B-values (<<0.1), while (C) 

shows the close relationship of the B-value distribution with the original log posterior 

distribution. 

 

After the set of networks is selected by B-value for inclusion in consensus 

network computation, conserved edges among the saved top networks will be identified 

and kept in the final consensus network.  Edges which have an accepted C-value are 

specifically included in the consensus network.  Other approaches, including the 
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implemented bootstrapping method, have used edge frequency cutoffs which do not 

directly incorporate the log posterior distribution as support or weight. 

One important assumption in the approach is the inclusion of both edge directions 

cumulatively as equal representation of an interaction (hence influences AE and EA 

are assumed equal mathematically).  One reason why we consider both directions for an 

edge is that many BN networks are often score equivalent, i.e., there are multiple 

equivalent toplogies differing only in edge direction that have identical probabilities 

given an observational dataset [62]. Two equivalent BN structures with the same scores 

and edge topology may have different directions in many edges. An equivalence class of 

network structures can be uniquely represented by a partially directed graph (PDAG), 

where a directed edge XY  denotes that all members of the equivalence class contain 

the arc X Y, and an undirected edge X—Y  denotes that some members of the class 

contain the arc X Y and the others contain the arc YX [36]. This PDAG 

representation is applied in EdgeClipper. Specifically, EdgeClipper defines directed 

edges in the consensus network as those edges that appear with 100% frequency in one 

direction in all stored networks for the B-value selected above [63].  Undirected edges 

represent those edges appearing 100% of the time in both directions in all stored 

networks.  Other approaches such as that in Bose et al. [49] will define an intermediate 

value between 0 and 1 for the frequency of edge occurrence. 

Once a consensus network is generated, a C-value is defined to rank the edges in 

the consensus network according to their level of support from the data.  The C-value of 

an edge represents a minimal B-value at which this edge disappears from the consensus 
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network. Edges are next ranked according to their C-values.  Those edges (representing 

interactions) with C-values closer to 0 are expected to be more conserved and specific 

than other edges with C-values closer to 1. Any C-value of an edge in a consensus 

network is always greater than or equal to the B-value used for generation of the 

consensus network. A C-value of zero for an edge indicates that all saved networks 

contain the edge, and hence the cumulative weight of zero networks lacking the edge is 

zero. Those top-ranked edges with their C-values being zero are the most conserved and 

well-supported interactions.   

Based on the filtering ability of the B-value for network refinement, two 

EdgeClipper methods have been developed: EdgeClipper-Loose or EC-L (loose cutoffs 

with B-value = 0 a) and EdgeClipper-Restrictive or EC-R (restrictive cutoffs with B-

value sliding) (Figure 1). The EC-L method contains all save networks (i.e., B-value = 0) 

and does not have any restriction on the accumulative frequency of edge occurrence in all 

selected networks. The consensus network in EC-L includes all possible edges that have 

ever present in any saved BN. Therefore, these conditions are the loosest as we can ever 

expect when including posterior-based weighting. One advantage of EC-L is that after C-

value calculation, every possible encountered edge will have a C-vale prioritization score. 

One disadvantage of this approach is that it is computationally expensive compared to 

EC-R. In contrast, EC-R requires that any edge in the consensus network should be 

present in all networks selected by the B-value cutoff. In EC-R, the differences between 

different consensus networks will indeed be determined by B-value. If the B-value is 

zero, the consensus network will be a PDAG that is formed using all save networks. 

When the B-values are increased from zero, a decreasing number of networks from the 
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right-tail distribution will be used for consensus network generation, leading to more and 

more edges present in the consensus network.  

3.4.2 Evaluation of EdgeClipper using synthetic networks  

To benchmark the overall performance of the EdgeClipper algorithm, the algorithm was 

first applied to a synthetic network dataset generated with different data sizes (Equations 

3.10-18).  Figure 3.5A illustrates the synthetic network used in the analysis.  Our initial 

analysis was focused on the impact of B-value in the final consensus network generation. 

Because EC-R has sliding B-values (e.g. a unique B-value cutoff mapped to each edge), 

it is natural to test the B-value impact using the EC-R method. In the synthetic data 

analysis, different data sizes ranging from 10 to 500 were used. With decreasing B-values 

from 1 to 0.01 (or increasing the X-axis –log10(B-value) value from 0 to 2 in Figure 3.6) 

for all data sizes, the usage of the EC-R method resulted in increasing gains in specificity 

in terms of edge prediction in the network. Meanwhile, the sensitivity decreases for each 

of the data sizes as the B-values decreases and approaches zero (or X-axis value 

approaching infinity).   

            

(A)                                          (B)                                           (C) 

Figure 3.5 Synthetic data analysis for benchmarking the EdgeClipper algorithm. 
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(A) The topology of the synthetic network. (B) A false positive interaction predicted by 

bootstrapping but ignored by EC-L and EC-R. (C) A false positive interaction predicted 

by all three methods.  

 

Figure 3.6 Performance benchmarking of EdgeClipper for a range of dataset sizes.  

The performance of specificity (A) and sensitivity (B) of edge predictions in predicted 

consensus networks based on the EdgeClipper EC-R method was studied. The tested data 

sizes include 10 (red), 25 (orange), 100 (green), 250 (grey), and 500 (blue).  

 

Besides the B-value, the data size is another factor that influences the specificity 

gain and sensitivity loss. With the same pattern of decreasing B-value cutoffs, the 

EdgeClipper analysis using smaller data sizes tend to have more gains in specificity. 
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However, the EdgeClipper consensus network analysis will also have quicker loss in 

sensitivity at the same time. In contrast, the EdgeClipper analysis with larger data sizes 

will have slower gain in specificity but also less loss in sensitivity when the B-values 

decrease. These results suggest that BNs trained using smaller data sizes will benefit the 

most in terms of finding specific edges using the EdgeClipper algorithm. In the synthetic 

analysis case, no noticeable gains in specificity were identified for B-value < 0.01 in all 

cases, suggesting an optimal B-value range could be determined in specific cases (e.g. 

0.1-0.01 as a cutoff in Figure 3.6).  

Using the same synthetic datasets, we also compared the performances of EC-R, 

EC-L, and bootstrapping in edge ranking (Table 3.1). In general, the results obtained 

from all three methods correlate well (P-value < 0.01). The three methods all predicted 

eight of the top nine edges with almost identical order. The one edge (E-G) was not 

predicted by any of the three methods. Because EC-R requires an edge to be present in all 

retained networks (including the top scoring network), those edges in the final consensus 

network will have to be in the top scoring network. Therefore, it is reasonable that only a 

portion of the edges were predicted by EC-R. In addition, we found that bootstrapping 

but not EdgeClipper sometimes predicted spurious or false positive interactions (Figure 

3.5B-C). Sometimes a spurious or false positive interaction, such as G-E, was predicted 

by all three methods.  Therefore, the synthetic data analysis indicates that EdgeClipper 

methods are equally good or better than bootstrapping in prediction of edges in consensus 

networks.  

 



 

55 

 

 

Table 3.1 Comparison of bootstrapping, EC-L, and EC-R in edge ranking in the 

synthetic data analysis.  The analysis of 500 observation was used. Only those edges 

appearing in both the bootstrapping and EdgeClipper EC-L and EC-R results are ranked 

in this table. Key: NA- not defined, Y – edge exists as direct connection in synthetic 

network. 

Edge 
Bootstrap 

Frequency 
EC-L C-value EC-R C-value Real? 

A-D 1000000 -5.36E-16 0 Y 

B-E 1000000 -5.36E-16 0 Y 

C-F 1000000 -5.36E-16 0 Y 

E-G 977309 -5.36E-16 0 
 

F-I 964218 6.83E-11 2.42E-09 Y 

B-F 922296 8.54E-10 1.23E-08 Y 

A-H 916495 7.28E-11 1.74E-09 Y 

H-I 825251 8.16E-05 0.000137 Y 

D-I 753223 9.28E-05 0.000208 Y 

C-H 540636 0.230169 0.14175 
 

D-E 495874 0.949087 NA 
 

F-H 471996 0.769831 NA Y 

A-E 465201 0.050913 0.037012 Y 

A-B 242656 0.999974 NA 
 

B-C 231985 1 NA 
 

B-D 228231 0.999997 NA 
 

A-G 225637 0.999986 NA Y 

A-I 204972 0.99999 NA 
 

D-H 151304 1 NA 
 

A-C 108918 0.999999 NA 
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C-G 98479 0.99995 NA Y 

C-D 76659 0.999998 NA 
 

C-E 67706 0.999997 NA 
 

D-G 65834 1 NA 
 

C-I 61692 1 NA 
 

A-F 47598 0.999999 NA 
 

B-G 34076 1 NA Y 

D-F 26489 0.999999 NA 
 

E-F 21164 1 NA 
 

B-H 17537 0.999996 NA 
 

E-H 12737 1 NA 
 

F-G 6889 1 NA 
 

B-I 4706 1 NA 
 

G-H 3674 1 NA 
 

G-I 1770 1 NA 
 

E-I 131 NA NA 
 

3.4.3 Results of E. coli ROS pathway analysis using EdgeClipper  

To evaluate EdgeClipper using biological data, we first tested the E. coli reactive oxygen 

species (ROS) detoxification pathway using a compendium of microarray gene 

expression data from the M3D database [8].  The existing ROS pathway from EcoCyc 

models five E. coli enzymes important for the resistance against ROS toxicity, as well as 

22 transcription factors that bind to targeted DNA sequences at the protein level. Using 

all 27 genes contained in the E. coli ROS pathway, a previous study was conducted to 

construct a consensus network with only the top one scoring networks among 20,000 

saved networks [56].  We hypothesized that with more restrictive B-values (i.e., more 
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top-scoring networks used), more conserved networks could be generated with more 

conserved edges detected.  

To measure the relation between B-values and the specificity of predicted 

consensus networks, EC-R was first used. Based on three distinct B-values, three 

consensus networks were identified using the EC-R method (Figure 3.7). The large 

 

Figure 3.7 ROS consensus networks generated by B-values.  Three successive 

consensus networks were generated using different B-values, as described in-text.  The 

smallest core network was selected using the largest connected set of genes with B-value 

= 0.0.  These networks were later used as core networks in Chapters 4 and 5 for BN+1 

expansion and hidden factor identification.  

 

network with a B-value of 0.247 contains all 27 genes from the original ROS 

detoxification list in EcoCyc. The predicted topology of the large network is basically the 

same as the one shown in previous work [56], which was generated by using all 

equivalent networks with the same BDe score. By comparing all the EcoCyc, 

RegulonDB, and literature data, a 42% correlation was observed between the predicted 

and known edges [56]. The medium consensus network had a B-value of 10
-3

, which 
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corresponds to the selection of the top 3,644 simulated networks. By calculating the 

curated results from Supplemental Table 1 in Reference [56], this network contains 10 

edges, and  of them were verified to be true. The remaining edges are well supported 

hypotheses and deserve further investigation. When all 20,000 saved networks were used 

(i.e., B-value = 0) in consensus network generation, all seven edges were supported based 

on existing knowledge (Supplemental Table 1 in Reference [56]). This study also found 

that all edges shown in a more conserved network are also found in a less conserved 

network. For example, all edges shown in the small network (B-value = 0) exist in the 

medium network (B-value = 10
-3

) and large network (B-value = 0.247). In summary, the 

EC-R method can refine the consensus network down to the best-supported interactions 

appropriate to the underlying dataset used in the analysis.  The EC-L method provides a 

nearly identical list of ranked interactions, including those interactions which do not 

appear initially in the top-scoring network.  

One question was whether the bootstrapping or EdgeClipper predicted 

interactions most closely reflect the underlying biological interactions. Spearman rank 

correlation testing revealed that the edges in the E. coli ROS pathway network ranked 

according to EC-L and EC-R show a significant negative correlation (P-value < 0.01 in 

both cases) with the ranked bootstrap frequencies for those edges.  Table 3.2 shows the 

major interactions and their predicted weights and rankings according to the bootstrap, 

EC-L and EC-R methods.  Specifically, C-values are ranked from zero to one with zero 

being a score for the most conserved and specific edges. In contrast, the bootstrapping 

confidence values are ranked from one to zero, where zero for an edge represents no data  
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Table 3.2 ROS BN interactions predicted using three methods. 
Interaction Bootstrap 

Freq. (2-way) 

EC-L  EC-R Rank: 

Bootstrap 

Rank: 

C-value 

(EC-L) 

Rank: 

 C-value 

(EC-R) 

gadX-gadE 0.999 4.40E-15 0 1 1 1 

marA-marR 0.999 4.40E-15 0 1 1 1 

gadX-gadW 0.998 4.40E-15 0 3 1 1 

katE-sodC 0.996 4.40E-15 0 4 1 1 

fis-sodC 0.988 4.40E-15 0 5 1 1 

ihfA-ihfB 0.986 4.40E-15 0 6 1 1 

crp-oxyR 0.863 1.96E-07 6.55E-05 7 7 7 

sodA-soxS 0.756 0.0195 0.145 8 22 23 

cspA-ihfB 0.733 0.0118 0.0773 9 19 20 

gadX-fur 0.719 4.61E-06 0.000939 10 8 9 

ihfA-sodC 0.718 0.00482 0.0507 11 18 17 

katE-pheU 0.661 0.000831 0.0262 12 12 13 

evgA-gadW 0.66 0.423 0.437 13 30 30 

sodB-sodC 0.65 0.0399 0.192 14 26 26 

fnr-gadX 0.631 0.000108 0.00586 15 10 10 

gadX-rob 0.592 0.00207 0.0221 16 15 12 

ihfA-marA 0.564 0.0219 0.121 17 24 22 

hns-ydeO 0.557 0.00128 0.0422 18 13 16 

cspA-soxS 0.555 0.0441 0.215 19 28 28 

gadX-sodC 0.533 1.44E-5 0.000693 20 9 8 

rob-ydeO 0.532 0.0211 0.166 21 23 24 

torR-ydeO 0.53 0.00137 0.0344 22 14 14 

katE-ydeO 0.425 0.00429 0.0537 23 16 18 

cspA-gadX 0.394 0.0167 0.0773 24 21 20 

gadX-soxS 0.383 0.00432 0.0404 25 17 15 

arcA-cspA 0.358 0.000418 0.0141 26 11 11 
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katG-pheU 0.352 0.0855 0.259 27 29 29 

gadX-sodB 0.348 0.0417 0.192 28 27 26 

katE-oxyR 0.291 0.0333 0.174 29 25 25 

ihfB-soxR 0.28 0.434 0.590 30 31 31 

fnr-sodC 0.276 0.0128 0.0710 31 20 19 

 

support for this edge. Interestingly, all of the consensus edges appear in the top 57 

interactions listed by the ranked bootstrap results (top 57 out of 50,295 total interactions 

saved). However, one interaction, sodA-sodB, was missed by EdgeCliper but was highly 

ranked by bootstrapping. Because the sodA-sodB interaction did not appear in the top-

scoring Bayesian network, no C-value was assigned according to EC-R.  Furthermore, 

EC-L ranked the sodA-sodB as 35
th

 with a C-value of 0.935. 

3.4.4 Analysis of selected EcoCyc pathways using EdgeClipper algorithm  

Ten additional EcoCyc pathways were selected for additional analysis. The pathways 

were selected for having 5 to 25 genes which matched the microarray platform. BN 

analyses were conducted for each of the ten pathways, followed by subsequent 

refinement with the EdgeClipper EC-R method. The EC-R method was tested for 

sensitivity and specificity using B-value cutoffs of 0.1 and 0.01. Our analysis results 

indicate that the lower B-value a cutoff was used, the more specific interactions it 

predicted. The results are similar to the ones found in the E. coli ROS pathway analysis 

and further confirm that EC-R is able to increase the prediction specificity of edges in 

consensus networks.  
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3.5 Discussion 

This study reports the development and evaluation of EdgeClipper, a posterior 

probability-based algorithm for generation of consensus networks and prioritization of 

edges in a BN. Our synthetic and E. coli data analyses indicate that EdgeClipper 

improves the specificity of consensus network generation and provides an effective way 

to rank edges. 

EdgeClipper is a posterior probability-based algorithm developed to 

systematically construct consensus networks and rank the support for each edge in the 

network. The concept of consensus network generation based on analysis of a set of 

stored ‗top-scoring‘ networks has been conceived before. For example, many scientists 

have used such a method ad hoc [49]. The partial directed acyclic graph (PDAG) method, 

proposed to summarize the networks with equivalent classes [36], is a type of consensus 

network built on saved networks with the best posterior probability score. However, the 

PDAG method has not been associated with any systematic and quantitative measures. 

Hartemink also proposed an approach for BN edge prioritization by computing 

cumulative posterior probabilities based on all saved top-scoring networks [64]. This 

proposed method is similar to the C-value calculation based on EC-L. However, 

Hartemink‘s method does not consider equivalent networks, and the approach has not 

been tested. The major contribution of EdgeClipper is that instead of directly using 

posterior probabilities, we are the first to use the right tail of accumulated density in the 

posterior probabilities for consensus BN analysis. If posterior probabilities are directly 

used, it would be difficult to compare different scores (Figure 2). The switch of using the 
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right tail of accumulative posterior probabilities (i.e., B-value) allows us to use the 

posterior probabilities to generate consensus network. In addition, the introduction of B-

value in EdgeClipper allows us to consider a whole or a portion of saved top networks 

with a B-value cutoff. Furthermore, because many BNs are equivalent, the use of 

posterior probabilities in EdgeClipper allows us to group these equivalent networks with 

the same scores using the PDAG approach. An ignorance of those networks with the 

same scores due to equivalent or nearly equivalent network structures, may bias the 

results of edge prioritization.   

The EC-L and EC-R methods are two EdgeClipper methods with extreme settings 

(Figure 3.1). When we calculate consensus networks, EC-R only uses the top scoring 

networks based on B-value cutoff, while EC-L includes all networks ranging from high 

scoring to low scoring networks. Since EC-R uses the Fe-value of 100%, EC-R will not 

rank those edges that do not exist in the best scoring networks. In contrast, EC-L does not 

have any restriction of the Fe-value cutoff, so EC-L will assign a score for any edge that 

exists at least once in any of the saved networks (Table 1-2). However, for those edges 

present in the best scoring networks, these two methods correlate well. Those edges that 

are absent from the best scoring networks usually have low C-value scores. Therefore, if 

we are only interested in finding those most specific and conserved edges, EC-R is 

sufficient. While both EC-R and EC-L are computationally faster than bootstrapping 

because of the lack of the data resampling step, EC-R is slightly faster to compute than 

EC-L due to its restrictive settings.  
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In our synthetic and E. coli real data analyses, we found that the results of 

EdgeClipper and bootstrapping largely correlate, and in some cases EdgeClipper behaves 

better than bootstrapping in predicting an edge. We note that there are fundamental 

differences between bootstrapping and EdgeClipper. First, the underlying datasets used in 

the two approaches are different.  The original underlying dataset was used as a whole in 

the EdgeClipper approach. However, the bootstrapping method uses reshuffled data. The 

reshuffling may change the binning assignment from one sample to another. It is 

important to recognize this difference, since for relatively small data sizes, the 

bootstrapping approach may be extremely sensitive to the implemented sampling 

approach and loss/gain of selected data vectors. However, EdgeClipper uses all the 

original data and thus does not have this problem.   

Due to the differences in data processing, the primary questions addressed by 

these two methods become different. Based on the B-value derived from the posterior 

probability, EdgeClipper focuses on answering the question "How well does it fit in with 

the model with the data?" The B-value fits in line with density, statistical P-value, and 

BLAST E-value analyses in that all these values consider the weighting or significance of 

a set of results within a selected probability distribution. Significance is used loosely here 

since our B-value is based on the observed probability distribution. In contrast, 

bootstrapping answers the question "How sensitive is the fit of the model to specific data, 

or how robust is it?" Here, the bootstrapping confidence value can be grouped together 

with q-value and cross validation results. The bootstrapping can be used to identify 

whether the BNs are sensitive to certain data, such as in cases where datasets are small or 

sparse, or selected data are over-represented in the set and bias the overall 
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model.  Different bootstrapped data can give rise to unique posterior probabilities in the 

Bayesian networks, though we would expect similar overall distributions if the model is 

robust given the data. 

  EdgeClipper has basically two uses: consensus network creation, and edge 

ranking. Our studies indicate that EdgeClipper generates more specific and conserved 

consensus networks and the edges can be ranked accordingly with C-values, with EC-R 

giving the most specific interactions. Therefore, EdgeClipper can be used to confirm 

known interactions and identify new interactions with high specificity. For example, we 

identified many unknown but specific and conserved interactions (e.g., sodC – gadX) in 

the E. coli ROS pathway (Figure 6). Since BN modeling attempts to predict many new 

interactions, it is too expensive and most likely impossible for a wet-lab to test all 

possible interactions. Therefore, it is crucial to identify those most promising interactions 

for experimental verification. The EdgeClipper consensus network approach allows us to 

focus on a small network with high confidence. The C-value ranking provides a way for a 

research to experimentally investigate those predicted interactions with the best chance of 

success.  
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Chapter 4  

 

BN+1 Algorithm for Identification of Novel Pathway Members 

4.1 Overview 

Signaling and regulatory pathways that guide gene expression have only been partially 

defined for most organisms. However, given the increasing number of microarray 

measurements, it may be possible to reconstruct such pathways and uncover missing 

connections directly from experimental data.  To achieve the identification of novel 

pathway members and their biological roles in selected pathways, we developed a novel 

algorithm called BN+1 which incorporates Bayesian network computations to expand 

networks to include potentially important biological interactors.  BN+1 analysis enables 

the prediction of the most likely molecular interactors given some initial set of molecular 

entities (e.g. genes) and an existing biological dataset (e.g. gene expression microarray 

data).   

The BN+1 approach was tested and characterized using synthetically-derived networks 

which can mimic some biological interactions.  This approach was also applied to the 

analysis of the ROS pathway in Escherichia coli (partially described in Chapter 2) and B 

cell receptor signaling pathway in Mus musculus.  This expansion procedure predicted 

many stress-related genes (e.g., dusB and uspE), and their possible interactions with other 

ROS pathway genes.  A simple yet novel term enrichment method identified that biofilm-

associated microarray data usually contained high expression levels of both uspE and 
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gadX. The predicted involvement of gene uspE in the ROS pathway and interactions 

between uspE and gadX were confirmed experimentally using E. coli reporter strains. 

Genes gadX and uspE showed a feedback relationship in regulating each other's 

expression. Both genes were verified to regulate biofilm formation through gene 

knockout experiments.  Furthermore, the approach was successful in identifying known 

and putative interactors with the Nf- B subnetwork within the larger B cell receptor 

signaling pathway.  

These data suggest that the BN+1 expansion method can uncover hidden or 

unknown genes for a selected pathway with significant biological roles. Our results 

demonstrate the power of BN+1-based pathway augmentation or expansion in synthetic, 

prokaryotic, and eukaryotic systems.  Thus, the presently reported BN+1 expansion 

method is a generalized approach applicable to the characterization and expansion of 

other biological pathways and living systems. 

4.2 Introduction 

In this study, we explore how a biological pathway can be defined, and identify a set of 

methods to automatically learn a pathway from experimental data.  Although many 

biological pathways have been described in the literature, these pathways likely represent 

only a small portion of the known underlying network of interactions.  Recently, such 

pathway representations have been systematized in databases such as EcoCyc [23], 

RegulonDB [65], and KEGG [20]. The pathways represented in these databases are 

commonly used as a starting point (seed network) to analyze gene expression data and 

identify pathway activity using computational tools such as GSEA [66] and DAVID [67].  
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However, when an annotated pathway is used to analyze microarray gene expression data, 

the assumption is made that the ideal microarray derived network will be the same as that 

in the literature. This assumption may not hold since many pathways are defined based 

on observed protein-protein and protein-DNA interactions, metabolic fluxes, and subsets 

of particularly well-studied genes. Each of these factors may contribute to the substantial 

inconsistency between RNA-level microarray-based networks and currently defined 

pathways.  Furthermore, the selected pathway representation may be incomplete and not 

include relevant regulator or effector molecules, thus necessitating computational 

prediction and subsequent validation.  To address this issue, we introduce a method to 

systematically expand a pathway by identifying new genes that, from a gene expression 

perspective, better define the pathway itself. 

Biological pathways have been constructed from the existing literature and 

annotation information using a wide range of methods [12,36,45,68,69,70,71,72,73]. One 

method of pathway reconstruction uses Bayesian networks (BNs) to learn and model 

relationships between variables (e.g., genes).  Bayesian networks are graphical models 

that describe causal or apparently causal interactions between variables.  In this study, a 

Bayesian network is defined as a set of interactions (edges or arrows) between variables 

(nodes) selected from a set of known pathway genes.  High scoring BN topologies are 

learned from data based on scoring metrics such as the BDe scoring metric introduced by 

Cooper et al. in 1992 [35], that incorporates the joint probabilities for variables connected 

to one or more other variables.  In this context, the Bayesian model is a multinomial 

model with a uniform Dirichlet prior.  Bayesian networks such as these have been used to 

identify relationships from gene expression data [36,46], protein-protein 
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interactions[74,75], and the regulation of phosphorylation states [49].  Due to their 

flexibility, reliability, ability to model multi-variable relationships, and human 

interpretability, Bayesian networks are well suited for network modeling using high-

throughput data such as gene expression microarrays.       

Networks learned from datasets such as gene expression data can be used to 

expand our knowledge about a known pathway, by independently testing the effects of 

added genes or variables on the overall scores of the corresponding expanded networks. 

A general network expansion framework to predict new components of a pathway was 

suggested in 2001 [76]. Many of the pathway expansion methods use correlation or 

Boolean functions [10,76,77,78]. Compared to these methods, Bayesian network-based 

expansion methods provide distinct advantages, including prediction of both linear and 

nonlinear functions, identification of causal influences representing interactions among 

genes. Bayesian network-based expansion was also used for gene expression data 

analysis [11,53]. However, these expansion approaches are module-based methods that 

focus on identifying modules (or groups) of additional genes to one gene [11] or a group 

of genes with a fixed topology [53]. The mRNA-based networks were also merged with 

protein data which often do not agree with each other [53]. The topology of the biological 

pathways may not be consistent with networks learned from transcriptional gene 

expression data obtained via DNA microarray studies [77].   
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4.3 The BN+1 Algorithm 

 

 

 

 

BN+1 Algorithm  

Input: N variables (e.g., genes) from a dataset (e.g., microarray dataset) with L 

observations each. 

Data Preprocessing (Optional) 

Filter out m variables (e.g., via coefficient of variation (c.v.) <= 1.0).  Number of 

possible variables for analysis: N= N-m. 

BN Core Network Searching  

Select K variables from the set of N variables (e.g. from a pathway database). 

Construct matrix data file D with K*L observations using K variables and L observations. 

Select settings for BN simulation, including data discretization (e.g. q3 quantization), 

searcher strategy (e.g. simulated annealing), and structural priors. 

Execute BN simulation (e.g. using BANJO). 

Save top BN network topology C 

Iterative Core Expansion 

Assign the core topology C as unfixed structural prior for BN searching 

For each variable a in the set {N-K}, do: 

 Generate new data file D* by concatenating L observations for a to data file D 

 Select settings for BN simulation. 

 Execute BN simulation.   

 Save top network and its posterior probability for a.  

Rank each variable according to posterior probability. 

Output: Rank-ordered BN+1 results. 

Figure 4.1 Pseudocode for the BN+1 expansion algorithm. 
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The pseudocode for the BN+1 algorithm is represented in Figure 4.1 and its 

implementation is described as follows.  First, Bayesian networks are generated from 

discretized microarray data and ranked according to log posterior score.  A consensus 

network was then generated from the top-scoring networks and used for comparison with 

known pathway. Next, a top network used to generate the consensus network was 

randomly selected as a seed network for subsequent expansion.  Each gene not included 

in the top network yet appearing in the microarray dataset was independently tested for 

its ability to acquire the best log posterior score versus the other tested expansion genes.  

BN+1 variables were ranked according to the best posterior score of their respective 

networks as compared to the other BN+1 variables.  This approach was repeated for 

several distinct biological cases studies and is described below. 

4.4 Case Study #1: Synthetic Network Analysis Using BN+1 

4.4.1 Summary 

To further establish the validity and evaluate potential pitfalls of the algorithm, a 

synthetic regulatory network was developed for testing the BN+1 algorithm.  In terms of 

the previous ROS pathway analysis, the second most highly-ranked BN+1 gene 

appearing in the PLoS ONE paper, formate dehydrogenase fdhE, is further elucidated.  

Finally, cutoff criteria for selecting significant BN+1 genes and methods to improve the 

algorithm are discussed. 
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4.4.2 Method 

A synthetic network was constructed by generating a set of mathematical functions which 

define the relationships amongst a set of variables (Fig. 4.2). In this model, eight 

variables are linked together in tandem (Fig. 4.2A) by the following functions:  

A= 5,10N                        (4.1) 

B= )3.0,0(log10 NAabsabs                  (4.2) 

C= 3.0,05 0.15 Neabs

B

        (4.3) 

D= 3.0,01/0.6 NCabs       (4.4) 

E= 15.0,0log NDabs         (4.5) 

F= 3.0,03 NEabs         (4.6) 

G= 17.0,0log NFabs         (4.7) 

H= 3.0,01/0.6 NGabs       (4.8) 

where ,N  represents normally-distributed noise with  as the mean and  as the 

standard deviation.  Biological data frequently include noise which can reduce the 

predictive capability of BNs and other modeling approaches.  To reflect this reality, 

various levels of noise are added to the functional relationships. The function abs( ) is the 

absolute value of the enclosed quantity. Synthetic data were generated from these 
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functions by sampling from the Gaussian-distributed variable A and subsequently 

sampling corresponding data values for subsequent variables in the pathway based on  the 

above functions (a similar approach appears in [58]).  This particular synthetic network 

contains different types of relationships amongst variables, e.g., nonlinear polynomial 

and biphasic relationships. 

 

Figure 4.2 Synthetic network and BN+1 results for two-variable core expansion. (A) 

A synthetic eight-variable network.  (B) Seven distinct core networks composed of two 

adjacent variables were used for BN+1 expansion analysis. In each row, integers identify 

the ranks of the BN+1 variables (where 1=top scoring gene, etc).  (C) The posterior score 

distribution of BN+1 variables identified in the first row of Fig. 1A. (D) Plot of absolute 

values of pair-wise Pearson correlations for all variables.  The black star denotes a 

relationship (between F and G) that has a poor Pearson correlation (coefficient = 0.056). 

and separated by at least one variable in the synthetic network (Fig. 1A). (E) A nonlinear 

relationship between variables F and G. 

 

To further evaluate the BN+1 algorithm, a series of BN+1 simulations were 

designed and analyzed (Fig. 4.2B). In each simulation, two adjacent variables from the 
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synthetic network are selected as a ‗core‘ network (i.e., a known seed subnetwork) and 

used to identify the other six variables in terms of their roles in the overall network.  The 

predicted variables, which are coined the BN+1 variables, are ranked according to their 

best log posterior scores obtained for the network containing a BN+1 variable and core 

network variables.  This experiment was repeated for each pair of core variables in the 

model (Fig. 4.2B).   

4.4.3 Results 

When the core sub-network is located at the end of the synthetic network (i.e., AB or 

GH), the BN+1 successfully identified those variables that are closely associated to a 

core network in sequential order (Fig. 4.2B). For example, when the core network is 

AB, BN+1 identifies the top four variables that are associated with this core network 

are C, D, E, F, in correct order. It is interesting that the last two variables G and H have 

the same score as F when they are individually added to the core network (Fig. 4.2C). A 

further examination indicates that none of the three variables F, G, and H is connected to 

A or B in the final BN network containing A, B, and one of the three variables. The 

disconnection of these three variables from the core AB makes it possible for the 

posterior probabilities to be the same.   

When the core subnetwork is located in the middle of the synthetic network (e.g., 

BC or CD), the variables identified by BN+1 are ranked in sequential order in either 

side of the core network. For example, for the core network CD, the BN+1 variables on 

the right side are ranked 1 (E), 2 (F), 5 (G), and 6 (H), and the BN+1 variables on the left 

side are ranked 3 (B), and 4 (A) (Fig. 4.2B).  It is interesting that top 2 (F) is located on 
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the same side with top 1 (E) instead of direct association with C in the CD network. 

Despite the direct link between B and the core network, F has stronger association (with 

higher posterior probability) with the core network than B. This asymmetric pattern 

suggests that top ranked BN+1 variables are ranked based on their extent of associations 

with the core network instead of physical closeness to the core network.  

4.4.4 Discussion 

One advantage of BN+1 over many linear correlation-based methods is that our Bayesian 

network based approach is able to identify those interactions that show nonlinear 

correlations with core variables. Pearson correlation is a typical method for defining the 

extent of a monotonically increasing or decreasing relationship between the variables 

[79]. The correlation coefficients between all possible pairs in the original dataset were 

calculated using Pearson correlation method. Although all of the functions are nonlinear, 

over the rage of parameters tested, some may be approximately linear, while others may 

be more strongly nonlinear and deviate from monotonicity. Figure 4.2D shows a matrix 

representation of the Pearson correlations observed for each pair of variables and their 

synthetically-generated data.  In general, Pearson correlation coefficients decrease as the 

distance between variables (or the distance of one variable from the diagonal of the 

matrix) increases. Overall, Pearson correlations can not only detect those variables 

directly associated with one specific variable, but also identify those that are remotely 

associated with sequential order (white stars in Fig. 4.2D). However, Pearson correlation 

failed to identify the association between F and G. A further examination indicates that F 
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and G share a clear nonlinear relationship (Fig. 4.2E). Such a nonlinear relationship is 

correctly detected by BN+1 (Fig. 4.2B). 

In our synthetic data simulation, we found that the disconnected variables share 

the same score (Fig. 4.2). This cutoff shows that all subsequent BN+1 genes will be 

disconnected from the core gene network. Similar results were also observed in the ROS 

pathway simulation (further described in Section 4.5). The last 1,457 genes in the sorted 

BN+1 gene list were all disconnected from the core gene network. This suggests that 

these 1,457 genes have no relationship with the ROS pathway based on the selected 

microarray data and selected core network. However, the cutoff based on the loss of 

connection between a BN+1 gene and a core network is loose and may result in too many 

genes being included for further testing. 

4.5 Case Study #2: BN+1 Analysis of the E. coli ROS Pathway 

4.5.1 Summary 

We hypothesize that Bayesian networks derived from microarray gene expression data 

are largely consistent with known pathway models and can be used as a basis to predict 

novel factors that influence a given pathway.  In this study, the hypothesis was examined 

using the Escherichia coli reactive oxygen species (ROS) pathway.  Because E. coli and 

the ROS pathway had been well studied [25,26,27,28], we were able to test the 

effectiveness of our network expansion algorithm and to assess the ability to reconstruct 

and expand an accepted pathway using microarray data.  We identified many stress-

related genes potentially involved in the ROS pathway and predicted their interactions 

with known ROS genes. Our prediction was confirmed experimentally for one example 
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gene, uspE. Our single-gene expansion approach, termed ‗BN+1‘, was successful in 

predicting unknown stress interactions that can be verified through experimental analysis, 

and could demonstrably be applied to other biological systems of interest. 

4.5.2 Methods 

4.5.2.1 Data preprocessing 

A compilation dataset comprising 305 gene expression microarray observations and 

4,217 genes from Escherichia coli MG1655 was obtained from the M3D database [8]. A 

coefficient of variation threshold (c.v. ≥ 1.0) was used to select 4,205 genes for analysis.  

Twenty-seven genes were identified from the EcoCyc ROS detoxification pathway 

(downloaded on March 26, 2008) and matched to unique features found in 305 available 

gene expression microarray chips.  Expression profiles for each gene were discretized 

using a maximum entropy approach that uses three equally-sized bins (q3 quantization).  

4.5.2.2 Learning Bayesian network pathway models 

Given the set of 27 genes, Bayesian network analysis was used to learn the structure of 

the model which served as our core starting topology. To maximize the network search 

space, 4000 independent simulations with random starts were used to search 2.5x10
7
 

networks per start for a total of 1x10
11

 networks.  The five top networks were saved from 

each run, thereby generating a final list of 20,000 top-scoring networks.  These networks 

were used to estimate the posterior distribution.  During the search, each network was 

scored using log of the BDe score [35,37] which is the natural log of posterior probability 

( DMPS |ln ) and is defined previously in Equation 2.2 in Chapter 2  using the 

software package BANJO [40]. 
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A consensus network was generated using 33 networks which shared the maximum or 

best log posterior score (ln(P(D|M)). Specifically, directed edges in the consensus 

networks represent those edges that appear with 100% frequency in one direction in all of 

these top networks.  Undirected edges represent those edges appearing 100% of the time 

in both directions in all stored networks (Figure 4.3).   

4.5.2.3 Network expansion using BN+1  

To expand an existing network, a top network used to generate the consensus network 

was used as a starting topology for the BN+1 algorithm (Figure 4.3).  A set of 4,178 

genes (4,205-27), not included in the top BN, were tested for their ability to improve 

score of the initial core BN when added to the initial gene set.  In each iteration of the 

BN+1 simulation, the current BN+1 gene was added to the original data file.  This was 

followed by a simulated annealing search of 1x10
7
 networks for the top network 

expansion.  Although the top network was selected as a starting point or seed, during the 

learning round all edges could be modified such that the addition of genes could change 

the backbone structure of the resulting model (i.e., unfixed structural prior).  Genes were 

sorted based on their log posterior scores.  BN+1 searches for each of the top 200 genes 

recovered from the initial top network were rerun (2.5x10
7
 networks/simulation with 150 

replicate simulations) to allow sufficient convergence.  

All calculations, including the network expansion, were implemented in a publicly 

available, internally developed software program MARIMBA (available at 

http://marimba.hegroup.org/, described in Chapter 6).  

http://marimba.hegroup.org/
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4.5.2.4 Term enrichment for identifying relevant experimental observations 

A term enrichment program was developed to identify which descriptive terms in the 

experimental conditions show significant enrichment in selected regions of the 

microarray data. A 'term' here is defined as any individual word appearing in the names 

or descriptions for each microarray sample. For two selected genes, a p-value was 

introduced to determine the chance of observing a selected term in a selected bin. The p-

value was calculated using the Fisher's exact test for appearance of 'term' and 'non-term' 

data observations in a specific bin [80]. The bins used for microarray BN analysis were 

adopted in this text enrichment analysis. For example, the q3 quantization was used for 

the expression levels of gadX and uspE.  

4.5.3 Results 

4.5.3.1 Microarray-based Bayesian network overlapped with known ROS pathway 

Using a compendium of microarray gene expression data from the M3D database [8], 

networks were constructed for the 27 genes contained in the ROS pathway as defined by 

the EcoCyc database [23] (Figure 4.3). E. coli uses a complex detoxification pathway to 

protect against the oxidative stress posed by reactive oxygen species (ROS), including 

oxygen ions, free radicals, and peroxides [27]. The 27 genes identified in the EcoCyc 

ROS pathway include five ROS-processing enzymes (i.e., katE, katG, sodA, sodB, sodC) 

and 22 transcriptional factors that regulate transcription of these ROS-related enzymes. 

This E. coli expression dataset incorporates a variety of experimental conditions 

including time course studies, cell stress-inducing environments, over-expression, and 

single and double knockout strains.  These conditions perturb the ROS pathway and 
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provide a reasonable data set for the evaluation of our hypothesis. To include all results 

predicted from the top Bayesian networks, a consensus network was derived using the 33 

top networks that shared the best identical posterior probability. The consensus network 

contains all 27 genes from the original ROS detoxification list in EcoCyc.    

 

Figure 4.3 Consensus network for the ROS detoxification pathway.  Bayesian 

networks were generated using twenty-seven genes from the reactive oxygen species 

(ROS) detoxification pathway as variables or nodes and 305 gene expression microarray 

observations per variable.  Edges which appear in the consensus and are supported by 

external data (e.g. EcoCyc, RegulonDB, and/or literature) are indicated (*). 

 

A comparison of the consensus network to EcoCyc revealed that 29% of the 

edges in the consensus are supported by corresponding edges in EcoCyc [23] or 

RegulonDB [81].  However, inclusion of literature information in the comparison 

revealed that approximately 42% of the edges found in the consensus network were 

confirmed. The difference suggests that some new literature results have not been 

collected in current databases such as EcoCyc and RegulonDB. 
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4.5.3.2 BN+1 pathway expansions predict ROS-related genes and gene interactions. 

An expansion algorithm termed BN+1 was developed to identify those genes that provide 

the best network score when added to an existing core network topology (Figure 4.1).  

Each gene not yet included in the core network is individually added to the set of 

variables for the Bayesian network simulation (hence Bayesian network plus one gene, or 

‗BN+1‘). The edges in the initial core network topology are used as a ‗structural prior‘ or 

starting point, and are allowed to change over the course of the BN simulations.  The 

added node is initially disconnected from the existing core network and can become 

connected to other variables over the course of the simulation.  Those genes which best 

improve the network score when added to the existing core are expected to have the most 

direct biological influence and/or relevance to the core network genes. 

The BN+1 expansion algorithm was used to identify additional potential members 

of the ROS detoxification pathway.  The top-ranked results from these analyses are 

shown in Table 4.1. The algorithm identifies whether a gene is strongly associated with a 

particular network (e.g., the ROS detoxification pathway) and which genes in the 

network may influence or be influenced by the newly predicted gene. The predicted 

influences between core genes and the top ―+1‖ genes (including dusB and uspE) 

identified by BN+1 expansion are shown in Figure 4.4.   

Expansion of the consensus network revealed that many top predicted genes have 

known relationships with ROS and stress regulation (Table 4.1).  The tRNA- 

Table 4.1 Top 10 genes identified by BN+1 expansion of core network. 
Rank Top BN+1 gene hits Posterior BN score 
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1 dusB (tRNA-dihydrouridine synthase B)  S=-8295.81 

2 fdhE  (formate dehydrogenase formation protein) S=-8298.44 

3 uspE (stress-induced protein);  S=-8310.63 

4 yohF (predicted oxidoreductase with NAD(P)-

binding Rossman-fold domain) 

S=-8312.24 

5 yncG  (predicted enzyme);  S=-8313.04 

6 msyB (predicted protein);  S=-8318.20 

7 yedP (conserved protein);  S=-8320.30 

8 sra (30S ribosomal subunit protein S22) S=-8323.97 

9 ydcK (predicted enzyme);   S=-8325.91 

10 ynhG  (conserved protein);   S=-8326.20 

Note that the numbers shown after gene names are negative logs of posterior probabilities 

for each top network containing the respective predicted gene. 

dihydrouridine synthase B gene (dusB or yhdG) was predicted to be the top-scoring 

BN+1 gene and to interact with fis and sodC (Figure 4.3A).  Fis is an important regulator 

of oxidative stress [82].  Because all of the known enterobacterial fis genes are preceded 

by dusB (also called yhdG) within the same operon [82], it is reasonable that dusB is 

positioned as a parent of fis in our prediction. Both fis and sodC are crucial to bacterial 

defense against the deleterious effects of reactive oxygen species (ROS) [83,84]. The 

interaction between sodC and dusB is likely important for bacterial antioxidant reactions. 

The second top predicted gene fdhE encodes an E. coli formate dehydrogenase accessory 

protein that regulates the activity of catalytic sites of aerobic formate dehydrogenases and 

their redox activities [85].  A third gene, the universal stress protein uspE, is a known 

major regulator of motility factors and cell aggregation under stress conditions [86]. 

Several other predicted enzymes (yncG and ydcK) and proteins (msyB) found in the 
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BN+1 search have no currently known functions related to the ROS pathway and stress 

response.  

Pair-wise plots of the expression of BN+1 genes versus ROS pathway genes show 

simple (dusB vs fis, Figure 4.3A) or complex relationships (uspE vs. gadX, Figure 4.4B-

C).  The plots show that the relationships between these genes may be nonlinear. For 

example, a ―V‖ shaped pattern is observed between the expression profiles of gadX and 

uspE, where gadX is down-regulated at moderate levels of uspE and up-regulated in 

either increased or decreased levels of uspE (Figure 4.4C).  This special non-linear gene 

interaction pattern was not clearly demonstrated in a traditional hierarchical clustering 

heatmap (Supplemental Figure 1 in [56]). Gene gadX is a transcriptional regulator of 

glutamic acid decarboxylase system, which enables E. coli to overcome acidic stress, 

while uspE is a universal stress-induced protein. A term enrichment method was 

generated to identify words that are preferentially grouped and reflect most significant 

features of the interactions between two genes (e.g., gadX and uspE) as predicted by our 

BN method.   
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Figure 4.4 Top BN+1 predictions and their relationships with core network genes.  

Genes dusB(A) and uspE (B) were top results for large network expansion. (C) Scatter 

plot for uspE versus gadX highlighting experiments with the word ―biofilm‖ in the 

experiment title and/or description. High levels of uspE and gadX were observed for all 

conditions mapped to ‗biofilm‘. The dotted lines indicate boundaries for binning used in 

network learning.  A similar profile was observed for gene gadE (not shown). 

 

Based on our term enrichment analysis of gadX and uspE, one term that clustered 

the data particularly well was ―biofilm‖, which was demonstrated in the annotated scatter 

plot (Figure 4.4C). High expression of gadX was correlated with high expression of uspE 

in biofilms. Biofilms are aggregates of microorganisms that attach to and grow on a 

surface in contact with liquid, such as water or media. Induced expression of stress 

response genes, e.g., a universal stress regulater uspA, was a general feature of biofilm 

growth [87,88]. In fact, the biofilm microarray data used in the term enrichment were 

obtained from two studies. One study analyzed stress-oriented gene expression profiles of 

E. coli biofilm at various time points [89]. A second biofilm microarray study examined 

biofilm responses to acid resistance and oxidative stress using wild type and single gene 

knockout mutant strains of E. coli [90]. Our combined analysis of microarray gene 

expression and term enrichment indicated that uspE and gadX were both up-regulated in 
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many samples (chips) where ‗biofilm‘ was mentioned in the sample title and/or 

description (Figure 4.4B-C). These suggested a potential role of the uspE and gadX in the 

formation of E.coli biofilm. 

 To further evaluate the interactions between uspE and gadX and their 

regulatory roles in ROS stress and biofilm formation, several wet-lab experiments were 

conducted by Dongjuan Dai and Chuanwu Xi.  These results, appearing in [56], verified 

(1) the interactions predicted between uspE and gadX do exist in E. coli, (2) their 

responses to hydrogen peroxide stress and further implication in ROS activities, and (3) 

their direct control of biofilm-related activities.  Thus, the BN+1 approach is successful 

and can identify novel pathway members, biological interactions, as well as functional 

relevance. 

4.5.3.3 The challenge of identifying meaningful BN+1 cutoffs  

After all genes are ranked by the BN+1 simulation, what cutoff should be used to select 

the top ranked BN+1 genes for further analysis?  While the top few BN+1 genes prove 

important in the ROS pathway, many more shown in the list of top BN+1 genes are also 

related to ROS pathway (not shown). Our Gene Ontology (GO) enrichment analysis of 

the top 100 genes in the sorted BN+1 gene results (~2.4% of the total genes on the 

microarray) showed that they were enriched for ROS-related activities or functions 

(results and related discussion appear in [56]). This means that a certain number of top-

scoring BN+1 genes are all related to the core gene pathway.  However, if only the 

posterior scores are considered, the scores for the selected pathway tend to decline or 

drop off quickly before smoothing out after a small number of the top genes (Fig. 4.5A).   
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Figure 4.5 Analysis of top BN+1 genes in the ROS use case.  (A) Generic plot of best 

score for top 200 BN+1 genes. (B) Variation in scores for top 10 genes. The BN+1 genes 

are ranked by maximum scores of all networks containing the core genes plus one 

additional gene. Genes sorted by posterior scores are shown in horizontal axis.  Box plots 

for the set of scores pertaining to each gene are displayed. The variations are calculated 

based on various simulations in different computers. To perform each simulation, a 

simulated annealing approach was used with an unfixed structural prior (i.e. the core 

network edges) with multiple replicates and moderate simulation time to allow a 

comprehensive though non-exhaustive search. 

 

One feasible criterion is based on the possible loss of connection between a BN+1 

variable and the core network.  In our synthetic data simulation, we found that the 
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disconnected variables share the same score (Fig. 4.2). This cutoff shows that all 

subsequent BN+1 genes will be disconnected from the core gene network. Similar results 

were also observed in the ROS pathway simulation. The last 1,457 genes in the sorted 

BN+1 gene list were all disconnected from the core gene network. This suggests that 

these 1,457 genes have no relationship with the ROS pathway based on the selected 

microarray data and selected core network. However, the cutoff based on the loss of 

connection between a BN+1 gene and a core network is loose and may result in too many 

genes being included for further testing. For example, in our ROS example, 2,760 genes 

remain after the last 1,457 genes are excluded. While the loose cutoff removes roughly a 

third of the genes, there are still many genes which may or may not closely relate to the 

ROS pathway network.  

To make a tighter and possibly more useful cutoff, we analyzed the distribution of 

sorted posterior scores. In the ROS analysis, the sorted posterior scores of BN+1 genes 

quickly drop across the first ten variables, followed by a slowdown of score dropping 

(Fig. 4.5A). Therefore, it is possible to suggest a cutoff in the beginning of the slowdown 

of score dropping. However, these cutoffs are still artificial because we do not know 

which one(s) would be optimal for maintaining the real biological predictions.  

Furthermore, the ―best‖ posterior probabilities of BN+1 variables‘ networks often have 

variations across large amounts of simulations in different computers (Fig.4.5B).  Current 

variable rankings are based on the highest log posterior scores among all simulated 

networks for the selected BN+1 variable and core variables.  Multiple scores may be 

obtained and saved for a selected BN+1 variable and core variable set.  If the median 

scores for each set of BN+1 results were used instead, the rankings of BN+1 genes could 
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change (e.g. the 4
th

 and 5
th

 genes in Fig. 3B). It is unlikely the median scores would ever 

be used since the BN optimization approach always seeks the best (or most optimal) 

result. The resulting variation is probably due to the failed achievement of convergence. 

To achieve a final convergence, more execution time will be needed. More compute time 

will reduce the variation in scores for each individual BN+1 variable and improve our 

overall confidence in the rankings of the BN+1 variables.  Because our synthetic data use 

case only have eight variables, it is relatively easy to achieve convergence.  For example, 

Fig.1C shows no score variation in replicates for each of the BN+1 variables in our 

synthetic network (hence the box plots appear as lines denoting the median score), 

suggesting sufficient convergence was achieved by the algorithm.   

To make the experimental testing more meaningful, an empirical cutoff such as 

the top 10% of the score distribution or top 100 genes may be helpful. Although this type 

of cutoffs is heuristic and does not establish the statistical significance of those results, 

subsequent exploration of the top BN+1 results based on this cutoff may still lead to 

novel discoveries [56]. 

4.5.4 Discussion 

In this study, we addressed two questions: (1) Does a microarray-based Bayesian network 

reconstruction match with the known pathway from the literature and existing database?  

(2) Is a network expansion approach such as BN+1 useful in predicting new, biologically 

significant genes? 

For the first question, our studies indicated that the microarray-based Bayesian 

network reconstruction did not always agree with the known pathway from the literature 
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and databases. Our studies on the E. coli ROS pathway indicated that the network 

reconstructed by our Bayesian network overlaps at 29% with the known ROS pathway 

network in EcoCyc and RegulonDB. A 42% agreement was achieved when more 

evidences from the literature search was included. Inclusion of RegulonDB and literature 

resources made our comparison more comprehensive. The reason for the large mismatch 

is probably due to the fact that microarray-based transcriptional data may not reflect the 

complex biological pathways which involve complex interactions of genes in the protein, 

RNA, and DNA levels [91]. However, the Bayesian networks built from microarray gene 

expression data are transcriptional regulatory models that are predicted to reflect the 

complex ROS pathway.   

For the second question, the BN+1 expansion algorithm was found to successfully 

predict biologically significant genes to the ROS network that were further 

experimentally verified. Gene uspE was one of the top list genes selected by the BN+1 

algorithm. Its up-regulation in response to the exposure of hydrogen peroxide suggested 

that this gene was probably involved in the ROS network, along with the ROS-related 

gene gadX (Figure 4.4). Hierarchical clustering of the uspE gene showed a different 

connectivity pattern in the dendrogram for genes than the Bayesian network, suggesting 

that the Bayesian network identified a non-traditional (e.g. nonlinear) relationship 

between the genes.  Furthermore, the BN+1 algorithm suggested where the new genes 

could participate in the pathway, and in some cases the model even differentiated 

between the parents and children genes of a new gene (Figures 4.3-4). Specifically, the 

BN+1 algorithm found the ―V‖ shape relationships between expressions of genes, e.g., 

gadX and uspE, which would not have been identified using traditional clustering 
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approaches. The interaction between gene gadX and uspE was also confirmed 

experimentally. Expression of one gene was significantly affected when the other gene 

was knocked out from the wild type E. coli strain (Figure 4.4). Plot of the expression of 

gadX and uspE against each other under different tested experimental conditions showed 

a similar ―V‖ shaped pattern (Figure 4.4), which was in agreement with the finding using 

the BN+1 algorithm although the expression data from the experimental study were at the 

translational level.  

The term enrichment algorithm successfully identified experimental conditions in 

which genes might be involved and biologically related with each other. In this study, 

genes uspE and gadX were founded to be both up-regulated in the growth of biofilms. 

The involvement of the two genes in biofilms was confirmed by the fact that single gene 

knockout mutant strains gadX and uspE showed difference in the biofilm formation, 

either biomass or structures, as compared to the E. coli wild type strain (shown in [56]). 

Experimental confirmation of predicted term enrichment results indicates that term 

enrichment algorithm is a useful method to identify experimental conditions in which 

gene relationship may take place, or to propose additional areas of investigation.  

Performance of the term enrichment approach likely depends upon the quality of the 

experimental descriptions provided by researchers available from the M3D database.  The 

approach may perform better with controlled term or concept vocabularies, or could be 

further tested with Gene Ontology (GO) terms and other information in future studies. 

Bayesian network can be used to expand a pathway network based on microarray 

gene expression data. The BN+1 method expands a top Bayesian network by adding one 
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gene at a time and running it iteratively based on microarray gene expression data. The 

BN+1 expansion algorithm showed the ability to predict important factors for a pathway 

network from thousands of genes in a microarray study.  The BN+1 approach is a 

generalized method to refine and expand biological pathways. Although a ROS pathway 

in E. coli was shown in this study, the BN+1 algorithm can readily be applied to other 

organisms, pathways, and data types.  Furthermore, the text enrichment-based 

identification of experimental conditions in the context of binned data for BN analysis 

can provide beneficial information in the interpretation of predicted expansion genes.  

4.6 Case Study #3: BN+1 Analysis of the Murine BCR Pathway  

4.6.1 Summary 

Signalling and regulatory pathways that guide gene expression have only been partially 

defined for most organisms. Given the increasing number of microarray measurements, it 

may be possible to reconstruct such pathways and uncover missing connections directly 

from experimental data.  One major question in the area of microarray-based pathway 

analysis is the prediction of new elements to a particular pathway. Such prediction is 

possible by independently testing the effects of added genes or variables on the overall 

scores of the corresponding expanded networks. A general network expansion framework 

to predict new components of a pathway was suggested in 2001 [76]. Many machine 

learning approaches for identifying hidden or unknown factors have appeared in the 

literature recently [10,11,53,54,55,76,77,78,92].  

 The BCR pathway is an integral component of the adaptive immune response 

mechanism by which B cells respond to foreign antigens [29].  The BCR pathway 
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involves in the activation of specific protein kinase C (PKC) isoforms that induces 

ultimate activation of the NF- B transcription factor. Multiple protein species accumulate 

at the cell membrane in a signalosome complex and are linked to the B cell receptor.  

Signal propagation from the BCR via kinase-mediated phosphorylation cascades to 

downstream effectors such as Nfkb, NFAT (nuclear factor of activated T cells), and AP1 

is either enhanced or reduced via signalosome interactions with co-stimulatory or co-

inhibitory complexes, respectively.  BCR signaling guides many important functions such 

as anergy, B cell ontogeny, and immune response, and is linked to the several imporant 

pathways: MAPK, coagulation/complement cascades, and actin cytoskeleton [1,19]. NF-

B plays a crucial role in the antigen-induced B lymphocyte proliferation, cytokine 

production, and B cell survival [29].   

We have recently developed an algorithm termed ―BN+1‖ which implements 

Bayesian network expansion to predict new factors and interactions that participate in a 

specific pathway [56,57]. This algorithm has been tested using E. coli microarray data 

[56] and verified with synthetic networks [57].  BN+1 is applied in this chapter towards 

understanding NF- B transcriptional regulation and interactions within the BCR 

signalling pathway. 

4.6.2 Method 

We used gene expression data from perturbed B-cells obtained from the Alliance for 

Cellular Signaling (AfCS) [93,94]. This dataset is especially attractive because the same 

tissues were treated with combinations of ligands that perturb different B cell pathways. 

The AfCS study gathered 424 microarray chips measuring gene expression in B cells 
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from M. musculus splenic extracts that are exposed to 33 different ligands [93,94,95]. 

Briefly, B cells purified from splenic preparations from 6- to 8-wk-old male C57BL/6 

mice were treated in triplicates or quadruplicates with medium alone, or one of 33 

different ligands for 0.5, 1, 2, and 4 h (AfCS protocol PP00000016). RNA was extracted 

following standard AfCS protocol PP00000009. An Agilent cDNA microarray chip that 

contains 15,494 cDNA probes printed on 15,832 spots was used. It represents 10,615 

unique MGI gene matches [93]. Each Agilent array was hybridized with Cy5-labeled 

cDNA prepared from splenic B cell RNA and Cy3-labeled cDNA prepared from RNA of 

total splenocytes used as an internal reference (AfCS protocol PP00000019). Hence, each 

Agilent microarray chip provides one unique observation of relative expression level per 

selected probe. The arrays were scanned using Agilent Scanner G2505A, and images 

were processed using the Agilent G2566AA Feature Extraction software version A.6.1.1. 

The microarray raw data were downloaded from the AfCS repository at 

ftp://ftp.afcs.org/pub/datacenter/microarray/.  

 Microarray data were discretized for each variable in the Bayesian networks using 

quantile normalization with three bins. Though triplicate or quadruplicate microarray 

experiments were available in most cases per unique treatment and time of drug 

administration, we assume that each experiment provides an independent source of 

information. In this analysis, we did not use all BCR pathway genes. We sought to 

answer here whether expansion of a sub-network from the BCR pathway would 

preferentially recover other BCR pathway genes. This assumption is advantageous in that 

the number of variables allows significantly faster simulation searches for the BN and 

ftp://ftp.afcs.org/pub/datacenter/microarray/
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BN+1 simulations. Particularly, those genes most specifically involved in Nfkb-mediated 

transcriptional regulation were chosen from the KEGG BCR pathway.  

 A set of 10,000 top-scoring BNs was generated using the eight variables (the core) 

and 424 observations. Among the eight variables, two variables are Nfkbie (I B) probe 

sets, and two are Ikbkb (IKK) probe sets. In many cases, one gene has multiple probe 

sets. We chose to separate them as different variables in our BN analysis since often these 

probe sets have different values with low correlation (Fig. 4.6). This BN analysis was 

accomplished by running 100 independent simulations and saving the top 100 

simulations for each of those runs. 

    

Figure 4.6 Scatter plots for Nfkbie and Ikbkb probes from AfCS study.  Agilent 

probe identifiers are listed next to each respective gene. This figure indicates that the 

probe sets Nfkbie_10164 and Nfkbie_8911 correlate relatively well with a Pearson 

correlation coefficient of 0.69 (A). However, the correlation between Ikbkb_17300 and 

Ikbkb_10548 is low (Pearson correlation coefficient: 0.58) (B).   

4.6.3 Results 

Figure 4.7 depicts the shared set of interactions appearing in all of the top networks 

sharing the same best score.  Compared with the KEGG BCR pathway, the consensus 

network found in our BN analysis (Fig. 4.7) has an overlap with 75% of correlation (3 out 

of 4 were correctly predicted), with only one interaction missing (Fig. 4.8). 
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Figure 4.7 Consensus of top scoring Bayesian networks for eight probes 

representing BCR receptor signaling pathway genes.  Gene symbols and 

corresponding Agilent probe identifiers are represented in nodes in the network.  Directed 

edges represent those influences appearing in the same direction in all top-scoring 

Bayesian networks, while undirected edges appear at least once in the opposite direction 

though appearing cumulatively with 100% frequency in all of the top networks. 
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Figure 4.8 Schema of the BN+1 analysis results compared to KEGG BCR pathway. 

The three blue boxes represent three major sub-networks within the BCR pathway with 

distinct regulatory and functional roles.  The BN core network was defined using 

members from the third sub-network (dark grey boxes) which reflect major components 

of Nfkb signalling.  Bolded gene names are those genes which were not included in the 

core network, yet were recovered during BN+1 analysis in the top 100 results.  Note that 

not all members of the listed Nfkb signalling pathway were included in the core network 

(e.g. Ikbkg), and in some cases were not available on the microarray platform. 
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4.6.3.1 Defining BN+1 genes 

One of the top-scoring networks used to generate the consensus shown in Fig. 4.7 was 

used as a core network for subsequent BN+1 expansion. BN+1 searching was executed 

for 14,353 individual probes with 50 million networks searched per probe. If only those 

genes in close neighbourhood in the KEGG BCR pathway are considered, out of 19 

selected genes, nine genes were found to be connected to the core network in our 

analysis. Furthermore, four of these nine genes are in close proximity (within top 10% of 

top-scoring BN+1 genes with at least one connection to the core network) with these core 

genes in the KEGG protein signalling pathway: Card11, Prkcb1, Ikbkg, and Vav2. These 

results suggest that the neighbourhood of transcriptional regulation around the core 

network as well as distance between the elements in the protein signalling pathway are 

related to each other.  

Analysis of the top BN+1 variables recovered during simulation revealed several 

interesting results. First, the top set of BN+1 variables is listed in Table 4.2.  

Table 4.2 Top ten predicted BN+1 genes.  Identifier information for each ranked gene 

is provided, including Agilent probe ID (Agi_ID), Entrez gene ID (GENEID), and gene 

symbol.  Probe variables from the core network which directly connect to the BN+1 

variables in the top-scoring networks are listed in the ―Neighbors‖ column.   

Rank Agi_ID GeneID Symbol BN1_score Neighbors 

1 11062 77619 Prelid2 -3402.0 Nfkb2 

2 9502 20744 Strbp -3517.0 Nfkbie 

3 14138 20823 Ssb -3545.2 Nfkb2 

4 6276 12530 Cdc25a -3569.2 Nfkb2 

5 11361 108829 Jmjd1c -3586.8 Ikbkb(both), 

Pik3cg 
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6 14614 75964 Trappc8 -3587.8 Ikbkb, Pik3cg 

7 15876 108786 Cxcl13* -3593.1 Nfkb2 

8 10759 73132 Slc25a16 -3594.8 Ikbkb, Pik3cg 

9 5275 67887 Tmem66 -3596.0 Nfkb1, Pik3cg 

10 9036 109339 2700018L05Rik -3599.1 Pik3cg 

 

Many interesting findings were observed from this analysis. Many genes, for example, 

the Sjorgen syndrome antigen B gene (Ssb) [96], has been proven to be associated with 

the Nf-kB and BCR pathways. Ssb plays an important role in polysome translation [96], 

and is an early DNA-damage responder in apoptotic cells and those treated with cytotoxic 

chemicals [97]. Interestingly, we identified Jmjd1c, a member of the jumonji family 

proteins, as a top predicted gene in our BN+1 simulation. Jmjd1c is conserved in several 

mammalian species and has documented roles in metal ion binding, oxidoreductase 

activity, and transcriptional regulation [98].  The murine Jmjd1c mRNA is expressed in 

multiple tissues, including hematopoietic and undifferentiated ES stem cells, fertilized 

egg, pancreatic islet, etc [98]. Jmjd1c has a promoter region orthologous to humans with 

binding sites for the AP-1 transcription factor, which is considered a member of the BCR 

signalling pathway and is included in the KEGG representation as AP1 (downstream of 

the Raf/MEK sub-network in Figure 4.8 though not in our core network.  Fig. 4.9 

illustrates the strongly-correlated relationships uncovered between the Jmjd1c genes and 

connected core network members.  As another example, the Cxcl13 is a chemokine 

ligand in B cells with a C-X-C motif.  It has already been established that Cxcl13 

induction requires activation of canonical and non-canonical NF- B pathways [99], 
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which confirms the prediction of this gene in our network.  These data strongly support 

the predictions generated by our analysis.   

     

         (A)         (B)      (C) 

Figure 4.9 Scatter plot of expression values for core genes Pik3cg and Ikbkb (both 

probes) versus BN+1 gene Jmjd1c.  A non-linear association between Pik3cg and 

Jmjd1c is observed (A). A roughly linear relation is observed between Jmjd1c and 

Ikbkb(1) (Pearson correlation coefficient: 0.71) (B) and between Jmjd1c and Ikbkb(2) 

(Pearson correlation coefficient: 0.79) (C).  

  

One property of interest, as shown in the table, is that the core genes which recruit 

the top BN+1 genes are not always the same.  From this analysis and previous studies, we 

have observed that BN+1 variables which show high correlations to at least one core 

network variable often appear as top BN+1 results.  However, in some cases, the BN+1 

variable may connect to multiple variables in the core network, and yet show moderate to 

low correlations with each of them.  It is observed that many BN+1 variables have 

multiple core network variables as parent nodes in the predicted top network.  Multi-

parent relationships are less common though statistically more meaningful due to the 

nature of the implemented conditional probability tables in BDe scoring. 
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4.6.3.2 Clustering analysis of core genes and BN+1 genes 

Different methods, such as clustering and GO gene enrichment, can be used to further 

analyze BN+1 genes.  A clustering method provides a way to group BN+1 genes based 

on gene expression values. A heapmap clustering analysis was performed using 8 probe 

sets in the core network and 10 probe sets from the BN+1 analysis (Fig. 4.10). As shown 

in this heatmap, all NF- B genes (core genes in our BN simulation) are clustered 

together, indicating their close association. Our analysis also found that Jmjd1c is closely 

associated with these NF- B genes. This further strengthens our BN+1 prediction of the 

important role of this gene in the NF- B pathway in B cell signalling.     
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Figure 4.10 Heatmap of expression data for top BN+1 and core variables.  

Parentheses indicate specific probe identities.  

 

4.6.3.3 GO enrichment of predicted BN+1 genes 

Our previous studies indicate that the top few hundred BN+1 genes (i.e. Those genes 

predicted by the BN+1 algorithm) often interact with the seed gene network and 

biologically active relevant to the pathway of interest [56,57].  A GO gene enrichment 

analysis was performed using 250 top BN+1 genes (Table 4.3). Given the nature of the 

NF- B selected core network and their roles in nuclear localization and transcriptional 

initiation, it was not surprising that many of the recovered genes show some nuclear 
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compartmentalization. Interestingly, many apoptotic and death-related genes were 

enriched (Table 4.3).   

Table 4.3 GO enrichment results for top 100 predicted variables in BN+1 analysis.  

Entrez gene identifiers were input for the top 250 BN+1 results into the DAVID tool for 

GO analysis.  The 250 results mapped to 188 unique Mus musculus and seven unknown 

species genes, revealing that some of the top genes were represented by multiple Agilent 

probes in the top results.  Benjamini-derived p-values of 0.01 were used as cutoffs. 

Term Count P-Value Benjamini  

P-value 

Biological Process 

Cellular process (GO:0009987) 106 8.29E-06 0.00981 

Lymphocyte apoptosis (GO:0070227) 4 1.44E-04 0.0823 

Cell death (GO:0008219) 15 1.73E-04 0.0663 

Death (GO:0016265) 15 2.20E-04 0.0634 

Post-embryonic organ development 

(GO:0048569) 

4 2.36E-04 0.0546 

Apoptosis (GO:0006915) 14 2.65E-04 0.0512 

Programmed cell death (GO:0012501) 14 3.12E-04 0.0517 

Cellular Compartment 

Intracellular (GO:0005622) 125 2.93E-08 5.68E-06 

Intracellular part (GO:0044424) 119 4.32E-07 4.19E-05 

Intracellular organelle (GO:0043229) 105 2.76E-06 1.78E-04 

Organelle (GO:0043226) 105 2.84E-06 1.38E-04 

Intracellular membrane-bounded 

organelle (GO:0043231) 

93 4.08E-05 0.00158 

Membrane-bounded organelle 

(GO:0043227) 

93 4.24E-05 0.00137 

Nucleus (GO:0005634) 58 0.001749 0.0474 
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4.6.4 Discussion 

In this section, we first demonstrate the BN+1 algorithm‘s applicability to studying the 

BCR pathway, a eukaryotic signalling pathway. Our study shows that BN+1 can also be 

used to predict pathway elements and gene interactions in important eukaryotic pathways. 

Therefore, the BN+1 algorithm appears to be a generic BN expansion system that can be 

used to study other prokaryotic and eukaryotic pathways.  

 The BN+1 algorithm identified several known and previously undiscovered 

candidates relevant to NF-kB.  A variety of top-scoring BN+1 genes contributed to the 

overall enrichment of apoptotic and death-related processes.  This was not surprising, 

given that the experimental conditions used in the AfCS microarray dataset included drug 

perturbations which induce such processes.  These data suggest that the gene enrichment 

approach for assessing biological significance of multiple BN+1 candidates is possible in 

both prokaryotes and eukaryotes. 

 Furthermore, recovery of the Jmjd1c and Cxcl13 genes gave additional support to 

the biological validity of top-ranked BN+1 genes.  These genes are already implicated in 

the context of NF- B and BCR pathway activities via other experimental studies.  

Several other candidates were implicated in the BCR and/or NF- B transcriptional 

regulatory activities which are prime candidates for additional experimental investigation. 

 One unique finding from this study was the ability to generate novel predictions 

using multiple and separate probes as variables in our networks.  This type of approach, 

though naïve for some existing microarray platforms, may be amenable in future next-

generation dataset analysis.  Furthermore, such assumptions may be useful in studying 
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the behaviors of selected exons and transcripts in various biological contexts in either BN 

or BN+1 analysis. 

 The analysis did not include all members of the BCR pathway as represented by 

KEGG.   It is likely that expansion of another subset of genes from this pathway (e.g. 

Syk, Lyn, Blnk, Btk) that were not recovered as top BN+1 genes here will identify a 

different set of BN+1 genes.  Such a hypothesis could be tested by setting the Syk and 

other genes as the core network and rerunning BN+1.  This was not tested, but could be 

done easily. 

4.7 Discussion and Summary of BN+1 studies 

The BN+1 algorithm was demonstrated in the preceding examples to be generally 

applicable to a wide variety of biological systems in prokaryotes and eukaryotes.  We 

successfully identified novel genetic mechanisms relevant to biofilm formation and 

regulation which were later verified experimentally by our collaborators.   This was 

achieved by combining the expansion algorithm with a naïve natural language processing 

approach called term enrichment.  Many exciting predictions from all of the BN+1 

analyses have not yet been evaluated experimentally and await further validation, though 

will likely have major impacts on our understanding of pathway entities and their 

interactions with neighboring/interacting biological entities. 

Another method of assessing the significance of predicted results in the biological 

studies was through GO enrichment of the most well-supported and highest-ranked BN+1 

genes.  This approach was introduced in the prokaryotic ROS pathway and later applied 
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to the murine BCR pathway, with similar ability to recover pathway-relevant molecular 

functions and biological processes in the top-scoring BN+1 genes. 

Aside from extending across evolutionary scales from prokaryotic to eukaryotic 

pathways, the methods were also robust to the use of different analysis platforms for gene 

expression data (Affymetrix versus Agilent platforms).  Though this was not tested using 

platforms for different biological scales (e.g. protein expression, phosphorylation states, 

etc.), we can expect that BN+1 analyses can identify novel interactions with high 

significance using those other datasets.  It will be interesting to compare how the 

predictions generated using different dataset types (e.g. mRNA expression vs protein 

phosphorylation abundance data) compare in terms of their rankings.   

Many future directions are envisioned. For example, we can extend the BN+1 

algorithm to BN+2, BN+3, or BN+n algorithm by iteratively adding more than one 

variable to the seed gene network. The principle used in the development of the BN+1 

algorithm can also be used for dynamic BN analysis. We are currently in the processing 

of developing a DBN+1 algorithm and using it for dynamic data analysis.  
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Chapter 5  

Combined Bayesian Refinement and Expansion Towards Identification of Novel  

Molecular Interactors in Progressive Kidney Disease 

5.1 Introduction 

In this analysis, the developed methods from preceding chapters were applied towards a 

biomedically-prevalent and relevant disease in humans, progressive kidney disease.  

Progressive kidney disease is a complication that can occur in some diabetes patients and 

can include kidney failure and sometimes even death [100].   

In order to study the progressive kidney disease, data were analyzed from two 

different compartments within the kidney nephrons, the glomeruli and tubules.  These 

compartments specifically relate to the activities of the nephron, and have been shown 

previously to have differential pathological changes at different stages of the disease 

[101,102,103].  The Jak/Stat signaling pathway which has been implicated in the 

progressive kidney disease was selected as a starting point for our Bayesian network 

refinement and expansion algorithms [102,103].  We attempted to see whether the 

pathway has different regulatory roles or responses in the two compartments using 

existing microarray data, and whether novel or known regulators are implicated in either 

or both of the compartments.  By identifying the most likely pathway interactors, we 

hoped to implicate new genes in the different stages of the progressive kidney disease for 

future validation and eventual therapeutic development. 
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 Prior to the human progressive disease analysis, we tested whether a set of refined 

networks from the EdgeClipper approach could later be expanded to identify novel 

hidden factors in a simpler model.  Given that the ROS detoxification pathway had 

already been studied in detail in both the EdgeClipper (Chapter 3) and BN+1 (Chapter 4), 

the use of this pathway for testing the combinatorial application of EC and BN+1 for 

refinement and expansion, respectively, was a logical and simple extension.  The 

combined approach was tested using both moderate and strict consensus networks from 

the EdgeClipper analysis of the ROS pathway (Chapter 3).  The results from the 

expansion of both refined networks are described. 

5.1.1 Methods 

5.1.2 Selecting core networks from different consensus levels via EdgeClipper 

Two levels of consensus were selected from the ROS pathway using the EdgeClipper 

algorithm.  A medium consensus network of intermediate stringency (B-value=10
-3

) was 

derived from the top 3,644 simulated networks. The medium network contained 13 genes.  

When all the top 20,000 networks saved were included in our simulation, the B-value 

equaled zero. Under this condition, the consensus network was similar to the medium 

network except that two edges were absent, gadX-sodC and oxyR-crp. Three separate 

sub-networks remained.  These included gadE-gadX-gadW, fis-sodC-katE, and marA-

marR. In this thesis, the highly conserved network that connects the three genes gadE, 

gadW, and gadX was defined as the small network.  These three genes are members of a 

known ―acid fitness island‖ and are important regulators of E. coli resistance to extreme 
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oxidative acid stress [104]. The small network was chosen as the network starting point 

for our subsequent small network expansion study. 

5.1.3 BN+1 settings for medium and small core networks 

 In each iteration of the BN+1 simulation, the current BN+1 gene was added to the 

original data file.  This was followed by a simulated annealing search 5x10
6
 networks for 

the medium network expansion and 1x10
6
 networks for the small network expansion.  

Although the consensus network was selected as a starting point or seed, during the 

learning round all edges could be modified such that the addition of genes could change 

the backbone structure of the resulting model (i.e., unfixed structural prior).  Genes were 

sorted based on their log posterior scores.   

5.1.4 BN+1 Neighborhood Analysis. 

To display the genes in the core network that were strongly connected in the BN+1 

analysis, a heat map-based visualization method we termed consensus neighborhood 

analysis was introduced to characterize patterns of connectivity between the core BN 

genes and selected BN+1 genes.  Consensus neighborhoods represent conserved 

connections between core genes and BN+1 genes across a set of replicate BN+1 runs.   

For each BN+1 gene, the set of top networks with identical best score predicted for that 

gene were used to define the consensus network.  Edges were shown as directed arrows if 

the relationship appears in 100% of the selected top networks with specified 

directionality; otherwise, a relationship was defined as undirected if the cumulative 

frequency of parent and child relationships between the selected core and BN+1 gene 
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equaled 100%.  The relations of the core genes with respect to the BN+1 gene are  

defined as: 1) core gene is a parent node with an edge directed towards the predicted 

gene; 2) core gene is a child nodes with an edge directed inwards from predicted gene; 

and 3) core gene shares an undirected edge with the predicted gene.  The top fifty rank-

ordered genes from the 13-gene BN+1 analysis were selected for inclusion in the 

visualization.  Hierarchical clustering was generated using a binary distance metric and 

the Heatplus module in R.  Biological terms were manually curated using information 

from Entrez Gene and literature. 

5.1.5 Results 

All three consensus networks (including the 27-variable network identified in 

Chapter 2) with different levels of stringency were individually compared to the known 

ROS pathway. As stated earlier in this thesis, 29% of the edges in the consensus are 

supported by corresponding edges in EcoCyc [23] or RegulonDB [81].  However, 

inclusion of literature information in the comparison revealed that approximately 42% of 

the edges found in the large consensus network were confirmed.  The medium consensus 

network is more consistent with EcoCyc, RegulonDB, and information contained in the 

literature with 78% of the edges supported. The two missing edges were also supported 

when weak evidence was included. A detailed analysis revealed that the interactions 

involving direct transcription factor binding activities (e.g. marA-marR, ihfA-ihfB, gadE-

gadX-gadW) [23,105,106,107] were among the most highly-conserved edges in the 

medium consensus network.  The small consensus network (gadE-gadX-gadW) is a sub-

network of the large and medium consensus networks and is 100% consistent with 
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EcoCyc, RegulonDB, and information found in the literature. Specifically, it has been 

reported that gadX regulates gadE and gadW, and that gadE and gadW regulate gadX 

[23,65,104,107,108].  

A novel representation termed consensus neighborhood analysis was developed to 

test whether specific core genes have a preferential impact on the selection of BN+1 

genes. The consensus neighborhoods are derived from consensus BN analysis and 

applied to networks from replicate BN+1 simulations, and are comprised of those core 

network genes that strongly influence or are influenced by a specific BN+1 gene.  

Consensus networks for the fifty top predicted BN+1 genes and their connected core 

genes from the BN+1 expansion of the medium network were generated (Fig. 5.1). This 

analysis confirmed the capability of the BN+1 to predict the involvement of new genes 

and gene interactions related to ROS and other stress responses. Core genes on the left 

side of Fig. 5.1 (e.g. nearer to gadE) have more connections with the predicted BN+1 

genes than those on the right side (e.g. nearer to marR). This result indicates that certain 

genes play more important roles than others in prediction of new pathway genes. It also 

suggests that removal of some genes from a selected core topology during the B-value 

selection may have more important effect on subsequent ‗+1‘ recovery, because removal 

of those core genes with closest correlations to the ‗+1‘ genes will limit recovery of the 

‗+1‘ gene in the ―top‖ hits.  This analysis also identified seven ―acid fitness island‖ genes 

that are clustered together (boxed genes gadA, hdeB, hdeD, yhiD, gadB, hdeA, and slp) 

and are all connected to gadE, suggesting the important role of gadE in the selected 

experimental conditions and overall effects on the selected pathways. 



 

109 

 

Expansion of the small consensus network resulted in the selection of genes 

predominantly from a known acid fitness island [104]. The acid fitness island is a 

coordinately regulated gene cassette (shown in Fig. 5.2). Interestingly, nine of ten acid 

fitness genes not already included in the small network were recovered within the top 10 

BN+1 results (Table 5.1 and Fig. 5.1). The tenth acid fitness gene, mdtF, was the 80th top 

predicted gene from the small network expansion. The acid fitness genes have multiple 

functions, including decarboxylation of glutamic acid to remove intracellular protons 

(gadA), protection from organic metabolite products produced during fermentation (yhiF, 

slp, hdeA), recovery from protein damage induced by the diffusion of organic acids into 

cells (hdeA), direct processing of organic acids (yhiF, slp), and predicted membrane 

activity (yhiD, hdeD) [104].  The BN+1 search also identified the glutaminase ybaS, a 

gene that has been suggested to participate in acid resistance activity in E. coli [109].  

YbaS is outside of the physical acid fitness island [104]. These results indicate that the 

BN+1 algorithm is able to accurately predict acid stress regulatory genes within and 

outside the known acid fitness island.   
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Table 5.1 Top 10 genes with best log posterior scores predicted from BN+1 

expansion based on the large, medium, and small consensus networks.  Numbers 

shown after gene names are negative logs of posterior probabilities for each top network 

containing the respective predicted gene.  Highlighted cells represent known acid fitness 

genes. 

Rank Large Network (27 gene) Medium Network (13 gene) Small Network (3 gene) 

1 dusB (tRNA-dihydrouridine 

synthase B); S=-8295.81 

dusB (tRNA-dihydrouridine 

synthase B);  S=-3821.20 

slp (outer membrane 

lipoprotein); 

S=-949.65 

2 fdhE  (formate dehydrogenase 

formation protein); S=-8298.44 

sra (30S ribosomal subunit protein 

S22);  S=-3850.29 

hdeA (stress response protein 

acid-resistance protein); S=-

954.57 

3 uspE (stress-induced protein);  

S=-8310.63 

yodD (predicted protein);  S=-

3850.30 

hdeB  (acid-resistance protein) 

S=-958.11 

4 yohF (predicted oxidoreductase 

with NAD(P)-binding Rossman-fold 

domain); S=-8312.24 

fbaB (fructose-bisphosphate 

aldolase class I);  S=-3860.69 

gadA (glutamate decarboxylase 

A, PLP-dependent); S=-968.53 

5 yncG  (predicted enzyme);  

S=-8313.04 

slp (outer membrane lipoprotein); 

S=-3865.13 

gadB (glutamate decarboxylase 

B, PLP-dependent); S=-972.15 

6 msyB (predicted protein);  

S= -8318.20 

hdeA (stress response protein acid-

resistance protein); 

S=-3870.05 

hdeD (acid-resistance 

membrane protein); S=-973.65 

7 yedP (conserved protein);  

S=-8320.30 

msyB (predicted protein);  

S=-3871.68 

yhiD (predicted Mg(2+) 

transport ATPase inner 

membrane protein); 

S=-975.68 

8 sra (30S ribosomal subunit protein 

S22);  S=-8323.97 

hdeB (acid-resistance protein); 

S=-3873.59 

dctR (predicted DNA-binding 

transcriptional regulator); 

S=-993.91 

9 ydcK (predicted enzyme);   

S=-8325.91 

erfK (conserved protein with 

NAD(P)-binding Rossmann-fold 

domain); 

S=-3877.97 

ybaS (predicted glutaminase); 

S=-996.20 

10 ynhG  (conserved protein);   

S=-8326.20 

ynhG (conserved protein); S=-

3878.40 

mdtE (multidrug resistance 

efflux transporter); S=-1017.59  
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Figure 5.1 Consensus neighborhoods and functions of BN+1 expansion genes.  

Matrix representation was generated for the top fifty BN+1 genes predicted to interact 

with medium network by BN+1 analysis.  Each cell in the heatmap represents a 

relationship between a BN core gene (x-axis) and a particular BN+1 gene (y-axis) with 

selected grayscale shading that represents predicted relationships of core genes respective 

to the predicted genes. Biological functions and localization (obtained from Entrez Gene 

and PubMed) curated manually are indicated in margin of vertical axis. The boxed gene 

names show genes from the acid fitness island. 

 

 

Figure 5.2 Acid Fitness Island Genes Identified By Combining EC and BN+1.  

Genomic localization of acid fitness island genes presented in graphical form (genes not 

shown to scale), with order of the genes in BN+1 results listed as numbers (#).  Genes 

appearing in the core network included gadE, gadX, and gadW. 
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These results suggest that BN+1 can be executed following an initial refinement 

of some existing network topology using the EdgeClipper algorithm.  In all three models, 

the results recapture many important biological functions and mechanisms related to 

those of the included set of genes in the respective model. The ability to further refine the 

functionality down to operon levels (arguably a genomic and not proteomic feature) is 

itself a novel and interesting finding.  However, in terms of general oxidative stress 

pathway activities, the expansion of only the gad genes gave a more restrictive set of 

biological functions that do not encompass the majority of molecular function and 

biological process GO terms relevant to ROS.  As listed in Figure 5.1, the biological 

mechanisms relevant to oxidative stress include a variety of mechanisms, including cold 

and osmotic shock, anaerobic respiration and NAD(P), and mitochondrial/inner 

membrane activities.  More investigation will be needed to infer whether these proteins 

have other oxidative stress pathway activities and roles aside from their known annotated 

functions.  However, the validity and power of combining our EC and BN+1 approaches 

was established with this preliminary study. 

5.2 Eukaryotic study: diabetic nephropathy and progressive kidney disease 

Diabetic nephropathy (DN) is an increasingly more prevalent and devastating 

disease worldwide.  Diabetic nephropathy develops in approximately 30% of patients 

with type 1  or type 2 diabetes [32].  This is significant, since the number of human 

patients worldwide with diabetes is expected to reach 380 million by the year 2025 [32].  

Diabetic nephropathy is the most common cause of end-stage renal disease, which itself 

is an important predictor of cardiovascular risk and mortality. The clinical progression of 
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diabetes nephritis is classified into 5 phases: hyperfiltration and renal hypertrophy, 

glomerular filtration and increased renal plasma flow, changes to the renal parenchymal 

basement membrane thickness as well as mesangial expansion, microalbuminuria and 

early hypertension, proteinuria formation, and end-stage renal disease [32]. Interestingly, 

there appears to be distinct regulatory processes occurring in the microstructures of the 

nephrons during progressive kidney disease and DN.  Most specifically, some evidence 

suggests differential regulatory processes in the glomerular and tubulointerstial 

compartments of the kidney at the genetic level.   

It has been proposed that the Jak/Stat signaling pathway may play a role in the 

events of progressive kidney disease [102,103].  The Jak/Stat signaling pathway directly 

targets the expression of mammalian genes following response to cytokine and growth 

hormone receptor signaling [110].  During Jak/Stat signaling, signaling by the effector 

cytokines or growth hormones will activate Jak, phosphorylate its receptor, recruit and 

phosphorylate STAT molecules which will dimerize and translate into the nucleus, and 

activate gene expression [110].  Jak/Stat signaling is known to be involved in various 

renal diseases, though the mechanisms by which the pathway interact in the various renal 

disease progressions is complicated  and can vary across various species (e.g. human vs 

murine) [110] and even different tissue types.  For example, the Stat3 protein shows 

differential regulation in multiple cell types (mesangial, podocyte, interstitial fibroblasts, 

tubular epithelial cells, macrophages, and lymphocytes), though it is unclear what the role 

of Stat3 might be in renal fibrosis and other processes [110].  It is also unclear as to 

which Stat gene is the major regulator of Jak2 signaling, which is also proposed to be 

important in humans [110]. 
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In this analysis, we implement a Bayesian network analysis to determine whether 

the Jak/Stat signaling pathway plays a role in the differential regulation of two kidney 

compartments during progressive kidney disease.  Kidney biopsy data from human 

patient for glomerular and tubulointerstitial compartments were used in learning distinct 

Bayesian networks for the Jak/Stat signaling pathway.  We hypothesized that if the 

mechanisms in the two compartments of kidney are distinct or different, and if the 

Jak/Stat signaling networks are also distinct for those compartments, then sufficiently 

different network models and interactions should be observed for the two models.  

Second, the expansion of the most well-supported interactions for each compartment 

should identify genes outside the Jak/Stat pathway which relate specifically to the disease 

processes inherent in each kidney compartment and should be distinct for those 

compartments.  Bayesian networks were generated, refined using our developed 

EdgeClipper algorithm and compared for the two compartments, and finally each 

expanded using the developed and tested BN+1 algorithm.  These methods were applied 

to better understand the role(s) of the Jak/Stat signaling pathway in two kidney 

compartments and hopefully identify new gene regulators of the pathway in the kidney 

compartments for eventual therapeutic development. 

5.3 Methods 

5.3.1 Microarray Analysis for Diabetes Study 

De-identified microarray data were obtained from the Kretzler laboratory (courtesy of 

Felix Eichinger and Matthias Kretzler).  In summary, the data were obtained from human 

(including Pima Indian) kidney biopsies in either glomerular or tubule compartments.  
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Data were obtained for the biopsies using an Affymetrix HGU133A microarray platform 

(12,025 features).  The microarrays were processed using individual normalization 

followed by ComBat normalization [111] by F. Eichinger prior to receipt of the data by 

A.P. Hodges.  During BN analysis, each gene was discretized using a q3 maximum 

entropy approach (which was also applied in previous chapters).   

Four distinct datasets were created using the available microarray data.  The full 

sets of glomerular and tubular data were used as two distinct data sets.  A subset of the 

full glomerular data set (74 out of 298 chips) was selected to specifically include only 

those microarray data from patients with either progressive kidney disease and diabetes 

mellitus (DM) indications or no disease as a third dataset (partial glomerular dataset).  

Identical rules were applied to the selection of a corresponding partial dataset (71 out of 

278 chips) from the full tubule set.  Thus, four data sets were generated which were used 

in the subsequent Bayesian analyses, two of which are more specific to the DM-based 

progressive kidney disease comparison. 

5.3.2 Pathway Selection and Bayesian network construction 

A set of 131 genes were identified for the Jak/Stat pathway within the Kyoto 

Encyclopedia of Genes and Genomes (KEGG) database.  This set of genes represents the 

set of all genes participating in the Jak/Stat pathway as either genes, proteins, or another 

biological entity within the curated KEGG pathway.  Four distinct Bayesian network 

models were constructed using the four datasets generated above.   

In the preliminary simulation studies, the following identical rules were applied.  

For each of the two smaller datasets (partial glomerular, partial tubule), Bayesian 
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networks were generated using the following rules.  Runtimes were increased to a 

maximum of 50 minutes or 1 x 10
8
 maximum searched networks for each of 200 

independent simulations for the full tubule and glomerular studies to allow a more 

thorough search.  Standard searcher parameters from our previous studies were employed 

in these four major analyses, including maximum entropy (q3) quantization, maximum 

cap of three parent variables per any given variable, and simulated annealing search. 

5.3.3 BN Refinement and core network generation using EdgeClipper (EC-R) 

The set of top-scoring networks saved in each simulation were then refined using the 

restrictive EdgeClipper (EC-R) algorithm.  Network refinement was implemented to 

reduce the number of edges in saved networks and allow comparison of the most well-

supported interactions in the glomerular and tubule compartments.  In short, the 

restrictive EdgeClipper (EC-R) algorithm was implemented when modeling each of the 

four network sets.  Log posterior probabilities from the Bayesian network results were 

used to generate a distribution of B-values corresponding to each unique network score.  

Edges were filtered using B-value cutoffs of roughly 0.10 or stricter (e.g. 0.01 and 

smaller) for each of the four datasets‘ Bayesian networks.  Different B-values were 

required for each dataset to achieve a set of variables with count with fewer than 100 

variables, and were distinct for each dataset due to distinct B-value distributions for each 

dataset.  A B-value of 1 x 10
-3 

was initially sought to select the genes.  Additional 

selection was implemented to include at least 50 genes.  Genes were included based on 

the B-values beyond which the genes would not be connected to any other genes in the 

consensus networks.   Those interactions amongst variables which appeared within 100% 



 

117 

 

of the saved networks meeting the B-value criteria were included in the final consensus 

network as either directed or undirected edges. 

5.3.4 Core Network Expansion Using BN+1 

Core networks were selected for the two smaller datasets (glomerular and tubule) using a 

B-value cutoff criterion. The BN+1 expansion algorithm was implemented for each of the 

core networks and respective datasets to identify novel hidden factors.   Each of the genes 

not included in the pathway were tested for their ability to improve the respective core 

network when added to the model.  A total of 2 x 10
8
 networks were searched for each 

individual gene not already included in the core network (~13,000 genes).  After running 

the simulations, the genes were sorted and ranked according to best log posterior score.  

The top BN+1 genes identified for the partial dataset experiments were later compared 

and used to assess the respective neighborhoods around the consensus networks and core 

genes. 

5.3.5 Network Overlay and Comparison 

Core networks with the same underlying number of data observations (partial glomerular 

vs partial tubule, etc.) were overlain and compared to identify which interactions were 

shared for the two biological compartments.  Interactions represented as either directed or 

undirected edges in the network were compared for the two selected consensus networks.   

If the interaction appeared in both networks regardless of direction (e.g. directed in the 

first, undirected in the second), that interactions was counted as present in both networks.  

Directionality was not included as a criterium for assigning presence/absence of an edge.  
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Frequency of edge occurrence was considered within the rules of the applied EC-R 

approach. 

5.4 Results 

5.4.1 Few gene interactions (e.g., edges) are conserved in either compartment as 

revealed by EdgeClipper EC-R refinement analysis   

Results from EdgeClipper (EC-R) refinement of BNs trained using the four 

datasets are shown in Figures 5.3-5.6. The EdgeClipper algorithm was applied to refine 

our results due to several observed issues.  First, the Bayesian networks for each of the 

four datasets contained high numbers of disconnected nodes. This observation suggested 

that many nodes did not have sufficiently supported interactions with other genes in the 

list. It is possible that more links would be shown up given more execution time. 

However, the time performed in this study was considered sufficient to get basic 

interactions, and those disconnected nodes were likely to have no or very weak 

connection to any of the genes listed. Second, the number of data points in each analysis 

was relatively low when compared to the size of the network models (131 variables).  In 

the earlier chapters‘ ROS analysis, 305 data points were available and used when 

modeling interactions amongst 27 variables.  This issue of sufficient data, combined with 

the earlier results of 29-42% recovery of known interactions and arguably high false 

positive rates, suggests that an even higher incidence of false positive rates in the data can 

be observed.  Fourth, it is desirable to identify the most well-supported interactions 

observed in the two kidney compartments during the progressive kidney disease.  This 
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selection allows a more stringent comparison of the two compartments and their best-

supported interactions.   

Interestingly, the refinement of the networks trained on partial datasets using the 

EdgeClipper algorithm showed a significant drop-off in number of connections as B-

values were successively decreased towards zero.  These results suggest that the 

supported interactions in each BN analysis are only moderately supported given the small 

amount of data available in each dataset.  Hence, it is likely that the addition of more 

patient data could improve the robustness of these results and provide more confidence in 

predicted interactions.   

 

Figure 5.3 Consensus network of Bayesian networks using partial dataset selected 

from glomerular data. A subset of the full dataset (74 out of 298 chips) was chosen for 

this analysis using a regular expression (regex) match. Thirty-three nodes were 

disconnected from the network.  
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Figure 5.4 Consensus network of Bayesian networks using partial dataset selected 

from tubulointerstitial data. A subset of the full dataset (71 out of 278 chips) was 

chosen for this analysis using a regular expression (regex) match. 42 nodes were 

disconnected from the network. 

 

 

Figure 5.3  Consensus network for Bayesian networks generated using the full 

glomerular dataset (298 chips). 8 nodes were disconnected from the network. 
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Figure 5.4  Consensus network for Bayesian networks generated using full 

tubulointerstital dataset (278 chips). 12 nodes were disconnected from the network. 

 

Furthermore, the number of disconnected nodes observed in each network 

analysis was relatively high for networks trained on smaller datasets.  A totally 

disconnected network is often the starting network for scoring comparison.  We expect 

that as more networks are searched, there is an increased expectation of any given node 

being connected with one or more additional variables in the network due to the number 

of searched networks increasing.  Comparison of the networks in Figures 5.3-5.6 revealed 

that as more data are added to the simulation, the number of disconnected nodes 

decreases (disconnected nodes not shown).  It is possible that some nodes which were 

previously connected to other variables can be disconnected following addition of more 

data (e.g. ―Spry2‖ in Figs. 5.4 and 5.6), though this is less common than the addition of 

edges to previously-disconnected nodes.   
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5.4.2 Glomular and tubule compartments show disparately low overlap, 

suggesting differential pathway activities 

The consensus networks generated by EdgeClipper for tubule and glomerular 

compartments with the same data size were compared in Table 5.2.  Overlay of the full 

tubule and glomerular dataset models revealed minor overlap with only seven shared 

connections in the follow-up simulation study using the full datasets.  Chi-square and 

Fisher exact tests revealed that the number of interactions shared between the two studies 

is indistinguishable from random chance, suggesting no significant overlap between the 

two sets of interactions.  These data suggest that the two compartments have different 

conserved interaction sets with selected biological functions for Jak/Stat pathway genes, 

suggesting differential regulation of the Jak/Stat pathway elements in the two 

compartments. 

Furthermore, no overlap was observed for the shared interactions of full dataset 

glomerular and tubule models and those of the partial dataset models.  This suggests that 

the inclusion or exclusion of roughly 150 data points has a major effect on the most well-

supported interactions.  One possibility is that patients with non-DM kidney disease 

and/or other conditions may have alternative mechanisms and biological events 

occurring.  However, this statement is weakened by the possibility that all of the 

simulations have not converged to optimal solutions (e.g. insufficient simulation time).  

More investigation is needed to elucidate this difference in shared interactions and 

varying datasets. 
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Table 5.2 Summary of shared interactions in the partial and full dataset analyses. 
 #GA 

interactions 

#TA 

interactions 

#overlapping 

Interactions 

%GA, 

%TA 

Shared interactions 

Partial 107 92 7 6.5%, 

7.6% 

EP300-PIAS1, 

CNTFR-IL13, CSF3-

IL13, IL2RB-IL10RA, 

IL5RA-MPL, IL2RA-

PTPN11, CCND2-

MYC 

Full 121 117 14 11.6%, 

12.0% 

IL10RA-PTPN6, 

STAT1-IRF9, IL12RB1-

IL21R, EPO-EPOR, 

AKT1-CCND3, IFNG-

IL5RA, IFNW1-PIK3R2, 

IL2RG-PIK3CG, IL6-

PIM1, IL12RB2-JAK3, 

LIF-MYC, CCND3-

PRLR, IL13-STAM, 

IL5-PIK3R2 

5.4.3 New Jak/Stat pathway elements were discovered through BN+1 expansion  

The top BN+1 results for the expansion of core network models with partial glomerular 

and tubule data  are show in Table 5.3.  Genes from the BN+1 analysis were ranked 

according to the best achieved BN score (scores closest to zero).  The top genes for each 

compartment appear to be biologically relevant to the compartment‘s known disease 

processes. For example, several genes with known roles in oxidative stress and redox, 

mitochondrial activities, or apoptosis were identified for the partial tubule dataset model, 

including TMSB10, DNAJC16, PRDX4, MAPK10, and ACADL.  Interestingly, the top 

results from the glomerular compartment expansion included genes with known roles in 

cell growth & differentiation, signal transduction, cytoskeleton remodeling, or membrane 
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transport, such as PLCE1, CCDC91, HPS5, SRGAP2, PHACTR4, ARHGAP19, and 

IQGAP2.    

Genes are ranked according to their maximum BN score generated during the 

BN+1 search procedure.  Other genes which connect to the BN+1 gene in the top 

networks are listed as ―Neighbors‖ or neighbor genes.  These neighbors constitute a 

portion of the Markov Blanket for the BN+1 gene (note: parents of child nodes are not 

included as neighbors due to their lack of direct connection to the BN+1 gene). 

 

Table 5.3  BN+1 expansion of glomerular and tubule compartments models 

identifies distinct novel regulators for the Jak/Stat pathway which are distinct to the 

respective compartmental disease mechanisms. 
BN+1 results for partial tubule dataset 

Rank Gene Symbol BN Score Neighbors 

1 9168 TMSB10 -4688.4523 CCND2, PRLR, MYC 

2 23341 DNAJC16 -4689.8864 IL4R, GHR, MYC, PIAS2, 

CCND3 

3 10549 PRDX4 -4692.432 MPL, MYC, SOCS7, IL13, 

JAK3, CNTFR 

4 11025 LILRB3 -4692.5516 GH1, IL3, LIFR, JAK3, MPL, 

IL2RA, IFNW1 

5 80339 PNPLA3 -4692.9465 IL13, CNTFR, PRLR, IFNGR1, 

BCL2L1 

6 11177 BAZ1A -4693.2419 MYC, CBLB, CCND2, IFNGR1, 

IL13, STAT1 

7 5602 MAPK10 -4693.2527 IFNGR1, PRLR, MPL, BCL2L1, 

IL13, CBLB 

8 1629 DBT -4694.5034 CCND2, SOS2, IL2RB, 

BCL2L1, IL2RG, IL4R 

9 33 ACADL -4694.9172 GHR, IL4R, IL2RG 
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10 51765 MST4 -4694.9276 MYC, CCND3 

BN+1 results for partial glomerular dataset 

Rank Gene Symbol BN Score Neighbors 

1 51196 PLCE1 -4942.4257 GHR, IL11RA, SOS2, CBLB, 

EPOR 

2 64398 MPP5 -4942.9408 GHR, IFNGR2, SOS2, IL11RA 

3 55297 CCDC91 -4945.3412 PIK3R1,SOS2, IFNGR2, 

IL11RA, GHR, IL6 

4 54463 FAM134B -4947.9157 GHR, MYC, EP300, SOS2, 

CBLB, IL11RA, IL6, IFNGR2 

5 9863 MAGI2 -4948.964 GHR, EP300, IL6, IFNGR2, 

EPOR, CBLB 

6 11234 HPS5 -4949.0538 GHR, IL11RA, PIK3CA, EPOR, 

IL6, SOS2, SOCS7, IFNGR2 

7 23380 SRGAP2 -4949.101 GHR, IFNGR2, CBLB, IL11RA 

8 65979 PHACTR4 -4949.6565 GHR, SOS2, IFNGR2, CBLB, 

EP300, IL6, IL11RA 

9 84986 ARHGAP19 -4951.9786 GHR, IL11RA, EPOR, CBLB 

10 10788 IQGAP2 -4952.731 GHR, IL6, IL11RA, SOS2, 

IFNGR2, CBLB 

 

The top genes identified in the tubulointerstitial and glomerular compartments were 

TMSB10 and PLCE1, respectively.  Comparison of the relationships between these top 

BN+1 genes and their interactors in the core networks (listed in Table 5.3) revealed 

compartment-specific relationships when plotted in a pairwise manner (Figures 4.6 and 

4.7).  Given the normalization method used in the two separate datasets, the max and min 

values for both compartments for any particular gene are not directly comparable.  

However, more obvious relationships are demonstrated in the tubule versus in the 
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glomerular data for TMSB10 and its core network interactors (and, similarly, for PLCE1 

in the glomerular over the tubule data).   

 

Figure 5.5 Scatterplots of TMSB10 with connected core genes and respective 

datasets in tubule and glomerular compartments. 

 

 

Figure 5.6  Scatterplots of PLCE1 with connected core genes and respective datasets 

in tubule and glomerular compartments. 

 

Thymosine beta 10 (TMSB10) has no known biological function, though has high 

sequence similarity between humans, rats, and other mammals [112].  The gene has been 

isolated from human kidney using cDNA cloning and has been used to show differential 

expression in the kidney [112].  In murine studies, TMSB10 was shown to be a 
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biomarker in the murine glomerular crescent when perturbed in a chronic graft versus 

disease modeling [113].  TMSB10 is generally downregulated in human pelvic lymph 

node metastasis (PLNM) and was proposed to have roles in other cancers [114].  

Interestingly, the entire network neighborhood around TMSB10 includes genes with 

cancer-related associations or functions. 

Mutations of phospholipase C epsilon 1 (PLCE1) has already been implicated in 

diffuse mesangial sclerosis and early onset nephrotic syndrome [115].  PLCE1 is a 

member of a phospholipase family which catalyzes hydrolysis of phosphotides to 

generate products which regulate cell growth, differentiation, and gene expression [116].  

The gene is expressed and enriched for protein abundance in the mature glomerular 

podocytes [116].  Hinkes et al. showed that recessive mutations in PLCE1 were causative 

for nephritic syndrome variants [116].  The PLCE1 gene was identified by LOD analysis 

for nephritic syndrome followed by haplotype analysis, and further implicated by cDNA 

identification of the 34 exons (distributed over 334.4 kb) and seven homozygous PLCE1 

mutations (6 truncating, 1 missense).  This finding was especially interesting, given that 

their demographic groups from Central Europe and Turkey are different than the Pima 

Indian group in our study dataset and represent an independent source of verification for 

our findings. 

Thus, these findings strongly establish the predictive power of the combined 

EdgeClipper and BN+1 approaches for characterizing the roles of know pathways in 

different compartments or tissues, as well as further expanding those pathways to include 

novel interactors.  We again expect that members of our BN+1 lists with no known 
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functions are viable candidates for additional functional assessment and analysis in future 

studies. 

5.4.4 GO Enrichment for BN+1 Results Reveals Relevant and Specific BN+1 Gene 

Functions for the Selected Compartments 

The results were further confirmed using GO enrichment.  The top 250 variables 

in each BN+1 analysis were tested using GO enrichment to see which biological 

functions were most strongly conserved for those genes (Tables 5.4 and 5.5).  Similar to 

what was observed in Chapter 2 for BN+1 expansion of the ROS pathway, the top set of 

genes for each expanded compartment model relate biologically to the functions and 

activities of the core gene network.  Redox and mitochondrial-related functions were  

Table 5.4 GO enrichment terms for top 250 BN+1 genes from glomerular expansion 

model meeting Bonferroni-corrected p-value < 0.05. 

Term Count % P-value Bonferroni 

Biological Process 

Vasculature development 

(GO:0001944) 

15 6.024096 2.03E-05 0.033463 

Molecular Function 

Protein binding (GO:0005515) 158 63.45382 6.49E-07 3.03E-04 

Glycosaminoglycan binding 

(GO:0005539) 

12 4.819277 7.72E-06 0.003589 

Pattern binding (GO:0001871) 12 4.819277 1.91E-05 0.008844 

Polysaccharide binding 

(GO:0030247) 

12 4.819277 1.91E-05 0.008844 

Carbohydrate binding 

(GO:0030246) 

17 6.827309 8.10E-05 0.037052 

Cellular Compartmentalization 
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Cytoskeleton (GO:0005856) 39 15.66265 5.16E-05 0.01384 

 

Table 5.5 GO enrichment terms for top 250 BN+1 genes from tubule expansion 

model meeting Bonferroni-corrected p-value < 0.05. 

Term Count % P-value Bonferroni 

Biological Process 

Carboxylic acid metabolic 

process (GO:0019752) 

27 10.84337 2.72E-07 4.68E-04 

Oxoacid metabolic process 

(GO:0043436) 

27 10.84337 2.72E-07 4.68E-04 

Organic acid metabolic process 

(GO:0006082) 

27 10.84337 3.12E-07 5.37E-04 

Cellular ketone metabolic 

process (GO:0042180) 

27 10.84337 3.96E-07 6.82E-04 

Oxidation reduction 

(GO:0055114) 

26 10.44177 1.13E-05 0.019288 

Molecular Function 

Coenzyme binding 

(GO:0050662) 

13 5.220884 9.74E-06 0.005693 

Oxidoreductase activity 

(GO:0016491) 

25 10.04016 3.94E-05 0.022826 

Cofactor binding (GO:0048037) 14 5.62249 5.24E-05 0.030242 

Nucleotide binding 

(GO:0000166) 

54 21.68675 7.30E-05 0.04188 

Cellular Compartment 

Mitochondrion (GO:0005739) 38 15.26104 5.30E-07 1.56E-04 

Cytoplasmic part (GO:0044444) 105 42.16867 7.00E-07 2.07E-04 

mitochondrial part 

(GO:0044429) 

26 10.44177 1.19E-06 3.52E-04 
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Cytoplasm (GO:0005737) 140 56.2249 1.23E-06 3.62E-04 

Organelle part (GO:0044422) 91 36.54618 8.97E-06 0.002643 

Intracellular organelle part 

(GO:0044446) 

90 36.14458 1.30E-05 0.003821 

Mitochondrial matrix 

(GO:0005759) 

14 5.62249 2.14E-05 0.006299 

Mitochondrial lumen 

(GO:0031980) 

14 5.62249 2.14E-05 0.006299 

 

enriched in the tubular BN+1 gene set, whereas cytoskeleton development and 

vascularization were enriched in the glomerular BN+1 gene set.  Thus, these data provide 

further support to the claim that the Jak/Stat pathway shows differential regulation 

depending upon which compartment is considered (and hence which disease processes 

and/or stages are included). GO enrichment terms for top 250 BN+1 genes from tubule 

expansion model meeting Bonferroni-corrected p-value < 0.05. 

5.5 Discussion 

Bayesian network analysis coupled with network refinement and expansion 

algorithms revealed differential roles of Jak/Stat pathway members in two kidney 

compartments during progressive kidney disease.  First, the set of network interactions 

predicted for each compartment and refined using the EdgeClipper were disparately low 

and indistinguishable from noise, suggesting that gene expression of Jak/Stat members is 

distinct for the two compartments and reflects different biological mechanisms.  This 

finding implicates the Jak/Stat pathway in at least one (if not both) of the compartments.  

Second, expansion of the two refined network models using our Bayesian network 

expansion identified novel sets of genes with biological roles distinct for the glomerular 
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and tubule compartments corresponding to known disease mechanisms in those 

compartments.  Thus, these results suggest that the Jak/Stat pathway is in fact involved in 

the different glomerular and tubule methods, and that our approach can identify relevant 

genes for additional validation and analysis in multi-tissue experimental studies. 

One interesting aspect of this analysis was the effect of selecting a known 

pathway and investigating its regulation using data from two different biological 

compartments with differential disease regulation.  Our results from the BN+1 analyses 

revealed that those compartments show differential patterns of interactions when 

considering genes from the same pathway.  These results suggest that despite a 

preferential selection of an existing known pathway for biological analysis, the resulting 

predictions for the BN and BN+1 analyses will more closely and specifically reflect the 

underlying data and hence biological conditions.  The most convincing results came from 

the BN+1 results, where it was demonstrated via GO enrichment that the neighborhood of 

genes (with best BN scores and hence top ranks) predicted around the core network 

specifically reflect the disease processes in the glomerular and tubule compartments. 

Another interesting observation from the BN+1 analysis was the preservation of 

selected modular structures or sub-networks for the partial glomerular and tubule dataset 

models in the shared core network to BN+1 gene connections.  Each BN+1 simulation 

included an initial structural prior from one of the top-scoring core networks in the initial 

BN searches.  This core network was often modified during the BN+1 search for any 

given BN+1 gene‘s network, though only a handful of interactions were removed.  The 

majority of interactions from the core network were preserved.  This conservation of sub-
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network structures during BN+1 was consistent with what was observed during our other 

analyses, such as the E. coli ROS detoxification pathway analyses in Chapters 2 and 5.   

However, an important note is that BN+1 genes sometimes drew from multiple 

disconnected modules.  These results suggest that the expansion of only small biological 

cores or modules may be an inherent modeling bias which may not necessarily reflect the 

biological complex or important regulators across large biological pathways.  It may be 

possible to identify genes and other biological entities with multiple roles in complex 

biological systems and disease. This area of computational analysis could be explored in 

future studies. 

The most exciting finding was the prediction of PLCE1 in the glomerular 

compartment.  This gene has already been implicated in the progressive kidney disease, 

so our prediction is supported by these previous data.  We hope to continue investigation 

of this gene and its role in kidney disease.  Another interesting result was the discovery 

that several genes from the glomerular model have known neuropathy functions (e.g. 

FAM134B).  Hence, there may be similar regulatory or effector genes which may be 

involved in another diabetic complication: diabetic neuropathy.  This claim would need 

to be investigated further for additional support and confidence. 
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Chapter 6  

 

Enabling Enhanced BN Approaches Online in MARIMBA 

6.1 Introduction 

In the preceding chapters, Bayesian network expansion and refinement algorithms were 

introduced.  The purpose of this chapter is to explore the software infrastructure which 

was developed and used to achieve those previous studies‘ goals.  The web-based tool, 

called MARIMBA, was designed to permit fast formatting, execution, and analysis of 

Bayesian networks when using high-throughput biological datasets.   

MARIMBA, the Molecular Annotation Resource for Integrating Microarrays with 

Bayesian Analysis, was originally designed as an annotation resource to map microarray 

features to corresponding genes and proteins.  Over the course of this thesis, MARIMBA 

was redesigned to answer specific questions in each of the previous chapters for the 

Bayesian analysis.  Thus, MARIMBA has evolved, albeit painstakingly, into a web-based 

tool for Bayesian network expansion and refinement (Figure 6.1).   MARIMBA is 

accessible at http://marimba.hegroup.org.  The welcoming page of MARIMBA is shown 

in Figure 6.2.  The general design and workflow of the system is described, and future 

developments are suggested. 

6.2 MARIMBA Software Pipeline 

The main MARIMBA system architecture and pipeline for analysis of project data is 

described in Figure 6.2 and contains the following steps:  (1) Data Selection, (2) Variable 

http://marimba.hegroup.org/
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Selection, (3) File writing, (4) Preprocessing/Clustering, (5) BN settings selection, (6)  

BN execution, (7) Visualization and analysis, (8) EdgeClipper analysis, and (9) BN+1 

analysis. 

 

Figure 6.1 Overview of the implemented methods for BN, BN+1 and EdgeClipper in 

the MARIMBA web pipeline. 

6.2.1 Data selection 

Biological or other data can be uploaded into MARIMBA for BN, BN+1, and 

EdgeClipper analyses.  Currently the data must be formatted as a tab-delimited text file 

with ―ID‖ entered in the first cell (first column, first row) of the text file.  Transpose  
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Figure 6.2 Screenshot of MARIMBA home page. 

 

options are available for selecting the appropriate conditions and variables in the analysis.  

Existing data files, such as previously-uploaded user data or featured MARIMBA data, 

can also be selected and used for analysis. 

Note that in this step of the analysis, all of the data to be included in the BN, BN+1 

and/or EdgeClipper analyses must be included in the same tab-delimited data file.  

Subsequent steps in the MARIMBA workflow assume that data will be taken from this 

‗master‘ data file. 
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6.2.2 Variable selection 

Several options are available for variable selection.  First, users can directly select which 

variables to include by copying and pasting data into a text field or uploading a file with 

those variable names.  A second option is the selection of variable from existing 

databases such as KEGG.  Users are required to enter a valid KEGG pathway ID.  

MARIMBA returns existing information from the KEGG database and attempts to match 

those identifiers to the user data fields.  The KEGG selection option was deprecated 

recently to allow more expert data file generation and preprocessing by the users. 

6.2.3 Write step for BN and BN+1 files 

The basic MARIMBA-formatted files are then generated dynamically for use in static 

Bayesian modeling.  Individual conditions (user-generated identifiers) can be specified 

using an interactive webpage.  Conditions, included genes, and analysis method (BN, 

BN+1, or SYNTH) were selected at this step.   

The write step webpage allows verification of all settings, such as method of gene 

combination (averaging or top probe selection) and type of file write (BN or BN+1 write).  

During the writing process, BANJO-format [40] data files are generated.  In the cases of 

multiple or redundant probeset identifiers per specified gene, averaging was employed.  

Thus, multiple occurrences were treated as replicates, and were averaged at the respective 

treatment and time.  In summary, the final dataset was a BANJO-format data file with 

rows being unique observations and columns being uniquely-identified genes. 
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6.2.4 Data processing 

Data can be preprocessed with available fold change or clustering tools. A custom python 

script was created to permit fold change comparison of user-selected treatment versus 

control samples.  Users may select one or more samples for each control and treatment 

groups.  The selected control and treatment chips are averaged separately prior to 

calculating the fold-change between these two groups.  The GUI allows specification of 

both groups, as well as the threshold for probeset inclusion.  Selected probeset results are 

listed on a subsequent page.  

Clustering tools were selected from Pycluster, a Python-version of the C 

clustering library (http://bonsai.ims.u-tokyo.ac.jp/~mdehoon/software/cluster/ 

software.htm).  MARIMBA currently permits k-means and k-median clustering of the 

working dataset.  Graphical results are displayed dynamically for each cluster using 

Matplotlib (http://matplotlib.sourceforge.net/) and R, including a jpeg image of the 

individual cluster, checkbox selection of individual clusters, and lists of probesets with 

links to annotation information.  Individual probesets are selected subsequently after 

cluster selection on a second page. 

6.2.5  BN parameter selection 

BN simulation settings were selected after completing the data and gene selection 

processes, respectively.  A static Bayesian network simulation was created to analyze the 

microarray data.  Simulated annealing is most commonly selected as the searcher method, 

due to its improved performance over greedy searches when no prior knowledge of 

underlying structure is available [64] and is the recommended strategy in MARIMBA.  A 

http://matplotlib.sourceforge.net/
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relatively low cooling factor was implemented to allow less restrictive searching of the 

sample space and potentially identify as many equivalence classes for the top-scoring 

network as possible.  The simulation included storage of 1,000 networks for comparative 

purposes.  Note that this number of networks is restricted to smaller numbers (assumedly 

~100-500) to limit report file size.   

6.2.6 Execution of Bayesian network modeling 

BN files are submitted via the online interface in MARIMBA.  In an earlier version of 

MARIMBA, each dataset was transferred to a server at the University of Michigan prior 

to Xgrid simulation.  In XGrid, a query is based from a controller to one or more agents.  

The XGrid is used to pass new BN and BN+1 analyses to free agents on the server.  

MARIMBA was upgraded to use resources from the Center for Applied Computing at the 

University of Michigan (CAC), and is under further development for other cloud-based 

computing strategies.  However, in each submission infrastructure, each available agent 

runs a unique BANJO simulation (e.g. the 1,000 bootstrap simulations in the synthetic 

network EdgeClipper analyses). 

Individual data are passed to the Xgrid or similar submission grid with all 

conditions and variable labels removed in order to protect the identities of user 

information.  In this regard, the observational file, settings file, and prior knowledge file 

are tarred and passed to the Xgrid server.  Individual variable lists are retained on the He 

Group servers to protect the integrity and identity of variables and conditions included in 

an individual analysis.  The controller on the opposing grid posts status updates to the 

primary MARIMBA server via a MySQL table and SSH.  After completion of an 
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individual BN or BN+1 analysis, individual report files are returned to the He Group 

servers.  The BN+1 analyses are completed after successful updating of all BN+1 

probeset simulations. 

6.2.7 EdgeClipper analysis 

EdgeClipper is integrated in a convenient fashion within a consensus network tool in the 

visualization interfaces.  Users may select either the top-level consensus, or specific a B-

value or C-value cutoff for edge pruning.  The current implementation of EdgeClipper 

returns the most well-supporting interactions meeting the imposed cutoff.  The 

EdgeClipper approaches were recently established and validated, and as such are 

undergoing additional updates for a more seamless user experience in MARIMBA. 

6.2.8 BN+1 analysis 

The core BN network is employed as a fixed topology/prior knowledge network in the 

BN analysis.  Probeset selection will be designed as above for the standard BN analysis.  

In addition, probesets not included in the BN structural file are included in the BN+1 list.  

BN core files, including the BN settings, dataset, probeset list, and report file are required 

for BN+1 analysis.  A unique BANJO analysis is created for each BN+1 probeset.  The 

BN core files are copied from a previous analysis if not present in the current analysis.  

Users may select whether the BN core network is a required fixed topology or unfixed 

starting network. 
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6.2.9 BN Result display and interpretation 

Model averaging and equivalence class searching were then implemented to determine 

the ―core BN‖ network model.  Here, model averaging was defined as inclusion of an 

edge between two genes if that edge appeared in more than X percent of the top-scoring 

networks with identical score (with X bounded between 0 and 100), and is most oftenly 

implemented with X = 100. 

MARIMBA provides several unique features versus the standalone BANJO 

system.  First, MARIMBA is exclusively web-based and allows seamless integration of 

user project management, analysis construction, BN submission to a distributed 

computing environment, and analysis and visualization of results.  User-friendly GUI 

environments simplify the dataset selection, probeset/gene inclusion, observational file 

processing, and settings selection for BANJO.  Such features are necessitated for efficient 

querying by biologists who wish to use such BN tools to analyze their data.  The user 

interface and project/analysis management approach permit large-scale analyses such as 

BN+1.   

Top-scoring networks are displayed as jpeg images on-the-fly, such that the 

images are converted directly from their original dot files.  Furthermore, MARIMBA 

displays top-scoring networks of BN, BN+1, and combined networks to the user.  The 

BN+1 display environment provides plots for probability of each network in the query, 

thus enabling comparison of networks for relevance and likelihood.   
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After selection of modeling parameters, Bayesian networks are searched in 

BANJO (http://www.cs.duke.edu/~amink/software/banjo) by simulated annealing or 

greedy algorithm. Top-scoring networks or consensus networks shared by top networks 

are displayed graphically in a web based GUI using DOJO software 

(http://www.dojotoolkit.org).  To determine if the addition of any single gene would 

improve the top network score when added to the network, a ―BN+1‖ approach was 

developed to recalculate the Bayesian networks by iteratively adding a gene from a 

defined gene list to an existing top network (prior structure) and subsequent BN 

recalculation for the new gene list.  Each new ―BN+1‖ query per gene is recalculated 

individually on an individual XGrid agent in the Woolf lab Mac cluster. 

As described in Chapter 3, the currently-implemented tools in MARIMBA are 

being rewritten in Python for direct access and self-utilization by scientific researchers.  

These new approaches will allow individualized tailoring of EdgeClipper and BN+1 for 

different groups‘ requirements and computing interests on a variety of computing 

platforms.  The tools are being tested both on standalone laptops and personal machines, 

and will be tested in the future with other cloud-based computing architectures.  These 

changes will make EdgeClipper and BN+1 even more power and amenable to massively-

high throughput and next-generation dataset analysis and global interactome studies. 

6.2.10 Hardware configureation 

MARIBMA is built on one Dell Poweredge 2580 server which runs the Redhat 

Linux operating system (Redhat Enterprise Linux ES 4) and Apache HTTP Server. 

MySQL database and different programming languages including PHP, Perl, and Python 

http://www.cs.duke.edu/~amink/software/banjo
http://www.dojotoolkit.org/
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are used for development of a variety of MARIMBA components. The MARIMBA data 

is backed up in another Dell Poweredge 2580 server regularly. A three-tier system 

architecture is implemented with two Linux servers.   
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Chapter 7  

Future Directions and Conclusions 

7.1 Summary and Discussion of Previous Sections 

7.1.1 Overview of Chapters 

In this thesis, I have described the development, implementation, and interpretation of 

two novel Bayesian network approaches for biological pathway expansion and 

refinement, EdgeClipper and BN+1.  Chapter 1 described the driving motivation for 

developing new approaches to refine and expand networks such as Bayesian networks.  

Chapter 2 provides an overview of the major theory and assumptions associated with our 

Bayesian network approach. In Chapter 3, the novel EdgeClipper algorithm was designed 

and tested to refine existing Bayesian networks to identify the most likely interactions 

supported by the models and the underlying biological data.  The BN+1 algorithm was 

then developed and tested to identify novel hidden variables which likely participate in 

selected pathways such as ROS detoxification, B cell receptor signaling, and synthetic 

networks in Chapter 4.  After establishing them as valid approaches, EdgeClipper and 

BN+1 combined and applied to the refinement and expansion of the E. coli ROS and 

human Jak/Stat signaling pathways in Chapter 5.  In Chapter 6, I briefly summarize the 

infrastructure used to generate all of the analyses.  And in the current chapter, I 

summarize many of the findings described previously as well as new areas of exploration. 
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7.2 Summary of algorithms and major findings 

7.2.1 Summary of EdgeClipper algorithm and findings 

A unique feature of this analysis was the inclusion of the probability distributions for the 

top scoring Bayesian networks when assigning ranks to network edges.  The approach 

itself is robust to a highly-parallelized search procedure, which is itself an important 

consideration, and can be more easily interpreted via an expectation-value metric or B-

value.  One of the most exciting aspects of the EdgeClipper analysis was its ability to be 

incorporated along with the BN+1 algorithm to initially refine, and later expand, the 

pathway network and identify new BN+1 genes for selected pathway genes.  I 

demonstrated that not only is the approach comparable to existing bootstrapping and 

frequency-based methods (and even inclusive of the frequency method in the EC-F 

derivation) but also computationally much faster than the traditionally bootstrapping 

approach.  Comparison of the different EC derivations to bootstrapping and existing 

knowledge from pathway databases can also identify novel interactions which are 

strongly supported by the underlying data and warrant additional experimental and 

computational analysis. 

The EC-based analysis can help us understand the question of overlap between 

computational models and knowledge-based pathway networks.  From our results, the 

extent of overlap between the computational networks and biological networks depends 

on the ability of the algorithm to recapture complex relationships as well as the sufficient 

representation of those relationships within the underlying dataset.  For example, the 29-

42% concordance between our networks and the known ROS pathway (Chapter 3) 
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suggest that the Bayesian networks may only be able to identify some known 

interactions.   

One possible reason for this is the types of data used in the modeling, namely 

transcriptional expression data.  If the expression profiles for selected genes in a pathway 

do not correlate well with the levels and activities of their translated protein products, 

then the mRNA data may not give adequate support when used to make conditional 

probability tables and inferences in the Bayesian networks.  Someone might argue that 

protein expression profiles instead may present a better candidate dataset for training the 

BNs when considering the pathway-level activities. However, these datasets are harder to 

obtain experimentally. Their argument may be appropriate for selected pathways, 

assuming that no major feedback occurs between the transcriptional regulatory network 

and protein signaling pathway.  The NF- B sub-network in BCR signaling is a poor 

example, since the downstream transcriptional changes induced after NF- B 

translocation to the nucleus have major effects on the protein-level signaling pathways 

(even to the extent of cellular death or apoptosis).  It may even be possible to generate a 

BN trained on protein-level data (e.g. protein-protein interactions) which underperforms 

the mRNA-trained BN network if the transcriptional network has a greater effect on the 

pathway activities, or if a variety of biological responses from different hierarchical 

levels provide moderate contributions to the pathway activities and regulation. 

It may still be possible to identify other interactions in the protein-level signaling 

network using other complementary datasets for independent BN analyses.  I hypothesize 

that some though not all interactions will be recovered using the different datasets, most 
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specifically in the cases where transcriptional and translational machinery (and other 

processes) are well coordinated and regulated.  Where these machinery do not act in 

concert, we can expect that different Bayesian networks trained on different datasets 

representing different biological scales will show lower overlap though more distinct 

interaction hypotheses.  However, care must be exercised when comparing models based 

on different datasets, since the meanings of the statistical influences in a biological 

context may be interpreted differently. 

7.2.2 Summary of BN+1 algorithm and findings 

The BN+1 algorithm was introduced and tested using both synthetic network analysis 

and a relevant genetic regulatory pathway in E. coli.  Synthetic networks were designed 

to test the overall performance of the BN+1 procedure.  Those simulations successfully 

benchmarked the BN+1 procedure and illustrated several useful considerations when 

conducting BN+1 analyses.  The BN+1 expansion of the ROS detoxification pathway 

using publicly-available gene expression data successfully identified known and 

unknown interactors or regulators for ROS core genes.  One of the major findings was the 

prediction of an influence or interaction between GadX and UspE, followed by the 

prediction and later verification of their direct involvement in biofilm formation.  Hence, 

the BN+1 procedure directly identified a new biological mechanism for this novel ROS 

gene which can be further investigated in future studies.  Many other exciting predictions 

were generated in the BN+1 procedure which can be studied in future projects. 
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7.2.3 Summary of Combined EC and BN+1 findings 

The ability to combine the EdgeClipper refinement algorithm along with the BN+1 

approach was investigated in Chapter 4, when both approaches were applied to the 

analysis of different datasets for progressive kidney disease in glomerular and tubule 

kidney compartments from H. sapiens.  Four major datasets were generated, either using 

all available data for a respective compartment, or only those data per compartment 

which were known diabetes mellitus or normal data from Pima Indians.  Bayesian 

networks were generated for 131 genes from the known Jak/Stat signaling pathway, and 

refined using the EdgeClipper algorithm.  The EdgeClipper algorithm served a vital 

function in reducing the number of genes for the subsequent BN+1 algorithm, since the 

number of genes in each simulation was roughly the same as the number of data 

observations.  The number of observations was too small for the relatively large network 

size, and hence EdgeClipper was required to refine the networks and identify the most 

conserved or well-supported interactions to include in the BN+1 core network.  This 

behavior was supported by properties of the networks in our preliminary simulations 

which had unexpectedly shorter run times.   

Most significantly, the BN+1 expansion of the core networks (despite lower 

runtimes for generating core networks) were able to identify distinct sets of BN+1 genes 

for each compartment which reflect the different stages of progressive kidney disease in 

those compartments.  The simulations also identified previously-hypothesized gene 

interactors which are likely involved in the progression of the kidney disease in those 

compartments.  This is an exciting finding, which suggests that the incorporation of 
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refinement and expansion algorithms is both achievable and applicable for studying 

complex biomedical phenomena in multiple tissues or compartments. 

7.2.4 Integrated analysis in MARIMBA 

Finally, the integration of the EdgeClipper and BN+1 algorithms into a web-based 

infrastructure was described in Chapter 5.  The Molecular Annotation Resource for 

Integrating Microarrays with Bayesian Analysis (MARIMBA) was introduced.  

Formatted microarray or other high-throughput datasets can be uploaded into MARIMBA 

or selected from the site for BN analysis.  Variables (e.g. genes, proteins) in the data can 

be selected for inclusion in the initial BN run.  Some tools for processing and additional 

variable selection are available, though these pipelines are a work-in-progress.  Bayesian 

networks can be constructed and analyzed, followed by EdgeClipper refinement, BN+1 

execution, and results visualization.  MARIMBA was developed for and applied to the 

major topics in this thesis, and has been used for several collaborative projects not 

discussed in the thesis (with several publications in process). MARIMBA is constantly 

undergoing updates and will also be submitted for publication soon. 

7.2.5 Revisiting the computational versus knowledge-based networks 

This thesis was successful in better understanding the overlap between computational and 

knowledge-based networks, as well as in uncovering new biological entities and 

interactions which do not yet appear in the existing knowledge repositories (e.g. pathway 

databases).  Hence, the developed approaches further increase the shared overlap between 

the computational networks (e.g. BNs), knowledge-based networks  (e.g. pathway 

representation in EcoCyc or KEGG), and the ‗real‘ underlying biology.  Experimental 
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validation following the computational predictions further establishes our confidence in 

this overlap with reality. 

There are some cases where Bayesian networks will identify spurious 

interactions, though these are likely removable using the developed EdgeClipper 

approaches.  On a related note, all of the approaches rely upon sufficient data for reliable 

predictions.  Insufficient quantities of data and even biased representation of selected 

experimental conditions may have major effects on the recovery of known and putative 

novel interactions.  Furthermore, the somewhat biased selection of experimental 

conditions and their sufficient representations may have an effect on which biological 

pathways  and systems are best modeled using the BN, EdgeClipper, and BN+1 

approaches.  

7.3 Future work and extensions 

7.3.1 Investigation of other novel ROS pathway genes 

In one of the BN+1 analyses described in Chapter 4, we identified a ranked list of BN+1 

genes for a ROS pathway network.  A subset of the top-ranked genes was investigated 

using literature searching and comparison to existing databases to investigate their role in 

ROS activities.  However, in Chapter 3, three major consensus networks identified using 

the EdgeClipper algorithm were also expanded and used to identify distinct sets of genes 

with implicated roles in ROS activity.  Many of these genes were only superficially 

investigated, and could be studied in much more detail. 
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For example, one question regarding the preferential selection of the BN+1 genes 

is whether those genes share common gene regulators.  Many genes in the E. coli genome 

are regulated by global factors called sigma factors [117].  Some sigma factors have 

specified roles in oxidative and cellular stress, so one might expect these sigma factors to 

have overrepresented sets of target genes in the top BN+1 results.  A simple method to 

determine this behavior would be to generate the average rank of the top 10 genes for 

each sigma factor, and rank the sigma factors according to the average rank of their target 

genes. 

7.3.2 Modular behaviors of the BN+1 and EdgeClipper algorithms 

In this thesis, the BN+1 and EdgeClipper algorithms were implemented to expand and 

refine, respectively, Bayesian network models trained using gene expression data.  One 

interesting property of both algorithms was the appearance of modular architecture in 

networks at different times.  Several existing approaches have studied modules which 

share genetic regulation and/or conserve biological functions.  Here, I discuss the 

preliminary data which suggested that both of our developed algorithms do relate to a 

modular prediction framework. 

In terms of the BN+1 analysis framework, I investigated which genes in the 

selected ROS detoxification pathway genes were most likely involved in the recruitment 

and preferential ranking of BN+1 genes.  The hypothesis for this analysis was that certain 

genes in the selected core network would share edges in the BN+1 networks with the 

added BN+1 expansion gene.  Furthermore, those core genes would more often connect 

to the top-scoring BN+1 genes.  A matrix representation of the connections between 
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BN+1 expansion and core genes was generated to show preferential connection to a 

subset of core pathway genes.  As expected, some core network genes show multiple 

connections to the BN+1 genes, whereas others show few to no connections.  A 

surprising property was that multiple genes with similar biological roles would share 

many of the same connections to targeted core genes.  These data suggest that the 

selection of the core network genes may have an important effect on both the ordering as 

well as conserved biological roles of BN+1 genes during the expansion algorithm.  

 Some modular architecture was also implied by the fragmentation of networks 

during EdgeClipper‘s generation of consensus networks.  From the preliminary analysis, 

it was observed that those interactions which tended to have the best Pearson correlations 

or most definitive nonlinear patterns were least likely to disappear from the more 

conserved or well-supported consensus networks with smaller B-values.  Hence, it is 

likely that many members of a biological pathway may not interact at the genetic level, 

and that only subsets of genes within the pathway do interact with each other.  Other 

influences from different biological scales, such as protein, sRNA, and miRNA may 

complicate the ability to predict such interactions.  This behavior is more likely if the 

gene expression patterns do not correlate directly with the behavior of those post-

transcriptional and post-translational entities. 

7.3.3 Applications to miRNA prediction 

An exciting area of research is the prediction of novel microRNA (miRNA) targets using 

BN+1.  MiRNAs are often 22-nucleotide RNA species which are cis- or trans-regulators 

for a gene, binding upstream or downstream of the gene and controlling its expression by 
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targeting the product mRNA and either degrading or down-regulating that target.  It is 

known that many miRNAs share similar genetic targets and often target similar members 

of the same pathway.  This prior knowledge could be used to select appropriate core 

networks for subsequent expansion.   For example, in Section 6.2, the BN+1 was 

demonstrated to preferentially identify BN+1 targets for certain genes with conserved 

biological roles and regulation.  We expect that the selection of known pathway genes 

with either similar regulation or overlapping sets of miRNA regulators could be 

established as a core set of genes for BN generation and subsequent BN+1 expansion.  

An underlying assumption here is that unknown miRNA regulators which operate in 

similar biological contexts to the known miRNA regulators for those pathway genes 

should preferentially score better than other putative miRNA targets with no direct 

interaction in the pathway.   Some miRNAs with few pathway targets may still appear in 

the top BN+1 results assuming relatively high correlations or conserved nonlinear 

interactions.  Similar patterns were observed during the ROS pathway expansion for 

selected genes, lending some support to this claim.  A major challenge is obtaining a 

representative dataset with paired miRNA and mRNA expression data and sufficient 

observations in order to conduct this exploratory analysis. 

7.3.4 Applications to next-gen sequencing technologies 

Another exciting area of research is the analysis and incorporation of next-generation 

sequencing technologies with Bayesian networks for biomarker discovery, disease 

analysis, and translational applications for personalized medicine.  The exciting aspect of 

this research is the ability to measure an individual‘s expression profiles for hundreds of 
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thousand of putative expressed transcripts.  These new technologies can allow 

investigation of the effects of individual mutations and individualized genome on disease 

progression and response to drugs, food, and the environment.  There are many studies 

ongoing at the NIH and other institutes which are specifically implementing next-gen 

sequencing for biomedical research (e.g. drug responses, the microbiome, etc.). 

A major challenge in this field is the size and quantity of data generated by the 

technologies.  In our recent analyses, we have explored those biological networks with a 

semi-reductionist approach.  We have often designed networks to include less than 150 

variables (genes), and to reflect specific biological pathways with known documented 

interactions.  Upcoming analyses will require 10-100 times as many variables to be 

included in the network analysis, which presents a major computational issue.  Some of 

the problems with generating large-scale network models are the amount of run-time for 

simulations and the amount of data needed to give an accurate prediction.  Towards this 

regard, it is expected that similar refinement and pathway-based selection approaches will 

be needed to make BN simulations computationally feasible.  Furthermore, distributed 

and highly-parallelizable simulation architectures with a cloud-based computing 

infrastructure will be required.  The MARIMBA infrastructure in this thesis is a 

preliminary model and has provided many useful insights into the requirements for such 

analyses in future web systems. 

7.3.5 Bayesian networks and natural language processing 

The availability of prior knowledge is often advantageous as a source of validating 

knowledge, or as starting structural priors.  There is an abundant source of interesting 
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correlative data, hypotheses, and documented interactions buried within published 

literature in the form of text, tables and figures.  Current natural language processing 

(NLP) technologies can generate on-the-fly relationships amongst genes, proteins, and 

other variables using defined semantic rules when parsing textual documents.   

Many challenges, unfortunately, remain.   For example, not all documents are 

currently available to researchers for full textual searching, and are often restricted to the 

publicly-available resources at PubMed Central.  Intellectual property rules have also 

limited some document searching to abstract searches, which may significantly limit the 

extent of biological knowledge to be extracted automatically from these sources.  

Furthermore, the availability of searchable and automatically interpretable figures and 

tables using new representations and semantics is significantly lower than that of textual 

information.  New algorithms for automatic figure interpretation and network or model 

generation would be highly desirable for computational and experimental researchers 

alike. 

7.4 The future and beyond 

It will be interesting to see how the BN framework as well as other approaches (MI, 

ODE, neural network, fitness functions, etc.) will adapt to the onslaught of next-

generation (next-gen) sequencing technologies and parallelized experimental protocols 

across multiple biological scales.  Bioinformatics is a constantly evolving field. Despite 

its infancy, bioinformatics is providing major changes to our conceptualization of health, 

disease, and individuality.  Unfortunately, the traditional microarray analyses are being 

phased out in larger studies as the new sequencing and assay technologies are adopted by 
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major institutions.  Thus, several of the issues which were discussed and targeted in this 

thesis will be replaced by many other issues and considerations.  However, our 

approaches can be modified in future studies to incorporate the new protocols, pipelines, 

and assumptions.  Reductionist strategies such as the selection of known pathway genes 

may yet be implemented for these future technologies and serve as a starting point to 

benchmark newer pipelines and analyses.  It is an exciting time in biomedical research, 

and many new findings are expected throughout the next several decades for prokaryotic 

throughout the higher eukaryotes.  
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