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ABSTRACT 
This paper proposes a self-learning approach to develop 

optimal power management with multiple objectives, e.g. to 

minimize fuel consumption and transient engine-out NOx and 

particulate matter emission for a series hydraulic hybrid 

vehicle. Addressing multiple objectives is particularly relevant 

in the case of a diesel powered hydraulic hybrid since it has 

been shown that managing engine transients can significantly 

reduce real-world emissions. The problem is formulated as an 

infinite time horizon stochastic sequential decision 

making/markovian problem. The problem is computationally 

intractable by conventional Dynamic programming due to large 

number of states and complex modeling issues. Therefore, the 

paper proposes an online self-learning neural controller based 

on the fundamental principles of Neuro-Dynamic Programming 

(NDP) and reinforcement learning. The controller learns from 

its interactions with the environment and improves its 

performance over time. The controller tries to minimize 

multiple objectives and continues to evolve until a global 

solution is achieved. The control law is a stationary full state 

feedback based on 5 states and can be directly implemented. 

The controller performance is then evaluated in the Engine-in-

the-Loop (EIL) facility.  

Keywords: Neuro dynamic programming (NDP), reinforcement 

learning, series hydraulic hybrid, power management, engine-

in-the-loop (EIL), transient diesel emissions, online learning, 

optimal control, numerical optimization. 

INTRODUCTION 
There is a strong impetus for more efficient and cleaner 

vehicles because of growing environmental concerns and 

dwindling oil reserves. Advanced powertrains and exhaust 

after-treatment systems are required to meet the next generation 

emission regulations. Hybrid powertrains offer better fuel 

economy through optimization of engine operation, 

regeneration of braking energy, and by providing the 

opportunity for engine downsizing and engine shut-downs. 

Combined with efficient diesel engines, hybrids can provide 

significant leap in fuel economy. However, diesel engine 

exhaust after-treatment systems are complex and costly. Some 

components need regeneration e.g. lean NOx trap and that 

comes with a fuel economy penalty.  The additional flexibility 

in controlling engine in a hybrid provides an opportunity for 

minimizing engine-out emissions and reducing the burden on 

aftertreatment. An intelligent supervisory controller; designed 

with multiple objectives such as the fuel economy and low 

vehicle exhaust emission, is essential for realizing both efficient 

and clean vehicles. This provides the impetus for the work 

presented here. 

The supervisory power management controller’s main task 

is to orchestrate the engine and secondary power to meet the 

driver power demand. The supervisory controller has profound 

impact on system operation and the ultimate benefits of 

hybridization. Numerous strategies have been proposed for 

design of supervisory controller. These approaches can be 

categorized as heuristic, optimal and suboptimal. Heuristic 

strategies [1], [2] often rely on researchers’ knowledge about 

individual system efficiencies. These strategies are easy to 

implement but cannot capture complex system level effects. 

Optimal strategies aim to minimize an objective function, 

typically fuel consumption, over a given time horizon. 

Dynamic programming (DP) has been applied to numerically 

solve the optimization problem [3], [4]. Optimal controllers, 

however, are inherently non-causal i.e. they require knowledge 

about the future driving conditions. This limits their practical 

applicability and requires rule extraction which in turn 

sacrifices some of the fuel economy [5]. A suboptimal 

controller based on stochastic dynamic programming (SDP) 

eliminates the rule extraction step and gives a closed form 

controller which can be implemented in vehicle. SDP is not 

dependent on a particular driving cycle but the statistical 

characteristics of multiple driving cycles. SDP has been 



  

successfully applied to many hybrid architectures [6], [7], [8]. 

The key objective, in the previous studies, has been fuel 

economy. Our goal is to develop a technique capable of 

developing a strategy for minimizing both the fuel consumption 

and emissions, e.g. NOx and soot. 

Previous work done by Lin et al. [6], Tate et al. [9]  and 

Johnson et al. [10] for including emissions while designing 

supervisory controller for hybrids used a steady state lookup 

table for predicting emissions. However, quasi-steady state map 

based models cannot accurately predict real emissions when the 

engine is operated transiently. This is due to complex nature of 

diesel combustion. Previous work done by Hagena et al. [11] 

showed that transient soot emissions accounts for as much as 

half of the total soot when engine is operated dynamically over 

an urban driving schedule. Hence, designing the supervisory 

controller for a hybrid with emissions objective requires 

transient emission predictions. In this paper we use hierarchical 

neuro-fuzzy model to predict transient NOx and soot emissions 

[12]. The model is composed of many local models valid for a 

certain input subspace. The idea is to divide the input space into 

smaller regions and train local models. The models have been 

shown to be computationally fast and accurate [12].  

An inherent problem with including transient emission 

models in policy optimization is resulting increase of number of 

states. This is an obstacle in applying DP due to the well-known 

curse of dimensionality. The computational and memory cost to 

solve problems grow exponentially with increase in the states. 

This makes practical applicability of DP to real-life problems 

somewhat limited as most of these problems have large state 

space. Researchers have tried to circumvent this by using 

reduced models for design of optimal controllers. Policy 

optimization using SDP is confined to 2 and 3 states with a 

maximum state-action cardinality of 10
5
. Authors presented an 

alternative algorithm [13], neuro-dynamic programming 

(NDP), to solve problems with large state space. In this paper 

we develop the NDP approach further and applies it to design a 

supervisory controller for series hydraulic hybrid which 

actively minimizes multiple objectives.    

A self-learning neural controller based on principles of 

NDP and reinforcement learning is designed in this paper for 

series hydraulic hybrid vehicle (S-HHV). The controller learns 

to solve the energy management problem by interacting with 

the vehicle and powertrain and observing the consequences of 

its actions. To the best of our knowledge this approach is the 

first direct application of NDP techniques to solve power 

management problems for hybrid powertrains.  The supervisory 

controller objectives are to minimize both fuel consumption 

and transient engine-out emissions. The self-learning controller 

comprises three neural networks, namely two actor and one 

critic networks. The critic network predicts the optimal cost-to-

go value and the actor calculates the optimal engine speed and 

engine torque commands, based on current system states, to 

minimize the given objective function over infinite horizon. 

The problem considered in this paper has a state-action 

cardinality of 10
9
. This is a considerable breakthrough in design 

of optimal power management controller for hybrids.   

The paper is organized in three major sections. First, we 

describe the vehicle powertrain configuration, and modeling 

followed by the experimental setup for Engine-in-the-Loop 

(EIL) studies. In the next section, we formulate the energy 

management as a sequential decision problem. The concept of 

NDP is introduced and applied to the problem. Finally, results 

from EIL testing with self-learning controller based on NDP 

policy are presented. The paper ends with conclusions. 

SERIES HYDRAULIC HYBRID 
A series hydraulic hybrid configuration with two drive 

motors, one at each axle, is used for this study. Figure 1 gives a 

schematic of the vehicle configuration. The series configuration 

provides a full flexibility in operating engine as there is no 

mechanical coupling between engine and wheels. The 

additional degree of freedom in operating engine requires a 

methodical approach to supervisory control development. The 

supervisory controller acts as an intermediary between driver 

and propulsion system. The driver signal is sent to supervisory 

controller which then makes an informed decision and sends 

appropriate signals to engine and hydraulic pump/motors.  The 

conventional wisdom suggesting the engine operation at the 

“sweet spot” has already been challenged by Filipi et al. [14], 

as this may not be best for the system-level efficiency.  Adding 

the emissions objective will clearly pose a new challenge, and 

this motivates the development of an advanced algorithm. 

 

The energy is stored in accumulator by compressing 

nitrogen gas. The hydraulic accumulator is capable of high rate 

of charging or discharging with very high efficiency but has 

low energy density. The former is an advantage for series 

hybrid application while latter adds unique control challenges.  

The simulation models for hydraulic hybrid powertrain and 

components were developed in the Automotive Research 

Center at the University of Michigan and previously used for 

optimization of design Filipi et al. [5] and supervisory control 

with fuel economy objective, e.g. Kim et al. [15]. 

 

 

FIGURE 1: SERIES HYDRAULIC HYBRID 



  

 

The engine is modeled as a lookup table with speed and 

mass of fuel injected as inputs and brake torque as output. A 

diesel engine fuel injector controller provides the mass of fuel 

injected to the lookup table based on throttle command and 

engine speed. Turbo-lag is simulated by including a time delay 

in injection with time constant calibrated based on data 

obtained from engine testing [5].  

The hydraulic pump/motor is modeled using updated 

Wilson’s theory [16]. The pump/motor is a variable 

displacement axial piston type. The displacement command 

controls the torque and flow. Details of the model are provided 

in [5], [15]. The theoretical flow and torque is corrected with 

physics based expressions for losses which encompass laminar, 

compressibility and turbulent leakage for flow, and viscous, 

hydrodynamic and mechanical for torque.  

A hydraulic accumulator stores energy in hydraulic 

hybrids. A full thermodynamic model is used for modeling the 

accumulator dynamic performance and efficiency. The 

equations are derived from energy conservation principles [16] 

and include the effects of the heat transfer. The real gas 

properties are captured using Benedict-Webb-Rubin equation. 

The formulas are omitted in this work for brevity and are 

available in [5]. The accumulator is modeled with elastomeric 

foam in the gas side in order to increase the thermal time 

constant and elevate the thermal efficiency [17].  

The vehicle is modeled as a point mass system and pitch 

plane dynamics are ignored. This is deemed sufficient for 

system efficiency studies. The resistive force acting on the 

vehicle is sum of rolling friction and aerodynamic drag. 

EMISSION MODEL 
An emission model is required to quantify the engine-out 

emissions and to optimize the supervisory controller. The 

models need to capture transients accurately while being 

computationally efficient so that they can be used within DP 

framework. However emission formation in diesel engine is 

very complex phenomenon making it challenging to design a 

single model that can accurately capture all the nonlinearities. 

To circumvent this problem, the paper utilizes a neuro-fuzzy 

model tree framework similar to one used by Johri et al. [12] 

for design of virtual sensors for diesel engine emission. The 

model combines various local neural network based models 

with fuzzy framework and trains them on a large set of 

experimental data. Each model is locally valid and the 

contribution of each model is weighted according to their 

validity function. The output of model, y is the weighted sum of 

all local sub models fNN(.) with validity functions, ϕ determine 

the regions of input space where that particular model is active. 
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The local models in this paper are custom recurrent neural 

networks. The input space is divided based on engine operating 

speed. This choice of input space division is based on the 

experiment carried out to characterize the engine. Details about 

TABLE 1: SERIES HYDRAULIC HYBRID SPECIFICATIONS 

Engine Description 6.4L International  

Max. Power 261kW @ 3000 RPM 

Max. Torque 881Nm @ 2000 RPM 

Pump Design Axial Piston Variable 

 Displacement 

Size 300 cc/rev 

Max Power 700 kW @ 350 bar    @ 

4000 RPM 

Motor Design Axial Piston Variable 

 Displacement 

Size 180 X 2 cc/rev 

Max Power 420 kW @ 350 bar     @ 

4000 RPM 

Accumulator Capacity 98 Liter (Gas Volume) 

Max Pressure 350 bar 

Min Pressure 120 bar 

Vehicle Type HMMWV  

Weight 5112 kg 

Coeff. of Drag 0.7 

Frontal Area 3.58 m
2
 

Tire Radius 0.4412 m 

Final Drive Ratio 4.086 

Transmission Design 2 speed automatic 

Gear Ratios 3, 1 

 

 

FIGURE 2: MODEL PREDICTION VS. MEASURED DATA 



  

the experiment and perturbation signal are available in [12]. 

The fuzzy framework of neuro-fuzzy model tree uses triangle 

membership functions. Each local neural network, in this paper, 

has 6 inputs. Both NOx and soot models have 4 inputs in 

common, namely, current engine speed, current engine torque, 

current steady state boost and current mass of fuel injected. The 

NOx model, in addition, uses steady state NOx and previous 

predicted NOx whereas soot model uses rate of change of fuel 

injection and previous predicted soot. The steady state boost, 

fuel injection and steady state NOx are calculated using lookup 

table based models. The feedback from output is also 

considered as different input. Each input is preprocessed and 

normalized to -1 and 1. Figure 2 shows the model prediction 

along with the test cell measurement of NOx and soot using fast 

emission analyzers. It can be seen that models provide a very 

good estimate of transient emissions. 

ENGINE EXPERIMENTAL SETUP  
The engine used for this work is a 6.4L V8 medium duty 

diesel engine manufactured by the Navistar Ltd. The engine 

incorporates modern technologies to provide high power 

density while meeting emission regulations. A common rail 

direct injection system permits precise control of fuel injection 

timing, pressure and quantity. The engine is equipped with dual 

stage variable geometry turbocharger (VGT). An exhaust gas 

recirculation circuit (EGR) allows for introducing cooled 

exhaust gases into intake manifold and reduce NOx emissions. 

EGR is modulated using EGR valve and VGT vane geometry. 

The engine is coupled to a 330 kW AVL ELIN series 100 

APA Asynchronous Dynamometer. The dynamometer is suited 

for transient testing with 5ms response time and 10ms torque 

reversal time (+100% to -100%). The engine is fully 

instrumented with time based measurements like temperature, 

manifold pressure and flow rates as well as crank based 

measurements like in-cylinder and fuel injection pressures. 

Engine out temporal measurement of NOx and particulate 

matter emissions are carried out using fast analyzers from 

Cambustion Ltd. The CLD 500 Fast NOx analyzer consists of 

chemiluminescent detector with a 90%-10% response time of 

3ms for NO and 10ms for NOx. The particulate matter is 

analyzed using differential mobility spectrometer (DMS) 500. 

The instrument measures the number of particles and their 

spectral weighting between 5nm to 1000nm with a time 

response of 200ms. The particle size-number distribution is 

then converted to mass and the masses per bin are summed to 

get the total particulate matter in the exhaust. More details 

about the experimental setup are given in [18]. 

SUPERVISORY CONTROLLER 

Problem Formulation 
Given the vehicle configuration, the paper examines the 

following power management problem over an infinite horizon: 
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In the above discrete time stochastic optimal control 

problem, k is the time index. The g represents the instantaneous 

cost, which in this paper, is weighted sum of fuel consumption 

and transient emissions. Discount factor, 0<α<1, implies that 

the future costs are less important than the cost incurred at the 

present time. Also it ensures that the cumulative optimization 

cost remains finite over infinite horizon.  The system has 4 

states 
kx : State of Charge k

SOC , present vehicle speed k

w h , 

previous engine speed 1k

e
  and previous fuel injected 1k

fm
 , 2 

control inputs 
ku : present engine speed k

e  and present engine 

torque k

eT  and 1 disturbance input 
kw : present driver power 

demand k

demP .  

The above optimization is subject to constraints imposed 

by deterministic dynamic equations for vehicle along with 

admissible set of states, X and control inputs, U. 
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where, script ω denotes speed, T denotes torque and subscripts 

e, m and p denotes engine, motor and pump respectively. 

The driver power demand is the stochastic component of 

the model, wk and is modeled using discrete time Markov chain. 

Given the present power demand, Pdem and vehicle velocity, ωwh 

the model gives transition probability to next power demand.  
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where, i and j index denotes present and future power demand 



  

respectively and m indexes present vehicle speed. The 

transition probability matrix is estimated by statistically 

analyzing the different driving cycles [8].  

The instantaneous cost is the cost incurred by system when 

it transitions from given system states to new system states with 

a given control input applied. The instantaneous cost g is  

 
2

( ) ( )

FC NOx x PM

ref ref

g w FC w NO w PM

SOC SOC SOC SOC

     
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 (5) 

where FC, NOx and PM are the normalized fuel consumption, 

normalized transient NOx emission and normalized transient 

particulate matter emission respectively. The wFC, wNOx and wPM 

are the weighting parameter and   1
FC NOx PM

w w w   . The 

FC takes into consideration system efficiency, i.e. both engine 

and pump efficiency and hence is a function of SOC also. The 

latter term penalizes the deviation of SOC below a threshold 

SOC, 0.2 in this paper. The penalty is imposed to maintain 

vehicle drivability at all conditions [8]. 

A hybrid policy iteration algorithm has been applied in the 

past by Lin et al. [6], Johri et al. [8] to solve stochastic control 

problems of the above nature. The policy iteration algorithm 

iterates between policy evaluation step and policy improvement 

step until the optimal cost-to-go function converges. The 

problem formulated above with each state and control input 

discretized with cardinality of 25 has approximately 10
9
 state-

action pairs. A state-action space of this size is computationally 

intractable with conventional policy iteration algorithm. Also, 

even if the problem could be solved, it would require vast 

amounts of memory to store every action value for every 

combination of states. NDP provides an approach to sub-

optimally solve the above problem. The idea is to approximate 

the optimal cost-to-go function with a surrogate function. The 

value function J(.) in Bellman equation is replaced by suitable 

approximation, ( , )J r  where r is the parameter vector. This can 

be considered as mapping of higher dimensional cost-to-go 

function with a lower dimensional function.  

Neuro-Dynamic Programming (NDP) 
NDP is a class of reinforcement learning methods that deal 

with the curse of dimensionality using neural network based 

approximations of the cost-to-go function. Reinforcement 

learning accomplishes a particular task by trial-and-error based 

on interactions with environment. The controller learns to 

perform a task solely on the outcome of its experience. Two 

critical ideas in NDP approach are (i) Compact functional 

representation of cost-to-go, and (ii) Recursive method for 

updating the functional approximation of cost-to-go upon each 

observation of state transition and associated cost. Sutton et al. 

[19] proposed temporal difference learning as a method for 

approximating long-term future cost as a function of present 

state. The algorithm improves the approximation of the long 

term cost as more and more state transitions are observed in an 

incremental fashion. The paper proposes a neural network 

functional approximation for cost-to-go combined with 

recursive update of network for solving policy optimization 

problem in hybrids. 

 The NDP approach presented in this paper is an on-line 

learning control scheme. Figure 3  shows the structure of NDP 

framework. The critic network is trained to predict optimal 

cost-to-go function. The action network is trained such that the 

control policy is optimal with respect to cost-to-go function. In 

contrast to usual supervised training of neural networks, there 

are no input-output training pairs for optimal cost-to-go value. 

Instead the critic network is updated using the reinforcement 

signal obtained by interacting with the environment. This signal 

is known as temporal difference (TD) dk and defined by 
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k k k k k k k k
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TD is the prediction error between predicted performance 

and observed performance in response to action uk. Bellman’s 

equation is a fixed point equation and by rearranging, we can 

obtain the TD formulation. For Bellman equation to hold, the 

TD error should be zero. Therefore, for a given control policy, π 

the equation dk = 0 can be solved for in least square sense.  TD 

methods are family of algorithms and detailed discussion is 

given by Bertsekas et al. [20] and Sutton et al. [19].  

 

The critic neural network is trained incrementally using 

TD(λ) update. The parameter vector is then updated by running 

a TD(λ) update [19] 
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where γ is the step size, λ is the TD parameter and gradient 

( , )J i r   is the vector of partial derivatives with respect to 

parameter vector r. The above equation is an incremental 

gradient update with steepest descent update.  

Define eligibility vector, zk 

 

FIGURE 3: SCHEMATIC DIAGRAM FOR IMPLEMENTATION 
OF NEURO DYNAMIC PROGRAMMING 
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The TD update can be written as 
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where zk is updated by 
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The critic network update can be accelerated by including 

non-linear learning rates. The idea is to use approximation of 

Hessian matrix and the update formula becomes 
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where Hk is Hessian and is approximated by  

 ( , ) ( , )
k T

k m m m mm
H J i r J i r    (12) 

Direct computing of the matrix H
-1

 is very computationally 

costly. Kalman theory can be efficiently applied for calculating 

the inverse of Hessian. Define Kalman matrix 1

1 1k k
K H



 
  and 

applying Sherman-Morrison matrix identity 
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The step size in Eq. (11) plays a very important role in 

convergence of functional approximation to optimal cost-to-go 

value. In TD(λ) algorithm, the cost-to-go, J of being in a 

particular state is estimated from ( , )J r
 
which itself is non-

stationary and steadily changing.  The step size needs to strike a 

balance between minimizing error (small step size) and 

responding to non-stationary data (large step size).  

Powell [21] derived an optimal step size rule, called Bias 

Adjusted Kalman Filter (BAKF), for estimating parameter 

from sequence of independent observations ˆn
  with unknown 

mean 
n

  and variance
2

 . The step size solution is given 

explicitly by formula 
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where λ is computed recursively using 
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and 
1 1n n n

  
 

   
  , i.e. bias in smoothed estimate from 

previous iteration. The bias itself is computed recursively as it 

is also unknown. This paper employs BAKF algorithm for 

calculating optimal stepsize. 

In a standard actor critic method, the policy μ is kept 

constant till the critic’s computations converge to J
μ
. This new 

converged value of J
μ
 is then used by critic to calculate a new 

policy. This may not be suitable for problems with large state 

space as evaluating over all state combinations would mean 

long computational time between policy updates.  In this paper, 

the new policy is calculated subsequent to every state 

transition. The actor carries out new policy after every 

simulated transition and is known as optimistic policy iteration. 

The convergence behavior of algorithm is quite complex and 

not fully understood [20]. However, optimistic policy iteration 

with TD(λ) update is one of the most effective NDP methods. 

It is computationally intractable to visit every state-action 

pair and evaluate cost-to-go function. To circumvent this 

problem, an exploitation policy uses the present knowledge of 

cost-to-go function and chooses policies which are greedy or 

opportunistic with respect to present cost-to-go function 

approximation. However, a pure exploitation policy is 

susceptible to getting stuck at local optimum because of poor 

estimate of cost-to-go function at certain states. To avoid this, 

we use a modified exploitation policy known as ε-greedy policy 

[19]. The algorithm chooses a greedy policy based on the 

present knowledge of cost-to-go function most of the times but 

reverts to exploration strategy with small probability ε. On 

limit, the algorithm is converges to optimal policy [19]. 

NDP BASED SUPERVISORY CONTROL 
The self-learning controller has three neural networks, one 

critic network and two action networks which are trained using 

TD(λ) approach, Figure 3. The networks are initialized with 

random weights i.e. they start naïve. The networks are trained 

incrementally using TD signal and learn to control the hybrid 

powertrain as the algorithm progresses. The algorithm performs 

Monte Carlo simulations to generate sample trajectories. At any 

given state, the action network is evaluated and the control 

input is applied to the system. The algorithm calculates the TD 

and updates the critic network using Eq. (11). The system 

moves to newer states based on the applied input. The actor 

network is then updated to produce control actions which are -
greedy with respect to latest cost-to-go function approximation. 

Since the algorithm calculates newer policies and next states 

based on the present states visited, it can get stuck in a confined 

state-action space. To overcome this problem, the algorithm is 

restarted frequently from random states.  

Critic and action neural networks are multilayer 

feedforward perceptron networks with one hidden layer. The 

input and hidden layers have tan-sigmoid activation function 

whereas output layer has linear activation function. The critic 

network is trained incrementally by backpropogating the 

temporal difference and the weights are updated using Eq. (11). 

The output of the action networks are optimal engine speed and 

engine torque for given system states. The training of action 

network is also carried out sequentially using update method 

similar to critic network, given by Eq. (11). This generates an 

implementable S-HHV power management controller.  



  

RESULTS 
A self-learning neural network controller is generated 

using NDP algorithm described in earlier with weights, wFC = 

0.7, wNOx = 0.1 and wPM = 0.2. The selection of weights are 

random and are to show the ability of algorithm to not only 

learn to manage two power sources but to do by minimizing 

weighted sum of fuel consumption and transient emissions. The 

controller is then evaluated over the FTP75 city driving 

schedule using EIL. Figure 4 shows the engine operating points 

over BSFC map for NDP and SDP based controllers. The color 

scale indicates the amount of fuel consumed in each region 

during FTP75 driving schedule. The plot also shows the best 

BSFC line. It can be seen that the engine operation for NDP 

controller deviates from it to reduce NOx. The engine would 

have operated near the best BSFC line if the engine efficiency 

is the sole objective, as is the case with SDP based controller. 

 

Figure 5 shows the time trace of fuel injected per stroke for 

SDP and NDP based controllers. It can be seen that the fuel 

injection ramps up and down slowly for NDP based controller 

to reduce transient spikes of emission. This is in agreement 

with finding by Hagena et al. [11]  that a step change in fueling 

results in large spike in transient emissions and can be 

significantly reduced if fueling change occurs gradually. The 

effect is particularly strong when a step change is initiated from 

idle [11].  The NDP strategy successfully avoids this, e.g. the 

engine is not brought down to idle at ~35 sec, and when the 

ramp-up increased the initial rate is mild, followed by a steeper 

slope only beyond 10mg/stroke. Therefore, the NDP based 

controller results in 29.3% improvement of NOx over SDP 

based controller in EIL over FTP schedule. 

 

By systematically evaluating the system behavior NDP 

controller manages significant emission reduction with minimal 

fuel economy penalty. The S-HHV fuel economy with NDP 

based controller is 16.2 mpg, only 3% lower than the result 

obtained using SDP with fuel economy being sole objective.  

The improvement of fuel economy over the conventional 

baseline is 52%. 

CONCLUSION 
In this paper, a power management strategy for series 

hydraulic hybrid is developed using neuro-dynamic 

programming and reinforcement learning. The power 

management of hydraulic hybrid is setup as a sequential 

decision making problem under uncertainty (stochastic control). 

The controller objective is to minimize multiple objectives, fuel 

consumption and transient emissions, over an infinite horizon. 

Two key aspects of the NDP approach are: 

1. Approximation of cost-to-go function with neural 

networks: This reduces the memory required as only 

network weights need to be stored  and cost-to-go can be 

approximated  using neural network compared to 

traditional dynamic programming approach which requires 

storing of cost-to-go value at every state.  

2. Incremental Learning: The learning of the cost-to-go 

function is performed in an incremental fashion using 

Temporal Difference algorithm.  

 

FIGURE 4: ENGINE VISITATION POINT ON BSFC MAP. (A) 
SDP CONTROLLER, (B) NDP CONTROLLER 

 

FIGURE 5: TEMPORAL PLOT OF MASS FUEL INJECTED 
OVER SECTION OF FTP SCHEDULE 



  

The self-learning controller is implemented on a dSpace 

real-time system and simulated along with real diesel engine 

and virtual powertrain/vehicle. EIL results show that NDP 

based supervisory controller is able to successfully orchestrate 

the power management in a series hydraulic hybrid to meet 

performance objectives while significantly reducing NOx 

emissions and preserving most of the fuel economy gain 

attainable with optimized policy.  
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