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This paper, in the form of a frequently asked questions
page (FAQ), addresses outstanding questions about
“shadow enhancers”, quasi-redundant cis-regulatory
elements, and their proposed roles in transcriptional
control. Questions include: What exactly are shadow
enhancers? How many genes have shadow/redundant/
distributed enhancers? How redundant are these
elements? What is the function of distributed enhancers?
How modular are enhancers? Is it useful to study a
single enhancer in isolation? In addition, a revised defi-
nition of “‘shadow enhancers’’ is proposed, and possible
mechanisms of shadow enhancer function and evolution
are discussed.
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Introduction

Q: What exactly are shadow enhancers?

A: Enhancers are cis-regulatory elements that control the
spatiotemporal patterns and quantitative levels of gene tran-
scription. They are composed of clusters of binding sites for
transcription factors (TFs), each of which contributes to either
the activation or repression of transcription. In multicellular
organisms, the combination of TFs bound to an enhancer
largely determines its target gene’s response to developmen-
tal, physiological, or environmental signals. The functional
definition of an enhancer will be discussed further below; for a
more in-depth examination of enhancers in the context of
animal development, see [1].

The phrase ‘“shadow enhancers” was coined by Mike
Levine and colleagues in a 2008 Science Brevia article describ-
ing the discovery of remote enhancers of two Drosophila
genes, brinker and sog [2]. These enhancers, which drive gene
expression in the presumptive neurogenic ectoderm of the
early embryo, were identified by chromatin immunoprecipi-
tation (ChIP)-chip assays [3] and validated with transgenic
reporters. They share several features: (a) they each drive a
pattern of transcription resembling that of a previously ident-
ified “primary” enhancer that is more proximal to the pro-
moter being regulated; (b) they bind the same TFs as the
primary enhancer, suggesting a similar regulatory logic;
and (c) they are located either within an intron of, or on
the far side of, a neighboring gene (Fig. 1). In that paper,
the term shadow enhancer is proposed for “remote secondary
enhancers mapping far from the target gene and mediating
activities overlapping the primary enhancer” [2].

Q: Do | have to use that term?

A: As the phrase shadow enhancers has swept the field of cis-
regulation [4-13] and the pop-science blogosphere, some in
the field have complained about this new term. One objection I
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Figure 1. Diagram of a hypothetical gene locus, illustrating how
multiple distributed cis-regulatory modules can contribute to total
expression of the green gene. For the purposes of this diagram, pat-
terning is ignored, and output is considered purely quantitatively.
Only regulatory elements of green are shown; although ‘‘shadow’’
enhancer D is nearer to the red gene, it specifically regulates green.
Percentages refer to the amount of gene expression driven by each
element or combination of elements, relative to the entire gene
locus.

have heard is that the concept itself is nothing new. It is
certainly true that apparently redundant enhancers have long
been known to regulate certain genes, as I will discuss in more
detail below. However, recent work from a number of groups
[5, 8, 14-18], most notably those led by Levine and David
Stern, moves beyond simply documenting apparent redun-
dancy by testing specific ideas about the functional signifi-
cance of such a cis-regulatory arrangement. Because the
concept of shadow enhancers is so tightly associated in the
literature with these exciting proposed regulatory and evol-
utionary mechanisms (as described below), I maintain that the
term is not a mere repackaging of the idea of redundancy.
Others have balked, not at the idea of shadow enhancers per
se, but at the designation of one element as the primary
enhancer and one (or more) as the shadow, with the difference
in regulatory significance that those terms seem to imply.
Levine recently stated, at the Keystone Symposium on
Evolutionary Developmental Biology [19], that the term was
meant to refer specifically to elements that reside within or
on the far side of a neighboring gene (i.e. “in the shadow” of
another gene). Still, because of the perception that primary
connotes a higher degree of importance, and the potential
nomenclatural difficulties of cases in which two enhancers
are discovered simultaneously, are equidistant from the pro-
moter, etc., I submit that the idea of designating an individual
enhancer as the primary or the shadow is unsatisfactory and too
narrowly applicable. I believe that the term shadow enhancers is
a useful and memorable way to describe genes containing
multiple separable enhancers driving similar patterns of
expression. I therefore propose to slightly adjust the definition
to describe a regulatory arrangement — a type of gene structure
— without assigning the labels primary and shadow to individ-
ual elements. By this revised definition, the neuro-ectodermal
enhancers of sog could both be considered shadow enhancers:
that is, components of a multi-enhancer system regulating
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the same gene in the same tissue. The individual enhancers
could be referred to as proximal and distal, 5" and 3, or in many
other ways. Ideally, nothing would be implied about the
relative importance or functional redundancy of any of the
elements.

For researchers who strongly dislike the term and do not
accept the above proposal, I offer distributed enhancers as a
possible substitute. This phrase has the merit of accuracy, as
the gene’s cis-regulatory information (concerning a specific
aspect of its expression pattern) is distributed among multiple
modules. However, it cannot be used to refer to an individual
enhancer, and it lacks the air of mystery conveyed by shadow
enhancers.

Main text

Q: How many genes have shadow/redundant/distributed
enhancers?

A: Of course, we do not know exactly. Even if we had genome-
wide TF binding data from all organisms, for all TFs, in all
tissue types, at all stages and under all relevant conditions,
enhancers must be defined functionally, and such tests have
been applied to only a tiny fraction of all possible enhancer
sequences. For many loci that have been searched for
enhancers, once an element has been found that is largely
sufficient to explain a given expression pattern, researchers
understandably stop searching.

Nevertheless, there is an extensive literature in vertebrate
and invertebrate systems, going back over 20 years, of sepa-
rable, apparently redundant enhancers (or semi-redundant
enhancers, or enhancers capable of driving similar or overlap-
ping patterns) within a single gene (e.g. [3, 6, 9, 12, 20-40]).
New evidence indicates that the embryonic patterns of all of
the Drosophila gap genes are encoded by multiple elements
[17]. Still, as discussed below, many gene expression
patterns are known to depend on single, non-redundant
enhancers.

As interest in cis-regulation has grown, especially in the
fields of development and evolution, and as tools for genomic
manipulation have improved, reports of distributed enhancers
have increased over the last few years. Two noteworthy
examples, both from Drosophila, are the aforementioned
brinker gene, which, apart from the ‘“shadow” enhancer,
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contains multiple 5 enhancers driving similar expression
patterns in the embryo and developing wing [35, 41], and
the shavenbaby gene, which contains six 5’ enhancers driving
overlapping expression patterns in the embryonic epidermis
[8, 16, 32]. Reports like these comprise a small proportion of
the enhancer-identification literature, but as mentioned
above, very few loci have been comprehensively scoured to
account for all possible cis-regulatory inputs. The relatively
high frequency of insulator elements between genes [42] might
suggest that most genes do not harbor their neighbors’
enhancers, but this remains to be tested. Bioinformatic TF
binding site predictions and genome-wide ChIP data, which
brought the shadow enhancers of brinker and sog to light, will
be increasingly informative on this question.

Q: How redundant are these distributed enhancers?

A: This depends on how strictly redundancy is defined, which
in turn depends on how stringently it is tested experimentally.
Enhancer redundancy has been claimed in the absence of in
vivo phenotypic assays, in cases where multiple modules are
sufficient to drive similar or overlapping patterns of gene
expression, usually in transgenic reporter experiments (e.g.
[24, 26, 29, 43, 44]). To a geneticist, this would not be con-
sidered sufficient proof of redundancy, but from the perspect-
ive of sufficiency (as opposed to necessity), two sequences that
activate gene expression in the same cell under the same
conditions could be considered ““informationally”” redundant.

In the field of developmental gene regulation, a higher
standard for in vivo enhancer redundancy is the demon-
stration that the loss of one module has no significant observ-
able effect on viability, organ morphology, or some other
relevant metric (e.g. [8, 15, 28, 36-38, 45, 46]). For example,
Frankel et al. [8] generated a chromosomal deficiency in
Drosophila that deleted three of six epidermal enhancers of
the shavenbaby gene; this mutation did not produce a signifi-
cant loss-of-function phenotype under normal lab conditions.
Similarly, Perry et al. [15] removed one of two mesodermal
enhancers of the snail gene in the context of a bacterial
artificial chromosome (BAC) rescue transgene; under normal
lab conditions, this mutation had no significant effect on the
pattern of gene expression or on the ability of the BAC to
rescue gastrulation defects in snail mutant embryos. (But more
on the redundancy of these shadow enhancers later.) In the
mouse, targeted deletion of an enhancer of PrxI that is suffi-
cient to drive limb expression caused no developmental limb
phenotype [33, 47].

By the same token, it is important to note that many
enhancers have been found to be non-redundant - i.e. indi-
vidually required for normal function — by this functional
standard. This category includes evidence from in vivo func-
tional tests in genetic model systems [48-57], as well as cases
of mutant phenotypes being traced to induced or spontaneous
mutations in enhancers (e.g. [51, 58, 59]). There is also a
growing number of documented cases of what could be called
“enhancer-opathies”, human genetic diseases caused by
mutations in cis-regulatory elements (e.g. [12, 50, 60-62]);
these enhancers are obviously functionally non-redundant.

Interest in the ‘“shadow enhancer” phenomenon, and a
reluctance to accept the idea of a regulatory element whose
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function is evolutionarily well conserved yet utterly irrelevant
to fitness, have recently inspired more stringent tests of the
functional requirements for “redundant”” enhancers. To
return to the cases of snail and shavenbaby, shadow
enhancers in both genes that seemed to be functionally
unnecessary in a normal laboratory setting were sub-
sequently shown to be required for normal gene expression
and function when fly embryos were placed in sub-optimal
conditions, such as high temperatures or a sensitized genetic
background [8, 15]. Thus, it is easy to speculate that any
report of a functionally redundant enhancer may have over-
looked the critical environmental stress, culture condition,
behavioral assay, selection criterion, etc., rendering true
redundancy essentially unprovable. A new report suggests
that the two ventral enhancers of the snail gene are function-
ally non-redundant even under normal culture conditions
[18]. Proposed roles for distributed enhancers in maintaining
robustness of gene expression in the face of environmental
noise will be discussed in a later section.

It is difficult to estimate the ratio of functionally redundant
to non-redundant enhancers because of the varying standards
of proof mentioned above, and also because of likely publi-
cation bias against negative results [63].

Q: What is the function of distributed enhancers?

A: Three functions have been proposed:

1. Robustness. Gene expression levels naturally fluctuate
between individuals in a population and between cells in a
tissue. Genetic variation and environmental instability can
exacerbate these differences. If the expression of a develop-
mental regulator (say, a TF or signaling pathway component)
dips below a minimum threshold level, cell fate specification
or differentiation will be affected, which can result in a
morphological defect. Developmental programs can be buf-
fered against minor variations by maintaining super-threshold
expression levels of important regulators (as long as these
levels remain below the threshold for triggering gain-of-func-
tion defects) [8, 10, 15].

This argument, which provides a mechanism for
Waddington’s phenomenon of “canalization of development”
[64], is perfectly sound — in fact, given what we know of loss-
of-function genetics, it must be correct. For example, diploid
multicellular organisms need only one copy of most genes for
near-normal viability and fertility, at least under lab con-
ditions, but these heterozygous mutants are more vulnerable
to poor culture conditions, and they are far more sensitive to
partial loss-of-function of other genes (this is the basis of
enhancer-suppressor screens). The question is not whether
super-threshold levels of gene expression increase develop-
mental robustness — rather, the question is, why use two (or
more) separate enhancers to do the job? One could imagine
that one extra-strength enhancer would be just as effective for
the purpose, and to me at least this seems like a neater,
simpler solution: just add a couple of activator binding sites
here, or remove a nucleosome positioning sequence there. Of
course, evolution allows any solution that is not forbidden,
whether it appeals to human intuition or not, and perhaps
genes do not care whether their cis-regulatory information is
organized in a way that seems tidy to us. But there may be
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Figure 2. Possible mechanisms for the function and evolution of dis-
tributed enhancers. A: ““Speed limit”: if a single module drives a
sub-optimal rate of transcription, multiple modules may be required.
B: “‘Failure rate”: if a given enhancer fails to activate transcription in
a fraction of cells, a second, independently acting enhancer may
significantly improve fidelity of gene expression. C: Patterning pre-
cision: two modules with overlapping patterns, but different regulat-
ory logic, combine to produce a novel, refined gene expression
pattern. D: Short-range modular interference: two enhancer modules
may require a physical separation to prevent undesirable short-range
positive and negative TF interactions between the two modules.

E: Evolvability: enhancer redundancy may create opportunities for
the generation of novel patterns of gene expression. See text for a
fuller discussion of these concepts.
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reasons why two weak enhancers might be preferable to one
strong one.

For example, imagine that a given enhancer has a
maximum level of activation activity, or a ‘“speed limit”,
resulting from biochemical or biophysical constraints.
The only way to boost the transcription rate of the gene,
outside of adjusting the promoter itself, would be to acquire
more enhancers that drive activation in the same pattern
(Fig. 2A). This scenario requires that enhancers have a
maximum activation level that is below the maximum firing
rate of the promoter.

A plausible idea, developed by Levine and coworkers in
recent papers [15, 17], is that enhancers have an inherent
“failure rate”, the probability that, in a given cell within
the domain of expression, a sufficient rate of transcription
will not be reached. This was demonstrated at the snail and
hunchback loci of Drosophila: BAC reporter genes lacking the
“primary” or ‘“‘shadow” embryonic enhancer show an
increased number of “holes” in the gene expression domain
(i.e. nuclei with gene expression below a given threshold). If
there is no way to reduce the failure rate of a single enhancer
to an acceptably low level, adding a second enhancer can
solve the problem (Fig. 2B): if one enhancer has a failure rate
of 3%, two copies will sufficiently activate the gene in 99.91%
of cells.

This model of robustness, or at least the simplest form of
this model, seems to make a testable prediction: that boosting
the quantitative activity of an enhancer by adding activator
binding sites will not reduce the inherent failure rate. If this is
not the case, then we return to the original question — why
acquire two separate weak enhancers, rather than one suffi-
ciently strong one?

2. Patterning precision. There is also strong evidence that,
at least in some cases, quasi-redundant enhancers make
important individual patterning contributions, such that the
final gene pattern of gene expression depends on multiple cis
elements (Fig. 2C). Levine’s group demonstrates in a recent
report [17] that, for the gap genes hunchback, Kriippel, and
knirps, two enhancers are required to draw sharp, consistent
stripe boundaries of embryonic gene expression, and also to
properly position those boundaries along the anterior-
posterior axis. The latter finding implies that, for these genes,
the two enhancers employ slightly different cis-regulatory
logic: this is confirmed by the expression patterns of single-
enhancer reporter genes [17]. A similarly multi-modular regu-
latory circuitry applies to snail [18].

Again we can ask, somewhat teleologically: would it not be
simpler to “evolve” a single enhancer that drives the correct
pattern? Leaving aside the robustness arguments detailed
above, there may be good reasons for such a seemingly com-
plicated arrangement. In vivo reporter experiments have dem-
onstrated that, when two enhancers are brought into close
proximity, short-range repressors that set expression bound-
aries for one enhancer can interfere with the activity of the
nearby enhancer, disrupting the final pattern of gene expres-
sion to which both enhancers contribute [65-67]. Thus, it is
possible that the shadow enhancers of the Drosophila gap
genes must be kept separate to avoid inappropriate short-
range interactions among activators and repressors
(Fig. 2D). This model is fairly easily testable.
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3. Evolvability. Genetic redundancy has long been considered a
potential source of evolutionary innovation [68]. It is increas-
ingly widely recognized that much evolutionary morphological
change stems from changes to cis-regulatory sequence [19], so it
is natural that enhancer redundancy should be proposed as an
important mechanism for evolving novel expression patterns
(Fig. 2E) [2, 5, 16, 43, 69-72]. I wish to make only two comments
on this train of thought. First (with the caveat that I am not a
qualified evolutionary theorist), the idea that genes acquire
redundant enhancers as a means to achieve evolvability seems
to put the cart before the horse. However, I am assured by those
who know better that this is not what is actually being pro-
posed: rather, the idea is that traits that facilitate change
enhance fitness without requiring evolution to look ahead,
and apparently the math works out. Second, if shadow
enhancers are not really functionally redundant (see points 1
and 2), then neither enhancer is “free”” to modify its expression
pattern. This means that for a given set of distributed
enhancers, evolvability should be mutually exclusive with
essential functions in transcriptional robustness or precision.

Regarding the evolutionary origins of shadow enhancers,
there is currently no evidence that they arise by duplication.
Therefore, they may differ dramatically from gene dupli-
cations, both in the mechanisms that create them and in
the evolutionary forces that later shape them.

Q: How modular are enhancers, really?

A: The existence of shadow/redundant/those enhancers might
reasonably inspire us to question the idea that enhancers are
truly modular, discrete units. It is easy to imagine a gene
whose cis-regulatory information is spread fairly evenly across
the non-coding sequences of the locus, and this would be
consistent with some of the findings of enhancer redundancy
cited above. Could the concept of a discrete enhancer module
largely be an artifact of 30 years of reporter gene experiments
that have often focused on sufficiency, rather than necessity?

Those in vivo reporter experiments have led to a view of a
typical enhancer module that is manageably sized (usually
several hundred base pairs in length, when serious efforts at
trimming are made) and sufficient to drive a pattern of gene
expression resembling one or more aspects of the parent
gene’s expression profile. Published maps of enhancers within
a gene locus nearly always show them as discrete, labeled
boxes (“eye enhancer”; “limb enhancer”; ‘stripe 2
enhancer”). Generally speaking, such a box describes the
“minimal” element (e.g. [73, 74]), typically defined as the
shortest sequence that is sufficient to activate easily detectable
levels of gene expression (via a short promoter sequence that
is silent on its own) in a pattern that is similar or identical to
that of the native gene in a given tissue. Less frequently, the
minimal element is defined functionally, by its ability to drive
rescue transgene expression that suppresses the loss-of-func-
tion phenotype of the relevant gene (e.g. [75, 76]).

Veteran enhancer-bashers, and those who carefully read
the papers, know that “minimal”’ enhancer fragments do not
always perfectly replicate the precise spatial boundaries of
expression of the native gene, and that the most minimal
fragment that can reproduce a given pattern often drives lower
levels of gene expression than more extensive fragments
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(Fig. 1; [25, 74, 76-82]). Certain complex multigenic loci, such
as Hox clusters and the B-globin locus, defy analysis by
traditional sufficiency-based reporter gene assays [83-86].
Is individual enhancer analysis useful or appropriate for
the study of genes with shadow/redundant/distributed
enhancers?

Conclusions

Q: Given all of the above, is it useful to study a single
enhancer in isolation?

A: It depends on the type of question one is trying to answer. If
the goal is to unravel higher-order cis-regulation at a complex
gene locus, in which multiple elements interact, synergize, or
interfere with one another, the study of isolated modules is
clearly insufficient. Tools for large-scale genetic manipulation,
which are required to effectively tackle this type of problem,
have dramatically improved in recent years [34, 85, 87-90].

Still, we owe almost all of what we know about cis-regu-
latory logic to fine-scale functional analyses of individual
enhancers, mostly employing transgenic reporter assays to
determine what is sufficient, at the DNA sequence level, to
specify proper patterning of gene expression. If rescue BAC
deletion analyses and targeted in situ enhancer mutations had
been available 30 years ago, and if they were the only tools
available to the field, the entire problem of transcriptional
regulation might have been given up as hopelessly complex.
By reducing the scale of the problem to a short sequence that is
capable of driving a specific (if not always a perfectly precise
or robust) pattern of gene expression in vivo, we have made
remarkable advances in our understanding of the logic of
transcriptional networks and their evolution, and I believe
we will continue to do so, even in the era of systems biology.
By simultaneously attacking the problem at the genomic scale,
the gene-locus scale, and the reductionist scale of individual
cis-regulatory modules and TF binding sites, the field can now
make even faster leaps forward.
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