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Kallikrein-related peptidase 4 (KLK4) is critical for proper dental enamel formation.
Klk4 null mice, and humans with two defective KLK4 alleles have obvious enamel
defects, with no other apparent phenotype. KLK4 mRNA or protein is reported to be
present in tissues besides teeth, including prostate, ovary, kidney, liver, and salivary
gland. In this study we used the K/k4 knockout/NLS-lacZ knockin mouse to assay
Klk4 expression using ff-galactosidase histochemistry. Incubations for 5 h were used to
detect KLK4 expression with minimal endogenous background, while overnight
incubations susceptible to false positives were used to look for trace KLK4 expression.
Developing maxillary molars at postnatal days 5, 6, 7, 8, and 14, developing man-
dibular incisors at postnatal day 14, and selected non-dental tissues from adult wild-
type and Klk4"““/"Z mice were examined by X-gal histochemistry. After 5 h of
incubation, X-gal staining was observed specifically in the nuclei of maturation-stage
ameloblasts in molars and incisors from Klk4"“#/"“Z mice and was detected weakly in
the nuclei of salivary gland ducts and in patches of prostate epithelia. We conclude
that KLK4 is predominantly a tooth-specific protease with low expression in sub-
mandibular salivary gland and prostate, and with no detectable expression in liver,
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Secretory-stage ameloblasts export three enamel matrix
proteins: amelogenin, ameloblastin, and enamelin (1).
These proteins are cleaved extracellularly, and their
digested products accumulate in the enamel matrix (2-4).
The cleavage sites that generate many secretory-stage
enamel components have been characterized (5-9).
Matrix metalloproteinase 20 (MMP20) is expressed
during the secretory stage (10), and in vitro analyses have
demonstrated that MMP20 is uniquely capable of cata-
lyzing all of these cleavages (11-14). This proteolytic
activity is necessary for proper enamel formation as
Mmp20 null mice (15) and humans with MMP20
mutations produce defective enamel (16-19). During the
maturation stage, the enamel layer hardens by widening
and thickening hydroxyapatite crystals deposited during
the secretory stage (20, 21). Kallikrein-related peptidase
4 is a glycosylated, chymotrypsin-like serine protease
that is expressed and secreted by murine maturation-
stage ameloblasts (22-25). Kallikrein-related peptidase 4
degrades enamel proteins (26), which facilitates their
reabsorption by maturation-stage ameloblasts (27). In
the absence of KLK4, accumulated enamel proteins are
retained in the matrix and the crystals do not fully ma-
ture (28). Klk4 null mice (28) and humans with KLK4
mutations (29) show enamel defects with no noticeable

abnormalities elsewhere in the body. These findings
suggest that MMP20 and KLK4 both serve tooth-spe-
cific functions (30). In the case of MMP20, this specificity
is supported by data showing that MM P20 has degen-
erated into a pseudogene in whales that have lost the
ability to make teeth or enamel (31).

Kallikrein-related peptidase 4 is routinely isolated
from developing teeth (12, 26), but has not been isolated
from any other tissue. K/k4 mRNA and KLK4 antigen
have been detected in tissues besides teeth, but the find-
ings are inconsistent. Immunoassays of 38 healthy adult
tissues detected KLK4 primarily in prostate, with no
expression in liver, colon or pituitary (32). ELISA assays
of 37 tissues from healthy adults found that KLK4 was
not abundant in any adult tissue, but was highest in
pituitary, cervix, and muscle (33). Immunohistochemis-
try of tissue microarrays were positive for KLK4 in
healthy adult kidney, liver, and prostate tissue, but
negative for KLK4 in colon, lung, skin or skeletal muscle
(34). The results of these surveys depended upon the
specificity of the KLK4 antibodies employed, and none
of the studies compared KLK4 expression with the levels
in developing teeth. Human KLK4 expression was also
surveyed by quantitative PCR, which detected the high-
est expression in prostate and low, but detectable, levels



in adrenal, salivary and thyroid glandular tissues (35). In
prostate, KLK4 has been proposed to be the enzyme that
activates prostate specific antigen (PSA) (36, 37), but
recent evidence suggests that KLK?2 activates PSA (38).

We developed a gene-targeted mouse strain that has a
lacZ reporter gene with a mouse nuclear localization
signal (NLS-pgal) inserted at the natural K/k4 transla-
tion initiation site, which can be used to assay Klk4
expression using f-galactosidase histochemistry (28). In
this study, we used these KI/k4 knockout/lacZ knockin
mice to investigate the expression of K/k4 in developing
teeth, adult prostate, liver, kidneys, submandibular sali-
vary glands, prostate, ovaries, testis, vas deferens, and
epididymis.

Material and methods
Breeding and genotyping

Klkc4'a?ltaZ mice were mated with Klk4"“?/Z mice.
Genotyping was by PCR using genomic DNA obtained by
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tail biopsy (28). To detect wild-type K/k4, we used PCR
primers that annealed to intron 3 and exon 5 (5-
AACCTAAGGGACAGGGCAGT and 5-TGAGGTGG-
TACACAGGGTCA; 550-bp amplicon). To detect the
knockin gene (Klk4'““%), we used a PCR primer pair that
annealed to the K/k4 upstream region and to the NLS-lacZ
coding region (5-TGCCTCCAACCAGATAGGTC and 5'-
GACAGTATCGGCCTCAG GAA; 595-bp amplicon). The
wild-type mice were strain C57BL/6.

Tissue processing for histochemistry

Mice (1 yr of age) were anaesthetized with isoflurane and
fixed by cardiac perfusion. Blood was cleared from the
vasculature using lactated Ringer’s solution (30-45 s) fol-
lowed by 4% paraformaldehyde in PBS (135 mM NacCl,
2.7 mM KCI, 4.3 mM Na,HPO,4, 1.4 mM Na,H,PO,, pH
7.3) for 20 min. Following perfusion, the liver, kidneys,
submandibular salivary glands, prostate, ovaries, testis, vas
deferens, and epididymis were dissected, immersed in
paraformaldehyde fixative (4% paraformaldehyde in PBS,
pH 7.3) for 2-3 h at 4°C, and washed in PBS 4-5 times
(every 0.5-1 h) with one overnight wash at 4°C. The tissues

Day 6

Day 7
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Klk4 null

Fig. 1. Kallikrein-related peptidase 4 (KLK4) expression in day 5-14 maxillary first molars. Sections from postnatal day 5, 6, 7, 8,
and 14 wild-type (WT) mice are shown in the left column. Comparable sections from K/k4-null mice are shown in the right column.
No lacZ histostaining was observed in the sections from wild-type mice, demonstrating an absence of background staining in these
sections. KLK4 (lacZ) expression was first observed at the cusp tips of day 6 and day 7 maxillary first molars. By day 14, KLK4
expression extended throughout the ameloblast layer. Note that the red counterstaining of enamel proteins was diminished in day 8
and absent in enamel of day-14 wild-type mice, but persisted in the K/k4 null mice through day 14. Am, ameloblasts; D, dentin; E,

enamel; Od, odontoblasts; P, pulp. Bars = 100 um.
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were immersed in 15% sucrose (1-2 h) followed by 30%
sucrose (3—4 h) at 4°C for cryoprotection, embedded in
optimal cutting temperature (OCT) medium, and stored at
—80°C. The blocks were cryosectioned at 8 um at —20 to
—22°C on a Leica cryostat. The slides were stored at —80°C
until staining.

Processing of dental tissues for histochemistry

Day 5, 6, 7, 8, and 14 mouse heads were quickly dissected of
skin, cut in half, and immersed in 4% paraformaldehyde
fixative overnight at 4°C, washed in PBS 4-5 times (every
0.5-1 h) at 4°C, and decalcified at 4°C by immersion in 1 1
of 4.13% disodium ethylenediaminetetraacetic acid (EDTA,
pH 7.3) with agitation. The EDTA solution was changed
every other day for 8-9 d for day-5 mice, 19-21 d for days 6,
7, and 8 mice, and 30 d for day-14 mice. The samples were
washed in PBS at 4°C 4-5 times (every 0.5-1 h) followed by
one overnight wash. The tissues were immersed in 15%
sucrose (1-2 h) followed by 30% sucrose (3—4 h) at 4°C for
cryoprotection and then embedded in OCT and stored at
—80°C. The blocks were cryosectioned at 8 um thickness
at =20 to —22°C on a Leica cryostat, Buffalo Grove, IL,
USA. The slides were stored at —80°C until required for
staining.

X-gal staining

The slides were removed from the —80°C freezer and
immediately treated with glutaraldehyde fixative [0.1 M 4-
(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES),
1.25 mM ethylene glycol tetraacetic acid (EGTA),
2 mM MgCl,, 0.5% glutaraldehyde, pH 7.3] and then wa-
shed, three times, for 5 min each wash, with 0.1 M HEPES
containing 2 mM MgCl, (pH 7.3). The slides were stained
with X-gal solution (0.1 M HEPES, 1 mM MgCl,, 5 mM
potassium ferrocyanide, 5 mM potassium ferricyanide, 2%
Triton X-100, 1 mg ml™! of X-gal substrate; pH 8.0) for 5 h
or overnight at 45°C, washed several times in PBS, count-
erstained with 0.1% (w/v) Nuclear Fast Red, coverslipped
with Aquamount, and imaged using a Nikon Eclipse TE300
inverted microscope.

Results

Klk4 expression in developing teeth

B-galactosidase histostaining of wild-type and Kik4/@<Z/"aZ

maxillary first molars was carried out on sections from
days 5, 6, 7, 8, and 14 (Fig. 1), which covers the period
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Fig. 2. Kallikrein-related peptidase 4 (KLK4) expression in day-14 mandibular first and second molars and continuously erupting

incisor. (A) Mandibular longitudinal section through the incisor and three molars of a day-14 Kik

qlacZllacZ nyll mouse. Arrowheads

indicate positions of the higher-magnification views shown below. (A) LacZ histostaining was observed throughout the ameloblast
layer in the first and second molar and in the incisor starting approximately at the level of the mesial surface of the first molar. (B-D)
Positive staining for KLK4 expression in maturation-stage ameloblasts. (E, F) Absence of KLK4 expression in secretory-stage

ameloblasts. Scale bars: A, 200 um; B-F, 50 um.



when secretory ameloblasts first transition into matura-
tion-stage ameloblasts (39). No f-galactosidase histo-
staining was observed in any of the wild-type molar
sections or in the maxillary first molars of day-5 Klk4"“#/
lacZ mice. The earliest positive staining in maxillary first
molars was in ameloblasts at the cusp tips (enamel-free
zone) and the cusp slopes in day-6 and day-7 Kilk4"#/"Z
mice. By day 8, positive staining had spread along the
ameloblast layer nearly to the cervical margin of the
developing crown. By day 14, strong f-galactosidase
histostaining was observed throughout the ameloblast
layer. No staining was observed in cells besides amelo-
blasts. Notably there was no staining in secretory-stage
ameloblasts, odontoblasts, bone, or along the developing
roots. At all time-points, the K/k4'““?/"*Z maxillary first
molars showed organic material (counterstained red)
within the enamel layer. The wild-type maxillary first
molars exhibited counterstained enamel proteins similar
to that of the Klk4"““#/"*“Z maxillary first molars for days
5 to 7. By day 8 the residual enamel proteins near the
cusp tips were reduced and by day 14 had disappeared.
The presence of enamel proteins in the maturation-stage
enamel matrix past day 8 is caused by the absence of
KLK4 expression. fj-galactosidase histostaining of the
continuously growing incisor of day-14 Klk4'<?/"aZ
mouse was negative for secretory-stage ameloblasts and
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positive for maturation-stage ameloblasts and some aged
odontoblasts near the incisal tip of the tooth (Fig. 2).

KLK4 expression in adult salivary gland, prostate,
liver, kidney, testis, ovary, ovarian duct, epididymis,
and vas deferens

p-galactosidase histostaining of the maxillary first molars
of day-14 Klk4'*?/"*Z mice was carried out in parallel
with the histostaining of selected non-dental tissues
obtained from 1-yr-old wild-type and Klk4'“%/"Z mice
(Fig 3). Positive p-galactosidase nuclear histostaining
was observed in the striated ducts of the submandibular
salivary gland (Fig. 3C,D) and in localized areas of
prostate epithelia (Fig. 3F-H). Nuclear staining was
stronger in the salivary gland than in the prostate and
clearly above background levels. Localized endogenous
p-galactosidase staining (background) was evident in
prostate epithelia in wild-type mice when the incubation
was allowed to run overnight (Fig. S1). The nuclei in
adult liver (Fig. 4A-C), kidney (Fig. 4D-F), testis
(Fig. 4G-1), ovary (Fig. 4]J,K), and ovarian duct (Fig. 4
J,L) were stain-negative. The wild-type and Klk4-null
mice were also negative for these tissues in the overnight
incubation (Fig. S2). Cytoplasmic f-galactosidase histo-
staining was detected in the epididymis (Fig. 5A) and vas

Fig. 3. Kallikrein-related peptidase 4 (KLK4) expression in submandibular salivary gland and prostate. (A, B) Submandibular
salivary gland from wild-type mouse shows no endogenous (background) staining for f-galactosidase after a 5-h incubation. (C, D)

Intralobular (striated) duct cells show f-galactosidase positive nuclei in the Kik4™“/

“Z null mouse. (E) Day-14 maxillary molars

were histostained along with non-dental tissues as a positive control. (F-H) Prostate epithelia showed small patches of weakly
positive nuclei indicative of KLK4 expression. Scale bars: A, C, E, G, 200 um; B, D, F, 50 ym; H, 50 um.
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Fig. 4. Lack of kallikrein-related peptidase 4 (KLK4) expression (no nuclear staining) in liver, kidney, testis, ovary, and oviduct.
Sections of these tissues from wild-type mice were stain-negative (data not shown). All sections shown are from Klk4"Z/%Z py|
mice: (A—C) liver; (D-F) kidney; (G-I) testis; (J, K) ovary; and (L) oviduct. Bars on the left = 200 um. Bars in the middle = 100 ym.

Bars on the right = 50 um.

deferens (Fig. 5B), but this clearly arose from endo-
genous galactosidase activity as the same level of staining
was found in those tissues in wild-type controls.

Discussion

This is the first survey to compare KLK4 expression in
developing teeth with that in healthy adult tissues. We
confirmed the results of previous in situ hybridization
studies which showed that KLK4 is expressed by tran-
sition-stage and maturation-stage ameloblasts (22-25).
The expression of KLLK4 by maturation-stage amelo-
blasts was far stronger than that in any of the soft tissues
examined. We focused on healthy adult tissues, as all
previous reports of non-dental K/k4 expression (exclud-
ing cancers) were from adult mice, and some organs,
such as prostate and ovaries, develop late and are best
examined in adults. In the adult organs surveyed, the
striated ducts of the submandibular salivary gland and
small patches of prostate epithelia were the only sites
that showed unambiguous KLK4 expression. No KLK4
expression at all could be detected in kidney, testis,
ovary, ovarian duct, epididymis or vas deferens. There
were no obvious morphological abnormalities in the

non-dental tissues examined in the Klk4 null mice, sug-
gesting that their normal development is not K/k4
dependent.

Our findings of only trace expression of KLK4 in
mouse non-dental tissues may appear to conflict with the
results of human studies, but this is not necessarily the
case. Human studies cannot include developing teeth as a
reference. KLK4 expression in prostate is highly elevated
relative to other tissues, which is consistent with our
findings — if developing teeth and submandibular salivary
glands are not tested. The frequency of occurrence of
expressed sequence tags (EST) is one way to assess levels
of protein expression in various tissues. The human EST
profile for KLK4 (Hs.218366), which does not include
developing teeth, lists only 24 KL K4 transcripts out of
189,345 characterized from healthy prostate, and only six
additional KLK4 transcripts out of the more than
4 million characterized from all other tissues combined.
By comparison, the EST profile for PSA (KLK3;
Hs.171995) lists 1095 transcripts from prostate and 307
from other tissues, and the EST profile for KLK2
(Hs.515560), the enzyme thought to activate PSA, lists
578 transcripts from prostate and 44 from other tissues.

Even though the number of KLK4 mRNA transcripts
in non-dental tissues is very low, PCR methods are able
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Fig. 5. Lack of kallikrein-related peptidase 4 (KLK4) expression (no nuclear staining) in epididymis and vas deferens. Positive
staining for f-galactosidase activity was observed in the epididymis and vas deferens but in the cytoplasm rather than in the nuclei

and at similar locations in Klk4<#/ta?

null and wild-type mice. (A) Strong endogenous staining for f-galactosidase activity was

observed in epithelial tissues in the head of the epididymis (left), whereas the tail of the epididymis (right) was more weakly stained.
Bars: top row = 200 um; second row = 50 um. (B) Weak endogenous staining for f-galactosidase activity in the epithelium of the

vas deferens. Bars: left pair = 100 pum; right pair = 50 ym.

to amplify them and give the impression of positive
KLK4 expression. Normal human ovaries were positive
for KLK4 expression when assayed by RT-PCR, but
negative by in situ hybridization and immunohisto-
chemistry (40). Prostate was positive for KLK4 by RT-
PCR, but the KLK4 protein was barely detectable in
prostate extracts (being present at a concentration 10~
times lower than PSA) and in seminal plasma (present at
a concentration 107° times lower than PSA and 107*
times lower than KLK?2) (41). Our findings of only trace
expression of KLK4 in mouse prostate are consistent
with the low occurrence of KLK4 transcripts in the hu-
man EST database and the trace levels of KLK4 protein
detected in prostate extracts and seminal plasma.

The low level of expression of KLK4 in mouse sub-
mandibular ducts is potentially interesting. The short-
tailed shrew is the only poisonous mammal in North
America. Its toxin [blarinasin (BLTX)] is a glycosylated
kallikrein-like serine protease (most closely related to
KLK4) that is secreted into the saliva by the sub-
mandibular salivary gland (42, 43). A role for KLK4 in
innate immunity, either directly or by processing salivary
proteins such as histatins, is easy to imagine. However,
lacZ histostaining shows only a low level of expression of
KLK4, and no KLK4 ESTs were found among the
20,155 sequenced from salivary glands.

KLK4 is able to activate protease activated receptors
(PARs), particularly PAR; and PAR, (44, 45), which
are G-protein-coupled receptors. Cleavage within the
extracellular amino-terminus exposes a tethered ligand
domain, which binds to and activates the receptor to

initiate multiple signalling cascades. Despite this irre-
versible mechanism of activation, signalling by PARs
is efficiently terminated by receptor desensitization
(receptor phosphorylation and uncoupling from G
proteins) and downregulation (receptor degradation by
cell-surface and lysosomal proteases) (46). While PAR-
mediated signalling may not be a part of the normal
physiological activity of KLK4, aberrantly expressed
KLK4 is able to signal via aberrantly expressed PAR;
in colon tumorigenesis (47). The expression of PARs
(e.g. PAR; to PARy,) in developing teeth has never been
explored.

In this study we found that mouse K/k4 expression is
vastly higher in maturation-stage ameloblasts than in
any of the adult tissues examined. As the number of
KLK4| Klk4 transcripts listed in the human and mouse
EST databases is very low, all current evidence supports
the conclusion that KLK4 expression is predominantly
enamel-specific. As enamel malformations are the only
phenotype detected in persons with both KLK4 alleles
mutated and in K/k4 null mice, current evidence also
supports the conclusion that KLK4 functions as a tooth-
specific protease.
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