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CHAPTER 1

Motivation and Requirements for Quantum Computing

Quantum computing, defined as information processing using quantum mechanical

systems, is a valuable technique that can solve certain problems much more efficiently

than a classical computer. Cobham’s thesis defined an “efficient” algorithm as one

that scales as a polynomial of the size of the problem’s input, and equated an “effi-

cient” algorithm with one that could be feasibly computed by any “reasonable and

general” classical method [1]. Quantum simulations [2], Shor’s algorithms [3], and

Grover’s algorithm [4] are examples of problems for which quantum algorithms have

been developed that are more efficient than classical algorithms.

One of Richard Feynman’s insights was the suggestion in 1982 that a quantum

computer could simulate quantum systems more efficiently than a classical com-

puter [2]. This suggestion was later proved to be correct by Seth Lloyd in 1996 [5].

The challenge in simulating quantum systems stems from the 2n differential equations

that must be solved to model n quantum bits. A quantum bit, or qubit, is simply a

two level system that obeys the laws of quantum mechanics and serves an analogous

role in quantum computing to that of bits in classical computing. The ability to

simulate quantum systems could have implications for a wide range of applications

and scientific fields, such as calculating basic parameters for chemistry, simulating

the Hubbard model, or even simulating quantum gravity if enough qubits were avail-

able [5].

Among the most famous and influential quantum algorithms are Shor’s and Grover’s

algorithms. In 1994, Peter Shor presented a method for computing both prime fac-

1
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torization and the discrete logarithm problem in polynomial time using quantum

algorithms that take advantage of the quantum Fourier transform [3]. Shor’s algo-

rithm is a substantial improvement in efficiency over the fastest existing classical

factoring algorithm, which scales sub-exponentially with the bits in the number to

be factored [3]. These efficient factoring and discrete logarithm algorithms receive so

much attention because, if implemented, they would render public key encryption no

longer secure [6].

Lov Grover’s quantum search algorithm, which addresses the challenge of search-

ing an unsorted database, would run in time
√
N compared to time N for a classical

algorithm [4]. While there are some limitations to the usefulness of this algorithm in

searching classical databases, Grover’s search algorithm has the possible application

of speeding up solutions to the set of Non Polynomial-complete problems [6].

1.1 Physical Implementations of Quantum Computing

In his 2000 paper [7], DiVincenzo enumerated five fundamental requirements for

quantum computation:

1. A scalable physical system with well characterized qubits

The requirement of scalability refers to the fact that a quantum computer able to

perform useful computations will need to consist of a large number of qubits.

2. The ability to initialize the state of the qubits

Initialization is fundamental to computing schemes since it is important to start in a

known state. Also, quantum error correction schemes require a continuous supply of

initialized qubits.

3. Long relevant decoherence times compared to the gate operation time

Since coherence is essential to quantum computation, the ratio of the gate opera-

tion time to the decoherence time determines the number of operations that can be

performed before the qubits must be reinitialized. The necessary ratio is still under

discussion, but it is largely dependent on error correction schemes. DiVincenzo sug-

gests a ratio of 10−4 to 10−5 would be sufficient.
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4. A “universal” set of quantum gates

A universal set of quantum gates is a set of gates that can be used to compute any

unitary quantum operation. One example of a universal set of gates is a single qubit

gate and a controlled not (CNOT) gate [6].

5. A qubit specific measurement capability

Ideally, a measurement on one qubit would not change the state of the rest of the

qubits.

1.1.1 Nuclear Magnetic Resonance

One of the early approaches to implementing a quantum computer was based

on nuclear magnetic resonance (NMR) techniques with the spin states of molecules

serving as qubits. Early success, such as a 7 bit demonstration of Shor’s algorithm in

2001 [8], gave way to substantial challenges: increasing the number of bits reduced

the signal strength exponentially making systems above 10 qubits challenging [9] and

studies by Caves and others showed that liquid state ensemble NMR efforts so far did

not possess quantum entanglement [10].

1.1.2 Optical Quantum Computing

The use of photons as qubits faces a major challenge due to the large number

of operations that must be performed to obtain sufficiently high fidelities [11]. At

first the extremely large resource overhead required due to this challenge seemed to

condemn optical qubits, but recent work has been addressing this issue with new

error encoding schemes and cluster-state methods [12–15]. The future feasibility of

this method will require the development of high-efficiency single photon sources and

detectors as well as low loss optical circuits, as the entire optical system must be

highly efficient [11].

1.1.3 Trapped ions and atoms

Another very successful and mature implementation of quantum computing is the
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use of trapped ions and atoms as qubits. As many as 14 trapped ions have been

entangled [16], and a semiclassical quantum Fourier transform algorithm has been

demonstrated in a three ion system [17]. The electromagnetic interactions between

ions makes scaling to large numbers of qubits challenging, especially in a linear qubit

geometry. In response to this challenge, research is ongoing on three dimensional

arrays of ions as well as on the use of neutral atoms as qubits. In early 2010 the first

two qubit gate was demonstrated for neutral atoms [18].

1.1.4 Superconducting qubits

One of the more popular approaches to quantum computing has been the use of

solid state superconducting circuits involving Josephson junctions. Several types of

qubits have been explored, including charge, quantronium, flux, and phase qubits,

in an attempt to find the longest possible decoherence time [19]. These circuits

have the advantage that they use very little energy and offer direct control of the

interaction between qubits [19]. Demonstrations to date include a CNOT gate [20],

entanglement of qubits [21], and a single qubit gate with the predicted ability to

perform 104 operations before decoherence [19].

1.1.5 Quantum Dots

Our group studies optically controlled semiconductor quantum dots. The quantum

confinement present in dots is very favorable for quantum computing. One reason

for this is a shift in the biexciton energy due to confinement, which leads to the

suppression of many-body effects in semiconductor quantum dots [22, 23]. Many-

body effects are extremely detrimental to quantum computing schemes since they

greatly increase the decoherence in the system. Semiconductor quantum dots have

the advantage that they are inherently spatially stable without the need for complex

optical traps as are needed for ion studies. Also, successful semiconductor quantum

dot technology is able to take advantage of the existing semiconductor manufacturing

infrastructure. Quantum dot lasers [24–26], detectors [27–30], and light emitting
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diodes [31–34] illustrate the potential to integrate quantum dots with existing III-V

semiconductor devices. The physical parameters of quantum dots can be controlled

by engineering the growth process, though ultimately the growth process is statistical

and results in a wafer with a distribution of physical properties. Dots are characterized

after growth and post-selected for desired characteristics.

The dots studied in this thesis are self-assembled semiconductor quantum dots

(SAQDs). In addition to possible quantum computing applications, SAQDs show

promise as single photon sources [35], entangled-photon sources [36, 37], and single-

photon optical switches [38]. Self-assembled dots have better lateral confinement than

other types of semiconductor dots, such as interface fluctuation dots. However, the

dipole moments in the self-assembled dots tend to be smaller than interface dots. We

have measured dipole moments on the order of 10-30 Debye in our self-assembled

dots compared to 100 Debye in interface dots [39, 40]. This has made detection of

some optical signals more challenging. Self-assembled dots confine both electrons

and holes up to temperatures of 10 K, compared to electrically defined dots, which

only confine one carrier and operate at milliKelvin temperatures [41]. Confinement

of both electrons and holes is necessary to take advantage of optical transitions as a

fast control technique.

One of the most promising aspects of the indium arsenide (InAs) self-assembled

quantum dots studied in this work is the long electron spin dephasing time. The

spin dephasing time is normally shortened by the nuclear environment, leading to an

estimated spin dephasing time as short as 1 nanosecond, but this has been length-

ened to 80 nanoseconds by optical locking of the nuclear field [42,43]. Once combined

with the ability to manipulate the spin with picosecond (or shorter) pulses, as will

be demonstrated in Chapter 3, over 104 operations could be possible within the spin

dephasing time, making the spin of an electron confined in an InAs self-assembled

dot a promising qubit.
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1.2 Gates and Rotations

The simplest possible gate operates on a single qubit. All quantum gates must

be unitary operations, U , such that U †U = 1. Any unitary single qubit operator can

be written as U = eiφRn̂(θ), where Rn̂(θ) represents a rotation of the qubit by an

angle θ about the axis n̂. Thus any single qubit operation can be accomplished with a

rotation and a global phase shift. Furthermore, the rotation, Rn̂(θ), about a general

axis and by a general angle, known as an arbitrary rotation, can be decomposed into

Rn̂(θ) = Râ(α)Rb̂(β)Râ(γ), where â and b̂ are any non-parallel vectors. The result

of this is that any single qubit gate can be formed from rotations about any two

non-parallel axes plus a phase gate. As stated earlier, this single qubit gate combined

with a CNOT gate form a universal set of gates that can accomplish any unitary

operation on any number of bits [6].

1.3 Entanglement

Entanglement is a quantum mechanical effect that can occur in composite sys-

tems and is important for quantum computing. If |ψ〉 is a wavefunction in subsystem

A, |φ〉 is a wavefunction in subsystem B, and noninteracting subsystems A and B

were prepared independently, then the wavefunction of the composite system AB is

the product state |φ〉|ψ〉. Furthermore, if measurements were made separately on

systems A and B, we would not expect to find any correlations between the measure-

ments. Entangled states are states of composite systems that cannot be written as

product or factorisable states of their subsystems. Measurements of subsystems of

entangled states have some correlation. The entropy of entanglement is one method

for quantifying entanglement, which is discussed in detail in Appendix A [6].

Neilson and Chuang describe entanglement as a resource whose properties and

“crucial” role in quantum computing are not yet fully understood [6]. Ekert and

Jozsa asserted in 1998 that entanglement was “the essential non-classical feature

providing the computational speed-up in the known quantum algorithms” using the

quantum Fourier transform as an example [44]. This statement was qualified in a
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paper by Jozsa and Linden in 2002, which clarified that entanglement was essential

only in algorithms that operate on pure states, and therefore may not be essential for

computational speed-up in algorithms that operate on mixed states [45].

Despite these ongoing discussions about the role of entanglement in quantum

computing, it may seem strange that entanglement is not mentioned in DiVincenzo’s

list of requirements. In fact, entanglement is implicitly contained in requirement 4,

which requires a universal set of gates. Physical systems become entangled due to

dynamical interactions between them, and this interaction could be a defined multi-

qubit gate. It has been proved that a two qubit gate is universal if and only if it is

an entangling gate [46], therefore a demonstration of a universal two qubit gate is a

demonstration of entanglement.

Entanglement can be a useful tool in demonstrating a scalable system, part of

DiVincenzo’s first requirement. Demonstrating controllable entanglement between

different qubits in a large network requires that the two qubits interact selectively.

One proposed method for this interaction in quantum dot networks is via a photon

intermediate called a “flying qubit”. The idea is that the first dot-based qubit would

be entangled with an emitted photon, which then would be absorbed by a second

distant dot, leaving the two dots entangled [47]. Two systems that are maximally

entangled, or have an entropy of entanglement of 1, essentially contain the same in-

formation since measurement on either system is completely correlated with the other

system. Therefore, entangling interactions have the useful ability to pass information

from one system to another. The potential of combining solid state qubits with flying

qubits has created a high level of interest in demonstrations of spin-photon entangle-

ment. Chapter 4 discusses preliminary efforts toward such a demonstration with a

single electron spin in a self-assembled quantum dot.

Entanglement methods are often described as either deterministic or probabilis-

tic. If a system is deterministically entangled, then the desired state of the system is

created with a high degree of certainty. In probabilistic entanglement methods, some

non-negligible fraction of the time entanglement is not created. Usually some form of

post-selection is used with probabilistic methods. Scaling probabilistic entanglement
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methods to large numbers of qubits requires error-correction or “entanglement purifi-

cation” methods, since the probability of entanglement drops exponentially with the

number of entangled qubits [48], [49], [50].

1.4 Thesis Outline

This thesis discusses and demonstrates optical coherent control techniques for an

electron spin in a single InAs self-assembled quantum dot. Chapter 2 begins with

a description of the samples studied, including the growth method, structure, and

how the sample features enable single dot optical studies. Following this, some of the

relevant condensed matter properties of bulk direct gap semiconductors and quantum

dots are discussed to lay the groundwork for a detailed discussion of optical transitions

in InAs dots. Equations of motion are derived for the lowest four energy levels of the

dot in both the amplitude and density matrix pictures for a dot interacting with a

static magnetic field and a dynamic optical field. These equations are the starting

point for most calculations and simulations in this thesis. The chapter ends with a

description of initial sample characterization using photoluminescence and modulated

absorption techniques.

Chapter 3 describes methods for rapid initialization and readout using a frequency

stable continuous wave laser and derives an expression for the readout signal in terms

of the density matrix elements of the dot. These methods are used in all of the ex-

periments presented in this work. The remainder of the chapter discusses methods

for rotating the spin qubit, with a focus on optical methods. Three rotation tech-

niques are demonstrated: (1) rotation about the optical axis by detuned picosecond

optical pulses via a nearly resonant stimulated Raman process, (2)precession about

the magnetic field between two Raman pulses, and (3) the generation of geometric

phases from cyclic Rabi oscillations. These demonstrations provide the basic tools to

achieve an arbitrary rotation, which is one component of a universal set of spin qubit

gates.

Chapter 4 was inspired by a proposal by Yao, Liu, and Sham for deterministic
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spin-photon entanglement [51]. The proposal requires creating a specific superposition

of quantum dot eigenstates and then allowing the dot to radiatively decay. Chapter 4

proposes a coherent control experiment to create this precursor superposition state

using a series of optical pulses. A calculation of the entropy of entanglement of

the precursor state, described in Appendix A, shows that it is a partially entangled

many particle state. Simulations of the proposed experiment predict a high fidelity

for obtainable experimental parameters, including effects of decay and decoherence.

Finally, Chapter 5 reviews the progress toward quantum computing that is covered in

Chapters 2 through 4 and describes potential future work that is suggested by these

results.
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CHAPTER 2

Background: Optical Properties and Characterization of Self Assembled

Quantum Dots

The previous chapter discussed several physical implementations of quantum comput-

ing and described many of the advantages of self-assembled semiconductor quantum

dots for quantum computing. The two most promising aspects of these dots are a long

spin coherence time and the potential for fast optical manipulation of the electron

spin, which should allow a spin qubit to undergo a large number of gate operations

before it loses coherence. This thesis focuses on optical coherent control of the spin

of an electron trapped in a self-assembled indium arsenide quantum dot with the

ultimate goals of single qubit gates and demonstrations of entanglement. However, it

is first necessary to understand the optical properties of InAs dots.

This chapter begins with a description of the structure of the quantum dot sample

used for the studies presented in Chapter 3 and 4. Sections 2.2 and 2.3 mention a

few aspects of semiconductor band structure and approximate quantum dot wave-

functions that are relevant to understanding optical quantum dot interactions. The

primary dot states of interest for this work are presented. Section 2.4 develops the

general theoretical framework, including the equations of motion for optical interac-

tions in indium arsenide (InAs) quantum dots. Lastly, Section 2.5 explains the initial

experimental characterization process for quantum dots.

15
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2.1 Sample Growth and Structure

Si-doped ( >1x10   /cm   )

GaAs substrate (~500 μm)

18 3

Te-doped ( ~5x10   /cm   )

GaAs layer (500 nm)

18 3

GaAs spacer layer (20 nm)

InAs QD layer (3.0 nm)

GaAs barrier layer (230 nm)

Al    Ga     As current blocking layer (40 nm)0.3 0.7

GaAs capping layer (10 nm)

Ti semi-transparent layer (5.0 nm)

Al shadow mask (100 nm)

V

Figure 2.1: Detailed structure of sample studied in this thesis. Electrical contacts are

applied to the silicon-doped gallium arsenide layer and to the titanium layer. The thickness

of each layer is given in parentheses. (Figure reproduced with permission from E. D. Kim)

While several samples and many dots were explored, all data presented in this

thesis was taken on a single dot in a single sample. The sample, labeled R060913G,

was fabricated via molecular beam epitaxy by Daniel Gammon’s group at the Naval

Research Lab. Stated simply, the sample consists of a single layer of InAs/GaAs

self-assembled quantum dots embedded in a Schottky diode structure. Specifically,

the sample structure is shown in Figure 2.1. The back contact of the diode is a doped

GaAs substrate. On top of this is a tellurium doped GaAs layer, which serves as

an electron reservoir to provide negative charges to the dots. The InAs dot layer is

sandwiched between two barrier layers of GaAs that create a quantum well in the

growth direction.

The InAs dots self-assemble via a Stranski-Krastanov process that involves the

formation of a thin InAs wetting layer before strain induces InAs island formation [1].

After the InAs dots have formed, an indium flush technique is used to shorten the

dots along the growth direction, which shifts the optical transitions around 50 nm to

the blue [2, 3]. This is desirable because it shifts the optical transitions to a range of

920-980 nm, within the wavelength range of titanium:sapphire (Ti:Saph) lasers and

silicon detectors.
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Above the GaAs barrier layer is an AlGaAs layer to block carriers from reaching

the top electrical contact and then another thin GaAs layer. A semi-transparent

titanium layer provides the top contact of the diode. The voltage is applied to the

top contact through an aluminum mask. The mask has micron sized apertures etched

into it to enable illumination of only a small area of the sample [4]. Given the density

of the dots ( 1/μm2) in the sample, the spatial resolution of these apertures, and the

spectral resolution of our experiments, we are able to limit our studies to a single

quantum dot.

micron apertures
Al mask

GaAs

InAs dot

Ti contact

V

Figure 2.2: A cartoon showing the aluminum mask with micron-sized apertures on the top

surface of the self-assembled dot samples.

EF

EF

V

V

0

1e -

Figure 2.3: When the gate voltage is low (V0) the lowest energy level of the dot is above the

Fermi level. If the gate voltage is raised an appropriate amount to V1, then the lowest dot

level is lowered and an electron can tunnel to the dot. (Figure reproduced with permission

from E. D. Kim.)

The Schottky diode structure allows selective charging of the dots. At a certain
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gate voltage, V0 in Figure 2.3, the dot under investigation is neutral. This is because

the lowest confined state in the quantum dot is above the Fermi level of the doped

GaAs. If the gate voltage is raised sufficiently, then the lowest quantum dot level is

lowered below the Fermi level of the doped GaAs, allowing a single electron to tunnel

from this reservoir through the intrinsic GaAs barrier into the dot [5]. Tunneling

of further electrons does not occur at this voltage because the energy level of a dot

with two electrons is so much higher than that of a singly charged dot due to the

Coulomb blockade [6]. Smaller changes of the gate voltage shift the optical transition

energies via a DC Stark effect. Section 2.5.2 describes how this effect is useful for

phase sensitive detection.

2.2 Energy level structure: Bulk

Eg

CB  (j= 1/2,  jz = ±1/2)

HH  (j= 3/2,  jz = ±3/2)

LH  (j= 3/2,  jz = ±1/2)
SO  (j= 1/2,  jz = ±1/2)

Δ0

Energy

k

Figure 2.4: Band structure of a bulk direct bandgap semiconductor, such as GaAs or InAs.

The conduction band (CB) is separated from the upper valence band by a band gap Eg.

The heavy hole (HH) and light hole (LH) bands are separated from the split-off band (SO)

by an energy Δ0

An understanding of the energy levels and states of a semiconductor quantum dot

begins with the bulk semiconductor band structure, shown in Figure 2.4. The figure
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shows a simplified version of the allowed energy bands of a direct bandgap semicon-

ductor as a function of crystal momentum, k. At room temperature, a semiconductor

has a highest occupied band called the valence band and a lowest unoccupied band

called the conduction band. The electron wavefunctions, Ψk(r), must satisfy Bloch’s

Theorem

Ψk(r) =
∑
R

eik·Rφ(r−R) (2.1)

where R is the periodic vector of the crystal lattice and φ is the periodic Bloch

function. Tight binding calculations approximate φ(r) as

φ(r) =
N∑

n=1

bnψn(r) (2.2)

where ψn(r) are atomic eigenfunctions [7]. Such a calculation finds the eigenfunctions

of the conduction band to be primarily composed of s atomic orbitals and the valence

band primarily of p orbitals [8]. Because of this, the conduction band is said to have

an orbital angular momentum of l = 0, and the valence band is labeled as l = 1.

As electrons and holes are the carrier of interest with a spin of 1
2
, the total angular

momentum in the conduction band is j = s+l = 1
2
+0, and the only possible eigenvalue

of j is j = 1
2
. However in the valence band both s and l are nonzero and can combine

such that j can be either 1
2
or 3

2
. The energy of the j = 1

2
band is much lower

than the other valence bands, earning it the name split-off (SO) band with no further

consideration in this work. The higher energy valence bands have j = 3
2
, which allows

projections along the axis of symmetry of ±1
2
or ±3

2
. The z axis is defined as the axis

of symmetry, which is also the growth direction of our sample because the dots were

grown on a [001] substrate [4].

As shown in Figure 2.4, the jz = 1
2
band has higher curvature as a function

of k than the jz = 3
2
state. Since effective mass is defined in semiconductors as

m∗ = �
2[ d

2ε
dk2

]−1, the jz =
1
2
(3
2
) band has a lower (higher) effective mass and is termed

the light-hole or LH (heavy-hole or HH) band. These bands are labeled as hole bands

because they are valence bands which are completely or mostly filled, allowing a

convenient discussion of charge carriers through the concept of a hole, or the absence
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of an electron within a sea of other valence electrons. The hole has the opposite spin

and charge to the missing electron [9].

2.3 Energy level structure: Quantum Dots

Our system of interest is not simply a bulk semiconductor, but rather a semi-

conductor quantum dot. A quantum dot is a potential energy well that spatially

confines carriers in three dimensions. This localization of carriers comes from a com-

bination of the bandgap offset between InAs and GaAs and the lateral strain inherent

in self-assembled dots [10].

The k · p method is common for calculating approximate dot states, Ψdot
k (r). In

this method, the Bloch exponential and weighting factor from the bulk tight binding

calculation are replaced by an envelope function f(r) such that

Ψdot
k (r) =

∑
j

fjk(r)φj(r) (2.3)

[8]. Calculations for InAs self-assembled dots show that the majority of the contribu-

tion to the ground state conduction band is s-like and the ground state valence band

remains mostly p-like [11]. When determining optical transition matrix elements,

the atomic wavefunctions have a far greater contribution than the envelope function,

f(r), so in the next section we will calculate approximate transition matrix elements

exclusively based on the atomic portion of the wavefunction [8].

Both the confinement potential and compressive in-plane strain of the dot break

the degeneracy of the LH and HH bands that is present in bulk at k=0, however

the HH and LH states remain closer to each other than any other low energy dot

states [8]. The amount of mixing between two energy levels is influenced by their

energy separation. Thus, the greatest amount of mixing among low energy states in

InAs quantum dots occurs between the heavy and light hole states. The impact of this

mixing on optical spectroscopy is simply that the polarization selection rules become

elliptical instead of circular in the absence of a magnetic field. In a magnetic field

the selection rules are normally linear and aligned with the magnetic field (as will be

derived shortly), but the light hole-heavy hole mixing can rotate the alignment of the
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still-linear polarizations [12]. Because the mixing only changes the polarization axes

but not the possible interactions between states and has been observed to be small in

the sample under discussion, this mixing effect will be neglected in the remainder of

this work. Strain and confinement shift the HH band less than the LH band, leaving

the HH band closer to the conduction band and more likely to be coupled by low

energy optical excitations [8]. For this reason, the heavy-hole band will be the only

valence band considered in these preliminary studies.

a) b)

c) d)

hν

hν

Figure 2.5: Quantum dot occupation diagrams for the a) neutral ground state, b) neutral

excited state (“exciton”), c) charged ground state, and d) charged excited state (“trion”)

Several occupation states of a single quantum dot are shown in Figure 2.5. These

diagrams depict the heavy hole valence and conduction band of a quantum dot. In

a neutral dot the ground state, a), consists of a full valence band and an empty con-

duction band. Diagram b) illustrates the corresponding photo-excited state, known

as an “exciton”, where an electron from the valence band is excited to the conduction

band, leaving a hole in the valence band. In an exciton the conduction electron and

valence hole are bound by their Coulomb attraction.

As discussed in Chapter 1, we are ultimately interested in manipulating spins in

quantum dots, so we study charged quantum dots which possess a net spin. The

ground and excited state of a charged dot are depicted in the lower half of Figure 2.5.

The charged ground state, c), has one more electron than can fit in the valence band,

so there is a single electron in the conduction band. The lowest energy excited state
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for a charged dot is shown in d). This state, known as a negative trion (X−), consists

of an electron pair in the lowest conduction band bound to the hole left in the valence

band.

σ+ σ-

|tz+>

|z+> |z->

|tz->

Figure 2.6: Allowed optical transitions in a charged dot in the absence of a magnetic field.

The state labels reference that the axis of quantization is the z axis. σ+ and σ− indicate

the optical polarizations that satisfy the conservation of angular momentum for the allowed

transitions.

The charged dot ground state valence band has pairs of spin up and spin down

electrons, so the spin of the system is determined by the conduction band electron.

This electron can have one of two spin states, shown in Figure 2.6 as |z+〉 and

|z−〉. The growth direction is along z, and the states are labeled by the net angular

momentum projection along z. Based on the calculations mentioned above of the

dot states, the ground states are s-like, and the angular momentum projections are

simply +1
2
or −1

2
for |z+〉 or |z−〉 respectively. If we examine the trion |tz+〉 (|tz−〉),

we see that the spins in the conduction band cancel, but there is an unpaired hole in

the p-like valence band, which carries an angular momentum of +3
2
(−3

2
).

2.4 Optical Transitions in InAs Dots

Using these angular momentum assignments for the states we can calculate the

allowed optical transitions. Since σ+ (σ−) circularly polarized light adds (subtracts)

a unit of angular momentum from the system, the allowed transitions in the absence of
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a magnetic field are as shown in Figure 2.6 and are characterized by a transition energy

of �ω0. This set of two uncoupled two-level systems does not allow for transitions

between the two ground states of the system. Our goal is to optically manipulate the

electron spin, but that would not be possible with these allowed transitions.

VLaser 
propaga�on

(z)

Magne�c Field
(x)

Figure 2.7: The laser propagates along the sample growth direction, which is labeled as the

z axis. The magnetic field, applied perpendicular to the sample growth direction, defines

the x axis.

A more suitable group of states is created when a magnetic field, B, is applied

perpendicular to the growth direction (the so-called Voigt geometry), in what we will

call the x direction. The Hamiltonian including the effect of the magnetic field can

be written H = H0 +VZeeman where

VZeeman = −μmagnetic ·B = μB(ge ·B · Se − gh ·B · S̃h), (2.4)

H0 is the Hamiltonian of the dot in the absence of magnetic or optical fields,

μB is the Bohr magneton, ge (gh) is the g-factor tensor for the electron (hole), and

heavy hole light hole mixing is neglected [13,14]. Se is the angular momentum of the

electron so

Se =
�

2
σ (2.5)

where σ = σxx̂+ σyŷ + σz ẑ and

σx =

⎛
⎝0 1

1 0

⎞
⎠ σy =

⎛
⎝0 −i
i 0

⎞
⎠ σz =

⎛
⎝1 0

0 −1

⎞
⎠. (2.6)

S̃h is the analogous pseudo-angular momentum of the hole in the convention used by

Van Kesteren [15], namely that for a heavy hole with angular momentum Jz = ±3
2
,
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S̃z = ±1
2
. For B = Bx̂,

|z+〉 |z−〉 |tz+〉 |tz−〉

VZeeman =
μBB

2

⎡
⎢⎢⎢⎢⎢⎢⎣

0 ge,x 0 0

ge,x 0 0 0

0 0 0 −gh,x
0 0 −gh,x 0

⎤
⎥⎥⎥⎥⎥⎥⎦
.

(2.7)

The ground (trion) states are now mixed by the field, and the new eigenstates

are split by the Zeeman effect by an amount ge,xμBB = �Δe (gh,xμBB = �Δh).

Rediagonalizing the Hamiltonian gives the new ground eigenstates as

|x±〉 = 1√
2
(|z−〉 ± |z+〉) (2.8)

with corresponding eigenenergies Ex± = ±�
Δe

2
and the new trion eigenstates as

|tx±〉 ≡ |t±〉 = 1√
2
(|tz−〉 ± |tz+〉) (2.9)

with eigenenergies Et± = �(ω0 ∓ Δh

2
). (Interface fluctuation dots had a nearly zero

hole in-plane g factor, gh⊥, so in those dots mixing of the trion states could be

neglected [16].)

Computing the optically allowed transitions requires writing the Hamiltonian for

optical interactions, Hoptical, and then asking which matrix elements 〈a|Hoptical|b〉 are
nonzero for two non-identical states, |a〉 and |b〉.

〈a|Hoptical|b〉 = 〈a|H0|b〉+ 〈a|Voptical|b〉 = Eaδa,b + 〈a|Voptical|b〉 (2.10)

In the dipole approximation, the interaction for an optical field can be written as

Voptical = −μ · E = er · E (2.11)

where e is a positive number giving the magnitude of an electron’s charge. Since E

does not operate upon the state vectors, it is sufficient to evaluate 〈a|r|b〉 to determine

the optically allowed transitions and their polarization selection rules.

In terms of irreducible spherical tensors

r = −r−1ε+1 − r+1ε−1 + r0ε0 (2.12)
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where

ε±1 = ∓ (x̂±iŷ)√
2
, ε0 = ẑ. (2.13)

Since the allowed optical transitions are dictated by angular momentum conservation,

it is easier if we relabel the z basis states (the eigenstates in the absence of a field)

with their angular momentum values:

|z−〉 = |−1
2
〉, |z+〉 = |1

2
〉, |tz+〉 = |3

2
〉, |tz−〉 = |−3

2
〉. (2.14)

Then

〈3
2
|r|1

2
〉 = e〈3

2
|r+1ε−1|12〉 ≡ ℘ε−1

〈3
2
|r|−1

2
〉 = 0

〈−3
2
|r|−1

2
〉 = e〈3

2
|r−1ε+1|12〉 = ℘ε+1

〈−3
2
|r|1

2
〉 = 0,

(2.15)

which confirms the polarizations of the optical transitions shown in Figure 2.6.

Combining Equations 2.8, 2.9, and 2.15 gives the selection rules for optical tran-

sitions in a magnetic field:

〈t+|r|x+〉 = − ℘√
2
iŷ

〈t−|r|x−〉 = − ℘√
2
iŷ

〈t+|r|x−〉 = − ℘√
2
x̂

〈t−|r|x+〉 = − ℘√
2
x̂.

(2.16)

Due to the mixing of both ground and trion states, the optical selection rules are rather

different from the B=0 case and lead to the four level system shown in Figure 2.8

which now involves transitions stimulated by linearly polarized light. The two ground

states, which are the two levels of our spin-based qubit, can now be coupled via either

trion state.

The Hamiltonian for this four level system in the presence of a Voigt magnetic

field can be written

Hnormal =

⎡
⎢⎢⎢⎢⎢⎢⎣

�

2
(−ω0 −Δe) V12 V13 V14

V ∗
12

�

2
(−ω0 +Δe) V23 V24

V ∗
13 V ∗

23
�

2
(ω0 −Δh) V34

V ∗
14 V ∗

24 V ∗
34

�

2
(ω0 +Δh)

⎤
⎥⎥⎥⎥⎥⎥⎦
, (2.17)
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|2> = |x+>

V1

H1

|4> = |t->

V2

|3> = |t+>D
h

D
e

H2

|1> = |x->

Figure 2.8: Allowed optical transitions in a charged dot with a magnetic field in the Voigt

geometry. V1 and V2 are the ŷ or vertically polarized transitions, and H1 and H2 are the x̂

or horizontally polarized transitions. All four eigenstates are now defined along the x axis,

and numerical labels are defined as a shorthand to refer to the four states.

where Vij = 〈i|Voptical|j〉 and the time dependence of the probability amplitudes is

given by

i�ȧ(t) = Ha(t). (2.18)

We are interested in optical interactions, so we define a general electric field and

substitute Voptical = −μ ·E into Equation 2.17 as the interaction Hamiltonian. Since

the transitions are linearly polarized, we define the electric field conveniently as

E(t) =
1

2
(Ex(t)x̂+ Ey(t)ŷ)e

−iωt +
1

2
(E∗

x(t)x̂+ E∗
y(t)ŷ)e

iωt. (2.19)

Most of our experiments use pulses that have broad enough bandwidth that they cou-

ple all four optical transitions. We evaluate the Hamiltonian and related equations

under this assumption. If a narrower bandwidth laser is used, then the V terms repre-

senting uncoupled states should be set to zero. Then we can evaluate the Hamiltonian

terms, for example H13. From Equations 2.16, 2.17, and 2.19,

H13 =− 〈x−|μ|t+〉 · E(t)
=

℘

2
√
2
(Ex(t)e

−iωt + E∗
x(t)e

iωt)

=
�

2
(Ωx(t)e

−iωt + Ω∗
x(t)e

iωt)

(2.20)

defining the convenient notation

Ωx(t) ≡ ℘Ex(t)

�
√
2

Ωy(t) ≡ i℘Ey(t)

�
√
2
. (2.21)
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If we move to a rotating reference frame called the field interaction picture, where

c(t) =

⎡
⎢⎢⎢⎢⎢⎢⎣

e
iωt
2 0 0 0

0 e
iωt
2 0 0

0 0 e
−iωt

2 0

0 0 0 e
−iωt

2

⎤
⎥⎥⎥⎥⎥⎥⎦
a(t) (2.22)

and

δ ≡ ω0 − ω, (2.23)

then the Hamiltonian becomes

HFI =

⎡
⎢⎢⎢⎢⎢⎢⎣

−�

2
(δ +Δe) V12 V13e

−iωt V14e
−iωt

V ∗
12

�

2
(−δ +Δe) V23e

−iωt V24e
−iωt

V ∗
13e

iωt V ∗
23e

iωt �

2
(δ −Δh) V34

V ∗
14e

iωt V ∗
24e

iωt V ∗
34

�

2
(δ +Δh)

⎤
⎥⎥⎥⎥⎥⎥⎦

(2.24)

and

i�ċ(t) = HFIc(t). (2.25)

In the field interaction picture,

H13 =
�

2
(Ωx(t)e

−2iωt + Ω∗
x(t)). (2.26)

If |Ωx(t)
ω0+ω

| 	 1 and |ω0−ω
ω0+ω

| 	 1, then we can neglect terms that oscillate at 2ω, as they

will average out to zero over times short compared to other timescales in the problem.

This is known as the rotating wave approximation (RWA). In the RWA,

H13 =
�Ω∗

x

2
. (2.27)

Similar evaluations give

HFI,RWA =
�

2

⎡
⎢⎢⎢⎢⎢⎢⎣

−δ −Δe 0 Ω∗
x(t) Ω∗

y(t)

0 −δ +Δe Ω∗
y(t) Ω∗

x(t)

Ωx(t) Ωy(t) δ −Δh 0

Ωy(t) Ωx(t) 0 δ +Δh

⎤
⎥⎥⎥⎥⎥⎥⎦
. (2.28)
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Therefore the equations of motion for the probability amplitudes are

ċ1(t) =
i
2
[(δ +Δe)c1(t)− Ω∗

x(t)c3(t)− Ω∗
y(t)c4(t)]

ċ2(t) =
i
2
[(δ −Δe)c2(t)− Ω∗

y(t)c3(t)− Ω∗
x(t)c4(t)]

ċ3(t) =
i
2
[−Ωx(t)c1(t)− Ωy(t)c2(t) + (−δ +Δh)c3(t)]

ċ4(t) =
i
2
[−Ωy(t)c1(t)− Ωx(t)c2(t) + (−δ −Δh)c4(t)].

(2.29)

In order to properly include decay and dephasing processes, it is necessary to use

the density matrix formalism, which is defined (in the field interaction picture) by

ρij(t) = ci(t)c
∗
j(t). (2.30)

The time evolution of the density matrix is given by

i�ρ̇ = [H, ρ] = Hρ− ρH (2.31)

Including decay, the field interaction density matrix equations for the four level system

shown in Figure 2.8 are

ρ̇11 =
i
2

(
ρ13Ωx + ρ14Ωy − ρ31Ω

∗
x − ρ41Ω

∗
y

)
+ Γt

2
(ρ44 + ρ33) + Γe(ρ22 − ρ11)

ρ̇22 =
i
2

(
(ρ23 + ρ24) Ωy − ρ42Ω

∗
x − ρ32Ω

∗
y

)
+ Γt

2
(ρ44 + ρ33) + Γe(ρ11 − ρ22)

ρ̇33 = − i
2

(
ρ13Ωx + ρ23Ωy − ρ31Ω

∗
x − ρ32Ω

∗
y

)− Γtρ33) + Γh(ρ44 − ρ33)

ρ̇44 = − i
2

(
(ρ14 + ρ24) Ωy − ρ42Ω

∗
x − ρ41Ω

∗
y

)− Γtρ44) + Γh(ρ33 − ρ44)

ρ̇12 =
i
2

(
2Δeρ12 + (ρ13 + ρ14) Ωy − ρ32Ω

∗
x − ρ42Ω

∗
y

)− γeρ12

ρ̇13 =
i
2

(
(2δ +Δe −Δh) ρ13 + (ρ11 − ρ33) Ω

∗
x + (ρ12 − ρ43) Ω

∗
y

)− γtρ13

ρ̇14 =
i
2

(
(2δ +Δe +Δh) ρ14 + (ρ12 − ρ34) Ω

∗
x + (ρ11 − ρ44) Ω

∗
y

)− γtρ14

ρ̇23 =
i
2

(
(2δ −Δe −Δh) ρ23 + (ρ21 − ρ43) Ω

∗
x + (ρ22 − ρ33) Ω

∗
y

)− γtρ23

ρ̇24 =
i
2

(
(2δ −Δe +Δh) ρ24 + (ρ22 − ρ44) Ω

∗
x + (ρ21 − ρ34) Ω

∗
y

)− γtρ24

ρ̇34 =
i
2

(
2Δhρ34 − ρ14Ωx − ρ24Ωy + ρ32Ω

∗
x + ρ31Ω

∗
y

)− γhρ34.

(2.32)

From definitions 2.30 and 2.31 it is clear that

ρji(t) = ρ∗ij(t). (2.33)

Population decay is included through the trion decay rate (Γt), the electron spin flip

rate (Γe), and the hole spin flip rate (Γh), while γ terms indicate decoherence rates.
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e
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Figure 2.9: Definition of the decay rates among the four levels of interest in the dot. Γe

(Γh) represents electron (hole) spin flip processes, and Γt represents recombination of an

electron and hole.

The population decays are shown in Figure 2.9. In the absence of pure dephasing,

γt ≈ Γt

2
, γe = Γe and γh = Γh.

2.5 Dot Characterization

Because the growth of self-assembled dots is a stochastic process, each sample

has a range of dot densities and dot transition energies. Before attempting any

manipulations or spectroscopy toward the goal of quantum computing, a usable dot

must be found and characterized. All measurements in this dissertation were taken

with the sample in a continuous-flow helium cryostat which maintains the sample

temperature at 5 K.

2.5.1 Photoluminescence

The first step of characterization is to take photoluminescence (PL) data from

several different apertures. In PL we excite the system non-resonantly, significantly

above the state of interest. The system then non-radiatively relaxes and the lumines-

cence from a lower energy transition is detected (See Figure 2.10). PL measurements

are made with a single non-mode-locked Coherent Mira Titanium-Sapphire laser that

is tuned to 780 nm and pumped by a Coherent Verdi. The transmitted beam is

collected and refocused into a spectrometer. The spectrum is collected on a liquid

nitrogen cooled CCD at the spectrometer’s image plane (see Figure 2.11).
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non-radiative

PL signal
excitation

Figure 2.10: Energy transitions involved in photoluminescence characterization measure-

ments. The dot is excited far above the transition of interest, the system relaxes through a

non-radiative process, then photoluminescence is emitted from the lower energy transition.

MIRA (cw)

lens

cryostat

CCD

Specrometer

sample

Figure 2.11: Experimental diagram for photoluminescence measurements. The MIRA

Titanium:Sapphire laser is used in its non-modelocked, quasi-continuous wave mode. The

MIRA is tuned to 780 nm and focused onto the aperture of interest on the sample, which is

kept at 5 Kelvin in a liquid helium cryostat. The photoluminescence spectra are collected

with a spectrometer and a liquid nitrogen cooled CCD array.

For a given scan, the sample bias voltage is held constant, and the spectrometer

wavelength is scanned by a computer controlled motor. A map of voltage vs. energy

is obtained by taking a series of these scans at incremental voltages. A desirable

aperture will have either only one dot or a couple of dots that are well separated in

transition energies. A dot must have a voltage range where the ground state to trion

transition is observable, so that we know that the dot can be charged with a single

electron. Often we identify dots and trion states by the characteristic separation



31

Exciton

Trion

~5.5meV

Exciton

Trion

~5.5meV

Other Trion 

Figure 2.12: Subsection of a photoluminescence map through a single aperture. The trion

of interest is labeled, as well as what is most likely the corresponding exciton, which is

located 5.5 meV away.

between the exciton and trion, which is typically about 6 meV for our samples. Most

of the expertise regarding identification of optical dot transitions from PL spectra

was developed by Dan Gammon’s group at the Naval Research Lab. An important

parameter that can be measured from PL is the slope of the energy of the states

with respect to voltage, which is due to the DC Stark effect [17]. A map showing the

aperture of interest is shown in Figure 2.12. All data presented in this dissertation is

from the circled trion.

2.5.2 CW Modulated Absorption

As described above, PL measurements are an indirect, off-resonant method of

probing a state. In continuous wave (CW) absorption we scan the CW Coherent

899-21 Ti:Saph laser across the transition’s energy, as estimated by the PL map. The

sample’s bias is modulated a small amount (.01 V) at around 1 kHz. Because of

the DC Stark effect (observed in PL), modulating the bias voltage modulates the

detuning of the laser from the state, therefore modulating the absorption strength.

Bias modulation allows phase-sensitive detection with a lock-in. The transmitted light
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899 APD

half-wave plate linear polarizer
iris

lens

cryostat
sample

Figure 2.13: The experimental layout for modulated absorption measurements. The

frequency-stabilized, continuous wave 899 Titanium:Sapphire laser is passed through a half-

wave plate and linear polarizer to achieve any desired linear polarization, and then focused

onto the aperture of interest. The transmitted light is collected by lenses and focused onto

a silicon avalanche photodiode. Scattered light from adjacent apertures can be spatially

blocked with an iris.

is focused onto a silicon avalanche photodetector, as shown in Figure 2.13, which is

connected to the lock-in amplifier. By taking these scans at a range of DC bias values,

it is possible to make a map of the energy and voltage range where the state absorbs

(Figure 2.14).

With this voltage modulation method, if the modulation amplitude is much less

than the transition linewidth, then the signal will be the derivative of the absorption

line shape [18]. For the measurements in this work, the modulation amplitude is on

the order of the transition linewidth. This means that the measured signal will have

a distorted lineshape that is neither the actual lineshape nor exactly the derivative of

the lineshape. At higher modulation amplitudes the phase of the absorption signal

seems to have a bias dependence, meaning that that there is no lock-in phase such

that all of the signal will be in a single channel. We chose our modulation amplitude

to obtain the maximum signal amplitude without inducing this problematic phase

artifact. Luckily, in all of the measurements discussed here, we are concerned with the

magnitude of the absorption rather than the lineshape, so the distortion caused by the

modulation is tolerable. With no magnetic field, all energy transitions within our four

level system are degenerate, so only one absorption signal is observed (Figure 2.14).
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Figure 2.14: A series of cw bias modulated absorption scans taken at varying DC sample

bias voltages, that show the voltage existence range of the state. (Data taken with Erik

Kim.)

2.5.3 Absorption studies with a magnetic field

When a magnetic field is applied in the Voigt geometry and the laser polarization

contains both H and V polarizations, we expect to see four separate transitions,

as shown in Figure 2.8. Figure 2.15 shows the actual absorption data for our dot

in a 0.66 Tesla field with 45 degree polarized light. At 0.06 V four derivative-like

signals are present, but at 0.14 V, for example, there is only one broad feature. This

behavior is caused by a process called optical pumping, which was first proposed by

Alfred Kastler in 1950 in atomic systems [19, 20]. Xiaodong Xu first demonstrated

optical pumping in the Voigt geometry in self-assembled dots, and demonstrated that

it can be used for initialization [21]. In Chapter 3, we discuss initialization via optical

pumping. Here we explain the effect and the measured absorption signals.

Figure 2.14 shows that there is a certain voltage range (0.06-0.22 V) over which

the ground to trion transition absorbs. In the middle of this absorption voltage
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Figure 2.15: Modulated absorption of the trion studied in this thesis in a 0.66 Tesla magnetic field

and for a range of bias voltages. Notice that all four transitions are observable on the edge of the

bias range, while only a single broad peak is observed in the central, optical pumping, region.
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Figure 2.16: Illustration of the optical pumping process for a CW field tuned to the |2〉 to |3〉
transition.

range Γe is on the order of 103 s−1 [22]. This is much smaller than Γt, which is

on the order of 109 s−1 [23]. Because Γt � Γe optical pumping can occur. As an

example of how optical pumping occurs in this system, consider the case shown in

Figure 2.16 where a CW laser is driving the |2〉 to |3〉 transition. The CW laser

optically excited population from |2〉 to |3〉 at a rate ΩCW . Simultaneously, trion

decay causes transitions at the rate Γt

2
to both ground states with equal probability.

However, once the system decays to state |1〉 it can no longer be optically excited, so

the dot is trapped in state |1〉 until a spin-flip occurs to transition back to state |2〉.



35

If ΩCW � Γt, optical pumping occurs within a few trion radiative lifetimes, so when

Γt � Γe the system spends most of the time in the non-optically coupled state (|1〉),
and absorption is suppressed [21]. Note that if the laser frequency is being scanned,

absorption is suppressed on each transition since each transition will optically pump

within a few nanoseconds of the laser tuning into resonance. The data show a single

broad feature in the optical pumping region because the middle two transitions, the

x̂ polarized transitions, are not resolved. This means that the laser is simultaneously

driving both x̂ transitions, so optical pumping cannot occur and a broad peak is

observed. The outer, ŷ, transitions’ absorption is suppressed as expected.

Near the edges of the absorption voltage existence range, the electron is far less

stable in the dot. The rate of tunneling between the dot and the Fermi sea is higher,

which leads to a higher spin-flip rate, Γe ≈ Γt. This prevents population trapping in

state |1〉, since the spin-flip process interchanges between states |1〉 and |2〉 at a rate

equal to the trion decay. In such voltage ranges moderately strong absorption can be

observed, so this is the simplest way to observe the four dot transitions. However,

any manipulations for quantum computing need to be performed in the center of the

existence range to avoid the increased tunneling rates at the edge of the the range,

as spin flips destroy any information contained in the spin qubit. For this reason all

data in later chapters is taken in the middle of the optical pumping region.

Figure 2.17 shows the four transitions more clearly at 1.32 Tesla in the non-optical

pumping region, again using 45 degree polarized light. This supports our identification

of the state as a trion, and our energy level diagram as shown in Figure 2.8. The

splitting of these four peaks as a function of magnetic field strength can be used to

measure the electron and hole in-plane g-factors, since the electron (hole) splitting is

given by ge⊥μBBx (gh⊥μBBx). Figure 2.18 shows a plot of the splittings. Measurement

of the slopes results in an electron in-plane g-factor of 0.42 and a hole in-plane g-factor

of 0.24.

In each scan of Figure 2.16 and 2.17, the DC bias voltage was held constant and

the laser energy was scanned. Similar data could be obtained by keeping the laser

energy fixed and scanning the DC bias voltage, due to the DC Stark effect. One
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Figure 2.17: A CW modulated absorption scan clearly showing all four transitions, taken

at 1.32 Tesla in the non-optical pumping region with 45 degree polarized light. (Data taken

with Erik Kim.)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.0

1.0x10
-5

2.0x10
-5

3.0x10
-5

4.0x10
-5

5.0x10
-5

6.0x10
-5

7.0x10
-5

8.0x10
-5

 Hole Zeeman Splitting

 Linear fit of Hole Zeeman Splitting

 Linear fit of Electron Zeeman Splitting

 Electron Zeeman Splitting

E
n
e
rg

y
 S

p
li
tt
in

g
 (
e
V

)

Magnetic Field (T)

Figure 2.18: Zeeman splittings plotted as a function of current applied to the magnet. The

magnetic field strength, B, in Teslas is given by B = 0.11 ∗ I where I is the current applied.

The electron (hole) splitting is the difference between peaks 2 (3) and 4 in Figure 2.17.

(Data taken with Erik Kim.)

must be careful when switching between these two methods, however, as the order

of peaks is different in the two methods. For clarification, refer to Figure 2.19. The

leftmost graph represents absorption existence ranges for two transitions plotted as

laser energy vs. bias voltage with positively-sloped linear DC Stark effects assumed.
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The other two graphs show the order in which the peaks appear when the voltage or

the laser energy is scanned. Notice that in the voltage scan transition A appears on

the left but in the energy scan transition B appears on the left.
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Figure 2.19: The leftmost graph represents the absorption existence ranges in voltage and

energy of two transitions. The dotted lines represent a laser energy scan and a bias voltage

scan. Notice that in the voltage scan transition A appears on the left but in the energy

scan transition B appears on the left.

2.6 Chapter Summary

This chapter provided an introduction to the quantum dot samples and their

optical properties. The sample structure was presented in detail, including an ex-

planation of dot charging with a diode structure. Relevant energy levels of the dots

were presented and related to energy bands in bulk semiconductors. The new energy

eigenstates were calculated in the presence of a Voigt magnetic field, and the optically

allowed transitions were calculated with and without the magnetic field. Equations of

motion for a four level trion system were developed in both the probability amplitude

and density matrix formalisms. These equations provide the basis for theoretical cal-

culations that will be discussed in later chapters. Finally, initial dot characterization

measurements were discussed, including PL and CW modulated absorption. Optical

pumping was introduced as it relates to absorption studies. Measurements of the trion

existence range, DC Stark effect, optical pumping region, and g-factor were presented.

This chapter established the theoretical and experimental background necessary to

discuss optical manipulations of the spin qubit. The next chapter discusses coherent
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control of a single spin qubit.
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CHAPTER 3

Coherent Control of a Single Spin Qubit1

3.1 Introduction

Demonstration of a universal set of gates is one of the requirements for quantum

computing, as presented in Chapter 1 [2]. Single qubit gates are the simplest, and thus

a starting point for demonstrating the feasibility of our spin qubits. The most general

single qubit gate, the arbitrary rotation, can be accomplished via rotation by an

arbitrary angle about two orthogonal axes [3]. For our system, a single qubit rotation

consists of a rotation of the electron spin vector. In terms of our four level energy

diagram, it means coherently transferring an arbitrary probability of occupation from

one ground state to the other.

To demonstrate or evaluate any manipulation, it is necessary to start in a well

defined state. The first section of this chapter describes how we initialize the qubit

before the coherent manipulation. The second section explains the readout method

used to detect the state of the system after the manipulation. The third section

establishes the basic theory of optical excitation of a two level system and explains

why coherently controlling the spin in a useful manner for quantum computing is non-

trivial. The final sections describe demonstrated methods of coherently controlling

the electron spin: optically via Raman transitions, via precession about a magnetic

field, and via optically induced geometric phases.

1The results presented in this chapter represents a joint effort with senior graduate student Erik

Kim. The experimental data from Sections 3.5-3.7 were published in Physical Review Letters [1].
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3.2 CW Initialization
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Figure 3.1: Illustration of the optical pumping process for a CW field tuned to the |2〉 to |3〉
transition.

When developing qubit rotations or other procedures, it is important for manip-

ulations to be deterministic, so the system must be initialized. The spin state of a

charged quantum dot is naturally a mixed state of |↑〉 and |↓〉, because even at 5

Kelvin and 6 Tesla the thermal energy, kT, is about 430 μeV which is greater than

the electron Zeeman splitting, �Δe, of about 160 μeV . Therefore it is necessary to

actively initialize the dot to start in a pure state. Initialization of the qubit is also

one of DiVincenzo’s requirements for quantum computing [2].

In 2007, Xiaodong Xu et al. demonstrated a fast initialization method using

optical pumping [4]. Optical pumping was discussed in Chapter 2, but we revisit

the topic here in the context of initialization. We initialize the spin by tuning a CW

beam to be on resonance between levels |2〉 and |3〉 (as shown in Figure 3.1). The

laser drives population from state |2〉 to state |3〉 at a rate of the CW Rabi frequency,

ΩCW , the excited state |3〉 decays radiatively at rate Γt

2
to states |1〉 and |2〉, and

states |1〉 and |2〉 interchange population at the spin-flip rate Γe.

In InAs self-assembled dots at the proper bias voltage, Γe << Γt, so after a

long enough time the system will be in state |1〉 with nearly unity probability. If

ΩCW >> Γt then the system will be initialized in a few radiative lifetimes, which

corresponds to a few nanoseconds for our dots [4,5]. When this initialization method

is combined with manipulation by a pulsed laser with a 13 ns repetition period, the dot

is reinitialized between each set of pulses, forming a series of independent experiments.



44

We began all our rotations by initializing to state |1〉 via optical pumping.

0

Time (ns)

1

ρ −ρ
33     11

0           2           4           6           8         10        12        14

Manipulation Readout and Initialization Manipulation

Figure 3.2: Diagram of the experimental dynamics of initialization, pulsed spin manipulation, and

readout. The diagram is for the example of an H polarized pulse pulse with π pulse area which

excites to state |3〉. Every 13 ns a pulse excites the dot to state |3〉, creating a readout signal.

Between pulses, optical pumping reinitializes the dot to state |1〉.

3.3 CW Readout

Since we use the CW beam for initialization, it is convenient to leave it on and use

it for readout. The measured signal is the absorption of the CW beam as detected

by an avalanche photodiode (APD). As mentioned in Section 2.5.2, phase sensitive

detection is used to improve signal to noise by using Stark shift modulation and a

lock-in amplifier. The idea, shown in Figure 3.2, is that the CW beam initializes the

system, a set of pulses arrive at the sample and manipulate the system, and finally a

time averaged absorption signal is detected while optical pumping returns the system

to its initialized state. The goal of this section is to relate the measured absorption

signal to the state of the dot after the final pulse.

The APD is a square law detector that will detect the light intensity, L. The

Maxwell-Bloch equations do not hold in general for a single quantum dot since the

plane wave limit is inappropriate. The light intensity, L, at the APD can be properly

calculated through the source-field formalism [6]. If E−(t)(E+(t)) are the negative

(positive) frequency components of the electric field incident on the detector, then

the detector sees an intensity, L, given by

L(t) =< E−(t)E+(t) > . (3.1)
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Any pulses are, at least ideally, blocked out by a polarizer or other method such that

they are not detected by the APD; therefore E+(t) is a sum of the CW laser field

(ECW ) and the optical field radiated by the dot (ES).

E+(t) = ECW,+(t) + Es,+(t). (3.2)

Recall that the CW beam is on resonance with the V1 transition, defined in Figure 2.8,

which couples states |2〉 and |3〉, such that

ECW = ŷECW cosω32t (3.3)

where ω32 = ω0 − Δe+Δh

2
. The voltage modulation only modulates Es, so due to the

phase sensitive detection only terms involving cross-products between Es and ECW

will be detected by the lock-in.

The detector is in the far field, so the emitted field seen by the detector is approx-

imately the field from an oscillating dipole. Thus, at the detector

L(t) =< E−(t)E+(t) >=< Aμ23a
†(0)σ̃−(t′)eiω32

R
c +adj.+terms not detected by lockin >

(3.4)

where

σ̃−(t) = σ−(t)eiω32t, (3.5)

A is a complex constant and σ− is the Heisenberg lowering operator for the 32 tran-

sition. The retarded time,

t′ = t− R

c
(3.6)

is determined by the distance between the dot and the detector, R, and the speed of

light. The phase ω32
R
c
represents an interference between the incident field and the

field scattered by the dot in the forward direction.

Since the initial state of the field is produced by a narrow bandwidth laser, it

resembles a coherent state, allowing the approximation

Aμ23 < a†(0)σ̃32(t′)eiω32
|R|
c >≈ Aαμ23ρ32(t

′)eiω32
|R|
c (3.7)

where Aα is proportional to |ECW |.
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The response time of the APD,τAPD, is on the order of microseconds, so the signal

will be an average over all faster timescales. The current from the APD will therefore

be

I =
|ECW |
τAPD

∫ τAPD

0

(Kμ23ρ̃32(t
′)eiω32

R
c + adj.) dt (3.8)

where K is a complex proportionality constant and ρ23(t) = ρ̃23(t)e
iω32t. Since the

integration time (milliseconds) is so much longer than the propagation delay (nanosec-

onds), it is justifiable to neglect the propagation delay.

The coherence ρ32 can be found by solving the following density matrix equa-

tions for the four level system in the rotating wave approximation, assuming no pure

dephasing.
dρ23
dt

= −iΩ23(ρ33 − ρ22) + iω32ρ23 − Γt

2
ρ23

dρ22
dt

= −i(−Ω32ρ23 + Ω23ρ32) +
Γt

2
(ρ33 + ρ44)

dρ33
dt

= −i(Ω32ρ23 − Ω23ρ32)− Γtρ33
dρ44
dt

= −Γtρ44

(3.9)

Ω23 =
−μ23ECW

�
(3.10)

These equations are simpler than Equation 2.32 because the narrow bandwidth CW

beam only couples one transition. Also, we are neglecting Γe and Γh since they have a

minimal effect during the 13 nanosecond pulse repetition period. For this calculation

we are only considering evolution of the system after the final pulse, so ρ(t = 0) is the

density matrix immediately after the last pulse. The left column of Figure 3.3 shows

the occupation probabilities of all four levels given four different initial conditions.

The right column plots the imaginary part of ρ23. Notice that there is a contribution

to ρ23 even when the dot starts in state |4〉.
An analytical form of the absorption can be found by assuming a weak CW beam

and using perturbation theory to solve Equation 3.9. It may be noted that initial-

ization within the 13 ns pulse repetition period requires strong CW beams, so after

inspection of the analytical perturbative solution the strong CW beam limit is treated
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Figure 3.3: Numerical solutions to Equations 3.9 with experimentally relevant values Γt = 109 s−1,

and Ω23 = 4.25 · 109 s−1. The left column shows the occupation probabilities of all four levels given

four different initial conditions. The right column plots the imaginary part of ρ23 in the field

interaction picture for the same initial conditions. Notice that there is a contribution to ρ23 even

when the dot starts in state |4〉. The integral values represent an evaluation of 1
T

∫ T

0
Im[ρ̃23(t)] dt

and are proportional to the detected current.
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numerically. First order perturbation theory gives

ρ23(t) =
iΩ23

Γt
eiω32t[(3ρ33(0) + ρ44(0))e

−Γtt − (4ρ33(0) + 2ρ44(0) + 2ρ22(0))e
−Γtt

2

+(ρ33(0) + ρ44(0) + 2ρ22(0))] + ρ23(0)e
iω32te−

Γtt
2 .

(3.11)

In this calculation, the effects of decay were included exactly, and only the optical

field was treated perturbatively.

To calculate an expression for the APD current, this result is substituted into

Equation 3.8. Neglecting terms that oscillate at ω32 or (ω32)
2, since they would

average to zero after the integration, gives

I =
ECW

T
Im[Keiω32

R
c μ32

∫ T

0

ρ̃23(t) dt] (3.12)

where ρ23(t) = ρ̃23(t)e
iω32t. Integration is over T, the repetition period of our pulsed

laser, because ideally the dot dynamics repeat every repetition period. The measure-

ment is actually an average over τAPD, which consists of many repetition periods.

Evaluating the integral gives

I =
(ECW )2|μ23|2

�ΓtT
Im[iKeiω32

R
c ][ρ33(0)(

−3

Γt

e−ΓtT +
8

Γt

e
−ΓtT

2 − 5

Γt

+ T )

+ρ44(0)(
−1

Γt

e−ΓtT +
4

Γt

e
−ΓtT

2 − 3

Γt

+ T )

+ρ22(0)(
4

Γt

e
−ΓtT

2 − 4

Γt

+ 2T )]

−2ECW

ΓtT
Im[Keiω32

R
c μ32ρ23(0)](e

−ΓtT
2 − 1).

(3.13)

First order perturbation theory is a valid approximation if 1) Ω23 	 Γt and 2)

T 	 Γt

|Ω23|2 . The second condition ensures that no significant optical pumping occurs

during the timescales of interest. Γt = 109s−1 for the dot used in these studies and

T=13 ns for the pulsed Ti-Saph laser, which fulfills the second condition as long as

the first condition is satisfied. Plugging in these values for Γt and T gives

I ≈ 2(ECW )2|μ23|2
13�

[4ρ33(0)+5ρ44(0)+11ρ22(0)]− 2ECW

ΓtT
Im[Keiω32

R
c μ32ρ23(0)] (3.14)

This gives the relative contributions of the various density matrix terms, as present

immediately after the pulses, to the time integrated readout signal. These relative
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contributions are confirmed by a numerical solution of the density matrix equations

(3.9) using the values of Γt and T from above and with Ω23 << Γt. With field

amplitudes that are more typical of our experiments, for example that allow initial-

ization via optical pumping within a few nanoseconds, the different density matrix

elements contribute in somewhat different ratios. Numerical simulations show that

the measured signal in an experimentally typical regime is roughly proportional to

[
1

2
ρ33(0) +

1

2
ρ44(0) + ρ22(0)] ≡ ACW (3.15)

There are some limitations to this readout method. Explicit in Equation 3.15

is the limitation that multiple density matrix values could give the same CW ab-

sorption signal. For example, ρ33(0) = ρ44(0) = .5 would give the same signal as

ρ22(0) = ρ11(0) = .5. The ambiguity is reduced if time dynamics are monitored by

using multiple pulses with variable delays. At first it appears that we cannot measure

coherences with this method, but in fact we can. Details will be discussed in Chap-

ter 4, but the idea is that a final pulse can convert a coherence into a population in

order to detect it by CW absorption. This is very analogous to how coherences are

read out with pulsed absorption measurements [7].

Another limitation is that if too much power from the pulses leaks through to

the detector, then the noise can overwhelm the CW absorption signal. The simplest

solutions to this limitation are to spatially block the pulses or to make the pulses cross

polarized with the CW beam so they can be blocked by a polarizer. The polarization

method also requires that the beams are well polarized after propagating through the

sample and optics. Unfortunately, the apertures on our sample diffract the beams

such that we cannot block the pulses spatially, so we primarily rely on polarization.

In Appendix C we will discuss a possible additional solution for blocking the pulses,

such that we can use any polarization of pulses with CW readout.

The final major limitation is that by leaving the CW beam on during the pulse

manipulations the CW beam will affect the states of the system. Unless the CW

beam is extremely strong, this effect will be small on the timescale of a fast gate, but

it would still reduce the fidelity of an operation. The effect of the CW beam will be
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discussed further in Section 3.7. The CW beam also reinitializes the system within

a few nanoseconds, so this experimental method is not appropriate if it is necessary

for the quantum system to hold information for longer times. In our case, we have

already made our measurement and desire that the dot be reinitialized for the next

measurement.

We decided to use CW readout, despite these limitations, for three reasons. First,

the CW readout method was originally developed out of necessity for the spin rotation

experiment described in Section 3.5, which uses detuned pulses. It would be extremely

difficult to detect the weak absorption of the detuned pulses compared to detecting

the absorption of an on resonant CW beam. Second, we want to use the CW beam

for initialization, so this is a short term approach until the optical system is modified

to allow gating of the CW beam. Third, the signal to noise acquired in a given

amount of time is better compared to detecting the absorption of pulses [5]. This is

partially because the pulsed method is sensitive to a power dependent background,

requiring twice as many points to be acquired such that we can perform background

subtraction [5].

3.4 Optical Excitation of a Two-level System

Now that we have established an initialization and experimental readout method,

we return to our goal of rotating the electron spin. At first it seems that this is a

fairly simple problem of transferring population between two quantum levels. Let us

begin by considering the canonical problem of the interaction of an electromagnetic

wave with a two-level quantum system, as this is the basis for later developments.

For now we will leave the form of the interaction general so that it could represent an

electric or magnetic interaction. Since our goal is the development of gates, it is most

appropriate to focus on pulsed manipulations. We will define the perturbation as a

square pulse, as this is easiest to solve analytically. Solutions for hyperbolic secant

pulses are also analytically achievable and are addressed in detail in a text recently

published by Paul Berman [6]. For this body of work the exact form of the solution
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during the pulse is not critical, so the square pulse approximation is suitable to find

the state of the quantum system after the pulse. Much of the following notation and

development follows Chapter 2 of the text by Berman [6].

If the pulses have a pulsewidth of τ and frequency ω then the general field inter-

action can be defined as

V(t) = V0cos(ωt+ φ) � (
t

τ
) (3.16)

�( t
τ
) =

⎧⎪⎨
⎪⎩
1 if 0 ≤ t < τ

0 if t < 0 or t ≥ τ.

(3.17)

The Hamiltonian can be written as the Hamiltonian in the absence of the field, H0,

plus the interaction Hamiltonian, V. The two levels have an energy difference �ω0,

and the zero energy level is chosen to be halfway between the two levels.

H = H0 +V =
�ω0

2

⎡
⎣−1 0

0 1

⎤
⎦+

⎡
⎣ 0 V(t)

V(t) 0

⎤
⎦ (3.18)

If ag(t) and ae(t) are the probability amplitudes for the ground and excited state

respectively, then

i�ȧg(t) = −�ω0

2
ag(t) +V(t)ae(t)

i�ȧe(t) =
�ω0

2
ae(t) +V(t)ag(t).

(3.19)

The probability amplitudes in the field interaction representation are defined by the

transformations

ag(t) = eiωt/2cg(t)

ae(t) = e−iωt/2ce(t),
(3.20)

which when substituted into equation 3.19 give

i�ċg(t) = −�δ
2
cg(t) +V(t)e−iωtce(t)

i�ċe(t) =
�δ
2
ce(t) +V(t)eiωtcg(t)

(3.21)

where δ = ω0−ω. If we take the rotating wave approximation, which says that terms

that oscillate at 2ω average to zero for relevant time scales, then for times 0 ≤ t < τ

these equations simplify to

i�ċg(t) = −�δ
2
cg(t) +V0e

iφce(t)

i�ċe(t) =
�δ
2
ce(t) +V0e

−iφcg(t).
(3.22)
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If we define Ω0 = −V0eiφ

�
, then we can write

ċg(t) = i δ
2
cg(t) + iΩ0

2
ce(t)

ċe(t) = −i δ
2
ce(t) + i

Ω∗
0

2
cg(t).

(3.23)

This coupled pair of differential equations can be solved since Ω0 is independent of

time. We find that for 0 ≤ t < τ
⎡
⎣cg(t)
ce(t)

⎤
⎦ =

⎡
⎣cos(Ωt

2
) + iδ

Ω
sin(Ωt

2
) − iΩ∗

0

Ω
sin(Ωt

2
)

− iΩ0

Ω
sin(Ωt

2
) cos(Ωt

2
)− iδ

Ω
sin(Ωt

2
)

⎤
⎦
⎡
⎣cg(0)
ce(0)

⎤
⎦ . (3.24)

.

Ω =
√
δ2 + |Ω0|2 (3.25)

From this we can find the state of the system immediately after the pulse by substi-

tuting τ for t in Equation 3.24. Equivalently, if v(t) =

⎡
⎣cg(t)
ce(t)

⎤
⎦ then

v(t) = e
−iΩt

2
n·σ′

v(0) (3.26)

where

σu =

⎛
⎝0 1

1 0

⎞
⎠ σv =

⎛
⎝0 −i
i 0

⎞
⎠ σw =

⎛
⎝1 0

0 −1

⎞
⎠ (3.27)

n =
Re[Ω0]

Ω
û+

Im[Ω0]

Ω
v̂ − δ

Ω
ŵ. (3.28)

UR(Φ) = e
−iΦ
2

n̂·σ′
is a representation of the SU(2) group, which describes rotation of

a two state system about the axis n by an angle Φ [6]. By writing the effect of the

perturbation in the form of the SU(2) group, we have shown that such a perturbation

can lead to a rotation of the state vector.

In this manner we could directly drive the spin between the |x+〉 and |x−〉 states
with a magnetic pulse tuned to the energy difference �Δe [8]. However, this direct

transition is of a microwave frequency. Our model for electromagnetic interactions

is only appropriate for Rabi frequencies, Ω, much less than the transition frequency.

This limits the microwave pulsewidth to the order of nanoseconds. It is essential

for quantum computation that gates operate much faster than the dephasing time,

which is 80 ns for InAs dots, even when actively reducing nuclear fluctuations [2, 9].
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Even with the microsecond dephasing times measured by Clark [10], it would not be

possible to perform the 106 gate operations necessary to perform error correction [11].

Clearly microwave transitions will not suffice, so we focus on optical methods.

The allowed optical transitions were presented in Chapter 2. A simple optical

approach would be to first excite the electron to, for example, |Tx+〉 with a pulse

and then to drive it back down to |x+〉 with a second pulse. This method would be

prone to errors, since for the time between the pulses the electron is in an excited

state. The trion states decay quickly, and any decay would add error to the process.

Thus, it is preferable to keep the electron in the ground state whenever possible. The

following section derives a method for rotating the spin in which the electron is only

in an excited state for the brief duration of each pulse.

3.5 Rotation about the optical axis via Raman transitions

To develop our ground state rotation we must first extend the theoretical devel-

opment from Section 3.4 to optical excitation of a four level system. The general

equations for this were developed in Chapter 2. We will again define the electric field

as

E(t) =
1

2
(Ex(t)x̂+ Ey(t)ŷ)e

−iωt +
1

2
(E∗

x(t)x̂+ E∗
y(t)ŷ)e

iωt. (3.29)

We use the Hamiltonian from Equation 2.28, which was written in the field interaction

representation and the rotating wave approximation. The optical interaction was

calculated in the dipole approximation, V = −μ ·E. As a reminder, the equations of

motion for the probability amplitudes are

ċ1(t) =
i
2
[(δ +Δe)c1(t)− Ω∗

x(t)c3(t)− Ω∗
y(t)c4(t)]

ċ2(t) =
i
2
[(δ −Δe)c2(t)− Ω∗

y(t)c3(t)− Ω∗
x(t)c4(t)]

ċ3(t) =
i
2
[−Ωx(t)c1(t)− Ωy(t)c2(t) + (−δ +Δh)c3(t)]

ċ4(t) =
i
2
[−Ωy(t)c1(t)− Ωx(t)c2(t) + (−δ −Δh)c4(t)]

(3.30)

where

Ωx(t) ≡ ℘Ex(t)

�
√
2

Ωy(t) ≡ i℘Ey(t)

�
√
2
. (3.31)
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To simplify these equations, it is useful to make the substitutions

c̃3(t) = c3(t)e
− i

2
(−δ+Δh)t

c̃4(t) = c4(t)e
i
2
(δ+Δh)t,

(3.32)

which gives

˙̃c3(t) =
i
2
e−

i
2
(−δ+Δh)t[−Ωx(t)c1(t)− Ωy(t)c2(t)]

˙̃c4(t) =
i
2
e

i
2
(δ+Δh)t[−Ωy(t)c1(t)− Ωx(t)c2(t)].

(3.33)

Integrating Equation 3.33 by parts gives

c̃3(t) =
1

−δ+Δh
[(Ωxc1 + Ωyc2)e

− i
2
(−δ+Δh)t − ∫

e−
i
2
(−δ+Δh)t d

d t
(Ωxc1 + Ωyc2)dt]

c̃4(t) =
−1

δ+Δh
[(Ωyc1 + Ωxc2)e

i
2
(δ+Δh)t +

∫
e

i
2
(δ+Δh)t d

d t
(Ωyc1 + Ωxc2)dt],

(3.34)

where the time dependence of the Rabi frequencies and probability amplitudes has

been dropped for compactness.

In the limit that all of the following are true

| d
d t
( Ωxc1
δ−Δh

)| << |Ωxc1|
| d
d t
( Ωyc2
δ−Δh

)| << |Ωyc2|
| d
d t
( Ωxc2
δ+Δh

)| << |Ωxc2|
| d
d t
( Ωyc1
δ+Δh

)| << |Ωyc1|,

(3.35)

the integral portion of Equation 3.34 is small and can be neglected in the lowest order

solution.

c̃3(t) ≈ 1
−δ+Δh

(Ωxc1 + Ωyc2)e
− i

2
(−δ+Δh)t

c̃4(t) ≈ −1
δ+Δh

(Ωyc1 + Ωxc2)e
i
2
(δ+Δh)t

(3.36)

Substituting these approximate solutions into Equation 3.30 gives

ċ1 ≈ i
2
[(δ +Δe)c1 +

|Ωx|2c1+Ω∗
xΩyc2

δ−Δh
+

|Ωy |2c1+Ω∗
yΩxc2

δ+Δh
]

ċ2 ≈ i
2
[(δ −Δe)c1 +

|Ωy |2c2+Ω∗
yΩxc1

δ−Δh
+ |Ωx|2c2+Ω∗

xΩyc1
δ+Δh

],
(3.37)

which is equivalent to an effective two level Hamiltonian:

Heff =
−�

2

⎡
⎣δ +Δe +

|Ωx|2
δ−Δh

+ |Ωy |2
δ+Δh

Ω∗
xΩy

δ−Δh
+

Ω∗
yΩx

δ+Δh

ΩxΩ∗
y

δ−Δh
+ ΩyΩ∗

x

δ+Δh
δ −Δe +

|Ωx|2
δ+Δh

+ |Ωy |2
δ−Δh

⎤
⎦ . (3.38)

This procedure is known as adiabatically eliminating the trion states [6]. If the

detuning is large enough, then further approximations can be made. If δ >> Δh,Δe
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then to first order in Δh

δ

Heff ≈−�

2

⎡
⎣δ+Δe +

|Ωx|2+|Ωy |2
δ

+ (−|Ωx|2+|Ωy |2)Δh

δ2
Ω∗

xΩy+Ω∗
yΩx

δ
+

(Ω∗
yΩx−Ω∗

xΩy)Δh

δ2

Ω∗
xΩy+Ω∗

yΩx

δ
+

(−Ω∗
yΩx+Ω∗

xΩy)Δh

δ2
δ−Δe+

|Ωx|2+|Ωy |2
δ

+ (|Ωx|2−|Ωy |2)Δh

δ2

⎤
⎦ .

(3.39)

Thus, if the pulses are detuned enough compared to the rate of change of the

electric fields, the trion levels can be neglected. The interaction reduces to a two

level system where the ground state energies have been shifted by a light shift. Now

that we have cranked through the math, remember that we are trying to rotate the

electron spin. As mentioned, the goal is to not excite occupation of the trion levels,

so detuning from the trion transitions is somewhat intuitive. It is the off-diagonal

terms of the two level effective Hamiltonian that allow our spin flip, since the levels

of our two level system are the electron spin states. The physical process by which

the spin flips is a coherent Raman interaction via a virtual intermediate state.

We want to maximize the off-diagonal terms in this effective Hamiltonian, since

they are the terms creating the spin rotation. This means maximizing |Ω∗
xΩy+Ω∗

yΩx|.
If we assume that the x and y components have equal power such that we can write

Ey = Exe
iφ, then |Ω∗

xΩy + Ω∗
yΩx| = 2|Ωx|2 sinφ. This shows that φ = ±π

2
, circular

polarization, leads to the maximum coupling between the spin states. Also φ = 0,

45 degree polarization, makes the leading term zero and leaves a coupling that is

weaker by the factor Δh

δ
. We can understand this better by first realizing that this

phase dependence is not present in a three level lambda system. Physically, the phase

dependence is present because there are two possible two-photon pathways (V1-H2

and V2-H1). This phase dependence is a result of interference of the two pathways.

To see that this interaction takes the form of a rotation of the spin, we must make

a few more approximations. First, we neglect terms proportional to Δh

δ
. Second, we

shift our zero energy by �δ
2
(which is equivalent to pulling out a phase factor common

to all states) and finally we ignore the light shifts |Ωx|2+|Ωy |2
δ

. This leaves us with

Heff ≈ −�

2

⎡
⎣ Δe Ṽ (t)

Ṽ (t) −Δe

⎤
⎦ (3.40)
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where Ṽ (t) =
Ω∗

xΩy+Ω∗
yΩx

δ
. Now we can make use of the Bloch vector picture. Dis-

cussions of this formalism can be found in most quantum optics books [6, 12]. In

this formalism two vectors are defined, the Bloch vector B and the pseudofield vector

Ωpseudo(t). For our Heff ,

B(t) =

⎡
⎢⎢⎢⎣
u

v

w

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
ρ̃12 + ρ̃21

i(ρ̃21 − ρ̃12)

ρ22 − ρ11

⎤
⎥⎥⎥⎦ (3.41)

Ωpseudo(t) =

⎡
⎢⎢⎢⎣
−Ṽ (t)

0

Δe

⎤
⎥⎥⎥⎦ (3.42)

Recall the experimental geometry presented in Figure 2.7. Given that a positive

quantity ρ22 − ρ11 corresponds to the spin aligned in the +x̂ direction, the Bloch

vector corresponds to the spin’s direction in real space directions as follows:

ŵ → x̂ v̂ → ŷ û→ −ẑ (3.43)

The dynamics of the system can be visualized by the Bloch vector precessing about

the pseudofield vector.

x

z

y

Ω
pseudo

B

Figure 3.4: A Bloch sphere picture of the rotation described by Equation 3.40. The Bloch vector,

B, precesses about the pseudofield vector, Ωpseudo. For the spin qubit system, the Bloch vector

corresponds to the spin vector representation in real space.
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The magnitude of Ṽ is much greater than Δe for typical experimental parameters,

so during the pulse the dominant effect is a rotation of the spin about the z axis, as

shown in Figure 3.4. (We will discuss the effect of Δe in the absence of the pulse

in the next section.) Neglecting the effect of the Zeeman splitting also leads to the

following solution for the probability amplitudes immediately following a pulse:

c1(t) = cos θ
2
c1(−) + i sin θ

2
c2(−)

c2(t) = +i sin θ
2
c1(−) + cos θ

2
c2(−)

θ =
∫∞
−∞Ṽ (t) dt

(3.44)

The terms such as c1(−) represent the probability amplitudes before the pulse arrives.

θ is called the pulse area, and in this case determines the angle of the rotation about

the z axis. Equation 3.44 is of the same form as Equation 3.24, which is that of a

rotation.

Thus we have argued theoretically that a sufficiently detuned circularly polarized

pulse should rotate the spin about the z axis by an amount determined by the pulse

area. This two-photon optical process keeps the system in the ground states while

being faster than a microwave interaction. The speed of the rotation is determined

by the pulsewidth, which is in turn limited by the approximation conditions from

Equation 3.35. Next we describe the experimental implementation of this rotation

method.

3.5.1 Results: Spin Rabi Oscillations

The experimental measurement of Rabi oscillations between the two electron spin

states involves two lasers, a CW laser for initialization and readout and a pulsed

beam to perform rotations. The experimental layout is shown in Figure 3.5. The

direction of the laser propagation and magnetic field are as defined in Figure 2.7.

The pulses are produced by a Coherent Mira, which is a Kerr modelocked Ti:Saph

laser. The pulses have a hyperbolic secant shape, a pulsewidth of about 2 ps for

this measurement, a repetition period of 13 ns and are roughly transform limited.

The pulses pass through a traveling wave acousto-optic modulator and the first order
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AOMMIRA (ps)

899

APD

half-wave plate linear polarizer

BSC

iris

lens

cryostat

sample

Figure 3.5: The experimental layout used for spin Rabi measurements. The 899 CW Ti:Saph laser

is used for initialization and readout. The MIRA modelocked Ti:Saph laser produces picosecond

pulses whose power is controlled by an acousto-opic modulator(AOM). The Babinet-Soleil compen-

sator(BSC) and linear polarizer are adjusted such that they block the pulses.

diffracted beam continues to the sample, so that the pulse power at the sample can

be electronically controlled by varying the driving amplitude of the modulator. The

polarization is either set to be 45 degrees with a linear polarizer or circular with a

polarizer and quarterwave plate. The polarization is set immediately before the pulses

are combined with the CW beam on a beamsplitter.

The CW beam from the Coherent 899 is tuned to the transition V1 in Figure 2.8,

frequency stabilized, and vertically polarized. The lowest energy transition was chosen

to avoid any unexpected effects from nonradiative relaxation. As stated in Chapter

2, the 899 has a very narrow (<1MHz) bandwidth so only the V1 transition is cou-

pled. For the on-resonance studies, the Mira is tuned such that the pulse bandwidth

is centered on the V1 transition also, however its bandwidth is much greater than

the ground state and trion state splitting, so all four transitions are coupled by the

pulse. For the detuned measurements, the Mira is tuned 1 meV to the red of the V1

transition.

Both beams are collimated before being combined by a beamsplitter. The two

collinear beams are then focused onto the aperture of interest. The transmitted

beams pass through a Babinet Soleil compensator and then a linear polarizer. This
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combination is adjusted for a given measurement to block the transmitted pulses.

The compensator enables adjustment for birefringence in the sample and the cryostat

windows that can lead to somewhat elliptically polarized transmitted beams. The

remaining transmitted light is spatially filtered with an iris to reduce scattered light

and focused onto a silicon avalanche photodiode.

This setup detects the modulated absorption of the CW beam. As described in

Chapter 2, the sample is kept at 5 Kelvin and a bias is applied which has a DC and

AC component. The DC component is chosen to place the V1 transition in the middle

of the optical pumping region and the AC component is .02 V, which is on the order

of the transition linewidth. The bias modulation is used as the reference input to a

lock-in amplifier which processes the APD signal.

The experiment proceeds as described by Figure 3.2. The CW beam is used to

initialize the system to state |x−〉 as explained in Section 3.2, and the absorption

of the CW beam relates to the density matrix through Equation 3.15. From this

expression we see that the when the system is in state |1〉 there is no CW absorption,

but if the pulse causes some probability of being in any of the other three states, then

CW absorption will be detected.

The data from four different Rabi oscillation experiments is plotted in the right

half of Figure 3.6. For each experiment the time averaged CW absorption signal was

measured for a range of bias voltages and pulse powers. The objective is to see the

probability oscillate as a function of pulse area between the two ground states. This

constitutes a spin Rabi oscillation and proves that we can rotate the spin. However,

our readout method does not differentiate between the trion states and state |x+〉.
We use polarization and detuning to isolate the two-photon spin Rabi process from

the single photon excitation of the trion states.

We know that for 45 degree polarization the two photon process derived in the

previous section is very weak, so we expect that signals at this polarization are coming

from excitation of the trion levels. This data is shown in the upper half of Figure 3.6.

When the pulses are on resonance we see two clear Rabi oscillations that disappear

when we detune the pulse by 1 meV (approximately our pulse bandwidth). Thus, if
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we use circular polarization and detune by 1 meV we know that any signal is from

our coherent two photon spin rotation that does not populate the trion states. This

is shown in the bottom right quadrant. The circularly polarized, on resonant data in

the lower left quadrant has a combination of one- and two-photon processes.

The left half of Figure 3.6 plots the numerical solutions to the density matrix

equations (Equation 2.32) using numerical parameters from the experiment. The cal-

culated signal is Equation 3.15. A pulse power dependent redshift of the V1 transition

was phenomenologically added to match an observed effect in the data. It is possible

that the pulse is exciting carriers in the wetting layer which are affecting the dot’s

energy levels.

In summary, the lower right quadrant of Figure 3.6 demonstrates the coherent

rotation of the electron spin about the optical (z) axis by an arbitrary angle that is

controllable by the pulse power. This rotation is accomplished in 2 picoseconds.
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Figure 3.6: Numerical density matrix solutions and experimental data showing spin Rabi oscilla-

tions [1]. The plotted signal is the CW beam absorption for varying pulse power and bias voltage.

P
1/2
pulse is the square root of the average power of the pulsed beam and DC offset is the DC component

of the sample bias. The two columns compare on-resonant pulses to pulses detuned by 1 meV. The

rows contrast 45 and circular polarized pulses.
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3.6 Precession

As previously discussed, for an arbitrary rotation we must have the ability to

rotate the spin about two orthogonal axes. We have demonstrated a rotation about

the z axis. In this section we discuss and measure the Larmour precession of the spin

about the magnetic field, which given our axis definitions from Figure 2.7, provides

a rotation about the x axis.

In the absence of optical excitation and with a magnetic field applied in the x

direction, the probability amplitude equations from Equation 3.30 reduce to

ċ1(t) =
i
2
Δec1(t)

ċ2(t) = − i
2
Δec2(t)

ċ3(t) =
i
2
Δhc3(t)

ċ4(t) = − i
2
Δhc4(t)

(3.45)

which have the simple solutions

c1(t) = e
iΔet
2 c1(0)

c2(t) = e
−iΔet

2 c2(0)

c3(t) = e
iΔht

2 c3(0)

c4(t) = e
−iΔht

2 c4(0).

(3.46)

If there is no population in the trion states, then the two level electron spin system

can be represented by equations of the form of Equation 3.26 or by the Bloch vector

picture as before, but now

Ωpseudo(t) =

⎡
⎢⎢⎢⎣

0

0

Δe

⎤
⎥⎥⎥⎦ (3.47)

so the electron spin rotates about the x axis.

3.6.1 Results: Ramsey fringes

The experiment to measure this precession is very similar to the Rabi experiment

from the previous section, except that there are two pulsed beampaths with a vari-

able delay between them, as shown in Figure 3.7. The two pulses are co-circularly
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Figure 3.7: Experimental layout for two pulse Ramsey fringe measurements. A computer controlled

translation stage scans the delay between the pulses. Otherwise the layout is the same as Figure 3.5.
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Figure 3.8: Pulse timing diagram for the Ramsey fringe experiments. The difference in pulse path

length creates a pair of pulses separated by τ , which can be scanned up to 1 ns. The laser repetition

rate is 13 ns.

polarized, detuned such that only the two photon spin rotation is observed, and have

pulse areas of π
2
. The timing of the experiment is shown in Figure 3.8.

It is convenient to write the probability amplitude solutions for the effect of the

pulses and the effect of the precession in terms of transfer matrices.

Tpulse(θ =
π
2
) =

√
2
2

⎡
⎣1 i

i 1

⎤
⎦ TB =

⎡
⎣e

iΔeτ
2 0

0 e
−iΔeτ

2

⎤
⎦ (3.48)

The effect of the pulse pair can be found from

TpulseTBTpulse = i

⎡
⎣sin(Δeτ

2
) cos(Δeτ

2
)

sin(Δeτ
2
) − sin(Δeτ

2
)

⎤
⎦ . (3.49)

The CW absorption for a system that starts initialized to state |1〉 will be proportional
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Figure 3.9: A Bloch sphere visualization of the spin dynamics during the two pulse, Ramsey

fringe experiment. During the pulses the pseudovector is dominated by the optical field, and thus is

approximately along the z (optical) axis, otherwise the pseudovector is along the x axis parallel to

the magnetic field. The pulses have pulse area π
2 , so they each rotate the Bloch vector 90 degrees

about the pseudovector. Between the pulses the Bloch vector precesses about the pseudovector at a

speed determined by the magnetic field strength.

to

ρ22 = sin2(
Δeτ

2
). (3.50)

The CW beam is on transition V1 as before, so the system starts in state |1〉
(along the −x axis as shown in Figure 3.9). The first pulse rotates the spin by 90

degrees about the z axis leaving it along the −y axis. For the time τ between the

pulses the spin will precess about the x axis until the second pulse rotates the spin

again. Thus the delay between the pulses controls the angle of rotation about the x

axis. This is a Ramsey fringe type experiment in that it measures the phase of the

transition relative to the field for a known period of time.

Figure 3.10 shows the numerical simulation and experimental data for this two

pulse measurement as a function of delay between the pulses and magnetic field

strength. For a given magnetic field strength, the CW absorption oscillates as a

function of delay. The oscillation frequency increases with magnetic field, as expected

since Δe = ge,xμBBx. An electron g factor magnitude of 0.4 is extracted from this

measurement. The observation of electron spin precession demonstrates that the

Raman pulses manipulate the spin in a coherent manner.
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Figure 3.10: Numerical calculations (left) and data (right) for the CW absorption signal in a

two pulse Ramsey fringe experiment for varying pulse delay and magnetic field [1]. The pulses are

detuned 0.5 meV to the red of the trion transition.

These measurements demonstrate the combination of coherent rotations about

two orthogonal axes: one produced by optical pulses, and the other by precession

about the magnetic field. All rotations can be executed by any angle. While a

rotation of any angle by the optical pulse requires only 2 picoseconds, a rotation of

2π by the magnetic field takes 33 picoseconds in a 6.6 Tesla magnetic field. This is

still fast compared to the spin dephasing rate of microseconds. Therefore, we have

demonstrated a method for arbitrary rotations of a single spin qubit. The next section

discusses a different, purely optical method for optical rotation about the x axis.

3.7 CW Rabi oscillation and geometric phases

In this section we reexamine the derivation and experiment from the Section 3.6

with a focus on the effect of the CW beam between the two pulses. We treat the CW

beam as perfectly on resonance with transition V1 such that

ECW (t) = ECW ŷ cos[(ω0 − Δe+Δh

2
)t]

ΩCW ≡ i℘ECW (t)

�
√
2

.
(3.51)
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and Equation 3.30 becomes

ċ1(t) =
i(3Δe+Δh)

4
c1(t)

ċ2(t) =
i
4
[(−Δe +Δh)c2(t)− 2Ω∗

CW c3(t)]

ċ3(t) =
i
4
[−2ΩCW c2(t) + (−Δe +Δh)c3(t)]

ċ4(t) =
−i(Δe+3Δh)

4
c4(t).

(3.52)

which has the following solutions:

c1(t) = e
i(3Δe+Δh)t

4 c1(0)

c2(t) = e
i(−Δe+Δh)t

4 [cos |ΩCW |t
2

c2(0)− sin |ΩCW |t
2

c3(0)]

c3(t) = e
i(−Δe+Δh)t

4 [cos |ΩCW |t
2

c3(0) + sin |ΩCW |t
2

c2(0)]

c4(t) = e
−i(3Δe+Δh)t

4 c4(0)

(3.53)

From these solutions we can extract an effective transfer matrix to describe the effect

of simultaneous application of a CW laser and a magnetic field on our spin qubit.

TB+CW =

⎡
⎣e

i(3Δe+Δh)t

4 0

0 e
i(−Δe+Δh)t

4 cos |ΩCW |t
2

⎤
⎦ (3.54)

The exponentials simply represent the precession about the magnetic field dis-

cussed in the previous section. If we consider specific values of t such that t = 2πn
ΩCW

≡
T then the contribution from the CW beam becomes a factor of (−1)n = einπ between

state |1〉 and |2〉. Thus the on-resonance CW beam can be used to create rotations

of the spin that are multiples of π. This phase shift is considered a geometric phase

because it comes from a cyclic transition [13]. In this case the CW beam causes a

2π Rabi oscillation. Such a cyclic evolution can acquire both dynamic and geometric

phases. The dynamic phase is a generalization of the standard phase acquired by a

wavefunction over time and is defined by

γd = − i

�

∫ T

0

〈Ψs(t)|H(t)|Ψs(t)〉
〈Ψs(t)|Ψs(t)〉 dt (3.55)

[13]. In this case, |Ψs(t)〉 is the electron spin vector and the Hamiltonian includes

the effects of the magnetic field and the CW beam. If T takes only specific values

as defined above and the system starts in one of the spin ground states, then this
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integral evaluates to 0 indicating that any phase created is purely geometric. Because

the Raman pulses do not lead to occupation of the trion states, experiments involving

Raman pulses and complete CW Rabi oscillations can lead to purely geometric phases.

Let us consider the experiment from the previous section where two detuned,

circularly polarized π
2
pulses are separated by a delay τ , but this time we account for

the effect of both the magnetic field and the CW beam between the pulses. Since the

system starts out initialized to the lowest energy state, the vector for the probability

amplitudes of the spin ground states after the two pulse experiment described in the

previous section will be

TpulseTBandCWTpulse

⎡
⎣1
0

⎤
⎦ =

⎡
⎣ e

i(3Δe+Δh)t

4 − e
i(−Δe+Δh)τ

4 cos |ΩCW |τ
2

ie
i(3Δe+Δh)t

4 + ie
i(−Δe+Δh)τ

4 cos |ΩCW |τ
2

⎤
⎦ . (3.56)

We know that the absorption is proportional to

ρ22 +
1

2
(ρ33 + ρ44) =

1

2
(1 + ρ22 − ρ11) =

1

2
(1 + cos

|ΩCW |τ
2

cosΔeτ) (3.57)

so we expect the data from such a measurement to show oscillations with two fre-

quency components: one from the Zeeman splitting of the ground states and one from

Rabi oscillations of the CW beam. In the data shown in Figure 3.10 the CW beam

was weak enough that the Rabi oscillations were so slow as to be unnoticeable on the

timescale of the pulse delay.

3.7.1 Results: CW Rabi oscillations and π phase shifts

Figure 3.11 shows the same experiment as in Section 3.6.1 repeated with increas-

ingly stronger CW beams and longer delay times so as to observe the effect of the CW

beam. The faster oscillation represents the precession about the magnetic field and

the slower envelope oscillation is due to the CW beam. Note that the envelope oscilla-

tion gets faster with higher CW beam powers, as expected from the theory. Also, the

π phase shift mentioned above can be observed by comparing the precession signals at

different powers. Near zero delay all powers precess in phase, for example at the first,

green dotted line. After a given plot passes through a node of the envelope indicating
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Figure 3.11: Numerical calculations (left) and data (right) showing the geometric phase and mod-

ulation envelope produced by the CW beam [1]. The fast oscillation is the spin precession. The four

plots correspond to different powers, P, of the CW laser. The green dashed line demonstrates that

all four plots are in phase near zero delay, while some plots are out of phase at the red line due to

the acquired geometric phase. For the theoretical calculation ACW = 1
2ρ33(0) +

1
2ρ44(0) + ρ22(0).

that τ > 2π
ΩCW

, it is out of phase by π compared to a plot that has not passed through

a node. For example, compare the 0.2 mW and 5 mW plots at the second, red dotted

line. This data is evidence that the effects of the CW beam, including population

transfer and geometric phases, can be quite significant and need to be considered in

any such experiment with a CW beam driving a transition.

Economou and Reinecke propose using detuned hyperbolic secant pulses to create

such a geometric phase [14]. They derive that, with a detuned pulse, a continuous

range of phases can be produced such that the geometric phase can create rotation

by any angle about the x axis [14]. In the limit that a CW beam can be considered a

very long pulse, our experiment represents a first demonstration of the feasibility of

this rotation method for spins in dots.

3.8 Chapter Summary

This chapter focused on manipulation of a single electron spin qubit. First, a

technique of using a CW beam for initialization and readout in coherent control ex-
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periments on the quantum dot electron spin was presented. Then three methods for

coherently rotating the electron spin were derived and demonstrated. Circular, de-

tuned optical pulses rotate the spin about the optical (z) axis in a few picoseconds.

Magnetic field precession can cause the electric field to rotate about the field axis

(x) in 33 picoseconds. Geometric phases provide a tool for optically rotating about

the x axis. We demonstrated π rotations by this method using our CW beam, but

pulses have been proposed to provide faster and more varied rotations [14]. A combi-

nation of these methods could achieve arbitrary rotation of the spin qubit about any

axis in times much faster than the decoherence time. This work represents a major

contribution toward fulfilling the DiVincenzo criteria [2].
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CHAPTER 4

Creating a Precursor State to Spin-Photon Entanglement: an

Experimental Design1

4.1 Introduction

In order for a quantum computer to perform useful calculations, the computer

must consist of a large network of qubits whose interactions are controllable. Liu,

Yao, and Sham published a proposal for such a network in which quantum dot based

qubits interact via a flying photon qubit [1]. An essential functionality of the proposed

network is the ability to entangle the spin qubit and the state of the photon.

Consider a quantum dot embedded in a photonic cavity such that the cavity

mode enhances spontaneous emission along the |t+〉 to |x+〉 transition but suppresses

spontaneous emission along all other transitions. If this dot is prepared in the state

|ΨE〉 = |x−〉+eiφE |t+〉√
2

, as illustrated in Figure 4.1, then the dot-cavity system is in the

state

|ΨE
system〉 =

(|x−〉+ eiφE |t+〉)|0〉c√
2

. (4.1)

After radiative decay the system will be in a state

|Ψdecay〉 = (|x−〉|0〉c + eiφE |x+〉|1〉c)√
2

, (4.2)

where the states |0〉c and |1〉c represent the absence or presence of a photon in the

cavity mode. If we measure whether a photon is present in the cavity, then we also

1This chapter was the result of encouragement by Luming Duan to pursue entanglement within

the spin-exciton system.
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know the spin of the electron. This procedure suggested by Yao, Liu, and Sham cre-

ates a deterministic entanglement between the emission of a photon and the electron

spin [2]. Preparing a dot embedded in a photonic cavity in the state |ΨE〉 is thus a
preliminary step to photon-spin entanglement.

υh+

+

Radiative

decay

+x

−t
+t

−x

+x

−t
+t

−x

+x

−t
+t

−x

Figure 4.1: The photonic cavity modes can enhance one optical transition within the dot and

suppress the others. Radiative decay leads to a superposition of two outcome states, (|x−〉|0〉c +
eiφE |x+〉|1〉c)/

√
2 where the states |0〉c and |1〉c represent the presence or absence of a photon in

the cavity mode.

This chapter presents a proposal to create the state |ΨE〉 in current samples,

with structures as described in Chapter 2, in preparation for future studies with

photonic cavity samples. As will be explained in Section 4.2, |ΨE〉 was created in an

experiment presented in the previous chapter, but in a transient way that is unsuitable

for the entanglement procedure described above. Section 4.3 proposes a detailed

experimental procedure to create |ΨE〉 using pulsed coherent control and to measure

the coherence of the created state. Section 4.4 discusses numerical simulations of the

proposed experiment and its fidelity, including a comparison of two possible pulse

sequences. The final section discusses the degree of entanglement present in |ΨE〉.

4.2 Preliminary Experiment

The entangled state |ΨE〉 was created in the experiment described in Section 3.7.1.

As a reminder, the electron was initialized into the |x−〉 state via optical pumping

by an on resonant CW beam which remained on throughout the experiment. The
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electron spin was then manipulated by two circularly polarized picosecond pulses

separated by a variable delay. Each pulse rotated the electron spin by 90 degrees

about the optical axis since each had a pulse area of π
2
. As described in Section 3.5,

these pulses were energetically detuned so as to allow adiabatic elimination of the trion

state and electron spin rotation through a two-photon Raman process [3,4]. Between

pulses the electron spin precessed about the magnetic field while simultaneously the

CW beam drove Rabi oscillations between the |x+〉 and |t+〉 states. The measured

signal was the absorption of the CW beam, which was tuned to the V1 transition and

left on throughout the experiment. The readout signal was shown in Section 3.3 to

be proportional to [1
2
ρ33(0) +

1
2
ρ44(0) + ρ22(0)].

A subset of the experimental data and a corresponding numerical simulation are

shown in Figure 4.2. The faster oscillation is the precession of the electron spin about

the magnetic field, and the slower envelope represents the CW Rabi oscillation. After

initialization, but before the pulses, the system is described by

c(0) =

⎡
⎢⎢⎢⎢⎢⎢⎣

c1(0)

c2(0)

c3(0)

c4(0)

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

1

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎦
. (4.3)

Equation 3.44 gives the probability amplitudes at t1+, immediately after the first

Raman pulse, as

c(t1) =

⎡
⎢⎢⎢⎢⎢⎢⎣

√
2
2

i
√
2

2

0

0

⎤
⎥⎥⎥⎥⎥⎥⎦
. (4.4)

Equation 3.53 gives the effect of precession and the CW Rabi oscillations. If there is a

delay of τ between pulses, the probability amplitudes immediately before the second
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pulse are

c(t1 + τ) =

⎡
⎢⎢⎢⎢⎢⎢⎣

√
2
2
e

i(3Δe+Δh)τ

4

i
√
2

2
e

i(−Δe+Δh)τ

4 cos |ΩCW |τ
2

i
√
2

2
e

i(−Δe+Δh)τ

4 sin |ΩCW |τ
2

0

⎤
⎥⎥⎥⎥⎥⎥⎦
. (4.5)

If τ = 4nπ
|ΩCW | , where n is an integer, then

c(t1 +
4nπ

|ΩCW |) =

⎡
⎢⎢⎢⎢⎢⎢⎣

√
2
2
e

i(3Δe+Δh)τ

4

i
√
2

2
e

i(−Δe+Δh)τ

4

0

0

⎤
⎥⎥⎥⎥⎥⎥⎦
, (4.6)

and immediately before the second pulse the system is in an equal superposition of

states |x−〉 and |x+〉. These conditions are represented by the data points where the

envelope is a maxima, indicated in figure 4.2 by the blue arrows.

If instead, τ =
4(n+ 1

2
)π

|ΩCW | , then

c(t1 +
4(n+ 1

2
)π

|ΩCW | ) =

⎡
⎢⎢⎢⎢⎢⎢⎣

√
2
2
e

i(3Δe+Δh)τ

4

0

i
√
2

2
e

i(−Δe+Δh)τ

4

0

⎤
⎥⎥⎥⎥⎥⎥⎦
, (4.7)

which is a coherent superposition of states |x−〉, and |t+〉 and thus is our desired

state. This state can be seen in the data as the minima of the envelope, which are

indicated in Figure 4.2 by the red arrows.

While the state |ΨE〉 was created, no measurement was made of the entangle-

ment. Furthermore, the dependence on the CW Rabi oscillation makes this method

of preparation ill suited to quantitative measurements of |ΨE〉 or the deterministic

entanglement procedure presented at the beginning of this chapter. The rate of the

CW Rabi oscillation can be controlled by the power of the CW beam, but there are

conflicting limitations on this rate. If the CW Rabi oscillation is too slow then ra-

diative decay will degrade the fidelity of |ΨE〉. However, if the CW Rabi oscillation
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Figure 4.2: A subset of the geometric phase data from Section 3.7.1 for CW Power=13 mW.

Numerical calculations (left) and data (right) for the CW absorption signal are plotted as a function

of delay. The fast oscillation is the spin precession, and the envelope is due to Rabi oscillations

driven by the CW beam. The blue arrows indicate times when the dot is in an equal coherent

superposition of the two spin states, as described in Equation 4.6. The red arrows indicate times

when the dot is in the superposition state |ΨE〉.

is fast then not only will the state |ΨE〉 be created quickly, but the CW Rabi oscilla-

tion will destroy |ΨE〉 quickly as well, since the CW beam remains on for the entire

measurement. The next section suggests an alternate procedure to create |ΨE〉 that
will allow for measurement and characterization of the state.

4.3 Procedure to create |ΨE〉
This section proposes an experimental procedure to create state |ΨE〉 through

coherent manipulation with four optical pulses in such a manner that the state can

persist, limited only by the timescales of decay and decoherence. The proposed ex-

periment includes a measurement of the coherence of the created state, since coher-

ence is essential for entanglement. The procedure for creating |ΨE〉 has three stages:

(1) initialization to a pure spin ground state |Ψinit〉 = |x−〉, (2) spin rotation to

|Ψspin〉 = −i√
2
|x−〉− 1√

2
|x+〉, and (3) selective excitation of the ||x+〉〉 state such that

the final state is |ΨE〉 = (|x−〉+eiφE |t+〉)/√2. Notice that this procedure first rotates

the spin qubit and then creates the exciton in two temporally separate manipulations.

4.3.1 Initialization

A CW beam on resonance with transition V1 initializes the system to state |x−〉
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via optical pumping, as discussed in Section 3.2. The timing sequence of the proposed

experiment is as shown in Figure 3.2. The CW beam initializes the system over

several nanoseconds, then a series of pulses manipulates the system to create |ΨE〉.
The measured signal is the absorption of the CW beam as reinitialization occurs, as

calculated in Section 3.3.

4.3.2 Spin rotation

The spin rotation could be easily accomplished using a single off-resonant Raman

pulse as presented in Section 3.5, however step (3) requires on resonance pulses. To

avoid the need for a second pulsed laser or pulse shaping we propose a simple two

pulse sequence to accomplish the effective rotation via a trion state. Starting in an

initialized state |Ψinit〉 = |x−〉, we excite the system with a horizontally polarized (H)

pulse with a bandwidth that covers all four optical transitions from Figure 2.8. Given

that only state |x−〉is occupied, the polarization limits this optical interaction to the

two level system of states |x−〉and |t+〉. Optical excitation of a two level system was

treated in Section 3.4. The pulse area is π, leaving the system in |t+〉.
This horizontal pulse can then be followed by a 45 degree polarized pulse, which

will couple from state |t+〉to both ground states equally. The pulse area can be chosen

such that after the pulse there is zero probability of the electron being in |t+〉, leaving
the electron in a coherent superposition of the ground states. To calculate the effect of

this second pulse, Equation 2.29 can be simplified to a three level system by removing

state |t−〉, since states |t+〉and |t−〉are not optically coupled. For a square pulse with

45 degree polarization, Ωy = iΩx. With these simplifications, Equation 2.29 becomes

ċ1(t) = − i
2
Ωxc3(t)

ċ2(t) = −1
2
Ωxc3(t)

ċ3(t) = − i
2
Ωxc1(t) +

1
2
Ωxc2(t).

(4.8)
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The solutions to this set of equations, given the initial condition c3(0) = 1 are

c1(t) = − i√
2
sin Ωxt√

2

c2(t) = − 1√
2
sin Ωxt√

2

c3(t) = cos Ωxt√
2
,

(4.9)

which means that the second pulse should have a power such that Ωxτ√
2
= π. Such a

pulse will leave the dot in |Ψspin〉 = −i√
2
|x−〉 − 1√

2
|x+〉. The proposed pulse sequence

for creating and measuring |ΨE〉 is shown in Figure 4.3, with the first two frames

completing the spin rotation.

t = t
1

t = t
2

t = t
3 t = t

4
t = t

5 t > t
5

H,  p 45˚,  p V,  p/2 H,  p/2V,  p/2

Spin rotation Selective Excitation Readout

Figure 4.3: The proposed five pulse sequence for creating |ΨE〉 and measuring its coherence. Each

panel represents a pulse with the top row indicating the purpose of the pulse, the next row labeling

the time at which the pulse arrives at the dot, the red arrows indicating the transitions caused by the

pulse, and the bottom row indicating its polarization and pulse area. All pulses are on-resonance.

4.3.3 Selective Excitation

We use the pulse shaping scheme proposed in Reference [5] for selective excitation

from |Ψspin〉 = −i√
2
|x−〉 − 1√

2
|x+〉 to |ΨE〉 = (|x−〉 + eiφE |t+〉)/√2 with two on-

resonance pulses. The following is a detailed presentation of the theory.

4.3.3.1 Phase Dependence in a Two Level System

First consider a two level system with a ground state |g〉 and excited state |e〉 that
is excited by two identical on-resonant pulses separated by a time δt. The incident

electric field on the system is

E(t) = E � (
t

τ
) cos(ωt+ φ0) + E � (

t− δt

τ
) cos(ω(t− δt) + φ0) (4.10)
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where �( t
τ
) is again defined as

�( t
τ
) =

⎧⎪⎨
⎪⎩
1 if 0 ≤ t < τ

0 if t < 0 or t ≥ τ.

(4.11)

Thus the pulsewidth is τ , the relative phase between the pulse envelope and the

optical carrier is φ0, and the laser frequency is ω. E(t) and the two level system are

illustrated in Figure 4.4.

E(t)

t

τ δt τ+δt

ħω

|e〉

|g〉

Figure 4.4: A graph of the electric field for the two square pulses defined in Equation 4.10 and a

diagram of the two level system used in Section 4.3.3.1.

The field amplitude is constant for each time interval 0 ≤ t < τ , τ ≤ t < δt,

δt ≤ t < (δt + τ), and (δt + τ) ≤ t. The equations of motion from Equation 3.23

for the probability amplitudes in the field interaction representation and the rotating

wave approximation can be solved for each section of time and then combined. Since

the pulses are on resonance, δ = 0, and the probability amplitudes are constant except

for the time intervals when the field is on. The probability amplitudes cg(t) and ce(t)

for t > (τ + δt) are given by⎡
⎣cg(t)e−iωt/2

ce(t)e
iωt/2

⎤
⎦ =

⎡
⎣ cos Ωτ

2
−ie−i(φ0−ωδt) sin Ωτ

2

−iei(φ0−ωδt) sin Ωτ
2

cos Ωτ
2

⎤
⎦
⎡
⎣ cos Ωτ

2
−ie−iφ0 sin Ωτ

2

−ieiφ0 sin Ωτ
2

cos Ωτ
2

⎤
⎦
⎡
⎣cg(0)
ce(0)

⎤
⎦

=

⎡
⎣(cos2 Ωτ

2
− eiωδt sin2 Ωτ

2
)cg(0)− (ie−iφ0 + ie−i(−ωδt+φ0)) cos Ωτ

2
sin Ωτ

2
ce(0)

(cos2 Ωτ
2
− e−iωδt sin2 Ωτ

2
)ce(0)− (ieiφ0 + iei(−ωδt+φ0)) cos Ωτ

2
sin Ωτ

2
cg(0)

⎤
⎦

(4.12)
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where Ω = −μE
�
, and μ is the transition dipole moment. If we assume that the system

starts in the ground state such that ce(0) = 0, then the probabilities simplify to

|cg(t)|2 = 1− sin2(Ωτ) cos2 ωδt
2

|ce(t)|2 = sin2(Ωτ) cos2 ωδt
2
.

(4.13)

Figure 4.5 plots |ce(t)|2 as a function of δt. Equation 4.13 shows that changes in the

delay between two pulses (δt) on the order of the laser frequency affect whether the

two pulses combine constructively or destructively. Figure 4.6 illustrates the effect

of the two pulses with pulse areas (Ωτ) of π
2
on the Bloch vector for the two level

system.

1

4                 8              12              16

|c
e
|2

ω ω ω ω

δt

Figure 4.5: The probability of the system being in the excited state as a function of delay, δt, as

given by Equation 4.13.

4.3.3.2 Phase Dependence in a Four Level System: Selective Excitation

This effect can be useful in an InAs dot’s four level system. If we consider only

vertically polarized pulses, then only transitions V1 and V2 will be excited (as il-

lustrated in Figure 2.8). Because of the Zeeman splittings, the two transitions have

different energies which will be labeled ω23 and ω14. In the proposed experiment, two

pulses that are tuned to halfway between the V1 and V2 transitions (with a frequency

of ω23+ω14

2
) are used for selective excitation. The bandwidth of these picosecond pulses

is large compared to the typical Zeeman splittings, so the incident electric fields can

be approximated as equal for transitions V1 and V2. Since 1
τ
>> Δe,Δh >> Γt in

our system, where Γt is the radiative lifetime of the trion states, we can analytically

approximate the pulses as on resonance with both transition V1 and V2.
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|e〉

|g〉

|e〉

|g〉

|e〉

|g〉

|e〉

|g〉

t<0 t=τ τ<t<δt

t>τ+δt

B
Ω

u u u

u

w w w

w

v v v

v

Figure 4.6: A Bloch sphere representation of the dynamics of the 2 level system driven by two

pulses. See Section 3.5 for an introduction to Bloch spheres. From left to right, the first two spheres

show the rotation of Bloch vector, B, by the first pulse about the pseudofield vector, Ω. The third

sphere shows precession of the Bloch vector at the rate ω about the w axis. The three vertical

spheres on the right are three possible final Bloch vector orientations after the second pulse rotates

the Bloch vector about the u axis again. The final state of the Bloch vector depends on how long

the Bloch vector precesses between the pulses.

Ignoring decay terms, this creates two completely uncoupled systems, so we can

write down the probabilities of occupation for all four states after the two pulses

by using equation 4.13 above. Recall that the first two pulses of our procedure

in Figure 4.3 created an equal superposition of the two ground states, so a simple

adjustment of a factor of two is necessary to account for the initial population of 1
2

in each ground state instead of the value of 1 used to derive equation 4.13.

|c↑(t)|2 = 1
2
(1− sin2Ωτ cos2 ω23δt

2
)

|c↑↓⇑(t)|2 = 1
2
(sin2 Ωτ cos2 ω23δt

2
)

|c↓(t)|2 = 1
2
(1− sin2Ωτ cos2 ω14δt

2
)

|c↓↑⇓(t)|2 = 1
2
(sin2 Ωτ cos2 ω14δt

2
)

(4.14)

These equations show that as the delay, δt, is varied the probability oscillates

between states |x−〉 and |t−〉 at a different rate than between states |x+〉 and |t+〉.



82

When δt = π
(ω14−ω23)

= π
(Δe+Δh)

the V1 and V2 transitions are exactly out of phase

and the third and fourth pulses will add constructively (destructively) along V1 (V2)

respectively, leaving the system in |ΨE〉. Notice that stability of the delay between the

third and fourth pulses must be on the order of the optical frequency to observe this

effect. Figure 4.7 illustrates how the relative phase between |c↑↓⇑(t)|2 and |c↓↑⇓(t)|2

evolves as a function of delay. The difference between the frequencies is exaggerated

to make the effect easier to visualize. For the dot studied in this work in a 5.5 Tesla

magnetic field, the two transitions are exactly out of phase at δt = 10 ps.

1

10                     20                     30 
ω

23

δt

ω
23

ω
23

|c
3
|2

|c
4
|2

Figure 4.7: Simulation of the evolution of the relative phase between states 3 and 4 as a function of

delay for Ωτ = π
2 . The dotted line shows the point where δt = π

(ω14−ω23)
and the two transitions are

exactly out of phase. Here ω14 = 1.2ω23 in order to exaggerate the effect and make the graph easier to

read. Experimental values for the dot under study in a 5.5 Tesla magnetic field are ω14 = 1.00016ω23.

Figure 4.8 illustrates the selective excitation effect of pulses 3 and 4 in the proposed

experiment. Pulses 3 and 4 have pulse areas of π
2
and are vertically polarized, such

that only the |x−〉 to |t−〉 and |x+〉 to |t+〉 transitions are optically driven. This

enables the four level system to be treated as two decoupled two level systems, each

illustrated by a Bloch sphere. After the first two pulses of the experiment, the dot

is in an equal superposition of the ground states |x−〉 and |x+〉. Pulse 3 rotates

both Bloch vectors by 90 degrees about the pseudofield vector, creating an equal,

coherent superposition of all four states. During the time between pulses 3 and 4,

the Bloch vectors precess in the equatorial plane. This precession corresponds to the

accumulation of phases of the form eiωδt. Since the two transitions have different

frequencies, the two Bloch vectors precess at different rates. As calculated above, if

the pulses are separated by δt = π
(ω14−ω23)

, then the V1 and V2 transitions are exactly

out of phase. In the Bloch sphere picture that corresponds to the time when one
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Bloch vector has lagged behind the other so much that the two vectors are pointing

in opposite directions. If the fourth pulse arrives at exactly this time, then it will

rotate one vector up to the trion state and the other vector down to the ground state,

leaving the dot in state |ΨE〉.

|t-〉 |t+〉

|x+〉|x-〉

|t-〉 |t+〉

|x+〉|x-〉

|t-〉 |t+〉

|x+〉|x-〉

|t-〉 |t+〉

|x+〉|x-〉

t = t
3
- t = t

3
+  t

3
<t< t

4
 t

4
< t

Figure 4.8: Visual representations of the effects of two vertically polarized π
2 pulse area pulses.

The upper panels show the occupation of the four dot levels and the lower panels give Bloch sphere

representations of the two optically coupled, two-level systems.

4.3.4 Measuring the coherence of |ΨE〉
Measuring the coherence of |ΨE〉 = (|x−〉+ eiφE |t+〉)/√2 is essential, since an in-

coherent state would not be useful in an entanglement procedure. The experimentally

measured signal is the absorption of the CW beam, as described in Section 3.3. The

coherence of |ΨE〉 can be measured after a fifth on-resonance horizontally polarized

π/2 pulse rotates the coherence ρ13 into a population for readout by the cw laser.

If the state vector immediately after the fourth pulse is c(t4+), then Equation 3.46

gives the state vector immediately before the fifth pulse as

c1(t5−) = e
iΔe(t5−t4)

2 c1(t4+)

c2(t5−) = e
−iΔe(t5−t4)

2 c2(t4+)

c3(t5−) = e
iΔh(t5−t4)

2 c3(t4+)

c4(t5−) = e
−iΔh(t5−t4)

2 c4(t4+).

(4.15)

Next, Equation 2.29 can be solved to find an expression for the state vector immedi-
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ately after the fifth pulse, c(t5+). As before, the pulse can be approximated as square.

Since τ << 1
Δe

and τ << 1
Δh

, the effects of precession may be neglected during the

pulse so that Equation 2.29 simplifies to

ċ1(t) = − i
2
Ω∗

xc3(t)

ċ2(t) = − i
2
Ω∗

xc4(t)

ċ3(t) = − i
2
Ωxc1(t)

ċ4(t) = − i
2
Ωxc2(t).

(4.16)

This gives

c1(t5+) = cos( |Ωx|τ
2

)c1(t5−)− iΩ∗
x

|Ωx| sin(
|Ωx|τ

2
)c3(t5−) =

√
2
2
[c1(t5−)− ic3(t5−)]

c2(t5+) = cos( |Ωx|τ
2

)c2(t5−)− iΩ∗
x

|Ωx| sin(
|Ωx|τ

2
)c4(t5−) =

√
2
2
[c2(t5−)− ic4(t5−)]

c3(t5+) = cos( |Ωx|τ
2

)c3(t5−)− iΩx

|Ωx| sin(
|Ωx|τ

2
)c1(t5−) =

√
2
2
[c3(t5−)− ic1(t5−)]

c4(t5+) = cos( |Ωx|τ
2

)c4(t5−)− iΩx

|Ωx| sin(
|Ωx|τ

2
)c2(t5−) =

√
2
2
[c4(t5−)− ic2(t5−)]

(4.17)

for Ωx real and Ωxτ = π
2
. Substituting Equation 4.15 into Equation 4.17 gives the

state vector immediately after the fifth pulse in terms of the state vector immediately

after the fourth pulse. If c2(t5−) = c4(t5−) = 0, then Equation 4.17 can be rewritten

in the form of a rotation matrix as⎡
⎣c1(t5+)

c3(t5+)

⎤
⎦ =

⎡
⎣ cos[ θ

2
] −ie−iφ sin[ θ

2
]

−ieiφ sin[ θ
2
] cos[ θ

2
]

⎤
⎦
⎡
⎣ c1(t5−)

c3(t5−),

⎤
⎦ (4.18)

where θ = |Ωx|τ and Ωx = |Ωx|eiφ.
To find the measured signal, recall that the CW absorption signal was found to

be proportional to 1
2
ρ33+

1
2
ρ44+ρ22, where the density matrix elements are evaluated

after the final pulse. In this case,

1
2
ρ33(t5−) + 1

2
ρ44(t5−) + ρ22(t5−) = 1

4
(ρ11(t4+) + ρ33(t4+) + 3(ρ22(t4+) + ρ44(t4+))

+2Im[(ρ42(t4+) + ρ13(t4+))e
i
2
(t5−t4)(Δe−Δh)]).

(4.19)

The probability amplitudes and density matrix elements used here were defined in

Chapter 2 in the field interaction picture. To properly write the time dependence

of the absorption signal, we must convert back to density matrix elements in the
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normal picture, ρ̃, by way of Equation 2.22. Ideally, immediately after the fourth

pulse c(t4+) = |ΨE〉 = c1|x−〉+ c2|t+〉, and thus the CW absorption signal simplifies

to

1

2
ρ33(t5−)+

1

2
ρ44(t5−)+ρ22(t5−) =

1

4
(ρ11(t4+)+ρ33(t4+)+2Im[ρ̃13(t4+)e

i
2
ω13(t5−t4)]).

(4.20)

Thus if the delay between pulses 4 and 5 is varied and is stable on the scale of

ω13, the CW absorption shows an oscillation with an amplitude that corresponds to

the coherence of |ΨE〉 after pulse 4. Equation 4.20 is plotted for sample values in

Figure 4.9.
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Figure 4.9: A plot of Equation 4.20 for ρ11(t4+) = ρ33(t4+) = .5. The red plot is with ρ13 = .5,

and the blue plot is with ρ13 = .25(blue). Notice that the amplitude of the oscillation is a measure

of the coherence.

4.4 Numerical Simulations Reveal Advantages of Two Pulse Selective

Excitation

Numerical solutions to the density matrix equations, Equation 2.32, allow a test

of how well realistic experimental parameters can reproduce the theory from the

preceding sections. Sources of deviation from the theory include the limited pulse

bandwidth, which does not actually couple all four transitions equally, slight overlap

of the pulses in time, trion state decay, and decoherence. It should be noted that if the
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pulse bandwidth is overly narrow then detuning effects can lead to major qualitative

deviations from the desired manipulations. In the simulation of the full four pulse

sequence,

Ωx(t) =
iμ
�
[E1sech(

t−t1
τ

) + E2sech(
t−t2
τ

)]

Ωy(t) =
−μ
�
[E2sech(

t−t2
τ

) + E3sech(
t−t3
τ

) + E3sech(
t−t4
τ

)e−iωt4 ]
(4.21)

with τ=1.1 ps, t1=0 ps, t2=5 ps , t3=10 ps, and t4=20.5013 ps. The density matrix

was initialized such that ρ11(0) = 1. The field amplitudes and the value for t4 were

determined such that they gave the result most similar to |ΨE〉. Values of Γt =

1.17 ∗ 109s−1 and γe = γh = 109s−1 were used [6, 7].

A gate is often characterized by its fidelity, F , defined as

F = |〈ψ|U †
PUI |ψ〉|, (4.22)

where UI is the ideal unitary gate operator, UP is the operation of the physical gate,

and the overbar indicates an average over all possible initial states [8]. This can be

modified to

F(ρI , ρP ) = Tr
√
ρIρP (4.23)

to take decay and decoherence into account [9]. Here the fidelity F(ρtheory,ρsim) is

calculated to compare the ideal,theoretical result of the proposed experiment to the

simulated result.

The theoretical calculation uses a formalism of 4x4 transfer matrices in the proba-

bility amplitude picture, where each matrix represents either the instantaneous action

of a pulse or the evolution of the phase of the states between pulses. This is similar to

the development in the previous sections. When decay and decoherence are neglected,

the transfer matrix calculation and the numerical simulation agree with a fidelity of

0.999. Including decay and decoherence in the simulation only degrades the fidelity

to 0.987, which is a small difference because the total time required for the entire four

pulse sequence is only 25 ps. Including the effect of a 200μW CW beam only lowers

the fidelity to 0.985.

An alternative approach to the experiment would be to replace pulses 3 and 4

with a single pulse that has a narrow enough bandwidth that it only excites a single



87

transition. This pulse would be centered at ω23. This method must balance having

narrow enough bandwidth with the effects of decay and decoherence that become

problematic for longer pulses. Due to this trade-off, the highest fidelity possible for

this single pulse in the presence of decay and decoherence is 0.989 for a pulse with τ=6

ps. If the length of the operation is arbitrarily defined as the time interval between

the 4% power point on the leading edge of the first pulse and the 4% power point

on the falling edge of the final pulse, then this single pulse operation is 29 ps long.

Comparatively, a calculation of only the selective excitation pulses, 3 and 4, yields a

fidelity of 0.995 and an operation time of only 14 ps. Thus the two pulse selective

excitation method gives more ideal results in a shorter operation time. The two pulse

method is particularly useful in our lab as the MIRA laser cannot directly produce

pulses with bandwidths narrow enough to use the single pulse method, and we do not

have the power to spare to do simple spectral filtering. An electro-optic modulator

can produce a 200 ps pulse from a CW beam, but decay would cause such a long

pulse to have a fidelity of 0.879 at best.

4.5 Partial Entanglement of |ΨE〉
Given that state |ΨE〉 leads, upon radiative decay in a cavity, to entanglement

between the electron spin and the presence of a photon in the cavity mode, it is

natural to wonder whether |ΨE〉 itself is an entangled state. This is a complicated

question to answer. If the trion is written as a product of a spin and an exciton, then

|ΨE〉 can be written in an analogous form to |Ψdecay〉 since the exciton radiatively

recombines to form the photon. |Ψdecay〉 is known to be a maximally entangled state.

However, in a dot the electrons are sufficiently close together that their fermionic

properties do not allow the above mentioned factorization of the many particle trion

state.

To more clearly define whether |ΨE〉 is entangled, Appendix A calculates its en-

tropy of entanglement. Entropy of entanglement, S, is a common measure of the

entanglement of a state that exists in a composite Hilbert space [10]. It is defined



88

such that a separable product state has S=0 and a maximally entangled state has

S = log2 d where d is the Hilbert space dimension of the smaller subsystem. The

calculation in Appendix A finds that S=.92 for |ΨE〉. This measurement used the

spin of one electron as one subsystem, so the dimension of the smallest Hilbert space

is 2 for the two spin states. The maximum possible entropy is therefore 1. Thus,

the entropy of entanglement calculation tells us that there is a partial entanglement

between the measured spin of an electron in |ΨE〉 and the many particle conditional

state that remains after the measurement. This represents a partial entanglement of

internal variables of the single dot. .The entanglement is not maximal because when

a spin down electron is measured there are two possible conditional states that the

system could be left in. By contrast, the state |Ψdecay〉 created after |ΨE〉 radiatively
decays is maximally entangled.

4.6 Chapter Summary

This chapter presented a proposed experiment to create |ΨE〉 = 1√
2
(|x−〉+eiφE |t+〉)

with a sequence of four pulses, such that the state is stable over time except for the

effects of decay. A proposed fifth pulse can measure the coherence of the created state,

as both confirmation of the state’s coherence and as a demonstration of the possi-

bility of performing measurements. Numerical simulations show that this proposed

experiment can have high fidelities for parameters that are experimentally relevant.

The state |ΨE〉 posesses a partially entanglement of internal variables. Addition-

ally, as explained in the introduction, if the coherent state |ΨE
system〉 were created

in a dot in an appropriate optical cavity, it would decay to the state |Ψdecay〉 =

(|x−〉|0〉c + eiφE |x+〉|1〉c)/
√
2 which possesses maximal entanglement between the

electron spin and the occupation of the cavity mode. Achieving entanglement be-

tween a spin and a photon is an important step toward scaling quantum computers

to a useful size. The next chapter will discuss ongoing efforts toward the goal of

spin-photon entanglement.
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CHAPTER 5

Summary and Future Directions

5.1 Summary

This research is one part of a larger effort to implement quantum computing,

motivated by the potential to solve important problems such as factoring, search-

ing, and simulating quantum systems faster than is possible with classical computers.

Optically driven self-assembled quantum dots are leading candidates for quantum

computers because of their potential for high speed gate operations and relatively

compact design. The spin of an electron in a self-assembled dot has shown much

promise as a qubit. Our group has previously demonstrated fast optical initialization

via optical pumping, and a relatively long spin decoherence time which can be length-

ened by nuclear spin narrowing. This thesis addressed two additional requirements

for a physical quantum computer based on spins in self-assembled quantum dots: a

universal set of gates and a scalable system of qubits. Both were addressed primarily

through coherent control of the spin state in a magnetic field with optical pulses.

The sample structure and material properties are critical to optical coherent con-

trol of spin qubits in single dots. The micron aluminum apertures on the surface of

our sample allow optical studies of a single quantum dot, which is optimal for quan-

tum computing studies since the decoherence time for an ensemble is generally shorter

than that of a single dot. The Schottky diode structure of our sample enables charging

the dot with a single electron whose spin serves as the quantum bit. The confinement

of the quantum dot leads to discrete energy levels and suppressed many-body effects,

91



92

which, in combination with the long decoherence time of the electron spin, creates a

promising candidate for scalable quantum computing architectures. Spin-orbit cou-

pling of the dot in a magnetic field applied in the Voigt geometry provides a mixing

term that allows optical transitions between the two electron spin states, enabling

optical control of the spin qubit. Photoluminescence and modulated absorption were

used as initial characterization techniques to identify the dot transition energies, the

voltage range over which the dot is singly charged, the dot’s Stark shift, and the g

factors. These parameters characterize the four optical transitions as a function of

sample bias and applied magnetic field strength.

The most general form of a single qubit gate is an arbitrary rotation. This work

addressed the requirement for single qubit gates through demonstrations of coherent

rotations of the electron spin. The general experimental technique used for all coher-

ent control measurements in this thesis consisted of initializing the spin qubit using

an on resonant optical pumping CW beam. This CW beam remained on the dot

throughout the pulsed manipulations, and the absorption of this beam provided the

readout signal.

Using these initialization and readout methods, it was demonstrated that a de-

tuned optical pulse causes rapid rotations about the optical axis via a near resonant

stimulated Raman process involving the trion. Coherent rotations of arbitrary angle

were demonstrated using picosecond pulses. Several control experiments using differ-

ent polarizations and detunings clearly distinguished this two photon Raman process

from qualitatively similar data due to resonant single photon excitation processes.

Complete 2π rotations were achieved during the picosecond pulse. Precession of the

spin qubit about the magnetic field between two such stimulated Raman pulses pro-

vides rotation about an orthogonal axis. Arbitrary rotation angles were achieved by

varying the time between the Raman rotation pulses, and the speed of the rotation

depends on the magnetic field strength, with a 2π rotation requiring 33 picoseconds

in a 6.6 Tesla magnetic field.

Geometric phases were detected in quantum dots for the first time, due to cyclic

Rabi oscillations driven by the continuous-wave readout laser that coupled one spin
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state to an optically excited state. These geometric phases provide another method

of spin rotation and can be used in a gate. A limitation of this method is that the

CW laser power determines the time required for the rotation, and a high CW power

of 13 mW is necessary to achieve a 2π rotation in 250 ps. Any combination of these

methods that provides spin rotation about two orthogonal axes can be combined with

a phase gate to accomplish any unitary single qubit gate.

Implementations of quantum computing must be scalable, since a large network of

qubits will be necessary in order to perform useful calculations. It has been proposed

that entanglement between non-adjacent qubits could occur via a photon, provided

the photon can be entangled with the spin qubit. This thesis presented a detailed

experimental procedure for creating an entanglement within a quantum dot spin-

exciton system, as a preliminary step to spin-photon entanglement. The proposed

procedure uses a five pulse sequence to create a precursor state and measure its co-

herence. Creating this precursor state in a quantum dot embedded in an appropriate

cavity and allowing radiative decay deterministically creates entanglement between

the spin qubit and the presence of a photon in the cavity. Numerical simulations of

the proposed design using experimentally relevant values predict that the precursor

state can be achieved with high fidelity.

5.2 Future Directions

This section proposes several potential future experiments that are extensions of

results presented in this thesis.

5.2.1 Gating the Initialization Beam

As observed in Section 3.7.1, the CW beam can have a significant effect on the

spin qubit between pulses. While these effects can be useful, often they are not part

of the desired operation, so it would be beneficial to design a method for gating off

the initialization laser during the pulse manipulations. Initialization requires a few

nanoseconds [1], and the pulse repetition rate is 13 nanoseconds, so an appropriate
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switching time would be approximately one nanosecond. This speed requirement

suggests the use of a lithium niobate electro-optic modulator that we have purchased

with a bandwidth well above a GHz. The modulator is quite challenging to use,

largely because of a photorefractive effect inherent in lithium niobate, but it does

have the ability to produce a long pulse with a peak power of up to 200 μW , which

is sufficient for initialization and readout. It will be necessary to synchronize the

modulator with the modelocked titanium:sapphire laser producing the picosecond

manipulation pulses.

5.2.2 Rotations due to Geometric Phases Imparted by Optical Pulses

Section 3.7.1 demonstrated the generation of a π geometric phase shift by an on

resonant continuous wave (CW) laser. While detuning the CW laser would allow

the creation of arbitrary geometric phases that take the form of rotations about

the x (magnetic field) axis [2], the use of a CW laser means the rotation would be

continuously occurring. Additionally, high laser powers are necessary to obtain fast

rotations, as can be observed from Figure 3.11. Thus, an experimental demonstration

of the proposal by Economou and Reinecke [3] to use the geometric phases imparted

by detuned optical pulses to create spin rotations should provide a superior method

for rotation about the x axis.

To summarize the proposal, a vertically polarized pulse would be tuned such that

ωpulse =
(ω14+ω23)

2
. In this configuration the detuning is negative from one transition

and positive from the other, which leads to geometric phases imparted that are of

opposite signs. The effect of these geometric phases is a rotation about the x axis by

an angle determined by the ratio of the pulse bandwidth to the splitting ω14 + ω23.

Thus for a given magnetic field, the desired rotation angle determines the bandwidth,

and then the pulse power can be selected such that no trion population is created.

The bandwidth will determine how fast the rotation occurs. A detailed experimental

procedure for attempting such an implementation is described in reference [4], but it

will require some form of pulse shaping to readily control the pulse bandwidth. A



95

successful implementation of rotations about the x axis with detuned optical pulses,

when combined with the fast optical rotations from Section 3.5, would enable purely

optical fast rotations without the need for a high magnetic field.

5.2.3 Implementation of the Experimental Design from Chapter 4

A well defined future experiment would be implementing the proposal from Chap-

ter 4 to create the precursor state |ΨE〉. A significant challenge to performing this

experiment will be achieving the required stability of delay between the last three

pulses in the proposed experiment. As mentioned in Section 4.3, it is essential that

the delay between pulses 3 and 4 is stable to less than an optical cycle in order to

obtain selective excitation in the four level system. For perspective, calculations show

that if this delay varies by half of an optical cycle then the detected signal will be

40% of its expected value. This reduction in the readout signal indicates popula-

tion present in states 2 and 4, where there would ideally be none. Given the light

wavelength, variation in the path difference must be significantly less than a micron.

Additionally, the coherence measurement above requires scanning the delay between

the fourth and fifth pulse with a resolution small enough to observe oscillations at

the optical frequency. Appendix B presents an interferometer that has been designed

by Leon Webster to address these requirements.

Another challenge will be obtaining sufficient signal to noise. In the experiments in

Chapter 3, the pulses were blocked from the photodetector with a polarizer. However,

the proposed experiment in Chapter 4 requires pulses that are copolarized with the

detected CW laser, so they cannot be blocked using polarization. The pulses cannot

be separated from the CW beam spatially due to diffraction from the small apertures

in the aluminum sample mask. It is best to block the pulses as much as possible

because they contribute optical shot noise to the measurement. One possible solution

is to use the modes of a Fabry-Pérot etalon to spectrally filter most of the power

from the broadband pulses while passing the narrowband CW beam. Appendix C

discusses a Fabry-Pérot etalon that I designed and ordered for this purpose.
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5.2.4 Quantum dots in cavities

Once the creation of the precursor state, |ΨE〉 has been demonstrated in our cur-

rent quantum dot samples, a new sample where the dots are embedded in a cavity will

be needed to carry out the proposed demonstration of spin-photon entanglement [5].

Only a weak coupling between the dot and cavity is necessary, such that the Pur-

cell effect will enhance spontaneous emission for optical dot transitions which are on

resonance with the cavity and suppress spontaneous emission along those transitions

that are off-resonance. The study of optical microcavities and their coupling with

quantum dots has become an active research area. Several different types of cavities

are being explored, including photonic crystal cavities in two and three dimensions [6]

and micropillar cavities [7]. The wavelength dependent suppression and enhancement

of spontaneous emission has been demonstrated with photonic crystals [8] and high

Q microresonators [9].

Our group has studied one sample made by the Naval Research Lab that had a

quantum dot layer between Bragg gratings made from layers of GaAs-Te and AlAs-Te.

This cavity had a resonance at 970 nm and a broad cavity mode of about 5 nm. Study

of this sample was inhibited by unusual voltage modulation data and the observation

of sudden changes in the wavelength of the dot resonances. We hypothesize that the

voltage controlled charging is complicated by the presence of the Bragg grating layers,

perhaps by the trapping of charges in these layers.

Dots embedded within cavities could enable full implementation of the spin-photon

entanglement protocol proposed by Yao, Liu, and Sham [5]. Additionally, cavities

can enhance the overall light-dot interaction and increase collected signals. However,

careful design of the type of cavity will be necessary to obtain a sample suitable for

experiments involving voltage modulation and tailored to the desired experiment.

Completing any of these future experiments would augment the progress demon-

strated in this thesis toward quantum computation using quantum dot based spin

qubits.
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APPENDIX A

Quantifying Entanglement1

This appendix defines how to calculate the entropy of entanglement, calculates the

entropy of entanglement of the EPR state as a simple example, and finally calculates

the entropy of entanglement of |ΨE〉 from Chapter 4. The entropy of entanglement

of a composite system is based on definitions from quantum measurement theory, so

the discussion starts with those definitions. The introductory discussion is a combi-

nation of the presentations in the textbooks by Schumacher and Westmoreland [1]

and Nielson and Chuang [2].

A.1 Projective Measurements

Consider a state |Ψ〉 that exists in the composite system AB, composed of subsys-

tems A and B. If a projective measurement is made on subsystem A in the basis {|a〉}
which results in a measured eigenvalue a, then the conditional state of subsytem B

given this measurement outcome is

|ψB
a 〉 =

〈a|Ψ〉√
p(a)

, (A.1)

where

p(a) = 〈Ψ|a〉〈a|Ψ〉 (A.2)

is the probability of measuring eigenvalue a.

1Lu Sham provided many instructive discussions that guided these calculations.
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A.2 Entropy of Entanglement

If state |Ψ〉 exists in the composite system AB, then its entropy of entanglement,

S, (between systems A and B) can be found from

S(ρB) = −Tr(ρBlog2ρB), (A.3)

where ρA is a reduced density matrix defined as

ρB = TrA|Ψ〉〈Ψ|. (A.4)

TrA is the partial trace over system A. If system A can be described by the basis

{|a〉} and ρAB is the density matrix for the state of the composite system, then

ρB =
∑
a

〈a|ρAB|a〉 =
∑
a

p(a)|ψB
a 〉〈ψB

a |, (A.5)

where the sum is over all eigenvalues of system A.

A.3 EPR Example - Method 1

As an example of how to apply the definitions above, consider the EPR state of

two electrons where the wavevector (k1 or k2) and spin (up or down) are correlated.

Since electrons are fermions, the total wavefunction must be antisymmetric under

exchange. Therefore,

|Ψ1〉 = 1√
2
(|k1,+〉1|k2,−〉2 − |k2,−〉1|k1,+〉2). (A.6)

For a more complicated system, the Slater determinant can be used to find the anti-

symmetric wavefunction [3].

The basis {|k1〉, |k2〉} describes one sub-system, so one possible reduced density

matrix is

ρspin =1〈k1|ψ1〉〈ψ1|k1〉1 +1〈k2|ψ1〉〈ψ1|k2〉1 = 1

2
(|+〉〈+|+ |−〉〈−|). (A.7)

A measurement was made on the wavevector space, resulting in a mixture of con-

ditional spin states. The entropy of entanglement is S(ρspin) = −2(1
2
log2

1
2
) = 1 as

expected, as this is known to be a maximally entangled state.
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A.4 EPR Example - Method 2

This system can be alternately defined by fermion annihilation and creation oper-

ators acting on a null state, where c†k1,+|0〉 represents a single electron with wavevector

k1 and spin up. With these definitions,

|Ψ1〉 = c†k1,+c
†
k2,−|0〉. (A.8)

Measurement can be redefined in terms of a measurement operator Ma which acts

only on subsystem A and measures the eigenvalue a with probability

p(a) = 〈Ψ|M †
aMa|Ψ〉. (A.9)

The system after measurement is given by

|ψB
a 〉 =

Mm|Ψ〉√
p(a)

. (A.10)

A completeness relation requires that

∑
a

p(a) = 1. (A.11)

A comparison of the two formalisms for measurement suggests that annihilation op-

erators are appropriate measurement operators. For |Ψ1〉, the completeness relation

requires normalization of the operators such that

Mk1,+ = 1√
2
ck1,+

Mk2,− = 1√
2
ck2,−.

(A.12)

The reduced density matrix is still given by

ρB =
∑
a

p(a)|ψB
a 〉〈ψB

a |. (A.13)

For |Ψ1〉, p(k1,+)= p(k2,-)=
1
2
, so

ρB = 1
2
|ψB

k1,+
〉〈ψB

k1,+
|+ 1

2
|ψB

k2,−〉〈ψB
k2,−|

= 1
2
ck1,+|Ψ1〉〈Ψ1|c†k1,+ + 1

2
ck2,−|Ψ1〉〈Ψ1|c†k2,−

= 1
2
c†k2,−|0〉〈0|ck2,− + 1

2
c†k1,+|0〉〈0|ck1,+,

(A.14)
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which is equivalent to Equation A.7 and also yields an entropy of entanglement of 1.

A.5 Quantifying the Entanglement of |ΨE〉
The goal of this section is to calculate the entropy of entanglement of the state

|ΨE〉, created in Chapter 4, using the tools introduced above. The four levels in

Figure 2.8 can be defined in terms of a picture of three electrons distributed between

the conduction and valence band as

|1〉 = c†−v
†
+v

†
−|0〉 |2〉 = c†+v

†
+v

†
−|0〉 |3〉 = c†−c

†
+v

†
+|0〉 |4〉 = c†−c

†
+v

†
−|0〉 (A.15)

where c† creates an electron in the conduction band and v† creates an electron in the

valence band. With these definitions,

|ΨE〉 ≡ 1√
2
(|1〉+ eiφE |3〉) = 1√

2
(c†−v

†
+v

†
−|0〉+ eiφEc†−c

†
+v

†
+|0〉). (A.16)

A possible set of unnormalized measurement operators is {c−, c+}.

〈ΨE|c†+c+|ΨE〉+ 〈ΨE|c†−c−|ΨE〉 = 1

2
+ 1 =

3

2
(A.17)

so the normalized measurement operators are

M+ =
√

2
3
c+ M− =

√
2
3
c−. (A.18)

Following the same procedure as in the preceding section, the reduced density matrix

produced by these measurement operators can be calculated.

|ψ+〉 = M+|ΨE〉√
p(+)

=
√
2c+|ΨE〉 = eiφEc†−v

†
+|0〉

|ψ−〉 = M−|ΨE〉√
p(−)

= c−|ΨE〉 = 1√
2
(v†+v

†
−|0〉+ eiφEc†+v

†
+|0〉)

(A.19)

ρred = p(+)|ψ+〉〈ψ+|+ p(−)|ψ−〉〈ψ−|
= 1

3
c†−v

†
+|0〉〈0|v+c− + 1

3
(v†+v

†
− + c†+v

†
+)|0〉〈0|(v−v+ + v+c+)

(A.20)

Now the entropy of entanglement for |ΨE〉 can be found.

S(ρred) = −Tr(ρred log2 ρred) = −2

3
log2

2

3
− 1

3
log2

1

3
≈ .92 (A.21)
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This illustrates that measuring the spin of an electron in a dot that is in state |ΨE〉
results in a conditional state with an entropy of entanglement that is nonzero, but

less than the maximal value of one.

A.6 Entropy of Entanglement of |Ψdecay〉
The previous section calculated that the state |ΨE〉 was not maximally entangled.

By contrast, the state |Ψdecay〉 = (|x−〉|0〉c+eiφE |x+〉|1〉c)/
√
2 left after the state |ΨE〉

decays is analogous to the EPR state and has a maximal entropy of 1, as calculated

here. In the creation operator notation,

|Ψdecay〉 = 1√
2
(c†−|0〉+ eiφEc†+a

†
k|0〉). (A.22)

Following the same procedure as in the previous two calculations,

M± = c± (A.23)

p(+) = p(−) =
1

2
(A.24)

|ψ+〉 = eiφEa†k|0〉 |ψ−〉 = |0〉 (A.25)

ρred =
1

2
a†k|0〉〈0|ak +

1

2
|0〉〈0|, (A.26)

and therefore

S(ρred) = −1

2
log2

1

2
+−1

2
log2

1

2
= 1 (A.27)

proving that |Ψdecay〉 is maximally entangled.
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APPENDIX B

An interferometer for phase stability

In the experimental proposal from Chapter 4, it is essential that the delay between

pulses 3 and 4 is stable to less than an optical cycle. Additionally,the proposal requires

scanning the delay between the fourth and fifth pulse with a resolution small enough

to observe oscillations at the optical frequency. These two requirements can be met by

a beam path that contains two interferometers, as shown in Figure B.1. One pulse is

split into pulses 3-5 for the full experiment. Changes in the path difference between

the fourth and fifth pulses are passively detected by a photodetector monitoring

interference fringes from a green HeNe. This path difference can be scanned during

the measurement with the piezoelectric mirror A. The path difference between pulse 3

and pulses 4 and 5 is actively locked with a feedback circuit that controls piezoelectric

mirror B and monitors the fringes of a red HeNe. A high pass filter prevents either

HeNe beam from reaching the sample.
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Figure B.1: A double interferometer designed by Leon Webster that splits one pulse into three

pulses, for use as pulses 3-5 in the experiment proposed in Chapter 4.



APPENDIX C

Filtering pulses with a Fabry-Perot etalon

The signal to noise ratio could be improved when implementing the experiment

proposed in Chapter 4 by spectrally filtering most of the power from the pulses with

a Fabry-Perot etalon before the detector while passing the narrowband CW readout

beam. An etalon mode can be angle tuned into resonance with the CW beam by

maximizing the transmission of the CW beam through the etalon. I designed a custom

Fabry Perot for this purpose, which was built by TecOptics. It was important that

the etalon be narrow enough that a pulse traveling through the etalon will overlap in

time with many reflected pulses such that they form frequency modes. This requires

that the round trip time in the cavity must be much less than the pulsewidth [1]. The

etalon is air spaced with the spacers made from Corning ULE, an extremely thermally

stable material, so the etalon modes should not shift noticeably with normal daily

ambient temperature changes. Piezoelectric tunable etalons are available, but require

active electronic stabilization using strain gauges, so a fixed width etalon that can be

angle tuned was simpler and more cost effective. The etalon can be angle tuned by

more than its free spectral range, so it can be used at any wavelength from about 900

nm to 1μm, limited only by the bandwidth of the reflective coatings on the etalon.

The primary design criteria was to maximize TCW√
Tpulse

, where TCW (Tpulse) is the

fraction of CW (pulse) power transmitted by the etalon. TCW was provided by the

manufacturer. Tpulse was numerically estimated for a given pulse from this expression
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for the transmitted electric field of the pulse:

Epulseout(ω) = Epulsein(ω)
M∑

m=1

Rm−1(1−R)e−
2ilω(m−1)

c , (C.1)

where R is the etalon’s reflectivity and l its width [1]. This formula adds the transmit-

ted fields produced by 1 through M reflections, where M is given by the pulsewidth

divided by the single pass time across the etalon. The ratio of integrals

Tpulse =

∫ ω2

ω1
|Epulseout(ω)|2 dω∫ ω2

ω1
|Epulsein(ω)|2 dω

(C.2)

gives Tpulse.

The purchased etalon has a finesse of about 100 and is 42 μm in width for a free

spectral range of 3500 GHz. Including the effects of angle tuning, it is estimated

that TCW ≈ .76 and Tpulse ≈ .08 for an improvement in signal to noise of 2.7, which

is over a 7 times reduction in averaging time. There may be some degradation in

the performance of the etalon due to distortion in the wavefront by the aluminum

apertures on the sample, but the etalon should work well with the apertureless samples

being used by some group members.



BIBLIOGRAPHY

111



112

BIBLIOGRAPHY

[1] A. Kastler, “Transmission of light pulse through a Fabry-Perot interferometer”,
Nouvelle Revue d’Optique 5, 133 (1974).


