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ABSTRACT 
 
Titanosauriformes was a globally-distributed, long-lived clade of dinosaurs 

that contains both the largest and smallest known sauropods. In an effort to 
understand the phylogenetic relationships of their early (Late Jurassic–Early 
Cretaceous) members, this dissertation presents a taxonomic revision of Early 
Cretaceous North American titanosauriforms and a lower-level cladistic analysis 
of basal titanosauriforms worldwide. 

Taxonomic revision renders some Early Cretaceous North American 
sauropods nomina dubia, substantially augments the hypodigm of others, and 
recognizes a new genus and species. This revision reinforces the similarity 
among Early Cretaceous North American dinosaur faunas; this homogeneity 
stands in marked contrast to the latitudinal variation in dinosaur faunas that 
developed later in the Cretaceous. Reports of titanosaurs in the Early Cretaceous 
of North America are unsubstantiated. The latest register of Early Cretaceous 
North American sauropods (before the ʻsauropod hiatusʼ) occurs in the coastal 
units marking transgression of the Western Interior Seaway, whereas eight 
ecologically disparate dinosaur lineages are present just below and above this 
boundary in the same geologic units that sauropods are found in. I thus interpret 
the start of the sauropod hiatus as the result of a continent-wide extinction, 
coincident with and perhaps attributable to competition with ornithischian 
herbivores, rather than the result of preservation or sampling bias. 

Cladistic analysis of 25 taxa and 114 characters results in the recovery of 
three main titanosauriform clades: Brachiosauridae, Euhelopodidae, and 
Titanosauria. A re-evaluation of the phylogenetic affinities of fragmentary taxa 
and footprints based on synapomorphies recovered in this analysis finds no 
evidence for titanosaurs before the Early Cretaceous, in contrast to previous 
reports of Middle and Late Jurassic forms. The origin of Titanosauria is enigmatic 
because the geologically oldest titanosaurs are derived forms (lithostrotians) 
found penecontemporaneously on both Laurasian and Gondwanan continents. 

Finally, I explore the bone histology (osteocyte morphology) of recent birds 
in an attempt to discover proxies of bone growth rate that can be applied to 
Titanosauriformes. Characterization of osteocyte shape and size reveals 
substantial intra-bone, intra-individual, and intra-specific variation, and highlights 
the need for sampling control in studies of fossil bone histology. 
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CHAPTER 1 

 

INTRODUCTION 

 

 Titanosauriformes is a large clade of sauropod dinosaurs whose members 

are common in many Mesozoic ecosystems. The smallest, largest, geologically 

youngest, and most geographically-widespread sauropods are titanosauriforms. 

Some genera are known from complete skeletons (e.g., Janensch, 1950) and a 

few are known from ontogenetic series (Curry Rogers, 2005), but most named 

species are poorly known. In particular, skulls are exceedingly rare in 

Titanosauriformes, though recent discoveries have begun to remedy this situation 

(Curry Rogers, 2005; Chure et al., 2010). Despite the patchy sampling of much of 

their fossil record, several evolutionary patterns are apparent in titanosauriform 

evolution, including a trend towards decreasing tooth size (Chure et al., 2010), 

development of a ʻwide gaugeʼ posture and concomitant appendicular 

specializations (Wilson and Carrano, 1999), and several episodes of dwarfing 

(Sander et al., 2006; Stein et al., 2010). More derived titanosauriforms — 

lithostrotian titanosaurs — are characterized by a number of apomorphies that 

might seem counterintuitive for giant animals, including non-ossification of the 
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carpus and manual phalanges (Salgado et al., 1997; Wilson and Sereno, 1998), 

increased skeletal pneumaticity (Wedel et al., 2000b), and the development of 

osteoderms (Bonaparte and Powell, 1980; DʼEmic et al., 2009). 

 Since the first titanosauriform was named by Richard Lydekker in 1877, the 

number of named titanosauriforms has swelled to include more than 90 named 

genera, as have the number of taxonomic revisions adding information to 

previously named genera (e.g., Wilson and Upchurch, 2003; Wilson et al., 2009; 

DʼEmic and Wilson, 2011; Carballido et al., 2011; Carballido et al., in press; 

Mannion and Calvo, in press). The bulk of new discoveries has come from Asia 

and South America, but several North American, African, and Australian forms 

have come to light as well (see genus lists in Mannion and Calvo, in press). 

 Titanosauriformes evolved during the Late Jurassic and Cretaceous, which 

was a complex time in terms of faunal turnover, changing paleogeography, and 

the expansion of new floras (Ostrom, 1970; Cifelli et al,. 1997; Jacobs and 

Winkler, 1998). Because of its long collecting history and well-dated sediments, 

North America has been important to shaping our view of dinosaurs in general, 

and Titanosauriformes in particular. Numerous authors have proposed that Early 

Cretaceous North American dinosaur faunas are relicts of those of the Late 

Jurassic, being predominated by sauropods, allosauroids, and primitive 

iguanodonts (Jacobs and Winkler, 1998). In contrast, the Late Cretaceous of 

North America is predominated by taxa such as ceratopsians, hadrosaurids, and 

tyrannosaurids, which are thought to represent an Asian paleobiogeographic 

influence (Sereno, 1999). The period of turnover between the earlier, ‘relictual’ 

2



faunas and later, Asian faunas may have been as short as 2 Myr around the 

Albian–Cenomanian boundary based on the record in Texas and Oklahoma 

(Jacobs and Winkler, 1998).  

 The place of sauropods in this turnover has been controversial. Definitive 

sauropod fossils are absent from North America from the mid-Cenomanian until 

the Maastrichtian (D’Emic et al., 2010). This mid-Cretaceous period of absence is 

termed the ‘sauropod hiatus’ (Lucas and Hunt, 1989). Some authors have 

suggested that sauropod disappearance is an artifact of biases in the fossil 

record perhaps related to a lack of the appropriate type of sauropod-bearing 

environments into the Late Cretaceous (e.g., Lehman, 2001; Mannion and 

Upchurch, 2011). Other authors have considered the disappearance of 

sauropods around the Early–Late Cretaceous boundary (ca. 100 Ma) to 

represent a regional extinction, and their reappearance to represent 

paleobiogeographic immigration from another landmass (e.g., Lucas and Hunt, 

1989; Cifelli et al., 1997; D’Emic et al., 2010). Whereas discerning which of these 

scenarios (bias versus genuine extinction) is correct depends on knowledge of 

titanosauriform interrelationships, discerning the cause(s) of titanosauriform 

success or extinction on various landmasses is informed by titanosauriform 

paleobiology. 

 Titanosauriform paleobiology attracts much research attention because they 

were the largest terrestrial animals that ever evolved. Attempts to reconstruct 

sauropod growth rates have been made using skeletochronology, wherein 

annual growth rings in long bones are plotted against body mass to create a 
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growth curve (Lehman and Woodward, 2008). These attempts have yielded 

varying results, as they are sensitive to the sampled bone and methodology 

chosen (see Lehman and Woodward, 2008). Furthermore, most large sauropods 

lack growth rings and so skeletochronology is inapplicable (Klein and Sander, 

2008). A novel proxy for growth rate or metabolism is needed for estimating 

growth rates in sauropods.  

 In this dissertation, I apply taxonomic revision, geologic fieldwork, cladistic 

analysis, and bone histology to investigate (1) the interrelationships of basal 

titanosauriforms, (2) the cause(s) of the sauropod hiatus in North America, and 

(3) possible proxies for growth rate in titanosauriforms.  

 Chapter 2 presents taxonomic revision of titanosauriforms from the Early 

Cretaceous Trinity Group of Texas. These sauropods were historically referred to  

ʻPleurocoelusʼ; instead I show that they represent other previously named and 

novel genera and species. I conclude by discussing the distribution of dinosaur 

faunas in the Early Cretaceous of North America. 

 Chapter 3 presents taxonomic revision of titanosauriform material from the 

Early Cretaceous Cloverly Formation of Wyoming and Montana, as well as the 

results of paleontological and geological fieldwork. I discuss the start of the 

sauropod hiatus in terms of the relative roles of bias and extinction. 

 Chapter 4 presents a lower-level cladistic analysis of basal titanosauriforms. 

This analysis is aimed at understanding the phylogenetic relationships of early 

(Late Jurassic–Early Cretaceous) titanosauriforms. Chapter 4 employes the 

augmented operational taxonomic units forged in chapters 2 and 3. This analysis 

4



establishes robust synapomorphies for many titanosauriform subclades, and 

provides a foundation for future study of basal titanosauriform phylogeny and the 

origin of Titanosauria.  

 Chapter 5 explores the utility of osteocytes as proxies for the metabolic or 

growth rates of sauropods. This chapter is motivated by the question of how fast 

sauropods grew, which has eluded determination in most species because their 

long bones (that scale with mass) lack growth lines. To explore these 

relationships, I first investigate patterns of variation in osteocyte volume and 

surface area within individuals and species of  modern birds. I then attempt to 

discover predictive relationships between osteocyte morphology and 

physiological parameters such as growth rate and basal metabolic rate. 

 Chapter 6 summarizes the conclusions and interpretations of the previous 

chapters. 

 

REFERENCES 

Bonaparte JF, Powell JE. 1980. A continental assemblage of tetrapods from the 
Upper Cretaceous beds of El Brete, northwestern Argentina (Sauropoda–
Coelurosauria–Carnosauria–Aves). Mémoires de la Société Geólogique 
de France, nouvelle séries 139: 19–28. 

Carballido JL, Pol D, Cerda I, Salgado L. 2011. The osteology of 
Chubutisaurus insignis Del Corro, 1975 (Dinosauria: Neosauropoda) from 
the ʻmiddleʼ Cretaceous of central Patagonia, Argentina. Journal of 
Vertebrate Paleontology 31: 93–110. 

Carballido JL, Pol D, Rauhut O. in press. Osteology and phylogenetic 
relationships of Tehuelchesaurus benitezii (Dinosauria, Sauropoda) from 
the Upper Jurassic of Patagonia. Zoological Journal of the Linnean 
Society.  

Chure D, Britt BB, Whitlock, JA, Wilson, JA. 2010. First complete sauropod 
dinosaur skull from the Cretaceous of the Americas and the evolution of 

5



sauropod dentition. Naturwissenschaften 97: 379–391. 
Cifelli, R, Kirkland JI, Weil A, Deino A, Kowallis BJ. 1999. High-precision 

40Ar/39Ar geochronology and the advent of North Americaʼs Late Cretaceous 
terrestrial fauna. Proceedings of the National Academy of Sciences 94: 
11163–11167. 

Curry Rogers K. 2005. Titanosauria: a phylogenetic overview. In: Curry Rogers 
K, Wilson JA, eds. The Sauropods: Evolution and Paleobiology. Berkeley: 
University of California Press, 50–103. 

DʼEmic MD, Wilson JA. 2011. New remains attributable to the holotype of the 
sauropod dinosaur Neuquensaurus australis, with implications for 
saltasaurine systematics. Acta Palaeontologica Polonica 56: 61–73. 

DʼEmic MD, Wilson JA, Chatterjee S. 2009. The titanosaur (Dinosauria: 
Sauropoda) osteoderm record: review and first definitive specimen from 
India. Journal of Vertebrate Paleontology 29: 165–177. 

DʼEmic MD, Wilson JA, Thompson R. 2010. The end of the sauropod dinosaur 
hiatus  in North America. Palaeogeography, Palaeoclimatology, 
Palaeoecology 297: 486–490. 

Jacobs LL, Winkler DA. 1998. Mammals, archosaurs, and the Early to Late 
Cretaceous transition in north-central Texas. In: Tomida Y, Rich TH, 
Vickers-Rich P, eds. Proceedings of the second Gondwanan dinosaur 
symposium. Tokyo: National Science Museum Monographs, 253–280. 

Janensch W. 1950. Die Wirbelsaule von Brachiosaurus brancai. 
Palaeontographica (Suppl. 7) 3:27–93. 

Klein N, Sander PM. 2008. Ontogenetic stages in the long bone histology of 
sauropod dinosaurs. Paleobiology 34: 248–264. 

Lehman T. 2001. Late Cretaceous dinosaur provinciality; in Tanke, D. H. and K. 
Carpenter (eds.), Mesozoic Vertebrate Life. Indiana University Press, 
Bloomington, Indiana. pp. 310–328. 

Lehman T, Woodward H. 2008. Modeling growth rates for sauropod dinosaurs. 
Paleobiology 34: 264–281. 

Lucas SG, Hunt AP. 1989. Alamosaurus and the sauropod hiatus in the 
Cretaceous of the North American western interior. Geological Society of 
America Special Paper 238: 75–85. 

Mannion PD, Upchurch P. 2011. A re-evaluation of the ʻmid-Cretaceous 
sauropod hiatusʼ and the impact of uneven sampling of the fossil record on 
patterns of regional dinosaur extinction. Palaeogeography, 
Palaeoclimatology, Palaeoecology 299: 529–540. 

Mannion PD, Calvo JO. In press. Anatomy of the basal titanosaur (Dinosauria, 
Sauropoda) Andesaurus delgadoi from the mid-Cretaceous (Albian–early 
Cenomanian) Río Limay Formation, Neuquén Province, Argentina: 
implications for titanosaur systematics. Zoological Journal of the Linnean 
Society. 

Ostrom JH. 1970. Stratigraphy and paleontology of the Cloverly Formation 
(Lower Cretaceous) of the Bighorn basin area, Wyoming and Montana. 

6



Peabody Museum Bulletin 35: 1–234. 
Sander PM, Mateus O, Laven T, Knötschke N. 2006. Bone histology indicates 

insular dwarfism in a new Late Jurassic sauropod dinosaur. Nature 441: 
739–741. 

Sereno PC. 1999. Dinosaurian biogeography: vicariance, dispersal and regional 
extinction. In: Tomida Y, Rich TH, Vickers-Rich P, eds. Proceedings of the 
second Gondwanan dinosaur symposium. Tokyo: National Science 
Museum Monographs, 249–257. 

Stein K, Cziki Z, Curry Rogers K, Weishampel DB, Redelstorff R, Carballido 
JL, Sander PM. 2010. Small body size and extreme cortical bone 
remodeling indicate phyletic dwarfism in Magyarosaurus dacus 
(Sauropoda: Titanosauria). Proceedings of the National Academy of 
Sciences 107: 9258–9263. 

Upchurch P. 1995. The evolutionary history of sauropod dinosaurs. 
Philosophical Transactions of the Royal Society of London 349: 365–390. 

Upchurch P. 1998. The phylogenetic relationships of sauropod dinosaurs. 
Zoological Journal of the Linnean Society 124: 43–103. 

Upchurch P, Barrett PM, Dodson P. 2004. Sauropoda. In: Weishampel DB, 
Dodson P, Osmólska H, eds. The Dinosauria, 2nd edition. Berkeley: 
University of California Press, 259–322. 

Wedel MJ, Cifelli RL, Sanders RK. 2000. Sauroposeidon proteles, a new 
sauropod from the Early Cretaceous of Oklahoma. Journal of Vertebrate 
Paleontology 20: 109–114. 

Wilson JA, Carrano MT. 1999. Titanosaurs and the origin of ʻwide-gaugeʼ 
trackways: a  biomechanical and systematic perspective on sauropod 
locomotion. Paleobiology 25: 252–267. 

Wilson JA, Upchurch P. 2003. A revision of Titanosaurus Lydekker (Dinosauria-
Sauropoda), the first dinosaur genus with a ʻGondwananʼ distribution. 
Journal of Systematic Palaeontology 1: 125–160. 

Wilson JA, Upchurch P. 2009. Redescription and reassessment of the 
phylogenetic  affinities of Euhelopus zdanskyi (Dinosauria: Sauropoda) 
from the Early Cretaceous of China. Journal of Systematic Palaeontology 
7: 199–239. 

 

 

 

 

 

 

7



 

 

 

CHAPTER 2 

 

REVISION OF THE SAUROPOD DINOSAURS OF THE TRINITY GROUP 

(COMANCHEAN SERIES, EARLY CRETACEOUS), USA, WITH THE 

DESCRIPTION OF A NEW GENUS 

* 

 

Introduction 

 Sauropod dinosaurs were common and diverse megaherbivores in many 

Mesozoic ecosystems. Their status as the largest land animals that ever evolved, 

as well as their unique body plan with a long neck and tail set on an elephantine 

body, has fuelled studies of their evolution and palaeobiology (e.g., Wilson 2002; 

Sander & Clauss, 2008). Their extreme size has also hindered such studies, 

contributing to the incompleteness of most fossil sauropod individuals and the 

difficulty of excavating and working with them. Nonetheless, better fossil material 

and many systematic revisions in the last decade have greatly increased the 

amount of information available to sauropod researchers (e.g., McIntosh 2005; 

Rose 2007; Taylor 2009; Carballido et al. 2011; Mannion, in press). 

The first sauropods described from North America were found in the 

Arundel Formation of Maryland (Johnston 1859), which was originally thought to 
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be Late Jurassic in age (e.g., Marsh 1897), but is now recognized as Early 

Cretaceous (e.g., Ostrom 1970). Astrodon (Leidy 1865) and Pleurocoelus (Marsh 

1888) were based on isolated, incomplete type specimens, to which later-

discovered specimens from Maryland and elsewhere were referred. The validity, 

hypodigms, and inferred affinities of these two genera have varied widely since 

they were named over a century ago (Table 2.1; see below). Sauropods from 

several other regions of the world have been referred to Pleurocoelus and 

Astrodon (e.g., Langston 1974), but new discoveries and analyses have 

challenged some of these referrals (e.g., Rose 2007). The controversial or 

ambiguous taxonomy of many fragmentary Early Cretaceous North American 

sauropods and the discovery of substantial new material (e.g., Wedel et al., 

2000a; Rose, 2007) prompts a comprehensive reevaluation of Early Cretaceous 

North American sauropods.  

 

Cretaceous Sauropods of North America. The presence of sauropods into the 

Cretaceous of North America was confirmed by Larkin (1910), who reported the 

discovery of a sauropod coracoid in the Early Cretaceous Antlers Formation of 

Oklahoma (a lateral equivalent of the Trinity Group of Texas). Several decades 

later, more complete excavations and exploration in the Trinity Group were 

undertaken by the Field Museum of Natural History, Harvard University, and 

Southern Methodist University. These excavations yielded the remains of a 

diverse vertebrate fauna, including sauropods (Bilelo 1969). Additional Trinity 
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Group sauropod remains were reported from Texas, including a hind limb from 

the Paluxy Formation at Walnut Creek in Wise County (Bilelo 1969) and a partial 

skeleton from the underlying Glen Rose Formation near Blanco (Langston 1974; 

Tidwell & Carpenter 2003). 

 The Trinity Group sauropods collected by the Field Museum teams and 

reported by Bilelo (1969) were referred to Pleurocoelus sp. by Langston (1974), a 

taxonomic decision that was followed for some time (e.g., Gallup 1975, 1989; 

McIntosh 1990), but not by more recent authors (e.g., Gomani et al. 1999, 

Upchurch et al. 2004; Carpenter & Tidwell 2005; Rose 2007). Authors have also 

disagreed on the phylogenetic affinities of these Early Cretaceous Texan 

materials referred to Pleurocoelus, with some referring them to Brachiosauridae, 

and others regarding it as more closely related to titanosaurs (e.g., McIntosh 

1990; Salgado et al. 1995). Figure 2.1 depicts a cladogram of the major clades 

and taxa discussed in this paper, based on recent analyses (Upchurch et al. 

2004; Rose 2007). 

 The Early Cretaceous North American sauropod fossil record has improved 

greatly in the last decade, as several more complete skeletons have been 

described from Early Cretaceous strata, especially in the Trinity Group and 

Antlers Formation of Texas and Oklahoma, respectively. Two monospecific 

genera have been named from these strata — Sauroposeidon proteles (Wedel et 

al. 2000a) and Paluxysaurus jonesi (Rose 2007). Comparatively little has been 

discussed regarding the taxonomy or phylogenetic affinities of other sauropod 
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Trinity fossils, although a sauropod partial skeleton reported by Bilelo (1969; 

SMU 61732) has been mentioned as a genus distinct from other Early 

Cretaceous Trinity sauropods (e.g., Tidwell et al. 1999; Wedel et al. 2000b). 

Herein I provide a name, diagnosis, description, and comparisons for this 

skeleton. I then examine the anatomy and affinities of the hind limb from the 

Paluxy Formation described by Gallup (1975, 1989) and evaluate the validity and 

diagnoses of other Early Cretaceous sauropods from the Trinity Group. Finally, I 

evaluate the similarity of these revised Trinity Group faunas to those of similar 

age, such as from the Cloverly Formation of Wyoming and Montana and the 

Cedar Mountain Formation of Utah. 

 

Note on the taxonomy of Astrodon and Pleurocoelus. The taxonomy of 

Astrodon and Pleurocoelus has varied widely according to different authors 

(Table 3.1). The type series of Astrodon johnstoni consists of two teeth (YPM 

798) from the Arundel Formation in Maryland, USA (Johnston 1859; Leidy 1865). 

The type series of P. altus consists of a left tibia and fibula from one individual 

(USNM 4971), and the type series of P. nanus consists of a cervical (USNM 

5678), dorsal (USNM 4968), sacral (USNM 4969), and caudal (USNM 4970) 

centrum, all of which are unfused to their respective neural arches and ribs 

(Marsh, 1988; Lull et al. 1911). The type series of Pleurocoelus nanus is of the 

appropriate size to belong to one individual, but the exact provenance of each 

bone is uncertain. These bones could represent a chimera of individuals or taxa 
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(Hatcher 1903).  

Referrals of new material to Pleurocoelus and Astrodon and revisions of 

the Arundel Formation fauna drastically changed the taxonomy of these 

sauropods during the twentieth century. Hatcher (1903, 12) believed that the 

Arundel Formation remains were found “...in essentially, and perhaps identically, 

the same locality and horizon...” and, given the lack of substantial variation 

among those sauropod remains, suggested Astrodon johnstoni was the only 

sauropod genus and species present in the formation. Lull et al. (1911) agreed 

with Hatcher (1903) that Astrodon and Pleurocoelus altus represented the same 

taxon, but thought that Pleurocoelus nanus was a different taxon, based on the 

relative frequency of small and large sauropod bones in the formation. Gilmore 

(1921) reviewed the Arundel Formation fauna and agreed with former workers 

that more than one species of sauropod was present in the Arundel Formation. 

However, he differed from previous authors in assigning taxonomic value to the 

observed differences among the material, referring all of the material to a single 

genus, Astrodon, and creating the new species Astrodon nanus and Astrodon 

altus. Gilmore’s (1911) taxonomy was preferred for several decades—for 

example, the subsumation of Pleurocoelus into Astrodon was followed by the 

influential work of Romer (1956). Kingham (1962) also referred all of the 

Maryland species to Astrodon; in addition, he referred several species of 

Brachiosaurus to Astrodon, creating Astrodon atalaiensis, Astrodon brancai, and 

Astrodon altithorax. Kingham (1962) also named Astrodon fraasi. Kingham’s 
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(1962) referrals have not been followed by subsequent authors (e.g., McIntosh 

1990; Upchurch et al. 2004; Carpenter & Tidwell 2005). 

 Carpenter & Tidwell (2005) re-described much of the Arundel Formation 

sauropod material and concluded that the low degree of variability in the 

available skeletal elements indicates that only one species is present, which 

would be Astrodon johnstoni based on priority. Carpenter & Tidwell (2005) 

presented ten autapomorphies in their diagnosis of Astrodon johnstoni (based on 

all of the sauropod material from the Arundel Formation): (1) supraoccipital crest 

low and wide; (2) tall, narrow foramen magnum; (3) short, wide camerate cervical 

vertebrae with very large pleurocoels; (4) deep pleurocoels in the dorsal 

vertebrae; (5) deep pleurocoels in the sacral vertebrae; (6) posterior sacral 

vertebrae with a prominent groove on the ventral surface; (7) anterior caudal 

vertebrae with short centra; (8) coracoid thick with prominent lip; (9) radius with 

distinct oblique ridge; and (10) two small postero-distal condyles on the radius. 

Many of these features are indistinguishable compared to the situation exhibited 

in other sauropods such as Camarasaurus (characters 1, 2, 7–10; Osborn & 

Mook, 1921; Ostrom & McIntosh, 1966, pl. 46, 51; Madsen et al. 1995, fig. 23), or 

are related to the juvenile nature of the material (characters 1, 3–5; Wedel et al. 

2000b; Curry Rogers & Forster 2004).  

None of these autapomorphies deals with teeth, which make up the type 

series elements of Astrodon johnstoni. Like Astrodon johnstoni, the type series of 

Pleurocoelus altus and P. nanus bears no unique features, making all three taxa 
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nomina dubia (pers. obs., 2010).   

Carpenter & Tidwell (2005) present an example of the ʻlaissez-faireʼ 

approach outlined by Wilson et al. (2009). Employing the laissez-faire approach 

in the case of the Arundel Formation involves (1) ascribing no taxonomic 

meaning to the range of variation in the sample, (2) assuming the coeval nature 

of the various horizons of the Arundel Formation, and (3) inferring ontogenetic 

transformations among specimens in the sample. Currently these assumptions 

are large owing to a lack of data surrounding them. For the taxonomy of Astrodon 

and Pleurocoelus, I advocate the opposite viewpoint, the ʻtabula rasaʼ approach 

(Wilson et al. 2009), in which taxa whose holotypes are non-diagnostic are 

deemed nomina dubia. I employ the tabula rasa approach in the Arundel 

Formation case because of (1) the especially fragmentary and non-diagnostic 

type series involved and (2) the paucity of provenance or quarry data for nearly 

all specimens. 

However, the ventral groove on the sacral vertebra (character 6) may be 

unique (USNM 5666, pers. obs. 2010), but cannot be observed in the syntype of 

Pleurocoelus nanus. Indeed, other sauropod material from the Arundel Formation 

does have unique features, including a groove below the ectopterygoid and 

palatine articular facets on the maxilla and laterally curved pedal unguals (pers. 

obs., 2010). However, the lack of association among these materials limits their 

systematic utility. Furthermore, some bones in the sample display marked 

variation, such as the deeply divided versus flat distal ends of the first 
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metatarsals (pers. obs., 2010), suggesting that more than one taxon is present. 

Future discoveries may yield associated skeletons in the Arundel Formation 

bearing these or other diagnostic features. 

 

Anatomical abbreviations 

acdl, anterior centrodiapophyseal lamina; cprl, centroprezygapophyseal lamina; 

pcdl, posterior centrodiapophyseal lamina; pl, pleurocoel; pocdf, 

postzygapophyseal centrodiapophyseal fossa; podl, postzygapophyseal 

diapophyseal lamina; posdf, postzygapophyseal spinodiapophyseal fossa; prdl, 

prezygapophyseal diapophyseal lamina; sdf, spinodiapophyseal fossa; sprf, 

spinoprezygapophyseal fossa; spol, spinopostzygapophyseal lamina.  

 

Institutional abbreviations 

ASDM, Arizona-Sonora Desert Museum, Arizona, USA; DMNS, Denver Museum 

of Nature and Science, Denver, USA; FMNH, Field Museum of Natural History, 

Chicago, USA; FWMSH, Ft. Worth Museum of Science and History, Ft. Worth, 

USA; HMN MB. R, Humboldt Museum für Naturkunde, Berlin; OMNH, Oklahoma 

Museum of Natural History, Norman, USA; SMU, Southern Methodist University, 

Dallas, USA; TMM, Texas Memorial Museum, Austin, USA, USNM, United States 

National Museum (Smithsonian Institution), Washington, D.C., USA. 

 

Systematic palaeontology 
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DINOSAURIA Owen, 1842 

SAUROPODA Marsh, 1878 

NEOSAUROPODA Bonaparte, 1986 

TITANOSAURIFORMES Salgado et al., 1997 

Astrophocaudia gen. nov. 

1974 ʻPleurocoelusʼ sp. Langston 

1997 ʻPleurocoelusʼ Salgado and Calvo 

 

Type species. Astrophocaudia slaughteri, sp. nov. (Figs. 2.3–2.10). 

 

Holotype. SMU 61732 and 203/73655; a tooth (SMU 203/73655), two cervical 

vertebrae, fragments of dorsal vertebrae, 24 caudal vertebrae, approximately 20 

fragmentary dorsal ribs, two chevrons, a distal scapular blade, part of a right 

ilium, and numerous fragments. The two associated teeth mentioned by Rose 

(2007) are instead prezygapophyses of middle caudal vertebrae; these were 

glued onto their appropriate vertebrae during preparation in August 2009. The 

appropriate size and lack of duplication of elements suggest that only one 

sauropod individual was present in the quarry. 

 

Diagnosis. Autapomorphies include: anterior-middle caudal vertebrae with 

planar hyposphene-hypantrum articulations set off from zygapophyses; anterior-
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middle caudal vertebrae with prespinal lamina contacting intraprezygapophyseal 

lamina. Unlike Astrophocaudia, Sauroposeidon proteles (see below) has wide 

spinoprezygapophyseal fossae (sprf) that are bounded by strongly developed 

spinoprezygapophyseal laminae (sprl) in anterior caudal vertebrae. Giraffatitan, 

Abydosaurus, Venenosaurus, and Cedarosaurus are differentiated from 

Astrophocaudia by the presence of sporadically distributed fossae below the 

transverse processes in caudal vertebrae and forward-leaning neural spines in 

the latter two genera. Sonorasaurus is differentiated from Astrophocaudia by the 

reduction of the spinoprezygapophyseal laminae (spol) in the anterior-middle 

caudal vertebrae that cause each postzygapophysis to project far beyond the 

posterior margin of the neural spine. The ilium of Astrophocaudia is not complete 

enough to compare meaningfully with that of Brontomerus mcintoshi. 

 

Derivation of name. A-, non- (Greek); stropho-, twisting or turning (Greek); 

caud-, tail (Greek). The name is in reference to the tightly articulating 

hyposphene-hypantrum system in the anterior and middle caudal vertebrae, 

which also resembles a star (astron; Greek) in posterior view. The generic name 

is also a reference to Astrodon, the first Early Cretaceous North American 

sauropod. The specific name honors Dr. Robert H. Slaughter, who excavated the 

specimen in the 1960s. 

 

Locality, horizon, and age. Walnut Creek, southeast of Decatur, Wise County, 
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Texas. 33° 09ʼ N, 97° 34ʼ W (Thurmond 1974; Fig. 2). This locality also preserves 

the semionontid fish Lepidotes (some scales of which were found in contact with 

the bones of Astrophocaudia), a theropod claw (SMU 62723), a theropod 

squamosal (SMU 61741), and the turtle Naomichelys. Bilelo (1969) reported the 

sauropod as coming from Wall, Texas. There is a city called “Wall” in Texas, but 

it is several hundred miles from Wise County. Dr. Wann Langston visited the 

Walnut Creek sauropod site in 1984 (D. Winkler, pers. comm., 2009), and noted 

the location as occurring “5.6 miles south and 0.9 miles west of Decatur” (which 

is in Wise County). In addition, Thurmond (1974: appendix) gives latitude and 

longitude coordinates for a “Walnut Creek B local fauna” that includes a sauropod 

and is in accordance with the locality given in Langstonʼs notes. SMU 61732 

comes from the Trinity Group, uppermost part of the middle unit of the Paluxy 

Formation (Thurmond 1974), which is lower Albian (112.2–106 Ma) in age 

(Jacobs & Winkler 1998).  

 

Description and comparisons 

 

In the following description, abbreviations for vertebral laminae and fossae follow 

Wilson (1999) and Wilson et al. (2011), respectively. Comparisons are made 

where relevant; other comparative information can be found in the differential 

diagnosis or Discussion below. 
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Tooth 

SMU 203/73655 (Fig. 2.3) is missing its enamel, but details of its morphology and 

wear are still evident. It is uncertain what part of the jaw the tooth comes from. 

The tooth is 17 mm long, 5.6 mm deep labiolingually and 6.4 mm wide 

mesiodistally. The tooth is slightly spatulate, with a midline longitudinal groove on 

its lingual face (Fig. 2.3). Its wear facet is nearly planar and is angled either 

mesially or distally, but not labiolingually. There is a very slight axial twist towards 

the apex of the tooth, though not as great as in the upper teeth of Abydosaurus 

(Chure et al. 2010). 

 

Presacral vertebrae 

One partial middle-to-posterior cervical vertebra and fragments of several 

posterior cervical or anterior dorsal vertebrae are accessioned as part of SMU 

61732. Little can be said about the morphology of the more fragmentary 

vertebrae, so description will focus on the middle-to-posterior cervical vertebra. 

 The mid-cervical vertebra has been sheared dorsally on its right side, 

exposing the ventral face of the centrum in right lateral view (Fig. 2.4). Its 

centrum is 48 cm long, and the partially fused neurocentral suture is still visible 

anteriorly and posteriorly as well-defined furrows offsetting the neural arch 

pedicles. The posterior centrum is 24 cm wide and 15 cm tall, but it is sheared, 

so the actual measurements would have been closer to 22 x 17 cm. The 

elongation index (EI = centrum length/posterior centrum height; Wilson & Sereno 
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1998) cannot be determined reliably due to the deformation mentioned above, 

but is between 2.8 and 3.2. The average EI (aEI = centrum length divided by 

average of posterior width and height; Chure et al. 2010) equals 2.5. The aEI 

varies along the vertebral column in sauropods; it is generally highest in the 

middle cervical vertebrae. The aEI of this vertebra of Astrophocaudia is 

intermediate between the low values observed in basal macronarians (e.g., 

Camarasaurus, 1.5) and the high values (above 4.0) observed in many 

titanosauriforms (e.g., Giraffatitan, Malawisaurus; Chure et al., 2010). 

The centrum of the mid-cervical vertebra is strongly opisthocoelous and 

has a flat to slightly concave bottom. Pneumaticity is extensive in the centrum, 

and its lateral face is highly subdivided into pneumatic camerae and camellae 

that are about 1–8 cm in their longest dimension, ramify into decreasingly smaller 

cavities, and are separated by 1–3 mm thick bony walls. A sharp ridge on the 

dorsolateral face of the centrum delimits the pneumatic areas of the centrum from 

those of the neural arch. The mid-posterior cervical vertebra appears to possess 

the camellate or somphospondylous condition sensu Wedel (2003), with a 

several generations of sub-centimeter branching chambers that permeate the 

centrum. Much of the neural arch is damaged, and the neural spine is largely 

missing. The acdl and prdl are well developed, and the fossa between them 

(prcdf) is subdivided.  

 

Caudal vertebrae 
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Langston (1974) listed twenty-one caudal vertebrae as belonging to SMU 61732. 

In addition to these, three vertebrae were located in a drawer with other materials 

of SMU 61732, along with a notecard, which reads: “Walnut Creek Loc. Paluxy 

Fm. Sauropod Loc. Turtle vertebrae” (pers. obs., 2009). These caudal vertebrae 

and the 21 presented by Langston (1974) are from a single quarry and are 

appropriate in morphology, size, and preservation to represent a single series. 

With these additional vertebrae, the holotypic caudal vertebral series includes a 

total of 24 vertebrae (Figs 2.5–2.7). Additional fragments, including 

zygapophyses, neural spines, and transverse processes, were recovered from 

boxes of fragments from the site and reattached to their respective vertebrae in 

August 2009.  

 All regions of the tail are well-represented aside from the anteriormost 

caudal vertebrae. The anteriormost preserved caudal vertebra is likely the 8th in 

the series, based on comparisons with Giraffatitan brancai and Cedarosaurus 

weiskopfae. After this, there is a gap of 1–2 vertebrae and then a series of five 

consecutive caudal vertebrae. The rest of the preserved tail is made up of series 

of one to six vertebrae with gaps between. Estimated vertebral positions are 

given in Figures 2.5 and 2.7. In the description below, vertebrae are numbered 

according to their most likely anatomical position. 

 All centra have a width:height ratio of roughly 1:1 (Table 3.2). In caudal 

vertebra eight, the lateral walls of the centrum angle inwards ventrally and are 

delimited from the flat ventral face by a weak ridge. This ridge persists to about 
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caudal vertebra 25, distal to which caudal centra are cylindrical in cross section. 

There are no fossae on the lateral or ventral faces of any of the caudal vertebral 

centra, and all of the caudal vertebral centra have a solid (i.e., non-camerate or 

camellate) bone texture. With the neural canal held horizontally, the centrum and 

neural spines of the anterior and middle caudal vertebrae are nearly vertically 

oriented (Fig. 2.5).  

 The anterior face of the first preserved (eighth) caudal centrum is concave, 

and the posterior face is irregular in shape, but essentially flat (Fig. 2.5). The 

second and fourth caudal vertebral centra have concave anterior faces, and 

posterior faces that are flat or weakly concave. In the next vertebra, both faces 

are concave, but the anterior concavity is greater than the posterior. This type of 

articulation, termed “plani-concave” by Tidwell et al. (2001) has been proposed 

as an autapomorphy of Cedarosaurus. However, this condition is present in 

several sauropods, including Camarasaurus (YPM 1905, pers. obs., 2007), 

Brachiosaurus altithorax (FMNH P 25107; pers. obs., 2008), and Sauroposeidon 

(FWMSH 93-B; see below; pers. obs., 2009). The rest of the vertebrae, excepting 

the last few, have equally weakly concave anterior and posterior faces (i.e., 

weakly amphicoelous). The last few are a mix of procoelous and biconvex centra 

as in some vertebrae referred to Giraffatitan brancai (HMN MB.R 5000, pers. 

obs., 2008) and some titanosaurs (e.g., Trotta et al. 2002; Calvo & González 

Riga 2003). 

 The neural spines of the more anterior caudal vertebrae are composed 
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anterolaterally of sprls. In caudal vertebrae 8–15, the prsl rugosity reaches all the 

way to the tprl. The spinoprezygapophyseal fossa (sprf) is narrow and shallow. In 

the tenth caudal vertebra in the series, there is a slight transverse expansion of 

the neural spine distally. In all other caudal vertebrae, the lateral faces of the 

neural spine are parallel. In the tenth caudal vertebra of the series, the neural 

spine has a “saddle” at its midpoint (Figure 2.5), as in some vertebrae of 

Venenosaurus (DMNH 40392; pers. obs., 2010) and Camarasaurus (Ostrom & 

McIntosh 1966: pl. 37). Some mid-posterior caudal vertebrae have a slight 

anterior projection on the neural spine (Fig. 2.7). On the neural arch, there is a 

small fossa in front of the postzygapophyses that represents a combined 

postzygapophyseal spinodiapophyseal fossa plus a postzygapophyseal 

centrodiapophyseal fossa (= posdf + pocdf; see Wilson et al. 2011). The 

remnants of this fossa persist as a subtle depression until caudal vertebra 15.  

 The zygapophyses and hyposphene-hypantrum articulations undergo 

dramatic morphological changes along the caudal vertebral series. In the first 

caudal vertebra that preserves zygapophyses (caudal vertebra 10), the pre- and 

postzygapophyses are large and subhorizontally oriented, and the hyposphene is 

subequal in size to the postzygapophysis. The postzygapophyses and 

hyposphene are both planar and meet at an angle of about 80 degrees (Figure 

2.5). More posteriorly in the caudal vertebral series, the zygapophyseal articular 

surfaces decrease in size faster than the hyposphene-hypantrum articular 

surfaces. By the caudal vertebra 20, the intervertebral neural arch articulation is 
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represented by a single, vertical plane, as in other sauropods (e.g., 

Camarasaurus, Giraffatitan, Mendozasaurus). 

 

Dorsal ribs 

A total of about 20 fragmentary dorsal ribs are present; none are “plank-like” 

(cross- section more than three times wider anteroposterioly than mediodistally). 

Some of the preserved ribs approach this condition (cross-sectional ratio 2.8), so 

Astrophocaudia may have plank-like ribs as titanosauriforms do (Wilson 2002). 

The largest dorsal rib is pneumatic, again as in Titanosauriformes (Fig. 2.8). 

There is an oval, ridged tubercle on the anterior half of the proximolateral part of 

the largest dorsal rib (Figure 2.8A). This feature is absent in the only other dorsal 

rib that preserves this portion of the shaft. 

 

Chevrons 

Langston (1974) reported a single chevron with SMU 61732. In the process of 

studying the material, a second was discovered. Both come from the anterior 

region of the tail. The more complete chevron is only missing its distalmost blade 

(Fig. 2.9). It is 24.2 cm long, and has an open hemal canal that measures 9.1 cm 

deep dorsoventrally. On the anterior face of the blade, there is a flattened oval 

boss measuring 1.2 x 4 cm that has a texture of ridges and grooves (Fig. 2.9). 

Each arm of the chevron bears a single articular facet with a medially pointed 

process. 
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Scapula 

A distal scapular blade (Fig. 2.10) has complete anterodorsal and posteroventral 

margins and is almost complete distally. It could represent a left or right scapula, 

as the preserved part is symmetrical about its long axis. The preserved length is 

70 cm. Its breadth ranges from 17 to 38.5 cm, giving a minimum-to maximum 

width ratio of about 2.3. The scapular blade is less than 1 cm thick distally and 

about 3 cm thick at the center of the broken base of the blade. The base of the 

blade is flat in cross section as in Euhelopus and titanosaurs, rather than D-

shaped with a broad lateral ridge as in non-somphospondylans (Wilson and 

Sereno, 1998). The bone has a texture of subtle, axially oriented ridges and 

grooves on the exterior face of the bone. 

 

Ilium 

The acetabular region and part of the preacetabular process of the left ilium are 

present. The preacetabular lobe of the ilium flares outward at about 45 degrees. 

No evidence of pneumaticity exists in the ilium. A subtle ridge extends 

anteroposteriorly above the pubic peduncle, as in some other sauropods (e.g., 

Camarasaurus, Ostrom & McIntosh 1966). The total preserved length of the 

element is 45 cm. 
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DINOSAURIA Owen, 1842 

SAUROPODA Marsh, 1878 

NEOSAUROPODA Bonaparte, 1986 

TITANOSAURIFORMES Salgado et al., 1997 

Cedarosaurus Tidwell et al. 1999 Figs. 2.11–2.14 

1974 Pleurocoelus sp. Langston 

1989 Pleurocoelus sp. Gallup 

1997 Pleurocoelus Salgado and Calvo 

 

Type species. Cedarosaurus weiskopfae Tidwell et al. 1999 (Figs. 2.11–2.14). 

 

Holotype. DMNH 39045, a partial skeleton consisting of dorsal and caudal 

vertebrae, dorsal ribs, chevrons, partial left and right scapulae, coracoids, and 

sternal plates, a right humerus, radius, ulna, and metacarpal IV, partial right and 

left pubes, ischia, and femora, a right tibia and right metatarsals I, II, and V. 

 

Holotype locality, horizon, and age. Early Cretaceous Yellowcat Member of 

the Cedar Mountain Formation, Utah, USA, Barremian–Aptian (Tidwell et al. 

1999; Greenhalgh and Britt, 2006). 

 

Referred material. FMNH PR 977, a partial hind limb including an incomplete 

tibia and fibula, an astragalus, five metatarsals, and 11 phalanges. 
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Referred material locality, horizon, and age. Referred material comes from the 

Paluxy Formation, 20 km south of Decatur, Texas, USA, which is Aptian–Albian 

in age (Jacobs & Winkler 1998). 

 

Revised diagnosis. Autapomorphies of Cedarosaurus weiskopfae include: 

radius with hypertrophied longitudinal flange lateral to ulnar articulation on the 

posterior side of the distal end (Tidwell et al., 1999), radius with tubercle on 

anterior face of shaft, one-third of the way from proximal end, metatarsal II with 

well-developed medial and lateral tubercles at mid-shaft (pers. obs., 2010). 

FMNH PR 977 is referable to Cedarosaurus on the basis of two additional 

autapomorphies: metatarsal V only slightly expanded proximally (length/proximal 

transverse breadth > 2), and metatarsal V around 1.5 times longer than 

metatarsal I. Also, FMNH PR 977 possesses four well-developed pedal unguals 

and a phalanx on metatarsal V, providing two additional autapomorphies for 

Cedarosaurus.  

 

Description 

 

The following description focuses on material referred to Cedarosaurus 

weiskopfae, which consists of a partial hind limb described by Gallup (1989). For 

description and comparisons of the holotype of Cedarosaurus, see Tidwell et al. 
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(1999). The crus was found vertically over the astragalus and pes (Gallup, 1989). 

Consequently, deformation in the astragalus and metatarsals is dorsoventral. 

Some of the distal ends of the metatarsals are broken/eroded away, and much of 

the bone was restored with plaster. 

  

Crus and tarsus 

 About three-quarters of the middle section of the tibia and fibula are 

preserved in several pieces (Gallup 1975). The preserved lengths of the tibia and 

fibula are about 71 and 95 cm, respectively. The tibia is oval in cross-section, and 

its midshaft measures 16.1 cm anteroposteriorly by 8.4 cm transversely. The 

mid-shaft of the fibula is roughly D-shaped in cross section with a slightly 

concave medial margin, and its midshaft measures 11.6 cm anteroposteriorly by 

5.7 cm transversely. The astragalus is extremely crushed dorsoventrally. The 

astragalus is roughly two-thirds as broad anteroposteriorly as transversely and 

rugose, as in most sauropods (e.g., Camarasaurus, Ostrom and McIntosh, 

1966). No calcaneum was found with the specimen. 

 

Metatarsals 

 Five metatarsals are preserved (Figs. 2.11–2.12). Metatarsal I is nearly 

complete and undeformed, but metatarsals II–IV are incomplete distally, and 

metatarsals II and V are crushed dorsoventrally (Fig. 2.11). The proximal articular 

surface is largest on metatarsal I, and it is slightly smaller or subequal for 

28



metatarsals II–IV. All of the metatarsals have slightly concave proximolateral 

faces for the articulation of the adjacent metatarsal. In dorsal view, the lateral 

margin of each metatarsal is more tightly curved than the medial, as in most 

sauropods. The metatarsals increase in length laterally, such that metatarsal V is 

the longest and about 1.8 times longer than metatarsal I. The long axis of the 

proximal ends of metatarsals I and III are oriented dorsoventrally and roughly 

orthogonal to the long axis of their distal ends, which are oriented mediolaterally 

(Figs. 2.11–2.12).  

 Metatarsal I is subtriangular in proximal view, coming to a point dorsally. 

The articular facet for ungual I.1 is beveled dorsomedially (Figs. 2.11 and 2.12). 

Metatarsals II–IV are subrectangular proximally. Little can be said about their 

distal ends due to deformation and extensive plaster reconstruction (Fig. 2.11). 

Metatarsal V is much broader transversely than dorsoventrally, and is only 

slightly narrower transversely at its midshaft than at its distal ends (Fig. 2.11). 

 

Phalanges 

Eleven phalanges were preserved with the foot, including four unguals (Fig. 

2.11). The first digit is the only one for which an exact phalangeal count (two) is 

known. Three are definitively the proximal-most phalanges of digits 2–4 based on 

fit, and a small phalanx belongs to metatarsal V because it is too small to be the 

penultimate phalanx on any of the other digits, which bear unguals. The best-

estimate phalangeal formula is 2*-3*-3*-3*-1, but there is a range of possibilities 
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based on other sauropods (e.g., 2*-(2-3)*-(2-4)*-(2-4)*-1; González Riga et al. 

2008). Phalanx I.1 is wedge-shaped such that the ungual of digit I is directed 

laterally (Fig. 2.12). The remaining non-terminal unguals are roughly trapezoidal 

in dorsal view, with constricted midshafts and oval proximal faces. The innermost 

three unguals are about 1.7 times longer than tall and each has a dorsally 

acuminate oval proximal face (Fig. 2.13). Each bears variably developed nail-

grooves. The presence of a large claw on metatarsal IV is regarded as an 

autapomorphy among eusauropods (Wilson 2002). 

 

DINOSAURIA Owen, 1842 

SAUROPODA Marsh, 1878 

NEOSAUROPODA Bonaparte, 1986 

TITANOSAURIFORMES Salgado et al., 1997 

Sauroposeidon Wedel et al., 2000 Fig. 2.14 

2007 Paluxysaurus jonesi Rose  

 

Type species. Sauroposeidon proteles Wedel et al., 2000 (Fig. 2.14). 

 

Holotype. OMNH 53062, four articulated middle (?5th–8th) cervical vertebrae.  

 

Holotype locality, horizon, and age. Early Cretaceous (Aptian–Albian) Antlers 

Formation of southern Oklahoma, USA. Referred materials come from the Twin 
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Mountains Formation of north-central Texas, USA.  

 

Referred material. Referred material (see below) includes holotypic (FWMSH 

93B-10-18) and referred (FWMSH 93B-10-1 through FWMSH 93B-10-17; 

FWMSH 93B-10-19 through FWMSH 93B-10-51; TMM 42488) materials of 

Paluxysaurus jonesi Rose 2007. Some of the material reported by Ostrom (1970) 

from the Cloverly Formation is likewise referable to Sauroposeidon (e.g., YPM 

5449, YPM 5147), the details of which will be dealt with in future work (see also 

Wedel & Cifelli 2005, who tentatively referred a cervical vertebra from the 

Cloverly Formation (YPM 5294) to Sauroposeidon proteles). 

 

Referred material locality, horizon, and age. FWMSH 93B-10-1 through 

FWMSH 93B-10-51 comes from the Early Cretaceous (Aptian–Albian) Twin 

Mountains Formation of north-central Texas, USA (Winkler et al. 1990). The Twin 

Mountains Formation is laterally equivalent to the Antlers Formation. 

 

Revised diagnosis. Extreme elongation of the middle cervical vertebrae 

(length/posterior centrum height > 6), middle cervical vertebrae with posterior 

expansion of the pneumatic fossa to the cotyle, neural spines perforated in 

middle cervical vertebrae, top of neural spine with broad midline ridge flanked by 

small fossae at its anterior and posterior ends, middle and posterior dorsal neural 

spines that taper distally, anterior caudal vertebral centra roughly square in 
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cross-section, anterior caudal vertebrae with divergent spinoprezygapophyseal 

laminae (sprl) (angle greater than 50 degrees) forming wide 

spinoprezygapophyseal fossae (sprf), scapula with two processes at the base of 

the ventral edge of the blade, humerus gracile, length/midshaft width > 7.5.   

 

Comments. Sauroposeidon proteles and Paluxysaurus jonesi are from laterally 

equivalent units and have been hypothesized to be closely related to the 

brachiosaurids Brachiosaurus and Giraffatitan (Wedel et al. 2000b; Rose 2007). 

Because of their close spatiotemporal similarity and proposed close phylogenetic 

affinity, it is possible that Sauroposeidon and Paluxysaurus represent a single 

species. Several features have been cited as unique for Sauroposeidon and 

Paluxysaurus, or useful for distinguishing them. Some cited diagnostic features of 

Sauroposeidon have a broader phylogenetic distribution, such as the 

ʻcentroparapophyseal laminaʼ (Wedel et al. (2000a, b), which is similarly 

developed in some large vertebrae of Giraffatitan brancai (e.g., Janensch 1950, 

figs 40, 42; pers. obs., 2008) and Euhelopus (Wiman 1929, pl. 3). Some 

proposed autapomorphies of Sauroposeidon (Wedel et al. 2000b) are shared 

with Paluxysaurus, such as the posterior placement of the diapophyses in larger 

cervical vertebrae (Rose 2007). 

 Rose (2007) proposed three features to distinguish Sauroposeidon from 

Paluxysaurus: absence of an acdl, wider neural arches, and a wider prdl than 

Sauroposeidon. However, re-examination of the vertebrae of both exemplars 
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indicates that these features do not distinguish them. There are multiple laminae 

beneath the arm of the prdl in both exemplars (see Wedel et al. 2000, fig. 6, and 

Rose 2007, figs. 7 and 8; pers. obs., 2009). The acdl appears unusually large on 

the sixth cervical vertebra of Paluxysaurus (Rose 2007, fig. 8) because this 

vertebra has been sheared upwards and backwards on its right side. Despite this 

shearing, it is apparent that the vertebrae of the two taxa do not differ in breadth 

or the width of the prdl. 

 Although there are no substantive morphological differences between their 

exemplars, the two taxa differ substantially in size: the sixth through eighth 

cervical vertebrae of Sauroposeidon have centra whose length (including 

condyles) are ca. 1.25 m, whereas the largest known vertebra of Paluxysaurus 

(FWMSH 93B-10-30) was estimated to have a centrum length of 0.83 m (Rose 

2007). In order to evaluate the meaning of this size difference, morphological and 

histological features relevant to its ontogenetic status are described below. 

 

Description 

 

The following description focuses on demonstrating the juvenile nature of 

exemplars of ʻPaluxysaurus jonesiʼ in order to evaluate its possible referral to 

Sauroposeidon proteles. For description and comparisons of the holotype of 

Sauroposeidon proteles, see Wedel et al. (2000a, b), and for description and 

comparisons of ʻPaluxysaurus jonesiʼ see Rose (2007).  
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The neurocentral sutures and cervical ribs of the holotypic cervical 

vertebrae of Sauroposeidon are fully fused, suggesting that it may have been at 

or near skeletal maturity (Ikejiri 2003). In contrast, some cervical and dorsal 

vertebrae referred to Paluxysaurus (e.g., FWMSH 93B-10-8, -13, -30) have slight 

furrows representing the original position of the neurocentral sutures near their 

condyles and cotyles (pers. obs., 2009). In addition, the last sacral vertebra and 

ilia of one specimen of Paluxysaurus are not fully fused to the other sacral 

vertebrae or ilia (pers. obs., 2009), and one of the coracoids is not fused to a 

scapula (Rose 2007). This suggests that these individuals were not skeletally 

mature, because these bones tend to fuse over ontogeny (Schwarz et al., 2007). 

The femora and humeri in the Jones Ranch quarry do not differ by more than 

10% in size (Rose 2007), so all of the quarry individuals were likely of similar 

ontogenetic age.  

 In order to more precisely determine the ontogenetic age of the 

Paluxysaurus specimens, midshaft samples of a referred fragmentary humerus 

(FWMSH 93-B-10-7; Rose 2007, fig. 23, 8-11) and left femur (FWMSH 93-B-10) 

were taken with a diamond-tipped drill according to the methodology of Stein & 

Sander (2009). Due to the impermeable but friable nature of the femur, 

stabilization with glue and extraction of the core was difficult, and the outermost 

few millimeters of bone were lost. It is uncertain whether or not the femur and 

humerus belonged to a single individual.  

 Thin-sections of the humeral and femoral cores reveal a cortex composed 
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of fibrolamellar bone, as in most other sauropods (Figure 2.14; Klein & Sander 

2008). Most of the bone texture is parallel-fibered, and vascular canals are 

relatively open. Only one line of arrested growth is visible in each section. The 

presence of an external fundamental system is equivocal in the humerus due to 

damage, but it was absent in the femur. Some secondary osteons are present 

within the outer centimeter of both cortices, but these do not form a solid 

remodeling front. 

 The bone represented in the outer cortex of the humerus represents types 

D and E of Klein & Sander (2008), which approximates those authorsʼ histological 

ontogenetic stage 8 or 9. This indicates that this individual was not at adult size. 

Femora and humeri of Giraffatitan brancai at histological ontogenetic stage 8–9 

can be one-half to three-quarters the size the largest known individuals of that 

species (see Klein & Sander 2008: fig. 4G).  

 In sum, lack of substantial morphological or definitive size differences and 

shared unique features (see diagnosis above) suggest that Paluxysaurus and 

Sauroposeidon represent the same species. 

 

Discussion 

 

Phylogenetic affinities of sauropod remains from the Trinity Group and 

Antlers Formation 

 The proposed phylogenetic affinities of sauropods from Trinity–Antlers 
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strata have not been as historically complex as their taxonomic identities, with all 

authors agreeing that they represent basal titanosauriforms or titanosaurs. As 

shown above, most of the material making up ʻPleurocoelusʼ from Texas 

discussed by Salgado et al. (1997) and other authors (Langston 1974; McIntosh 

1990; Upchurch et al. 2004) is instead attributable to Astrophocaudia (SMU 

61732), Cedarosaurus (FMNH PR 977), or Sauroposeidon (FWMSH 93B-10). 

Salgado et al. (1995, 1997) suggested that ʻPleurocoelus nanusʼ is the sister 

taxon to Titanosauria, and ʻPleurocoelus sp.ʼ from Texas is a basal titanosaur. 

The characters listed as supporting titanosaur or near-titanosaur affinities — for 

example, a single prespinal lamina in dorsal vertebrae — are now recognized as 

features characterizing a wider clade than Titanosauria (Carballido et al. 2011). 

Sauroposeidon was described as a brachiosaurid (Wedel et al. 2000a) and 

recovered as such (as Paluxysaurus) in the phylogenetic analysis of Rose 

(2007). In contrast, Ostrom (1970) pointed out some features shared between 

sauropod material from the Cloverly Formation (now = Sauroposeidon, see 

Chapter 3) and titanosaurs, such as a robust ulna.  

The taxonomic revisions presented above augment, combine, and 

redistribute some apomorphies of the Trinity Group sauropods and prompt 

reevaluation of their phylogenetic affinities. Chapter 4 investigates those affinities 

in detail, but brief comments will be made here. Astrophocaudia and 

Sauroposeidon are recognized as a titanosauriforms based on the presence of 

camellate presacral vertebrae, pneumatic dorsal ribs, a flared iliac preacetabular 

36



process, and caudal vertebrae with neural arches situated anteriorly. 

Somphospondylan features of Astrophocaudia and Sauroposeidon include 

somphospondylous vertebral pneumaticity (sub-centimeter cells with sub-

millimeter walls that permeate the vertebra) and a scapular blade with a flat 

cross-section at its base. Sauroposeidon possesses numerous other 

somphospondylan synapomorphies including a medially beveled scapular 

glenoid, an ischial blade that is shorter than the pubic blade, and a proximally 

embracing tibia and fibula (Wilson and Upchurch, 2009). Cedarosaurus is a 

brachiosaurid titanosauriform on the basis of a high humerus-to-femur ratio and 

gracile humerus (Wilson, 2002). 

 Several sauropod remains that are indeterminate to the genus level have 

been reported from Trinity–Antlers strata, including a coracoid (Larkin 1910), 

ischium (Gallup 1975), and teeth (Gallup 1975, Maxwell & Cifelli 2000). Langston 

(1974) mentioned a partial skeleton from the Glen Rose Formation of Blanco 

County, Texas (TMM 40435; see also Tidwell and Carpenter, 2003). This 

specimen is a juvenile based on the lack of neurocentral fusion in some 

vertebrae, and the lack of fusion among the laterosphenoids, prootics, parietals, 

and frontals (pers. obs., 2008). This skeleton represents a titanosauriform based 

on the presence of camellate presacral vertebral pneumaticity, but is not 

diagnostic to the genus level.  

 

Latitudinal homogeneity in Early Cretaceous North American dinosaur 
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faunas 

 The referral of Paluxysaurus and the Cloverly Formation sauropod material 

(Ostrom 1970; in prep.) to Sauroposeidon, as well as the referral of the hind limb 

from the Glen Rose Formation to Cedarosaurus, reinforces proposed faunal links 

among the Trinity Group, Antlers Formation, Ruby Ranch Member of the Cedar 

Mountain Formation, and Cloverly Formation (Langston 1974; Winkler et al. 

1990; Jacobs & Winkler 1998). Nydam & Cifelli (2002) challenged the temporal 

correlation of the Cloverly and Antlers Formations on the basis of their disparate 

lizard faunas, but noted similarity between the Cloverly and Twin Mountains 

Formations. However, at the spatiotemporal scale of sampling in these 

formations, paleoenvironmental biases can also explain the observed differences 

in faunal compositions (Winkler et al. 1990). 

 Though separated by over 15 degrees of palaeolatitude (1,500 km; Fig. 

2.2), four dinosaur genera are shared between the penecontemporaneous Twin 

Mountains/Antlers and Cloverly Formations: Tenontosaurus, Deinonychus, 

Sauroposeidon, and Acrocanthosaurus (DʼEmic and Melstrom, in review). The 

formations also share multiple non-dinosaur genera, as well as some 

suprageneric dinosaur taxa such as nodosaurids (Jacobs & Winkler 1998). This 

degree of faunal similarity over 15 degrees of palaeolatitude stands in contrast to 

the latitudinal variation present in dinosaur faunas observed in the Late 

Cretaceous (Lehman 1987; 2001). Decades of exploration and analyses of Late 

Cretaceous North American strata have reinforced this latitudinal variation (Gates 
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et al. 2010), whereas increased data and study of Early Cretaceous faunas has 

reenforced its latitudinal homogeneity. Proposed explanations for Late 

Cretaceous latitudinal variation (e.g., climate) could be tested against the more 

homogenous pattern observed in the Early Cretaceous. 

 

Conclusions 

 

 Historically, Early Cretaceous sauropods from North America were referred 

to the genera Pleurocoelus or Astrodon from the Early Cretaceous Arundel 

Formation of Maryland. A lack of associations and non-diagnostic type 

specimens means that species of Astrodon and Pleurocoelus (Table 3.1) are 

nomina dubia. 

 Because these Maryland species are invalid, materials previously referred 

to them were reexamined. A single partial skeleton previously referred to 

ʻPleurocoelus sp.ʼ from the Trinity Group represents a new taxon, Astrophocaudia 

slaughteri. Materials from the Trinity Group designated as Paluxysaurus jonesi 

are morphologically similar to and bear autapomorphies of Sauroposeidon, have 

a similar spatiotemporal provenance, and were not at their adult body size. 

Paluxysaurus is a junior synonym of Sauroposeidon, which is also represented in 

the Cloverly Formation of Wyoming (Ostrom 1970; Chapter 3). A hind limb from 

the Trinity Group previously referred to ʻPleurocoelusʼ (Langston 1974) is referred 

to Cedarosaurus weiskopfae on the basis of pedal synapomorphies. 
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Cedarosaurus is a brachiosaurid, whereas Astrophocaudia and Sauroposeidon 

are members of the Somphospondyli. 

 The sauropod dinosaurs Sauroposeidon and Cedarosaurus were 

widespread in western North America in the Early Cretaceous, reinforcing links 

among northern and southern faunas first drawn based on other dinosaurs 

(Jacobs & Winkler 1998). This relative homogeneity suggests that provincialism 

among dinosaur faunas with respect to latitude developed only later in the 

Cretaceous. 
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Figure 2.1. Simplified cladogram depicting the relationships of relevant sauropod 
clades. Based on the phylogeny of Upchurch et al. (2004). 
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Figure 2.2. A, Holotypic locality of Astrophocaudia slaughteri in Wise County, 
Texas, USA (star), with locations of other Early Cretaceous North American 
sauropods (dots). Arrow indicates the direction of north during the Albian (taken 
from www.pbdb.org). B, Stratigraphic position of Astrophocaudia slaughteri 
relative to other Early Cretaceous North American sauropods. Placement of the 
abbreviated name indicates the most likely age for the taxon, and the dotted lines 
represent age uncertainty. Abbreviations: Aby, Abydosaurus; Arun, Arundel 
Formation sauropod material, including ʻAstrodonʼ and ʻPleurocoelusʼ; As, 
Astrophocaudia gen. et. sp. nov.; Blanco, TMM 40435, partial sauropod skeleton 
from the Glen Rose Formation (Tidwell and Carpenter, 2003); Ced, 
Cedarosaurus; Clo, Cloverly Formation sauropod material (Ostrom, 1970); 
FMNH, FMNH PR 977, hind limb of a sauropod from the Paluxy Formation 
referable to Cedarosaurus weiskopfae (Gallup, 1989); Plx, Paluxysaurus; Sau, 
Sauroposeidon; Son, Sonorasaurus. Tooth figures indicate localities that 
preserve indeterminate sauropod teeth. Scale bar in A equals 500 km. 
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Figure 2.3 Holotypic tooth of Astrophocaudia slaughteri (SMU 203/73655) in A, 
labial, B, ?mesial, C, lingual, D, ?distal, E, occlusal, and F, proximal views. 
Orientation is uncertain because of uncertainty in tooth position within the jaw. 
Abbreviations: wf, wear facet. Scale bar = 1 cm. 
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Figure 2.4. Holotypic middle to posterior cervical vertebra of Astrophocaudia 
slaughteri (SMU 61732) in lateral view. Abbreviations: cprl, 
centroprezygapophsyeal lamina; pcdl, posterior centrodiapophyseal lamina; pl, 
pleorucoel; prdl, prezygodiapophyseal lamina; podl, postzygapophyseal 
diapophyseal lamina; sdf, spinodiapophyseal fossa. Dashed lines indicate 
missing bone. Scale bar = 10 cm. 
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Figure 2.5. Selected vertebrae of the holotypic anterior-middle caudal vertebral 
series of Astrophocaudia slaughteri (SMU 61732) in A, left lateral, B, anterior, 
and C, posterior views. Numbers below each vertebra indicate its likely position 
in the caudal sequence. The 10th caudal vertebra is reversed in A. Abbreviations: 
pocdf, postzygapophyseal centrodiapophyseal fossa; posdf, postzygapophyseal 
spinodiapophyseal fossa; CD, caudal vertebra; poz, postzygapophysis; prz, 
prezygapophysis; tp, transverse process. Dashed lines indicate missing bone. 
Scale bar = 10 cm. 
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Figure 2.6. Prezygapophyses and hypantra of the 3rd and 6th preserved caudal 
vertebrae of the holotype of Astrophocaudia slaughteri (SMU 61732) in 
anterolateral view. Abbreviations: CD, caudal vertebra; haa, hypantrum 
articulation surface; prz, prezygapophyseal articulation surface. Dashed lines 
indicate missing bone. Not to scale. 
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Figure 2.7. Selected vertebrae of the holotypic posterior caudal vertebral series 
of Astrophocaudia slaughteri (SMU 61732) in A, left lateral, B, anterior, and C, 
posterior views. Numbers below each vertebra indicate likely position of the 
vertebra in the caudal sequence. Abbreviations: CD, caudal vertebra; ha, 
hypantrum; ncj, location of fused neurocentral junction. Dashed lines indicate 
missing bone. Scale bar = 10 cm. 

 

 

 

 

 

 

 

54



 

 

Figure 2.8. Holotypic dorsal rib of Astrophocaudia slaughteri (SMU 61732) in A, 
lateral and B, posterior views. Abbreviations: pn fo, pneumatic fossa; tu, 
tubercle. Dashed lines indicate missing bone. Scale bar = 10 cm. 
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Figure 2.9. Holotypic chevron of Astrophocaudia slaughteri (SMU 61732) in A, 
anterior, B, proximal (line drawing), C, posterior, and D, lateral views. 
Abbreviations: bo, boss. Dashed lines indicate missing bone. Scale bar = 5 cm. 
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Figure 2.10. Holotypic partial scapula of Astrophocaudia slaughteri (SMU 61732) 
in lateral, with cross section indicated. Dashed lines indicate missing bone. Scale 
bar = 10 cm. 
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Figure 2.11. Metatarsals I–V referable to Cedarosaurus weiskopfae (FMNH PR 
977). in dorsal (top row) and lateral (bottom row) views. Dashed lines indicate 
missing bone. Scale bar = 10 cm. 
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Figure 2.12. Phalanx I.1 referable to Cedarosaurus weiskopfae (FMNH PR 977) 
in A, proximal, B, distal, C, ventral, and D, lateral views. Scale bar = 5 cm. 
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Figure 2.13. Unguals referable to Cedarosaurus weiskopfae (FMNH PR 977). A, 
ungual of digit I in proximal, medial, and dorsal views. B, ungual of digit II in 
proximal, medial, and dorsal views. C, ungual of digit III in proximal, medial, and 
dorsal views. D, ungual of digit IV in proximal, medial, and dorsal views. Scale 
bar = 10 cm. Abbreviations: ng, nail groove. Dashed lines indicate missing bone. 
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Figure 2.14. Bone histology of Sauroposeidon proteles. A, microphotograph of a 
thin section of the humerus (FWMSH 93B-10). B, microphotograph of a thin 
section of the femur (FWMSH 93B-10). Thin-sections reveal primarily laminar 
fibrolamellar bone, which indicates that these individuals were not at adult size at 
death. Scale bar is the same for A and B. 
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Table 2.1. Novel genus-species combinations of Astrodon and Pleurocoelus in 
order of publication, with taxonomic action taken at the time of naming. 

author taxa named action 

Johnston, 1859 Astrodon new genus 

Leidy, 1865 Astrodon johnstoni new species 

Marsh, 1888 Pleurocoelus nanus, 
Pleurocoelus altus 

new genus, two new 
species 

Marsh, 1896 Pleurocoelus montanus new species 

Lydekker, 1890 Pleurocoelus valdensis new species 

Marsh, 1897 Pleurocoelus suffosus new species 

Hatcher, 1903 Astrodon suffosus new species 

Gilmore, 1921 Astrodon nanus, Astrodon 
altus 

subsumed P. nanus and P. 
altus into Astrodon 

Lapparent and Zbyszewski, 
1957 

Astrodon pusillus, 
Astrodon montanus 

new species; subsumed P. 
montanus into Astrodon 

Kingham, 1962 Astrodon altithorax, 
Astrodon atalaiensis, 
Astrodon brancai, 
Astrodon fraasi 

four new species 
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Table 2.2. Measurements of the holotypic caudal vertebrae of Astrophocaudia 
slaughteri (SMU 61732) in cm. e = estimated measurement; d = measurement 
influenced by distortion. Centrum width and height measured at posterior face. 

Estimated 
position in series 

Centrum 
Length 

Centrum 
width 

Centrum 
height 

8 — — — 

10 7.2 15.6e — 

11 — — — 

12 9.7 10.2e 10e 

13 9.1 10.3 9.2 

14 8.7 9.4 8.9 

15 7.4 10.2 8.6 

19 8.8 6.8 7.1 

20 9.1 6.6 7.4 

22 8.6 6.4 6.7 

23 8.7 7.4d 5.9d 

24 8 6e 6.2 

25 7.3 6.5d 6.3 

26 7.2 6.8 5.8 

27 8.1 6.4 5.5 

30 7.8 5.4 5.2 
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31 7.2 5.4 5.2 

33 6.8 4.3 4.3 

37 6.9 — — 

38 6.5 — — 

39 5.7 3.4 3.1 

43 5.1e 2.6e 1.8e 

46 4.5 1.5 1.6 

48 — 1.3 1.2 
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CHAPTER 3 

 

the beginning of the sauropod dinosaur hiatus in north america: insights from the 

early cretaceous cloverly formation of wyoming 

* 

 

INTRODUCTION 

 The Early–Late Cretaceous boundary in North America was a complex time 

in terms of faunal turnover, changing paleogeography, and the rise of new floras 

(Ostrom, 1970; Cifelli et al., 1997; Jacobs and Winker, 1998). Numerous authors 

have proposed that Early Cretaceous North American dinosaur faunas are relicts 

of those of the Late Jurassic, predominated by sauropods, allosauroids, and 

primitive iguanodonts (Jacobs and Winkler, 1998). In contrast, the Late 

Cretaceous of North America is predominated by taxa such as ceratopsians, 

hadrosaurids, and tyrannosaurids, which are thought to represent an Asian 

paleobiogeographic influence (Sereno, 1999). The period of turnover between 

the earlier, ‘relictual’ faunas and later faunas of Asian origin is thought to have 

been as short as 2 Myr, around the Albian–Cenomanian boundary (Winker and 

Jacobs, 1998).  

 The place of sauropods in this turnover has been controversial. Definitive 

sauropod fossils are absent from North America from the mid-Cenomanian until 
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the Maastrichtian (D’Emic et al., 2010). This mid-Cretaceous period of absence is 

termed the ‘sauropod hiatus’ (Lucas and Hunt, 1989). Most authors have 

considered the disappearance of sauropods around the Early–Late Cretaceous 

boundary (ca. 100 Ma) to represent a local (continental) extinction, perhaps 

related to the incursion of the Western Interior Seaway, competition with more 

‘advanced’ ornithischian herbivores, or the spread of angiosperms (e.g., Lucas 

and Hunt, 1989; Cifelli et al., 1997). Other authors have challenged this notion, 

suggesting that the sauropod disappearance is the result of biases in the fossil 

record, perhaps related to a dearth of appropriate sauropod-bearing ‘inland’ 

environments in the Late Cretaceous (e.g., Lehman, 2001; Mannion and 

Upchurch, 2011). Some authors have suggested that post-hiatus sauropods 

could represent the descendants of pre-hiatus sauropods, that is, Early 

Cretaceous North American titanosaurs (e.g., Lehman, 2001). 

 Central to resolving the role of local extinction and bias in producing the 

mid-Cretaceous sauropod hiatus (Lucas and Hunt, 1989) are the taxonomic and 

phylogenetic affinities of Early and Late Cretaceous North American sauropod 

specimens. The presence of titanosaurs in the Early Cretaceous of North 

America (Ostrom, 1970; Britt et al., 1996, 1997, 1998; Tidwell and Carpenter, 

2007) would decrease support for the local extinction/reinvasion scenario and 

raise the possibility of the existence of an unsampled lineage of titanosaurs 

leading to Alamosaurus. Many recent discoveries and descriptions have 

substantially augmented the amount of comparable sauropod material from the 

Early Cretaceous of North America (e.g., Rose, 2007), which allow reexamination 
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of claims for titanosaurs. Revision of the Early Cretaceous sauropods from 

Texas, Oklahoma, and Maryland have revealed the presence of both 

brachiosaurid (e.g., Cedarosaurus) and somphospondylan (e.g., Astrophocaudia) 

sauropods (see Chapters 2 and 4), rendered some genera nomina dubia 

(Astrodon, Pleurocoelus), and synonymized other genera (Paluxysaurus and 

Sauroposeidon). 

 Sauroposeidon proteles is one of the largest known sauropods, and is one 

of the best known from the Early Cretaceous of North America with several 

individuals representing various ontogenetic stages (Wedel et al., 2000a, b; 

Rose, 2007). The holotype of Sauroposeidon and abundant referred material 

come from Early Cretaceous sediments of Oklahoma and Texas. Wedel et al. 

(2000a, b) suggested that Sauroposeidon proteles was also present in the 

Cloverly Formation, tentatively referring a cervical vertebra originally described 

by Ostrom (1970) to the taxon. Below, we confirm this referral and augment it 

with other sauropod material from the Cloverly Formation. In addition, fieldwork 

at the original sauropod site of Ostrom (1970) has yielded geological information 

relevant to the age and paleoenvironment of the site as well as new materials 

referable to Sauroposeidon. I discuss the phylogenetic relationships of 

Sauroposeidon and their implications for the paleobiogeographic history of 

Cretaceous North American sauropods. Finally, I evaluate the role of bias at the 

start of the sauropod hiatus by examining the occurrence data of coexisting 

dinosaur groups before and after the disappearance of sauropods in light of the 

wealth of new data that has accumulated in the last decades. 
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Institutional Abbreviations—ASDM, Arizona-Sonora Desert Museum, Tucson, 

U.S.A.; DMNS, Denver Museum of Nature and Science, Denver, U.S.A.; FMNH, 

Field Museum of Natural History, Chicago, U.S.A.; FWMSH, Fort Worth Museum 

of Science and History, Fort Worth, U.S.A.; HMN, Humboldt Museum für 

Naturkunde, Berlin, Germany; OMNH, Oklahoma Museum of Natural History, 

Norman, U.S.A.; SMU, Southern Methodist University, Dallas, U.S.A.; TMM, 

Texas Memorial Museum, Austin, U.S.A.; YPM, Yale Peabody Museum, New 

Haven, U.S.A.; UM, University of Michigan Museum of Paleontology, Ann Arbor, 

U.S.A. 

 

SYSTEMATIC PALEONTOLOGY 

 

DINOSAURIA Owen, 1842 

SAUROPODA Marsh, 1878 

NEOSAUROPODA Bonaparte, 1986 

TITANOSAURIFORMES Salgado, Calvo, and Coria, 1997  

SOMPHOSPONDYLI Wilson and Sereno, 1998 

SAUROPOSEIDON Wedel, Cifelli, and Sanders, 2000a 

SAUROPOSEIDON PROTELES Wedel, Cifelli, and Sanders, 2000a 

 

Figures 3.3–3.14 
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 Referred material—All materials listed by Rose (2007: 5) as pertaining to 

Paluxysaurus jonesi (FWMSH 93B-10-1 to 10-51), TMM 42488 (see Chapter 2). 

Referred material also includes specimens reported by Ostrom (1970) from the 

Cloverly Formation of Wyoming and Montana (see YPM numbers below) and 

newly excavated specimens (see UM numbers below). 

 Exemplar A (at locality YPM 63-18)—a middle cervical vertebra (YPM 

5294), six dorsal vertebrae (YPM 5449; Fig. 3.3–3.7), two sternal plates (YPM 

5449), four ribs, (YPM 5449, 5126, and 5100), a left ulna (YPM 5449; Fig. 3.11), 

a distal left radius (YPM 5449; Fig. 3.11), two partial pubes (YPM 5449; Fig. 

3.12).  

 Exemplar B (at locality YPM 63-19)—a posterior dorsal vertebra (YPM 

5147; Fig. 3.8), two coossified anterior caudal vertebrae (YPM 5147; Fig. 3.9A). 

 Additional materials from localities YPM 63-18 and YPM 63-19 may pertain 

to exemplar A or B, but this cannot be known with certainty. They are referred to 

Sauroposeidon because of their similarity to the Sauroposeidon exemplars from 

Jones Ranch, Texas (= ‘Paluxysaurus’, Rose, 2007). At locality YPM 63-18, the 

following bones are referred: a posterior caudal vertebra (YPM 5152); a chevron 

(YPM 5123); a right scapula and coracoid (UM 20800); a left femur (YPM 5451). 

At locality YPM 63-19, the following bones are referred: two middle-posterior 

caudal vertebrae (YPM 5103, 5104); four chevrons (YPM 5089, 5096, 5097, 

5087); a left tibia (YPM 5450). 

 Indeterminate material—The teeth from YPM 63-18 and YPM 63-19 vary 

substantially in size and form, and so cannot confidently be referred to 
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Sauroposeidon. These include three teeth from locality YPM 63-18 (YPM 5149, 

YPM 5347, YPM 5375) and five teeth from locality YPM 63-19 (YPM 5349, YPM 

5360, YPM 5365, YPM 5374).  

 Emended diagnosis—Middle cervical vertebral elongation index greater 

than 6; pneumatic fossa developed posteriorly to the cotyle in middle cervical 

vertebrae, middle and posterior dorsal neural spines that taper distally, anterior 

caudal vertebral centra roughly square in cross-section, middle caudal vertebrae 

with wide spinoprezygapophyseal fossa and spinoprezygapophyseal laminae 

that meet at an angle greater than 50 degrees, scapula with two processes at the 

base of the blade on the ventral side, humerus gracile (length/midshaft width > 

7.5). (Wedel et al., 2000a, b; see Chapter 2). 

 Comments—As originally suggested by Wedel et al. (2000a, b), 

Sauroposeidon proteles is present in the Cloverly Formation. Wedel et al. 

(2000a, b) only referred the mid-cervical vertebra of exemplar A to 

Sauroposeidon, but I refer additional sauropod remains from the same localities 

(YPM 63-18 and 63-19; see above). Rose (2007) cast doubt on the conspecificity 

of ‘Paluxysaurus’ (= Sauroposeidon) and the Cloverly sauropod. Below, I show 

that proposed differences between Sauroposeidon and ‘Paluxysaurus’ are minor, 

and that they share several unique features that support their conspecificity.  

 Several of the autapomorphies that were reported for ‘Paluxysaurus jonesi’ 

by Rose (2007) are more widespread among titanosauriforms, including material 

from the Cloverly Formation referred to Sauroposeidon. These features include: 

(1) the presence of accessory laminae on dorsal neural arches, (2) dorsal 
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vertebrae that lack a postspinal lamina, (3) middle caudal vertebral centra with 

forward-sloping anterior and posterior faces, (4) presence of a 

spinoprezygapophyseal fossa in anterior and middle caudal vertebrae. Feature 

(1) is present in several other taxa including Brachiosaurus, Giraffatitan, 

Epachthosaurus, Euhelopus, and Malawisaurus, (2) is shared with 

Brachiosaurus, and (3) is present in Cedarosaurus, Venenosaurus, and several 

titanosaurs. The presence of a spinoprezygapophyseal fossa in anterior and 

middle caudal vertebrae (4) is not unique, but its width and depth are unique to 

Sauroposeidon 

Rose (2007) listed five differences between ‘Paluxysaurus’ and the 

Cloverly sauropod that are unsupported upon further inspection: anterior dorsal 

vertebrae of ‘Paluxysaurus’ with (1) taller neural arches and broader neural 

spines, (2) a caudoventral lip on the centrum, and (3) inclined postzygapophyses, 

and posterior dorsal vertebrae of ‘Paluxysaurus’ with (4) a more upright neural 

spine and (5) “eye” shaped pleurocoels. These differences are either minor (1, 3, 

4), affected by preservation (4), or are as variable within each sample as 

between them (1–5; see ‘Description’ and figures below). 

Rose (2007) also noted differences between the humeri of of 

‘Paluxysaurus’ and the humerus from the Cloverly Formation (YPM 5452); 

however, the humerus was found in isolation and does not necessarily pertain to 

Sauroposeidon. Another difference listed by Rose (2007) as distinguishing the 

Cloverly sauropod from ‘Paluxysaurus’ is a much shorter and more robust ulna in 

the former specimen. As noted by Rose (2007: 38), the Texas ulna is about 20 
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cm longer than the Wyoming specimen, even though “the dorsal vertebrae of 

YPM 5449 are close to the size of dorsals of P. jonesi.” However, the complete 

posterior dorsal vertebrae of the Texas and Wyoming specimens are markedly 

different in size, for example FWMSH 93-B-10-13 is 70 cm tall, but YPM 5449-D 

is only 48 cm tall, making the Texas vertebra 45% larger. This is the same 

relative difference in size between the ulnae of ‘Paluxysaurus’ and the Cloverly 

Sauroposeidon (87 cm vs 60 cm). The perceived difference in robustness of the 

ulnae is also minimal and is accentuated by the crushing of the ‘Paluxysaurus’ 

ulna. For example, the proximal anteromedial process:total length ratio is 0.33 in 

‘Paluxysaurus,’ versus 0.36 in the Cloverly Sauroposeidon exemplar. Likewise, 

the midshaft anteroposterior width: total length ratio in ‘Paluxysaurus’ is 0.18, 

versus 0.19 in the Cloverly Sauroposeidon. In sum, several autapomorphies, the 

absence of substantial differences, and their similar geologic age support referral 

of the Cloverly Formation sauropod material to Sauroposeidon (= 

‘Paluxysaurus’). 

 Locality—Referred FWMSH and TMM specimens come from the W.W. 

Jones Ranch, SMU Locality 282 (FWMSH 93B-10), north-central Texas. YPM 

and UM specimens come from YPM localities 63-18 and 63-19, near Crooked 

Creek, about 10 miles northeast of Lovell, Big Horn County, Wyoming, USA (Fig. 

3.1A).  

 Horizon and Age—Referred FWMSH and TMM materials come from the 

Twin Mountains Formation, dated to about the Aptian–Albian boundary (Fig. 3.1). 

YPM and UM materials come from Units VI and VII of the Cloverly Formation, 
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which were regarded as middle Albian by Ostrom (1970:fig. 5). These units are 

referred to as the Himes Member of the Cloverly Formation by some authors 

(e.g., Moberly, 1960, Winslow and Heller, 1987), or as part of the “C” interval of 

the Cloverly Formation by others (e.g., Zahela, 2006). Zahela (2006) suggested 

that the upper Cloverly Formation is Albian in age based on palynological 

evidence. Laser-ablation multi-collector ICP-MS U/Pb ages of detrital zircons 

from fine sandstones subjacent to the quarry at YPM 63-18 have yielded an age 

of 104.4 Ma, making the bone-bearing horizon younger than middle Albian 

(D’Emic and Britt, 2008).  

 Depositional environment and taphonomy—In discussing the 

association of these sauropod remains, Ostrom (1970:77) stated that: “the 

possibility exists that these bones do not all belong to the same individual, but 

they were so closely associated—in some instances in contact—that this seems 

a remote possibility.”  A field sketch discovered in the collections of the YPM 

supports Ostrom’s (1970) report of contact between many of the bones (Fig. 

3.1B), and would appear to support Ostrom’s claim of only a single individual at 

the site. However, a juvenile sauropod dorsal vertebra (YPM 5151) and sacral 

vertebra (YPM 5107) from the same site (YPM 63-18) are similar in size to each 

other and much smaller than the other vertebrae from YPM 63-18 (centrum 

lengths ca. 10 cm), making the minimum number of individuals at the site two. 

Additionally, larger elements—an associated dorsal vertebra and two caudal 

vertebrae (YPM 5147), and a tibia (YPM 5450)—at site YPM 63-19 indicate that 

a third individual was present as well. The two sites also host a diverse 
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assemblage of other taxa including turtle, crocodile, theropod, ankylosaur, and 

ornithopod fossils (Ostrom, 1970).  

 Fossil sites 63-18 and 63-19 are located approximately 110 m above the 

contact between the Sundance and Cloverly Formations, near the base of Unit 

VII in the Crooked Creek section of Ostrom (1970) (Fig. 3.2A). The sites 

represent a multitaxic, macrofossil bonebed (sensu Behrensmeyer, 1991, 2007), 

and can be classified genetically as a sedimentologic concentration (sensu 

Rogers and Kidwell, 2007). The two sites are hosted within a paleosol profile ca. 

2.3 m thick (Fig. 3.2). The weathered surface of this profile is pale reddish brown 

(10R-5/4), and sharply overlies a fine- to medium-grained fluvial sandstone, 

which weathers to a light olive gray (5Y-6/1) color. The various fossil elements 

are constrained to a 0.5 meter thick interval located ~0.2 m from the top of the 

underlying fluvial sandstone. The paleosol profile itself consists of four units 

within a single, fining upward sedimentary package (Fig. 3.2B). The dominant 

color and mottling features change among the units, and correspond to variations 

in the soil moisture and water table during pedogenesis (Fig. 3.2C; Duchaufour, 

1982; Fanning and Fanning, 1989; Vepraskas, 1994). The top of this paleosol 

profile is delimited by the presence of rhizoliths (i.e., root traces). These and 

other fossils in Units VI and VII of the Cloverly Formation were likely deposited 

on floodplains close to the margin of the encroaching Western Interior Seaway 

(Kvale and Vondra, 1993). Some sauropod fossils (e.g., UM 20809; sauropod 

ribs) from the upper third of the formation are found within horizons that feature 

meter-scale slickensides indicative of vertisols, which commonly occur in wet, 
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coastal settings today (Driese et al., 2005). 

 The multitaxic composition, disarticulation, and variable degree of surface 

cracking and compression of the fossil elements support moderate (at least 

weeks to months) subaerial exposure (Toots, 1965; Behrensmeyer, 1978; Hill, 

1979). A few small sauropod teeth recovered from the sites lack much of their 

enamel, a feature consistent with passage through a digestive tract (Fisher, 

1981). Elements smaller than ~20 cm in length are rare in the bonebed, with the 

exception of the few sauropod and crocodile teeth. The bones present are 

predominantly vertebrae and appendicular elements, which correspond to 

Voorhies Group I/II and suggest moderate transport and sorting in an active flow 

(Voorhies, 1969). Anatomically disjunct elements are commonly found in direct 

contact with one another, indicating at least some degree of hydrologic 

movement (Eberth et al., 2007). However, there is little evidence of abrasion, 

polishing, or rounding that would be expected with extensive hydrologic transport 

and delicate vertebral laminae are preserved, whereas many neural spines and 

transverse processes are broken off. This combination of taphonomic features 

suggests hydrologic sorting (i.e. removal of small elements), and minimal 

transport of large and/or dense elements (Wolff, 1973; Behrensmeyer, 1988; 

Wood et al., 1988; Eberth, 1990). This sorting likely occurred during a crevasse 

splay event that preferentially filled the topographic low on the floodplain and 

entombed the fossil elements at the base of a fining-upward sedimentary 

package. Eventually, a soil formed from this parent material and further altered 

the fossil material, as observed by mottling and discoloration of fossil surfaces. 
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DESCRIPTION  

 

General comments 

 Nomenclature for vertebral laminae and fossae follow Wilson (1999) and 

Wilson et al. (2011), respectively. Orientational terms and regional anatomical 

descriptors are “Romerian” following those traditionally applied to sauropods 

(Wilson, 2006). A minimum of three individuals are present at sites YPM 63-18 

and 63-19: a young juvenile represented by two centra, a partial skeleton of an 

older juvenile (exemplar A), and an older individual represented by a large dorsal 

vertebra, two large co-ossified caudal vertebrae, and a tibia (exemplar B). 

Comparisons are included where appropriate. 

 

Mid-cervical vertebral centrum 

An opisthocoelous, elongate, cervical vertebral centrum (YPM 5294; 

Wedel et al. 2000b; 2005) was recovered from site YPM 63-18. The centrum is 

unfused to its neural arch. Ostrom (1970:82) reported it as being “widely 

separated” from the other bones, but its exact proximity to the majority of other 

bones in the quarry is unknown. However, Ostrom’s entire quarry at YPM 63-18 

was less than 4 x 2 meters wide (MDD., pers. obs. 2008), so it seems plausible 

that it pertains to exemplar A. Ostrom’s (1970) suggestion that the cervical 

vertebra is of the right size to belong to exemplar A is corroborated by the 

anatomy of other titanosauriforms; for example, the mid-cervical centrum length 
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and total posterior dorsal vertebral heights are subequal in Malawisaurus 

(Gomani, 2005); as in YPM 5294 and YPM 5449.  

The vertebra is dorsoventrally crushed, but even in its uncrushed state, it 

would have a minimum elongation index (total length: posterior cotyle height) 

around 6.9 (48.5 cm: ~7 cm restored) and average elongation index (average of 

posterior condyle width and height divided by centrum length; Chure et al., 2010) 

of 5.2. This vertebra likely belongs to a juvenile because its neurocentral junction 

is unfused (Ikejiri, 2003). The neural canal is constant in width along its length, 

unlike the medially constricted (hourglass or ‘butterfly-shaped’) neural canals of 

some titanosaurs (e.g., Rapetosaurus, Curry Rogers, 2009).  The ventral margin 

of the centrum is weakly concave anteriorly, flat posteriorly, and lacks ridges. 

Parapophyses are set just behind the condyle and a lamina projects posteriorly 

from them (referred to as the ‘centroparapophyseal lamina’ by Wedel et al., 

2000b), as in other sauropods (e.g., Euhelopus, Wiman, 1929, Giraffatitan, 

Janensch, 1950). The pleurocoel extends to the cotyle, which is an 

autapomorphy of Sauroposeidon (Wedel et al., 2000a, b).  

 

Anterior dorsal vertebrae 

Three anterior dorsal vertebrae of YPM 5449 (Figs. 3.3–3.5) likely 

represent the second, third, and fourth dorsal vertebrae, respectively, as 

evidenced by the positions of the dorsoventrally-elongate parapophyses near the 

dorsal edge of the centrum and in front of the pleurocoel. These vertebrae are 

largely undistorted, but some are missing parts of their neural spines and/or 
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diapophyses and others are only visible in a single view (e.g., anterior) because 

they are too fragile to remove from their plaster jacket.  

 The centrum is wider than tall at both the condyle and the cotyle, but the 

cotyle is greater in diameter. The centrum is strongly opisthocoelous with a 

distinct notch in the dorsal lip of the cotyle. This notch was described as an 

autapomorphy of Europasaurus (Sander et al., 2006), but is present in many 

sauropods (e.g., Camarasaurus, Ostrom and McIntosh, 1966). Pleurocoels 

expand and ramify to fill the centrum with subcentimeter-scale pneumatic 

chambers (‘somphospondylan’; Wilson and Sereno, 1998). The neural arch is 

low, with the distance from the base neurocentral junction to the base of the 

neural spine less than or equal to the height of the centrum. The neural canal is 

subrectangular and is about the same diameter through its entire length in the 

vertebra. The intraprezygapophyseal (tprl) laminae are well-developed, but the 

intrapostzygapophyseal lamina (tpol) are absent, as in the anterior dorsal 

vertebrae of most sauropods (e.g., Camarasaurus, Osborn and Mook, 1921; 

Ligabuesaurus, Bonaparte et al., 2006). The pre- and post zygapophyses are 

well-separated, large, elliptical, and angled about 30 degrees from the horizontal. 

The centroprezygapophyseal laminae (cprl) have their greatest relief near the 

centrum, and become more subtle dorsally. 

 All neural spines show some evidence of distal expansion, although only 

the neural spine of one of the vertebrae (Fig. 3.5) is complete. The neural spine 

of the anterior dorsal vertebrae is anteroposteriorly compressed, laterally 

expanded, and rounded distally, as in the somphospondylans Ligabuesaurus 
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(Bonaparte et al., 2006), Malawisaurus (Gomani, 2005), Mendozasaurus 

(González Riga, 2005), and Futalognkosaurus (Calvo et al., 2008). When the 

base of the neural canal is held horizontally, the neural spine is inclined anteriorly 

about 10 degrees from vertical. In cross-section the neural spine is 

subrectangular with the transverse dimension about four times the 

anteroposterior.  Pre- and postspinal laminae are only weakly developed as low 

ridges that extend from the base of the neural spine to a point about halfway up 

the spine. Low-relief secondary spinodiapophyseal laminae (spdl) extend from 

the midpoint of the neural spine to an area between the prezygapophyses and 

diapophysis, as in titanosaurs and their relatives (Salgado et al., 1997). 

 The diapophyses extend laterally and slightly downward out to a distance 

about equal to the width of the centrum. The posterior centrodiapophyseal 

laminae (pcdl) form a thin, dorsoventrally deep web that hosts other laminae, 

subdividing the prezygapophyseal centrodiapophyseal fossa (prcdf) and 

postzygapophyseal centrodiapophyseal fossa (pocdf). On the posterior side of 

the diapophyses there are sharp-lipped circular cavities 2–3 cm in diameter (Fig. 

3.3). These excavations are variably present on the dorsal vertebrae of some 

sauropods such as Cetiosaurus (Upchurch and Martin, 2002, 2003); 

Camarasaurus, (Osborn and Mook, 1921:pl. 70), Sauroposeidon (Rose, 2007:fig. 

12), and Giraffatitan (Janensch 1950:fig. 54). 

 

Posterior dorsal vertebrae 

Four posterior dorsal vertebrae were listed by Ostrom (1970): three at site 
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YPM 63-18 that pertain to exemplar A, (YPM 5449, Figs. 3.5–3.7) and one at 

locality YPM 63-19 that pertains to exemplar B (YPM 5147, Fig. 3.8). The relative 

positions of the vertebrae in the series are unknown, so they will be described in 

one section here, following the order in which Ostrom (1970) described them. 

There were likely at least two vertebrae missing in the series between the 

anterior and posterior dorsal vertebrae based on comparisons with 

Brachiosaurus, Giraffatitan, and Camarasaurus, so the posterior dorsal vertebrae 

of YPM 5449 likely belong somewhere in the series between dorsal vertebrae 8 

and 13.  

Two of the posterior dorsal vertebrae (Figs. 3.6, 3.7) have been laterally 

compressed and sheared forward on their right sides, causing the numerous 

cavities on the right side of the vertebrae to appear larger than those on the left 

(Figs. 3.6, 3.7). On both sides the pleurocoels are gently acuminate posteriorly 

as occurs in many sauropods (with some serial variation; e.g., Camarasaurus, 

Osborn and Mook, 1921; Brachiosaurus, Riggs, 1903; Giraffatitan, Janensch, 

1950; Neuquensaurus, Salgado et al., 2005). The development of laminae on the 

neural arches of the posterior dorsal vertebrae is asymmetric: on the right side of 

the vertebrae, the anterior centrodiapophyseal lamina (acdl), posterior 

centrodiapophyseal lamina (pcdl), centropostzygapophyseal lamina (cpol), and 

centroprezygapophyseal lamina (cprl) are present and distinguishable from their 

origin to their terminus near the neurocentral junction (e.g., Fig. 3.6). In contrast, 

on the left side these laminae are absent around the base of the neural arch (Fig. 

3.6). 
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One posterior dorsal vertebra is crushed and overlain by an anterior dorsal 

vertebra (Fig. 3.5). The close association of these two vertebrae suggests that 

they belong to the same individual. Ostrom (1970:78) noticed the disparity in 

width between the centra of these vertebrae: “A surprising feature is that the 

greatest diameters of the centra are significantly less than those of the 

associated anterior centra, a condition that has not been reported in any other 

sauropod.” However, at the time, such a feature had been reported in one 

sauropods: Euhelopus (Wiman, 1929:pl. 3) in which the width of the posterior 

centra of the anterior dorsal vertebrae is over 150% the width of the posterior 

centra of the middle dorsal vertebrae. The centra of the posterior dorsal 

vertebrae are strongly opisthocoelous and taller than wide. The pleurocoel is set 

into a shallow fossa posteriorly.  

 The zygapophyses of the posterior dorsal vertebrae are large and elliptical, 

with their long axis directed approximately 55 degrees from the horizontal. The 

prezygapophyses are set close to the midline and connected to other parts of the 

vertebra by robust centroprezygapophyseal laminae (cprl), prezygodiapophyseal 

laminae (prdl), and spinoprezygapophyseal laminae (sprl), but are not connected 

to one another by an intraprezygapophyseal lamina (tprl). The prezygapophyses 

have flaring, pendant hypantra under the prezygapophyses and a small, 

rhomboidal hyposphene sits below the postzygapophyses (Fig. 3.7). The area 

between the postzygapophyses is bounded by the dorsally-tapering 

spinopostzygapophyseal laminae (spol) and contains a dorsoventrally elongate, 

sharp-lipped cavity, the spinopostzygapophyseal fossa (spof). Dorsal to the spof, 

81



the spol is wide and rugose as in Sauroposeidon (Rose, 2007).   

 Spinoprezygapophyseal laminae (sprl) unite to form a prespinal lamina 

halfway up the neural spine, unlike in the anterior dorsal vertebrae. The 

diapophyses of the posterior dorsal vertebrae are dorsally directed, though this 

has been enhanced by distortion. Extending alongside the diapophyses is a 

small lateral centropostzygapophyseal lamina (cpol) that connects the 

postzygapophyseal diapophyseal lamina (podl) and the posterior 

centrodiapophyseal lamina (pcdl), dividing the postzygapophyseal 

centrodiapophyseal fossa (pocdf). 

YPM 5147 (Fig. 3.8) is substantially larger than any of the dorsal vertebrae 

of exemplar A (YPM 5449), and it comes from site YPM 63-19 rather than YPM 

63-18, so it likely belongs to a different individual. It is missing most of its neural 

spine and diapophyses. The centrum of this vertebra is broken, revealing a 

camellate texture, similar to that observed in Brachiosaurus (Riggs, 1903; 

Janensch, 1947:fig 4) and Cedarosaurus (Tidwell et al., 1999). 

 

Caudal vertebrae 

Anterior caudal vertebrae—Two coosified anterior caudal vertebrae from 

site YPM 63-19 (YPM 5147; Fig. 3.9) were mentioned but not figured by Ostrom 

(1970). The centra of these caudal vertebrae have widths greater than any of the 

dorsal vertebrae from site YPM 63-18, but their width and height correspond well 

with the dorsal vertebra from site YPM 63-19. The posterior dorsal vertebrae and 

anterior caudal vertebrae are similar in posterior centrum width (within ca. 10%) 

82



in most sauropods (e.g., Camarasaurus, Osborn and Mook, 1921; 

Tastavinsaurus, Royo Torres, 2009; Phuwiangosaurus, Suteethorn et al., 2009), 

indicating that the posterior dorsal and anterior caudal vertebrae of YPM 5147 

are the appropriate size to belong to the same individual. The exposure of 

Ostrom’s quarry at site YPM 63-19 was less than 4 x 2 meters (MDD pers. obs., 

2008). Thus these two caudal vertebrae and the dorsal vertebra are regarded as 

probably belonging to a single, larger individual than the one at site YPM 63-18 

(exemplar B). 

These two vertebrae have a solid bone texture, robust laminae and stout 

neural spines. They likely belong to one of the first several caudal vertebrae 

based on their large size, well-developed transverse processes and poorly 

defined chevron facets. The centra are about 1.5 times wider than tall and are 

nearly flat ventrally. Centra display the concavo-planar articulation type (anterior 

face convex, posterior face nearly flat) common to many non-lithostrotian 

sauropods (e.g., Patagosaurus, Camarasaurus, Giraffatitan, Cedarosaurus). The 

centrum is angled forward in lateral view and the neural spines are directed 

backwards. The transverse processes are directed posteriorly and slightly 

upwards. The area below the transverse processes is not excavated by fossae 

nor foramina.  

Prezygapophyses are dorsally directed, and their articular facets are 

steeply angled (approximately 50 degrees above the horizontal). Strongly 

developed spinoprezygapophyseal laminae (sprl) extend from the 

prezygapophyses and continue all the way up the neural spine; they do not unite 
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to form a prespinal lamina, but delimit a deep and wide prespinal fossa on the 

neural spine. Sprl that diverge by more than 50 degrees is an feature known only 

in Sauroposeidon among sauropods. Spinopostzygapophyseal laminae (spol) 

are short and delimit a broad spinopostzygapophyseal fossa (spof). Within the 

spof there is a broad, rugose postspinal lamina (posl). The neural spine is longer 

than wide for most of its length, but strongly expands in width at its distal end. 

Ostrom (1970) reported an anterior-middle caudal vertebra (YPM 5116) 

that may pertain to an ornithopod rather than a sauropod. It has a centrum that is 

much taller than wide, unlike other anterior-middle caudal vertebrae in the quarry 

or any of those of Sauroposeidon, which are wider than tall (Fig. 2.9). In this and 

other respects, YPM 5116 is more similar in proportions to the anterior-middle 

caudal vertebrae of Tenontosaurus (Forster, 1990), and more likely represents 

that genus than a sauropod. 

Middle and posterior caudal vertebrae—Middle caudal vertebrae have 

centra that lean slightly forward, are slightly wider than tall, and are nearly 

equivalent in length to the centra more anterior and posterior in to them in the tail 

(Fig. 3.9). The anterior face of the middle caudal centrum is slightly more 

concave than its posterior face, as in the anterior caudal vertebrae. No fossae 

are present on the sides or bases of the centrum.  Two posterior caudal 

vertebrae (YPM 5103, 5152) are ‘spool-shaped’ (Langston, 1974) with neural 

arches displaced to the anterior half of the vertebra. YPM 5152 is weakly 

procoelous, as in some posterior caudal vertebrae of Giraffatitan (HMN 

MB.R.5000; MDD pers. obs. 2008; see Chapter 4) and Astrophocaudia (see 
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Chapter 2). 

  

Scapula and coracoid  

 Excavations at YPM 63-18 in 2008 yielded a scapula and coracoid (UM 

20800; Fig. 3.10) that likely pertain to exemplar A, but this cannot be verified. 

The total scapula and scapulocoracoid lengths as preserved are about 1.3 and 

1.5 meters, respectively. The scapula is missing some of its coracoid margin, 

acromion, and parts of its dorsal and distal blade. The blade was found in several 

pieces and crushed both transversely and proximodistally, such that parts of the 

blade lay slightly on top of one another. The blade is nearly flat, unlike the 

laterally expanded (‘D-shaped’) scapular blades of non-somphospondylans 

(Wilson, 2002). The scapular glenoid measures about 30 cm by 14 cm and is 

beveled about 30 degrees medially relative to the proximal scapular plate (Fig. 

3.10), as in somphospdondylan sauropods (Wilson and Sereno, 1998). Just 

posterior to the glenoid on the ventral margin of the bone are two processes. A 

single large process is commonly present in this region in titanosauriformes (e.g., 

Chubutisaurus, Mendozasaurus) but some derived titanosaurs also possess two 

(e.g. Alamosaurus, D’Emic et al., in press). Because Sauroposeidon and 

Alamosaurus are not regarded as being closely related phylogenetically (see 

‘Phylogenetic and paleobiographic history,’ below), the presence of two 

processes is regarded as a local autapomorphy of Sauroposeidon. 

 The coracoid was found adjacent to the ventral part of the plate of the 

scapula with its lateral side was face-down, whereas the lateral side of the 
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scapula was found face-up. Part of the coracoid foramen is preserved along the 

unfused scapular articulation. The coracoid is missing its dorsal margin; its 

preserved part measures about 46 cm by 30 cm dorsoventrally and 

proximodistally, respectively. A thin infraglenoid lip is present. The coracoid 

glenoid measures about 20 cm by 13 cm. The coracoid glenoid is roughly divided 

into two portions, a larger segment that faces mostly ventrally, and a smaller 

segment that faces mostly laterally. This is similar to the situation in most 

sauropods (e.g., Camarasaurus, Ostrom and McIntosh, 1966; Giraffatitan, 

Janensch, 1961; Ligabuesaurus Bonaparte et al., 2006; see Wilson and Sereno, 

1998; contra Taylor, 2009). 

 

Sternal plates and dorsal ribs 

 Fragments of two sternal plates (YPM 5449) were recovered as part of 

exemplar A from YPM 63-18, directly below the left pubis (Fig. 3.1). They are 

approximately 1–2 cm thick and have a tubercle on their anterior internal face as 

in many other sauropods (e.g., Omeisaurus, He et al., 1988; Giraffatitan, 

Janensch, 1961; Alamosaurus, Gilmore, 1946). The lateral margins are not 

complete enough to know their shape. Fragments of three dorsal ribs (YPM 5449 

and 5126) were preserved with the assemblage of bones at site YPM 63-18, and 

one large rib (YPM 5100) was preserved at 63-19. All of the ribs are between two 

and three times as broad as wide and are strongly curved. Distally, the preserved 

portions of the ribs are not flat, but are broadly subtriangular in cross section. 

None of the ribs are preserved proximally, so it is unknown whether or not they 
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were pneumatic. 

 

Ulna 

 A left ulna (YPM 5449) was found at the site in close proximity to the 

sternal plates, ischia, and vertebrae (Fig. 3.11). It is nearly complete and 

undistorted and preserves traces of an articulation surface for the radius distally. 

The ulna is 60 cm long and slightly less elongate than in brachiosaurids such as 

Giraffatitan and Cedarosaurus (e.g., the ratio of the length of the anteromedial 

arm to total length = 0.36 in YPM 5449 vs 0.33 in the brachiosaurids). The ulna 

appears to have a more robust shaft and larger olecranon in figures from Ostrom 

(1970: pl. 14) than it actually does because it was photographed obliquely in that 

publication. On the anterior and lateral arms of the ulna, the planes of articulation 

for the radius meet at an angle slightly less than 90 degrees. The medial face of 

the anterior arm is slightly concave, and the corresponding face on the lateral 

arm is strongly convex. Measured from the posterior corner of the proximal end, 

the anterior process is approximately 22 cm long and the lateral process is about 

14 cm long. The anterior process is flat proximally, and the lateral process is 

slightly concave in profile as it slopes gradually away from the slightly raised 

olecranon. This is similar to the situation present in many titanosauriforms such 

as Giraffatitan (Janensch, 1950), Venenosaurus (Tidwell et al., 2001), 

Opisthocoelicaudia (Borsuk-Bialynicka, 1977), and Alamosaurus (Gilmore, 1946). 

The proximal, triradiate end of the ulna tapers toward the midline, which has a 

triangular cross section. The distal end is subtriangular and beveled upwards 
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anterolaterally. The distal end measures 11.3 and 12.5 cm transversely and 

anteroposteriorly, respectively. 

 

Radius 

A previously uncatalogued bone found in the collections of YPM in a box 

with other Cloverly sauropod fossils represents the distal end of a sauropod left 

radius (Fig. 3.11). The radius is slightly eroded on its distal end, nevertheless, it 

articulates well with the ulna (YPM 5449) from site 63-18, and it is of similar size 

and preservation, so it is likely that both belong to the same individual. The 

radius expands markedly towards its distal end. The most proximally preserved 

part of the radius is subcircular in cross section whereas the distal end is 

subrectangular except for a small process on the lateral side near the ulnar 

articular surface. The anterior outline of the distal end is divided into two flat 

faces that meet at an angle of about 110 degrees. The posterior articular surface 

for the radius is slightly convex in distal view. Two elongate low ridges extend 

along the articular surface for the ulna. The first ridge is usually interpreted as an 

“interosseous ridge,” marking the site where connective tissue binds the radius 

and ulna together (Borsuk-Bialynicka, 1977). The second ridge has been 

interpreted as the insertion site of the M. extensor longus digiti I (Borsuk-

Bialynicka, 1977). The second ridge is subtle, as in Venenosaurus and most 

sauropods, and not hypertrophied into a flange as in Cedarosaurus (Tidwell et 

al., 1999). 
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Pubis 

Two bones (YPM 5449, Fig. 3.12) that Ostrom referred to as ischia were 

recovered from site YPM 63-18. Based on their robustness, lack of twisting along 

their midshaft, and comparisons with Sauroposeidon and Venenosaurus, these 

bones more likely represent pubes rather than ischia. As preserved, the more 

complete, left pubis is 87 cm long, and distally it measures ca. 20 cm by ca. 8 

cm. A line drawing of the left pubis can be found in Ostrom (1970: fig.7). The 

right pubis is extremely fragmentary  but similar to the left in its preserved 

portions. The ambiens process is only subtly developed. The distal end is not 

expanded anteriorly to a point as in some sauropods (e.g., Giraffatitan, 

Janensch, 1961; Tastavinsaurus, Royo Torres, 2009). 

 

Femur 

A partial right femur (YPM 5451) was found at site YPM 63-19 (Fig. 3.13). 

The proximal end is incomplete, and Ostrom (1970) estimated that it would be 

over 1.5 meters long if complete based on the position of the fourth trochanter. 

The femur may belong to exemplar B based on its large size, but this is 

uncertain. Comparisons with the femora of Brachiosaurus, Cedarosaurus, and 

Sauroposeidon give a similar length estimate of 146 cm for YPM 5451. The 

fourth trochanter is weakly developed as a ridge bounded medially by a welt (Fig. 

3.13). The proximal end preserves the beginnings of a medial deflection and the 

distal half of a lateral bulge. The tibial condyle is about twice as broad as the 

fibular condyle and projects about 1.5 times as far posteriorly. In maximum 
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dimensions, the distal end of the femur measures 39.5 cm by 19.5 cm. The 

transverse dimension of the midshaft equals 220% that of the transverse 

dimension (24.2 cm by 11 cm), though this is slightly exaggerated by 

anteroposterior crushing (Fig. 3.13). The least circumference of the femur is 

about 55 cm. 

 

Tibia 

Ostrom (1970) described a left tibia (YPM 5450), found at site 63-19 (Fig. 

3.14). The tibia measures 98.5 cm long; other measurements are influenced by 

distortion. The tibia is strongly crushed transversely. It is the appropriate size to 

belong to exemplar B and the femur (YPM 5451), but their association is 

uncertain. The proximal end of the tibia is oval and the cnemial crest is broken. 

The shaft of the tibia is nearly straight and expands to twice its midshaft width 

towards its distal end as in many sauropods (e.g., Camarasaurus, Ostrom and 

McIntosh, 1966; Giraffatitan, Janensch, 1961; Erketu, Ksepka and Norell, 2006). 

The distal tibia has a deep facet for reception of the astragalus.  

 

Other sauropod remains from the Cloverly Formation 

Teeth—Ostrom (1970) reported 13 teeth from the Cloverly Formation 

including three from site YPM 63-18 and five from site YPM 63-19 (all in Unit VII), 

and some isolated at other sites in Units V–VII. Teeth from some sites in these 

units (e.g., YPM 64-3, 64-39) are devoid of enamel but are otherwise intact, 

possibly indicating passage through a digestive tract (Fisher, 1981). Some of the 
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teeth are twisted along their axis as in the upper teeth of brachiosaurids (e.g., 

Abydosaurus, Chure et al., 2010), but others are straight and chisel-shaped as in 

titanosaurs and their relatives (Calvo, 1994; Gomani, 2005). None can be 

confidently referred to Sauroposeidon. All of the sauropod teeth from YPM 63-18 

and YPM 63-19 are intermediate in slenderness between the broad, spatulate 

teeth of most non-titanosauriform sauropods and the narrow, peg-like teeth of 

titanosaurs (slenderness index between 2.6 and 4.3; log slenderness index 

between 0.41 and 0.63, see Chure et al., 2010: fig. 5). Cross sections are D-

shaped on the apical half of the crown, and more circular towards the base. The 

teeth vary in size from about 1.5 to nearly 4 cm long, though the smallest of 

these do not bear wear facets and may be replacement teeth. Wear patterns also 

vary among the teeth: mesio-distal (YPM 5374), lingual (YPM 5360), and apical 

(YPM 5149) wear is present. 

 Humerus—Ostrom (1970: pl. 14) described an isolated humerus (YPM 

5452) from locality YPM 63-16, 40-50 yards (37-46 m) away from exemplars A 

and B at YPM 63-18 and -19, respectively. It also comes from a different unit 

(Unit VI) than the exemplars at the other sites (Unit VII). The humerus possesses 

a somewhat squared proximolateral corner as in titanosauriformes except for 

some brachiosaurids (e.g., Cedarosaurus, Tidwell et al., 1999). The specimen is 

crushed antero-posteriorly, exaggerating its eccentricity. There are visible muscle 

insertion sites on the proximal posterolateral face of the bone and in the 

deltopectoral fossa, but they are not as pronounced as in titanosaurs (e.g., 

Jainosaurus, Wilson et al., 2009). 
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 Juvenile sauropod bones—One small dorsal centrum and one small 

sacral centrum that lack neural arches and transverse processes (YPM 5151 and 

5107) were found at site 63-19. These vertebral centra belong to a juvenile 

sauropod dinosaur, as evidenced by the open neurocentral sutures and the 

presence of large camerae that almost fill the centrum (Wedel et al., 2000a, b). 

The dorsal and sacral centra are very similar in size, so they may belong to the 

same individual. It is uncertain whether or not these centra pertain to 

Sauroposeidon. 

The juvenile dorsal vertebral centrum (YPM 5151; Fig. 3.16) is 7.3 cm 

long, 6.9 cm wide, and 6.8 cm tall (measured at the cotyle). The centrum widens 

posteriorly and possesses a distinct posteroventral lip. The pleurocoel opens on 

the dorsal half of the centrum, is deepest anteriorly, and is subdivided by a small, 

subvertical strut at about the mid-length of the vertebra. The centrum is 

opisthocoelous, spool-shaped, and has a subcircular cross-section. The 

neurocentral junction is slightly wider posteriorly than anteriorly, measuring 2.1 

cm and 1.4 cm wide, respectively. The juvenile dorsal vertebra (YPM 5151) is 

very similar to juvenile dorsal vertebrae of Rapetosaurus (Curry Rogers, 2009), 

Apatosaurus (Carpenter and McIntosh, 1994), and Eucamerotus (Blows, 1995) in 

its shape and extensive pneumaticity. 

The juvenile sacral vertebral centrum (YPM 5107, Fig. 3.16) from site 

YPM 63-19 preserves tall sacral rib facets at its anterior and posterior faces, 

which are eroded and irregular. It is 9.3 cm long, 10 cm wide, and 6.3 cm tall 

(measured at the anterior face). A small, thin lamina is present in each 
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pleurocoel, which extends over about half of the length of the centrum and is 

about 2 cm deep. This sacral centrum is similar to that of ‘Pleurocoelus’ nanus 

(Lull 1911b:pl.15) and Camarasaurus sp. (Carpenter and McIntosh, 1994:fig. 

17.2) in size of its pleurocoel, but unlike in these taxa, it is distinctly wider than 

tall. 

 

DISCUSSION 

 

In light of the new information on the anatomy and paleoenvironment of 

Sauroposeidon proteles presented above, I review its phylogenetic relationships 

and paleobiogeographic history. New information from this reevaluation is also 

used to evaluate other claims for titanosaurs in the Early Cretaceous of North 

America. I then evaluate the relative importance of bias versus local extinction in 

causing the start of the sauropod hiatus, and discuss some possible causes of 

that extinction. 

 

Phylogenetic and paleobiogeographic history 

 The absence of a full taxonomic description and paucity of comparative 

materials have hindered resolution of the phylogenetic relationships of the 

Cloverly Formation sauropod material. In contrast, Sauroposeidon proteles was 

found to be a brachiosaurid via both comparative anatomy (Wedel et al., 2000a, 

b) and cladistic analysis (as ‘Paluxysaurus’; Rose, 2007). The evidence 

presented above that the Cloverly Formation material, ‘Paluxysaurus’, and 
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Sauroposeidon represent a single genus prompts reevaluation of its phylogenetic 

affinities. These affinities are investigated thoroughly in Chapter 4, but will be 

discussed briefly here. 

 In discussing the affinities of the Cloverly sauropod, Ostrom (1970:81) 

concluded that it represented a brachiosaurid or titanosaur, based mostly on the 

single neural spines in the dorsal vertebrae and that “The relatively thin, 

unexpanded ischium and the slender, but not elongated ulna suggest 

titanosaurid rather than brachiosaurid affinities and I have therefore tentatively 

referred YPM 5449 to the Titanosauridae.” However, the ischium is instead a 

pubis (see above) and is similar to those of other titanosauriforms (e.g., 

Giraffatitan, Andesaurus). Likewise, the ulna is similar to those of basal 

titanosauriforms in proportions (e.g., Venenosaurus, Phuwiangosaurus).  

 In contrast to the titanosaur affinities suggested by Ostrom (1970), Wedel et 

al. (2000a, b) suggested four characters to link Sauroposeidon to brachiosaurids. 

These include: centrum length more than four times centrum diameter, cervical 

ribs more than two centra in length, camellate vertebral pneumaticity, and a mid-

cervical ‘transition point’ in neural spine height. However, the first three 

characters are now recognized in a wider array of sauropods (i.e., 

Titanosauriformes; Curry Rogers, 2005), and the last is poorly defined and not 

known with certainty in any specimen of Sauroposeidon. Gomani et al. (1999) 

suggested that ‘Paluxysaurus’ was either a brachiosaurid or basal 

somphospondylan. Rose (2007) presented a cladistic analysis that supported the 

brachiosaurid affinities of Paluxysaurus. However, this relationship was 
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supported by only a single synapomorphy — a highly eccentric femoral cross 

section — a character with a sporadic phylogenetic distribution in that analysis. In 

sum, character support for previous hypotheses of relationship between 

Sauroposeidon and titanosaurs or brachiosaurids is weak. 

 Evidence for a position within Somphospondyli for Sauroposeidon is 

supported by material from the Cloverly Formation, which bears several 

somphospondylan synapomorphies, such as a single prespinal lamina on 

anterior dorsal vertebrae and a medially beveled scapular glenoid, a scapular 

blade that is flat in cross section, an ischial blade that is shorter than the pubic 

blade, and an interlocking proximal tibia and fibula (Wilson and Upchurch, 2009). 

Sauroposeidon lacks synapomorphies of Titanosauria such as a ventral 

longitudinal hollow in anterior and middle caudal vertebrae and a plate-like 

ischium (Wilson, 2002). Likewise, Sauroposeidon lacks several brachiosaurid 

features, including middle and posterior dorsal vertebrae with long, ‘rod-like’ 

transverse processes or an abbreviate pubic peduncle of the ischium (Janensch, 

1950; Wilson, 2002). 

 As a somphospondylan, Sauroposeidon does not represent a relict of a 

Late Jurassic North American brachiosaurid lineage. The closest relatives of 

Sauroposeidon seem to be Early Cretaceous Gondwanan genera such as 

Ligabuesaurus, suggesting a paleobiogeographic link between Gondwana and 

Laurasia into the middle Cretaceous. This revised view of the 

paleobiogeographic history of Sauroposeidon parallels that of the 

contemporaneous theropod Acrocanthosaurus, which was once thought to 
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represent a relict of Late Jurassic allosaurs, but is now recognized as having 

close relatives from Early Cretaceous Gondwanan strata (Brusatte and Sereno, 

2008; Eddy and Clarke, 2011). 

 Although Sauroposeidon is not a titanosaur, other reports of Early 

Cretaceous North American titanosaurs exist. These reports are based on some 

of the same features previously cited in support of titanosaur affinities for 

Sauroposeidon. Claims for the presence of titanosaurs in the Early Cretaceous of 

North America are evaluated below. 

 

Early Cretaceous North American titanosaurs? 

 Reevaluation of the sauropod material described by Ostrom (1970) 

unequivocally supports its referral to Sauroposeidon and placement outside of 

Titanosauria. Claims of other Early Cretaceous North American titanosaurs are 

also problematic (Britt et al., 1996, 1997, 1998; Tidwell and Carpenter, 2007). For 

example, Britt et al. (1996; 1997; 1998) presented a suite of features to support 

‘titanosaurid’ affinities for an Early Cretaceous sauropod from the Dalton Wells 

quarry, Utah. Many of these features characterize a wider array of sauropods 

than titanosaurs, for example spatulate teeth (e.g., Camarasaurus, Turiasaurus), 

long sternal plates (e.g., Cedarosaurus), a raised ulnar olecranon (e.g., 

Tehuelchesaurus, Giraffatitan. Venenosaurus), and procoelous caudal vertebrae 

(Turiasaurus, Daxiatitan, Donygangosaurus, some diplodocids). Likewise, Tidwell 

and Carpenter (2007: 158A) suggested that a sauropod skeleton from the Yellow 

Cat Member of the Cedar Mountain Formation was a titanosaur on the basis of “a 
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single, low neural spine, prespinal lamina, and short posterior cervical [vertebra] 

length”. However, all of these features can also be found in non-titanosaurs (e.g., 

Giraffatitan, Janensch, 1950; Sauroposeidon, see above; Tehuelchesaurus, 

Carballido et al., in press).  

 Thus, there are no demonstrated records of titanosaurs in North America 

prior to the Maastrichtian. These unsubstantiated reports of Early and middle 

Cretaceous North American titanosaurs have played a large role in the 

discussion of the cause of the sauropod hiatus (Lehman, 2001; Mannion and 

Upchurch, 2011). Below, I reexamine the start of the sauropod hiatus in light of 

these reevaluated affinities of Early Cretaceous North American sauropods. 

  

The role of bias in the sauropod hiatus 

 As the best known Early Cretaceous North American sauropod, 

Sauroposeidon is relevant to the sauropod hiatus. Recently, the traditional 

explanation for the sauropod hiatus as a true local extinction followed by 

immigration has been challenged (Lehman, 2001; Mannion and Upchurch, 2011). 

Instead, a combination of sampling and preservation biases are seen as an 

equally likely explanation for the hiatus, with latest Cretaceous titanosaurs (i.e., 

Alamosaurus) as the descendants of Early Cretaceous North American 

sauropods. Mannion and Upchurch (2011) used tentative or unsubstantiated 

reports of Early and early Late Cretaceous North American titanosaurs (see 

“Early Cretaceous North American titanosaurs?” above) to suggest that the 

sauropod hiatus was shorter than has been traditionally portrayed, that is from 

97



the Turonian–early Campanian (i.e., < 15 Ma) rather than from the Cenomanian–

Maastrichtian (i.e., ca. 30 Ma). Furthermore, Mannion and Upchurch (2011) 

conflated age uncertainty with true stratigraphic range. For example, the single 

known skeleton of the brachiosaurid Sonorasaurus thompsoni (Ratkevitch, 1998) 

is from strata that are either Albian or Cenomanian in age, but Mannion and 

Upchurch (2011) cited this skeleton as some of the evidence that the sauropod 

hiatus did not begin until the Turonian. Based on specimens of known affinities 

and well-established age, the sauropod hiatus lasted nearly 30 million years, 

from the middle Cenomanian to the Maastrichtian (D’Emic et al., 2010).  

 Part of the ‘bias’ explanation of the sauropod hiatus stems from the 

observations that titanosaurs inhabited more inland settings than other 

sauropods, and inland paleoenvironments are rare in the Late Cretaceous strata 

deposited during the sauropod hiatus (Mannion and Upchurch, 2010). The 

association between titanosaurs and inland paleoenvironments seems robust, 

but must be treated with caution given that about half of the species used to 

create the correlation are only known from single individuals (and therefore 

localities; Mannion and Upchurch, 2011: supplemental information). If a species 

is only known from a single individual, it is difficult to know the entire 

paleoenvironment of that species. Discoveries of closely related species in the 

same paleoenvironment corroborate the idea that the clade to which they belong 

prefers that environment, but when each species is only known from a single 

exemplar, each corroboration is weak. New discoveries and referrals will tend to 

expand the known paleoenvironmental range of a species. For example, 
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Cedarosaurus was originally described from the fluvially-deposited Cedar 

Mountain Formation, but is now also recognized in the marginal marine Glen 

Rose Formation (see Chapter 2). Likewise, Sauroposeidon is recognized from 

the Antlers, Twin Mountains, and Cloverly Formations, all of which were fluvially 

deposited, but of varying proximity to the coast (Rose, 2007; see above). In sum, 

Mannion and Upchurch (2010, 2011) postulated that sampling failures account 

for some of the perceived patterns in sauropod diversity; these failures may 

presently seem to manifest at the level of large clades, but severer biases likely 

lie hidden at the species level. 

 Even if the inland preference of titanosaurs is genuine, it can only explain 

the persistence of the hiatus, not its initiation, because there were no titanosaurs 

in North America before the hiatus (see above). That is, the “inland bias” 

explanation for the absence of titanosaurs does not explain the absence of 

brachiosaurids or other basal titanosauriforms. Early Cretaceous North American 

sauropods such as Sauroposeidon lived on floodplains of varying proximity to the 

coastline or in coastal settings (Ostrom, 1970; Langston, 1974; see above). 

Similar paleoenvironments are represented (and bear dinosaurs) into the Late 

Cretaceous, for example the Cenomanian Blackleaf Formation or Turonian 

Moreno Hill Formation (Varricchio et al., 2007; Wolfe et al., 2004). Furthermore, 

the presence of any titanosaur in the Early Cretaceous of North America does 

not support the ‘bias’ explanation for the sauropod hiatus; only the presence of 

the sister-taxon of Alamosaurus would. No cladistic analysis has found such a 

relationship (e.g., Rose, 2007; Royo Torres, 2009; Carballido et al., 2011; 
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Mannion and Upchurch, 2011; see chapter 4). 

 Evaluating biases in the sauropod fossil record can be informed by the fate 

of other dinosaur lineages that coexisted with sauropods before the start of the 

hiatus. For example, biases against sauropod recovery would be expected to 

preferentially affect animals of similar size, habitat, or ecology. I test this 

expectation by plotting the known stratigraphic ranges of sauropods and other 

dinosaurs (Fig. 3.17) based on information from the Paleobiology Database 

(www.pbdb.org, accessed 06/05/11) and the literature. The continent-wide 

pattern shows that ten ecologically disparate dinosaur groups (neoceratopsians, 

tyrannosauroid, dromaeosaurid, oviraptorosaur, and ornithomimids theropods, 

nodosaurid and ankylosaurid ankylosaurs, hypsilophodontid, basal 

iguanodontian, and hadrosauroid ornithopods) coexisted with sauropods (i.e., 

were found in the same geologic units) at some time during the Early-middle 

Cretaceous. Only two ecological groups — titanosauriform sauropods and basal 

iguanodonts — did not persist past 98 Ma in North America. This pattern has 

been noted previously (Cifelli et al., 1997; Jacobs and Winkler, 1998), and has 

persisted even with the intensified fossil collecting in the last fifteen years. This 

intensified collecting, as well as several redescriptions and revisions, have 

refined the pattern to show that these two non-persisting ecological groups 

represent at least five dinosaur lineages (brachiosaurids, basal 

somphospondylan sauropods, Tenontosaurus, and two unnamed basal 

iguanodontian lineages; see McDonald et al., 2010).  

 When broken down into geographic regions (Fig. 3.17) the pattern abides: 
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sauropods and basal iguanodontians disappear from the fossil record in the 

middle Cretaceous while other dinosaur groups persist. This persistence 

suggests that suitable brachiosaurid, basal somphospondylan, and basal 

iguanodont habitat was present long after their disappearance, refuting the 

paleoenvironmental biases invoked by Mannion and Upchurch (2011) to explain 

the hiatus. This similar occurrence data among several basins suggest that 

continental extinction, rather than sampling bias, was the main factor explaining 

the start of the sauropod hiatus. 

 

The cause of the North American sauropod regional extinction 

 Several explanations for the cause of sauropods’ extirpation from North 

America in the middle Cretaceous have been proposed. When first recognizing 

the sauropod hiatus, Lucas and Hunt (1989:83) found “no convincing explanation 

of this extinction,” but tentatively suggested two causes: the incursion of the 

Western Interior Seaway and competition with hadrosaurs. Another cause for the 

extirpation was proposed by Salgado and Coria (2005), in which changes in 

floras and mean annual temperature would have led to substantial sauropod 

faunal turnover. Additionally, Bakker (1978) linked the decline of sauropods and 

rise of ornithopods through the Cretaceous to the spread of angiosperms, based 

mostly on the pattern in North America. 

 Hypotheses relating changes in floras and climate to sauropod faunal 

changes (Bakker, 1978; Salgado and Coria, 2005) are difficult to test in light of 

the spatiotempral vicissitudes of middle-Late Cretaceous sauropod and 
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angiosperm fossil records (Barrett and Willis, 2001). However, some potential 

causes that have been ruled out by other authors merit further investigation, 

because their timing coincides well with sauropod disappearance. Below I 

discuss why two of these causes should not be ruled out. 

 Incursion of the Western Interior Seaway—The late Albian incursion of 

the Western Interior Seaway was cited as a possible cause of the start of the 

sauropod hiatus by Lucas and Hunt (1989). The causal relationship between the 

incursion and sauropod extinction was not articulated, but the incursion coincided 

with a fall in marine temperatures and a large marine invertebrate extinction 

event (Lucas and Hunt, 1989). Mannion and Upchurch (2011) countered this 

hypothesized cause, arguing that this incursion could not have caused the 

sauropod hiatus because it predated the last known sauropod fossils by several 

million years (late Cenomanian in their view). The argument of Mannion and 

Upchurch (2011) assumes that the incursion occurred entirely in the Albian and 

before the disappearance of sauropods. However, the incursion took place in 

irregular transgressions and regressions over several million years in the Albian–

Cenomanian before forming a persistent seaway for most of the Late Cretaceous 

(Kauffman, 1984). Across the western United States, the encroaching of the 

Western Interior Seaway is marked by a coastal, sandstone-dominated facies 

(e.g., Dakota Formation, Upper Cloverly/Sykes Mountain Formation, Paluxy 

Formation); no sauropod fossils are known from above these coastal facies, but 

a few specimens have been reported from within them (Langston, 1974; K. 

Carpenter, pers. comm. in Mannion and Upchurch, 2011). Thus, the incursion of 
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the seaway predated or was coincident with sauropod disappearance, which 

does not preclude it from being a factor in that disappearance (contra Mannion 

and Upchurch, 2011). 

 Hadrosauroid competition—Competition between hadrosaurs and 

sauropods was cast as a doubtful cause of sauropod extinction by Lucas and 

Hunt (1989: 83), because of their “widely divergent feeding mechanisms.” 

However, competition may have been present between these groups at different 

ontogenetic stages, because resource use likely changed during their dramatic 

change in body size over ontogeny (Whitlock et al., 2010). A scenario of 

competitive replacement is consistent with the fossil record because the first 

North American hadrosauroids and last pre-hiatus sauropods are found in the 

same horizon (Mussentuchit Member, Cedar Mountain Formation; Cifelli et al., 

1997; Kirkland, 1998; Maxwell and Cifelli, 2000), whereas each group was more 

widespread after and before, respectively. These hadrosauroids possessed 

advanced masticatory capabilities relative to more basal Early Cretaceous taxa 

(Head, 1997), which may have made them ecologically competitive with 

sauropods.  

 The nearly coincident disappearance of sauropods, rise of hadrosauroids, 

and arrival of the Western Interior Seaway may have been related causally, a 

hypothesis that awaits refined spatiotemporal sampling for the middle 

Cretaceous of North America. 
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 Examination of sauropod fossils from the Early Cretaceous Cloverly 

Formation of Wyoming, USA, indicates that much of the material is referable to 

the titanosauriform Sauroposeidon proteles. Sauroposeidon is neither a 

brachiosaurid nor a titanosaur as previously proposed, but is instead a basal 

somphospondylan. Sauroposeidon is the best known Early Cretaceous North 

American sauropod, known from several localities, individuals, and ontogenetic 

stages. The Early Cretaceous of North America hosted both brachiosaurid and 

somphospondylan sauropods, but no titanosaurs. These sauropods lived in 

floodplain and near-coastal settings, paleoenvironments that were present and 

hosted dinosaurs through the Late Cretaceous in North America. The mid-

Cretaceous North American disappearance of sauropods was nearly coincident 

with the arrival of a persistent Western Interior Seaway and the appearance of 

hadrosauroid dinosaurs, possibly implicating these events in that disappearance. 

At least ten dinosaur lineages that coexisted with sauropods before their 

disappearance persisted well into the Late Cretaceous, suggesting that 

environmental or sampling bias was not a major factor in the start of the hiatus. 
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FIGURE 3.1. Field locality and documentation for Sauroposeidon proteles from 
the Cloverly Formation of Wyoming, USA. A, Map of USA with quarry location 
indicated by a star; B, Field photograph of YPM localities 63-18 and 63-19 taken 
in the 2008 field season. Person at YPM 63-18 is 1.8 m tall; C, field sketch from 
the 1963 Yale field season showing the association of many of the specimens in 
field number YPM 5449 (‘Exemplar A’ in the text). 
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FIGURE 3.2. Sedimentology of the Sauroposeidon proteles-hosting units of the 
Cloverly Formation of Wyoming, USA. A, Composite stratigraphic section and 
lithologic units for the ‘Crooked Creek’ area (modified from Ostrom [1970]); B, 
Detailed stratigraphic section through sandstone underlying bone bed and 
hosting paleosol profile; C, Photograph of hosting paleosol profile; D, Photograph 
of bone-bearing horizons about 0.5 km northwest of YPM 63-18 and -19, 
showing preserved floodplain topography. The fossil-hosting stratum is 
equivalent to the base on the thinnest portion of the red paleosol. 
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FIGURE 3.3. Anterior dorsal vertebrae from the Cloverly (YPM 5449) and Twin 
Mountains (FWMSH 93B-10) Formations referred to Sauroposeidon proteles. A–
D, Photographs and interpretive line drawings of Sauroposeidon from the 
Cloverly Formation in A, anterior; B, posterior; C, right lateral, and D, dorsal view. 
E–H, Interpretive line drawings of an anterior dorsal vertebra of Sauroposeidon 
from the Twin Mountains Formation (formerly referred to ‘Paluxysaurus’ jonesi) in 
E, anterior; F, posterior; G, right lateral (reversed), and H, dorsal view. Dotted 
lines indicate missing bone, and hatched pattern indicates damaged bone. 
Abbreviations: ce, circular excavations; cpol, centropostzygapophyseal lamina; 
pa, parapophysis; pcdl, posterior centrozygapophyseal lamina; posl, postspinal 
lamina; prsl, prespinal lamina; prz, prezygapophysis; spdl, spinodiapophyseal 
lamina; spol, spinopostzygapophyseal lamina; sprl, spinoprezygapophyseal 
lamina; tprl, intraprezygapophyseal lamina. 
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FIGURE 3.4. Anterior dorsal vertebra from the Cloverly Formation referred to 
Sauroposeidon proteles (YPM 5449). Photograph and interpretive drawing in 
posterior view. Dotted lines indicate missing bone, and hatched pattern indicates 
damaged bone. Abbreviations: cam, camellae; other abbreviations as in Figure 
3.4. 
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FIGURE 3.5. Anterior and posterior dorsal vertebrae from the Cloverly Formation 
referred to Sauroposeidon proteles (YPM 5449). Photograph and interpretive line 
drawing of anterior dorsal vertebra in anterior view and crushed posterior dorsal 
vertebra in right lateral view. Dotted lines indicate missing bone, and hatched 
pattern indicates damaged bone. Abbreviations: acdl, anterior 
centrodiapophyseal lamina; other abbreviations as in Figure 3.4. 
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FIGURE 3.6. Posterior dorsal vertebrae from the Cloverly (YPM 5449) and Twin 
Mountains (FWMSH 93B-10) Formations referred to Sauroposeidon proteles. A–
D, photographs and interpretive line drawings of Sauroposeidon from the 
Cloverly Formation in A, right lateral, B, posterior, C, left lateral, and D, anterior 
views. E–F, interpretive line drawings of posterior dorsal vertebrae of 
Sauroposeidon from the Twin Mountains Formation (formerly referred to 
‘Paluxysaurus’ jonesi) in E, left lateral; F, anterior, and G, posterior views. Dotted 
lines indicate missing bone, and hatched pattern indicates damaged bone. 
Abbreviations: cprl, centroprezygapophyseal lamina; hypa, hypantrum; hypo, 
hyposphene; ppdl, paradiapophyseal lamina; prpl, prezygapoparapophyseal 
lamina. 
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FIGURE 3.7. Posterior dorsal vertebra from the Cloverly (YPM 5449) and Twin 
Mountains (FWMSH 93B-10) Formations referred to Sauroposeidon proteles. 
Photograph and interpretive line drawing of a posterior dorsal vertebra of 
Sauroposeidon from the Cloverly Formation in A, posterior view; B, close-up of 
the same vertebra in anterior view, showing hyposphene. C–D, posterior dorsal 
vertebra of Sauroposeidon from the Twin Mountains Formation (formerly referred 
to ‘Paluxysaurus’ jonesi) in C, anterior, D, posterior view. Dotted lines indicate 
missing bone, and hatched pattern indicates damaged bone. Abbreviations as in 
Figure 3.4. 
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FIGURE 3.8. Posterior dorsal vertebra from the Cloverly Formation (YPM 5147) 
referred to Sauroposeidon proteles. Photographs and interpretive line drawings 
in A, right lateral; and B, left lateral views. Dotted lines indicate missing bone, 
and hatched pattern indicates damaged bone. Abbreviations as in Figure 3.4.  
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FIGURE 3.9. Caudal vertebrae from the Cloverly Formation referred to 
Sauroposeidon proteles. These vertebrae are arranged in anatomical order from 
anterior to posterior, but do not necessarily belong to one individual. A, YPM 
5147, two co-ossified anterior caudal vertebrae; B, YPM 5199, middle caudal 
vertebra; C, YPM 5104, middle caudal vertebra; D, YPM 5103, distal caudal 
vertebra; E, YPM 5152, distal caudal vertebra. Vertebrae are depicted by row in 
left lateral (top), dorsal (second row), anterior (third row), and posterior (bottom 
row) views. The lateral views of YPM 5147, 5104, and 5103 are reversed. 
Dashed lines indicate missing bone. Abbreviations: fo, fossa.  
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FIGURE 3.10. Scapula and coracoid (UM 20800) from the Cloverly Formation 
referred to Sauroposeidon proteles in A, medial and B, lateral views. Dashed 
lines indicate missing bone. Abbreviations: gl, glenoid; tu, tubercle. 
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FIGURE 3.11. Left radius and ulna (YPM 5449) from the Cloverly Formation 
referred to Sauroposeidon proteles in A, proximal; B, mid-shaft cross sectional; 
C, distal; D, lateral; E, medial; F, anterior, and G, posterior views. Dashed lines 
indicate missing bone.  
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FIGURE 3.12. Left pubis (YPM 5449) from the Cloverly Formation referred to 
Sauroposeidon proteles in anterior view. Dashed lines indicate missing bone.  
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FIGURE 3.13. Right femur (YPM 5451) from the Cloverly Formation, possibly 
referable to Sauroposeidon proteles in A, midshaft cross-sectional, B, distal, and 
C, posterior views. Dashed lines indicate missing bone. Abbreviations: fo, 
fourth trochanter; lb, lateral bulge.  
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FIGURE 3.14. Left tibia (YPM 5450) from the Cloverly Formation, possibly 
referable to Sauroposeidon proteles in A, anterior, B, posterior, C, lateral, D, 
medial, E, proximal, and F, distal. Dashed lines indicate missing bone. The tibia 
has been crushed transversely, increasing its apparent eccentricity. 
Abbreviations: cn, cnemial crest.  
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FIGURE 3.15. Teeth from the Cloverly Formation from the Cloverly Formation of 
Wyoming, USA. These teeth may pertain to Sauroposeidon proteles, but the 
absence of direct associations precludes definitive referral. Teeth are shown in 
labial (left), lingual (center), mesial or distal (right), occlusal (top) and basal 
(bottom) views. A, YPM 5374; B, YPM 5360; C, YPM 5365; D, YPM 5375; E, 
YPM 5349.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

125



 
 
 
 

 
 

FIGURE 3.16. Juvenile dorsal and sacral vertebrae from the Cloverly Formation. 
A–D, middle-posterior dorsal vertebra (YPM 5151); E–H, sacral vertebra (YPM 
5107). A and E, anterior view, B and F, posterior view, C and G, lateral view, D 
and H, dorsal view. Dashed lines indicate missing bone.  
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FIGURE 3.17. Stratigraphic distribution of dinosaurs in the Early Cretaceous of 
North America. Left column indicates the pattern for the entire continent; columns 
to the right indicate the patter per geographic area. Horizontal bars reflect both 
stratigraphic range and stratigraphic uncertainty – most groups are only known to 
the stage level. Note the persistence of all groups except sauropods and basal 
iguanodontians through the middle Cretaceous. Abbreviations: AZ, Arizona, ID, 
Idaho, MT, Montana, OK, Oklahoma, UT, Utah, WY, Wyoming. 
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CHAPTER 4 

 

THE PHYLOGENETIC RELATIONSHIPS OF BASAL TITANOSAURIFORM 

SAUROPOD DINOSAURS 

 

INTRODUCTION 

 

 Titanosauriformes is a large clade (ca. 90 named genera) of sauropod 

dinosaurs whose members are present and common in most Mesozoic 

ecosystems. The smallest, largest, geologically youngest, and most 

geographically-widespread sauropods are titanosauriforms. Some genera are 

well known from complete skeletons and ontogenetic series (Janensch, 1950; 

Curry Rogers, 2005), but most named species are poorly known. In particular, 

skulls are exceedingly rare in Titanosauriformes, though recent discoveries have 

begun to remedy this problem (Curry Rogers, 2005; Chure et al., 2010). Despite 

the patchy nature of much of their fossil record, several evolutionary patterns are 

apparent in titanosauriform evolution, including a trend towards decreasing tooth 

size (Chure et al., 2010), development of a ʻwide gaugeʼ gait and concomitant 

appendicular specializations (Wilson and Carrano, 1999), and several episodes 
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of dwarfing (Sander et al., 2006; Stein et al., 2010). More derived 

titanosauriforms — lithostrotian titanosaurs — are characterized by a number of 

apomorphies that might seem counterintuitive for giant animals, including non-

ossification of the carpus and manual phalanges (Curry Rogers, 2005), increased 

skeletal pneumaticity (Wedel et al., 2000b), and the development of osteoderms 

(DʼEmic et al., 2009). 

 The number of named titanosauriforms has dramatically increased in recent 

years (Fig. 1), as has the number of taxonomic revisions adding information to 

previously named genera (e.g., Wilson and Upchurch, 2003; Wilson et al., 2009; 

Mannion, 2010; DʼEmic and Wilson, 2011; Carballido et al., 2011; Carballido et 

al., in press; Mannion and Calvo, in press). The bulk of new discoveries have 

come from Asia and South America, but several North American, African, and 

Australian forms have come to light as well (see lists in Mannion, 2010; Mannion 

and Calvo, in press). 

 Titanosauriforms are important to Mesozoic paleobiogeography because of 

their diversity and near-ubiquity, but their impact on paleobiogeography has not 

been fully realized owing to confusion over their phylogenetic relationships (e.g., 

Krause et al., 2006). For example, the absence of sauropod fossils in North 

America for most of the Late Cretaceous followed by the appearance of 

sauropods just before the close of the Mesozoic has been interpreted as a 

regional extinction followed by dispersal (Lucas and Hunt, 1989; DʼEmic et al., 

2010; see Chapter 3), or a bias in the record (Mannion and Upchurch, 2011). 
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Resolving which of these scenarios is responsible for the ʻsauropod hiatusʼ 

depends on the phylogenetic relationships of the taxa bounding the hiatus. 

Another salient paleobiogeographic problem for Titanosauriformes is that of East 

Asian endemism, which has been suggested for sauropods during various time 

periods, from the Middle Jurassic to the Cretaceous (Wilson and Upchurch, 

2009). Recently, all Cretaceous East Asian sauropods have been recognized as 

titanosauriforms, in contrast to an array of non-neosauropods that characterized 

the Jurassic (Wilson, 2005). Resolving the role of endemism and the details of 

this faunal turnover for the sauropods of East Asia also depends on their lower-

level phylogenetic relationships. 

 Titanosauriformes and its subclades are stable because they are defined by 

phylogenetic nomenclature (e.g., the sister-clades Brachiosauridae and 

Somphospondyli; Table 4.1), but the content of and interrelationships within 

these clades vary substantially depending on the analysis. These analyses in 

turn are sensitive to taxon inclusion, and with the inclusion of characters 

outpaced by the inclusion of taxa, few topologies are repeatably recovered 

between analyses (e.g., Royo Torres, 2009). 

 In the following contribution, I review previous cladistic analyses focusing on 

basal titanosauriforms in order to identify areas of agreement and conflict. I then 

present a lower-level cladistic analysis of 25 ingroup taxa using a combination of 

previously formulated (ca. 2/3) and novel (ca. 1/3) characters. I then explore the 

phylogenetic affinities of taxa represented by fragmentary specimens and 
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comment on the paleobiogeographic patterns revealed, with a focus on the 

origins of Titanosauria. 

 

INSTITUTIONAL ABBREVIATIONS 

 

Institutions: FMNH PR, Field Museum of Natural History, Chicago; HMN MB.R, 

Humboldt Museum für Naturkunde, Berlin, Germany; MACN PV, Museo 

Argentino de Ciencias Naturales, Buenos Aires; MCF PVPH, Museo Cármen 

Funes, Paleontología de Vertebrados, Plaza Huincul; NHMUK, British Museum of 

Natural History, London; YPM, Yale Peabody Museum, New Haven. 

 

Abbreviations for vertebral laminae and fossae follow Wilson (1999) and Wilson 

et al. (2011), respectively. Anatomical nomenclature is ʻRomerian,ʼ following that 

traditionally applied to reptiles (Wilson, 2006). 

 

PREVIOUS CLADISTIC ANALYSES 

 

ʻBasalʼ (non-titanosaur) titanosauriforms have been included in a number of 

cladistic analyses, including those investigating global sauropod relationships 

(e.g., Wilson, 2002; Upchurch et al., 2004) and those specifically aimed at 

resolving the relationships of newly described basal titanosauriforms (e.g., Rose, 

2007; Canudo, Royo-Torres & Cuenca-Bescós, 2008). The latter types of 
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analyses employ largely unmodified versions of the data matrices of the two 

global phylogenetic analyses mentioned above, so their taxonomic and character 

scope (sensu Sereno, 2009) have been somewhat homogenous. One advantage 

of these analyses having a similar taxonomic scope and outgroup choice is that 

their results are more comparable than they would be otherwise. However, the 

addition of new taxa to analyses has outpaced the addition of characters and 

thus outpaced discovery of stable (i.e., repeatably-recovered) synapomorphies 

(Whitlock, DʼEmic & WIlson, 2011). Many of the analyses aimed at resolving 

basal titanosauriform relationships have included a substantial number of 

characters that were parsimony-uninformative (Table 4.2), or informative only to 

the relationships of non-titanosauriforms such as diplodocoids. This dilution of the 

available synapomorphy pool developed for global sauropod analyses (Wilson, 

2002; Upchurch et al., 2004) results in reduced phylogenetic resolution and 

robustness relative to the original global analyses (Whitlock et al., 2011). 

 Of the many cladistic analyses that have included investigation of early 

titanosauriform relationships in their scope, six have contributed the bulk of new 

characters and taxon data (Fig. 2). These analyses show coarse agreement in 

the phylogenetic relationships of basal titanosauriforms (Fig. 2). Between two and 

six genera have been resolved as non-titanosaur titanosauriforms in previous 

analyses (Table 4.2). Brachiosaurids and titanosaurs are always united to the 

exclusion of Camarasaurus, and these three taxa are always united to the 

exclusion of Diplodocoidea. When included, Chubutisaurus and Ligabuesaurus 
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are recovered as non-titanosaur somphospondylans (e.g., Royo-Torres, 2009; 

González Riga Previtera & Pirrone, 2009; Carballido et al., 2011). 

Phuwiangosaurus occupies a variety of positions in these analyses, including a 

non-titanosaur somphospondylan (Upchurch et al., 2004 rescored by Wilson & 

Upchurch, 2009; González Riga et al., 2009), a brachiosaurid (Royo-Torres, 

2009), and a titanosaur (Carballido et al., 2011). Brachiosauridae is usually only 

composed of Brachiosaurus (including scorings for the now generically separate 

Giraffatitan; Taylor, 2009), but some analyses recover other genera (e.g., 

Cedarosaurus, ʻPleurocoelusʼ) within the clade as well. Figure 3 shows a strict 

consensus of simplified versions of the trees (those taxa present in more than 

half of the six analyses) depicted in Figure 2. This consensus cladogram fails to 

recover many commonly-recovered sauropod clades as monophyletic, including 

Titanosauriformes, Macronaria, and Brachiosauridae. The base of Titanosauria is 

likewise unresolved, as a polytomy between Andesaurus, Ligabuesaurus, and 

Chubutisaurus. Removing Euhelopus from the trees yields a better-resolved 

cladogram more consistent with previous studies (e.g., Wilson, 2002; Upchurch 

et al., 2004). In this cladogram, Tastavinsaurus is recovered as the sister-taxon 

to Titanosauriformes, in contrast to its original description as a titanosauriform 

(Canudo et al., 2008). Malawisaurus is consistently recovered as a titanosaur 

intermediate in position between Andesaurus and more derived forms. 

 Many authors have published more than one iteration of a given matrix, 

usually varying the taxonomic content to accommodate new discoveries, with 
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changes to characters and/or scoring in some cases (e.g., Calvo & González 

Riga, 2003; Calvo, González Riga & Porfiri, 2008; González Riga et al., 2009). 

Each of these sets of analyses will be discussed together, with focus on the most 

recent analysis of each set that contributed substantial modification to the data 

matrix. For more detailed comments on previous iterations of the matrices 

discussed here (e.g., Upchurch, 1995, 1998; Wilson and Sereno, 1998), see 

Wilson (2002).  

  

Salgado, Coria & Calvo, 1997 

The results of Salgado et al. (1997) allied Camarasaurus, brachiosaurids, and 

titanosaurs to the exclusion of diplodocoids (Fig. 4.2). Salgado et al. (1997) 

coined the node-based clades Titanosauriformes and Camarasauromorpha, and 

provided a phylogenetic definition for Titanosauria and several included clades. 

Their analysis included a detailed description of synapomorphies that have been 

inherited by more recent analyses. Consequently, the analysis of Salgado et al. 

(1997) served as a higher-level ʻbackboneʼ of character data, topology, and 

phylogenetic nomenclature that has been modified for studies of lower-level 

titanosauriform affinities. Several synapomorphies were cited as support for each 

node of Salgado et al. (1997), but decay indices (Bremer, 1994) were not 

reported. Re-analysis of the matrix of Salgado et al. (1997) produces decay 

indices of 2 and 3 for Titanosauria and Titanosauriformes, respectively; all other 

decay indices were equal to 1. 
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 Salgado et al. (1997) included three non-titanosaur titanosauriforms: 

Giraffatitan/Brachiosaurus and Chubutisaurus. They recovered Giraffatitan and 

Andesaurus as the most basal titanosauriform and titanosaur, respectively, with 

Chubutisaurus as the sister taxon to Titanosauria. They recovered a 

monophyletic “Titanosauridae” (equivalent to Lithostrotia of Upchurch et al. 2004) 

and Saltasaurinae, as in most subsequent titanosauriform cladistic analyses. 

  

Wilson, 2002 (Wilson & Upchurch, 2009) 

The analysis of Wilson (2002) aimed to study the lower-level relationships of 

representatives of all major sauropod clades, including basal forms, diplodocoids, 

and titanosaurs and their relatives (Fig. 2). Wilson (2002) included two non-

titanosauriform titanosaurs in his analysis: Brachiosaurus (including Giraffatitan) 

and Euhelopus, which were recovered as successive sister taxa to Titanosauria, 

following Wilson & Sereno (1998). Wilson & Sereno (1998) named 

Somphospondyli, a stem-based node uniting titanosauriforms more closely 

related to Saltasaurus than to Brachiosaurus (i.e., non-brachiosaurid 

titanosauriforms). Wilson & Upchurch (2009) recommended modification for 

some of the scores for Euhelopus in the Wilson (2002) matrix. These alterations 

do not alter the topology found by Wilson (2002), but do weaken support for the 

node uniting Euhelopus + Titanosauria (Fig. 2). Most of the other titanosauriform 

nodes in this modified analysis of Wilson (2002) are robustly supported (Fig. 2). 

 The relationships of most taxa included in both Wilson (2002) and Salgado 
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et al. (1997) are identical. Wilson (2002) did not include Andesaurus in his 

analysis, but like Salgado et al. (1997), recovered Malawisaurus in a basal 

position relative to other titanosaurs. 

 

Upchurch et al., 2004 (Wilson & Upchurch, 2009) 

Upchurch et al. (2004) presented an expanded and updated version of the 

matrices presented in Upchurch (1995, 1998). Like Wilson (2002), the scope of 

analysis in Upchurch et al. (2004) was broad (Sauropoda). That analysis included 

a variety of taxa regarded as non-titanosaur titanosauriforms by most authors 

(e.g., Euhelopus, Phuwiangosaurus; González Riga et al., 2009, Suteethorn et 

al., 2010), but only two were recovered as such in Upchurch et al. (2004): 

Brachiosaurus (including Giraffatitan) and Cedarosaurus (Fig. 2). Because 

Andesaurus was absent from the analysis of Upchurch et al. (2004) and is one of 

the specifiers for the definition of Titanosauria (Wilson and Upchurch, 2003), the 

labeling of Titanosauria by Upchurch et al. (2004) at any node between 

Titanosauriformes and Lithostrotia was arbitrary. Consequently, the titanosaur 

membership of Phuwiangosaurus posited by Upchurch et al. (2004) was 

ambiguous according to their results.  

 As in previous analyses (e.g., Salgado et al., 1997), Brachiosaurus was 

found to be more closely related to titanosaurs than Camarasaurus in the 

analysis of Upchurch et al. (2004). Upchurch et al. (2004) presented the first 

cladistic support for Brachiosauridae, uniting the Early Cretaceous North 
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American Cedarosaurus with Brachiosaurus (including Giraffatitan). The 

purported Brachiosaurus-like Middle Jurassic sauropod Atlasaurus (Allain et al., 

1999) was found to be a non-titanosauriform neosauropod closely allied with the 

contemporaneous Jobaria (Sereno et al., 1999). Tehuelchesaurus was found to 

be a non-neosauropod closely related to Omeisaurus following the original 

description of the former taxon (Rich et al., 1999). 

 The scorings for Euhelopus in the Upchurch et al. (2004) matrix were 

modified by Wilson and Upchurch (2009), with substantial consequences for the 

phylogenetic position of several taxa. Euhelopus was recovered as the sister 

taxon of Titanosauria in agreement with Wilson & Sereno (1998) and Wilson 

(2002). The sister-taxon relationship between Brachiosaurus and Cedarosaurus 

was unchanged, but the Atlasaurus–Jobaria clade moved outside of 

Neosauropoda. Tehuelchesaurus was deleted from the revised matrix of 

Upchurch et al. (2004) presented in Wilson & Upchurch (2009). Upchurch et al. 

(2004) recovered similar interrelationships as other analyses (e.g., Salgado et al., 

1997) for titanosaurs, including a basal position for Malawisaurus. 

 

Royo-Torres, 2009  

Royo-Torres (2009) described a sauropod from the Early Cretaceous of Spain, 

Tastavinsaurus sanzi, and investigated its phylogenetic affinities with a matrix 

containing a broad sample of basal titanosauriforms and 65 new characters. This 

influx of novel taxon and character data resulted in substantial differences 
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between the results of Royo-Torres (2009) and previous analyses, despite the 

fact that over one-quarter of the included characters (104/399) were parsimony 

uninformative. The topologies recovered by Royo-Torres (2009) are highly 

sensitive to taxon inclusion (compare Royo-Torres 2009: fig. 4.208, 4.209 and 

4.212), and few steps are needed to collapse any given node. Royo-Torres 

(2009) included fifteen taxa traditionally regarded as non-titanosaur 

titanosauriforms in two separate analyses. The first analysis only included 

characters for anatomical regions preserved in Tastavinsaurus; the second 

contained characters sampled from the entire skeleton. The discussion below will 

focus on the latter, more comprehensive analysis. The data matrix (25 ingroup 

taxa, 399 characters) was re-run in PAUP*, which produced 5 most parsimonious 

trees of treelength 752, identical to the results of Royo-Torres (2009). Royo- 

Torres (2009) did not present a strict consensus of these trees. I computed a 

strict consensus computed in PAUP*, which yielded a large polytomy at the base 

of Titanosauriformes (Fig. 2). Royo-Torres (2009: fig. 4.212) presented a 50% 

majority consensus of his 5 most parsimonious trees, which included a novel 

clade for which he coined the name Laurasiformes. Laurasiformes was defined 

as a stem-based taxon containing taxa more closely related to Tastavinsaurus 

than Saltasaurus. The existence of Laurasiformes is highly sensitive to taxon and 

character inclusion — the clade is absent from the strict consensus of the tree 

built from 25 taxa, but is present when 28 taxa are included and many characters 

are excluded (Royo-Torres, 2009: fig. 4.209).  
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 Several non-traditional relationships are hypothesized according to the strict 

consensus of the results of Royo-Torres (2009) that I computed in PAUP*. Most 

of these novel hypotheses are also present in the 50% majority rule tree 

computed by Royo-Torres (2009: fig. 4.212), including Euhelopus as the 

outgroup to Neosauropoda, Tangvayosaurus as the sister taxon of 

Titanosauriformes, and a close relationship between Phuwiangosaurus and 

Brachiosaurus. “Pleurocoelus” from Texas was recovered just outside of 

Titanosauria. The scorings for “Pleurocoelus” from Texas in the matrix of Royo-

Torres (2009: table 4.97), include material from several specimens (i.e., dorsal 

and caudal vertebrae (SMU 61732), pes (FMNH PR 977)). As shown in Chapter 

2, these specimens pertain to more than one species, making this operational 

taxonomic unit a chimera in the matrix of Royo-Torres (2009). Finally, 

Andesaurus and Malawisaurus are recovered as the basalmost titanosaurs in the 

analysis of Royo-Torres (2009).  

 Canudo et al. (2008) presented a restricted version of the same matrix used 

by Royo-Torres (2009), and obtained a different set of relationships for the 

Laurasiformes than any recovered by Royo-Torres (2009). Specifically, only 

Venenosaurus and Tastavinsaurus were members of Laurasiformes, and 

Phuwiangosaurus was not recovered as a brachiosaurid, but in a clade with 

Andesaurus and Cedarosaurus. One most parsimonious tree was reported by 

Canudo et al. (2008), but the polytomies those authors depict implies that the 

number of most parsimonious trees equal to at least nine. The decay indices 
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reported by Canudo et al. (2008) are implausibly high given the data at hand 

(e.g., 24 for Titanosauriformes). In sum, Canudo et al. (2008) and Royo Torres 

(2009) presented many novel characters, yet these analyses do not result in a 

stable set of relationships for basal titanosauriforms. Likewise, there are 

problems with several of the characters in the analyses of Canudo et al. (2008) 

and Royo-Torres (2009), which will be discussed below (see “Characters”). The 

evidence for Laurasiformes is weak, and will be tested below (see 

“Laurasiformes” below). 

 

González Riga et al., 2009 

González Riga et al. (2009), in their description of the mid-Cretaceous Argentine 

taxon Malarguesaurus florenciae, presented a phylogenetic analysis of 

Titanosauriformes focusing on titanosaurs (Fig. 2). This matrix represents the 

latest iteration of the matrix used by González Riga and Calvo (2003), González 

Riga (2003), Bonaparte et al. (2006), and Calvo et al. (2007, 2008). In turn, the 

original matrix of Calvo and González Riga (2003) is largely based on characters 

culled from the previous analyses (Wilson, 2002; Upchurch et al., 2004). As 

such, they largely agree with the results of those cladistic analyses of 

Titanosauriformes, always recovering a traditional Titanosauriformes and 

Titanosauria, as well as positioning Euhelopus as the most basal somphospondyl 

and Andesaurus and Malawisaurus as basal titanosaurs. Several taxa not 

generally included in other analyses have been included in the González Riga et 
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al. (2009) family of analyses (e.g., Ligabuesaurus). In these analyses, 

Ligabuesaurus, Phuwiangosaurus, and Chubutisaurus are positioned as 

somphospondyls outside of Titanosauria.  

 The results presented by González Riga et al. (2009) (2 most parsimonious 

trees of 199 steps) could not be reproduced when their data matrix was re-run in 

PAUP*. Instead, 94 most parsimonious trees were recovered of treelength 206. 

The reasons for this discrepancy are unknown, as the analysis was repeated with 

the same parameters. Eighteen of the 102 characters presented by González 

Riga (2009) were parsimony uninformative. A strict consensus of these trees 

yielded a large polytomy among Phuwianogsaurus, Ligabuesaurus, 

Malarguesaurus, Andesaurus, and Lithostrotia, as well as a polytomy among the 

node uniting those taxa, Euhelopus, and Chubutisaurus. A 50% majority rule of 

these trees was identical to the results of González Riga et al. (2009), except 

Ligabuesaurus, Phuwiangosaurus, and Malarguesaurus formed a polytomy. The 

reasons for these discrepancies are unknown.  

 

Chure et al., 2010 

Chure et al., 2010 described abundant cranial material of the Early Cretaceous 

North American sauropod Abydosaurus mcintoshi and conducted a phylogenetic 

analysis in which they recovered Abydosaurus as the sister taxon of 

Brachiosaurus (Fig. 2) (note that scorings for Brachiosaurus altithorax included 

data from Giraffatitan brancai in Chure et al. (2010)). The matrix was a parsed 
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version of Wilson (2002), tailored to analyzing the phylogenetic position of 

Abydosaurus with addition and deletion of characters as necessary. Apart from 

the addition of Abydosaurus, the only other topological difference between the 

results of Wilson (2002) and Chure et al. (2010) is that the latter could not resolve 

the position of Jobaria, Haplocanthosaurus, and Diplodocoidea with respect to 

Neosauropoda. The decay index of Brachiosauridae is 3, whereas those for 

Titanosauriformes, Somphospondyli, and Lithostrotia (Malawisaurus + more 

derived forms) are 5, 4, and 5, respectively. 

 

Carballido et al., 2011; in press 

Carballido et al. (2011; in press) conducted the most taxonomically 

comprehensive analysis of basal titanosauriform interrelationships to date, 

including a substantial number of taxa included in cladistic analysis for the first 

time (Fig. 2). The specific aims of these analyses were to resolve the 

relationships of Chubutisaurus and Teuhelchesaurus. 

 Carballido et al. (2011) recovered a Laurasiformes that included 

Tastavinsaurus, Venenosaurus, Techuelchesaurus, and Galvesaurus. This result 

is similar to that recovered by Royo Torres (2009), who originally named 

Laurasiformes. In contrast, Carballido et al. (in press) only included Janenschia 

and Tastavinsaurus within the Laurasiformes.  

 Carballido et al. (2011) recovered Euhelopus, Brachiosaurus (including 

Giraffatitan), and ʻPaluxysaurusʼ (now referred to Sauroposeidon, see chapter 3) 
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in a polytomy. Some taxa that were recovered outside Titanosauria 

(Phuwiangosaurus, Malarguesaurus) in previous analyses were recovered within 

it by Carballido et al. (2011). Finally, Carballido et al. (2011, in press) resolved 

the Late Jurassic island dwarf Europasaurus as a basal macronarian, in keeping 

with its original description (Sander et al., 2006). Support for nearly all nodes was 

low (decay index = 1) in the analyses of Carballido et al. (2011; in press), and 

results were highly influenced by taxon inclusion. 

 Re-running the character matrix of Carballido et al. (2011) in PAUP* 

showed that of the 289 characters presented by Carballido et al. (2011), 79% 

(227) were parsimony-informative. When the dataset of Carballido et al. (2011) 

was re-run in PAUP*, three unambiguous laurasiform synapomorphies were 

recovered. All three laurasiform synapomorphies that were recovered (characters 

101, 158, 173) have a homoplastic distribution among basal titanosauriforms, 

and all three are mis-scored in some way. For example, a ʻsupraneural cameraʼ 

(character 101) (centroprezygapophyseal fossa; Wilson et al., 2011) was scored 

as absent in Brachiosaurus and was left unscored in Europasaurus, but both 

these taxa have such fossae. Likewise, Laurasiformes was recovered with a 

specialized ʻplatycoelous/distoplatyanʼ anterior caudal vertebral centrum 

articulation (character 158), but anterior caudal vertebral centra with slightly 

concave anterior faces and concave-to-flat posterior faces are common among 

non-titanosaurs, including Brachiosaurus, Sauroposeidon, Camarasaurus, and 

Haplocanthosaurus, all of which were incorrectly scored as having different 
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articulations than Laurasiformes. The same criticism applies to the final 

Laurasiform synapomorphy (character 173), ʻmiddle caudal vertebral neural 

spines verticalʻ — this feature characterizes Camarasaurus, Haplocanthosaurus, 

Brachiosaurus, and Giraffatitan as well as Laurasiformes, though it was scored 

differently for those taxa. Changing these scorings in the matrix of Carballido et 

al. (2011) and running it in PAUP* could not replicate results obtained with the 

original scorings. No result was obtained because of limitations in computing 

power. However, based on these scoring changes, there does not seem to be 

support for Laurasiformes in the corrected dataset of Carballido et al. (2011). 

 

ANALYSIS OF LOWER-LEVEL RELATIONSHIPS OF BASAL 

TITANOSAURIFORM SAUROPODS 

 

Below I present a lower-level cladistic analysis focusing on the relationships of 

basal titanosauriforms. I outline the operational taxonomic units employed, 

present the results and robustness of the analysis, and discuss its implications. 

See appendices for the character-taxon matrix (Appendix 1), character list 

(Appendix 2), synapomorphy list (Appendix 3), and autapomorphy list (Appendix 

4). 

 

OUTGROUP CHOICE 
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Character polarity was determined on the basis of outgroup comparison. Some 

ingroup taxa (e.g., Diplodocoidea, Camarasaurus) are universally regarded as 

non-titanosauriforms (e.g., Wilson, 2002; Upchurch et al., 2004), but were 

included in the ingroup so as to not assume the titanosauriform affinities of other 

ingroup taxa a priori. Two taxa were selected as outgroups: Omeisaurus 

(including O. tianfuensis He et al., 1988 and O. maoianus Tang et al., 2001) and 

Jobaria tiguidensis (Sereno et al., 1999). These taxa were selected for their 

completeness and because they have been recovered as non-neosauropod 

eusauropods by nearly all authors (Sereno et al., 1999; Wilson, 2002; Upchurch 

et al., 2004 when scores were corrected per Wilson & Upchurch, 2009). Scoring 

for Omeisaurus was based on He et al. (1984) and Tang et al. (2001), and 

scoring for Jobaria was based on personal observation and Sereno et al. (1999). 

Jobaria was originally thought to be Early Cretaceous in age (Sereno et al., 

1999), but may older, perhaps Middle Jurassic (Rauhut & López-Arbarello, 2009). 

Omeisaurus is Middle Jurassic in age (Tang et al., 2001), predating any of the 

taxa in the ingroup with the exception of Atlasaurus imelaki (Allain et al., 1999).  

 

TERMINAL TAXA 

 

Twenty-five terminal taxa were selected for phylogenetic analysis (Table 4.3). 

These taxa were selected in an effort to sample the spatiotemporal distribution 

(Middle Jurassic–Late Cretaceous) and morphologies of possible basal 
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titanosauriforms. Several taxa were not included in the analysis because their 

validity could not be evaluated or substantiated (see “Relationships of 

Fragmentarily Represented Taxa” below). Fragmentarily represented taxa were 

not excluded a priori because anatomical completeness does not necessarily 

equal phylogenetic informativeness (Kearney, 2002). 

 This analysis does not aim to resolve the relationships of all 

titanosauriforms, only the basal (non-titanosaur) ones. Consequently, taxonomic 

sampling of derived titanosaurs (i.e., lithostrotians) was limited to well-preserved 

taxa that are representative of several previously recovered ʻgradesʼ of 

titanosaurs. These representatives include purported basal titanosaurs 

(Andesaurus, Phuwiangosaurus, Venenosaurus, Tangvayosaurus) and one of 

the specifiers of Lithostrotia (Malawisaurus; Upchurch et al., 2004). Alamosaurus 

was included in order to test hypotheses surrounding the ʻsauropod hiatusʼ (see 

Chapter 3). 

 All taxa were scored on the basis of personal observation and original 

descriptions, with the exception of Qiaowanlong, Daxiatitan, Atlasaurus, 

Omeisaurus, Euhelopus, and Tastavinsaurus. These latter taxa were scored on 

the basis of published descriptions and monographs, supplemented with 

photographs from collegues (see Acknowledgements). The monophyly of 

terminal taxa is justified with autapomorphies (see Appendix 4). Some terminal 

taxa require further discussion (see below) because their content and diagnosis 

differ from their original or traditional definition. Likewise, two ingroup taxa are 
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composites of several sauropod genera (Diplodocoidea and ʻsaltasauriniʼ) and 

one ingroup taxon contains several species (Camarasaurus); justification for 

these higher-level groupings is provided below. 

 

 

Alamosaurus sanjuanensis 

Alamosaurus sanjuanensis was named on the basis of a holotypic scapula and 

paratypic ischium from the Maastrichtian Kirtland Formation of New Mexico, USA 

(Gilmore, 1922). Referred remains from Utah (Gilmore, 1946) and Texas 

(Lehman and Coulson, 2002) are substantiated by autapomorphies among the 

exemplars (DʼEmic et al., in press) and were included in scoring for Alamosaurus. 

Teeth (Kues, Lehman & Rigby, 1980) and an isolated pes (DʼEmic et al., in 

press) from the holotypic area and horizon were also included in the scoring for 

Alamosaurus.  

 

Brachiosaurus altithorax and Giraffatitan brancai 

Riggs (1903) coined the name Brachiosaurus altithorax for what was then the 

worldʼs largest-known dinosaur. Brachiosaurus altithorax was founded on a 

single partial skeleton, from the Late Jurassic Morrison Formation of Colorado, 

USA, represented by several dorsal vertebrae, a sacrum with ilia, two caudal 

vertebrae, a coracoid, humerus, and femur, and some dorsal ribs. Some other 

materials from the Morrison Formation may belong to Brachiosaurus altithorax 
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(see review in Taylor, 2009), but most of these materials do not overlap 

anatomically with the holotype, and those materials that do overlap cannot 

currently be united with the holotype using autapomorphies. Consequently, 

scoring for Brachiosaurus altithorax is limited to the holotype. 

 Janensch (1914) named two additional species of Brachiosaurus from the 

Late Jurassic Tendaguru beds of Tanzania, B. brancai and B. fraasi, which were 

later synonymized by Janensch (1929). Paul (1988) proposed that the Tanzanian 

form be regarded as a separate subgenus, Brachiosaurus (Giraffatitan) brancai, 

which Taylor (2009) formalized by referring the Tanzanian brachiosaur material 

to a separate genus, Giraffatitan brancai. Many of the differences cited by Taylor 

(2009) do not differ substantially between the Morrison and Tendaguru 

specimens when serial and individual variation is taken into account (e.g., caudal 

vertebral neural spine shape; compare Taylor (2009: fig. 3), with Ikejiri et al. 

(2005: fig. 5)). In addition, some of the differences cited in support of generic 

separation of the Morrison and Tendaguru brachiosaurids are erroneous due to 

misinterpretation of broken or deformed features (e.g., the cited tubercle on the 

posterior ilium of B. altithorax is a fragment of a sacral rib; the cited block-like 

hyposphene of the caudal vertebrae of B. altithorax is the broken remainder of 

the postzygapophyses; pers. obs.), or have a wider distribution among 

sauropods (e.g., the laterally deflected coracoid glenoid; see Wilson & Sereno 

1998).  

 However, several features suggested by previous authors (Janensch 1950; 
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Paul 1988; Taylor 2009) do distinguish the Tendaguru and Morrison 

brachiosaurid exemplars in a substantive way. The following features do not vary 

within other sauropod genera when deformation, breakage, within-individual, ad 

within-species sources of variation are accounted for: the centra of dorsal 

vertebrae are broader transversely than dorsoventrally in G. brancai, rather than 

subcircular in cross-section in B. altithorax; anterior caudal vertebrae are about 

30% taller relative to centrum length in B. altithorax; transverse processes are 

only half of the neural spine length in the posterior dorsal vertebrae of B. 

altithorax, whereas they are subequal to neural spine length in G. brancai 

(Janensch 1950; Paul 1988; Taylor 2009). These three features justify the 

generic separation of Giraffatitan and Brachiosaurus. Consequently, the name 

Giraffatitan brancai will be used to refer to the hypodigm brachiosaur material 

from Tendaguru. 

 

Camarasaurus 

The genus Camarasaurus is known from dozens of skeletons found across the 

western United States (Ikeijiri, 2005). Four species of Camarasaurus are 

currently recognized: C. grandis, C. lewisi, C. supremus, and C. lentus (Upchurch 

et al., 2004). Perhaps owing to its broad spatial distribution and the presence of 

four species in the terminal taxon, some characters are polymorphic for 

Camarasaurus in this analysis. Where polymorphisms were present, the state 

present in the Gunma specimen (McIntosh et al., 1996) of Camarasaurus was 

149



favored, because it is found stratigraphically lower than most other specimens of 

Camarasaurus, and so it more likely approximates the ancestral condition for the 

genus (Ikejiri, 2005). 

 

Cedarosaurus weiskopfae 

Tidwell et al. (1999) named Cedarosaurus weiskopfae on the basis of a partial 

skeleton from the Early Cretaceous Cedar Mountain Formation of Utah, USA. 

Chapter 3 demonstrated that a sauropod hind limb from the Glen Rose Formation 

of Texas (FMNH PR 977) is referable to Cedarosaurus, so this material is 

included in the scores as well. 

 

Diplodocoidea 

Diplodocoidea is a diverse, geographically-widespread clade that evolved 

alongside Titanosauriformes until the mid-Cretaceous. The phylogeny of the 

group is mostly based on their derived cranial anatomy, with few appendicular 

specializations (Whitlock, 2011). Scoring for Diplodocoidea was mostly based on 

the most primitive diplodocoid, Haplocanthosaurus, or the basalmost taxon 

available if data were missing for that genus, following the phylogeny of Whitlock  

(2011).  

 

Euhelopus zdanskyi 

Euhelopus zdanskyi is well-represented by cranial and postcranial materials from 
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the Mengyin Formation of China. Euhelopus is likely Early Cretaceous in age, 

though a Late Jurassic age is possible (Wilson and Upchurch, 2009). Euhelopus 

has been the subject of several detailed descriptions (Wiman, 1929; Mateer & 

McIntosh, 1985) and studies of its phylogenetic affinities, which have suggested 

that it is a basal somphospondylan (Wilson & Upchurch, 2009). In the present 

analysis, exemplars ʻaʼ and ʻcʼ of Euhelopus are regarded as pertaining to one 

individual following Wilson & Upchurch (2009). 

 

Europasaurus holgeri 

Europasaurus is represented by multiple skeletons of different ontogenetic stage 

from the Late Jurassic of Germany (Sander et al., 2006). Most of this material 

was disarticulated when recovered, but represents a single taxon on the basis of 

similarity of repeated elements (Sander et al., 2006; pers. obs., 2009). Scoring 

for Europasaurus included all available parts of the hypodigm, which includes 

substantial cranial and postcranial material. 

 

Janenschia robusta  

Janenschia is known from fore- and hind limb material from the Late Jurassic 

Tendaguru beds of Tanzania (Wild, 1991; Bonaparte et al., 2000). Scoring for 

Janenschia did not include caudal vertebrae, because it is unknown whether or 

not these pertain to the same animal as the limb material (Bonaparte et al., 

2000). 
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Ligabuesaurus leanzi 

Bonaparte, González Riga & Apesteguía (2006) named Ligabuesaurus leanzi on 

the basis of abundant material from the Aptian Lohan Cura Formation of 

Argentina. Only the holotypic individual (MCF PHV 233, formerly MCF PHV 261) 

was considered for scoring Ligabuesaurus in this matrix; other, isolated materials 

were excluded (e.g., the tooth described by Bonaparte et al., 2006; MCF PHV 

744). 

 

Sauroposeidon proteles 

Sauroposeidon proteles was named by Wedel et al. (2000) on the basis of four 

mid-cervical vertebrae from the Early Cretaceous Antlers Formation of 

Oklahoma, USA. Wedel et al. (2000a, b, 2005) tentatively referred a cervical 

vertebral centrum from the coeval Cloverly Formation of Wyoming to S. proteles. 

Revision of the Cloverly Formation sauropod material has confirmed this referral, 

as well as provided basis for referral of material from the Cloverly Formation and 

the Twin Mountains Formation of Texas (materials formerly referred to as 

Paluxysaurus jonesi). Autapomorphies, the absence of meaningful differences, 

and their similar age support referral of Paluxysaurus and the Cloverly Formation 

sauropod material to Sauroposeidon proteles, so all three sets of exemplars were 

used for scoring that taxon in this analysis (see Chapters 2 and 3). 
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ʻSaltasauriniʼ 

Saltasaurus, Neuquensaurus, and Rocasaurus form a clade when all three are 

included in cladistic analyses (e.g., Curry Rogers, 2005, González Riga et al., 

2009). I informally refer to these taxa as ʻSaltasauriniʼ instead of Saltasaurinae, 

because Saltasaurinae is a stem-based taxon and may contain some of the other 

terminal taxa depending on the results of the analysis. The saltasaurine status of 

Bonatitan (Martinelli & Forasieppi, 2004) remains to be adequately tested by 

cladistic analysis. Data for Neuquensaurus are based on holotypic and referred 

materials as outlined in DʼEmic & Wilson (2011). 

 

CHARACTERS 

 

The data matrix includes 114 characters (Appendix 2), 3 of which are multistate 

(16, 30, 77; 3 character states each), all of which were ordered. These characters 

were ordered because state 1 is logically or developmentally intermediate in a 

transition between the state 0 and state 2, and so state 1 was present at some 

time in the transition from state 0 to 2 or vice versa. For example, 

somphospondylous vertebral pneumaticity (character 16: state 2) develops from 

coarse camellate (state 1) and camerate vertebral pneumaticity (state 0) during 

sauropod ontogeny (Wedel et al., 2000b), and so possession of state 2 implies 

that state 1 was present at some point in the lineage before the evolution of state 

2. 
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 Fifteen characters represent the cranium, 48 represent the axial column, 20 

represent the pectoral and pelvic girdles, 30 represent the limbs, and one 

represents the dermal skeleton (Fig. 4). Previously formulated characters were 

selected and modified from the studies of Salgado et al. (1997), Wilson (2002), 

Upchurch et al., (2004), Curry Rogers (2005), González Riga et al. (2009), Royo-

Torres (2009), Chure et al., (2010), Mannion (in press), and Mannion & Calvo 

(2011). Scoring changes to some characters outlined in Wilson (2005) and 

Wilson and Upchurch (2009) were implemented where appropriate. Other 

characters were formulated from personal observation, published diagnoses, 

autapomorphy lists (e.g., Wilson, 2002), and descriptions. Character states were 

modified for most previously formulated characters to reflect the taxonomic scope 

of this analysis. For example, Wilson (2002: character 80) coded the number of 

cervical vertebrae into five states (9 or fewer, 10, 12, 13, 15 or greater) in a 

cladistic analysis of Sauropoda. Because of the narrower taxonomic scope of the 

analysis presented herein, the number of states was reduced to two (14 or fewer, 

15 or more). About 40 characters (ca. one-third) are new to this analysis. 

Character state scorings were examined manually for errors in the data matrix; 

errors were also checked for as synapomorphy optimizations were listed. 

Characters were worded according to standardized cladistic ʻgrammarʼ in order to 

facilitate comparisons with other studies (Sereno, 2007). 

 Some characters that have previously been recovered as synapomorphies 

of clades relevant to this analysis (e.g., Titanosauria) were excluded because 
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they either displayed too much individual or ontogenetic variation to confidently 

score or were invariant among the ingroup or outgroup. 

 Many other characters purported to be relevant to basal titanosauriform 

phylogeny by several authors were not included in this analysis because 

character states could not confidently be scored. For example, several characters 

presented by Royo-Torres (2009) are substantially variable along single a 

vertebral column (e.g., characters C30, C41, C42, C84, C89, C90, C104). For 

such characters, scorings for vertebrae just a few positions away from one 

another in the column are often different. Character C30 (mislabeled as character 

C39 in Royo-Torres (2009: 426, translated from the Spanish) is an example of 

this type of character: “dorsal surface of the neural spine in dorsal vertebrae: flat 

or flat-convex (0), concave (1).” This character was scored as derived only for 

Camarasaurus and Tastavinsaurus. However, the concavity or convexity of the 

top of the neural spine varies substantially along the dorsal vertebral column in 

Camarasaurus (Osborn and Mook, 1921; compare Royo Torres, 2009: fig. 4.20 

with fig. 4.28). When available character data are anatomically disjunct (e.g., only 

dorsal vertebrae 1–3 in one species versus 4–6 in another species), individual 

variation may be spuriously cast as taxonomically meaningful. Other characters 

have states that are indistinguishable when small amounts of individual variation 

or taphonomic deformation are taken into account (e.g., characters 154, 162, 

172, 184, 213; see Royo Torres, 2009: fig. 4.162, 4.170, 4.203). Still other 

characters are linked (characters 192, 194). 
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MISSING DATA 

 The amount of missing data for each terminal taxon are given in Table 4.4. 

The average amount of missing data per taxon was 44%; this ranged from 0% 

(Camarasaurus, Diplodocoidea) to 86% (Qiaowanlong). In addition, Omeisaurus, 

Giraffatitan, Phuwiangosaurus, ʻSaltasauriniʼ, and Alamosaurus had less than 

20% missing data; Atlasaurus, Erketu, and Venenosaurus had more than 70% 

missing data. Missing data were usually due to incompleteness of specimens, 

though in a few cases the data are preserved but were undescribed and could 

not be observed first-hand as part of this study.  

 

TOPOLOGY 

 Twenty-five ingroup taxa and two outgroup taxa were scored for 114 

characters (Appendix 1) in MacClade (Maddison & Maddison, 1992) and 

Mesquite (Maddison & Maddison, 2011) and analysed in PAUP* (Swofford, 

2000). The Branch-and-Bound search algorithm was used, with stepwise addition 

and random branch swapping via the tree-bisection-reconnection algorithm. 

 Nine equally parsimonious trees of treelength 192 were found (consistency 

index = 0.63, retention index = 0.80); a strict consensus of these trees is given in 

Figure 4.5. Synapomorphies supporting a strict consensus of these nine 

topologies under delayed transformation (DELTRAN) optimizations are given in 

Appendix 3. DELTRAN optimizations are presented rather than accelerated 
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transformation (ACCTRAN) optimizations because DELTRAN minimizes the 

distribution of ambiguous synapomorphies due to missing data (Table 4.4), and 

thus results in more phylogenetically restricted inferences of character 

distribution when missing data are substantial. Ambiguously-optimized 

synapomorphies due to missing data and/or character conflict are given in Tables 

4.5 and 4.6. All nodes within the ingroup are resolved with the exception of two 

polytomies, each involving three taxa. Pertinent phylogenetic nomenclature is 

listed in Table 1. 

 This analysis recovered three main titanosauriform clades: Brachiosauridae, 

Euhelopodidae, and Titanosauria (Fig. 4.5). Atlasaurus is recovered as the sister-

taxon to Neosauropoda, with Diplodocoidea, Camarasaurus, and 

Tehuelchesaurus as successive outgroups to Titanosauriformes. 

Titanosauriformes is composed of two sister clades, Brachiosauridae and 

Somphospondyli. Brachiosauridae contains a mix of Late Jurassic and Early 

Cretaceous Laurasian and Gondwanan taxa. Basal members of Somphospondyli 

include Ligabuesaurus, Sauroposeidon, and Tastavinsaurus. More derived 

somphospondylans are composed of two major clades, Euhelopodidae and the 

Titanosauria, with Chubutisaurus as outgroup to the latter. Euhelopodidae is 

comprised exclusively of East Asian Cretaceous genera. Two nested clades were 

recovered within Titanosauria: Lithostrotia and Saltasauridae. Alamosaurus and 

Opisthocoelicaudia were recovered as successive sister taxa of ʻSaltasauriniʼ. 

 Basal (non-titanosaur) titanosauriforms were found to be diverse in this 
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study (16 genera), in contrast to previous studies, which recovered at most 6 

genera in this part of the cladogram (Table 4.2). The topology shows general 

congruence with geologic age (Fig. 4.6), with basal titanosauriforms and their 

outgroups found in the Jurassic, basal somphospondylans in the Early and 

ʻmiddleʼ Cretaceous, and titanosaurs mostly in the Late Cretaceous.  

 Treating the three ordered characters as unordered led to loss of all 

resolution within Euhelopodidae; all other relationships were identical to those 

recovered in the most parsimonious tree found with ordered characters. When 

character transformations were assumed to be unordered, the decay index of 

Brachiosauridae drops from 3 to 2; all other decay indices are unaffected. 

 

ROBUSTNESS OF RESULTS 

 The robustness of the most parsimonious trees was evaluated in terms of 

Bremer support, also known as the decay index (the number of steps required for 

a given node to disappear from a cladogram; Bremer, 1994). Decay indices for 

the topology presented in Figure 4.5 are given in Table 4.7. Decay indices were 

calculated in MacClade (Maddison and Maddison, 1992) by writing a “Decay 

Index to PAUP” file, which was executed in PAUP* (Swofford, 2002). Almost half 

of the nodes (10 of 22) had a decay index equal to one; most of these weaker 

nodes were within Brachiosauridae and the Euhelopodidae. This weak support is 

mostly due to missing data; most members of these two clades could not be 

scored for more than 50% of characters (Table 4.4). The presence of very 
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fragmentarily represented taxa near the bases of some clades (e.g., Andesaurus 

for Titanosauria, Qiaowanlong and Erketu for Euhelopodidae) also helps to 

explain the low decay index for those cladesʼ basalmost nodes. These low decay 

indices may also be due to the close spatiotemporal association of the derived 

brachiosaurids and euhelopodids in this analysis, that is, if the true branch length 

between lineages is short. In contrast, the best supported nodes were 

Lithostrotia, Saltasauridae, and Titanosauriformes. The high decay indices of the 

former two nodes is likely due to the undersampling of Titanosauria in this 

analysis; the presence of more titanosaurs would likely redistribute some of the 

support for these nodes. Somphospondyli and Brachiosauridae are moderately 

supported (decay index = 3). 

 

DISCUSSION 

 

TOPOLOGICAL COMPARISONS WITH PREVIOUS ANALYSES 

 

Below, I explore the topology presented in Figure 4.5 in detail, focusing on novel 

hypotheses of relationship presented in this analysis. Metrics and data 

supporting these relationships (number of additional steps required to support a 

given hypothesis, Templeton test statistics, synapomorphies) are given when 

relevant. See Templeton (1983) and Wilson (2002) for details regarding the 

Templeton test. 

159



 

Titanosauriform outgroups 

 Atlasaurus is recovered as the sister-taxon to Neosauropoda, rather than a 

brachiosaur-relative as originally described (Monbaron et al., 1999). Eight 

additional steps are required to position Atlasaurus within Brachiosauridae, a 

position rejected by a Templeton test (n = 14; p = 0.0003). Atlasaurus lacks 

several expected features of neosauropods and clades therein, such as mid-

dorsal vertebrae with opisthocoelous centra, horizontally-directed dorsal vertebral 

transverse processes, a ventrally expanded posterior centrodiapophyseal lamina, 

a process at the ventral base of the scapular blade, a single carpal, and a 

metacarpal I that is longer than metacarpal IV. Although brachiosaurid affinities 

for Atlasaurus can be ruled out, the precise phylogenetic position of Atlasaurus 

presented in Figure 4.5 should be considered preliminary, because most 

characters were unscored in this analysis (Table 4.4). Its completeness and 

Middle Jurassic age make Atlasaurus an important genus for understanding the 

origins of Neosauropoda, as it may represent the earliest known member of that 

clade. 

 Camarasaurus and Titanosauriformes are found to be more closely related 

to one another than either is to Diplodocoidea, as in taxonomically broader 

analyses of sauropod relationships (e.g., Wilson, 2002; Upchurch et al., 2004). 

Tehuelchesaurus is resolved as the sister taxon of Titanosauriformes, rather than 

as closely related to Omeisaurus as previously suggested (Rich et al,. 1999; 
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Upchurch et al. 2004). Two additional steps are required to position 

Tehuelchesaurus as the sister-taxon of Omeisaurus, and a Templeton test does 

not reject such a position (n = 6; p = 0.41). Several features recovered as 

titanosauriform synapomorphies in previous analyses such as a lateral bulge on 

the femur or plank-like anterior dorsal ribs (e.g., Wilson, 2002; Upchurch et al., 

2004) have obsolesced to include Tehuelchesaurus as well. 

  

Brachiosauridae  

 This analysis recovered six taxa as brachiosaurids. The fragmentary and 

often non-overlapping anatomy of putative brachiosaurids (e.g., Cedarosaurus) 

has yielded limited taxonomic breadth and/or resolution for this clade in previous 

analyses (e.g., Upchurch et al., 2004; Rose, 2007; Ksepka & Norell, 2010), 

though many taxa were suggested to be brachiosaurids without a cladistic 

analysis. In particular, cranial data are known for only three brachiosaurids 

(Abydosaurus, Europasaurus, Giraffatitan), and the only brachiosaurid for which 

substantial cranial and postcranial data are available is Giraffatitan.  

 The traditional (non-cladistic) content of the Brachiosauridae was 

maintained by this analysis (i.e., Brachiosaurus, Giraffatitan). In addition, the 

affinities of several putative brachiosaurids were confirmed by this analysis, 

including Cedarosaurus, Venenosaurus, and Abydosaurus. In contrast, some 

brachiosaurids (Atlasaurus, Sauroposeidon (including ʻPaluxysaurusʼ), 

Qiaowanlong) were recovered outside the clade, and some likely brachiosaurids 
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(ʻFrenchʼ Bothriospondylus, Sonorasaurus) were too fragmentary to include in 

this analysis (but see ʻFragmentarily Represented Taxaʼ below). Five 

unambiguous brachiosaurid synapomorphies were recovered (wide 

supratemporal fenestrae, ventral triangular projection on anterior ramus of 

quadratojugal, maxillary teeth twisted axially, dorsal vertebrae with ʻrod-likeʼ 

transverse processes, ischium with abbreviate pubic peduncle) as well as eight 

more under accelerated transformation optimization (ACCTRAN; Tables 4.5 and 

4.6). Under DELTRAN, these eight synapomorphies optimize either as 

synapomorphies of Giraffatitan plus more derived brachiosaurids (3, 9, 52, 78, 

114), an autapomorphy of Giraffatitan (53), or as multiple gains and losses 

among various titanosauriformes (due to missing data; 67, 90). 

 Europasaurus was recovered as the basalmost brachiosaurid in contrast to 

previous hypotheses that suggested that it was a basal macronarian (Sander et 

al., 2006). Though strongly supported as a brachiosaurid, the affinities of 

Europasaurus within that clade are labile given the data at hand. The basal 

position of Europasaurus within the Brachiosauridae may be strongly influenced 

by missing data, because many of the synapomorphies that unite more derived 

brachiosaurids could not be scored for Europasaurus, because those aspects of 

its anatomy are unknown or undescribed (e.g., lacrimal, metatarsal IV, caudal 

vertebrae). 

 Giraffatitan and Brachiosaurus, once considered congeneric (e.g., 

Janensch, 1950), are recovered as successively more derived brachiosaurids in 
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this analysis (Fig. 4.5). The fragmentary nature of Brachiosaurus weakens its 

position among brachiosaurids, and only a few steps are required to move it into 

a more or less derived position within Brachiosauridae or as the sister taxon of 

Giraffatitan as traditionally hypothesized (Janensch, 1950; Taylor, 2009). Future, 

confident referrals of material to Brachiosaurus altithorax are needed to better 

understand its phylogenetic position. Cedarosaurus, Venenosaurus, and 

Abydosaurus, all known from the Early Cretaceous of North America, are 

recovered in a polytomy as the most derived brachiosaurids. This result is in 

keeping with the original descriptions and other cladistic analyses dealing with 

these taxa (Tidwell et al., 1999; Upchurch et al., 2004; Rose, 2007; Chure et al., 

2010). 

 

Basal Somphospondyli 

 Three Early-middle Cretaceous sauropods make up a ʻgradeʼ of basal 

somphospondylans: Ligabuesaurus, Sauroposeidon, and Tastavinsaurus. 

Several features support the monophyly of Somphospondyli, for example: sub-

centimeter-scale pneumatic chambers permeating the presacral vertebrae, a 

prespinal lamina in posterior cervical and dorsal vertebrae, anterior dorsal 

vertebrae with ʻpaddle-shapedʼ neural spines (anteroposteriorly flat neural spines 

that widen distally before tapering to a blunt or rounded distal end), a medially 

beveled scapular glenoid, and an embayed medial face of the proximal end of 

metatarsal IV. Some studies have recovered Ligabuesaurus and Tastavinsaurus 
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as basal somphospondylans (Gomani et al., 1999; Bonaparte et al., 2006; 

Canudo et al., 2008; Royo-Torres, 2009; Carballido et al., 2011), but their precise 

relationships vary by study. This region of the cladogram presented in this study 

(Fig. 4.5) is likewise weakly supported, with low decay indices (Table 4.7). 

 A recent revision substantially augmented the hypodigm of Sauroposeidon 

with material from Texas previously referred to ʻPaluxysaurus jonesiʼ (Rose, 

2007) and material from Wyoming (Chapters 2 and 3). Both Sauroposeidon and 

ʻPaluxysaurusʼ were originally described as brachiosaurids. A comparative study 

suggested that ʻPaluxysaurusʼ possibly represented a basal somphospondylan 

(Gomani et al., 1999), whereas a later a cladistic analysis recovered it as a 

brachiosaurid (Rose, 2007). Synapomorphies supporting brachiosaurid affinities 

for Sauroposeidon and ʻPaluxysaurusʼ in the analysis of Rose (2007) such as 

elongate cervical vertebrae (character 21) are inclusive of larger clades than 

Brachiosauridae according to the analysis presented herein. As well as 

possessing the somphospondylan features mentioned above, several 

synapomorphies support the position of Sauroposeidon as a somphospondylan 

more derived than Ligabuesaurus (Appendix 3). Sauroposeidon lacks several 

features including ʻrod-likeʼ dorsal vertebral diapophyses, fossae variably present 

in anterior and middle caudal vertebral centra, and a rounded proximolateral 

corner of the humerus, which would be expected in a brachiosaurid. Seven and 

two steps are required to position Sauroposeidon within Brachiosauridae or 

Titanosauria, respectively, and a Templeton test rejects both hypotheses (n = 13, 
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p = 0.006; n = 37; p = < 0.001). 

 Tastavinsaurus is recovered as slightly more derived than Sauroposeidon, 

at a node with a decay index of 2 (Table 4.7). No support for a clade of Laurasian 

sauropods allied with Tastavinsaurus is found (see below). 

 

Euhelopodidae 

 Euhelopodidae was originally used to describe a clade containing 

Euhelopus and some Jurassic Chinese forms (Upchurch, 1995). The content of 

Euhelopodidae varies by phylogenetic analysis; Mamenchisaurus, Omeisaurus, 

Shunosaurus, and Euhelopus have all been considered members (see review in 

Wilson, 2002), and the name is not currently in widespread use (Wilson and 

Upchurch, 2009). Most of the fluidity in euhelopodid membership is due to 

conflicting placement of Euhelopus in different phylogenies. For example, Wilson 

and Sereno (1998) and Wilson (2002) recovered it as the sister-taxon of 

Titanosauria, whereas Upchurch (1998) and Upchurch et al. (2004) recovered it 

as a non-neosauropod. Recent restudy and re-scoring of the data matrices of 

Wilson (2002) and Upchurch et al. (2004) favored the conclusions of the former 

study, that Euhelopus is closely related to titanosaurs (Wilson and Upchurch, 

2009).  

 The phylogenetic definition proposed by Upchurch (1995) is complex 

because it contains several specifying taxa, some of which are now recognized 

as distantly related (Wilson and Upchurch (2009). Herein Euhelopodidae is 
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redefined as a stem-based taxon comprising all sauropods more closely related 

to Euhelopus zdanskyi than Neuquensaurus australis (see Table 4.1 for 

phylogenetic nomenclature). I have chosen to redefine and employ 

Euhelopodidae herein (rather than coin and define a novel name) because (1) 

the name with its old definition has been in disuse for over a decade, (2) coining 

new names instead of using old ones proliferates nomenclature, which should be 

avoided if possible, (3) the name does carry some of the original intended 

meaning with its new definition. Regarding the last point, in this analysis, a 

previously unrecognized group of six Early-middle Cretaceous East Asian taxa is 

recovered: Qiaowanlong, Erketu, Daxiatitan, Euhelopus, Phuwiangosaurus, 

Tangvayosaurus. Likewise, several fragmentarily represented taxa that were not 

included in this analysis seem to have affinities with these taxa (see 

ʻFragmentarily Represented Taxaʼ below). In this sense, Euhelopodidae still 

connotes a group of only East Asian sauropods closely related to Euhelopus, 

though the membership (and geologic ages of those members) differs from the 

original definition. 

 Usually the six taxa recovered as euhelopodids in this analysis have been 

recovered as basal somphospondylans or basal titanosaurs when considered in 

cladistic analyses previously (e.g., You et al., 2008, Ksepka & Norell, 2010; 

Suteethorn et al., 2010), but features novel to this study suggest their monophyly 

(see Appendix 4.2, 4.3) . Missing data, especially among basal members of the 

clade, weaken its support. Excluding these fragmentarily represented, basal taxa 
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(e.g., Erketu, Qiaowanlong) from the analysis tends to increase Bremer support 

for more derived euhelopodid clades. New discoveries or more complete 

descriptions may provide character scores that support a more derived position 

for basal forms such as Qiaowanlong or Erketu. Euhelopodid monophyly is 

supported by two unambiguous synapomorphies: (1) bifid cervical vertebrae and 

(2) cervical vertebrae with thick, subhorizontal epipophyseal–prezygapophyseal 

lamina. Nine additional synapomorphies support Euhelopodidae under 

accelerated transformation (ACCTRAN; Tables 4.5 and 4.6). 

 Qiaowanlong was originally described as a brachiosaurid, a position refuted 

by Ksepka & Norell (2010), Mannion & Calvo (2011), and this analysis. The early 

identification of Sauroposeidon as a brachiosaurid likely contributed to the 

original description of Qiaowanlong as such, because most comparisons in its 

original description were focused on Sauroposeidon (You & Li, 2009). Three 

steps are required to position Qiaowanlong within Brachiosauridae according to 

this analysis, and a Templeton test rejects such a position (n = 9, p = 0.004).  

 The position of Erketu is likewise supported by two synapomorphies, and 

the position of more derived euhelopodids is supported by a suite of nine 

features, including prong-like epipophyses, ʻtrifidʼ posterior cervical and anterior 

dorsal neural spines, and a low, pointed preacetabular process of the ilium. 

Tangvayosaurus and Phuwiangosaurus are sister taxa within derived 

Euhelopodidae, in contrast to various studies that have suggested that these taxa 

are basal titanosaurs (Allain et al., 1999; Upchurch et al., 2004; Canudo et al., 
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2008; Carballido et al., 2011). Ten and three steps are required to place 

Phuwiangosaurus and Tangvayosaurus within the Titanosauria, respectively. 

Templeton tests reject the titanosaur affinities of both genera (Phuwiangosaurus: 

n = 47, p = 0.0001; Tangvayosaurus: n = 23, p < 0.0001). 

 

Titanosauria 

 The interrelationships of Titanosauria were not the focus of this analysis, so 

only a small portion of its diversity (more than 65 genera; Curry Rogers, 2005; 

Mannion & Calvo, 2010) was sampled. The fragmentary nature of Andesaurus 

weakens the robustness of the node representing Titanosauria. More derived 

nodes (Lithostrotia, Saltasauridae, Saltasaurinae) are very well supported. 

Alamosaurus was recovered as a member of the Saltasaurinae, rather than the 

sister taxon of Opisthocoelicaudia as in Wilson (2002) and González Riga et al. 

(2008) or the outgroup to Saltasauridae as in Upchurch et al. (2004) and 

Carballido et al. (2011). 

 

ʻLaurasiformesʼ  

 

 Several authors have found support for a clade of mostly Early Cretaceous, 

exclusively Laurasian sauropods, termed ʻLaurasiformesʼ (Canudo et al., 2008, 

Royo-Torres, 2009; Barco, 2009). ʻLaurasiformesʼ was defined by Royo-Torres 

(2009) as a stem-based clade containing sauropods more closely related to 
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Tastavinsaurus than Saltasaurus, and has been found to include Laurasian taxa 

such as Galvesaurus, Aragosaurus, Tastavinsaurus, Phuwiangosaurus, 

Cedarosaurus, Sonorasaurus, Venenosaurus, and a single Gondwanan genus, 

Tehuelchesaurus (Carballido et al., 2011). The analysis presented herein does 

not support such a grouping; instead Tehuelchesaurus is recovered as a non-

titanosauriform, Venenosaurus, Cedarosaurus, and Sonorasaurus as 

brachiosaurids, and Phuwiangosaurus as a euhelopodid (Fig. 4.5). Aragosaurus 

and Galvesaurus were not included in this analysis because their validity and 

constituency were uncertain given the data at hand (see ʻRelationships of 

Fragmentarily Represented Taxaʼ below). The features supporting the monophyly 

of ʻLaurasiformesʼ in each analysis are listed in Table 4.9. These features are 

mostly problematic in terms of definition or scoring, and revision of them erodes 

support for Laurasiformesʼ (Table 4.9). For example, the ʻwrinkleʼ on the lateral 

face of middle and posterior caudal vertebrae represents a remnant of the 

neurocentral suture, and is present in many sauropods (e.g., Camarasaurus, 

Osborn and Mook, 1921; Andesaurus, Mannion and Calvo, in press). Likewise, a 

hyposphene-hypantrum in the middle and posterior dorsal vertebrae is present in 

most non-titanosaur sauropods (Wilson and Sereno, 1998). Other ʻlaurasiformʼ 

synapomorphies are problematic because they are not preserved in most or all 

ʻLaurasiformes,ʼ such as a six-degree bevel on the distal femur or a narrow 

sacrum. Still other features do not characterize any sauropod, such as metatarsal 

III equal to 30% the length of the tibia. A constraint tree containing the 
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ʻlaurasiformʼ taxa in this analysis (Tastavinsaurus, Cedarosaurus, Venenosaurus, 

Phuwiangosaurus in a polytomy) was evaluated against the tree presented in 

Figure 4.5 via a Templeton test, which rejected the existence of ʻLaurasiformesʼ 

(n = 34, p < 0.0001). Furthermore, 34 additional steps were required to 

accomodate the monophyly of ʻLaurasiformesʼ. 

 

RELATIONSHIPS OF FRAGMENTARILY REPRESENTED TAXA 

 

 Missing data are especially problematic in some members of 

Titanosauriformes such as Brachiosauridae or basal Titanosauria, because in 

those cases the missing data often occur in non-overlapping anatomical regions 

among taxa. For example, only a few brachiosaurids preserve skulls. Other 

brachiosaurids do not preserve appendicular material. In this case, the disjunct 

distribution of missing data would support the monophyly of species with skulls 

on the one hand, and the monophyly of species with appendicular material on the 

other. Because the synapomorphies supporting these clades are ambiguous due 

to missing data, robustness of nodes (e.g., their decay index) is low. 

Furthermore, the few mostly complete taxa (e.g., Giraffatitan in the brachiosaurid 

case) may be simultaneously pulled towards phylogenetic relationships with 

several taxa by character data from different anatomical regions, depending on 

the data available in fragmentarily represented taxa. This ʻmonophyly of the 

preservedʼ at best leads to loss of robustness or resolution, and at worst can lead 
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to spurious results. The ways to combat the ʻmonophyly of the preservedʼ are to 

build larger operational taxonomic units with new discoveries or referrals, or 

eliminate problematically-preserved taxa from the dataset. 

 Numerous fragmentary taxa could not be included within the cladistic 

analysis presented above because their validity and constituency remain to be 

established or verified, and/or their remains do not bear enough relevant 

synapomorphies to nest them in lower-level clades. Discovery of 

synapomorphies using more informative taxa in the cladistic analysis above 

allows general phylogenetic statements to be made for most fragmentarily 

represented taxa, as shown in Table 4.8. However, some basal titanosauriforms 

warrant further explication because of their interesting geographic location or 

age, their complex taxonomy, or differences between results of previous studies 

and those presented here. 

 

Sonorasaurus thompsoni (Ratkevitch, 1998) — Sonorasaurus was originally 

described as a brachiosaurid and is important because of its Albian–

?Cenomanian age, which would be on par with the youngest known North 

American sauropods before the start of the ʻsauropod hiatusʼ (Ratkevitch, 1998; 

Lucas & Hunt, 1989). Sonorasaurus is represented by a somewhat fragmentary 

partial skeleton, which includes presacral and caudal vertebrae and some limb 

elements. Sonorasaurus is a titanosauriform on the basis of semicamellate 

presacral vertebral pneumaticity, middle caudal vertebrae with neural arches set 
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on the anterior half of the centrum, anterior-middle caudal vertebrae with 

posteriorly projecting transverse processes, metacarpal I with an undivided distal 

condyle that is perpendicular to the shaft, other metacarpals with reduced or 

absent distal articular facets, and a fibula that lacks a corrugated subtriangular 

proximal scar (Appendix 3). 

 When Sonorasaurus is added to the data matrix and analyzed via the 

search parameters presented above (see ʻTopologyʼ above), it is recovered as a 

brachiosaurid, and all resolution within this clade disappears. Brachiosaurid 

affinities are suggested for Sonorasaurus on the basis of metatarsal IV beveled 

distally and metatarsal IV with medial embayment on proximal end (Appendix 3). 

Previous hypotheses for brachiosaurid affinities for Sonorasaurus were based on 

its elongate forelimb bones (Ratkevitch, 1998), but more recent discoveries have 

shown that similarly elongate limb bones are present in taxa that are here 

resolved as basal somphospondylans (e.g., Ligabuesaurus, Sauroposeidon) and 

basal titanosaurs (e.g., Andesaurus, Malawisaurus). The brachiosaurid affinities 

of Sonorasaurus are only weakly supported by the data matrix in this study — 

when included, the decay index for Brachiosauridae is 1, and only 1 step is 

required to move Sonorasaurus into a basal titanosauriform or basal 

somphospondylan position. Further data are needed to evaluate the affinities of 

Sonorasaurus. 

 

Xenoposeidon proneneukos (Taylor and Naish, 2007) — Xenoposeidon was 
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named on the basis of a single partial middle-posterior dorsal vertebra (NHMUK 

R2095) from the Early Cretaceous Hastings Beds of England. Six features were 

presented as diagnostic for Xenoposeidon by Taylor and Naish (2007: 1549): “(1) 

neural arch covers dorsal surface of centrum, with its posterior margin continuous 

with that of the cotyle; (2) neural arch slopes anteriorly 35 degrees relative to the 

vertical; (3) broad, flat area of featureless bone on lateral face of neural arch; (4) 

accessory infraparapophyseal and postzygapophyseal laminae meeting ventrally 

to form a V; (5) neural canal is asymmetric: small and circular posteriorly but tall 

and teardropshaped anteriorly; (6) supporting laminae form vaulted arch over 

anterior neural canal.” Instead of representing autapomorphies, these features 

are the result of damage or are actually more widespread among sauropods. For 

example, interpreting the flush posterior neural arch-centrum as an 

autapomorphy (1) does not account for missing bone in the posterior centrum. 

The forward lean of the neural arch relative to the centrum (2) characterizes 

vertebrae of the pectoral region in many sauropods (e.g., Camarasaurus, Osborn 

and Mook 1921: pls. 69, 72). Likewise, the laminar pattern characters (3, 4, 6) 

are observed in a variety of sauropods when individual or serial variation is 

explored (e.g., Camarasaurus, Osborn and Mook, 1921; Brachiosaurus, Riggs, 

1903; Tehuelchesaurus, Carballido et al., in press). The ʻasymmetrical neural 

canalʼ (5) cited by Taylor and Naish (2009) misrepresents the large 

centroprezygapophyseal fossae (cprf) as the entire anterior neural canal, which is 

a feature observed in many neosauropods (e.g., Camarasaurus, Osborn and 
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Mook, 1921). The absence of diagnostic features renders Xenoposeidon a 

nomen dubium (as suggested by Mannion and Calvo, 2011). The presence of 

coarse camellate pneumaticity suggests that NHMUK R2095 pertains to a 

titanosauriform. 

 

Brontomerus mcintoshi (Taylor et al., 2011) — Brontomerus was named on the 

basis of fragmentary dissociated material consisting of an ilium, scapula, distal 

caudal vertebra, ribs, and other fragmentary bones (Taylor, Wedel & Cifelli, 2011: 

Table 4.3) from the Early Cretaceous Burro Canyon Formation (equivalent to the 

Ruby Ranch Member of the Cedar Mountain Formation) of Utah. Because (1) the 

material is disarticulated, (2) there is substantial size variation among the known 

elements in the quarry, and (3) no elements from the quarry overlap with the 

holotype, referral of material from the holotypic quarry to Brontomerus is weak. 

Thus, the diagnosis of the species rests on the holotypic ilium (Taylor et al., 

2011). Five autapomorphies were presented for the holotype of Brontomerus: (1) 

ischiadic peduncle reduced to very low bulge, (2) preacetabular lobe directed 

anterolaterally but not curved, (3) ilium height 52% of total length, (4) 

preacetabular lobe 55% of total ilium length, (5) postacetabular lobe reduced to 

near absence. The first two characters are present in a variety of taxa (e.g., 

Tastavinsaurus, Royo Torres, 2009; Giraffatitan, Janensch, 1961). The latter 

three characters cannot be evaluated in Brontomerus because the 

postacetabular process is broken — though Taylor et al. (2011: 81) describe this 
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as a “genuine osteological feature not related to damage,” it is clear that this 

margin is not complete, and the reconstruction of the posterior curvature of the 

ilium is arbitrary. When reconstructed with a postacetabular process similar to 

that in most other sauropods, the ilium of Brontomerus is similar to those of 

brachiosaurids (e.g., Giraffatitan, Janensch, 1961: pl. E). Brontomerus mcintoshi 

represents a nomen dubium. Some of the material referred to Brontomerus by 

Taylor et al. (2011) appear to pertain to Titanosauriformes, based on the 

presence of pneumatic dorsal ribs or coarse camellate vertebral pneumaticity.  

 

Wintonotitan wattsi (Hocknull et al., 2009) — Longmann (1933) named 

Austrosaurus mckillopi on the basis of several fragmentary dorsal vertebrae 

(QMF 2316) from the Early Cretaceous Allaru Mudstone of Australia. Hocknull et 

al. (2009) regarded Austrosaurus as a nomen dubium and named a new genus 

— Wintonotitan — from the slightly younger Winton Formation based on 

materials that had previously been referred to Austrosaurus (QMF 7292). 

Wintonotitan was diagnosed by a combination of many characters (see Hocknull 

et al., 2009: 16). Two features were cited as autapomorphies: dorsal vertebrae 

with ʻincipientʼ spinoprezygapophyseal lamina, and cylindrical, incipiently 

biconvex caudal vertebrae. Both of these features characterize a wider array of 

basal titanosauriforms, however. An ʻincipientʼ (subtle or small) 

spinoprezygapophyseal lamina is found in several sauropods (e.g., 

Ligabuesaurus, Sauroposeidon, Giraffatitan, Argentinosaurus, pers. obs.). 
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Likewise, weakly biconvex, cylindrical distal caudal vertebrae are found in 

Giraffatitan, Rinconsaurus, and Astrophocaudia (pers. obs.). These features may 

be local autapomorphies, but this awaits determination via cladistic analysis. 

However, the validity of Wintonotitan is supported by one unique feature 

recognized herein, distal caudal vertebrae with strongly arched ventral surfaces 

(see Hocknull et al., 2009: fig. 14).  

 Hocknull et al. (2009) recovered Wintonotitan as a member of 

Laurasiformes or the sister-taxon of Malarguesaurus in modified versions of the 

matrices of Canudo et al. (2008) and González Riga et al. (2009), respectively, 

but did not rule out titanosaur affinities for the genus. These results were 

supported by low bootstrap values (Hocknull et al., 2009: fig. 38) and the node 

supporting Wintonotitan and other titanosauriforms had a decay index of 2 in 

each analysis. The results of the present analysis suggest that Wintonotitan is a 

titanosauriform on the basis of reduced metacarpal phalangeal articular facets 

(Appendix 3), but more precise knowledge of its affinities await future discoveries 

and studies. 

 

Galvesaurus herreroi (Barco et al., 2005) — Galvesaurus herreroi was named by 

Barco et al. (2005) on the basis of a holotypic middle dorsal vertebra and several 

referred bones from the Villar del Arzobispo Formation of Spain. These bones 

are thought to belong to a single individual based on their close association 

(Sánchez-Hernández, 2005), but the supposed left and right humeri are too 
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disparate in size and shape to belong to a single animal, or even species (see 

Barco et al., 2005: fig. 4). Explaining these differences taphonomically is not 

feasible, because the longer humerus is shorter transversely, unlike what would 

be expected with flattening or shear. Further discoveries in the Villar del 

Arzobispo Formation would corroborate or refute referrals to Galvesaurus. 

Provisionally considering this material as a single genus, Galvesaurus was 

recently suggested to be a laurasiform macronarian outside of Titanosauriformes 

(Barco, 2009). Barco (2009) refuted earlier suggestions that Galvesaurus 

represented a diplodocoid (Barco et al., 2005) or non-neosauropod (Royo-Torres 

et al., 2006).  

 The lower-level phylogenetic relationships of Galvesaurus were sensitive to 

taxon sampling in the analyses of Barco (2009). The constituency and a 

consensus on the phylogenetic affinities of Galvesaurus await further discoveries, 

but the material from Villar del Arzobispo appears to pertain to Titanosauriformes 

based on a few features such as elongate cervical vertebrae and middle caudal 

vertebrae with anteriorly set neural arches (Appendix 3). The gracility and 

rounded proximolateral corner of the humeri suggest brachiosaurid affinities for 

those bones. 

 

Mongolosaurus haplodon (Gilmore, 1933) — Mongolosaurus was collected from 

the Early Cretaceous of China and is based on fragmentary teeth, part of a 

basicranium, and three vertebrae. Wilson (2005) and Mannion (in press) 
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established the validity of Mongolosaurus on the basis of several features, and 

both studies suggested that it was a titanosaur. In contrast, Mongolosaurus 

shares some features with Erketu, a Cretaceous East Asian sauropod outside of 

Titanosauria: tall, pillar-like epipophyses and an elongate axis with a tall ventral 

keel. Mongolosaurus also possesses bifid neural spines, as in all East Asian 

Cretaceous titanosauriforms. These three features suggest euhelopodid affinities 

for Mongolosaurus, in contrast to the 11 features suggesting titanosaur affinities 

proposed by Mannion (in press). However, many of the characters proposed by 

Mannion (in press) deal with parts of the skull that are unknown in almost all 

euhelopodids, making these comparisons equivocal. Furthermore, some cranial 

ʻtitanosaurʼ features proposed by Mannion (in press) have a broader distribution 

among sauropods. For example, mesial and distal tooth carinae and D-shaped 

cross-sections are features of the teeth of the non-titanosaur Phuwiangosaurus, 

and variability in tooth shape between upper and lower jaws is also present in the 

brachiosaurid Abydosaurus (Chure et al., 2010). In sum, Mongolosaurus displays 

a mix of features that suggest titanosaur or euhelopodid affinities. 

 

Other East Asian Cretaceous sauropods — In the last decade, reports of new 

species in the Cretaceous of East Asia are on par with those of the rest of the 

world combined (Mannion, in press). Few of these new genera have been placed 

into a phylogenetic context via cladistic analysis, obfuscating their significance in 

overall sauropod evolution. Suggestions that some of these species form a clade 
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have been made (Xu et al., 2006; Wilson and Upchurch, 2009) but no cladistic 

analysis has found support for a large clade of East Asian Cretaceous sauropods 

prior to the results presented herein. In addition to the six East Asian Cretaceous 

taxa recovered as a clade in this analysis (Fig. 4.5), several taxa bear features 

recovered as euhelopodid synapomorphies in the analysis presented herein 

(Baotianmansaurus, Dongyangosaurus, Mongolosaurus; Table 4.8). Other 

genera may belong to Euhelopodidae, but euhelopodid synapomorphies are not 

evident in them given the data at hand (Fukuititan, Gobititan, Huanghetitan, 

Jiutaisaurus, Pukyongosaurus, Ruyangosaurus, Xianshanosaurus; Table 4.8). 

Still other Cretaceous East Asian genera appear to lie outside Euhelopodidae, 

including Opisthocoelicaudia and Nemegtosaurus (Wilson, 2002), 

Jiangshanosaurus, Sonidosaurus, and Qingxiusaurus (Table 4.8). Importantly, all 

Cretaceous East Asian sauropods with preserved cervical vertebrae have bifid 

cervical neural spines. East Asia is an important area of future study for early 

titanosauriform evolution. Future research into the many fragmentarily 

represented Cretaceous genera will likely yield a core of euhelopodid taxa as well 

as an assemblage of more derived forms. Key to resolving the place of East 

Asian titanosauriforms in sauropod evolution will be taxonomic revision of several 

fragmentarily represented genera as well as the establishment of more precise 

geologic ages in various basins. 

 

Amargatitanis macni (Apesteguíá, 2007) — Apesteguía (2007) named 

179



Amargatitanis on the basis of fragmentary material (caudal vertebrae, scapula, 

femur, astragalus; MACN PV N52, 53, 34) of Neuquén, Argentina. Materials 

referred to Amargatitanis were thought to come from the Kimmeridgian Pichi 

Pecún Leufú Formation when they were discovered, but their preservational style 

suggests that they are from the Barremian La Amarga Formation. Amargatitanis 

was described as a derived titanosaur, and would constitute one of the oldest 

known members of that clade. However, although Apesteguía (2007) reported 

that the material was associated, field notebooks of J. Bonaparte indicate that the 

material was collected over several hundred meters of outcrop – for example, the 

femur and astragalus were collected over 400 meters from the caudal vertebrae 

(pers. obs. 2009; S. Apesteguía, pers. comm.). Some of the material referred to 

Amargatitanis may pertain to diplodocoids on the basis of complex neural arch 

lamination in the anterior caudal vertebrae (pers. obs., 2009). 

 Though presented as a titanosaur (Apesteguía, 2007), none of the material 

referred to Amargatitanis bears synapomorphies of Titanosauria according to the 

analysis presented herein. Several of the features cited in support of 

somphospondylan or titanosaur affinities by Apesteguía (2005) are instead the 

result of breakage. These include the medially beveled scapular glenoid, straight 

scapular blade, and beveled femoral condyles (i.e., these features are all 

broken). Likewise, fragmentary teeth from the La Amarga region cannot be 

ascribed to titanosaurs. A “dendritical enamel pattern” and “homogenous 

slenderness” were features used to refer these teeth to titanosaurs (Apesteguía, 
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2007: 539), but titanosaur enamel is not diagnostic, and diplodocoids and some 

basal titanosauriforms also have similarly slender and similarly shaped teeth 

(Chure et al. 2010). The purported titanosaur teeth could pertain to non-

titanosauriforms similar to Abdyosaurus or Ligabuesaurus based on their shape 

(Apesteguía, 2007: fig. 4). The titanosaur affinities of material referred to 

Amargatitanis cannot be substantiated at present, and its validity merits re-

investigation. 

 

Janenschia robusta (Wild, 1991) — Janenschia is an important taxon because of 

its proposed titanosaur affinities (e.g., McIntosh, 1990; Bonaparte, Heinrich & 

Wild, 2000; Wilson, 2002; Upchurch et al., 2004) and Late Jurassic age. 

Janenschia appears to be a titanosauriform based on the absence of a 

proximomedial triangular scar on the fibula (Appendix 3). Bonaparte et al. (2000) 

pointed out that the procoelous anterior caudal vertebrae possibly referable to 

Janenschia could not strongly attest to titanosaur affinities because this feature is 

also present in some diplodocoids and non-neosauropods. Wilson (2002) and 

Upchurch et al. (2004) suggested titanosaur affinities for Janenschia on the basis 

of its robust forelimb bones and a raised ulnar olecranon process. However, 

similarly robust bones and a raised olecranon are found in some non-titanosaurs 

or non-titanosauriforms such as Tehuelchesaurus according to this analysis, and 

these features were not found to be titanosaur synapomorphies in this study. 

Likewise, Royo-Torres and Cobos (2009) presented evidence that some material 
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referred to Janenschia pertains to non-neosauropods. Furthermore, several 

features of Janenschia are inconsistent with its placement within Titanosauria, 

Somphospondyli, or even Titanosauriformes: ulnar proximal arms subequally 

developed, the lack of an embracing proximal tibia and fibula, a divided posterior 

fossa on the astragalus, and a phalanx on metatarsal V (Appendix 3). Finally, the 

only cladistic analysis which included Janenschia recovered it as a non-

titanosaur (Carballido et al., in press). The titanosaur affinities of Janenschia 

cannot be substantiated at present. 

 

ʻIuticosaurusʼ valdensis (LeLoeuff, 1993) — Iuticosaurus was named on the basis 

of two procoelous caudal vertebrae (NHMUK R151, lectotype and R146a, 

paralectotype; Upchurch et al., in press) and a third specimen (NHMUK R1886) 

was later referred (Le Loeuff, 1993). These specimens likely come from the 

Barremian Wessex Formation (Upchurch et al., in press). Though ʻIuticosaurusʼ 

is regarded as a nomen dubium, its phylogenetic status is still of importance 

because of its early age and purported titanosaur affinities. However, like 

Janenschia, the titanosaur affinities of ʻIuticosaurusʼ are problematic. LeLoeuff 

(1993) interpreted the holotype of Iuticosaurus to represent a middle caudal 

vertebra with autapomorphically long postzygapophyses. Reinterpreted as a 

more distal caudal vertebra based on its elongation, the postzygapophyses of 

Iuticosaurus (NHMUK R151) are normal and its procoely is shared with some 

non-titanosaurs (e.g., Giraffatitan HMN MB.R.5000, Janensch, 1950: pl. IV; 

Malarguesaurus, González Riga et al., 2009; Fig. 4.7). The titanosaur affinities of 
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ʻIuticosaurusʼ cannot be substantiated at present. 

 

ʻPelorosaurusʼ becklesii (Mantell, 1852) — The complex history of the genus 

ʻPelorosaurusʼ is discussed elsewhere (Naish and Martill, 2001; Upchurch et al., 

2004). ʻPelorosaurusʼ becklesii comes from the Barremian Wessex Formation of 

England and consists of a humerus, radius, ulna, and some skin impressions. 

Upchurch (1995) suggested that ʻPelorosaurusʼ becklesii was an early titanosaur 

on the basis of its proximally curved anteromedial process of the ulna and the 

presence of polygonal plates similar to those of Saltasaurus in its skin. However, 

a similarly curved anteromedial process of the ulna (and raised olecranon) are 

also found in non-titanosaurs (e.g., Giraffatitan, Sauroposeidon; pers. obs. of 

YPM 326, a cast of ʻP.ʼ becklesii; Fig. 4.7) and should not be treated as a 

titanosaur synapomorphy in the absence of a cladistic analysis. Since the 

assessment of Upchurch (1995), similar polygonal dermal patterns have been 

reported in non-titanosaurs (e.g., Tehuelchesaurus, Giménez, 2007). 

Furthermore, ʻP.ʼ becklesii  lacks one unambiguous synapomorphy of the clade 

uniting Chubutisaurus + Titanosaura: an undivided notch on the humeral radial 

condyle. ʻP.ʼ becklesii likely represents a titanosauriform on the basis of the 

anteromedial arm of the ulna being much longer than its anterolateral arm, but its 

titanosaur affinities cannot be substantiated at present. 

 

TIMING OF THE ORIGIN OF TITANOSAURIA 
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 The oldest known titanosaurs are Barremian–Albian in age (Malawisaurus, 

Jiangshanosaurus, NHMUK R5333; Figure 6; Table 4.8). These taxa appear to 

be lithostrotians, yet they predate the more basal titanosaur Andesaurus, which 

indicates an earlier origin for Titanosauria. The Barremian (ca. 128 Ma) age for 

these oldest titanosaurs is far younger than the Middle Jurassic (Bathonian, ca. 

163 Ma) age of origin for Titanosauria inferred from wide-gauge trackways at 

Oxfordshire, England (Day et al., 2002; 2004). This inference was based on the 

proposal by Wilson and Carrano (1999) that wide-gauge trackways were 

produced by titanosaurs. In turn, wide-gauge trackways are thought to have been 

produced by titanosaurs because those clades bear synapomorphies inferred to 

produce such a trackway, including a proximomedially-deflected femur with a 

proximolateral bulge, eccentric femoral cross section, and distally beveled 

femoral condyles (Wilson and Carrano, 1999). Wilson and Carrano (1999) noted 

that several wide-gauge trackways predated the titanosaur body fossil record, 

and tentatively suggested that titanosaurs may have a ghost lineage leading back 

to the Middle Jurassic. Wide-gauge trackways are known from the Middle 

(Santos et al., 1994) and Late (Lockley et al., 1994) Jurassic of Portugal and the 

Late Jurassic of Switzerland (Lockley et al., 1994), as well as the Middle Jurassic 

of Oxfordshire as mentioned above (Day et al., 2002; 2004).  

 An alternative explanation to inference of a ghost lineage for Titanosauria 

into the Middle Jurassic would be if the anatomical features required to produce a 
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wide-gauge trackway were present in non-titanosaurs as well. Wilson and 

Carrano (1999) noted that one of the features hypothesized to be related to wide-

gauge trackmaking — a proximolateral femoral bulge — is present in Late 

Jurassic non-titanosaur titanosauriforms such as Brachiosaurus. The study 

presented herein recovers that feature as a synapomorphy of Tehuelchesaurus + 

Titanosauriformes, a clade whose earliest members are Late Jurassic in age 

(Fig. 5.6). In addition, although titanosaurs have more eccentric femoral cross 

sections on average than other sauropods (Wilson and Carrano, 1999: table 2), 

some Late Jurassic non-titanosaurs have femoral cross sections similar to those 

of titanosaurs (e.g., Giraffatitan and Neuquensaurus, ratio of transverse width / 

anteroposterior breadth of midshaft > 200%; Janensch, 1961; pers. obs.). The 

exact morphology required to produce a wide-gauge trackway (e.g., how 

prominent a proximolateral femoral bulge or eccentric a femoral shaft needs to 

be) is ambiguous at present. Therefore, wide-gauge trackways should not 

automatically be ascribed to titanosaurs — they may pertain to members of a 

more inclusive clade. 

 One other feature has been used to link trackways to titanosaurs. Day et al. 

(2002, 2004) suggested that the absence of a pollex claw impression in Middle 

Jurassic wide-gauge trackways from Oxfordshire, England indicated that the 

trackmaker was a titanosaur in that case. In contrast, other Jurassic wide-gauge 

trackways (Santos et al., 1994; Lockley et al., 1994) do possess a prominent 

pollux claw impression. However, even narrow-gauge sauropod trackways 
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commonly do not possess a pollux claw impression for taphonomic or perhaps 

behavioral reasons (Santos et al., 1994; Wilson and Carrano, 1999). Such 

preservational problems could explain the absence of a pollux claw impression in 

the Oxfordshire wide-gauge trackways. Indeed, the Oxfordshire wide-gauge 

trackway lacks the pronounced heteropody observed in sauropod trackways 

(compare Day et al., 2002: fig 1 with Lockley et al., 1994: fig. 2). This is either the 

result of a true, aberrant morphology for the Oxfordshire wide-gauge trackmaker 

or a preservational problem. If non-preservation is indeed responsible for the 

absence of half of the pes impression, then the absence of a pollux claw 

impression might equally be explainable by non-preservation. Because the 

absence of a pollux claw on the Oxfordshire trackways is ambiguous, they do not 

demonstrably represent Middle Jurassic titanosaurs. Based on the evidence at 

hand, the earliest titanosaurs are known from the Early Cretaceous.  

 

PALEOBIOGEOGRAPHIC IMPLICATIONS 

 

 During the Early Cretaceous, different titanosauriform clades developed on 

different continents — brachiosaurids in North America, euhelopodids in Asia, 

and titanosaurs in Gondwana and Asia (Fig. 4.8). The appearance of these three 

clades outside of their main geographic areas likely represents cases of 

dispersal, such as for somphospondylans in North America (Sauroposeidon, 

Astrophocaudia; Chapter 3) or titanosaurs in Laurasia (e.g., Alamosaurus; Lucas 
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and Hunt, 1989). At the moment, more precise ages for many genera are 

necessary to resolve such lower-level biogeographic patterns, because the ages 

of many ʻmiddleʼ Cretaceous taxa overlap given their current age uncertainty (Fig. 

4.6). 

 The revised picture of titanosaur origins presented in this study prompts 

reappraisal of their possible vicariant origins related to the breakup of Pangea. 

Vicariance has been called upon to explain titanosaur origins by several authors 

(Lydekker, 1895; Bonaparte, 1999), but more recently, several authors have 

challenged vicariant origins for Titanosauria (Sereno, 1999; Wilson & Upchurch, 

2003; Wilson & Upchurch, 2009). Instead, it has been argued that most sauropod 

groups were present across Pangea in the Middle and Late Jurassic, and that 

later geographic differences in sauropod faunas reflect differential extinction 

(e.g., Wilson and Sereno, 1998). This seems to be the case for Brachiosauridae, 

whose basal, Jurassic members are found on several continents (Figs. 4.6 and 

4.8; see also Rauhut, 2006), whereas Cretaceous brachiosaurids are only found 

in North America. 

 In light of the new data presented in this paper, a vicariant origin for 

Titanosauria remains problematic, albeit for somewhat different reasons than 

previously proposed. Wilson & Upchurch (2003) rejected such a vicariant 

scenario for two reasons: (1) the proposed Middle Jurassic origin of Titanosauria 

predated the breakup of Pangea; (2) the existence of several Laurasian 

titanosaurs. The first objection is resolved by this study, because the revised 
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picture of titanosaur evolution presented herein suggests that titanosaurs 

originated in the Early Cretaceous, during the breakup of Pangea. The second 

objection is ameliorated by the data presented herein, but requires further study 

as noted above. Some of the Laurasian taxa cited as titanosaurs by Wilson & 

Upchurch (2003) were shown above to be either non-titanosaurs 

(Phuwiangosaurus, Tangvayosaurus, Dalton Wells sauropod (Britt et al., 1998); 

Table 4.8). Other Laurasian titanosaurs are latest Cretaceous in age and may 

have dispersed from Gondwana, as they are nested within Gondwanan clades 

(e.g., Opisthocoelicaudia and Alamosaurus), but a dispersal origin for these and 

other Late Cretaceous Laurasian titanosaurs awaits a cladistic analysis that 

incorporates more titanosaurs and more precise age dates. 

 Basal titanosaurs (Andesaurus, Malawisaurus) and their closest outgroup 

(Chubutisaurus) appear in the Early Cretaceous of Gondwana, seemingly 

suggesting a Gondwanan origin for the group (Figure 4.6; Table 4.8). However, 

the earliest known titanosaurs are Barremian–Aptian forms: Jiangshanosaurus 

from China, NHMUK 5333 (middle caudal vertebrae) from England, and 

Malawisaurus from Malawi (Table 4.8). These genera all appear to be derived 

members within Titanosauria (i.e., lithostrotians), suggesting that the clade had 

achieved a wide geographic distribution well before the Aptian. Understanding 

the origins of Titanosauria requires new Jurassic or earliest Cretaceous 

discoveries. 
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CONCLUSIONS 

 

 This study presents a cladistic analysis focusing on the early members of 

the Titanosauriformes, a widespread and long-lived clade of sauropod dinosaurs. 

The analysis yields a cladogram for 25 ingroup taxa; many of the relationships 

presented herein are novel. Titanosauriformes is composed of three main clades: 

Brachiosauridae, Euhelopodidae, and Titanosauria. The early members of 

Titanosauriformes, Brachiosauridae, and outgroups to Titanosauria are found on 

various continents. In contrast, basal members of Titanosauria are restricted to 

southern continents at a time when brachiosaurids were common in North 

America and euhelopodids predominated in Asia. Previous claims for a Middle or 

Late Jurassic origin for Titanosauria are based on weak evidence. The earliest 

known titanosaurs are Barremian–Aptian in age, and these represent derived 

forms (lithostrotians), highlighting the need for new earliest Cretaceous 

discoveries for understanding the enigmatic origin of Titanosauria.  
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Figure 4.1. Titanosauriform discoveries plotted in five-year bins. Note the 
dramatic increase in naming in recent years. The skull and body of Giraffatitan 
(modified from Wilson and Sereno, 1998) highlight basal titanosauriform 
anatomy.  
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Figure 4.2. Select previous cladistic hypotheses for the relationships of basal 
titanosauriforms, with their authors listed near their root. Numbers near each 
node indicate decay indices calculated in PAUP*. Abbreviations: mdt, more 
derived titanosaurs. 
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Figure 4.3. Parsed versions of the cladograms presented in Figure 4.2, with their 
authors listed near their root. Only taxa appearing in at least half of those 
analyses are included here. A strict consensus of these analyses with and 
without Euhelopus are shown below. 
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Figure 4.4. Character maps for some cladistic analyses of sauropod dinosaurs. 
The analysis presented in this study incorporates few cranial characters, 
reflecting the poor fossil record for titanosauriform skulls and standing in contrast 
to the pattern of character distribution in Diplodocoidea. Analyses that are wider 
in scope such as that of Wilson (2002) have a more even distribution of 
characters throughout the body. 
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Figure 4.5. Cladistic hypothesis presented in this study. The cladogram is a strict 
consensus of 9 equally parsimonious trees. Clade names as defined by 
phylogenetic taxonomy (Table 4.1; Wilson and Upchurch, 2003) are listed beside 
each node. 
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Figure 4.6. Phylogenetic hypothesis presented in this study plotted on a geologic 
timescale (Gradstein, 2004), with relevant clade names (Table 4.1) labeled. 
Select synapomorphies highlighting some nodes are highlighed. 
Brachiosauridae: quadratojugal with triangular ventral prong (shown here in 
Europasaurus), twisted maxillary teeth (shown here in Giraffatitan), beveled distal 
end of metatarsal IV (shown here in Sonorasaurus). Somphospondyli: 
somphospondylus vertebral pneumaticity, consisting of sub-centimeter and sub-
millimeter cells and walls, respectively, that permeate the vertebra (shown here in 
Saruoposeidon). Euhelopodidae: cervical vertebrae with bifid neural spines, 
pendant cervical ribs, a thick, vertically oriented epipophyseal–prezygapophyseal 
lamina (eprl), a ʻkinkedʼ intrapostzygapophyseal lamina (shown here in Erketu). 
Titanosauria: platelike ischium (shown here in Andesaurus). Also shown here are 
a short ischium (a synapomorphy of Sauroposeidon plus more derived 
somphospondyls) and a raised tubercle on the lateral ischium (a titanosauriform 
synapomorphy). 
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Figure 4.7. Purported early ʻtitanosaurʼ species in comparison with a basal 
titanosauriform (Giraffatitan). The caudal vertebral procoely of ʻIuticosaurusʼ and 
curved/raised ulnar olecranon of ʻPelorosaurusʼ becklesii are indistinguishable 
from the situation in Giraffatitan. Scale bar equals 5 cm in A, 10 cm in B–D. 
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Figure 4.8. Titanosauriform paleobiogeography. The Early Cretaceous is 
characterized by some endemism, with mostly brachiosaurids in North America, 
mostly euhelopodids in Asia, and mostly titanosaurs in South America. Dark grey 
signifies geographic range, medium grey indicates land, and light grey indicates 
shallow seas. Paleogeographic reconstructions modified from Blakey, 2006. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 

206



Table 4.1. Recommended phylogenetic nomenclature for select clades within 
Titanosauriformes and its outgroups. Definitions follow Wilson and Sereno (1998), 
Wilson and Upchurch (2003), and Taylor (2009). Abbreviations: MRCA = most recent 
common ancestor

clade definition reference/author

Neosauropoda Diplodocus longus, 
Saltasaurus loricatus, 
MRCA and all its 
descendants

Bonaparte, 1986

Macronaria neosauropods more 
closely related to 
Saltasaurus loricatus than 
to Diplodocus longus

Wilson and Sereno, 1998

Euhelopodidae neosauropods more 
closely related to 
Euhelopus zdanskyi than 
to Neuquensaurus 
australis

new definition

Titanosauriformes Brachiosaurus altithorax, 
Saltasaurus loricatus, 
MRCA and all its 
descendants 

Salgado, Coria, and Calvo 
1997

Brachiosauridae neosauropods more 
closely related to 
Brachiosaurus altithorax 
than to Saltasaurus 
loricatus

Riggs, 1903

Somphospondyli neosauropods more 
closely related to 
Saltasaurus loricatus than 
to Brachiosaurus altithorax

Wilson and Sereno, 1998

Titanosauria Andesaurus delgadoi, 
Saltasaurus loricatus, 
MRCA and its descendants

Bonaparte and Coria, 1986

Lithostrotia Malawisaurus dixeyi, 
Saltasaurus loricatus, 
MRCA and its descendants

Upchurch et al., 2004
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Table 4.2. Comparison of seven recent cladistic analyses including a substantial number 
of  basal titanosauriform sauropod dinosaurs. Character numbers in parentheses 
indicate the total number of characters included (i.e., including constant and parsimony-
uninformative ones). Abbreviations: CI = consistency index; MPTs = most parsimonious 
trees; RI = retention index, TSFs, Titanosauriformes

Analysis Ingroup 
taxa

# recovered as 
non-titanosaur 

TSFs

# char-
acters

MPTs

Salgado et al., 
1997

10 2 38 1

Wilson, 2002 
(Wilson and 
Upchurch, 2009)

27 2 234 3

Canudo et al., 
2008

17 3 217 (246) 9

González Riga et 
al., 2009

22 6 84 (102) 2

Upchurch, 2004 
(Wilson and 
Upchurch, 2009)

34 4 309 (311) 97

Royo Torres, 2009 24 6 295 (399) 5

Carballido et al., 
2011

28 6 227 (289) 12

This analysis 25 16 114 9

208



Table 4.3. Geological age, geographical range, percent missing data, and original 
reference for two outgroups (Omeisaurus, Jobaria) and 25 terminal taxa analysed
Taxon geological age 

(stage)
geographic range Original reference

Omeisaurus Middle Jurassic 
(Bathonian–Callovian

Asia (China) Young, 1939

Jobaria tiguidensis Middle of Late Jurassic 
(Bathonian–Oxfordian

Africa (Niger) Sereno et al., 1999

Atlasaurus imelaki Middle Jurassic 
(Bathonian–Callovian

Africa (Morocco) Monbaron et al., 
1999

Diplodocoidea Late Jurassic–Late 
Cretaceous 
(Kimmeridgian–
Coniacian)

North America (United 
States), Europe 
(various), Africa (Niger), 
South America 
(Argentina)

Marsh, 1884; 
Upchurch, 1995

Camarasaurus Late Jurassic 
(Kimmeridgian–
Tithonian)

North America (United 
States)

Cope, 1877

Tehuelchesaurus 
benitezii

Late Jurassic 
(Kimmeridgian–
Tithonian)

South America 
(Argentina)

Rich et al., 1999

Europasaurus 
holgeri

Late Jurassic 
(Kimmeridgian)

Europe (Germany) Sander et al., 2006

Giraffatitan brancai Late Jurassic 
(Kimmeridgian–
Tithonian)

Africa (Tanzania) Janensch, 1914; 
Paul, 1988

Brachiosaurus 
altithorax

Late Jurassic 
(Kimmeridgian–
Tithonian)

North America (United 
States)

Riggs, 1903

Cedarosaurus 
weiskopfae

Early Cretaceous 
(Aptian–Albian)

North America (United 
States)

Tidwell et al., 1999

Venenosaurus 
dicrocei

Early Cretaceous 
(Aptian–Albian)

North America (United 
States)

Tidwell et al., 2001

Abydosaurus 
mcintoshi

Early Cretaceous (late 
Albian)

North America (United 
States)

Chure et al., 2010

Ligabuesaurus 
leanzi

Early Cretaceous 
(Aptian–Albian)

South America 
(Argentina)

Bonaparte et al., 
2006

Sauroposeidon 
proteles

Early Cretaceous 
(Aptian–Albian)

North America (United 
States)

Wedel et al., 2000a
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Taxon geological age 
(stage)

geographic range Original reference

Chubutisaurus 
insignis

Early or Late 
Cretaceous (Aptian–
Cenomanian)

South America 
(Argentina)

del Corro, 1975

Tastavinsaurus 
sanzi

Early Cretaceous 
(Aptian)

Europe (Spain) Canudo et al., 2008

Qiaowanlong 
kangxii

Early Cretaceous 
(Aptian–Albian)

Asia (China) You and Li, 2009

Erketu ellisoni Late Cretaceous 
(Cenomanian–
Santonian)

Asia (Mongolia) Ksepka and Norell, 
2006; 2010

Daxiatitan binglingi Early Cretaceous Asia (China) You et al., 2008

Euhelopus 
zdanskyi

Early Cretaceous 
(Barremian–Aptian)

Asia (China) Wiman, 1929

Phuwiangosaurus 
sirindhornae

Early Cretaceous 
(Barremian–Aptian)

Asia (Thailand) Martin et al., 1994

Tangvayosaurus 
hoffeti

Early Cretaceous 
(Aptian–Albian)

Asia (Laos) Allain et al., 1999

Andesaurus 
delgadoi

Early or Late 
Cretaceous (Albian–
Cenomanian)

South America 
(Argentina)

Calvo and 
Bonaparte, 1991

Malawisaurus 
dixeyi

Early Cretaceous 
(Aptian)

Africa (Malawi) Haughton, 1928; 
Jacobs et al., 1993

Opisthocoelicaudia 
skarzynskii

Late Cretaceous 
(Maastrichtian)

Asia (Mongolia) Borsuk-Bialynicka, 
1977

Alamosaurus 
sanjuanensis

Late Cretaceous 
(Maastrichtian)

North America (United 
States)

Gilmore, 1922

ʻSaltasauriniʼ 
(Saltasaurus, 
Neuquensaurus, 
Rocasaurus)

Late Cretaceous 
(Campanian–
Maastrichtian)

South America 
(Argentina)

Powell, 1992; 
Lydekker, 1893; 
Salgado & 
Azpilicueta, 2000
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Table 4.4. Missing data in the outgroups and terminal taxa analysed, broken down by 
anatomical region
Taxon Cranial Axial Appendicul

ar/dermal
Total

Omeisaurus 0.0 11.8 9.8 8.8

Jobaria tiguidensis 6.7 0.0 1.9 1.8

Atlasaurus imelaki 60.0 76.5 88.2 78.9

Diplodocoidea 0.0 0.0 0.0 0.0

Camarasaurus 0.0 0.0 0.0 0.0

Tehuelchesaurus benitezii 100.0 56.9 47.1 58.8

Europasaurus holgeri 13.3 37.3 50.9 39.5

Giraffatitan brancai 0.0 9.8 1.9 5.3

Brachiosaurus altithorax 100.0 56.9 66.7 65.8

Cedarosaurus weiskopfae 100.0 49 49.0 55.3

Venenosaurus dicrocei 100.0 70.6 62.7 71.9

Abydosaurus mcintoshi 0.0 76.5 80.4 67.5

Ligabuesaurus leanzi 93.3 64.7 47.1 62.3

Sauroposeidon proteles 93.3 13.7 17.6 26.3

Chubutisaurus insignis 100.0 56.9 47.1 58.8

Tastavinsaurus sanzi 100.0 43.1 60.8 57.0

Qiaowanlong kangxii 100.0 86.3 82.4 85.9

Erketu ellisoni 100.0 78.4 84.3 83.3

Daxiatitan binglingi 100.0 52.9 80.4 71.1

Euhelopus zdanskyi 46.7 31.4 29.4 33.3

Phuwiangosaurus sirindhornae 46.7 0.0 25.5 17.5

Tangvayosaurus hoffeti 100.0 60.8 66.7 67.5

Andesaurus delgadoi 100.0 50.9 76.5 67.5
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Taxon Cranial Axial Appendicul
ar/dermal

Total

Malawisaurus dixeyi 33.3 13.7 41.2 26.3

Opisthocoelicaudia skarzynskii 100.0 31.4 11.8 32.5

Alamosaurus sanjuanensis 86.7 7.8 5.9 17.5

 ʻSaltasauriniʼ (Saltasaurus, 
Neuquensaurus, Rocasaurus)

73.3 7.8 15.7 20.2

Average 65 39 43 44
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Table 4.5. Ambiguous character state optimizations attributable to missing data based 
on two optimization strategies in PAUP* (Swofford, 2000). Delayed transformations 
(DELTRAN) favour parallelism over reversals; accelerated transformations (ACCTRAN) 
favour reversals over parallelisms. Abbreviations: mdb, more derived brachiosaurids; 
mde, more derived euhelopodids; mdn, more derived neosauropods; mdsa, more 
derived sauropods; mdso, more derived somphospondylans; mdt, more derived 
titanosaurs. Italicization indicates characters that have ambiguous changes in other 
parts of the cladogram that are instead due to character conflict (Table 6)

Character number ACCTRAN DELTRAN

41, 61, 110 Atlasaurus + Neosauropoda Neosauropoda

36, 38 Neosauropoda Macronaria

21, 49, 54, 55, 62, 
64, 87–89, 92–94, 
96, 108

Tehuelchesaurus + 
Titanosauriformes

Titanosauriformes

29, 113 Tehuelchesaurus + 
Titanosauriformes

Somphospondyli

31, 33 Titanosauriformes, 
Euhelopodidae

Somphospondyli, Euhelopus + 
mde

3, 9, 52, 78, 114 Brachiosauridae Giraffatitan + mdb

53 Brachiosauridae Giraffatitan

90 Giraffatitan + mdb Abydosaurus + mdb

95 Giraffatitan + mdb, 
(Chubutisaurus + 
Titanosauria)

Giraffatitan, Saltasaurinae

10 Brachiosaurus + mdb Abydosaurus

13 Brachiosaurus + mdb; 
Somphospondyli

Abydosaurus + mdb; 
(Chubutisaurus + Titanosauria) 
+ Euhelopodidae

5, 14 Somphospondyli Euhelopodidae + 
(Chubutisaurus + Titanosauria)

98 Somphospondyli Sauroposeidon + mdso

17 Somphospondyli Euhelopus + mde

85 Somphospondyli Saltasauridae
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Character number ACCTRAN DELTRAN

71 Tastavinsaurus + mdso Euhelopodidae + 
(Chubutisaurus + Titanosauria)

73 Tastavinsaurus + mdso Lithostrotia

24 Euhelopodidae Erketu + mde

29, 30, 31, 32, 46 Euhelopodidae Euhelopus + mde

112 Euhelopodidae Euhelopus

53, 62 Euhelopodidae Phuwiangosaurus + 
Tangvayosaurus

92 Erketu + mde Euhelopus + mde

66, 74 Phuwiangosaurus + 
Tangvayosaurus

Phuwiangosaurus

6, 7, 26, 69, 114 Chubutisaurus + Titanosauria Lithostrotia

18, 25 Chubutisaurus + Titanosauria Saltasaurinae

68, 110 Chubutisaurus + Titanosauria Saltasauridae

72 (Chubutisaurus + 
Titanosauria), 
–Opisthocoelicaudia

Malawisaurus, Alamosaurus

77, 105 Titanosauria Saltasauridae
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Table 4.6. Ambiguous character optimizations attributable to character conflict, based on 
two optimization strategies in PAUP* (Swofford, 2000). Abbreviations: mdsa, more 
derived sauropods; mdso, more derived somphospondylans. Italicization indicates 
characters that have ambiguous changes in other parts of the cladogram that are 
instead due to missing data (Table 5)

Character number ACCTRAN DELTRAN

12 (Atlasaurus + Neosauropoda),
–Camarasaurus

Diplodocoidea, 
Titanosauriformes

90 Macronaria, –Brachiosauridae Camarasaurus, 
Saltasauridae

112 –Giraffatitan Venenosaurus

67 –(Tehuelchesaurus + 
Titanosauriformes), 
Brachiosauridae

–Tehuelchesaurus,
–Somphospondyli

74 –Europasaurus, 
Titanosauriformes, 
–Tastavinsaurus + mdso

Giraffatitan + mdb, 
Ligabuesaurus, 
Sauroposeidon

28 Tastavinsaurus + mdso, 
Saltasauridae

Malawisaurus, Euhelopus 
+ mde

15 Tastavinsaurus + mdso, 
–Euhelopus

Lithostrotia, 
Phuwiangosaurus

65 Titanosauria, 
–ʻSaltasauriniʼ

Opisthocoelicaudia, 
Alamosaurus

19 –(Chubutisaurus + Titanosauria), 
ʻSaltasauriniʼ

Malawisaurus, 
Alamosaurus
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Table 4.7. Decay indices (Bremer, 1994) for the nodes in the topology presented in this 
study (Figure 5), calculated using MacClade (Maddison and Maddison, 1994) and 
PAUP* (Swofford, 2000). If no decay index is listed for a node shown in Figure 5, decay 
index = 1

Node Decay index Rank

Neosauropoda 2 4

Macronaria 2 4

Tehuelchesaurus + Titanosauriformes 2 4

Titanosauriformes 4 2

Brachiosauridae 3 3

Somphospondyli 3 3

Sauroposeidon + more derived 
somphospondyls

2 4

Tastavinsaurus + more derived 
somphospondyls

2 4

Euhelopodidae 2 4

Lithostrotia 5 1

Saltasauridae 5 1

Saltasaurinae 3 3
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Table 4.8. Age, provenance, and taxonomic assignment of 36 fragmentary basal 
titanosauriform–basal titanosaur sauropods. The list includes purported basal 
titanosauriforms and is limited to valid genera. Numbers refer to characters (Appendix 
2) supporting and refuting higher-level assignments (Appendix 4) that were recovered 
as synapomorphies under delayed transformation. An exclamation point before a clade 
name means that the genus probably does not belong to that clade based on the 
absence of some synapomorphies; those characters are also preceded by an 
exclamation point. When affinities with more than one clade are suggested, the largest 
encompassing clade is listed. Age abbreviations: EJ = Early Jurassic; EK = Early 
Cretaceous; LJ = Late Jurassic; LK = Late Cretaceous; LTr = Late Triassic; MJ = Middle 
Jurassic. Area abbreviations: AF = Africa; AS = Asia; AU = Australia; EU = Europe; I = 
India; NA = North America; SA = South America; MA = Madagascar. Clade/validity 
abbreviations: Br, Brachiosauridae; Euh, Euhelopodidae; mdso, more derived 
somphospondylans, nd = nomen dubium; Neo, Neosauropoda; So, Somphospondyli; Ti, 
Titanosauria; TSF, Titanosauriform

Taxon Age Area Clade/validity Character
s

Agustinia ligabuei EK SA nd —

Amargatitanis macni EK SA nd —

Angolotitan adamastor LK AF Lithostrotia 79

Aragosaurus ischiaticus LJ–
EK

EU TSF; !Titanosauria 101; !98

Argentinosaurus hunculensis LK SA Tastavinsaurus + 
mdso; 

!Euhelopodidae; 
!Lithostrotia

34; !20; !45

Astrophocaudia slaughteri EK NA Sauroposeidon + 
msdo; !Titanosauria

66, !98

Baotianmansaurus henanensis LK AS Euhelopus + mde 28

Brontomerus mcintoshi EK NA nd —

Daanosaurus zhangi LJ AS Macronaria 36

Diamantinasaurus matildae EK AU Saltasauridae 105

Dongbeititan dongi EK AS Somphospondyli 64

Dongyangosaurus sinensis LK AS Euhelopus + mde 28, 92
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Taxon Age Area Clade/validity Character
s

Fukuititan nipponensis EK AS Macronaria 85

Fusuisaurus zhaoi EK AS Tehuelchesaurus + 
Titanosauriformes

60

 ʻFrench Bothiospondylusʼ/
Damparis sauropod

LJ EU Giraffatitan + mdb 74, 75, 77, 
89

Galvesaurus herreroi LJ–
EK

EU TSF; !Titanosauria 21, 54, 
101; !98

Gobititan shenzhouensis EK AS Sauroposeidon + 
mdso

106

Huabeisaurus allocotus LK AS Euhelopus + mde 92

Huanghetitan liujiaxiaensis EK AS Somphospondyli 65

Huanghetitan ruyangensis LK AS Euhelopodidae + 
(Chubutisaurus + 

Titanosauria)

47

Janenschia robusta LJ AF TSF; !TSF; 
!(Sauroposeidon + 
mdso); !(Euhelopus 
+ (Chubutisaurus + 

Titanosauria))

107; !82; 
!106; !111

Jiangshanosaurus lixianensis EK AS Saltasauridae 68, 70

Jiutaisaurus xidiensis EK AS TSF 63

Lusotitan atalaiensis LJ EU Brachiosaurus + 
mdb

74, 75

Malarguesaurus florenciae LK SA Tehuelchesaurus + 
TSF; !Lithostrotia

102; !51

Mongolosaurus haplodon EK AS Euhelopodidae + 
(Chubutisaurus + 

Titanosauria)

6, 20

NHMUK R5333 EK EU Lithostrotia 51
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Taxon Age Area Clade/validity Character
s

 ʻPelorosaurusʼ becklesii EK EU TSF; 
!(Chubutisaurus + 

Titanosauria)

81, !79

Pukyongosaurus milleniumi EK AS Somphospondyli 16

Qingxiusaurus youjiangensis LK AS Lithostrotia 79*

Ruyangosaurus giganteus LK AS Somphospondyli 16

Sonidosaurus saihangaobiensis LK AS Euhelopodidae + 
(Chubutisaurus + 

Titanosauria)

28, 45

Sonorasaurus thompsoni EK/
LK

NA Giraffatitan + mdb 74, 113

Wintonotitan wattsi EK AU TSF; !(Abydosaurus 
+ mdb); !

Titanosauria

91; !89; !50

Xenoposeidon proneneukos EK EU nd —

Xianshanosaurus shijiagouensis LK AS TSF 59
*Qingxiusaurus also shares the presence of a posteriorly expanded sternal plate 
(character 72) with Alamosaurus and Malawisaurus. This is recovered as a Lithostrotian 
synapomorphy under ACCTRAN.
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Table 4.9. Synapomorphies published in support of the monophyly of Laurasiformes 
(Galvesaurus, Phuwiangosaurus, Aragosaurus, Tastavinsaurus, Venenosaurus), with 
supporting references. Problematic features of each character are listed on the right

Character state Analysis comments

ʻlateralʼ pneumatic fossae 
of anterior cervical 
vertebrae undivided; those 
of posterior cervical 
vertebrae subdivided

Barco (2009) serial variability in the subdivision 
of vertebral fossae is present in 
several neosauropods (Wilson et 
al., 2011)

hyposphene–hypantrum 
articulations only present in 
middle and posterior dorsal 
vertebrae

Barco (2009) characterizes most saurischians; 
absent in derived titanosaurs

anterior caudal vertebrae 
(excluding the first) weakly 
procoelous

Barco (2009) feature common to most non-
lithostrotian sauropods, e.g., 
Patagosaurus, Giraffatitan,  
Astrophocaudia, Chubutisaurus; 
subtlety is serially variable

anterior caudal hemal 
canals bridged; middle 
hemal canals open

Barco (2009) also present in some diplodocoids, 
Jobaria, and some specimens of 
Camarsaurus (Wilson and Sereno, 
1998)

spol separated from spdl in 
dorsal vertebrae

Royo Torres (2009) contact between these laminae 
varies along the vertebral series in 
most eusauropods

sacrum narrow (width 50–
70% length)

Royo Torres (2009) only Tastavinsaurus has this 
feature among neosauropods

anterior caudal vertebral 
centra concave anteriorly, 
flat posteriorly

Royo Torres (2009) feature common to most non-
lithostrotian sauropods, e.g., 
Patagosaurus, Giraffatitan,  
Chubutisaurus; subtlety is serially 
variable

ʻwrinkleʼ on lateral face of 
neural arch of middle-
posterior caudal vertebrae

Royo Torres (2009) remnant of neurocentral suture; 
present in all sauropods at some 
ontogenetic stage

neural spines of anterior 
caudal vertebrae bulbous

Royo Torres (2009) displays variation within some 
genera (e.g., Camarasaurus); also 
present in some brachiosaurids
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Character state Analysis comments

anterior caudal neural 
spines straight, directed 
posteriorly, vertically, or 
anteriorly, with 
anterodorsal edge anterior 
of postzygapophyses

Royo Torres (2009) uninformative; character states 
span known morphologies for 
sauropods

angle between distal 
condyles and shaft of 
femur 6 degrees

Royo Torres (2009) angle not preserved in 
Tastavinsaurus, Cedarosaurus, 
Venenosaurus, Sonorasaurus, 
similar angle found amongst many 
titanosauriforms

metatarsal III more than 
30% tibia length

Royo Torres (2009) not found in any sauropod
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APPENDIX 4.1. Character-taxon scorings. 
 
Omeisaurus  
000000000000000010101000?00000000001010000000?000?00010000??0000
??0000000000000000000000000000000000000?00?000?000 
 
Jobaria 
000000000?000000001001010000000000000000000000000000001000000000
001000000000000000000000000000?0000000000000000000 
 
Diplodocoidea 
0001000000012010001000000000000000000000100000000000000000001000
00100000000000000001000000000000000000000000100000 
 
Camarasaurus 
0001010001101000001100000000010000010100100000000000000000001000
00100000001000000001100001000000000000000000100000 
 
Tehuelchesaurus  
???????????????0???????????1?00?00?10101000000????0???????01????
000000???0100000000????????????0000001000????????0 
 
Atlasaurus  
???0100?????1?00?0???00???0????????00000??0?0???????????????????
0??????????????????0?0??0?0??????????????????????0 
 
Giraffatitan 
111000011111110100101000000??0???1011101100000001001111000111010
101000000110200011011111?0111111000111000010100010 
 
Brachio_altithorax  
???????????????1?????????????0???10111011000000??00??1?0??11????
???000???10020?0???????????11?1??????1000????????0 
 
Cedarosaurus  
???????????????1?????????????0???1?1?101?00000?0?001?11100?1101?
10?00000010020001?0?1???1?1?????00???101?????????0 
 
Abydosaurus  
1110000110112101?01?1???0??????????????1????????1001?11?????????
??????????0??0?0??????????1??????????1010???????10 
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Europasaurus 
00?00001?111110???101000000??0?0??01110110000?0??00??1?000??1?1?
?0?00?00?010?0?01?????1?0?11101??001?100?????????0 
 
ʻSaltasauriniʼ 
???1111????????2?110?000110?1011101100111111101?0110111011111011
1101111110110111111?????0?111111111011111111011??1 
 
Alamosaurus 
????????????2?12?1001000110??01110110111111110?10110111011111011
210111111011?111111211110111111??11011111111011101 
 
Opisthocoelicaudia 
???????????????????????????0?11?011101101110111101?0111000111?11
200111101011011010121111011?1??111?0110011110111?? 
 
Malawisaurus 
?0?1111???112012??001000?10110111011010111111?10011001100011101?
????10111010?010110?1?11??1??????1101101?1110????1 
 
Daxiatitan 
???????????????2???111?1?011???000?1?1?0??010????????1?01?110???
1?0000???????????????????????????????1010????????0 
 
Erketu 
???????????????2?0111011001?????????????????????????????????????
??????10?????????????????????????????????111001??? 
 
Euhelopus 
??0????00?10200210111101?0110200001101011001?11???????????11???1
110000???0101000???????????01?10000011010111001000 
 
Chubutisaurus 
???????????????2??????????????????110?0??01?00???000011?00111???
110??????0101010?10?11110?1??????000?1010??????10? 
 
Phuwiangosaurus 0???100???? 
120101011111100110200001101001001011010001110001111111000?0?0?11
010001?0?????0?10101110001101011100???0 
 
Sauroposeidon 
??????????????02??101000000010111101?10100000000?00001100011???1
2100000001101000110?1???0?1110111000110101100????0 
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Tangvayosaurus 
???????????????0???????1???????0???1??01????01?0?00011?000??111?
????????????????????????0?1????11000?1010110001??? 
 
Tastavinsaurus 
???????????????2?????????????????011?1011000000010000110001?101?
???????????????????????????110111000110101110??10? 
 
Venenosaurus 
????????????????????????????????????????????????1001?111001?1010
?0??????????????110?1???101????100011????????0011? 
 
Qiaowanlong 
??????????????????11101??00?????????????????????????????????????
???????????????????????????110111000?????????????? 
 
Andesaurus 
???????????????2?????????????????111?101?0??00?01100011000?1101?
?????????01??0????????11??1????111001????????????? 
 
Ligabuesaurus 
??????????????02???????????0101111?101?1?00?0??????????????????1
100000???1101000??????????1??????????101001010?100 
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APPENDIX 4.2 Characters ordered by anatomical region. The original author or 
modifications to preexisting characters are  listed where appropriate.

1. Premaxilla–maxilla suture, shape: planar (0); twisted along its length, giving the 
contact a sinuous appearance in lateral view (1). (Chure et al., 2010).

2. Premaxilla, premaxillary process near anteromedial corner of external naris: 
absent (0); present (1).

3. Lacrimal, anteriorly-projecting vertical plate of bone: absent (0); present (1). 
(modified from Chure et al., 2010).

4. Parietal, distance separating supratemporal fenestrae:  less than (0) or twice (1) 
the long axis of supratemporal fenestra. (Wilson, 2002).

5. Supraoccipital, height: twice (0) subequal to or less than (1) height of foramen 
magnum. (Wilson, 2002).

6. Basal tubera, width relative to occipital condyle: less than 1.4 (0); greater than 1.6 
(1) (modified from Mannion, 2010).

7. Paroccipital process, ventral non-articular process: absent (0); present (1). (Wilson, 
2002).

8. Quadradojugal, anterior ramus, ventral triangular projection: absent (0); present).
9. Dentary, posteroventral process, shape: single (0); divided (1). (modified from 

Chure et al., 2010).
10. Surangular depth: less than twice (0) or more than two and one-half times (1) 

maximum depth of the angular (Wilson, 2002).
11. Dentary teeth, number: greater than 20 (0); 17 or fewer (1). (Wilson, 2002).
12. Tooth crowns, orientation: aligned anterolingually, tooth crowns overlap (0); aligned 

along jaw axis, crowns do not overlap (1). (modified from Wilson, 2002).
13. Marginal tooth denticles: present on anterior and posterior edges of tooth (0); only 

present in posteriormost few teeth (1); absent on both anterior and posterior edges 
(2). (modified from Wilson, 2002).

14. Maxillary teeth, shape: straight along axis (0); twisted axially through an arc of 
30-45 degrees (1). (modified from Chure et al., 2010).

15. Teeth, average slenderness index (= crown height/crown width): > 3.0 (0); < 3.0 
(1).

16. Presacral neural arch bone texture: camerate, with a few, large cavities (0); 
spongy, with centimeter-scale internal cells and walls, “semicamellate” (Wedel et 
al., 2000b) (1); camellate to somphospondylus, with sub-centimeter scale cells and 
walls (Wedel et al., 2000b). (Wilson, 2002).

17. Cervical vertebrae, number: 14 or fewer (0); 15 or more (1) (modified from Wilson, 
2002).

18. Axis, centrum, shape: over two and a half times as long as tall (0); less than twice 
as long as tall (1).

19. Cervical pneumatopores (pleurocoels), shape: complex, divided by bony septa (0); 
simple, undivided (1). (Wilson, 2002).

20. Middle cervical neural spines, shape: single (0); bifid (1). (Wilson, 2002).
21. Middle cervical centra, anteroposterior length/average of width and height of 

posterior face: < 2.5 (0); > 3.0. (modified from Wilson, 2002; Chure et al., 2010).
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22. Cervical vertebrae, epipophyses, shape: stout, pillar-like expansions above 
prezygapophyses (0); posteriorly projecting prongs (1).

23. Cervical vertebrae, eprl, morphology: thin lamina passing nearly horizontally 
across the neural arch (0); thick, subvertically oriented strut that joins the spol at 
the neural spine (1).

24. Cervical vertebrae, tpol, shape: has little or no relief past margin of cpol when 
viewed laterally (0); projects beyond cpol in lateral view, with distint ʻkinkʼ (1).

25. Middle cervical vertebrae, neural canal, shape: roughly same diameter throughout 
length (0); mediolaterally narrows towards mid-length of vertebra (1). (Curry 
Rogers, 2005).

26. Middle and posterior cervical vertebrae, parapophyses, shape: subcircular or only 
slightly longer than tall (0); elongate, making up more than half the functional 
centrum length in posterior cervical vertebrae.

27. Cervical vertebrae, parapophyses, shape and orientation: weakly developed, 
project laterally or slightly ventrally from the centrum (0); broad and project 
ventrally such that cervical ribs are displaced ventrally more than the height of the 
centrum (1). (modified from Wilson and Upchurch, 2009).

28. Posterior cervical and anterior dorsal vertebrae, neural spines, height: tall, length 
approaches or exceeds centrum height (0); very short, length less than centrum 
height (1).

29. Posterior cervical and anterior dorsal vertebrae, spdls: single (0); divided, with low 
relief on the front of the neural spine (1). (modified from Salgado et al., 1997).

30. Posterior cervical and anterior dorsal vertebrae, neural spine, shape: single (0); 
bifid (1); trifid (2).

31. Posterior cervical and anterior dorsal vertebrae, prespinal lamina: absent (0), 
present (1). (Salgado et al., 1997).

32. Posteriormost cervical vertebrae, region between centrum and prezygapophyses, 
height: tall, around centrum height (0); low, much less than centrum height (1). 
(Bonaparte et al., 2006).

33. Anterior dorsal vertebrae, neural spines, shape: taper along their length (0), 
expand distally and end in a rounded, anteroposteriorly thin blade (ʻpaddle-
shapedʼ).

34. Middle dorsal vertebrae, posterior centrodiapophyseal lamina (pcpl): single (0); 
double, with low relief (1).

35. Middle and posterior dorsal vertebrae, spol: divided (0); single (1). (Wilson, 2002).
36. Posterior dorsal centra, articular face shape: amphicoelous (0); opisthocoelous (1). 

(Wilson, 2002).
37. Middle and posterior dorsal vertebrae, diapophyses, shape: short and 

dorsoventrally tall (0); long and dorsoventrally short, rod-like (1). (Janensch, 1950).
38. Middle dorsal vertebrate, diapophyses, orientation: directed dorsally at an angle of 

about 45 degrees (0); directed horizontally (1). (Wilson, 2002).
39. Middle dorsal vertebrae, podl: present (0); absent (1). (Sanz et al., 1999).
40. Middle and posterior dorsal vertebrae, pcdl: single and of constant width (0); 

ventrally widened or forked (1). (Salgado et al., 1997).
41. Middle and posterior dorsal neural spines, breadth: much narrower (0); equal to or 

broader (1) transversely than anteroposteriorly. (modified from Wilson, 2002).
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42. Middle and posterior dorsal vertebrae, prespinal lamina, shape: present and 
bifurcates toward its ventral end (0); present and remains a single lamina 
throughout its length (1). (Upchurch et al., 2004).

43. Middle and posterior dorsal neural spines, orientation: vertical (0); posterior, neural 
spine summit approaches level of diapophyses (1). (Wilson, 2002).

44. Middle and posterior dorsal vertebrae, diapophyses: dorsal surface grades 
smoothly towards face of centrum (0); dorsal surface flat and set off from rest of 
diapophysis by a lip (1). (modified from Sanz et al., 1999).

45. Posterior dorsal neural arches, hyposphene-hypantrum articulations: present (0); 
absent (1). (Wilson, 2002).

46. Middle and posterior dorsal vertebral centra, keel: absent (0); present (1).
47. Sacral vertebrae, number: 5 (0); 6 (1). (modified from Wilson, 2002).
48. Anterior caudal vertebrae, transverse processes, ventral ʻbulgeʼ or ʻkinkʼ visible in 

anteroposterior views: absent (0); present (1). (modified from Chure et al., 2010).
49. Caudal vertebrae, number: more than 50 (0); less than 35 (1). (Wilson, 2002).
50. Anterior and middle caudal centra, ventral longitudinal hollow: absent (0); present 

(1) (Wilson, 2002).
51. Anterior and middle caudal vertebral centra, articular faces, shape: anterior face 

concave and posterior face weakly concave to flat; anterior more concave (0); 
procoelous (1). (modified from Wilson, 2002).

52. Anterior and middle caudal vertebrae, blind fossae in lateral centrum: absent (0); 
present, often sporadically along the vertebral series (1).

53. Anterior caudal vertebrae, tubercle or subtle blade-like process on 
spinoprezygapophyseal lamina (sprl) near prezygapophysis: absent (0); present 
(1).

54. Anterior and middle caudal vertebrae, neural arches, location: over the midpoint of 
the centrum with approximately subequal amounts of the centrum exposed at 
either end (0), on the anterior half of the centrum (1). (Salgado et al., 1997; 
Upchurch et al., 2004).

55. Middle caudal vertebrae, transverse processes, orientation: roughly perpendicular 
(0); swept backwards, usually reaching posterior margin of centrum (excluding 
posterior ball if present) (1).

56. Middle caudal vertebrae, neural spines, orientation: upright or lean posteriorly (0); 
lean anteriorly (1). (modified from Rose, 2007).

57. Middle and distal caudal vertebral centra, articular shape: amphiplatyan (0); 
procoelous (1). (Wilson, 2002).

58. Distal caudal vertebral centra, shape: subcircular (0); around twice as wide as tall 
(1).

59. Dorsal ribs, proximal pneumatocoels: absent (0); present (1). (Wilson, 2002).
60. Anterior dorsal ribs, cross-sectional shape: subcircular (0); plank-like, 

anteroposterior breadth more than three times mediolateral breadth (1). (Wilson, 
2002).

61. Chevrons, ʻcrusʼ bridging dorsal margin of hemal canal: present (0); absent (1). 
(Wilson, 2002).

62. Anterior and middle chevrons, articular facets: contiguous (0); each facet divided 
into an anterior and posterior section, separated by a furrow (1).

227



63. Anterior chevrons excluding the first, haemal canal, depth: short, approximately 25 
percent (0) or long, approximately 50 percent (1) chevron length. (Wilson, 2002).

64. Scapular glenoid, orientation: relatively flat or laterally facing (0); beveled medially 
(1). (Wilson, 2002).

65. Scapula, processes on ventral margin near base of blade, number: zero (0); one 
(1), two (2).

66. Scapular blade, cross-section near base: D-shaped, wide lateral ridge present (0); 
flat or slightly curved, no lateral ridge (1). (modified from Wilson, 2002).

67. Scapula, acromial side of blade, shape: straight (0); curved, flaring (1).
68. Scapulocoracoid suture, shape: suture ends before dorsal margin of acromion and 

coracoid (0); suture extends to dorsal margin of acromion and coracoid (= flush 
dorsal margin).

69. Coracoid, shape: anteroposterior dimension more than 1.5 times proximodistal 
dimension (0); anteroposterior dimension less than proximodistal dimension (1). 
(modified from Wilson, 2002).

70. Coracoid, anteroventral margin: rounded (0); square (1). (Wilson, 2002).
71. Sternal plate, shape: oval with nearly straight lateral margin (0); crescentic, lateral 

margin strongly curved (1). (Wilson, 2002).
72. Sternal plate, shape: posterolateral margin curved (0); posterolateral margin 

expanded as a corner (1).
73. Sternal plate length/humerus length: about 0.5 (0); more than 0.7 (1).
74. Humerus, robustness: robust (length/midshaft width < 7) (0); gracile (length/

midshaft width > 7.5 (1).
75. Humerus, proximolateral corner, shape: forms an obtuse angle, head of humerus 

raised (0); forms a right angle or acute angle, head of humerus flat (1). (modified 
from Wilson, 2002).

76. Humerus, strong posterolateral bulge on around level of the deltopectoral crest, 
absent (0); present (1).

77. Humerus-to-femur ratio: <= 0.80 (0); 0.85 to 0.95 (1); > 1.0. (2). (modified from 
Wilson, 2002).

78. Humerus, deltopectoral crest, shape: narrow throughout length (0); strongly 
expanded distally (1). (modified from Wilson, 2002).

79. Humerus, radial and ulnar condyles, shape: radial condyle divided on anterior face 
by a notch (0); undivided (1).

80. Humerus, distal condyles, shape: flat or convex (0); concave/divided distally (1). 
(modified from Wilson, 2002).

81. Ulna, proximal arms, shape: anterior and medial arms subequal in development 
(0); anterior arm longer and wider than medial arm (1) (modified from Wilson, 
2002).

82. Ulna, distal end: expanded posteriorly (0); unexpanded (1).
83. Radius, distal end, orientation: perpendicular to (0) or beveled approximately 20 

degrees proximolaterally (1) relative to long axis of shaft (1). (Wilson, 2002).
84. Carpal bones, number: 3 or more (0); 2 or fewer (1); none (2). (modified from 

Wilson, 2002).
85. Longest metacarpal-to-radius ratio: close to 0.3 (0); 0.45 or more (1). (Wilson, 

2002).
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86. Metacarpal I, length: less than (0) or subequal to/longer than (1) metacarpal IV. 
(modified from Wilson, 2002).

87. Metacarpal I, distal condyle shape: divided (0); undivided (1). (Wilson, 2002).
88. Metacarpal I distal condyle, transverse axis orientation: beveled approximately 20 

degrees proximodistally (0) or perpendicular (1) with respect to axis of distal shaft 
(i.e., not angled due to bowing of bone). (modified from Wilson, 2002).

89. Metacarpal IV, articulation for metacarpal V, shape: anteroposteriorly long, broad 
articular surface (0); articular surface forms a near-right angle, transverse and 
anteroposterior dimensions of proximal end subequal (1).

90. Metacarpal V, proximal end, size: much smaller than proximal end of metacarpal I 
(0); subequal to or larger than proximal end of metacarpal I (1).

91. Metacarpals, distal articular facets, shape: present and extend well onto external/
anterior face of bone (0); reduced almost entirely to distal face of the bone except 
in metatarsal IV (1). (modified from Wilson, 2002).

92. Ilium, preacetabular process, shape: dorsoventrally short and tapering anteriorly 
(0); expanded into a semicircle anteriorly (1).

93. Ilium, preacetabular process, orientation: directed anteriorly (0); flared laterally (1). 
(Wilson, 2002).

94. Ilium, preacetabular process, kink on ventral margin, absent (0); present (1).
95. Ilium, pubic peduncle, shape: anteroposterior and transverse dimensions subequal 

(0); transverse dimension more than 1.5 times anteroposteior dimension (1).
96. Pubis, length relative to puboischial contact: greater than or equal to 3 (0); less 

than or equal to 2.5 (1) (modified from Wilson, 2002).
97. Ischial blade, length: equal to or longer than (0) or shorter than (1) pubic blade 

(modified from Wilson, 2002).
98. Ischial blade, shape: emarginated distal to pubic peduncle (0); no emargination 

distal to pubic peduncle (1). (Wilson, 2002).
99. Ischium, acetabular margin, shape: margin forms short, obtuse angle (0); margin 

strongly embayed, forming acute angle with tall pubic peduncle (1).
100. Ishium, pubic peduncle, shape: anteroposteriorly long, large ischial contribution to 

acetabulum (0); anteroposteriorly abbreviate, short ischial contribution to 
acetabulum (modified from Wilson, 2002).

101. Ischium, tubercle on lateroventral face, shape: set in fossa (0); raised on surface 
(1).

102. Femoral shaft, lateral margin shape: straight (0); proximal one-third deflected 
medially (1). (Wilson, 2002).

103. Femur, longitudinal ridge on anterior face: absent (0); present (1). (Otero, 2010).
104. Femur, fourth trochanter, shape: raised ridge, projects prominently in lateral view 

(0); low ridge or absent, barely or not visible in anterior view (1).
105. Femur, distal condyles: roughly perpendicular to long axis of shaft (0); beveled 

dorsomedially approximately 10 degrees (1) (Wilson, 2002).
106. Fibula, proximal end, anterior crest: absent or poorly developed (0); well 

developed, creating interlocking proximal crus (1) (modified from Wilson and 
Upchurch, 2009; Royo Torres, 2009).

107. Fibula, proximomedial end, raised triangular scar, present (0); absent (1).
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108. Fibula, shaft, shape: straight (0); sigmoid, such that proximal and distal faces are 
angled relative to midshaft (1). (Royo Torres, 2009).

109. Fibula, distal end, shape: unexpanded or gently expanding distally (0); abruptly 
expands to form a medial lip (1). (modified from Wilson, 2002).

110. Astragalus, shape: at least 1.5 times wider than anteroposteriorly long (0); 
anteroposterior and transverse dimensions subequal.

111. Astragalus, posterior end of proximal face, tubercle: present (0); absent (1).
112. Metatarsal IV, proximomedial end, shape: flat or slightly convex (0); possesses a 

distinct embayment (1).
113. Metatarsal IV, distal end, orientation: roughly perpendicular to long axis of bone 

(0); beveled upwards medially (1).
114. Osteoderms: absent (0); present (1). (Wilson, 2002).
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Appendix 4.3 Synapomorphies. Shared derived features supporting various 
neosauropod clades are listed below in order of decreasing inclusiveness. Characters 
are optimized according to delayed transformations (DELTRAN). See Tables 4.5 and 4.6 
for ambiguous synapomorphies due to character conflict or missing data. Numbers in 
brackets refer to characters in Appendix 4.2.

Atlasaurus + Neosauropoda
1. Marginal tooth denticles present only in posteriormost few teeth (modified from 

Wilson, 2002). [13]

Neosauropoda (Bonaparte, 1986)
1. Distance separating supratemporal fenestrae twice long axis of fenestra (Wilson, 

2002). [4]
2. Middle and posterior dorsal vertebral neural spines broader transversely than 

anteroposteriorly (modified from Wilson, 2002). [41]
3. Chevrons open proximally (Wilson, 2002). [61]
4. Only one carpal bone (modified from Wilson, 2002). [84]
5. Fibula abruptly expanded distally to form medial lip. (modified from Wilson, 2002).

[109]

Macronaria (Wilson and Sereno, 1998)
1. Surangular tall, forming coronoid eminence (Wilson, 2002). [10]
2. Dentary teeth 17 or fewer in number (Wilson, 2002). [11]
3. Middle and posterior dorsal vertebrae opisthocoelous (Wilson, 2002). [36]
4. Middle dorsal vertebral diapophyses project horizontally (Wilson, 2002). [38]
5. Humerus with squared proximolateral corner (modified from Wilson, 2002). [75]
6. Longest metacarpal at least 45% radius length (Wilson, 2002). [85]

Tehuelchesaurus + Titanosauriformes
1. Middle and posterior dorsal vertebrae with ventrally widened or forked posterior 

centrodiapophyseal lamina (pcdl) (modified from Salgado et al., 1997). [40]
2. Anterior dorsal ribs plank-like, at least three times wider than broad (Wilson, 2002). 

[60] 
3. Femur with proximolateral bulge, proximal one-third deflected medially (McIntosh, 

1990; Salgado et al., 1997). [102]

Titanosauriformes (Salgado et al., 1997)
1. Tooth crowns do not overlap (Wilson and Sereno, 1998). [12]
2. Presacral vertebrae ʻsemicamellateʼ, branching centimeter to decimeter-scale cells do 

not fully permeate centrum. [16]
3. Middle cervical vertebral centra, anteroposterior length/average of width and height of 

posterior face > 3.0. (modified from Wilson, 2002; Chure et al., 2010). [21]
4. Middle dorsal vertebrae with divided posterior centroparapophsyeal lamina (pcpl). 

[34]
5. Anterior caudal vertebrae with bulge or ʻkinkʼ on ventral margin of transverse process 

(Chure et al., 2010). [49]
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6. Anterior and middle caudal vertebrae with neural arches set on anterior half of 
centrum (Salgado et al., 1997). [54]

7. Middle caudal vertebrae with posteriorly-projecting transverse processes. [55]
8. Dorsal ribs pneumatic (Wilson and Sereno, 1998). [59]
9.  Anterior chevrons (excluding the first) with hemal canal at least 50% the length of the 

bone (Wilson, 2002). [63]
10. Scapula with tubercle on ventral margin of base of blade. [65]
11. Humerus length between 85% and 95% femur length (modified from Wilson, 2002). 

[77]
12. Ulna with anterior arm much longer and wider than medial arm (modified from 

Wilson, 2002). [81]
13. Ulna with unexpanded posterodistal end. [82]
14. Metacarpal I subequal to or longer than metacarpal IV (modified from Wilson, 2002). 

[86]
15. Metacarpal I distal condyle undivided (Wilson, 2002). [87]
16. Metacarpal I distal condyle perpendicular to long axis of shaft (Wilson, 2002). [88]
17. Metacarpal distal articular facets reduced (excepting metacarpal IV). [91]
18. Ilium preacetabular process expanded, semicircular (Salgado et al., 1997). [92]
19. Ilium preacetabular process flared laterally 45 degrees or more (modified from 

Salgado et al., 1997) [93]
20. Iliac pubic peduncle more than 1.5 times wider than long anteroposteriorly. [95]
21. Pubis at least three times as long as puboischial contact (modified from Wilson, 

2002). [96]
22. Ischium with raised tubercle on lateroventral face. [101]
23. Fibular proximomedial end lacks corrugated triangular scar. [107]

Brachiosauridae (Riggs, 1903)
1. Distance separating supratemporal fenestrae less than long axis of fenestra (Wilson, 

2002). [4]
2. Quadratojugal with ventral triangular projection on anterior ramus. [8]
3. Maxillary teeth twisted axially through an arc of 30–45 degrees (modified from Chure 

et al., 2010). [14]
4. Middle and posterior dorsal vertebrae with long, dorsoventrally short transverse 

processes, ʻrod-likeʼ. [37]
5. Ischium with abbreviate pubic peduncle (Wilson, 2002). [100]

Giraffatitan + ((Brachiosaurus + (Abydosaurus, Cedarosaurus, Venenosaurus))
1. Premaxilla–maxilla suture sinuous. (Chure et al. 2010). [1]
2. Premaxilla with small, fingerlike process near anteromedial corner of external naris. 

[2]
3. Lacrimal with anteriorly projecting plate of bone at dorsal end (modified from Chure et 

al., 2010). [3]
4. Dentary with divided posteroventral process (modified from Chure et al., 2010). [9]
5. Anterior and middle caudal vertebrae with sporadically distributed, shallow fossae in 

lateral faces of centrum. [52]
6. Humerus gracile, length/midshaft width > 7.5. [74]
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7. Humerus length more than 95% femur length. (modified from McIntosh, 1990; Wilson, 
2002) [77]

8. Metatarsal IV with distal end beveled upwards medially. [111]

Brachiosaurus + (Abydosaurus, Cedarosaurus, Venenosaurus)
1. Humerus with rounded proximolateral corner (modified from Wilson, 2002). [75]

Abydosaurus, Cedarosaurus, Venenosaurus
1. Middle caudal vertebrae with neural spines that lean anteriorly (modified from Rose, 

2007). [56]
2. Metacarpal IV embraces metacarpal V; proximal articular surface forms a near-right 

angle. [89]
3. Femoral fourth trochanter reduced to subtle bulge. [104]

Somphospondyli (Wilson and Sereno, 1998)
1. Presacral vertebrae with sub-centimeter scale pneumatic chambers that permeate 

the entire vertebra. [16]
2. Posterior cervical and anterior dorsal vertebrae with spinodiapophyseal laminae that 

are low in relief on the front of the neural spine (modified from Salgado et al., 1997). 
[29]

3. Posterior cervical and anterior dorsal vertebrae with a prespinal lamina (modified from 
Salgado et al., 1997). [31]

4. Posteriormost cervical vertebrae with low ʻinfrazygapophyseal regionʼ; region 
between centrum and prezygapophyses shorter than centrum height (modified from 
Bonaparte et al., 2006). [32]

5. Anterior dorsal vertebrae with plate-like, ʻpaddle shapedʼ neural spines. [33]
6. Scapular glenoid beveled medially (Wilson, 2002). [64]
7. Scapular blade straight on acromial side. [67]
8. Femoral fourth trochanter reduced to subtle bulge. [104]
9. Metatarsal IV with embayed medial face of proximal end. [112]

Sauroposeidon + (Tastavinsaurus + (Euhelopodidae + (Chubutisaurus + Titanosauria)))
1. Scapular blade flat in cross-section (modified from Wilson, 2002). [66]
2. Ischial blade shorter than pubic blade (modified from Wilson, 2002). [97]
3. Fibula with anterior crest on proximal end that is embraced by the cnemial crest of the 

tibia (modified from Wilson and Upchurch, 2009; Royo Torres, 2009). [106]
4. Fibula with distal end that is unexpanded, or gradually and subtly expanded; medially-

facing lip absent. [109]

Tastavinsaurus + (Euhelopodidae + (Chubutisaurus + Titanosauria))
1. Middle dorsal vertebrae, posterior centroparapophyseal lamina (pcpl) undivided. [34]
2. Middle and posterior dorsal vertebrae with single spinopostzygapophyseal lamina 

(spol). [35]
3. Fibula sigmoid; proximal and distal faces angled relative to shaft (Royo Torres, 2009). 

[108]
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Euhelopodidae + (Chubutisaurus + Titanosauria)
1. Supraoccipital subequal to or less than height of foramen magnum (Wilson, 2002). [5]
2. Tooth denticles absent (modified from Wilson, 2002). [13]
3. Middle and posterior dorsal vertebrae with flat-topped diapophyses (modified from 

Sanz et al., 1999). [44]
4. Six sacral vertebrae. (Wilson, 2002). [47]
5. Sternal plate crescentic (Wilson, 2002). [71]
6. Astragalus lacks tubercle on posterior proximal face. [113]

Euhelopodidae
1. Middle cervical neural spines bifid (Wilson, 2002). [20]
2. Cervical vertebrae with thick, subvertically oriented epipophsyeal–prezygapophyseal 

lamina (eprl). [23]

Erketu + (Euhelopus, Daxiatitan + (Tangvayosaurus + Phuwiangosaurus))
1. Cervical vertebrae with ʻkinkedʼ intrapostzygapophyseal lamina (tpol); tpol visible in 

lateral view. [24]
2. Cervical vertebrae with pendant parapophyses; cervical ribs displaced ventrally more 

than the height of the centrum (modified from Wilson and Upchurch, 2009). [27]

Euhelopus, Daxiatitan + (Tangvayosaurus + Phuwiangosaurus)
1. Fifteen or more cervical vertebrae. [17]
2. Cervical vertebral epipophyses form long, posteriorly-projecting prongs. [22]
3. Posterior cervical and anterior dorsal vertebrae with neural spines shorter than 

centrum height. [28]
4. Posterior cervical and anterior dorsal vertebrae with single spinodiapophyseal 

laminae that are sharp in relief on the side of the neural spine (modified from Salgado 
et al., 1997). [29]

5. Posterior cervical and anterior dorsal vertebral neural spines trifid. [30]
6. Posterior cervical and anterior dorsal vertebrae lack prespinal lamina. [31]
7. Posteriormost cervical vertebrae with tall ʻinfrazygapophyseal regionʼ; region between 

centrum and prezygapophyses exceeds centrum height (modified from Bonaparte et 
al., 2006). [32]

8. Anterior dorsal neural spines (metapophyses) taper along their length. [33]
9. Middle and posterior dorsal vertebral centra with ventral keel. [46]
10. Ilium with pointed, low preacetabular process (modified from Wilson, 2002). [92]

Tangvayosaurus + Phuwiangosaurus
1. Presacral vertebrae lack camellae; internal pneumaticity restricted to one or a few 

large chambers in the centrum. [16]
2. Anterior caudal vertebrae with tubercle on dorsal margin of prezygapophyses. [53]
3. Anterior and middle caudal vertebral chevrons with proximal articular facets divided 

into anterior and posterior segments. [62]

Chubutisaurus + Titanosauria
1. Dorsal vertebrae with reclined neural spines (Wilson, 2002) [43].
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2.  Humerus with undivided radial condyle (condyle lacks ʻnotchʼ). [79]

Titanosauria (Bonaparte and Coria, 1993)
1. Anterior and middle caudal vertebrate with ventral longitudinal hollow (Wilson, 2002). 

[50]
2. Ischium platelike, no emargination distal to pubic peduncle (Wilson, 2002). [98]

Lithostrotia (Upchurch et al., 2004)
1. Basal tubera width more than 1.6 times occipital condyle width (modified from 

Mannion, 2010). [6]
2. Paroccipital processes with ventral, non-articular processes (Wilson, 2002). [7]
3. Teeth slender, average slenderness index less than 3. [15]
4. Middle and posterior cervical vertebrae with elongate parapophyses; parapophyses 

make up more than half the functional centrum length in posterior cervical vertebrae 
[26]

5. Middle and posterior dorsal vertebrae with a single prespinal lamina (Upchurch et al., 
2004). [42]

6. Posterior dorsal neural arches lack hyposphene-hypantrum articulations (Wilson, 
2002). [45]

7. Anterior caudal vertebrae with bulge or ʻkinkʼ on ventral margin of transverse process 
(Chure et al., 2010). [49]

8. Anterior and middle caudal vertebrae procoelous (Wilson, 2002). [51]
9.  Coracoid proximodistally long (modified from Wilson, 2002). [69]
10. Sternal plate more than 70% humerus length. [73]
11. Ischial margin of acetabulum strongly embayed, margin acute. [99]
12. Osteoderms present. [114]

Saltasauridae (Powell, 1992)
1. Middle dorsal vertebrae lack postzygapophyseal-diapophyseal lamina (podl) 

(modified from Salgado et al., 1997). [39]
2. Thirty five or fewer caudal vertebrae (Wilson, 2002). [48]
3. Anterior caudal vertebrae with tubercle on dorsal margin of prezygapophyses. [53]
4. Scapulocoracoid suture flush, no embayment at suture. [68]
5. Coracoid anteroventral margin square (Wilson, 2002). [70]
6. Humerus with strong posterolateral bulge around level of deltopectoral crest. [76]
7. Humerus length less than 85% femur length (modified from Wilson, 2002). [77]
8. Humeral deltopectoral crest strongly expanded distally (Wilson, 2002). [78]
9. Radius distal end beveled approximately 20 degrees proximolaterally relative to shaft 

(Wilson, 2002). [83]
10. Carpus unossified or absent (Wilson, 2002). [84]
11. Metacarpal V proximal end subequal in size to proximal end of metacarpal I. [90]
12. Femoral distal condyles beveled 10 degrees dorsomedially relative to shaft (Wilson, 

2002). [105]
13. Astragalus transversely narrow (modified from Wilson, 2002). [110]

Alamosaurus + ʻSaltasauriniʼ
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1. Axis short, less than twice as long as tall. [18]
2. Middle cervical vertebrae, neural canal dramatically narrows at mid-length of centrum 

(Curry Rogers, 2005). [25]
3. Middle and distal caudal vertebrae procoelous (Wilson, 2002). [57]
4. Distal caudal vertebral centra about twice as wide as tall. [58]
5. Humeral radial and ulnar condyles divided distally (Wilson, 2002). [80]
6. Ilium with kink on ventral margin of preacetabular process. [94]
7. Femur with longitudinal ridge on anterior face of shaft (Otero, 2010). [103]
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APPENDIX 4.4 Autapomorphies diagnosing each taxon are listed below. Numbers in 
brackets refer to autapomorphies resolved in the phylogenetic analysis and correspond 
to character numbers given in Appendix 4.2. Features listed without a number following 
them are unique autapomorphies and are absent from the data matrix

Omeisaurus (Young, 1939)
1. Maxillary ascending ramus with dorsoventrally expanded distal end (Wilson & 

Sereno, 1998).
3. More than fifteen cervical vertebrae. [17]
4. Middle cervical vertebral centra, anteroposterior length/average of width and height of 

posterior face > 3.0. [21]
5. Posterior dorsal vertebral centra opisthocoelous. [36]
6. Middle dorsal vertebral diapophyses directed horizontally. [38]
7. Anterior and middle caudal vertebrae with neural arches situated anteriorly on the 

centrum. [54]
8. Distalmost caudal chevrons fused to anteriormost portion of ventral centrum (Wilson, 

2002).
9. Scapular blade unexpanded on acromial side. [67]

Jobaria tiguidensis (Sereno et al., 1999)
1. Cervical vertebral epipophyses form long, posteriorly-projecting prongs. [22]
2. Cervical vertebrae with ʻkinkedʼ intrapostzygapophyseal lamina (tpol); tpol visible in 

lateral view. [24]
3. Cervical ribs with secondary anterior projection. (Wilson, 2002).
4. Dorsal neural arches with well developed, paired coels below diapophysis (Sereno et 

al., 1999).
5. Anterior caudal neural spines with circular depression at base of prespinal lamina 

(Sereno et al., 1999).
6.  Middle caudal vertebrae with posteriorly-projecting transverse processes. [55]
7. U-shaped first caudal chevron (Sereno et al., 1999).
8. Middle caudal chevrons with pronounced ligamentous scar encircling distal end 

(Sereno et al., 1999).

Atlasaurus imelaki (Monbaron et al., 1999)
1. Paroccipital processes extend nearly horizontally (Monbaron et al., 1999).
2. Width of paroccipital processes nearly half mandible length (Monbaron et al., 1999).
3. Jugal process of postorbital orthogonal to dorsal ramus.
4. Supratemporal fenestrae occupy over 80% of skull width.
5. Ulna 115% length of tibia (Monbaron et al., 1999).

Diplodocoidea (Marsh, 1884; Upchurch, 1995)
1. Tooth crowns do not overlap (Wilson and Sereno, 1998). [12]
2. Marginal tooth denticles present only in posteriormost few teeth (modified from 

Wilson, 2002). [13]
3. Teeth slender, average slenderness index less than 3. [15]
4. Cervical ribs short, not overlapping posterior centra (Berman & McIntosh, 1978). 
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5. Fibular facet of astragalus faces posterolaterally (Whitlock, 2011).

Camarasaurus (Cope, 1877)
1. Lacrimal with long axis directed anterodorsally (Wilson & Sereno, 1998).
2. Quadratojugal with short anterior ramus that does not extend anterior to the 

laterotemporal fenestra (Wilson & Sereno, 1998).
3. Quadratojugal anterior process shorter than dorsal process. (Wilson, 2002).
4. Pterygoid with dorsomedially orientated basipterygoid hook (Wilson, 2002).
5. Basal tubera width more than 1.6 times occipital condyle width (modified from 

Mannion, 2010). [6]
6. Splenial posterior process separating anterior portions of angular and prearticular 

(Wilson, 2002).
7.  Middle cervical neural spines bifid (Wilson, 2002). [20]
8.  Posterior cervical and anterior dorsal neural spines bifid. [30]
9.  Conspicuous groove passing anteroventrally from the surangular foramen to the 

ventral margin of the dentary (Wilson & Sereno, 1998).
10. Forked chevrons restricted to distal tail (Wilson, 2002).
11. Metacarpal V proximal end subequal in size to proximal end of metacarpal I. [90]
12. Ischial blade directed posteriorly so that the long axis of its shaft passes though the 

pubic peduncle (Wilson & Sereno, 1998).

Tehuelchesaurus benitezii (Rich et al., 1999)
1. Posterior cervical vertebrae with neural spines less than centrum height. [28]
2. Dorsal vertebrae with very short diapophyses.
3. Middle and posterior dorsal vertebral neural spines broader transversely than 

anteroposteriorly [41]
4. Acromion process of scapula tall, over four times minimum height of scapular blade. 

(Carballido et al., in press)
5. Scapular blade unexpanded on acromial side. [68]
6. Humerus subcircular in cross-section (Upchurch et al., 2004).

Europasaurus holgeri (Sander et al., 2006)
1. Small body size.
2. Premaxilla with anteriorly projecting nasal process (Sander et al., 2006).

Giraffatitan brancai (Janensch, 1914)
1. Snout elongate. (Wilson, 2002).
2. Posterior dorsal vertebral centra about twice as wide as tall.
3. Anterior caudal vertebrae with tubercle on dorsal margin of prezygapophyses. [53]
4. Ilium with kink on ventral margin of preacetabular process [94]
5. Pubis with well-developed ambiens process.

Brachiosaurus altithorax (Riggs, 1903)
1. Posterior dorsal vertebral column long relative to humerus length (Paul, 1988).

Cedarosaurus weiskopfae (Tidwell et al., 1999)
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1. Radius with well-developed flange lateral to ulnar articulation (Tidwell et al., 1999).
2. Radius with subtle tubercle on anterior face of shaft, one-third of the way from 
proximal end.
3. Metatarsal II with well-developed medial and lateral tubercles at mid-shaft. 
4. Metatarsal V rod-like, unexpanded proximally.
5. Metatarsal V longer than metatarsals II or III.
6. Phalanx on metatarsal V.

Venenosaurus dicrocei (Tidwell et al., 2001)
1. Anterior and posterior faces of anterior and middle caudal vertebrae equally flat to 

slightly concave.
2. Metatarsal II with collateral ligament pits.
3. Metacarpal I proximal end more than twice as broad as wide.
4. Metacarpals II–IV with distal articular facets divided.
5. Metatarsal IV with embayed medial face of proximal end. [110]

Abydosaurus mcintoshi (Chure et al., 2010)
1. Foramen on lateral aspect of postorbital at juncture of the three processes.
2. Lacrimal angled anteriorly in lateral view. 
3. Two exits for cranial nerve V.
4. Surangular short, lacking coronoid eminence. [10]
5. Tooth denticles absent. [13]
6. Caudal vertebral transverse processes with deep fossa into ventral face.
7. Collateral ligament pits on metatarsals II–IV.

Ligabuesaurus leanzi (Bonaparte et al., 2006)
1. Distal scapular blade with rounded dorsal expansion.
2. Humeral head expanded posteriorly.
3. Humerus gracile, length/midshaft width > 7.5. [74]
4. Fossae on proximoventral faces of metatarsals II and III.
5. Deep pit on ventrodistal face of manual phalanx I.1.

Sauroposeidon proteles (Wedel et al., 2000)
1. Middle cervical vertebrae with elongation index greater than 6 (Wedel et al., 2000)
2. Pneumatic fossa developed posteriorly to the cotyle in middle cervical vertebrae 

(Wedel et al., 2000).
3. Neural spines perforated in middle cervical vertebrae (Wedel et al., 2000).
4. Top of neural spine with broad midline ridge flanked by small fossae at its anterior 

and posterior ends.
5. Narrow middle and posterior dorsal neural spines that taper distally. [41]
6. Spinoprezygapophyseal laminae (sprl) divergent, forming wide spinoprezygapophyeal 

fossa (sprf) in anterior caudal vertebrae.
7. Anterior caudal vertebral centra roughly square in cross-section.
8. Scapula with two processes at the base of the blade. [65]
9. Humerus gracile, length/midshaft width > 7.5. [74]
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Tastavinsaurus sanzi (Canudo et al., 2008)
1. Distal neural spines of dorsal vertebrae with small fossae and foramina.
2. Distal neural spines of dorsal vertebrae with upwardly-directed hook-like processes.
3. Sacrum narrow.
4. Sacricostal yoke projects well below ventral margin of sacral centra.
5. Fifth sacral rib dorsoventrally deep, flaring distally.
6. Metatarsal I with ventrally expanded distal condyles.
7. Metatarsal I without ventrally expanded proximal articular surface.
8. Metatarsals II–IV divided distally.
9. Metatarsal IV with divided distal articular surface.
10. Metatarsal V with proximoventral flange.
11. Pedal phalanx I.1 subrectangular.

Qiaowanlong kangxii (You and Li, 2009)
1. Cervical vertebral centra large, taller than the neural arch and spines.
2. Pubic articulation of ischium more than 50% ischium length (You and Li, 2009).

Erketu ellisoni (Ksepka and Norell, 2006)
1. Axis extremely elongate (more than 3 times longer than tall).
2. Spinodiapophyseal (sdf) and centrodiapophyseal (cdf) neural arch fossae extremely 

subdivided in cervical vertebrae.

Euhelopus zdanskyi (Wiman,1929)
1. Maxillary ascending process flush with anterior margin of bone; subnarial fossa 

reduced.
2. Teeth procumbent with asymmetrical crown-root margin (i.e. the mesial margin closer 

to the apex of the crown). (Wilson and Upchurch, 2009).
3. Tooth crowns overlap [12]
4. Third cervical vertebral neural spine with laterally compressed, anteriorly projecting 

triangular process (Wilson and Upchurch, 2009).
5. Anterior cervical vertebrae with three costal spurs on tuberculum and capitulum. 

(Wilson and Upchurch, 2009).
6. Cervical vertebrae with thin, horizontally oriented epipophsyeal–prezygapophyseal 

lamina. [23]
7. Ilium pneumatic (Wilson and Upchurch, 2009).
8. Pubis less than 2.5 times as long as puboischial contact. [96]
9. Ischial blade longer than pubic blade. [97]
10. Metatarsal IV with straight medial face of proximal end. [112]

Daxiatitan binglingi (You et al., 2008)
1. Middle and posterior dorsal vertebrae with single, unexpanded posterior 

centrodiapophyseal lamina (pcdl). [40]
2. Middle and distal caudal vertebrae procoelous. [57]
3. Chevrons closed proximally. [61]
4. Femoral distal condyles beveled 10 degrees dorsolaterally with respect to shaft (You 

et al., 2008).
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Phuwiangosaurus sirindhornae (Martin et al., 1994)
1. Quadrate with kinked posteromedial margin of quadrate fossa.
2. Teeth slender, average slenderness index less than 3. [15]
3. Axial centrum without paramedian fossae on anterior half of ventral centrum.
4. Posterior cervical and anterior dorsal vertebrae with tubercle on prdl.
5. Middle dorsal vertebrae with dorsally acuminate pneumatic openings.
6. Middle and posterior dorsal vertebrae with single, unexpanded posterior 

centrodiapophyseal lamina (pcdl). [40]
7. Middle caudal vertebrae with kinked neural arch pedicle below postzygapophyses.
8. Scapular blade D-shaped (with expanded lateral ridge) in cross-section. [66]
9. Humerus gracile, length/midshaft width > 7.5. [74]

Tangvayosaurus hoffeti (Allain et al., 1999)
1. Fibular shaft straight. [108]

Chubutisaurus insignis (DelCorro, 1975)
1. Centroprezygapophyseal fossa (cprf) subdivided in anterior dorsal vertebrae 

(Carballido et al., 2011).
2. Metacarpal I with posteriorly expanded distal condyle.
3. Metacarpal III with distomedial flange.

Andesaurus delgadoi (Calvo and Bonaparte, 1991)
1. Middle dorsal vertebrae with divided posterior centroparapophsyeal lamina (pcpl). 

[34] 
2. Posterior dorsal vertebrae with neural spines more than twice height of centrum 

(Mannion and Calvo, 2011).
3. Caudal vertebral centra transversely narrow.
4. Metacarpals I and V with elongate ridges on their internal faces (Mannion and Calvo, 

2011).

Malawisaurus dixeyi (Haughton, 1928)
1. Abbreviate premaxillary portion of snout, dentary arched ventrally (Wilson, 2002).
2. Surangular notch and groove on dentary (Wilson, 2002).
3. Cervical vertebrae with undivided pleurocoels. [19]
4. Posterior cervical vertebrae with neural spines less than centrum height. [28]
5. Neural spines of anterior caudal vertebrae very short.
6. Sternal plate with squared posterolateral margin. [73]

Opisthocoelicaudia skarzynskii (Borsuk-Bialynicka, 1977)
1. Posterior cervical and anterior dorsal neural spines bifid. [30]
2. Anterior dorsal vertebrae with plate-like, ʻpaddle shapedʼ neural spines. [33]
3. Middle dorsal vertebrae with divided posterior centroparapophsyeal lamina (pcpl). 

[34]
4. Middle and posterior dorsal vertebrae with single, unexpanded posterior 

centrodiapophyseal lamina (pcdl). [40]
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5. Middle and posterior dorsal vertebrae lack flat-topped diapophyses (modified from 
Sanz et al., 1999). [44]

6. Middle and posterior dorsal vertebral centra with ventral keel. [46]
7. Scapula with two processes at the base of the blade. [66]
8.  Scapular blade D-shaped (with expanded lateral ridge) in cross-section. [66]
9.  Ulna with expanded posterodistal end. [82]
10. Femoral fourth trochanter raised as a prominent ridge. [104]
11. Femoral fourth trochanter positioned at midshaft, near midline of femur.
12. Second muscle attachment surface lateral to fourth trochanter on femur.

Alamosaurus sanjuanensis (Gilmore, 1922)
1. Cervical vertebrae with undivided pleurocoels. [19]
2. Biconvex first caudal vertebra with circumferential depression on anterior condyle 

limited to ventral half of bone (DʼEmic et al., in press).
3. Cross section of scapular blade asymmetrical, thicker ventral margin (DʼEmic et al., in 

press).
4. Scapula with two processes at the base of the blade. [65]
5. Ventral edge of scapular blade nearly straight, dorsal edge expanded distally (DʼEmic 

et al., in press).
6. Sternal plate with squared posterolateral margin. [72]
7. Ilium pneumatic. 

ʻSaltasauriniʼ
1. Zygapophyses of cervical vertebrae set posteriorly; postzygapophyses overhang the 

centrum.
2. Middle dorsal vertebral diapophyses directed horizontally. [38]
3. Posterior caudal centra dorsoventrally flattened, breadth of posterior centrum at least 

twice height (Wilson, 2002).
4. Scapula with medial tuberosity on acromial side (Wilson, 2002).
5. Femoral distal condyles exposed on anterior portion of femoral shaft (Wilson, 2002).
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CHAPTER 5 

 

OSTEOCYTES AS PROXIES OF PHYSIOLOGY IN EXTINCT ANIMALS 

 

Introduction 

  

Reconstructing the physiology of extinct tetrapods is a branch of paleontology 

with a rich history, commonly focused on comparisons of bone histology (e.g., 

Enlow, 1956, Reid, 1993, Horner et al., 2000, Chinsamy-Turan, 2005). In cases 

where the animalsʼ long bones (e.g., femur, humerus) contain lines of arrested 

growth, mass-versus-age growth curves can be constructed, yielding both the 

overall pattern and quantitative growth rates for a given species (e.g., Erickson et 

al., 2001). However, for some extinct animals such as sauropod dinosaurs, 

growth lines in long bones are rare (Sander, 2000), making this type of 

skeletochronology often inapplicable. Other efforts to reconstruct the growth 

patterns and rates of extinct animals include the creation of histological 

ontogenetic growth stages (e.g., Horner et al. 2000; Klein and Sander, 2008) and 

relationships between bone vascularity patterns and growth rates (e.g., de 

Margerie et al., 2002). However, these proxies are either qualitative or yield 
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inconsistent or imprecise results (Starck and Chinsamy, 2002). Aside from lines 

of arrested growth, no bone histological proxy has been developed to reliably 

estimate an animalʼs growth rate in a quantitative sense.  

 The morphology of bone-forming cells is a logical and unexplored candidate 

for reconstructing bone growth rates, because the size and shape of these cells 

vary within and among bones of animals that grow at different rates (Marotti, 

1976; Feretti et al., 1998). Bone-forming cells (called osteoblasts) are embedded 

within bone via the differential secretion of bone by neighboring cells (Franz-

Odenaal et al., 2006). Once mature, osteoblasts are referred to as osteocytes. 

Osteocytes have a variety of functions, including ion regulation, mechano-

sensing, and bone repair (Aarden et al., 1994). Osteocytes reside in small 

spaces within bone called lacunae and are connected to one another via 

networks of cellular projections located inside tubes within bone called canaliculi. 

Because lacunae and canaliculi correspond well with osteocyte shape and size 

(Marotti 1979, 1980) and are generally well-preserved in fossils (e.g., Reid, 1993; 

Organ et al., 2007), they provide a window into one aspect of cellular biology in 

deep time. 

 Osteocytes vary in size (ca. 0.1–1.0 µm3; see below), shape, and density 

depending on the sample. Research into osteocyte morphology has largely fallen 

into two fields: modern anatomy and paleontology. Modern anatomical studies 

have largely focused on a few model organisms (e.g., chicken, human, dog) and 

the within-bone variation in osteocyte morphology (e.g., Marotti, 1996). These 
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studies found that osteocyte volume varies with bone identity (e.g., femur versus 

scapula), bone tissue organization (e.g., woven versus lamellar; Marotti, 1980), 

location within a bone (e.g., midshaft versus metaphysis; Cané et al., 1982), and 

distance from a vascular canal (Ardizzoni, 2001). Zallone (1977) and Volpi et al. 

(1981) studied the relationship between bone growth rate and osteocyte size in 

trabecular bone of the tibia of the dog and chick, respectively. Both studies 

reported a strong positive relationship between osteoblast ʻsecretory territoryʼ 

(i.e., the volume of the osteoblast divided by the area touching the growth 

surface, equivalent to the shortest axis of the cell) and the thickness of osteoid 

(unmineralized bone) deposited. Marotti (1976) found a positive relationship 

between osteoblast volume and bone growth rate, and further suggested that 

total osteocyte volume was proportional to bone growth rate.  

 In contrast, paleontological studies have largely investigated osteocyte 

variation using broad taxonomic samples, ignoring the lower-level sources of 

variation (intraspecific, within-individual, within-bone). To date, two studies have 

measured osteocyte volume in a wide variety of amniotes (Organ et al. 2007; 

2009), and both reported a large (nearly ten-fold) degree of variation among taxa. 

Because these studies focused on questions in a broad phylogenetic context, 

some possible factors contributing to osteocyte variation were not controlled for 

(e.g., within- or among-bone variation within an individual). Organ et al. (2007) 

reported a relationship between osteocyte volume and genome size in amniotes 

(R2 = 0.56; R2 = 0.32 under a generalized least-squares regression accounting for 
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phylogeny) and applied that relationship to calculate genome size in several non-

avian dinosaurs. They reported that non-avian theropod dinosaurs had small 

osteocytes (and thus genomes), and inferred that theropods may have had bird-

like metabolisms due to their small cell size (Organ et al., 2007). Organ et al. 

(2007) argued that organisms with smaller red-blood cell size should have higher 

metabolisms because their cells have a higher surface area to volume ratio. 

Organ et al. (2007) assumed that small osteocyte size in theropod dinosaurs 

meant that they had small red blood cell size. This reasoning is supported by the 

data of Gregory (2002), who found a relationship between growth rate and red 

blood cell size after correcting for body mass (but not the phylogenetic 

relatedness of the taxa concerned). Organ et al. (2009) reported moderate 

osteocyte volumes for several sauropodomorph dinosaurs, and suggested that 

osteocyte volume was not related to body size. 

 Data from these modern and paleontological studies suggest opposing 

hypotheses for the relationship between osteocyte volume and bone growth rate. 

Marotti (1976) suggested that larger osteocytes develop from larger osteoblasts, 

which deposit bone faster due to their comparably large volume. In contrast, the 

data presented by Organ et al. (2007) suggest that animals with smaller 

osteocytes have higher basal metabolic rates due to their higher surface area-to-

volume ratio. These reports conflict because in amniotes, growth rate is 

proportional to metabolic rate (Montes et al., 2007). 

 Recently, several studies have integrated data from cellular biology, 
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ecology, and physiology in order to investigate the evolution of metabolism 

across large clades such as mammals or birds (e.g., Kozlowski et al., 2003; 

Savage et al., 2007). Models have been developed to study interactions among 

the number and size of cells and cellular metabolic rates, which combine to 

produce organismal attributes such as basal metabolic rate and body mass 

(Savage et al., 2007). Savage et al. (2007) identified two types of cells: those 

with constant cellular mass and varying cellular metabolic rates (type i; e.g., 

erythrocytes, fibrocytes, hepatocytes, most cells of the lung), and those with 

cellular masses proportional to body mass with invariant metabolic rates (type ii; 

e.g., adiposites, neurons). It is unknown which type of cell osteocytes are. 

Because osteocytes are the only cells commonly observable in deep time, they 

represent an opportunity to trace the evolution of metabolism in deep time in 

different clades. However, first the basic relationships among osteocyte volume, 

body mass, and physiology must be understood. In this chapter, I explore the 

relationships among osteocyte volume, red blood cell volume, growth rate, basal 

metabolic rate, and genome size using a broad sample of modern birds. I attempt 

to discover relationships among these factors that could be applied to understand 

the paleobiology of extinct animals. 

 

Methods 

 

Osteocyte measurement.—The problems associated with obtaining three-
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dimensional measurements from two-dimensional thin-sections are well known 

(e.g., Marotti, 1980; Fig. 5.1), but they have not been taken into account in many 

studies. For example, Organ et al. (2007, 2009) assumed a prolate ellipsoid 

shape (i.e., cigar-shaped, with  intermediate axis = short axis <  long axis) when 

calculating osteocyte volumes. This model is inappropriate because the three 

axes of osteocyte lacunae are almost always unequal for parallel-fibered bone 

(Marotti, 1979, 1980; McCreadie et al., 2004). Osteocytes in parallel-fibered bone 

are generally scalene ellipsoids, which have three unequal axes (Marotti 1980; 

McCreadie et al., 2004). In this chapter, a best-fit ellipsoid was used as the model 

for volume calculation, using the formula: volume = 4/3 * π * long axis * 

intermediate axis * short axis. Canaliculi were excluded from volumetric 

measurements because their contribution to osteocyte volume is negligible 

(McCreadie et al., 2004) and they are not consistently observable due to 

problems of preparation and preservation. Surface area was approximated using 

a formula (surface area = 4 * π * ((apbp + apcp + bpcp) / 3))1/p where p = 1.605). 

Osteocytic osteolysis, a process by which osteocytes have been proposed to 

increase the size of their lacunae through resorption, was not considered a 

significant source of morphological bias following previous studies (Boyde, 1980; 

Teti and Zallone, 2008). Furthermore, osteocytic osteolysis is usually reported for 

osteocytes in ʻstatically formedʼ (woven) bone (e.g., Belanger, 1969), which was 

excluded from the dataset (see below). 

 In order to observe all three axes of the osteocyte lacunae, thin-sectioned 
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bones in two orthogonal dimensions were prepared, which correspond to a 

transverse and a sagittal section for each long bone (Fig. 5.1). Because 

osteocyte lacunae align themselves with the predominant collagen fiber 

orientation in bone (Marotti, 1980) and this fiber orientation can be observed 

under cross- or circularly polarized light (Bromage et al., 2003), one can discern 

whether or not the long axis of an osteocyte lacuna is visible in a given thin-

section. Specifically, areas where thin-sections appear dark under polarized light 

have osteocytes with their longest axis perpendicular to the plane of section (i.e., 

extending into and out of the plane), whereas areas where thin-sections appear 

bright have osteocytes with the longest axis visible in the section. For the 

diaphyses of long bones, osteocytes were generally observed to have their long 

axis parallel to that of the entire bone. 

 Thin sections were photographed under 20x magnification with cross-

polarized light. Osteocyte axes were measured in ImageJ (Rasband, 1997–2011; 

http://rsbweb.nih.gov/ij/). Measuring osteocyte axes in this manner resulted in 

four sets of axes, one long and one short axis for the longitudinally-cut 

osteocytes and one long and one short axis for the transversely-cut osteocytes. 

Only two of these sets were nearly equal (within 10% of one another) and 

represented the shortest axes of the osteocytes, as expected for a scalene 

ellipsoid. Means and variances for each axis and a best estimate of osteocyte 

volume and surface area were calculated for each bone. Because each volume 

or surface area was calculated only after data for each axis were averaged, 
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variances for volumes could not be calculated straightforwardly (i.e., by 

calculating a volume for each cell and then calculating the variance of that 

sample of volumes). In order to calculate variance of the volumes of osteocytes, 

a program was written in R (www.r-project.org) to randomly sample (with 

replacement) each set of osteocyte axes (i.e., long, intermediate, short). Once 

each axis was sampled, a volume and a surface area were calculated. This 

process was repeated 10,000 times and variance was calculated from that 

bootstrapped population of volumes or surface areas. 

 

Data.– Species-specific data were gathered from the CRC Handbook of Avian 

body masses (Dunning, 2008), Starck and Ricklefs (1998), and the Animal Cell 

Size database (http://www.genomesize.com/cellsize). Because several of the 

species in the dataset were sexually dimorphic, average body mass for each sex 

was selected for the appropriate sex (if known). The most widely available data 

on growth rate are in the form of the growth parameter K (day-1), which is 

proportional to overall growth rate in models fitted to plots of age versus mass 

(Stark and Ricklefs, 1998). The K calculated from a logistic growth model was 

selected because it is the most often provided (Starck and Ricklefs, 1998). If K 

were unknown for a species that had been thin-sectioned but did not vary 

substantially (less than 10%) among other species in the same genus, then the 

average generic value for K was used. Species for which I could not find data on 

genome size, growth rate K, or basal metabolic rate were appropriately omitted 
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prior to computation of regressions or phylogenetic independent contrasts (see 

below). 

Seventy-three bird bones were thin-sectioned twice orthogonally to 

produce 156 thin-sections. The sample was broad in terms of phylogeny (Fig. 

5.2) and body size (range: approximately 10 g–100 kg). Bird bones and their thin 

sections are reposited in the University of Michigan Museums of Zoology and 

Paleontology, and specimen data are available through Ornisnet 

(www.ornisnet.org). The sample includes 43 femora from 35 species and 11 

humeri from ten species. For nine species, more than one femur or humerus was 

sectioned. The femur and humerus sectioned were from the same individual for 

eight species, and 21 bones were sectioned from a single skeleton of the emu 

(Dromaius novaehollandae) in order to assess within-individual variation in 

osteocyte morphology. 

 Numerous procedural controls were employed in order to reduce potential 

sources of variation in osteocyte volume. For long bones, thin sections were only 

taken at the midshaft and osteocytes were only measured on the anterior and 

posterior sides of the bone. Only osteocytes in primary, parallel-fibered bone 

from the middle of the cortex were measured: osteocytes in secondary, 

endosteal, periosteal, trabecular, medullary, woven, and lamellar bone were 

excluded. Osteocytes formed by static bone formation (i.e., those representing 

the first stage of bone formation, Palumbo et al., 2004) were also excluded from 

the dataset. 
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Testing hypotheses via regression analysis.— Osteocyte volume or surface area 

was regressed onto body mass, growth rate, basal metabolic rate, and genome 

size. All variables were log-transformed prior to regression. Linear and multiple 

ordinary least squares regressions were calculated using Microsoft Excel. 

Because the datapoints are not independent, phylogenetic independent contrasts 

(Felsenstein, 1985) were computed using the PDAP module of Mesquite 

(Maddison and Maddison, 2009; Midford et al., 2010). Independent contrasts 

were standardized by dividing each contrast by the square root of its standard 

deviation (Garland et al. 1992). A single best-estimate topology was based on the 

phylogenies in Barker et al. (2001, 2004), and Ericson et al. (2006), and branch 

lengths (in millions of years) were taken from the latter. Relationships and branch 

lengths for species not included in Barker et al. (2001, 2004) or Ericson et al. 

(2006) were interpolated from the closest relatives that were included in that 

dataset.  All regressions of phylogenetic contrasts were repeated with all branch 

lengths set equal to one another. 

 

Results 

 

General comments on variation.—Orthogonal thin-sectioning indicated that the 

vast majority of measured osteocytes were best approximated as a scalene 

ellipsoid (x ≠ y ≠ z), rather than a prolate ellipsoid (x = y < z). These osteocytes 
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must be scalene ellipsoids because (1) only two sets of the four measured axes 

(two each in two orthogonal thin sections) were equal, and (2) those two equal 

sets of axes were smaller than the other axes. Observed osteocyte volumes 

spanned nearly an order of magnitude, from 105 µm3 in the femur of the black-

capped chickadee (Poecile atricapillus atricapillus) to 939 µm3 in the ostrich 

(Struthio camelus) (Appendix 1). The range of observed osteocyte surface areas 

was also broad, from 131 to 684 um2 in these two species, respectively. No 

strong relationships exist among the three axes of the osteocyte (Fig. 5.3), in 

keeping with the results of McCreadie et al. (2004). Standard deviations range 

from 3–14% of the mean osteocyte volume for each bone. Standard deviations 

are even more constrained among long bones; they are always below 10% of the 

mean osteocyte volume for humeri and femora (Appendix 1). Osteocytes 

generally appeared larger in the metaphyses and epiphyses of long bones, in 

keeping with the results of Cané et al. (1982). 

 

Within-individual variation.—Variation in osteocyte volume among the bones of 

an individual emu (Dromaius novaehollandae) was substantial, ranging from 130 

um3 in the metacarpals to 789 um3 in the frontal (Fig. 5.4). Surface area also 

varied substantially (Appendix 1). The average and standard deviation of 

osteocyte volumes in all 21 sectioned emu bones was 418 and 177 um3, 

respectively. The average value was similar to the value for the femur, humerus, 

and ischium, but very different from most other bones, which were either lower or 
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higher. Bone size or cortical thickness was also poorly related to osteocyte 

volume as shown by comparisons between the largest bone in the body 

(tibiotarsus, osteocyte volume = 248 um3) with one of the smallest (pedal 

phalanx, osteocyte volume = 345 um3). 

 For eight bird species, a femur and humerus were sectioned from the same 

individual. Difference in osteocyte volumes was high between these bones for a 

given individual, ranging from 7–105%, with an average of 29% (Table 5.1).  

 

Within-species variation.— For eight species, femora from two individuals were 

sectioned, and from one species, humeri from two individuals were sectioned. 

Difference in osteocyte volumes was low between homologous bones of 

individuals of the same species, ranging from 4–24%, with an average difference 

of 12% (Table 5.2). 

 

Relationship between osteocyte volume, osteocyte surface area, and body 

size.—The results of linear regression show that osteocyte volume (N = 35 

species; R2 = 0.78; p = 2E-12; Table 5.3) and surface area (N = 35 species; R2 = 

0.7; p = 5E-12; Table 5.3) are each strongly dependent on body mass in the femur 

and humerus. When accounting for the non-independence of the datapoints due 

to shared ancestry using phylogenetic independent contrasts (Felsenstein, 

1985), the relationship between body mass and osteocyte volume is still 

significant (p < 0.05) but is much weaker (R2 = 0.15). Using a topology with all 
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branch lengths set equal to one (rather than using best estimates of branch 

length from molecular and fossil data, Ericson et al. 2006) did not alter the 

significance of the regression model (i.e., move the p-value below or above 0.05) 

for any of these relationships. Because osteocyte volume scales with body mass, 

osteocytes represent a type ii cell of Savage et al. (2007), that is, osteocytes 

relate to body mass as do neurons and adipocytes, rather than erythrocytes and 

fibrocytes. 

 

Relationship between osteocyte volume, osteocyte surface area, and growth 

rate.—Growth rate was dependent on both osteocyte volume and surface area 

(N = 16 species; R2 ~= 0.45, p < 0.01; Table 5.4). However, this dependence 

disappeared in both cases when phylogeny was taken into account (Table 5.4). 

Using best-estimates of branch length rather than setting branch lengths equal to 

one did not alter the significance of the regression model for any of these 

relationships. The length of the osteocyte short axis was inversely proportional to 

growth rate K (R2 = 0.34; p = 0.02), in conflict with the results of Zallone (1977), 

Marotti (1980), and Volpi et al. (1981), whose data suggested that this axis is 

proportional to bone growth rate. Such a  relationship was not significant when 

phylogenetic relatedness of the datapoints was accounted for (Table 5.4). 

 Because of the strong dependence of osteocyte volume and surface area 

on body mass mentioned above, it is possible that body mass is driving the 

observed relationship between these factors and growth rate. Multivariate 
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regressions performed with osteocyte volume, surface area, surface 

area/volume, short axis, and body mass as independent variables and growth 

rate as the dependent variable were almost all insignificant (Table 5.4). Only the 

regression model between body mass and osteocyte volume or surface area 

remained significant (Table 5.4), suggesting that this relationship drives the 

observed growth rate–osteocyte volume relationship. This interpretation was 

tested by regressing the residuals of a regression between growth rate and body 

mass upon the residuals of a regression between osteocyte volume and body 

mass. The results of this regression were not significant. Accounting for 

phylogeny by using independent contrasts further decreased the strength of 

these relationships (Table 5.4). 

 

Relationship between osteocyte volume, osteocyte surface area, and basal 

metabolic rate.—Mass-specific metabolic rate (i.e., metabolic rate/body mass0.75 ) 

was dependent on osteocyte volume and surface area (N = 18 species; R2 ~= 

0.44; p < 0.005; Table 5.5). Similar to the relationships between osteocyte 

volume and growth rate described above, these relationships were insignificant 

when phylogeny was taken into account. Using best-estimates of branch length 

rather than setting branch lengths equal to one did not alter the significance of 

the regression model for any of these relationships. 

 Using mass-specific metabolic rate (= body mass/metabolic rate0.75) is one 

way to factor body mass out of metabolic rate when performing regressions; 
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another way is to perform a multiple regression using raw basal metabolic rate, 

body mass, and osteocyte volume. The results of this multiple regression 

(accounting for phylogeny or not) indicate that only body mass and osteocyte 

volume or surface area have a significant relationship; there is no independent 

relationship between these osteocyte parameters and basal metabolic rate 

(Table 5.5). 

 

Relationship between osteocyte volume and genome size.—A strong and 

significant relationship was found between osteocyte volume and genome size (N 

= 20 species; R2 = 0.62; p = 4E-5; Table 5.6). This relationship was not significant 

using phylogenetic independent contrasts with best estimates of branch length 

but was significant with all branch lengths set equal to one. This indicates that 

estimated divergence times are important to the significance of the regression 

results presented herein. When genome size and body mass were 

simultaneously regressed on osteocyte volume, neither of these relationships 

was significant (p = 0.78 and 0.18, respectively; Table 5.6), suggesting that the 

dependence of genome size on osteocyte volume is mostly due to the effect of 

body mass. The significance of all other regression models of the relationships 

among these parameters was unaltered by setting branch lengths equal to one. 

 

Discussion 
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 Data presented above show that variation in osteocyte volume and surface 

area is low among homologous bone tissue types, regions within bones, and 

homologous bones of the same species. In contrast, variation in osteocyte 

volume among the bones of an individual is high and not related to bone size or 

function. Osteocyte volume and surface area are strongly dependent on body 

mass, mass-specific metabolic rate, and the growth rate constant K. Genome 

size is strongly dependent on osteocyte volume. However, these relationships 

are all weakened (and most are rendered insignificant) when phylogenetic 

relatedness is taken into account. Relationships among osteocyte volume or 

surface area and metabolic rate, growth parameter K, or genome size disappear 

when correcting for body mass. The results of this study suggest that body mass 

is the strongest control on osteocyte volume and surface area, and that no strong 

relationships exist between metabolic or growth rates and osteocyte morphology. 

This study indicates that osteocytes represent a ʻtype iiʼ cell according to Savage 

et al (2007). This signifies that osteocytes scale with body mass rather than 

metabolic rate. Osteocytes are thus fundamentally different from erythrocytes in 

their relationship to organismal body mass, which explains the problems with 

(and cautions future studies to) relate osteocytes to physiological, molecular, or 

morphological parameters (e.g., Organ et al., 2009). 

 The results presented above stand in contrast to those presented by 

Zallone (1977), Marotti (1980), Volpi et al. (1988), and Organ et al. (2007), who 

proposed relationships between bone growth rate, metabolism, and osteocyte 
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size or morphology. The strong relationship between body mass and osteocyte 

volume discovered herein also contradicts the results of Organ et al. (2009), who 

concluded that osteocyte volume was unrelated to body mass over a broad 

sample of archosaurs.  

 Differences between the results and conclusions of previous studies and 

those presented herein are attributable to several factors. Discrepancies between 

the results presented herein and those of Zallone (1977), Marotti (1980), and 

Volpi et al. (1981) may be partially explained by differences in the bone tissue 

type sampled; those authors primarily sampled lamellar trabecular bone,  

whereas this study examined parallel fibered cortical bone. Growth rate may 

relate differently to osteocyte morphology in these different bone types. 

Furthermore, the ʻgrowth rateʼ considered in this study was for an entire 

individual, rather than for particular bone accretion rates studied by Zallone, 

(1977), Marotti (1980), and Volpi et al. (1981). Differences among bone growth 

rates should balance one another to produce a whole organismal growth rate. 

However, it is clear that the relationships drawn from a single bone cannot be 

scaled up to predict growth rates in an individual. 

 Discrepancies between the results presented above and those of Organ et 

al. (2007, 2009) can be attributed to a combination of two factors. First, Organ et 

al. (2007) compared a variety of bones and tissue types (compare Organ et al. 

(2007: suppl. table 1 with Table 5.1), making their results for osteocyte volumes 

among bones and taxa incomparable. Second, Organ et al. (2007) assumed a 
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prolate ellipsoid shape when calculating osteocyte volumes, which introduced 

substantial error in volume calculation, especially when the long-axis of the 

osteocyte was not visible in the section (e.g., Organ et al., 2007: fig. 1a). Despite 

the methodological problems of Organ et al. (2007, 2009), they recovered a 

signal congruent with amniote phylogeny. However, this signal is likely driven by 

the strong relationship between osteocyte size and body size reported herein. 

 In addition, Organ et al. (2009) may have failed to discover a strong 

relationship between osteocyte volume and body mass because they did not 

always use adult femur lengths when calculating body mass, again suggesting 

that their results per taxon are incomparable with one another (Organ et al., 

2009:suppl. table 1; pers. obs.). The data presented herein using accurate 

measurement techniques, as well as accounting for body size and phylogenetic 

independence, cast doubt on the utility of osteocytes for calculating genome size 

or physiological parameters in extinct vertebrates.  

  

Conclusions 

 

 Osteocyte lacunae currently represent the most commonly available source 

of data for studying cellular biology in fossils, and thus the only data available for 

direct observation of cellular evolution over long timescales. This paper explores 

the potential of osteocyte lacunae as a proxy for physiology using recent birds. 

Avian osteocytes in parallel-fibered bone are scalene ellipsoids, so a single thin-
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section is insufficient to calculate osteocyte volume. The strongest controls on 

osteocyte volume or surface area are bone element (e.g., femur vs. rib), bone 

tissue type (e.g., woven vs. lamellar), and body mass. Osteocyte volume displays 

low variation between homologous bones in individuals of the same species. 

Genome size is not strongly related to osteocyte volume when the effects of body 

mass and/or phylogeny are removed. Growth rate and basal metabolic rate are 

unrelated to osteocyte volume or surface area. Changes in bone growth rate may 

be attributable to osteocyte density (Bromage et al., 2008) or the efficacy of bone 

formation per osteocyte.  
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Figure 5.1. Apparent osteocyte size when cut in different planes. Diagram shows 
two planes of section that were used in this study to observe all three osteocyte 
axes. Photos below illustrate how osteocyte appearance varies based on plane 
of section in the femur of a rhea (UMMZ 223136). 
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Figure 5.2. Best estimate phylogeny of birds used in this study, based on the 
phylogenies presented in Barker et al. (2001, 2004), and Ericson et al. (2006). 
Branch lengths (in millions of years) are shown on each branch, and were taken 
from Ericson et al. (2006). Relationships and branch lengths for taxa not included 
in Barker et al. (2001, 2004) or Ericson et al. (2006) were interpolated from the 
closest relatives that were included in that dataset. 
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Figure 5.3. Osteocyte shape variability in human ilia and bird femora. x, y, and z 
represent the long, intermediate, and short axes of the osteocyte. All osteocytes 
in the sample are scalene ellipsoids (none of the axes are equal). Data for human 
ilia are from McCreadie et al. (2004). 
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Figure 5.4. Osteocyte size variability in the emu (UM R1717). All bones were 
sampled at their mid-shafts or centers. 
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Table 5.1. Within-individual variation in osteocyte volume for eight species of bird.

species bone
osteocyte 
volume 

mean (um3)

osteocyte volume 
standard deviation 

(um3)
% difference 

between bones

Aegolius 
acadius

femur 210 11.9
28Aegolius 

acadius humerus 269 11.4
28

Bonasa 
umbellus

femur 231 8.2
29Bonasa 

umbellus humerus 179 7.8
29

Colaptes 
auratus

femur 199 7.7
7Colaptes 

auratus humerus 186 11.3
7

Gallus 
domesticus

femur 326 16.7
21Gallus 

domesticus humerus 394 17.9
21

Megascops 
ʻOtusʼ asio

femur 194 6.6
6Megascops 

ʻOtusʼ asio humerus 206 9.1
6

Megascops 
ʻOtusʼ asio

femur 157 9.6
27Megascops 

ʻOtusʼ asio humerus 199 18.6
27

Parus 
atricapillus

femur 114 4.8
9Parus 

atricapillus humerus 124 6.2
9

Struthio 
camelus

femur 939 76.7
105Struthio 

camelus humerus 458 26.2
105
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Table 5.2. Variation in osteocyte volume between homologous bones of individuals of 
the same species. Unless otherwise noted, data are for femoral osteocytes. 

species
osteocyte volume mean 

(um3)

osteocyte volume 
standard deviation 

(um3)

% difference 
between individuals

Accipiter cooperi
332 17.4

12Accipiter cooperi
297 13.2

12

Accipiter striatus
260 10.9

8Accipiter striatus
281 18.4

8

Cyanocitta cristata
216 10.3

18Cyanocitta cristata
183 6.5

18

Dendroica 
pensylvanica

162 12.5
5Dendroica 

pensylvanica 170 9.0
5

Megascops ‘Otus’ asio
157 6.6

24Megascops ‘Otus’ asio
194 9.6

24

Megascops ‘Otus’ asio 
(humerus)

206 9.1
4Megascops ‘Otus’ asio 

(humerus) 199 18.6
4

Phalacrocorax 
idahoensis

290 18.0
13Phalacrocorax 

idahoensis 328 26.4
13

Pheucticus ludovicianus
108 7.9

19Pheucticus ludovicianus
129 7.5

19

Piranga olivacea
105 9.3

9Piranga olivacea
114 4.8

9
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Table 5.3. Linear regressions among osteocyte volume, osteocyte surface area, body 
mass, femur length, and red blood cell area. All values were log-transformed prior to 
regression. Phylogenetic independent contrasts (PICs) were standardized prior to 
regression following Garland et al. (1992). Significant p-values ( = F-statistic by the F-
test) are shown in bold; all p-values are for the two-tailed case.

y variable 
(dependent)

x variable 
(independent)

R2 standard 
error

F two-tailed 
p-value

osteocyte 
volume

body mass 0.78 0.10 118.10 1.90E-12

osteocyte 
surface area

body mass 0.70 0.63 122.67 4.70E-10

osteocyte 
volume

red blood cell 
area

0.56 0.15 75.68 4.30E-05

PIC osteocyte 
volume

PIC body mass 0.17 0.09 26.42 0.015

PIC surface area PIC body mass 0.16 0.09 5.99 0.020

270



Table 5.4. Regressions among the growth rate parameter (K, 1/day), body mass, 
osteocyte volume, and osteocyte surface area. All values were log-transformed prior to 
regression. Phylogenetic independent contrasts (PICs) were standardized prior to 
regression following Garland et al. (1992). Significant p-values are shown in bold; all p-
values are for the two-tailed case. The F-statistic for the bivariate regressions is 
equivalent to the p-value listed. SE = standard error of the regression model.

x variable 1 x variable 2 y variable R2 p-value 
for x 
var 1

p-value 
for x 
var 2

SE F F-stat-
istic

osteocyte 
volume

— growth rate K 0.46 0.004 — 0.33 11.88 —

osteocyte 
surface area

— growth rate K 0.42 0.007 — 0.34 10 —

short axis of 
osteocyte

— growth rate K 0.34 0.02 — 0.05 6.83 —

osteocyte 
surface area/
volume

— growth rate K 0.42 0.009 — 0.04 9.30 —

PICs of 
osteocyte 
volume

— PICs of 
growth rate K

0.01 0.713 — 0.05 0.14 —

PICs of 
surface area

— PICs of 
growth rate K

0.03 0.574 — 0.05 0.33 —

PICs of short 
axis of 
osteocyte

— PICs of 
growth rate K

0.01 0.78 — 0.01 0.08 —

PICs of 
osteocyte 
surface area/
volume

— PICs of 
growth rate K

0.01 0.78 — 0.01 0.08 —

osteocyte 
volume

body mass growth rate K 0.7 0.59 0.007 0.25 14.9 4E-04

osteocyte 
surface area

body mass growth rate K 0.69 0.86 0.005 0.26 14.5 5E-04

short axis of 
osteocyte

body mass growth rate K 0.72 0.44 0.002 0.25 15.7 4E-04

osteocyte 
surface area/
volume

body mass growth rate K 0.73 0.4 0.003 0.25 16 4E-04
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x variable 1 x variable 2 y variable R2 p-value 
for x 
var 1

p-value 
for x 
var 2

SE F F-stat-
istic

PICs of 
osteocyte 
volume

PICs of 
body mass

PICs of 
growth rate K

0.32 0.39 0.04 0.05 2.78 0.102

PICs of 
surface area

PICs of 
body mass

PICs of 
growth rate K

0.3 0.56 0.06 0.05 2.33 0.14

PICs of short 
axis of 
osteocyte

PICs of 
body mass

PICs of 
growth rate K

0.32 0.36 0.04 0.05 2.81 0.1

PICs of 
osteocyte 
surface area/
volume

PICs of 
body mass

PICs of 
growth rate K

0.32 0.36 0.04 0.05 2.84 0.1
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Table 5.5. Regressions among the basal metabolic rate, body mass, osteocyte volume, 
and osteocyte surface area. In some cases, basal metabolic rate was normalized for 
body mass (mass-specific metabolic rate; Gillooly et al. 2006). All values were log-
transformed prior to regression. Phylogenetic independent contrasts (PICs) were 
standardized prior to regression following Garland et al. (1992). Significant p-values are 
shown in bold; all p-values are for the two-tailed case. The F-statistic for the bivariate 
regressions is equivalent to the p-value listed. SE = standard error of the regression 
model.

x 
variable 

1

x 
variable 

2

y variable R2 p-value 
for x 
var 1

p-value 
for x 
var 2

SE F F-
statistic

osteocyte 
volume

— mass-specific 
metabolic 
rate

0.46 0.002 — 0.15 13.46 —

surface 
area

— mass-specific 
metabolic 
rate

0.41 0.004 — 0.16 10.93 —

PIC 
osteocyte 
volume

— PIC mass-
specific 
metabolic 
rate

0.014 0.650 — 0.08 0.21 —

PIC 
surface 
area

— PIC mass-
specific 
metabolic 
rate

0.003 0.840 — 0.08 0.04 —

osteocyte 
volume

body 
mass

basal 
metabolic 
rate 
(uncorrected)

0.56 0.87 0.08 0.14 9.56 0.002

surface 
area

body 
mass

basal 
metabolic 
rate 
(uncorrected)

0.56 0.87 0.037 0.14 9.56 0.002

PICs of 
osteocyte 
volume

PICs of 
body 
mass

PICs of basal 
metabolic 
rate 
(uncorrected)

0.84 0.58 6E-05 0.03 37.87 2E-06

PICs of 
surface 
area

PICs of 
body 
mass

PICs of basal 
metabolic 
rate 
(uncorrected)

0.84 0.66 7E-05 0.03 37.50 2E-06
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Table 5.6. Regressions among genome size, body mass, osteocyte volume, and 
osteocyte surface area. All values were log-transformed prior to regression. 
Phylogenetic independent contrasts (PICs) were standardized prior to regression 
following Garland et al. (1992). Significant p-values are shown in bold; all p-values are 
for the two-tailed case. The F-statistic for the bivariate regressions is equivalent to the 
p-value listed. SE = standard error of the regression model.

x 
variable 

1

x 
variable 

2

y 
variable

R2 p-value 
for var 1 

p-value 
for var 2

SE F F-
statistic

genome 
size

— osteocyte 
volume

0.62 4.27E-05 — 0.03 28.82 —

PIC 
genome 
size

— PIC 
osteocyte 
volume

0.02 0.537 — 0.01 0.40 —

PIC of 
genome 
size

PICs of 
body 
mass

PICs of 
osteocyte 
volume

0.13 0.771 0.181 0.02 1.18 0.33
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CHAPTER 6 

 

CONCLUSION 

 

 In this chapter I summarize the research results and conclusions of the 

preceding dissertation. In the past decade, the number of named titanosauriforms 

has greatly outpaced both taxonomic revision of preexisting genera and 

phylogenetic studies of their interrelationships, leaving a large unresolved pool of 

genera as ʻbasal titanosauriforms.ʼ This dissertation utilized comparative 

anatomy in museum collections research, geologic and paleontological fieldwork, 

bone histology, and cladistic analysis to better understand the evolution and 

systematics of early titanosauriform dinosaurs. 

 In Chapter 2 I resolved the taxonomic affinities of Early Cretaceous 

titanosauriforms from the Trinity Group of Texas. I first showed that a lack of 

autapomorphies in their holotypes and definitive skeletal associations among 

their hypodigms renders Astrodon johnstoni, Pleurocoelus altus, and 

Pleurocoelus nanus nomina dubia, precluding referral of Texan material to those 

taxa as has been common practice historically. I showed that although 

representative individuals of one Texan genus, Paluxysaurus, were not near 
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adult size at the time of death. The similar provenance, lack of morphological 

differences, and shared unique features support referral of Paluxysaurus to 

Sauroposeidon. Other titanosauriform materials from the Trinity Group represent 

the holotype of a new basal titanosauriform diagnosed by a hyposphene-

hypantrum system in the caudal vertebrae. A titanosauriform hind limb previously 

referred to “Pleurocoelus” is instead referable to the brachiosaurid Cedarosaurus 

weiskopfae based on shared features of the pes. I showed that the Trinity Group 

of Texas and laterally-equivalent Antlers Formation of Oklahoma exhibit a similar 

dinosaur fauna at the generic level with the Cloverly Formation of Wyoming. This 

homogeneity with respect to latitude stands in marked contrast to the latitudinal 

variation in dinosaur faunas that developed later in the Cretaceous.  

In Chapter 3, I redescribed and presented new sauropod material from the 

Early Cretaceous Cloverly Formation that I refered to the titanosauriform 

Sauroposeidon proteles. In contrast to previous hypotheses that it was a 

brachiosaurid, I asserted that Sauroposeidon is a member of Somphospondyli on 

the basis of numerous features including fine camellate pneumaticity in presacral 

vertebrae, a medially beveled scapular glenoid, and an interlocking proximal tibia 

and fibula. Thus, the disappearance of sauropods from the North American fossil 

record (the start of the ‘sauropod hiatus’) concerned both brachiosaurids and 

somphospondylans. I found claims for titanosaurs in the Early Cretaceous of 

North America to be unsubstantiated. My field observations augment previous 

reports that indicate that the latest register of Sauroposeidon and other Early 

Cretaceous North American sauropods occurs in or below the near-coastal units 
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marking major transgression of the Western Interior Seaway, whereas seven 

ecologically disparate dinosaur lineages are present just below and above this 

boundary. The presence of these through-ranging lineages with sauropods 

before and after sauropod disappearance suggests that appropriate sauropod-

bearing environments were present into the early Late Cretaceous, in turn 

suggesting that the disappearance of sauropods is not attributable to taphonomic 

bias or uneven sampling. Furthermore, my field observations of the Cloverly 

Formation indicate that sauropods inhabited near-coastal environments, which 

were abundant in the western United States well after sauropods’ disappearance. 

I interpret the start of the sauropod hiatus as the result of a genuine continent-

wide extinction, perhaps attributable to competition with ornithischian herbivores 

and/or the incursion of the Western Interior Seaway. 

  In Chapter 4, I investigated the phylogenetic relationships of basal 

titanosauriforms via a cladistic analysis in which 25 terminal taxa were scored for 

114 characters, over one-third of which were new. Analysis of these characters 

resulted in the recovery of three main clades: Brachiosauridae, a cosmopolitan 

mix of Late Jurassic and Early Cretaceous forms, Euhelopodidae, an endemic 

clade of ʻmiddleʼ Cretaceous East Asian sauropods, and Titanosauria, a large 

Cretaceous clade made up of mostly Gondwanan genera. Early titanosauriforms 

and their outgroups display cosmopolitanism, but towards the middle of the 

Cretaceous, brachiosaurids and euhelopodids display endemism. 

Titanosauriform paleobiogeographic history is the result of several factors, 

including differential extinction patterns and dispersal. Several putative 
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brachiosaurids were instead found to represent non-titanosauriforms or more 

derived taxa, and no support for a Laurasia-wide clade of titanosauriforms was 

found. This analysis establishes robust synapomorphies for many titanosauriform 

subclades. A reevaluation of the phylogenetic affinities of fragmentarily 

represented taxa based on these synapomorphies finds no body fossil evidence 

for titanosaurs before the middle Cretaceous (Aptian), in contrast to previous 

reports of Late Jurassic taxa. Purported titanosaur tracks from the Middle 

Jurassic either represent a 35-million-year ghost lineage for the group (longer 

than their entire body fossil record) or — more likely — represent non-

titanosaurs. This study provides a foundation for future study of basal 

titanosauriform phylogeny and the origins of Titanosauria. The latter topic 

remains enigmatic, as the geologically oldest titanosaurs are already derived 

forms. 

 In Chapter 5, I investigated the morphology of bone-forming cells 

(osteocytes), which are the only cells whose morphology is readily observable in 

the fossil record. Previous studies had linked osteocyte morphology with genome 

size and bone growth rates, and had suggested that osteocyte volume was 

unrelated to body size. I showed that results of previous studies are suspect due 

to their design, sample scope, or analysis, using a large sample of modern birds 

and orthogonal thin sectioning. I demonstrated that avian osteocytes in parallel-

fibered bone are best modelled as scalene ellipsoids, and that the strongest 

controls on osteocyte volume or surface area are bone element (e.g., femur vs. 
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rib), bone tissue type (e.g., woven vs. lamellar), and body mass. Osteocyte 

volume displays low variation between homologous bones in individuals of the 

same species. Genome size is not strongly related to osteocyte volume when the 

effects of body mass and/or phylogeny are removed. Growth rate and basal 

metabolic rate are unrelated to osteocyte volume or surface area. Changes in 

bone growth rate instead may be attributable to osteocyte density or the efficacy 

of bone formation per osteocyte.  

 This dissertation synthesized data and methods from several disciplines to 

investigate the evolution of titanosauriform sauropod dinosaurs. I presented 

several taxonomic revisions and a framework of their early evolution via cladistic 

analysis. I also showed that osteocyte morphology is not a suitable proxy for 

reconstructing the growth rates, metabolic rate, or genome sizes of extinct 

animals as had been previously concluded. Further work is needed to reconstruct 

the growth rates of titanosauriforms via bone histology.  
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