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ABSTRACT 
Diesel engine combustion and emission formation is highly 

nonlinear and thus creates a challenge related to engine 

diagnostics and engine control with emission feedback. This 

paper presents a novel methodology to address the challenge 

and develop virtual sensing models for engine exhaust 

emission.  These models are capable of predicting transient 

emissions accurately and are computationally efficient for 

control and optimization studies.  

The emission models developed in this paper belong to the 

family of hierarchical models, namely “neuro-fuzzy model 

tree”. The approach is based on divide-and-conquer strategy i.e. 

to divide a complex problem into multiple simpler 

subproblems, which can then be identified using simpler class 

of models. Advanced experimental setup incorporating a 

medium duty diesel engine is used to generate training data. 

Fast emission analyzers for soot and NOX provide 

instantaneous engine-out emissions. Finally, the Engine-In-the-

Loop is used to validate the models for predicting transient 

particulate mass and NOX.   

 

Keywords: transient diesel emissions, soot model, neuro-fuzzy 

model tree, hierarchical models, orthogonal least squares 

(OLS), multi-level pseudo random signal (MPRS).  

 

INTRODUCTION 
Growing environmental concerns, stringent emission 

regulations and demand for increased fuel efficiency will 

require advanced engines and control strategies. The problem 

of meeting emission regulations is particularly tough for diesel 

engines compared to their gasoline counterparts. Transient 

diesel engine particulates and NOX emissions are very complex 

phenomena owing to the nature of diesel combustion. To meet 

EPA standards, modern diesel engines employ a large number 

of actuators like multiple fuel injections, variable geometry 

turbochargers (VGT), exhaust gas recirculation (EGR) etc. 

which adds to complexity. Aftertreatment is necessary to bring 

the tailpipe emissions down to compliance levels. However, the 

burden is equally shared by the in-cylinder clean combustion 

strategies, advanced catalyst and diesel particulate filters since 

size and cost of aftertreatment is an issue.  

Advanced approaches such as model based predictive 

control, closed loop combustion control and development of 

advanced supervisory strategies for hybrid propulsion systems 

will be essential for coping with new regulations and complex 

hardware. In all cases, model-based soot and NOX virtual 

sensors can provide real-time predictions and enable strategies 

that require feedback of emissions under transient operating 

conditions. This paper pursues development of such virtual 

sensors for onboard vehicle application or powertrain system 

optimization. 

Previous work done by Hagena et al. [1] and Kirchen et al. 

[2] showed that transient soot emissions account for almost half 

of total soot emission over a driving schedule. Steady state map 

based models fail to capture the transient nature of emission 

when engine is operated transiently and underestimate soot 

production. This can be seen from Figure 1, as the integrated 

area under the transient trace is much larger compared to the 

quasi-steady state curve. The transient spike is higher and 

precedes the quasi-steady state prediction. The quasi-steady 

state estimates deviate considerably at the initiation of transient 

when conditions are irregular.  Transient conditions easily 

dominate the emission trends for a heavy-duty vehicle, 

particularly over an aggressive driving schedule like FTP75.  
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Dealing with transients needs to be part of overall low-

emissions strategy, as more than half the soot particulates can 

be attributed to rapid increase in load [1].  

 
Present day emission models generally fall into two 

categories, at the extreme ends of the spectrum when it comes 

to complexity and computational speed: (i) lookup table based 

steady state models, and (ii) computational fluid dynamics 

(CFD) with chemical kinetics based models. CFD and chemical 

kinetics based models can capture transient effects but are very 

complex and computationally slow. This makes them 

impractical to be used with optimization routines and as virtual 

sensors with real engine. Therein lies the impetus for transient 

emission models, fast enough to be employed for control-

oriented problems or as virtual real-time sensors, and yet 

detailed enough to capture system dynamics accurately.   

Recently, researchers have proposed empirical models that 

capture emission dynamics based on certain engine parameters. 

Kirchen [2] developed a mean value model for soot and showed 

the effectiveness with tip-in operations. The model included 

empirical correlations relating engine out emission with engine 

operating conditions. Bayer and Foster [3] developed 

phenomenological model for predicting soot. Brahma et al. [4] 

linked these phenomenological models with neural network and 

trained to predict soot. A major drawback of the above 

proposed models is the required knowledge of in-cylinder 

pressures and available fuel mass as model inputs.  

This paper presents a novel neuro-fuzzy model tree for 

predicting transient soot and NOX emissions for diesel engine. 

The model is intended to run on a microprocessor in real-time 

and predict engine-out soot and NOX emissions using signals 

from the ECU and low-cost physical sensors. The neuro-fuzzy 

model tree based emission sensor is capable of learning 

complex, nonlinear and multidimensional association between 

inputs and outputs. The neuro-fuzzy model has parallel 

structure with respect to local models and thus can be 

efficiently implemented in hardware. Emission models 

developed in this study are driven by experimental data and are 

specific to a particular diesel engine but the methodology 

developed is universal and can be applied to any other engine. 

The paper begins with a brief overview of combustion and 

emission formation in diesel engine. The next section provides 

a detailed description of Engine-in-the-Loop facility at the 

University of Michigan. The EIL setup is used to characterize 

the engine transients and to subsequently validate the emissions 

model. Next, a perturbation signal is designed specifically for 

characterizing the dynamic engine operation and resulting 

emissions, followed by the description of the neuro-fuzzy 

modeling approach and the training algorithm. The algorithm is 

augmented with Orthogonal Least Squares (OLS) for input 

regressor selection. Finally, the model validation results are 

presented. The emission model predictions are compared with 

actual measurements from fast analyzers. The paper ends with 

conclusions. 

BACKGROUND - DIESEL COMBUSTION AND 
EMISSION 

Diesel combustion is a very complex process. Optical 

studies combined with analyses of engine cylinder pressure 

data have led to the widely accepted phenomenological 

understanding proposed by Dec [5]. After injection, the fuel 

evaporates and mixes with air, and owing to very high 

temperatures, autoignites after a delay (ignition delay). The 

fuel/air mixture prepared during the ignition delay period burns 

rapidly and this is referred to as premixed phase of burning. 

Following the premixed combustion, the fuel injection 

continues through the mixing-controlled burn phase. The liquid 

core of injected fuel persists and the fuel droplets downstream 

of the liquid core are evaporated, facilitated by turbulent air 

entrainment. This results in formation of relatively uniform, 

high equivalence ratio (fuel/air of 2-4) zone, extending ahead 

and around the liquid fuel core. A standing premixed flame 

forms at the boundary of this gaseous fuel/air zone, and owing 

to excessive rich conditions, produces polycyclic aromatic 

hydrocarbons (PAH - soot precursor) and solid particles. The 

soot particles are initially small but grow in size and 

concentration as they move towards the head vortex. The 

particle accumulation process continues in the head-vortex zone 

surrounded by a thin diffusion flame. The outer edge of 

diffusion flame is surrounded by OH radicals and oxygen 

molecules, which oxidize particles that reach outer boundary. 

The high temperature and presence of oxygen is highly 

conducive for NOX production. The NOX production continues 

even after end of injection due to latter part of diffusion 

burning. 

Even though the fundamentals of the emission formation 

process remain same with transient operation of the engine, it 

makes modeling them even more complex due to constantly 

changing combustion environment and engine subsystem 

interactions. Fluctuations in charge composition, stochastic 

nature of turbulence, mixing and combustion makes the 

interaction of species in engine cylinder inconsistent. 

Instantaneous composition in the cylinder and flow field goes 

through dramatic excursions from the steady state values after a 

rapid change of engine command. Thus, steady state emission 

models cannot capture these effects and are incapable of 

 
Figure 1: Quasi-steady state model prediction 
compared with measured soot emissions [12] 
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predicting transient emissions [6]. In summary, multiple aspects 

of the very complex phenomena in the combustion chamber 

have to be understood, and experimental insights are necessary 

to support virtual sensor development. 

EXPERIMENTAL SETUP 
This section gives a brief overview of the Engine-In-the-Loop 

(EIL) setup at the University of Michigan, Figure 2.  

 

ENGINE SPECIFICATIONS 
A 6.4 L V-8 direct-injection diesel engine manufactured by 

the Navistar Ltd. is used for this work.   Engine specifications 

are given in Table 1. The engine incorporates advanced 

technologies to provide high power density while meeting 2007 

emissions standards.  A common rail direct injection (CRDI) 

system permits precise control of fuel injection timing, 

pressure, quantity, and number of injections.  An EGR circuit 

allows for introducing cooled exhaust gases into intake 

manifold and reduces NOX emissions. The dual stage VGT is 

used to enhance engine performance and EGR control. 

 

TEST CELL SYSTEMS 
The engine is coupled to a 330 kW AVL ELIN series 100 

APA Asynchronous Dynamometer.  This dynamometer is 

especially well suited for transient testing with a 5 ms torque 

response time and a -100% to +100% torque reversal time of 10 

ms. AVL PUMA Open system orchestrates engine operation in 

the test cell, and provides monitoring and control of test cell 

functions.  The AVL PUMA interfaces and communicates with 

dSPACE real-time system. This facilitates concurrent running 

of engine with virtual driveline and vehicle [7]. The engine is 

fully instrumented with time-based measurements like 

temperature, manifold pressure and flow rates, as well as crank-

angle based measurements such as in-cylinder and fuel 

injection pressures. 

EMISSIONS MEASUREMENT 
Fast NOX 

CLD 500 Fast NOX analyzer is used for accurate temporal 

measurement of NOX. It consists of a chemiluminescent 

detector with a 90%10% response time of less than 3 ms for 

NO, and less than 10ms for NOX. To achieve very fast 

response, the detectors in remote sample heads are positioned 

very close to the sample point and use vacuum to convey the 

sample gas through narrow heated capillaries. The Fast NOX 

analyzer provides NOX concentration in parts per million 

(ppm).   

Fast Particulate Sizer 

Temporally resolved particulate concentrations are 

obtained using a differential mobility spectrometer (DMS) 500.  

This instrument measures the number of particles and their 

spectral weighting in 5 nm to 1000 nm size range with a time 

response of 200 ms. The DMS uses a corona discharge to place 

a prescribed charge on each particle.  The charged particles are 

then carried along a classifier column by a sheath of clean air 

and attracted to one of the electrodes in the array depending on 

their size and aerodynamic drag.  As the particles land on the 

grounded rings, they give up their charge and the outputs from 

the electrometers are processed in real time to provide spectral 

distribution. More details about the experimental setup are 

given in [7]. 

APPROACH 
The emission (soot and NOX) formation in diesel engine is 

highly nonlinear and displays complex dynamic behavior with 

change in operating condition. In addition, emission formation 

is not only a function of present operating condition but 

previous time history as well. A single model capable of 

capturing all the nonlinearities, particularly under highly 

dynamic operating conditions will invariably have complex 

structure and very high order. In addition, training such a model 

will pose numerical challenges. This paper proposes an 

approach with multiple local models to circumvent this 

difficulty. The engine operating space is partitioned into 

multiple smaller subspaces with each subspace having its own 

model.  

The model is based on experimental data. A specially 

designed perturbation signal is used for generating training data 

and the models are later validated using a completely different 

data set. The flow chart in Figure 3 gives an overview of the 

algorithm presented in this paper with details in subsequent 

sections. 

 
Figure 2: Engine-In-the-Loop test cell configuration 

Table 1: Diesel engine specifications 

Engine Type DI 4-Stroke Diesel Engine 

Configuration V-8, Cam-in-Crankcase, 90° V-8 

Bore x Stroke  98mm x 105mm 

Displacement  6.4L 

Rated Power 261kW @ 3000RPM 

Rated Torque  881Nm@ 2000 RPM 

Compression Ratio 16.7 : 1 

Valve Lifters Push Rod-Activated Rocker Arm 

Aspiration 
Variable Geometry Dual stage 

Turbocharger / Intercooler 

Fuel Delivery 

System 

Common Rail Direct Injection 

(CRDI) 
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PERTURBATION SIGNAL DESIGN 
System identification (SYSID) of black box system 

requires application of perturbation signal for exciting system 

and gathering data. Choice of perturbation signal provides an 

upper bound on the accuracy of the black box model 

independent of the model structure and architecture. For 

nonlinear system identification, two aspects of perturbation 

signal are important. First, the signal must be persistently 

exciting and second, the signal should be rich enough to excite 

all frequencies and nonlinearities in the system. For a linear 

model, a binary random signal suffices, but it is not suitable for 

nonlinear system identification because it is not persistently 

exciting in amplitude. The selection of perturbation signal for 

nonlinear system identification requires more careful 

consideration. A multi-level Pseudo Random Signal (m-PRS) or 

Amplitude Modulated PRBS (APRBS) is applied in this paper 

for nonlinear system identification. m-PRS signals are periodic, 

deterministic, persistently exciting and have autocorrelation 

function similar to white noise. These characteristics make m-

PRS signal well suited for this type of work. The theory behind 

generation of m-PRS is well developed [8], [9]. The m-PRS 

signal is generated using q-level shift registers (Figure 4) where 

q is prime or power of primes. Details about m-PRS signal 

generation for specific problem is given in [8].  

 
Modern diesel engine is highly complex system with 

nonlinear responses to action of multiple actuators. 

Furthermore, the diesel engine emission formation is a highly 

nonlinear process owing to complex mixing and chemistry. To 

create a transient diesel engine emission model valid over entire 

operating region, the test signal should excite all the engine 

operating frequencies. This will ensure that the training data are 

“rich”. Using a priori information about the engine and 

preliminary tests like step and stair case excitation, information 

about bandwidth of system dynamics, dominant settling time, 

etc. is obtained [10], [11]. Figure 5 gives the result of one such 

staircase test performed on the engine. This information is used 

to create perturbation signal i.e. the signal with appropriate 

frequency range, switching time and amplitude level. The 

switching time for signal is short enough to prevent capturing 

predominantly steady state data but long enough to allow 

engine transients to fully develop before the next instance of 

signal is sent.  

 

 
Figure 3: Algorithm for creating virtual emission 

sensors 

 
Figure 4: Schematic for generating m-level pseudo 

random signal 

 
Figure 5: Staircase test @ 2000 RPM 
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For this paper, an 11-step m-PRS signal is created and 

applied to engine as throttle (fueling) command. Figure 6 and 

Figure 7 shows the engine throttle and engine speed signal 

applied to engine. Figure 8 shows the engine operating points 

on 2-D engine operating space spanned by speed and torque. 

Similar plots can be generated with different axis, e.g. engine 

boost and EGR valve opening angle, with respect to other 

variables. Figure 8 shows that the whole engine operating space 

is completely covered and the obtained training data are “rich”.  

SELECTION OF INPUT REGRESSORS 
A three-step process is employed in this paper for selection 

of input regressor set. First, a set of potential input signals is 

generated based on the knowledge of diesel engine combustion 

and emission formation like engine speed and fuel injection. 

Hagena’s [12], [13] work gives an insight into potentially 

relevant signals for predicting transient emissions. Hagena et al. 

[13] showed that transient NOX spikes are primarily dependent 

on lag between increased fueling and boost combined with 

EGR starvation, while the particulate transients are initiated by 

step change in fueling commands. The latter are highly 

dependent on rate of change in fueling and transient excursions 

of residual concentration. Important inclusions based on 

Hagena’s work are the rate of change of fuel injection and post 

injection.  

The above set of input variables are down selected based 

on ease of availability of signal. The ease of availability means 

the signal should be readily available either through onboard 

engine sensor or from ECU.  Residual content in the fresh 

charge cannot be easily measured onboard engine and hence is 

not included in the set of input signals. However, EGR valve is 

actuated by ECU and the percentage opening of that valve is 

available. Hence, this signal is considered instead.  

 
Finally, the available input signals are cross-correlated with 

soot and NOX emissions. Cross-correlation is a sliding inner 

product of two signals and gives the measure of similarity of 

two signals with one signal time-shifted.  

 

1

1
( ) ( ) ( )

N

xy

i

corr x i y i
N



 





   (1) 

 
Figure 6: Throttle signal to engine for SYSID 

 
Figure 7: Speed signal to engine for SYSID 

 
Figure 8: Engine visitation points during SYSID test 

 
Figure 9: Cross-correlation of fast NOX and boost 
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where x(i) is one of the selected input variable, y(i) is the 

emission with time instant i and κ is the time shift or “lag” 

between two signals.  

The signals with very high correlation are included in the 

input data set. Figure 9 gives one such example of high cross-

correlation of NOX with input variable, boost. Cross-correlation 

also shows that emission formation is not only a function of 

present values, but depends on the time history of the input 

variable as well. Therefore, time shifted input signals are also 

considered as separate inputs.  

NEURO-FUZZY MODEL TREE 
The neuro-fuzzy model tree belongs to hierarchical class of 

models and is also known as Takagi-Sugeno fuzzy models. The 

underlying principle is a divide-and-conquer strategy, whereby, 

the operating space is subdivided into multiple smaller 

subspaces and individual submodels are used for identification. 

Hence, the complex problem is subdivided into multiple 

simpler problems, which are then identified using simpler 

models. The local models can be linear. The challenge lies in 

devising correct division and training strategy for local models. 

The concept of multiple models to represent physical 

system has been independently developed in many fields like 

artificial intelligence and statistics with different names like 

operating regime based models [14], [15], [16] and piecewise 

local models [17]. The two level nested structure of the model 

combined with orthogonal least square routine makes the model 

developed in this paper different from previous approaches. The 

model has a soft partitioning with Gaussian validity function. 

The models can be considered as an extension of radial 

basis networks with output neuron replaced with local 

functions. Hence, the validity function is weighted with their 

corresponding local functions [18]. The neuro-fuzzy model tree 

can be expressed as  

  
1

, ( )

M

i

i

y f w u u



    (2) 

i.e. the output of model is the weighted sum of all local sub 

models f(.),  and validity functions determine the regions of 

input space where that particular model is active. 

1

( )

( )

i

i M

j

j

u

u






 



 is the validity function  

where,  

 
   

2 2

1 1

2 2

1

1
( ) exp

2

i n in

j

i in

u c u c
u

 

     
        

    
    

 (3) 

with center coordinates cij and dimension individual standard 

deviation σij [18]. 

In this work, all the validity functions are Gaussian. The 

validity functions are normalized and add up to 1.  

 
1

( ) 1

M

i

i

u



   (4) 

 
The neuro-fuzzy model tree can be used to model transient 

systems by using external dynamics approach, Figure 10. 

External dynamics model consists of two parts [18]: a nonlinear 

static approximator and an external dynamic filter. The neuro-

fuzzy model tree serves as a nonlinear static approximator, 

while a time delay feedback of output behaves as a dynamic 

filter. In other words, recurrent neuro-fuzzy model tree 

architecture is adopted to predict transient systems. The neuro-

fuzzy model tree in Figure 10 has M local models, each with an 

associated validity function that determines the region of 

validity of local model.  

The training algorithm is based on local linear model tree 

algorithm proposed by Nelles [18]. The algorithm has two 

loops. The outer loop optimizes the input space partitioning, 

given by the center and standard deviation of validity function 

while the inner loop calculates the optimal weights for the local 

model in least square sense. 

The algorithm proceeds by partitioning the input space into 

hyperrectangles and then training a local model for every 

hyperrectangle space. The center of each hyperractangle holds 

the validity function with standard deviation based on the 

boundary of this space. A validity function with large standard 

deviation will have large influence area. Similarly, a validity 

function with small standard deviation will have extremely 

localized area of influence. The model tree grows by 

 
Figure 10: Network structure of a dynamic neuro-
fuzzy model with M local models and n inputs with k 
tapped-delay output feedback for transient systems 
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partitioning the hyperrectangle space, which has the worst 

performing local model i.e. model with maximum local error, 

Eq. (5). The hyperrectangle space is then divided further into 

two smaller regions with individual local models. All the 

possible directions are evaluated for new division and the one 

that gives the maximum improvement is chosen for the new 

division dimension for hyperrectangle. 

    
2

1

ˆ( ) ( ) ( )

N

i i

j

J u j y j y j


    (5) 

i.e. the local error is the sum squared error for all data, N 

weighted by the validity function. 

Any optimization algorithm can be employed to calculate 

the optimal weights for the local models. A weighted least 

square is employed in this paper. The estimation can be carried 

out either globally or locally. Global estimation requires 

calculating weights for all the local models together and hence 

takes into consideration influence of overlapping validity 

function. It is more computationally intensive as the weights 

are refreshed for every local model with addition of newer local 

models. In contrast, local estimation optimizes the weights 

separately, neglecting the interaction with other local models. 

The local model estimation approaches global estimation with 

validity function standard deviation, σ → 0, i.e. no interaction 

between local models. The model error increases with higher σ 

i.e. larger interaction between local models. Local estimation 

approach also lends itself to having different local model 

architectures and is preferred in this application.   

 
The training algorithm for neuro-fuzzy model tree is 

augmented with the OLS algorithm for automatic selection of 

input structure for local models from the available input vector. 

A brief description of OLS technique is given in the next 

section.  To keep computational cost low, both the weight 

estimation for models and input selection using OLS are done 

locally. The OLS algorithm is nested in the inner loop of neuro-

fuzzy model tree algorithm and executed before optimization of 

local model weights.  

Figure 11 summarizes our neuro-fuzzy approach with OLS 

modeling strategy. The neuro-fuzzy model tree algorithm 

divides the input space based on rule premise, z. The algorithm 

is able to extract variables in a rule premise vector z, which 

have a significant nonlinear influence on the process output and 

create partition rules. It subsequently trains the local model 

valid for a specific input region. The OLS algorithm helps in 

structure selection of local models by pruning the input 

variables. Each local model can have different set of input 

variables. The premise vector, z need not be similar to 

consequent vector, x. The validity function (premises) depends 

on z and local models (consequents) depend on x. 

ORTHOGONAL LEAST SQUARE 
OLS is a linear subset selection technique. Chen et al. [19] 

gave a detailed overview of algorithm and its application for 

nonlinear system identification. The standard OLS routines for 

local subset selection are modified in this paper, to include the 

weighting of data in local neuro-fuzzy models. 

The OLS method involves the transformation of the set of 

input regressors xi into set of orthogonal basis vectors and then 

calculating the individual contribution to the desired output 

variance from each basis vector.  

 y X e   (6) 

where X  is the regression matrix,  is the parameter vector 

and e is the error. The regression matrix is decomposed into 

X V W  with W being the triangular matrix and V being the 

matrix with orthogonal columns.  The space spanned by set of 

orthogonal basis vectors vi is the same as space spanned by the 

set of xi. The model then can be rewritten as 

 y Vg e   (7) 

with g W   which can be derived by any orthogonalization 

method like Gram-Schmidt or Householder transformations. 

The output variance is then be given by 

 
2

1

i

n

T T T

i i

i

y y g v v e e



   (8) 

The output variance due to regressor vi is given by term 
2

i

T

i i
g v v in the Eq. (8). A regressor is important if this term is 

large or in other words, the error reduction ratio provides a 

criterion for subset selection. 

 

2

[ ]

T

i i i

i T

g v v
err

y y
  (9) 

 
Figure 11: Construction of a neuro-fuzzy model 
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The algorithm proceeds with transformation of original 

regressors into orthogonalized basis vectors. Then the regressor 

with maximum error reduction ratio is chosen and subtracted 

from original regressors. The remaining regressors are re-

orthogonalized and the whole algorithm is repeated until 

desired number of regressors has been obtained or the 

unexplained error falls below a given threshold. The standard 

OLS algorithm computational demand grows with increase in 

potential regressors and size of data set. The paper employs a 

modified fast OLS algorithm [20] to greatly reduce 

computational effort. 

SOOT AND NOX VIRTUAL SENSOR 
The soot and NOX transient emission model in this paper is 

a two level neuro-fuzzy model tree. Figure 12 depicts the 

structure of the model. The local models for the top-level 

neuro-fuzzy model are also a neuro-fuzzy model tree. The 

second tier neuro-fuzzy model trees in turn have linear 

submodels.  

The root node denotes the whole input space. The root 

node is partitioned by engine speed. The choice of this partition 

is based on the signal used to generate training data shown in 

Figure 7. The Figure 13 shows the soft partition of first level 

models based on engine speed with Gaussian validity function. 

The first level models are further partitioned into multiple local 

models (leaf nodes) using the neuro-fuzzy algorithm described 

earlier. 

 
The leaf nodes are partitioned in a 4-D hyperspace. The 

rule premise space is spanned by mass of fuel injected, boost, 

EGR valve angle and post fuel injection, whereas the rule 

consequent space includes engine speed, fuel injected per 

cylinder, boost pressure, EGR valve angle, rate of change of 

fuel injection, post fuel injection, their previous time histories 

and previous emission output. Table 2 and Table 3  give the list 

of included time histories for each signal. In order to introduce 

nonlinearity in input space, the second order multiplication of 

input data set is also used. Though the formulation now 

includes nonlinearities, the structure of submodel is still linear. 

Each input is preprocessed and normalized between 0 and 1. 

The normalization has the benefit of making the learning more 

numerically stable. The output is then anti-normalized to 

recover values in original range. 

 

 

 
The local model can be represented as 

 ( )
T

y k w u   (10) 

where w  is the weight vector and u  is the set of inputs. The 

set u  is different for each local model and contains only the 

most relevant inputs identified by OLS. 

The overall model output is calculated by summing the 

contributions of every local model at leaf nodes, weighted with 

their validity function values. The validity functions pass their 

contribution to the next higher node (parent). 

 
Figure 12: Hierarchical model structure of neuro-

fuzzy model tree based emission sensors 

 
Figure 13: Soft model partition based on engine 

speed with Gaussian validity function 

Table 2: Time delay in input signals considered for 
NOX model 

Input Signal Time History (sec) 

Speed (RPM) 0 

Fuel Injected (mg/str) 0, 0.1, 0.2, 0.3, 0.4 

Boost (bar) 0 

Angle of EGR Valve (θ) 0, 0.1 

Post Fuel Injection (mg/str) 0 

Rate of Fuel Injection 0 

 

Table 3: Time delay in input signals considered for 
soot model 

Input Signal Time History (sec) 

Speed (RPM) 0 

Fuel Injected (mg/str) 0, 0.1, 0.2, 0.3, 0.4, 0.5 

Boost (bar) 0 

Angle of EGR Valve (θ) 0, 0.1, 0.2 

Post Fuel Injection (mg/str) 0, 0.4, 0.5 

Rate of Fuel Injection 0, 0.1, 0.2, 0.3, 0.4, 0.5 
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where 
ji

 is the validity function of leaf node local models and 

( , )
ji ji

y f w u are the outputs of local models. 

The relevant time lag for some input signals change with 

engine speed. OLS is capable of figuring out the time delay 

automatically and includes only the relevant time delayed 

signals. This helps in keeping the number of input regressors 

small, making the model more efficient and robust.  

The soot and NOX emission model are trained using the 

data generated during testing. The virtual sensors are then 

coded in C++ and then cross-compiled and cross-linked for the 

dSPACE real-time platform. The virtual sensor interfaces with 

PUMA Open and receives engine speed, engine boost, in-

cylinder injected fuel, EGR valve angle and post fuel injection 

at 10Hz, and predicts instantaneous soot and NOX emission. 

The test cell allows for concurrent running of physical 

engine with virtual driveline and vehicle over different driving 

schedules [7], [21]. The engine is coupled to the virtual series 

hydraulic hybrid driveline, and the engine-out emissions are 

recorded over the FTP75 driving schedule for validation. This 

ensures that validation and training data sets are completely 

different. Figure 14 and Figure 15 shows the instantaneous 

predicted and measured soot and NOX emissions respectively, 

along with steady state model predictions. The predicted 

emissions show a good match with soot and NOX 

measurements from fast analyzers. The model prediction over 

transient engine operation is far superior to steady state model 

predictions for soot emissions, as seen in Figure 14. The ability 

of the virtual sensor to capture frequent transient spikes of soot 

emission is particularly relevant since steady-state model 

significantly underpredicts concentrations during dynamic 

engine operation. Looking at the cumulative emissions, the 

steady state model under predicts soot by 60% and over 

predicts NOX by 21%. The proposed emission virtual sensor 

provides an order of magnitude improvement, since the soot 

predictions are only 5% higher and NOX 0.2% higher compared 

to measurements.  

To explain the deficiencies of steady state models to 

predict transients correctly, we need to look closely into engine 

operation during transients. Consider the time interval around 

35 sec. The engine command changes nearly instantaneously 

and the fuel injected follows the demand. The intake manifold 

pressure lags due to turbocharger inertia and the delay in boost 

pressure results in lower in-cylinder air-to-fuel ratio. The EGR 

command also changes to zero, however, residual gas dynamics 

have slower time scales and it takes time to purge the intake 

manifold. In addition, step change of load results in increased 

exhaust backpressure to inlet manifold pressure thereby 

increasing the internal residual [1], [13]. The presence of 

residual helps in reduction of NOX but results in higher soot 

production. The combined effect of high instantaneous values 

of Fuel/Air ratio at the onset of the load transient [1], [13] and 

increased residual lead to sharp spikes of particulate 

concentration. The steady state emission model is only function 

of engine load and hence, cannot capture the transient effects. 

The transient model, on the other hand, can capture the effect of 

turbocharger inertia and EGR valve actuator dynamics on in-

cylinder constituents, thereby giving superior predictions of 

resulting emissions. 

 

 

CONCLUSIONS 
The paper proposes modeling neuro-fuzzy based transient 

emission models for particulate matter and NOX in a diesel 

engine. They accurately capture the transient dynamics of soot 

and NOX emissions unlike steady state models. In particular, 

the new model is able to capture extreme spikes of soot 

emissions occurring at the onset of rapid load increases. The 

model is intended to run on a microprocessor in real-time and 

 
Figure 14: Predicted vs. measured transient soot 
emission for a series hydraulic hybrid over FTP75 

 
Figure 15: Predicted vs. measured transient NOX 

emission for a series hydraulic hybrid over FTP75 
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predict engine-out soot and NOX emissions using signals from 

the ECU and low-cost physical sensors. The key aspects of this 

modeling work are: 

 Modeling relies on dividing the input space into smaller 

subspaces and fitting local models.  

 Recurrent architecture of the model allows for capturing 

transient characteristics. 

 Selection technique, orthogonal least squares is applied for 

selecting the structure of local model inputs.  

 Multi-level pseudo random perturbation signal is designed 

specifically for characterizing the diesel engine transients. 

 Virtual sensors are fast and capable of running in real-time 

along with the real engine. 

The training and validation data is obtained from the 

experimental setup at the University of Michigan for transient 

testing of a medium duty diesel engine in the loop with virtual 

vehicle. Comparison of the predictions with transient 

measurements demonstrates very good agreement. 
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