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ABSTRACT 

A supervisory controller strategy for a hybrid vehicle coordinates the operation of the two power sources onboard of a vehicle to 

maximize objectives like fuel economy. In the past, various control strategies have been developed using heuristics as well as optimal 

control theory. The Stochastic Dynamic Programming (SDP) has been previously applied to determine implementable optimal control 

policies for discrete time dynamic systems whose states evolve according to given transition probabilities. However, the approach is 

constrained by the curse of dimensionality, i.e. an exponential increase in computational effort with increase in system state space, 

faced by dynamic programming based algorithms. This paper proposes a novel approach capable of overcoming the curse of 

dimensionality and solving policy optimization for a system with very large design state space. We propose developing a supervisory 

controller for hybrid vehicles based on the principles of reinforcement learning and neuro-dynamic programming, whereby the cost-

to-go function is approximated using a neural network. The controller learns and improves its performance over time. The simulation 

results obtained for a series hydraulic hybrid vehicle over a driving schedule demonstrate the effectiveness of the proposed technique. 

Keywords: Neuro dynamic programming (NDP), reinforcement learning, series hydraulic hybrid, power management, online learning, 

optimal control, numerical optimization, temporal difference. 

INTRODUCTION 

Hybrid powertrains are becoming increasingly popular due to regulatory pressures to improve fuel efficiency and growing 

environmental concerns. Hybrid vehicles have two power sources onboard and can be coordinated to maximize fuel economy and 

reduce emissions. Efficient management of the secondary source of energy provides additional degree of freedom in operation of 

engine and the whole powertrain can be designed to improve fuel economy by the possibilities of (i) downsizing the engine, (ii) 

recovering energy during braking event by regeneration, (iii) optimizing engine operation and, (iv) engine shutdowns.  However, the 

vehicle system becomes more complicated and requires more complex control strategy to maximize the performance.  

A number of methodologies have been proposed for development of control strategies, ranging from rule-based, to Equivalent 

Consumption Minimization Strategy [1], [2], fuzzy logic [3], [4], and horizon optimization [5], [6], [7], [8], [9].  The nature of the 

series hybrid system, with the engine decoupled from the wheels, allows significant freedom in designing the supervisory control 

strategy.  This creates a special challenge when it comes to application of advanced algorithms, since the typical power-split problem 

is replaced with a decision about controlling the SOC.  Previous studies of series electric systems basically relied on thermostatic (on-

off) engine power management according to the State-of-Charge (SOC) in the battery [10], [11]. Similar rules were extended to 

hydraulic hybrid powertrains by Kim et al. [12] and Filipi et al. [13]. Kim [14] and Johri et al. [15] applied horizon optimization to 

power management problem for series hydraulic hybrid and designed controller using Stochastic Dynamic Programming (SDP).   

Dynamic programming can generate optimal benchmark for nonlinear problem with nonlinear constraints. In addition, it can include 

multiple objectives during policy optimization. Theoretically, the hybrid power management controller can be designed with multiple 

objectives in consideration like reduced transient emissions or reduced noise vibration harshness (NVH) along with the original fuel 

economy objective. However, detailed modeling of multiple phenomena involves increase in system/plant states and the space 

spanned by the states grows exponentially. This in turn results in exponential growth in computational/memory resources required to 

calculate optimal solution. This is widely known as curse of dimensionality of dynamic programming. The curse of dimensionality is 

not only restricted to state space but can also arise from action and decision spaces [16]. Figure 1 shows the exponential rise in 
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computational demand with increase in space spanned by states. Therefore, classical dynamic programming algorithms are applicable 

only to problems with few thousand state counts with the present computational resources and this effectively limits the number of 

states to 2 or 3 with discretization level of approximately 20. The goal of the authors is to alleviate the curse of dimensionality and 

further advance the horizon optimization techniques with machine learning concepts.  

 

This paper focuses on development of algorithm that produces near-optimal policy with reasonable amount of computational 

resources. The idea centers on evaluation and approximation of optimal cost-to-go function through the use of neural networks. At the 

center of this approach is a self-learning neural network which adapts over time to reflect the optimal cost-to-go function. The 

approach is hence called Neuro Dynamic Programming.  The approach is then demonstrated through the development of the 

supervisory controller for a series hydraulic hybrid vehicle that self learns with time to optimally manage two onboard power sources, 

namely engine and hydraulic energy stored in accumulator.  

The paper is divided into four main sections. Firstly we give a brief background on dynamic programming and reinforcement learning. 

It is followed by a detailed overview of neuro-dynamic programming and temporal difference learning. Next, we formulate the power 

management problem for hybrids and apply neuro-dynamic programming to design a self-learning neural network based controller. 

Finally the findings are discussed. The paper ends with conclusions. 

BACKGROUND 

Reinforcement learning (RL) is learning by an agent to accomplish a particular task through trial-and-error interactions with 

environment based on reinforcement signals from the environment [17]. Reinforcement learning is different from supervised learning 

which is widely used in many fields, such as artificial neural networks, and statistical pattern recognition. Supervised learning 

involves agent learning to perform a certain task after training from a knowledgeable supervisor. The agent does not learn from its 

interaction with the environment. In contrast, a general RL model includes an agent (controller) that interacts with environment 

(system) over a sequence of discrete steps. The agent, based on the state of environment, selects and takes an action, u (controller 

output) according to a given policy, π and incurs an instantaneous cost, g. The goal of the agent is to minimize (maximize) the cost 

over time (objective function).  A policy’s value function gives the expected return if a given agent uses that policy.  

Dynamic programming (DP) provides a framework to solve for optimal value function and from which an optimal policy can be 

derived. The Bellman’s equation or Hamiltonian-Jacobi-Bellman equation is special consistency condition that the optimal value 

function has to satisfy.  

 ( ) min ( , , ) ( ) | , , , ,
u U

J i E g i u j J j i u i i j X
 



    
 

 (1) 

where J* is the optimal value function or cost-to-go function, i is the present state, j is the subsequent state to i, g(.) is the cost incurred 

to go to state j from under control u, and E[.|i,u] is the expected cost with respect to j, given i and u. 

 
Figure 1: Curse of dimensionality 
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The objective of DP is to numerically calculate the optimal cost-to-go function J*. The Bellman’s equation can be solved using 

classical dynamic programming techniques; value iteration and policy iteration algorithms. The Value Iteration Algorithm is a 

principal method of calculating the optimal cost-to-go vector J*. The algorithm starts with some initial J and iterates over following 

equation till J
k
 converges. 

  1

( )

( ) min ( , , ) ( ) | , ,
k k

u U i

J i g i u j E J j i u i




   
   (2) 

where k is the iteration number, and j is the next state subsequent to i. However, the value iteration algorithm takes infinite iterations 

to converge.  An alternative is to use Gauss Seidel iteration i.e. to iterate one step at a time and incorporating this computation for next 

subsequent steps. 

The Policy Iteration Algorithm is an alternative to the value iteration algorithm which is guaranteed to converge within finite steps. 

The algorithm starts with an initial stationary policy π0 and generates a sequence of updated policies π1, π2 … with every iteration. The 

policy iteration algorithm iterates between a policy evaluation step and a policy improvement step until the optimal cost function 

converges to J*. In policy evaluation step, given a policy πk, ( )
k

J i


 is calculated by solving linear set of equations 

 1
( ) ( , ( ), ) ( ) | , ,

k k
J i g i i j E J j i u i
 

 


   
 

 (3) 

where k is the iteration number, and j is the next state subsequent to i given the control input u. The policy improvement step is 

evaluated next and updated policy πk+1 is calculated. 

 1

1

( )

( ) arg m in ( , , ) ( ) | , ,
i

k

k

u U x

i g i u j E J j i u i


 






    
  

 (4) 

where Jπ
k+1

 is the approximate cost function obtained from the policy evaluation step. 

For problems with large number of states, solving linear set of equations either by inversion or Gauss elimination methods is very 

computationally and time consuming. To alleviate this problem, the linear set of equations can be solved using value iteration. This 

modified algorithm is known as Hybrid Policy/Value Iteration Algorithm. More details about this approach pertaining to hybrids can 

be found in work by Johri et al. [15]. 

NEURO-DYNAMIC PROGRAMMING 

Neuro-Dynamic Programming (NDP) is also known as Approximate Dynamic Programming (ADP) by many researchers. The term 

approximate comes from the fact that the method centers on approximation of optimal cost-to-go function. In particular, the optimal 

cost-to-go function (.)J


 
is replaced with suitable approximation (., )J r  where r is a vector of parameters. Hence, the representation 

can be considered as mapping of higher dimensional cost-to-go vector, R
n

J   using a lower dimensional parameter vector, 

R ( )
m

r m n  . 

 ( ) arg min ( , , ) ( , ) | ,
u

i E g i u j J j r i u 
   

 
 (5) 

The above equation is modified Bellman’s equation with J replaced by mapping : R R
m n

J  . 

The function J  is called the scoring function and the value ( , )J j r
 
is called the score of state j [18]. In most problems, optimal cost-

to-go is a highly complicated function of states. A compact representation by a scoring function attempts to break this complexity. 

However, an important issue is the selection of compact representation with a tradeoff between complexity and size. Some of the 

architectures in literature [18], [19], [20] are: 

1. Feature Mapping: In a feature based compact representation, each component 
i

J
 
of the scoring function, J  is a function of 

some feature vector, f(i) and parameter vector r but not an explicit function of state i 
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  1
( ) ( ), , ( )

m
f i f i f i  (6) 

where m is the cardinality of feature space. The features can be constructed heuristically or through optimization. 

a. Lookup table: The feature space is represented by lookup table and the parameter vector, r contains one component 

for each possible feature vector. With effective feature extraction, many states can be associated with one feature 

vector. The feature space will be smaller than total number of states.  In an extreme case, each feature vector 

corresponds to single state and there are as many parameters as states.  

b. Linear Architecture: The scoring function is a linear combination of features and the cost approximation is given by 

 
0

1

( , ) ( )

m

n n

n

J i r r r f i



    (7) 

where  0 1
, , ,

m
r r r r  is the parameter vector 

2. Multilayer Perceptron Neural Network: The score of a state, ( , )J i r  is represented by a multilayer perceptron network with the 

layer weights being the parameter vector. The feature extraction mapping can either be absent or explicitly included. A neural 

network is a universal function approximator and has been shown capable of fitting any nonlinear function to an arbitrary degree 

of precision [21]. This makes neural network an excellent choice for the scoring function. 

Neural networks have been used successfully in many fields like pattern recognition, artificial intelligence and nonlinear system 

identification owing to their universal approximator property. The neural network, in traditional sense, is trained by optimizing in least 

square sense the error between input-output mapping and the desired nonlinear function. The training is performed by using a training 

data set comprising of input-output combination, i.e. {i, F(i)} which is representative of mapping F to be approximated. This paper 

uses neural networks for approximating the cost-to-go function.  It should be noted that in contrast to supervised learning of neural 

network, there is no data pair of input-output combination for the scoring function to be approximated. A least square optimization 

with pair {i, J*(i)} to approximate J  is not possible as the optimal cost-to-go value J*(i) for a given state i is unknown. The only 

possibility is to simulate for the cost-to-go estimate, J(i) for a given policy (suboptimal usually) and to iteratively improve the policy 

based on the simulation outcome. The target for the neural network training changes with every iteration as the simulation finds a 

better cost-to-go estimate, J(i). This creates computational difficulties that do not arise in traditional neural network applications. 

The methods for solving modified Bellman’s equation are mostly derived from policy iteration algorithm. The algorithm generates a 

sequence of policies,  1
, ,

k
    with every iteration and the corresponding estimate of cost-to-go 

k
J
  

is calculated using 

compact representation, (., )J r . The approximating architecture used in this paper is neural networks based. 

TEMPORAL DIFFERENCE 

Reinforcement learning has great intuitive appeal and has received considerable interest by robotics and machine learning community. 

The major breakthrough came with implementation of Temporal Difference (TD) learning method [17]. The most noteworthy result in 

TD methods is a TD-Gammon program that learned to play Backgammon at grandmaster level [22].  The TD methods have become a 

powerful choice for Markovian environments like game playing. 

The algorithm can be viewed as looking back in time and correcting for previous predictions.  Temporal difference, dk can be 

considered as prediction error between predicted performance and observed performance in response to action, uk applied to the 

system. 

 
1 1

( , , ) ( , ) ( , )
k k k k k k k k

d g i u i J i r J i r
 

    (8) 

For Bellman equation to hold and (., )J r J


 , the TD error should be zero. Therefore, for a given control policy, π, the equation dk = 

0 can be solved for (., )J r  in least square sense.  Temporal difference methods are family of algorithms and detailed discussion is 

given by Bertsekas et al. [18] and Sutton et al. [17]. 
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Consider a series of simulated sequence 
1

{ , , }
n

i i i  of states generated by Monte Carlo simulation. At a typical iteration, the system 

is at state ik and a control 
k

u U
 
based on current policy is applied. The next state ik+1 is generated by simulating transition 

probability ( )
ki j

p u . 

The parameter vector is then updated by running a TD(λ) update [18] 

  
1

0

( ) ( , )

k

k m

k k k k m m

m

r r d J i r 






    (9) 

where γ is the step size, λ is the TD parameter and dk is the temporal difference and gradient ( , )J i r  is the vector of partial 

derivatives with respect to parameter vector r. The equation (9) is an incremental gradient update. This paper uses the Extended 

Kalman Filter to calculate this update which results in faster convergence. 

Define eligibility vector, zk 

 
0

( ) ( , )

k

k m

k m m

m

z J i r




   (10) 

The TD update can be written as 

 
1k k k k k

r r d z

   (11) 

where zk is updated by 

 
1 1 1

( , )
k k k k

z z J i r
  
    (12) 

In the approximate policy iteration, the policy is fixed for every policy iteration step. The approximation ( , )J r of J
  

is constructed 

by least squares problem. The new policy   is then calculated which is greedy with respect to ( , )J r . A greedy policy means that 

selection of new policy is based solely on immediate value of ( , )J r  and does not take into account future.  A greedy policy is optimal 

if ( , )J r is actually optimal J* [17]. An alternative is to optimistically replace the policy π with new policy   before the approximate 

evaluation of J
  

converges. An extreme possibility is to replace policy π with new policy   subsequent to every state transition, i.e. 

new control uk is calculated after every iteration 

  
( )

arg m in ( , , ) ( , )
k

k k k
u U i

u g i u j E J j r


  
 

 (13) 

where α is the discount factor, rk is the current parameter vector and j is the possible next states.  

The convergence behavior of this algorithm is quite complex and is not fully understood [18]. However, optimistic policy with TD(λ) 

update is one of the most effective NDP methods and is used in this paper. 

The step size, γ in equation (11) plays an important role in performance of incremental gradient descent type algorithm, equation (9).  

To ensure convergence in stochastic gradient algorithms following rules must be met [16]. 

 1

1

2

1

1

0, 1, 2, ...

,

( )

n

n

n

n

n

n

















 

 

 





 (14) 
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The second condition is required to guarantee that step size is not too small and the algorithm stalls prematurely. It ensures that steps 

are large enough to overcome any initial conditions or random fluctuations. The last condition guarantees that the step size diminishes 

with iteration and eventually become small enough to assure convergence. 

The step size selection is even more important for neuro-dynamic programming due to the moving target value J  which at the start of 

algorithm can be very far from optimal J*. The Sompolinsky-Barkai-Seung algorithm is used for step size calculation [23] in this 

paper. 

   1 1 1 1( , ) *k k k k ka b f r F            (15) 

where γ is the step size, a and b are positive constants, r is the parameter vector,
 

( , )f r is a differentiable loss function defined by 

 
2

( , ) * ( , )f r J J r    , and  * m in ( , )
r

F E f r   is minimal loss function. The idea is that when the error is large, the step size γ is 

large,  ( , ) *k kb f r F     and when error is small and the estimator is close to optimal value, α approaches 0, 2

1 1k k ka     . 

ACTOR CRITIC MODEL 

An interesting and intuitive way to describe the NDP algorithm, presented in this paper, is to view it as an actor-critic system [18], 

[17]. The general schematic of the NDP is shown in Figure 2. 

 

The NDP structure in Figure 2 includes two networks; actor and critic. The critic network is trained to estimate the approximation of 

optimal cost-to-go function. The actor network is trained to produce control inputs which are greedy with respect to optimal cost-to-go 

function. The objective is to optimize the desired performance by learning to choose appropriate control actions through interaction 

with environment. During the learning process, the actor’s actions are criticized by the critic and the actor incorporates the latest 

evaluation by the critic for next control action. The critic learns about and critiques whatever the policy is being followed by the actor. 

The reinforcement signal (critique) is the output of the critic network which drives the learning of both the actor and critic networks. 

The controller is “naïve” at the starting of the algorithm. Both the actor and critic networks are initialized with random weights. Based 

on the present system states, the actor network produces control actions and the system moves to a newer state. The critic evaluates the 

new state and calculates the reinforcement signal to tune the parameters in the actor as well as critic network. With time, the actor 

learns to produce “favorable” control actions. 

The critic network is used to estimate an approximation of the cost-to-go function. The critic network is implemented as a standard 

multilayer feedforward neural network. A hyperbolic tangent function is used as activating transfer function for hidden and output 

layers. The input to the critic is the states of system and the output is the approximate cost-to-go function J . The network is trained by 

backpropogating the TD error signal and the weights, rk of the critic network for the k
th

 iteration step are updated using equation (11). 

 
Figure 2: Schematic diagram for implementation of Neuro Dynamic Programming 
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The actor network is similar to the critic network. The output is the control signal to the system. The actor network is required because 

it requires lot of computation and memory to compute improved policy,  , given in equation (5) online. The algorithm computes 

( )i  only at a set Ŝ  of sample states and an approximation architecture ( , )i v
 
where v is a vector of tunable parameters. The neural 

network is trained by minimizing the least square problem 

 
2

ˆ

min ( , ) ( )
v

i S

i v i 



  (16) 

EXPLORATION VS. EXPLOITATION 

Classical SDP algorithms require evaluating the cost-to-go function at every state. This is only possible for problems with small state 

space. It’s computationally impossible to evaluate the cost-to-go function at every state for a problem with infinite state space or very 

large state space. This is known as exploration of the state space. On the other hand, exploitation involves utilizing the present 

information about the cost-to-go function and making decisions that are greedy with respect to the present cost-to-go function 

approximation. An advantage of the exploitation strategy in the context of problems with large state space is computational efficiency. 

However, the problem with pure exploitation strategy is that algorithm is susceptible to getting stuck in local optimum because of the 

poor estimate of certain states. 

The strategy used in this paper is a mix of exploration and exploitation strategies and is known as ε-greedy strategy [17]. The 

algorithm chooses a greedy policy i.e. exploitation strategy for most of the times but reverts to exploration strategy with small 

probability ε and selects action at random, independently of the cost-to-go function. An advantage of such a strategy is that on limit, as 

number of iteration increases, every control action will be sampled infinitely and the control policy π will converge to optimal π*. 

Sutton et al. [17] showed the effectiveness of ε-greedy strategy compared to greedy policy. 

HYBRID VEHICLE SUPERVISORY CONTROLLER PROBLEM 

This paper focuses on 4X4 military vehicle intended for on-road and off-road purposes. The baseline vehicle specifications correspond 

to High Mobility Multipurpose Wheeled Vehicle (HHMWV). The vehicle is modeled to have series hydraulic hybrid powertrain, 

shown in Figure 3. The design of HMMWV is similar to that presented by Kim et al. [24] and Filipi et al. [13]. The engine is 

connected to pump to create a power generation subsystem capable of charging the accumulator. The motors propel the vehicle with 

hydraulic energy stored in accumulator. There is no mechanical linkage between engine and the wheels giving flexibility in operating 

engine. The motors can be used for regenerative braking. 

Previous work on a series hydraulic hybrid [24] showed the advantage of having one motor per axle over single motor design with 

transfer case for a 4X4 mid-size truck. It was also shown that sequential operation of the two motors can result in better fuel economy 

over simultaneous operation. The concept is to operate motors sequentially resulting in higher loads per motor and hence higher 

efficiency. Rear motor is primarily used for propulsion and front motor augments the torque in extreme cases. While braking, front 

motor is used for regeneration. The choice between front and rear motor operation was based on weight transfer during acceleration 

and braking. The results shown in the paper are obtained with sequential operation of motors. 

The vehicle and powertrain components are modeled in Simulink and are based on the vehicle simulation platform developed at the 

University of Michigan [25]. The powertrain system simulation has been validated with vehicle test data from proving ground [25] 

and subsequently thoroughly updated to represent HMMWV [26]. The hydraulic components were added to the vehicle simulation in 

context of parallel [27] and series hybrid systems [24]. 
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Table 1 gives the specification of the vehicle and powertrain. For completeness a brief description of key models for series hydraulic 

hybrid is given next. 

 

The engine is modeled as lookup table that provides engine torque as a function of engine speed and fueling rate. The engine brake 

torque map was generated from experiments performed at the University of Michigan. The diesel injection controller calculates the 

amount of fuel injected per cycle based on present engine speed and throttle command. A carefully calibrated time delay is 

incorporated to simulate turbo-lag. The engine speed is calculated by 

  
1

e e l

e

T T dt
I

     (17) 

 
Figure 3: Series Hydraulic Hybrid configuration 

Table 1: Series Hydraulic Hybrid Specifications 

Engine Description 6.4L Navistar  

Max. Power 261 kW @ 3000 RPM 

Max. Torque 881 Nm @ 2000 RPM 

Pump Design Axial Piston Variable 

 Displacement 

Size 300 cc/rev 

Max Power 700 kW @ 350 bar, 4000 

RPM 

Motor Design Axial Piston Variable 

 Displacement 

Size 180 X 2 cc/rev 

Max Power 420 kW @ 350 bar, 4000 

RPM 

Accumulator Capacity (Max. 

Gas Volume) 

98 Liter  

Max Pressure 350 bar 

Min Pressure 120 bar 

Vehicle Type HMMWV  

Weight 5112 kg 

Coeff. of Drag 0.7 

Frontal Area 3.58 m
2
 

Tire Radius 0.4412 m 

Final Drive Ratio 4.086 

Transmission Design 2 speed automatic 

1
st
 Gear Ratio 3 : 1 

2
nd

 Gear Ratio 1 : 1  
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where ωe is the engine speed, Ie is the engine inertia, Te is the brake engine torque and Tl is the load torque due to pump. 

The hydraulic pump/motor model is an updated version of Wilson’s P/M theory [28]. The P/M is an axial piston variable 

displacement type. The torque and hydraulic fluid flow are controlled by displacement factor. Details of the model are provided in 

Filipi et al. [7] and Kim et al. [24]. 

The accumulator is a hydro-pneumatic device and stores energy by compressing the nitrogen gas. A positive fluid flow rate into the 

accumulator compresses the gas stored in the bladder, thus storing energy. A low pressure reservoir is used to allow transfer of fluid to 

and from the accumulator during charging/discharging and prevent cavitation of pump and motors. The net pressure difference 

between accumulator and reservoir pressure is the head pressure on pump and motors. Modeling of the accumulator and the reservoir 

is based on the application of the energy conservation equation to the gas, as proposed by Pourmovahed and Otis [28]. The 

accumulator is modeled with elastomeric foam on the gas side to increase the thermal time constant to increase thermal capacity and 

reduce heat loss [29]. This helps in achieving high conversion efficiencies of mid-nineties in the accumulator. 

PROBLEM FORMULATION 

Given the vehicle, engine and powertrain configuration, the paper examines the power management problem which can be formulated 

as 

 

 

 

1

0

1

M inim ize: lim , ,

subject to: , ,

x X

u U

k

N

k k k
N w

k

k k k k

J E g x u w

x f x u w











  
  

  









 (18) 

where x is the state vector, u is the control input, w is the disturbance vector, g is the instantaneous cost function and 0<α<1 is the 

discount factor. Discounting factor implies cost incurred at present is more important than incurred in future. 

The state vector, x = {SOC, ωv} forms a 2-dimensional finite state space. Both the components are continuous which are discretized as 

 
1 2

1 2

{ , , , }

{ , , , }

NS

Nv

v v v v

SOC SOC SOC SOC

   




 (19) 

where Ns and Nv is the cardinality of SOC and ωv vector respectively. 

The disturbance vector, w is the driver power demand, Pdem. The driver power demand is modeled as a discrete Markov process and is 

used to generate future power demands given present states. The driver power demand is also a continuous vector which is discretized 

as  

  1 2
, , ...,

pN

dem dem dem dem
P P P P  (20) 

The disturbance vector, w evolves with probability distribution 

 
 , Pr | ,

, 1, 2, ..., 1, 2, ..., v

j i l

ij l dem dem wh whdem

p

p w P P P

i j N l N

    

 

 (21) 

where Np is the cardinality of driver power demand. The transition probability matrix is generated by statistically analyzing driving 

cycles.  In this work, driving cycles are naturalistic driving cycles based on actual driving behavior of randomly selected drivers in 

South East Michigan [30]. Figure 4 shows some of the driving cycles used for this work for generating transition probability matrix, 

Figure 5. 
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The control variable, u = {Te, ωe} forms a 2 Dimensional space and is also discretized with cardinality NT and Ne respectively. 
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


 (22) 

The instantaneous cost function, g is function of states, control input and driver demand. The cost function in this paper is defined as 

 

2
( , , ) ( ) ( )e ref refg FC SO C SO C SO C SO C SO C       

 (23) 

where FC is the fuel consumption by engine at given SOC and engine operating point i.e. engine speed, ωe and throttle, α. The 

instantaneous cost is based on overall system efficiency. The power generation unit includes engine and pump subsystem. The pump 

 
Figure 4 : Naturalistic Driving Cycles recorded during typical commutes in SE Michigan. 

 
Figure 5: Transition Probability of power demand (ωv = 54 rad/s) derived from naturalistic driving schedules 
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efficiency is a function of SOC and hence the overall system efficiency changes with SOC. The latter term penalizes the deviation of 

SOC below a threshold value. This penalty factor is different from the one used by Lin et al. [9] for HEV. In HEV, a penalty factor 

was added to the cost function to satisfy charge sustaining constraint and limit the operation of SOC within a narrow window due to 

battery health and operating characteristics. Hydraulic accumulator does not suffer from similar constraints and SOC can vary over 

complete range. However, a lower bound on SOC is imposed to maintain vehicle drivable at all conditions. The above penalty 

function tries to maintain low SOC reference value, e.g. 0.2 in this study, to allow maximum energy regeneration during braking. μ is 

a constant and is chosen by trial and error.  

The power management controller needs to satisfy certain bounds on states and control input. These bounds ensure that vehicle, 

engine and hydraulic devices do not operate in regimes which are unfavorable from performance standpoint or are detrimental to 

health of these devices.  
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 (24) 

where k is the time index. ωe, Te, Tm, Tp, SOC and ωwh are engine speed, engine torque, propulsion motor torque, pump torque, state of 

charge and wheel speed respectively. The subscripts min and max denote the lower and upper bounds of these variables.  

APPROACH 

This paper employs near-optimal method that centers around evaluation and approximation of cost-to-go, J with a self-learning neural 

network. The state space spanned by the problem considered in this paper is not huge. Hence, the power management problem could 

be solved using classical stochastic dynamic programming (SDP) algorithms [15]. This is done intentionally, to provide an 

opportunity to solve the problem with SDP and use the results as baseline for evaluating the results of NDP. This effectively allows us 

to validate the new approach before embarking on future studies of larger problems with even more states. 

The self-learning controller has three neural networks, one critic and two actor networks, which are trained simultaneously by 

interacting with the environment. All the three neural networks are multilayer perceptron networks with hyperbolic tangent as the 

activation function. The hidden layers have 30 neurons. The networks have one hidden layer and take three inputs, namely the states 

and disturbance vector. The output of critic network is the approximate value of cost-to-go and the two actor networks output desired 

engine speed and engine torque. 

The algorithm starts with an initial random point and follows sample trajectory generated using Monte Carlo simulation. The neural 

networks are initialized with random weights. At any given state, the control input from action network is applied. The algorithm 

calculates temporal difference and updates the weights of critic network using equation (11). This updated approximation of cost-to-go 

function is used to calculate new -greedy control policy which in turn updates actor network weights. The system moves to next state 

based on transition probability and the algorithm steps are repeated till the cost-to-go function approximation converges. 

The control action chosen by algorithm and the states visited depend on approximation of cost-to-go function which in turn depends 

on states visited thus far by algorithm. This can lead to algorithm getting stuck in the local optima where poor approximation of cost-

to-go function for certain states can prevent algorithm from visiting those states. To overcome this problem, the algorithm is 

frequently restarted from initial random states. 

RESULTS 

In this section we present simulation results for hybrid powertrain with self-learning neural controller over the federal urban driving 

schedule (FUDS). The results are compared against baseline controller i.e. the thermostatic controller [12]. The thermostatic controller 

is an intuitive engine-centric approach and resembles a “bang-bang” control. The controller switches the engine on whenever the SOC 

hits the lower threshold and charges the accumulator. The engine stays on till it crosses the upper threshold. The engine during this 

period operates at predetermined fixed desired power level. The predetermined power level is obtained by performing a parametric 
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sweep of different threshold powers similar to previous work done by Kim et al. [12]. The predetermined power level for this 

powertrain is 60kW which is lower than the “sweet spot” i.e. the eye of the BSFC map with lowest fuel consumption as suggested by 

Kim et al. [12]. If the power required for propulsion exceeds the threshold level and the SOC falls below the lower limit, the engine 

power is progressively increased. The increased power demand essentially keeps the system operating in the hydrostatic mode. More 

details about the thermostatic controller can be found in the previous work done by Kim et al. [12] and Filipi et al [13]. 

Figure 6 and Figure 7 shows temporal results for SOC, engine power and motor power for thermostatic and NDP based controllers 

over a section of driving cycle respectively. It can be seen from the Figure 7 that the NDP based controller learns how to actively 

manage two power sources namely engine and hydraulics and is able to follow driving cycle. Also the controller does a good job in 

maintaining low SOC throughout the driving cycle (Figure 7a). This allows for maximum energy to be recuperated during braking 

event. The NDP controller learns to use hydraulic energy at launch when SOC is high (engine power demand is zero).  As SOC drops, 

engine is ramped up and produces enough power to maintain the desired value, 0.2 in this case. However the engine operation by NDP 

based controller is vastly different from the thermostatic controller. Thermostatic controller either runs engine at the threshold power 

of 60 kW or keeps the engine at idle (Figure 6b). The engine is forced to go through a step change in load frequently whereas the NDP 

based controller operates the engine in a milder fashion by slowly ramping up the engine power (Figure 7b) and significantly reducing 

fluctuations of SOC (Figure 7a). It appears that the engine is almost in a “load following” mode but without sharp changes of load or 

high frequency fluctuations. At the same time the algorithm selects the best combination of engine speed and torque to produce 

desired power as discussed in the next paragraph. Overall, NDP identifies the best strategy from the system point of view rather than 

engine-centric approach. 

 

 
Figure 6: Simulation results over section of FUDS for baseline thermostatic controller 
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The engine operating points in the BSFC map visited during FUDS with thermostatic and NDP based controller are shown in Figure 

8a and Figure 8b respectively. The color scale indicates the amount of fuel consumed by the engine at a given operating region over 

FUDS. Figure 8a shows the engine behavior with thermostatic controller while Figure 8b illustrate the same for NDP based controller. 

Thermostatic controller keeps the engine at selected threshold power of 60kW and most of the fuel consumption happens at that point 

as indicated by red spot in Figure 8a. In contrast, NDP controller operates the engine over a wider region. It can be seen that the NDP 

based controller intelligently controls engine in the low BSFC regions for any power level without any prior information about the 

best BSFC trajectory. However, the engine operation deviates slightly from best BSFC line. This is attributed to the fact that controller 

is trying to maximize system efficiency i.e. engine and pump combined subsystem efficiency rather than engine efficiency alone.  

 

To allow assessment of the new approach, the baseline conventional vehicle with 4-speed gearbox along with the series hydraulic 

hybrid vehicle with three different control strategies, namely thermostatic, SDP and NDP, is simulated over FUDS. The SDP 

controller is developed using the approach described in [15], to subsequently allow validation of NDP. Table 2 gives the results and 

percentage improvement of series hydraulic hybrid over conventional baseline. The thermostatic based controller improvements over 

baseline conventional come from engine operation near low BSFC region and energy recuperated from braking. The results are 

slightly different from the previously reported results by Filipi et al. [13] due to newer generation engine used in this study. Both the 

SDP based controller and NDP based controller gives another 17% improvement over thermostatic controller by more effective 

management of system. The engine operation and management of SOC by NDP based controller is very similar to SDP based 

controller and hence, the fuel economy benefits are very similar.  This is a favorable outcome providing evidence of NDP’s ability to 

learn and discover best modes of operation. 

 
Figure 7: Simulation results over section of FUDS for NDP based controller 

Table 2: Fuel economy comparison of different power management strategies over FUDS driving schedule 

 MPG % improvement 

4-Speed Conventional 10.59 ─ 

SHHV with 

thermostatic controller 
14.77 39% 

SHHV with SDP based 

controller 
17.47 65% 

SHHV with NDP based 

controller 
17.84 68% 
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CONCLUSION 

A self-learning neural network based power management controller is designed for series hydraulic hybrid. The vehicle power 

management problem is formulated as a Markov decision process and solved using neuro dynamic programming (NDP) techniques. 

The NDP based controller is compared against a baseline thermostatic controller and resulted in 17% improvement in fuel economy 

by more effective management of the hybrid system. The controller not only learned to manage the two power sources, namely engine 

and hydraulic energy stored in accumulator but learned to do so efficiently. The NDP based controller is also compared with controller 

designed using stochastic dynamic programming. The fuel economy and system operation by both the controllers are very similar and 

this effectively validates the NDP based approach for design of supervisory controllers. 

The paper demonstrated the effectiveness of application of neuro-dynamic programming technique for policy optimization. The 

significance lies in the fact that, in contrast to deterministic dynamic programming or stochastic dynamic programming, the 

computational effort and memory resources in case of NDP increases linearly with parameters in functional representation rather than 

 

Figure 8: Engine visitation points on the BSFC map with best BSFC trajectory (green line). The color scale indicates the 

relative amount of fuel consumed in a given zone during FUDS for (a) baseline thermostatic controller (b) self-learning 

neural controller.  
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exponentially with state space. This makes the approach scalable to more complex problems with larger state and action space. The 

key idea enabling the NDP development for supervisory controller is to represent the cost-to-go with a functional approximation e.g. 

neural network and the function is updated recursively using iterative method. This reduces computational and memory requirement 

and makes the future applications to much larger problems apparent. The NDP approach can be further extended with real-time 

learning of driver behavior by adapting the driver Markov model in real time [31]. 
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