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Parenteral Nutrition-Associated Liver Complications in
Children
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Parenteral nutrition is a life-saving therapy for patients with intestinal failure.
It may be associated with transient elevations of liver enzyme concentrations,
which return to normal after parenteral nutrition is discontinued.  Prolonged
parenteral nutrition is associated with complications affecting the
hepatobiliary system, such as cholelithiasis, cholestasis, and steatosis.  The
most common of these is parenteral nutrition-associated cholestasis (PNAC),
which may occur in children and may progress to liver failure.  The
pathophysiology of PNAC is poorly understood, and the etiology is
multifactorial.  Risk factors include prematurity, long duration of parenteral
nutrition, sepsis, lack of bowel motility, and short bowel syndrome.  Possible
etiologies include excessive caloric administration, parenteral nutrition
components, and nutritional deficiencies.  Several measures can be
undertaken to prevent PNAC, such as avoiding overfeeding, providing a
balanced source of energy, weaning parenteral nutrition, starting enteral
feeding, and avoiding sepsis.
(Pharmacotherapy 2002;22(2):188–211)
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Parenteral nutrition is the administration of
complete and balanced nutrition, given when
feeding into the gastrointestinal tract is
contraindicated or inadequate.  A commonly
reported complication of parenteral nutrition is
transient elevation of liver enzyme concen-
trations, which return to normal after parenteral
nutrition is discontinued.1, 2 Complications
affecting the liver and biliary system may occur
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with prolonged parenteral nutrition and include
cholelithiasis, cholestasis, and steatosis.  Whereas
steatosis is relatively more common in adults,
cholestasis is the most common and predictable
parenteral nutrition-associated hepatobiliary
dysfunction in children.3–5 In some patients it
may progress to cirrhosis, liver failure, and
death.6

Frequency

The frequency of parenteral nutrition-
associated liver complications varies in studies
from 7.4–84%.  In follow-up studies, complications
occurred in 40–60% of children who required
long-term parenteral nutrition.4 Variation in
reported frequency is due to differences in study
populations (premature vs term infants or older
children), definition of liver dysfunction (based
on biochemical or histologic values), composition
of parenteral nutrition solutions, duration of
parenteral nutrition administration, and
underlying medical or surgical conditions in
study subjects.  In one study, approximately 30%
of mostly premature infants had elevated liver
enzyme concentrations after receiving parenteral
nutrition for 2 weeks.2 Liver enzyme
concentrations were elevated in 53% of children
after 4 weeks of parenteral nutrition.  Patients
with short bowel syndrome who require a longer
duration of parenteral nutrition have a higher
frequency of liver complications.  Liver
dysfunction occurred in 67% of children with
short bowel syndrome who received parenteral
nutrition for a mean duration of 16.5 weeks,
compared with 30% of children with normal
bowel length who received parenteral nutrition
for a mean duration of 6 weeks.7 Liver
dysfunction, mainly cholestasis, was reported in
65% of parenteral nutrition-dependent infants
with short bowel syndrome.8

The reported frequency of parenteral nutrition-
associated cholestasis (PNAC) also varies among
studies.  In a retrospective review of medical
records of neonates who received parenteral
nutrition for at least 1 week, 15% of infants
developed PNAC, (serum conjugated bilirubin
concentrations ≥ 2 mg/dl).9 In another study, the
overall frequency of PNAC (serum conjugated
bilirubin concentrations ≥ 2 mg/dl) was 43% in
infants who received parenteral nutrition for
19–75 days (mean ± SEM 49.6 ± 7 days) and 67%
in premature infants.10 The disorder occurred in
23% of premature infants (serum conjugated
bilirubin concentrations ≥ 1.5 mg/dl) after a

mean parenteral nutrition duration of 42 days.11

Clinical Features

Transient elevation of liver enzyme
concentrations may be observed early in the
course of parenteral nutrition without denoting
significant liver dysfunction.12 However, with
prolonged parenteral nutrition, liver dysfunction
may be severe and may progress to liver failure.13

As liver dysfunction progresses, patients may
have hepatomegaly, splenomegaly, ascites, and
varices.  Cholestasis typically is associated with
elevated serum bilirubin concentrations in the
presence or absence of jaundice depending on
the severity of the cholestasis.  Progressive
elevation in serum bilirubin concentrations in
association with persistent jaundice usually
denotes a risk for high mortality.14, 15 Mortality
was as high as 31% in surgical neonates with
PNAC, compared with 3% in neonates without
PNAC.16 In a study that assessed children with
PNAC for bowel and/or liver transplantation, the
main risk factors for death were the presence of
cirrhosis, splenomegaly, and serum bilirubin
concentrations above 5.84 mg/dl.17

Biochemical Markers

Elevation of liver enzyme concentrations is the
earliest marker of liver dysfunction.  The time to
onset of dysfunction after starting parenteral
nutrition is difficult to predict and varies with the
presence or absence of risk factors.18 In infants
with PNAC, elevations in serum alkaline phos-
phatase, bilirubin, and g-glutamyl transpeptidase
(GGT) are the most common biochemical
abnormalities.  Serum aspartate aminotransferase
(AST) and alanine aminotransferase (ALT)
concentrations also may be elevated,2, 14, 18–20 but
usually after onset of cholestasis or jaundice.16, 21

Serum conjugated bilirubin, alkaline phos-
phatase, and AST concentrations were elevated
after 2.2 ± 0.2, 4 ± 0.8, and 4.6 ± 0.7 weeks of
parenteral nutrition therapy, respectively.  The
values returned to normal within 1–4 months
after parenteral nutrition was discontinued.2

Serum conjugated bilirubin concentrations
typically return to normal within 1 week–2
months.10, 11 In the absence of irreversible
hepatic damage, complete liver recovery is
expected,1 although liver biopsies may show
subtle abnormalities for months after parenteral
nutrition is stopped.22

Serum bile acid concentrations were proposed
to be markers that correlate with the degree of
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histologic liver changes.23–26 Elevations in these
concentrations may be either the result of
regurgitation of bile acids from the hepatocytes
into the blood,23, 26, 27 or a reflection of
immaturity of hepatic excretory functions in
premature infants.28 Because a reference range
for these concentrations in infants is difficult to
establish due to changes in bile synthesis and
transport,29 and since other sensitive biochemical
values are simpler to measure, monitoring serum
bile acid in patients with PNAC is not a routine
practice.

Serum GGT and conjugated bilirubin
concentrations are considered the most sensitive
indicators of cholestasis.11, 18, 27 Both can be
elevated as early as 1 week in infants with
PNAC.12

g-Glutamyl transpeptidase is an enzyme that is
widely distributed in the body with prominent
activity in the kidneys, pancreas, and liver.  In
the liver, it is present in periportal hepatocytes,
bile canaliculi, and biliary epithelial cells.
Despite GGT’s sensitivity for hepatobiliary
disease, serum GGT concentrations lack
specificity because levels may be elevated in
other diseases.30, 31 This lack of specificity32

makes GGT most useful as an indicator of
cholestasis when measured in combination with
other variables, such as to confirm the
hepatobiliary origin of elevated alkaline
phosphatase levels.33 Although alkaline
phosphatase is a sensitive marker for bile
obstruction, its increased activity during bone
formation in children10, 21 or as a result of
neonatal metabolic bone disease34 makes it a less
specific indicator of cholestasis in the growing
child.

Since elevated serum conjugated bilirubin
concentrations reflect a reduction in bile flow,
they are considered the prime marker for
cholestasis.21, 35 Clinical studies define PNAC as
when the bilirubin concentrations are at least 1.5
mg/dl.9–11, 16, 36–38 In clinical practice, the most
established  concentration is 2 mg/dl or greater.
The extent and duration of elevation may predict
severity and mortality in patients with parenteral
nutrition-associated liver dysfunction.13, 17, 38

Histopathology

Histologic liver studies in patients with
parenteral nutrition-associated hepatobiliary
dysfunction may reveal a wide spectrum of
pathologic features, including canalicular and
intralobular cholestasis, periportal inflammation,

bile duct proliferation, pseudoacinar formation,
portal-portal bridging, steatosis, portal fibrosis,
and cirrhosis.2, 14, 18 In evaluating children with
advanced PNAC for small bowel or small bowel
and liver transplantation, the frequencies of
specific histologic abnormalities were as follows:
portal fibrosis 100%, pericellular fibrosis 95%,
bile duct proliferation 90%, portal bridging 86%,
pigmented Kupffer cells 81%, portal inflam-
mation 76%, pseudoacinar formation 71%,
cirrhosis 48%, and steatosis 43%.17

Risk Factors

The following risk factors predispose to liver
complications in patients receiving parenteral
nutrition:  prematurity and low birthweight,10, 11,

39 long duration of parenteral nutrition,7, 9, 11, 16, 37,

40–42 sepsis,23, 39 bowel rest and lack of enteral
feeding,9, 18, 41, 43 and short bowel syndrome.15, 42, 44

Prematurity

Premature infants are born before 38 weeks’
gestational age with birthweight below 2500 g
depending on degree of prematurity.  They are at
great risk for PNAC11, 39 due to physiologic
immaturity of their hepatic excretory systems.10,

11, 28, 45, 46 The lower the gestational age, the
higher the elevation in serum bilirubin
concentrations39 and the more rapid and severe
the development of PNAC and jaundice.40 In one
study, the overall frequency of PNAC was 50% in
premature infants with a birthweight below 2000
g.  Fifty percent of infants weighing less than
1000 g developed PNAC compared with 7% of
infants with a birthweight above 1500 g.11 The
frequency increased from 1.4% to 5.3% to 13.7%
in infants who were born at over 36 weeks’,
between 32 and 36 weeks’, and before 32 weeks’
gestation, respectively.40

Duration of Parenteral Nutrition

The frequency of liver dysfunction and
cholestasis increases with prolonged parenteral
nutrition administration.7, 9, 11, 16, 40 After mean
duration of 42.6 and 115.7 days, liver
dysfunction occurred in 30% and 67% of
children, respectively.7 Overall, PNAC occurred
in 35% of surgical neonates who received
parenteral nutrition for at least 2 weeks, and
increased to 58% and 75% after parenteral
nutrition was given for at least 30 and 90 days,
respectively.  All neonates who received
parenteral nutrition for more than 180 days
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developed cholestasis.16

In a retrospective review of the medical records
of 172 neonates who received parenteral
nutrition for at least 1 week, a direct correlation
was seen between severity of cholestatic jaundice
and duration of parenteral nutrition.  Neonates
who received parenteral nutrition for 1–6 weeks,
7–10 weeks, and more than 11 weeks had
progressive elevations of mean serum conjugated
bilirubin concentrations corresponding to 4.21 ±
1.63, 4.91 ± 1.44, and 5.56 ± 1.61 mg/dl,
respectively.9

Because of the direct correlation between
duration of parenteral nutrition and liver toxicity,
parenteral nutrition should be given for the
shortest possible time.  In addition, oral or
enteral feeding, even in partial amounts, should
begin as soon as clinically feasible.41, 42

Sepsis

Sepsis is a common complication of the
infusion of parenteral nutrition in children.47 It
may cause cholestasis, but bile stasis, in turn,
may increase septic rate.  In a study that included
surgical neonates, sepsis was observed in 56% of
infants with PNAC compared with 13% of those
with normal serum bilirubin concentrations
(p<0.05).  It was reported in 78% of infants
before the onset of jaundice.16

Sepsis as a Cause of Cholestasis

Although the source of blood infections in
patients receiving parenteral nutrition is usually
microbial migration along the venous catheter,
bacteremia may be the result of bacterial
translocation from the gut into the blood-
stream.48–50 Gram-negative bacterial infections,
especially with Escherichia coli, were associated
with hyperbilirubinemia51 and jaundice16 in
children.  Jaundice resolved and liver enzyme
concentrations returned to normal after
treatment with systemic antibiotics.50, 52–55 In an
analysis of risk factors leading to PNAC, surgical
neonates had a 30% increase in plasma bilirubin
concentrations during recurrent episodes of
sepsis.39 Other liver enzymes including AST,
ALT, lactate dehydrogenase,48, 56 and alkaline
phosphatase57 also may increase during sepsis.
At the hepatocellular level, liver biopsies of
infants who developed jaundice after bacterial
sepsis had hepatocellular alterations,
intracanalicular and intracellular cholestasis, bile
stasis, and bile duct proliferation.58

The mechanism of sepsis-induced cholestasis is

unknown, but research has focused on the
possible toxic effects of endotoxins or
lipopolysaccharides on the hepatobiliary system.
Endotoxins are released from the outer
membrane of gram-negative bacteria during
systemic infections, or may translocate from the
gut into the portal circulation by binding to
specific sites of the intestinal membrane after
their release by enteral bacteria.59 After reaching
the liver, the amount of endotoxins may exceed
the ability of Kupffer cells to detoxify them,60

thus leading to their sequestration in
hepatocytes59, 61 and causing direct hepatocellular
injury.  At the hepatocellular level, endotoxins
may cause cholestasis by inhibiting the Na+-K+-
adenosine triphosphatase (ATPase) pump in
parenchymal liver cells.62 Indirectly, they may
mediate the formation of cytotoxic bile acids,63 or
stimulate the release of hepatotoxic inflammatory
cytokines such as tumor necrosis factor (TNF)
and interleukins 1 and 6,64–66 which all are
thought to be hepatotoxic mediators.

Endotoxins may alter hepatic excretory
functions,67, 68 induce giant cell transformation of
the liver and hepatocyte necrosis,69 and impair
bile flow in a dose-dependent manner.61 In an
animal experiment that showed a possible role of
endotoxins in cholestasis, rats injected with
human serum from a patient with PNAC
developed a similar cholestatic picture to the one
seen in that patient.  Rats had improved bile flow
after they were injected with antibodies to the
endotoxin isolated from sequestered E. coli in
that patient.68

Tumor necrosis factor is a protein released by
macrophages in response to endotoxin stimuli.
Supporting evidence about its hepatotoxic effects
comes from improvement in liver injury after
administration of TNF antibodies to rats fed
parenteral nutrition.70 On the other hand, the
administration of polymyxin B, an effective
antibacterial against gram-negative bacteria,
blocked endotoxin activity and consequently
TNF production, and led to improvement in
steatosis in rats.71 These observations coupled
with a report that TNF could stimulate hepatic
lipid synthesis72 led investigators to hypothesize
that TNF is hepatotoxic and could be a cause of
steatosis as well as cholestasis during sepsis.70, 73

Besides their effects on the liver, endotoxins
may increase intestinal permeability,74, 75 diminish
immunologic defense mechanisms, and alter host
response to infection.76 Administration of
endotoxins to laboratory animals increased
intestinal permeability to enteric bacteria and
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contributed to bacterial translocation.77 Also,
atrophy of gut-associated lymphatic tissue,78

physical disruption of the intestinal barrier,
bacterial overgrowth, and impaired gut or host
defense mechanisms would facilitate bacterial
translocation.75, 79, 80

Effects of Bile Stasis on Sepsis

Bile stasis may predispose to sepsis,81-83

possibly by impairing cell-mediated immunity.84

Sepsis occurred in 80% of infants with PNAC
compared with 29% of infants without
cholestasis (p=0.006).82 Although a high
frequency of sepsis was reported in patients with
PNAC, further studies are necessary to clarify the
effects of cholestasis on sepsis.

Since a strong correlation exists between
cholestasis and sepsis, control measures should
be undertaken to prevent infections from
developing in patients receiving parenteral
nutrition.  Meticulous catheter care, aseptic
handling of parenteral nutrition infusion, and
aggressive treatment of intercurrent infections are
recommended to minimize the effects of sepsis
on the liver in patients who are dependent on
parenteral nutrition over the long term.

Bowel Rest

Figure 1 illlustrates the possible effects of
bowel rest on the pathophysiology of PNAC.

Bowel Rest and Bile Acids

Secretion of bile acids in the intestines is
increased by meals and decreased by fasting.  As
a consequence of fasting, a decrease in
canalicular bile flow causes bile acids to
sequester in the gallbladder.  On the other hand,
hypertonicity of the parenteral nutrition solution
may induce shrinkage of hepatocytes, reductions
in bile volume and flow, and decreased transport
of conjugated bile acids.85 Thus, PNAC may be
the result of reduced bile flow and altered bile
acid metabolism.86 As a result, accumulation of
bile acids in the gallbladder will cause
precipitation of cholesterol and calcium
bilirubinate in bile ducts, leading to cholestasis
and gallstone formation.85 In support of this
theory, hyperviscous and tenacious bile was
recovered from patients during surgical biliary
irrigation to relieve refractory PNAC.87, 88 Biliary
sludge or stones also were seen in many
patients.88
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Figure 1. Suggested effects of bowel rest on the pathophysiology of parenteral nutrition-associated cholestasis.  CCK =
cholecystokinin; TNF = tumor necrosis factor; IL = interleukins.
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The proposed effects of various bile acids in the
pathophysiology of hepatobiliary complications
require further elucidation.  The two primary bile
acids are cholic acid (CA) and chenodeoxycholic
acid (CDCA).  They are produced in the liver
from cholesterol and then conjugated with
taurine or glycine.  Cholic acid and CDCA also
are metabolized by intestinal bacteria to form the
secondary bile acids deoxycholic acid (DCA) and
lithocholic acid (LCA), respectively.  Normally,
biliary bile acids in humans contain a small
fraction of ursodeoxycholic acid (UDCA; < 5%)
and LCA (< 5%), whereas CA, CDCA, and DCA
constitute more than 90% of the overall bile acid
pool.85, 89 Contrary to LCA and CA, UDCA
appears to be nonhepatotoxic due to its
hydrophilicity and its lower surface activity.  In
animal studies LCA induced common bile duct
hyperplasia and gallstones formation90 and CA
caused biliary fibrosis.91 In addition, elevated
LCA concentrations in bile and serum of patients
with PNAC24, 63 and similarities between hepatic
lesions in humans with PNAC and animals that
were given LCA suggest a role of LCA in causing
liver injury.63

Administration of UDCA and enteral feeding
have protective effects on the liver.
Administration of UDCA improves clinical signs
and symptoms of cholestasis,92–94 possibly by
displacing cytotoxic bile acids.  Because bile acid
secretion is proportional to oral intake,85 early
start of oral or enteral feeding restores
enterohepatic circulation of bile acids and
prevents accumulation of toxic bile acids in the
hepatobiliary system.

Bowel Rest and Gut Hormones

The presence of food in the intestines causes
stimulation and release of intestinal enzymes and
hormones that help maintain physiologic balance
between the gastrointestinal and hepatobiliary
systems.95 Cholecystokinin (CCK) is a peptide
hormone that is secreted in the duodenum in
response to food, namely, enteral fat and
proteins.96 It causes gallbladder contraction,
relaxes the sphincter of Oddi, increases bile
flow,43 and stimulates intestinal motility.97 By
improving gut motility, CCK may prevent
bacterial overgrowth and reduce bacterial
translocation.97

Reduced blood concentrations of intestinal
hormones and gut peptides were seen in
premature infants who were parenteral nutrition
dependent compared with enterally fed infants.98

As a result of lack of CCK during bowel rest,
gallbladder contractility is reduced, which could
lead to bile stasis.  For instance, ultrasonographic
studies showed significantly more gallbladder
distention in infants who received parenteral
nutrition than in those who received enteral
feeding (p=0.0001).  Also, none of the infants in
the parenteral nutrition group had gallbladder
contractions.99 On the other hand, infants with
PNAC who were given exogenous intravenous
CCK had a decrease in hyperbilirubinemia and
improvement in clinical signs of cholestasis.100, 101

Thus, reduced CCK secretion during bowel rest
may play a role in the pathophysiology of
cholestasis.  As such, exogenous administration
of synthetic CCK has been investigated for its
possible role in preventing PNAC.

Bowel Rest and Bacterial Translocation

The gastrointestinal tract serves as a protective
barrier to prevent intraluminal bacteria and
toxins from reaching systemic organs.75 This
barrier may become disrupted as a consequence
of bowel rest.  Lack of intestinal motility leads to
atrophy of the small bowel cellular lining,
disrupts the normal balance of intestinal
microflora,75, 102 and promotes bacterial
overgrowth that by itself may damage the
intestinal barrier.67, 103 In addition to these
effects, bowel rest leads to reduced intestinal
immunity,67 decreased intestinal immunoglobulin
A (IgA) levels,104 and enhanced production of
hepatotoxic cytokines.76, 105

As a result of increased gut permeability,
bacterial translocation may occur.  This describes
the passage of intestinal microflora from
intestines into the mesenteric lymph nodes,
blood, or organs such as liver and spleen.78, 106

Bacterial translocation has detrimental effects on
the liver similar to the effects of sepsis, bacterial
endotoxins, and cytokines.107

A few human reports focused on bacterial
translocation in parenteral nutrition-dependent
patients.48, 49 A significant correlation was found
between bacterial overgrowth and cholestasis41

and between bacterial overgrowth and prolonga-
tion of parenteral nutrition dependence.108

Intestinal microbial overgrowth was seen in 64%
of infants receiving parenteral nutrition who later
developed sepsis with the same microorganisms
isolated from blood and gastrointestinal tract.
Isolated microorganisms were E. coli, Klebsiella,
enterococci, and Candida sp.48

Based on these observations, investigators
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suggested that a disruption in the intestinal
barrier leads to bacterial translocation to the liver
with subsequent release of endotoxins that cause
liver damage.  Introducing enteral feeding should
restore intestinal motility and prevent bacterial
translocation.  Bacterial overgrowth should be
treated with enteral antibiotics to reduce bacterial
translocation or endotoxin production by
intestinal gram-negative bacteria.

Short Bowel Syndrome

This clinical condition is characterized by
intestinal failure associated with malabsorption
and metabolic abnormalities after extensive
resection of the small intestine.109 Neonates
develop short bowel syndrome secondary to
gastroschisis, intestinal atresia, volvolus, or
severe necrotizing enterocolitis,110 whereas in
older children short bowel syndrome is a
consequence of Crohn’s disease, radiation
enteritis, mesenteric infarction, intestinal tumor,
or trauma.109 Long-term parenteral nutrition is a
life-saving therapy for patients who undergo
massive intestinal resection.110, 111 Long duration
of parenteral nutrition is expected when more
than 75% of small intestine is resected or less than
80–100 cm of small intestine remains.109, 112, 113

Parenteral nutrition-associated hepatic fibrosis,
cholestasis, and liver failure are leading causes of
death in patients with short bowel syndrome.17, 38,

110, 114, 115 In a report that correlated hyper-
bilirubinemia with mortality, serum conjugated
bilirubin concentrations greater than 4 mg/dl for
at least 6 months after the development of short
bowel syndrome resulted in a 78% mortality
(sensitivity 70%, specificity 87%).38

Factors that predispose patients with short
bowel syndrome to liver dysfunction include
reduced intestine length,44 bacterial overgrowth,
long duration of parenteral nutrition,108 and
abnormal bile acid metabolism and excretion
resulting from interruption of the enterohepatic
circulation after ileal resection.85 Of note,
patients with the most severe gastrointestinal
diseases require long duration of parenteral
nutrition and thus are at high risk for sepsis,
among other factors that cause cholestasis.49 A
significant correlation was found between
remaining small bowel length of less than 50 cm
and PNAC,42 with as high as 70% of infants with
short bowel syndrome eventually developing
PNAC.38 In 14 infants with mean residual
jejunoileal length of 16% of normal for
gestational age, PNAC and cholelithiasis

developed in 57% and 21%, respectively; two
infants died of liver failure.116

Several measures should be undertaken to
prevent PNAC in children with short bowel
syndrome, such as early and gradual start of
enteral feeding, treatment of bacterial
overgrowth, and prevention and treatment of
sepsis.117 In addition to maintaining gut integrity,
enteral feeding promotes intestinal adaptation
and minimizes dependence on parenteral
nutrition.109, 118 Unfortunately, patients with
massive small bowel resection require long-term
supplemental or full parenteral nutrition support
and are likely to develop liver failure.  The only
life-saving alternative to indefinite parenteral
nutrition in patients with short bowel syndrome
and advanced liver disease is intestine or
combined intestine-liver transplantation.13, 119, 120

Possible Etiologies

Excessive Calories

Excessive calorie administration (overfeeding)
from combined or individual energy substrates
(amino acids, dextrose, lipids) or an imbalanced
source of energy can contribute to liver
dysfunction.  Jaundice and the histologic features
of PNAC were improved by reducing the total
amount of calories from parenteral nutrition.121

Excessive Dextrose

Although excessive dextrose infusion may lead
to steatosis but not to cholestasis, both conditions
may coexist in patients with parenteral nutrition-
associated liver dysfunction.122 Presumably, the
abnormalities are the result of altered insulin:
glucagon ratio in portal circulation and resultant
hyperinsulinemia that causes glucose to convert
to fat in the liver.123 Although parenteral
nutrition-associated steatosis is reported
primarily in adults and is uncommon in infants,
it should be suspected when hepatomegaly and
elevated serum aminotransferases are present.4

Since excess carbohydrates deposit in the liver as
fat,124 reducing the carbohydrate load should
prevent steatosis.20, 125 In children, carbohydrates
should provide no more than 65% of total
calories,125 and dextrose infusions in infants
should be limited to a rate not exceeding 14
mg/kg/minute, which corresponds to infants’
maximum glucose oxidative capacity.124 Also,
providing a balanced source of calories avoids
liver dysfunction.  Liver steatosis occurred in
53% of patients who received only dextrose
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infusions, compared with 17% of those who
received mixed dextrose and lipid emulsions
(70:30 ratio, respectively, p=0.05).126 Therefore, a
safe and balanced parenteral nutrition regimen
should provide 25–30% of calories from lipids
and 50–60% of calories from dextrose.56, 127-129

Amino Acids

Protein hydrolysates of casein and fibrin were
early sources of parenteral amino acids.  Such
formulations had large amounts of dipeptides,
tripeptides, and ammonia, and variable amounts
of nonessential amino acids.130 These solutions
were associated with hyperammonemia, acidemia,
allergic reactions, and liver dysfunction.131 Later,
standard as well as disease- and age-specific
formulations of crystalline amino acids were
introduced to replace protein hydrolysates.132 Of
these, the specialized pediatric crystalline amino
acid formulation was developed to try and
reproduce a plasma amino acid profile consistent
with that of breastfed infants and to contain a
balanced source of essential and nonessential
amino acids.133 These formulations were better
tolerated and resulted in satisfactory weight gain
and nitrogen retention in children.133–135

Amounts and Types of Amino Acids

The development of PNAC in children may be
linked to both excessive136, 137 and cumulative
amounts of amino acids.138 The disorder also
may be related to the toxicity or deficiency of
certain amino acids, specifically methionine
excess,139 cysteine deficiency,140 and tryptophan
and its degradation products137, 141 that were
suggested as causes of cholestasis.  Several
mechanisms are proposed to explain the
mechanism of amino acid-induced cholestasis,
such as possible alteration in canalicular flow and
membrane permeability142 by a direct effect of
amino acids on the canalicular membrane,27

leading to accumulation of hepatotoxic bile
acids,142, 143 dissipation of the transmembrane
sodium gradient by uptake of sodium-dependent
amino acids that decrease the driving force for
bile acid transport,144 or depletion of hepatic
adenosine triphosphate (ATP) by excess
methionine.145

The notion that amino acids have a tendency
to suppress bile flow and bile salt secretion is
supported by animal studies.142 In studies of rat
liver perfusion, amino acids caused a
concentration-dependent inhibition of bile flow
with high amino acid perfusate concentrations,

causing great reduction in bile flow.146–148 When
parenteral nutrition was given to rabbits
intravenously or orally, bile flow and hepatic
secretory functions became clearly suppressed
compared with rabbits that had chow feeding.
Histologic studies showed that liver injury in
animals was similar to that in humans with
PNAC.149

Although some studies did not support a link
between amino acids and cholestasis,16, 40 others
did.27, 136, 137, 150 Premature infants who received
amino acid-free parenteral nutrition with enteral
whey protein supplementation 2.5–3 g/kg/day
had no signs of PNAC, compared with 58% of
infants who developed PNAC after 3 weeks of
standard parenteral nutrition with amino acids.
However, the investigators were unable to
conclude whether the reduction in cholestasis in
the enterally fed group was due to enteral feeding
or avoidance of parenteral amino acids.151 In a
study that reported two levels of amino acid
intake, infants who received 16% (5.0 ± 0.2
g/kg/day) of calories from amino acids had a
substantial increase in serum alkaline
phosphatase concentrations during the fourth
week of the study compared with infants in
whom amino acids provided 8% (2.7 ± 0.1
g/kg/day) of total calories.  Cholestasis developed
in two of five infants with the higher amino acid
intake.137

In another study that correlated the severity of
PNAC with amount of parenteral amino acids
and duration of parenteral nutrition, preterm
infants who received amino acids (mean ± SEM)
4.2 ± 1.1 g/kg/day developed PNAC, whereas
PNAC was not seen in infants who received
amino acids 1.7 ± 0.5 g/kg/day.  Infants who
received more than 2.5 g/kg/day for more than 4
weeks developed cholestatic jaundice.  As a
result, the investigators suggested that the amino
acid dosage in preterm infants should not exceed
2.5 g/kg/day.150 Similarly, infants who received
parenteral amino acids 3.6 g/kg/day had
significantly higher serum conjugated bilirubin
concentrations than infants who received 2.3
g/kg/day.  The higher dosage was associated with
more severe and earlier onset of cholestatic
jaundice.136

A definite relationship between plasma amino
acid concentrations and liver dysfunction has not
been established.  However, results of available
studies may lead one to conclude that liver
abnormalities with amino acid infusions suggest
possible dose-related toxicity.  Amino acid
dosages that were associated with liver toxicity136,
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137, 150 exceeded the usually recommended
maximum dosage of 3 g/kg/day for parenteral
amino acids in infants.152 Thus, since dosages of
2.5–3 g/kg/day would achieve a positive nitrogen
balance in most infants,152–154 it seems prudent
not to exceed that limit so as to avoid liver
toxicity.

Methionine Toxicity

Animal studies implicated certain free amino
acids, namely methionine, in causing cholestasis149,

155 and steatosis.145 Methionine is an essential
sulfur-containing amino acid that is metabolized
by transsulfuration and transmethylation
pathways, leading to the formation of cysteine,
taurine, and glutathione.  Cystathionase is the
rate-limiting enzyme in the formation of cysteine
from cystathionine, an intermediate in the
metabolism of methionine (Figure 2).139, 156

In animal studies, plasma methionine
concentrations were higher in rabbits that
received parenteral nutrition than in rabbits that
had chow feeding.149 Intravenous methionine
repressed bile flow and reproduced histologic
liver injury in rabbits similar to that observed
with parenteral nutrition.155 A direct correlation
was found between methionine perfusate
concentrations and inhibition of bile flow in
perfused rat liver.146

In humans, blood methionine concentrations
were high in infants receiving parenteral
nutrition135, 140 and in those who died of PNAC
and cirrhosis.157 To date, no human data have
correlated cholestasis to methionine in parenteral
nutrition or to methionine blood concentrations.

Several theories are proposed to explain the
mechanisms behind the potential hepatotoxic
effects of methionine in infants.  Premature
infants are born with a low cystathionase activity,
which reduces their ability to metabolize
methionine to taurine and glutathione
efficiently.45, 158 They also may be unable to
synthesize adequately S-adenosylmethionine,151 a
methyl donor derived from methionine and ATP
(Figure 2).139 Since taurine plays a role in bile
acid conjugation, a deficiency may predispose
these infants to cholestasis.159 In addition,
research focused on the possible role of free
radicals in causing liver injury and the protective
role of the antioxidant glutathione.  Since
premature infants may have low levels of
glutathione as a result of low cystathionase
activity and S-adenosylmethionine deficiency,
they may be at increased risk for liver damage

from free radicals, especially during oxidative
stress.139 On the other hand, S-adenosyl-
methionine deficiency in these patients may
predispose to cholestasis.  In a preliminary study
in rats, S-adenosylmethionine increased bile acid
secretion and maintained bile flow possibly by
maintaining a normal Na+-K+-ATPase plasma
membrane activity.160

Strong human data correlating cholestasis to
methionine in parenteral nutrition are lacking.
Nevertheless, some investigators suggested
lowering methionine concentrations in
crystalline amino acid solutions and providing
alternative substrates for the transsulfuration
pathway to minimize possible toxic effects of
methionine on the liver.139

Lipid Emulsions and Plant Sterols

Lipid Emulsions

Lipid emulsions are a source of calories and
essential fatty acids.  Accumulated evidence
shows that liver dysfunction may occur only with
high dosages of lipid emulsions, and in rare cases
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Figure 2. Methionine metabolism via the transsulfuration
pathway (some intermediates and pathways are omitted for
clarity).  ATP = adenosine triphosphate.
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of essential fatty acid deficiency.  The exact
mechanism of such toxicity is unknown.

A report of patients who developed cholestasis
and hepatic cytolysis after a change in lipid
emulsion formula raised the hypothetical
question whether liver dysfunction could be
related to the size of lipid particles in that
emulsion, lecithin purification process, or
sodium oleate content.161 Based on an in vitro
study, lipid emulsions induce dose-dependent
inhibition of cholesterol uptake by cultured
hepatic cells.  It thus is proposed that reduced
cholesterol availability for bile formation by
hepatocytes would result in decreased bile
volume and reduced bile secretion and flow that
lead to cholestasis.162 Similarly, animal studies
showed that lipid emulsions may cause a
reduction in bile flow163, 164 but without an effect
on serum bile acid concentrations138 or on GGT
levels.164 Also, parenteral nutrition regimens that
incorporated lipid emulsions caused further
exacerbation of hepatic steatosis in rats.164, 165

In humans, the association between lipid
emulsions and liver dysfunction was reported in
adults166 and children.167 In adults, a significant
elevation in serum bilirubin and alkaline
phosphatase concentrations occurred with high
dosages of lipids when dextrose only provided
22% of total calories.  Patients who received a
lower lipid dosage with a balanced calorie
regimen (65% of calories from dextrose, 35%
from lipids) did not show signs of liver
abnormalities.166 In a retrospective review of 10
children with PNAC receiving home parenteral
nutrition, a relationship was suggested between
lipid emulsions and cholestasis.  This led
investigators to suggest giving lipid emulsions 5
days/week at a dosage not exceeding 2–2.5
g/kg/day, with a lipid:energy ratio not exceeding
25%.167

Conversely, other human studies showed a
protective effect of lipid emulsions on the liver
when a balanced nutritional regimen was
provided.  Patients who received lipid-free
parenteral nutrition later developed steatosis as a
result of essential fatty acid deficiency that
resolved with fatty acid supplementation.168, 169

Hepatic accumulation of fat was seen in patients
who received amino acid and carbohydrate
mixture but not in those who received a balanced
parenteral nutrition that provided lipid
emulsions.170 When one-third of carbohydrate
calories was replaced with lipid calories, the
elevation of liver enzyme concentrations was
lower than that with lipid-free parenteral

nutrition.129

Accumulated evidence in humans makes it
unlikely that lipid emulsions in recommended
amounts are a major factor in causing direct
hepatocellular toxicity.18, 171, 172 No statistically
significant differences were found in elevations
from baseline of serum alkaline phosphatase and
AST concentrations when a high lipid (30%
calories as lipid) and low lipid (2.5% calories as
lipid) parenteral nutrition were compared.173 The
emulsions appear safe when given to children at
dosages not exceeding 3 g/kg/day.  In case of
hypertriglyceridemia, the dosage should be
reduced to 0.5–1 g/kg/day to provide enough
linoleic acid to prevent essential fatty acid
deficiency.174 A lipid:energy ratio of 25–30% is
appropriate to provide balanced caloric intake.167,

173

Lipid emulsions in the United States are made
of long-chain triglycerides (LCT) derived from
soybean or soybean-safflower oil.  Considering
the faster oxidation rate of medium-chain
triglycerides (MCT) compared with LCT, early
animal and human data suggest that the MCT-
LCT mixture may be better tolerated and may be
less likely to cause hepatic dysfunction.175 Such a
mixture is available in Europe but is still
investigational in the U.S.

Plant Sterols

Interest in the role of plant sterols in the
pathogenesis of cholestasis increased after high
plasma concentrations of phytosterols were
detected in a 3-year-old boy with PNAC.176

Phytosterols form major plant sterols and are
contaminants of lipid emulsions.  Unlike
cholesterol, they are inefficiently metabolized to
bile acids by the liver.177

It is postulated that phytosterols may impair
the hepatocyte canalicular secretory activity,178

bind to membrane proteins and affect membrane
fluidity and transporters, reduce bile synthesis
and flow, and precipitate in the bile causing
formation of biliary sludge and stones.176 In an
experimental neonatal piglet model, daily
injection of plant sterols for 14 days resulted in
phytosterolemia and decreased bile acid
excretion.  No histologic or clinical signs of
cholestasis were detected.

In a human study of 29 children who had
received lipid emulsions over 2 months, 5
children with severe PNAC (bilirubin > 5.84
mg/dl, AST > 200 U/L) had high plasma
concentrations of phytosterols (campesterol,
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stigmasterol, sitosterol, isofucosterol, sitostanol,
cholestanol) similar to that seen in hereditary
phytosterolemia.179 Children with less severe
PNAC had lower concentrations.  All plant
sterols in the plasma were present in the lipid
emulsion.  All five patients had decreased plasma
phytosterol concentrations with reduction or
discontinuation of lipid emulsions; however, only
three had improvement in liver function tests.  Of
note, lipid dosages were higher in the group with
severe PNAC than in the group with mild PNAC.

Based on available studies, no convincing data
allow a definite correlation between phytosterols
and cholestasis in patients receiving lipid
emulsions.  Further studies are required to
explain whether an association exists between
plasma phytosterol concentrations and liver
dysfunction.

Manganese Toxicity

Manganese is a trace mineral that is
supplemented daily to parenteral nutrition
solutions in accordance with recommendations
of the American Medical Association and the
American Society for Clinical Nutrition.  It is
primarily eliminated in the bile and may
accumulate in patients with cholestasis.  High
plasma manganese concentrations were reported
in patients who had cholestasis while receiving
parenteral nutrition.180 Neurotoxicity is the most
frequent toxicity with hypermanganesemia that
was reported in patients receiving long-term
parenteral nutrition7, 181–184 and in those with
cholestasis.185

In a group of 57 children receiving parenteral
nutrition for longer than 2 weeks, 11 had both
cholestasis and hypermanganesemia.186 A
significant correlation was found among whole
blood manganese concentrations, plasma AST
(r=0.63, p<0.001), and bilirubin (r=0.64,
p<0.001) concentrations.  Manganese and biliru-
bin concentrations declined after manganese
supplements were reduced or withdrawn.
Results of this study support the association
between cholestasis and hypermanganesemia but
do not provide evidence that the latter causes the
former.  A comparison of two groups of infants
who received either high or low manganese
dosage in parenteral nutrition solutions found no
significant difference in the frequency of
cholestasis.187 Unfortunately, plasma manganese
concentrations were not measured in all infants.

Manganese and bilirubin may have additive
toxic effects on the biliary canalicular

membrane.188, 189 Although an association was
found between elevated whole blood manganese
concentrations and plasma alkaline phosphatase
and GGT concentrations, no conclusion could be
drawn as to whether hypermanganesemia caused
cholestasis.190, 191 It is also unclear whether blood
manganese concentrations reflect liver and tissue
manganese stores.180 Nevertheless, monitoring
manganese concentrations is particularly
important in patients with PNAC, and restriction
of manganese is necessary to avoid its
accumulation.

Nutritional Deficiencies

Taurine Deficiency

Taurine is a sulfur-containing b-amino acid
derived from cysteine.  One of the many
physiologic functions of taurine is in bile acid
conjugation.159 Animal studies suggest that
taurine improves bile flow and protects against
sulfolithocholate- and LCA-induced liver
injury.192, 193 It prevented parenteral nutrition-
associated liver membrane damage and
maintained bile flow in guinea pigs.194

Taurine becomes a conditionally essential
amino acid in premature infants159, 195 who are at
risk for a deficiency due to decreased hepatic
cystathionase activity159 and increased taurine
losses in the kidneys.196 The deficiency may be
aggravated in patients with advanced liver disease
due to decreased liver ability to convert
methionine to cysteine.156 Low plasma taurine
concentrations were reported in children
receiving long-term parenteral nutrition without
taurine supplementation.197–199 Taurine 1.5–2.25
g/day in parenteral nutrition solutions returned
plasma concentrations to normal after 6 weeks.197

Some reports did not support taurine
supplementation’s protective effect on the liver.
Short-term supplementation to parenteral
nutrition of 20 premature infants at 10.8
mg/kg/day for 10 days did not result in a different
effect on hepatic function.200 In children
dependent on home parenteral nutrition who
developed cholestasis, supplementation did not
improve liver function tests despite a significant
increase in blood taurine concentrations.201 In a
retrospective review of the frequency of
cholestasis in infants who received two different
commercial parenteral amino acid formulations
supplemented with taurine (25 and 70 mg/100
ml bulk solution), PNAC occurred in 21.4% of
subjects (15/70 patients) in equal numbers of
those who received either formulation for at least
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14 days.37 This frequency fell within the range
reported for PNAC in infants receiving parenteral
nutrition without taurine supplementation.
However, limitations to this study included its
retrospective nature, small sample, and various
underlying medical and surgical conditions in
subjects that may have affected the results.

In summary, taurine supplementation improves
bile flow and enhances bile acid conjugation.202

Low taurine and high methionine plasma
concentrations in infants with PNAC led
investigators to suggest that taurine deficiency
may impair bile acid conjugation, resulting in
cholestasis.157 Accordingly, the formulation of
some neonatal parenteral amino acids was
changed to include taurine in amounts to
maintain normal plasma concentrations.37, 203, 204

However, no correlation has been found between
low plasma taurine concentrations and
cholestasis, and no strong evidence suggests that
returning plasma taurine concentrations to
normal would prevent PNAC.

Carnitine Deficiency

Carnitine is a quaternary amine synthesized in
the liver and kidneys from lysine and
methionine.  Its primary function is to transport
long-chain fatty acids across the mitochondrial
membrane for oxidation and generation of ATP.205

Carnitine becomes essential in premature infants
who are at risk for deficiency due to their limited
reserves and reduced capacity for carnitine
biosynthesis.206, 207

Based on reports of hepatic steatosis in
carnitine-deficient patients and results of animal
studies, the deficiency may be a factor in the
pathogenesis of parenteral nutrition-associated
liver dysfunction.208, 209 A patient with systemic
carnitine deficiency also had elevated liver
enzyme concentrations, hepatomegaly, and
steatosis.210 In animal studies, carnitine
supplementation reduced liver fat deposition that
was induced with hypercaloric parenteral
nutrition211 and prevented alcohol-induced
hepatic steatosis.212

In children, low serum carnitine concen-
trations213–216 and depletion of tissue stores were
associated with carnitine-free parenteral
nutrition.217 In other human reports, adding
carnitine to parenteral nutrition returned plasma
carnitine concentrations to normal, enhanced
ketogenesis and fat metabolism,218–220 reduced
hepatocyte fatty infiltration,208 and reversed the
hyperbilirubinemia.209 As a result, the

improvement in fat metabolism led to the
suggestion that carnitine supplementation
mobilizes hepatic lipid stores and prevents
steatosis in parenteral nutrition-dependent
patients.  However, supplementation for 1 month
in four adults receiving parenteral nutrition
returned plasma and liver carnitine levels to
normal but did not improve steatosis.221

Carnitine is not routinely added to parenteral
nutrition.  L-Carnitine for intravenous adminis-
tration is stable and compatible with parenteral
nutrition solutions.222, 223 The optimal dosage to
prevent deficiency is not well defined, but 3–10
mg/kg/day added to neonatal parenteral nutrition
is suggested when the duration of parenteral
nutrition administration exceeds 2 weeks.224

Low plasma carnitine concentrations may not
necessarily reflect tissue stores and may have no
correlation with hepatic dysfunction associated
with parenteral nutrition.216 It remains to be
established whether routine carnitine
supplementation in children prevents liver
dysfunction associated with parenteral nutrition.

Nonpharmacologic Management

Enteral Feeding

Enteral feeding reverses the intestinal mucosal
hypoplasia induced by starvation,102 preserves
immunologic integrity of gut-associated lymphatic
tissue,78 prevents bacterial translocation,139 and
protects against PNAC.106 In animal studies,
parenteral nutrition-fed rats had significantly
higher bacterial translocation from the intestines
into mesenteric lymph nodes than enterally fed
rats (p<0.014).  No bacteria were cultured from
the liver, spleen, or blood of rats in either group.
Translocating bacteria were E. coli and Proteus
mirabilis.  The parenteral nutrition-fed rats also
had higher cecal bacterial overgrowth and
decreased intestinal IgA levels than enterally fed
rats.79

Despite accumulated evidence of the protective
effects of enteral feeding, a recent study in
animals raised doubts about the efficacy of
commercial liquid enteral feeding formulas in
preventing bacterial translocation.  Mice fed with
such formulas had a significant increase in
intestinal bacterial overgrowth (p<0.01) and
bacterial translocation to the mesenteric lymph
nodes (p<0.05) compared with chow-fed
controls.225 The clinical significance of these
results and the effect of enteral formulas on
bacterial translocation in humans is unknown.

In humans, PNAC is more common in children
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who do not receive enteral feeding than in those
who do.18, 41 Lower serum levels of interleukins
and endotoxins were found in stressed patients
who received enteral feeding compared with
those who received parenteral nutrition,
suggesting a protective effect of enteral feeding.226

Even small amounts of trophic feeding reduce
intestinal stasis, diminish bacterial translocation,
and improve bile flow.98 Infants who waited for a
mean of 34 days before starting enteral feeding
developed PNAC; however, none of those who
received enteral feeding after a mean fast of 14
days had PNAC.9

Starting enteral feeding early delays the
appearance of liver dysfunction18 and leads to
resolution of jaundice.43 Considering the benefits
of maintaining the functional and structural
integrity of the gut, early enteral feeding, even in
small amounts, is the most established means to
prevent parenteral nutrition-associated liver
dysfunction.

Cyclic Parenteral Nutrition Infusion

Standard administration of parenteral nutrition
for hospitalized patients is by continuous
infusion over 24 hours.  Cyclic parenteral
nutrition refers to infusion over less than 24
hours, usually at night, to provide the patient
with time off the intravenous and pump
apparatus.

Cyclic or intermittent parenteral nutrition
reduces hepatic complications associated with
continuous infusion.  Because continuous
dextrose infusion results in hyperinsulinemia and
fat deposition in the liver,227, 228 cyclic parenteral
nutrition may avoid compulsive overloading of
the liver with dextrose and other nutrients.117,

229–232 Cyclic infusion over 16 hours led to a
decrease in liver enzyme concentrations,
improvement in hepatomegaly, and resolution of
jaundice.232 Serum conjugated bilirubin
concentrations decreased or stabilized after
parenteral nutrition cycling in infants.229 Liver
enzyme concentrations were reduced and
hepatomegaly improved after cycling for 2–3
weeks over 14–16 hours with 8–10 hours of
dextrose-free infusions.230

When patients are expected to receive long-
term parenteral nutrition, early cycling is
recommended, with the usual goal over 10–14
hours.  However, premature infants may
experience fluctuations in blood glucose
concentrations with short cycles.  This is
primarily due to their limited glycogen stores and

immaturity of their glucose-regulatory
mechanisms.233 For instance, hyperglycemia may
occur at high dextrose infusion rates, whereas
rebound hypoglycemia may occur after abrupt
discontinuation of parenteral nutrition.234 To
avoid short-term changes in blood glucose and
insulin concentrations, the parenteral nutrition
cycle usually is advanced over 2 hours and
tapered off over 2 hours.  Blood glucose
concentrations are monitored at peak infusion
rate and 30 minutes after parenteral nutrition is
discontinued.

Pharmacologic Management

Ursodeoxycholic Acid

Ursodeoxycholic acid (urosodiol) is a naturally
occurring hydrophilic bile acid formed in the
liver and intestines.  It plays a role in stimulating
bile production and reducing cholesterol
absorption and hepatic cholesterol synthesis,235

allowing cholesterol gallstone dissolution.89 It is
passively absorbed from the intestines.
Approximately 50–70% of UDCA undergoes first-
pass hepatic metabolism.89, 236 In the liver, it is
conjugated with glycine and taurine and secreted
in bile.  The pharmacology of UDCA is reviewed
elsewhere.89

The exact mechanisms by which UDCA exerts
its protective effects on the liver are unknown.  It
is proposed that UDCA protects the liver by
improving bile flow, displacing toxic bile acids,
exerting immunoprotective effects on hepato-
cytes,237 and protecting against endotoxemia by
reducing intestinal endotoxin translocation238

and enhancing endotoxin biliary excretion.239

Since UDCA is a minor bile acid in humans, it
is suggested that low bile concentrations allow
retention of toxic bile acids.  Accumulation of
toxic bile acids may lead to precipitation of
cholesterol and calcium bilirubinate in form of
gallstones or may even lead to cholestasis.
Therefore, exogenous administration would
enrich the bile with UDCA to displace toxic bile
acids.85, 240

In addition to its benefits in improving
PNAC,92–94, 241, 242 UDCA relieves pruritus.243 In
children with intrahepatic cholestasis, dosages of
15–20 mg/kg/day improved pruritus and reduced
serum ALT and GGT concentrations.94 In
children with PNAC, serum bilirubin
concentrations decreased after 2 weeks of
treatment with UDCA 15–30 mg/kg/day.92

Similarly, UDCA 30 mg/kg/day resulted in
resolution of hepatomegaly and jaundice within
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1–2 weeks and normal liver enzyme concen-
trations within 4–8 weeks in children with
PNAC.93 A rebound increase in liver enzyme
concentrations occurred after discontinuation of
UDCA.93, 94, 241 In adults with PNAC, UDCA
improved serum GGT, ALT,241 and bilirubin
concentrations.242 However, results in adults may
not be extrapolated to children since the
pathophysiologic changes of parenteral nutrition-
associated liver dysfunction differ in the two
populations.244

The agent is available as the protonated acid in
capsule forms for oral administration.  Although
intestinal absorption may be slow and
incomplete, in patients with chronic liver
dysfunction, UDCA 8–12 mg/kg/day increases
biliary concentrations by 30–60%.89 The
problem with absorption remains in patients with
short bowel syndrome, in whom absorption is
unreliable due to significant intestinal resection,
chronic diarrhea, and gastric acid hyper-
secretion.85, 109 In such patients, an extempora-
neously prepared UDCA solution would be better
absorbed than the capsule form.85 Since UDCA is
a weak acid, its solubility increases at alkaline
intestinal pH above  8 unless it is solubilized with
micelles.  This alkaline pH is achieved only after
meals, assuming sustained pancreatic secretions.
An enteric-coated capsule in a pH-sensitive
polymer was formulated to bypass poor intestinal
absorption of protonated form, although it is not
available in the U.S.  It releases UDCA in the
small intestines at pH 5.5 or greater, making it
better absorbed than the regular capsule.245

Although UDCA is not approved for pediatric
use,246 it has been given in dosages of 10–20
mg/kg/day in children with cholestasis.247 Up to
30 mg/kg/day divided in three doses was given to
children with PNAC.92, 93, 248 Gastrointestinal side
effects include diarrhea, nausea, and abdominal
pain.241, 248 Although UDCA may improve clinical
signs and symptoms of cholestasis, it does not
alter disease progression.  Thus, the effects of
prolonged therapy on the course and prognosis
of cholestasis are unknown.94 Prospective,
controlled studies are necessary to assess the
agent’s effects on morbidity and mortality in
children with PNAC.

Cholecystokinin-Octapeptide

Cholecystokinin-octapeptide (CCK-OP,
Sincalide) is the synthetic C-terminal octapeptide
fragment of CCK that produces the biologic
activities of CCK.  In a preliminary human study,

prophylactic CCK-OP prevented biliary sludge in
adults receiving long-term parenteral nutrition.249

Eight infants with PNAC had improvements in
serum conjugated bilirubin concentrations and
resolution of jaundice after intravenous
administration of lyophilized porcine CCK.
Although the authors advocated that CCK may
reverse PNAC, seven patients were weaned from
parenteral nutrition before CCK administration,
one patient did not respond to repeated CCK,
and a control group was absent.100 In a pilot
study of 11 infants with PNAC, CCK-OP caused
reductions in serum conjugated bilirubin
concentrations without significant effects on AST,
ALT, and alkaline phosphatase levels.101

However, five patients were receiving enteral
feeding and two no longer were receiving
parenteral nutrition.  Enteral feeding and
parenteral nutrition cessation may have led to the
reduction in bilirubin.  Also, a statistically
significant decrease in hyperbilirubinemia was
achieved only after three patients with liver
failure were excluded.  If these three patients had
PNAC, this raises the question of whether CCK-
OP has a role in advanced liver disease.

In a subsequent study, CCK-OP was administered
to 21 neonates with PNAC who had received
parenteral nutrition over 14 days.250 The starting
dosage was 0.02 µg/kg twice/day and increased to
0.04 µg/kg 3 times/day if parenteral nutrition was
continued over 14 days.  The control group
consisted of infants with PNAC who were
matched with the experimental group.  Although
CCK-OP slightly lowered serum conjugated
bilirubin concentrations, the frequency of PNAC
at concentrations greater than 2 mg/dl was not
statistically significant between groups.  Patients
were allowed enteral feeding, which could have
improved cholestasis independently.

Although in early animal studies CCK-OP
prevented bile stasis associated with parenteral
nutrition,251, 252 the same benefits were not
reproduced in later studies.253, 254 The agent did
not improve bile flow or bile acid secretion
despite slight improvements in liver fibrosis and
portal inflammation.253 Also, it did not prevent
gallstone formation and did not return the bile
salt profile to normal despite improvements in
bile acid synthesis and output.254

Currently, CCK-OP is not approved for
prevention or treatment of cholestasis.  It is
available in injectable forms for intravenous and
intramuscular administration.  At dosages used
in studies, it appears safe but with a commonly
reported side effect of abdominal cramping100, 101,
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249 that is likely dose related.250 From study
reports, CCK-OP appears to improve the clinical
signs of cholestasis, but its long-term effects in
preventing PNAC are unknown.

Enteral Antibiotics

Bacterial overgrowth is a common compli-
cation in children with short bowel syndrome.255

Treatment is crucial to reduce intestinal bacterial
overload and minimize bacterial and endotoxin
toxic effects on the liver.  Improvements in liver
enzyme concentrations after treatment with
antibiotics that target intestinal bacteria suggest a
role of these bacteria in the pathogenesis of
parenteral nutrition-associated liver dysfunction.
Although different antibiotics are administered to
treat bacterial overgrowth in patients with PNAC,
no clear consensus on the choice of drug exists.
Metronidazole256–260 and oral nonabsorbable
antibiotics such as gentamicin,261 kanamycin,68

neomycin,79 and polymyxin B65, 71 are effective.

Metronidazole

The ability of metronidazole to prevent liver
injury in rats suggests a role of anaerobic
bacteria, particularly Bacteroides sp, in the
pathogenesis of hepatic injury associated with
bacterial overgrowth.256, 258, 260 In animals,
reduction of intestinal anaerobic flora by the
agent was associated with a reduction in hepatic
lipid content.259 In humans, the drug prevented
steatosis in obese patients with jejunoileal
bypass.262 This effect possibly was mediated
through inhibition of jejunal bacterial
overgrowth and intestinal deconjugation of bile
acids, a known complication of jejunoileal bypass
surgery.263 In a retrospective review of adults
who received parenteral nutrition, metronidazole
given intravenously, orally, or rectally prevented
elevations of serum alkaline phosphatase, GGT,
and AST concentrations.258 Reductions in liver
enzyme concentrations were similarly reported
after oral256 or intravenous264 administration to
adults with parenteral nutrition-associated liver
dysfunction.

Metronidazole does not improve liver enzyme
concentrations in advanced liver disease.114

Intravenous administration in infants receiving
parenteral nutrition did not have a significant
effect on the frequency of hyperbilirubinemia.
Only infants who received metronidazole 50
mg/kg/day had significantly lower serum AST
and ALT concentrations compared with infants in
the control group (p<0.05).257

Gentamicin

Very low-birthweight infants who were given
oral gentamicin for prophylaxis of necrotizing
enterocolitis while receiving parenteral nutrition
had less significant increases in serum conjugated
bilirubin concentrations than infants with
significantly higher serum bilirubin
concentrations who did not receive the drug.
The frequency of cholestasis was 8% and 42%,
respectively.  Also, patients receiving gentamicin
had no significant rise in serum conjugated
bilirubin concentrations from baseline after
starting parenteral nutrition.261

Neomycin

Oral neomycin given to rats reduced the
frequency of bacterial translocation and the
number of cecal gram-negative bacteria.79 The
drug protected against fibrosis, cirrhosis, and
fatty infiltration of the liver.  Since oral
administration of endotoxins reversed these
protective effects, it was concluded that
neomycin protects against liver injury by
suppressing intraluminal bacterial growth.265

Polymyxin B

Oral polymyxin B decreased cecal flora, TNF
production, and hepatic steatosis in rats given
parenteral nutrition.65, 71 In vitro experiments
showed polymyxin B binds and inactivates the
lipid A-core region of the lipopolysaccharide
portion of endotoxins.266 Besides its bactericidal
effect on enteral gram-negative bacteria, the
agent may prevent release of TNF by
macrophages in response to lipopolysaccharides
and protect against lipopolysaccharide-induced
liver toxicity and steatosis.65, 71

Enzyme Inducers

Phenobarbital

Phenobarbital may improve cholestasis
possibly by enhancing conjugation of
bilirubin.267, 268 Results of the effects of
phenobarbital in cholestasis are inconsistent.  In
a premature infant with PNAC, 5 mg/kg/day
improved hyperbilirubinemia that did not
respond to discontinuation of parenteral
nutrition; hyperbilirubinemia recurred after
phenobarbital was discontinued.266 However, in
two other case reports, the same dosage did not
improve hyperbilirubinemia in infants with
PNAC.140 In a retrospective review of medical
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records of 31 infants who were treated with
phenobarbital for neurologic conditions while
receiving parenteral nutrition, 60% developed
cholestasis, compared with 33% of untreated
infants.268

Based on published reports, the role
phenobarbital in relieving PNAC is uncertain.  In
addition, there is concern about worsening
intrahepatic cholestasis with the agent in
children with obstructive cholangiopathy.269

Rifampin

Rifampin may be more effective than
phenobarbital in relieving pruritus in patients
with primary biliary cirrhosis.270 A dosage of 10
mg/kg/day was effective in relieving pruritus271

and improving GGT levels in children with
cholestasis who failed UDCA, phenobarbital, or
antihistamine therapy.272 Improvements in
cholestasis and pruritus also were reported with
the drug in adults with primary biliary
cirrhosis.270, 273 Although the exact mechanism of
action of rifampin in relieving pruritus is
unknown, proposed mechanisms include
enhancing metabolism of bile acids or
pruritogenic substances,273 diminishing the pool
of toxic bile acids,270 and inhibiting bile acid
uptake by hepatocytes.274 Due to the drug’s
potentially serious side effects, such as toxic
hepatitis,273 hemolytic anemia, and renal
failure,270 other safer agents such as
cholestyramine or UDCA should be considered
first for treating the pruritus of cholestasis.243, 275

Cholestyramine

Cholestyramine is an insoluble ion exchange
resin that forms a nonabsorbable complex with
bile acids in the intestines.  It relieves pruritus
associated with intrahepatic cholestasis276 and
alleviates diarrhea after ileal resection.277

Cholestyramine also binds the endotoxins in the
intestines and may prevent their translocation.278

However, this effect may be clinically insignifi-
cant because it is partial and short lived.279

The agent’s role in treating bile acid-induced
diarrhea in patients with ileal resection is
explained by its binding capacity of excess bile
acids in the colon to prevent salt and water
secretion.280, 281 Its ability to relieve pruritus of
cholestasis is probably due to its effect on
lowering levels of bile acids and other
pruritogenic mediators.275, 282

The usual dosage of cholestyramine in children
is 240 mg/kg/day divided in three doses.283

Constipation, diarrhea, nausea, and abdominal
discomfort are reported adverse effects.276 Due to
its drug-binding capacity, cholestyramine may
bind UDCA when the two are given concurrently
to patients with cholestasis.284 To avoid clinically
significant drug-drug interactions, other oral
agents should be given 1 hour before and 4–6
hours after cholestyramine administration.285

Intestine Transplantation

Despite improvements in transplantation
outcomes over the past 10 years, long-term
results of liver and small bowel transplantation as
alternatives to parenteral nutrition in patients
with refractory short bowel syndrome are
unknown.286 The choice of isolated small bowel
versus combined small bowel-liver transplan-
tation depends on the extent of liver disease.
The 1-year worldwide survival rate after 1995
was 69% for intestinal transplants and 66% for
small bowel-liver transplants.119 Worldwide 5-
year survival was 50% for small bowel
transplants and 40% for combined small bowel-
liver transplants.287

Intestine transplantation resulted in stopping
parenteral nutrition in 77% of survivors119 who
later were able to achieve normal growth and
weight gain with oral feeding.120, 287 When
considering the procedure in parenteral
nutrition-dependent patients, complications
(rejection, infection, lymphoproliferative
disease)119, 287 and quality of life should be taken
into consideration.288 Until a higher survival rate
is achieved, and given the high survival rate in
patients receiving home parenteral nutrition,289

intestine transplantation seems warranted only
when all therapies fail and when the patient has
life-threatening complications.115, 119, 120 In
addition, patients may benefit from other types of
organ transplantations, such as isolated
orthotopic liver transplantation, that might be an
alternative in infants with end-stage liver disease.
To be considered for that procedure, patients
should have significant tolerance to enteral
feeding and have sufficient small bowel with a
good probability of eventual gut adaptation.290

As experience grows, it may become possible to
perform bowel transplantation early before
hepatic failure develops, especially if more
selective and powerful immunosuppressive
therapies become available.

Summary

Several interventions can be undertaken to
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prevent parenteral nutrition-associated
hepatobiliary dysfunction (Table 1).  The
disorder is reversible when parenteral nutrition is
discontinued and enteral feeding is begun early
before irreversible liver damage has occurred.
Recommended methods to prevent liver
dysfunction include limiting the duration of
parenteral nutrition, starting enteral feeding early,
avoiding overfeeding, vigilant prevention and
prompt treatment of sepsis, and cyclic parenteral
nutrition.  Prophylactic administration of UDCA
is likely beneficial, but its role in treatment of
PNAC requires further studies.  Therapy with
CCK-OP to prevent and treat PNAC yields
inconsistent results, and its effects in advanced
liver disease are questionable.  Bowel
decontamination with enteral antibiotics may be
beneficial when clinical conditions predispose to
bacterial overgrowth.  It is essential to monitor
liver enzyme concentrations regularly during
parenteral nutrition to allow early detection of
liver abnormalities.  Liver biopsies may be
necessary when the diagnosis is uncertain.
Patients with short bowel syndrome and severe
liver dysfunction should be assessed for
combined bowel and liver transplantation.
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