Pharmacologic Properties of Proton Pump Inhibitors
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Since their introduction into clinical practice in the 1980s, proton pump
inhibitors (PPIs) have proved to be of enormous value in the management of
acid peptic disorders. They have become the treatment of choice for most, if
not all, acid-related gastrointestinal disorders, including gastroesophageal
reflux disease, peptic ulcer, and Zollinger-Ellison syndrome. With approval of
an intravenous formulation, the benefits of PPIs are extended to critically ill
patients for whom oral drug administration is often unsuitable. Five PPIs are
approved for clinical use in the United States. Although they share a common
core structure and mechanism of action, it is important to understand the
general pharmacology of these agents and how they differ from histamine,-
receptor antagonists in order to optimize PPI therapy.

(Pharmacotherapy 2003;23(10 Pt 2):74S-80S)
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Summary

Proton pump inhibitors (PPIs) are potent,
highly selective inhibitors of the H* K*—adenosine
triphosphatase (ATPase) enzyme, which catalyzes
the final step in gastric acid secretion. Because
they are more effective than histamine,-receptor
antagonists (H,RAs), they have largely supplanted
H,RAs for treatment of acid-related diseases,
particularly persistent or severe disease.! The
PPIs available as oral formulations in the United
States are pantoprazole, omeprazole, esomeprazole,
lansoprazole, and rabeprazole. With the avail-
ability of the first intravenous PPI, pantoprazole,
the drugs’ benefits now can be extended to
patients who require acid suppression but are
unable to take intact capsules or tablets.?
Potential indications for intravenous PPIs include
acid-related conditions, such as gastroesophageal
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reflux disease, in patients who are unable to take
oral agents, and hypersecretory states, such as
Zollinger-Ellison syndrome. They also can be
administered to prevent acid aspiration syndrome
during induction of surgical anesthesia, stress-
related mucosal bleeding, and peptic ulcer
rebleeding.’”

Clinicians must understand not only how PPIs
differ from H,RAs, but how individual PPIs
differ. Most important, they must be able to
identify indications for both oral and intravenous
therapy. Knowledge of their pharmacologic
characteristics can aid in correct drug selection
and optimization of therapy.

Overview of Acid Secretion

Gastric acid secretion occurs in response to
neurocrine, paracrine, and endocrine stimuli.””’
Specifically, receptors located on the basolateral
membrane of the parietal cell respond to
acetylcholine, histamine, and gastrin stimulation
(Figure 1).* Gastrin can stimulate acid secretion
directly; however, more important, it is a potent
activator of enterochromalffin-like (ECL) cells to
release histamine, which activates the histamine
receptor located on the basolateral surface of the
parietal cell.*”

Activation of basolateral receptors leads to
intracellular release of secondary messengers that
activate protein kinases.® The final step in the
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Table 1. Pharmacokinetic Parameters of Proton Pump Inhibitors with Implications for Clinical Efficacy and Safety Profile

Pantoprazole Lansoprazole Omeprazole Esomeprazole Rabeprazole
Parameter 40 mg 30 mg 20 mg 40 mg 20 mg
pK," 3.96 4.01 4.13 4.13 4.9
AUCy o (pmolehr/L)!¢
Day 1 (range) 9.9-15.9'>16 5.0-5.21>16 1.1-2.0'>16 4.3-7.3".17 2,210
Day 5 2.23P 11.217
Absolute bioavailability (%) 77" 80-85' 30-40 initially, 64 initially, 52!
65 after 89 after
repeated repeated
dosing" '8 dosing" '
Serum elimination half-life (hrs) 1.0-1.9! 1.3-1.7" 0.5-1.0* 1.27 1.0-2.0!

AUCy_ = area under the concentration-time curve from zero to infinity.

secretion of gastric acid is activation of the
parietal cell H*,K*-ATPase enzyme, commonly
referred to as the proton pump.>”° When acid
secretion is stimulated, the parietal cell
undergoes dramatic morphologic transformation,
and the H* K*-ATPase enzyme and potassium and
chloride symporters are transported from
tubulovesicles and fuse with the secretory
canaliculus.®” The proton pump exchanges
intracellular hydrogen ions for luminal
potassium ions on a one-to-one basis to maintain
intracellular electroneutrality and pumps
hydrogen ions into the lumen. Thus, stimulation
of H*K*-ATPase enzymes is the final common
pathway for acid secretion. Whereas H,RAs
block one of the first steps in acid secretion—the
histamine receptor located on the basolateral
membrane of the parietal cell—PPIs block the
final common pathway.
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Figure 1. Site of action of proton pump inhibitors.
(Adapted from reference 8 with permission.)

Chemistry and Mechanism of Action of Proton
Pump Inhibitors

The PPIs share a common core structure and
mechanism of action: they are substituted
benzimidazoles that bind covalently to the H* K*-
ATPase enzyme in parietal cells and thereby
inhibit acid secretion. They are asymmetric in
structure, which leads to formation of two
identical, but nonsuperimposable, mirror-
image molecules (isomers or enantiomers).'”
Omeprazole, lansoprazole, pantoprazole, and
rabeprazole are marketed as racemic mixtures
containing equal amounts of R- and S-
enantiomers.'® Esomeprazole, which contains
only the S-enantiomer of omeprazole, is also
approved for use in the United States.!!

All PPIs are prodrugs and require acid to
become protonated and converted to the active
form.'> Omeprazole, lansoprazole, and
esomeprazole are available as enteric-coated
delayed-release pellets and pantoprazole and
rabeprazole as tablets to protect the compounds
from premature activation (degradation) in the
gastric lumen." Once they reach the duodenum
where the pH is 5.6 or greater, the enteric coating
dissolves and unprotonated prodrug is absorbed.
The unprotonated compound readily penetrates
cell membranes, including that of the parietal
cell. It becomes protonated as it transverses the
parietal cell and is exposed to the acidic
environment in the secretory canaliculus.

Transition from an uncharged to a charged
molecule alters membrane permeability of the
PPI, converting it from a species that can freely
permeate lipid membranes to one that cannot.
The drug becomes trapped in the parietal cell
when it is protonated.” In addition to confining
the PPI to a therapeutically relevant location,
protonation of the prodrug begins a series of
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chemical rearrangements that culminates in
formation of a sulfenamide moiety, which is the
active inhibitory species (Figure 2)."> '

The pK, of the agent (Table 1), 3 1>7!8 in
concert with environmental pH, influences the
degree of accumulation in the parietal cell, rate of
activation, and acid stability."*'*°  Although
differences in activation rate among the agents
can be seen in vitro at high pH values, such as
5.1, the secretory canaliculus of the active
parietal cell is the most acidic region in the body
(pH < 1).2>' At low pH, such as would be seen
in the secretory canaliculus of the parietal cell, all
PPIs are rapidly converted to the cyclic
sulfenamide active moiety.'”” A PPI with a higher
pK, theoretically may be activated in mildly
acidic environments outside the stomach, such as
in lysosomes and macrophages. However,
clinical data supporting this theory are lacking.
Some claim that pantoprazole with a lower pK, is
more specific for targeted activation in the
parietal cell and thus may have a better safety
profile than other PPIs.”> ' However, to date, no
major differences in safety profiles have been
observed in clinical trials.

Once formed, the active sulfenamide moiety
covalently binds with selected cysteine residues
of H* K*-ATPase. In studies with radiolabeled
PPI preparations, all PPIs bound to a distinct
cysteine (residue 813) contained in a loop of
H* K*-ATPase that connects two membrane-
spanning segments of the enzyme.">***' Binding
to cysteine residue 813 leads to inhibition of acid
secretion.”® The drugs bind other cysteine
residues as well, and in this respect they vary in
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their selectivity. In addition to cysteine 813,
pantoprazole binds to cysteine 822, located
deeper in the membrane domain of the H* K-
ATPase enzyme.”® ! Omeprazole, lansoprazole,
and rabeprazole bind to cysteine 892. Lansoprazole
and rabeprazole bind to cysteine 321 as well.*

Differences in cysteine binding are thought to
lead to potential differences in duration of action
among PPIs. Originally, it was assumed that
restoration of pump activity after administration
of a PPI was strictly dependent on synthesis of
new enzyme because binding of the drug to the
enzyme is covalent. If this were true, under
conditions of equivalent suppression, the kinetics
of recovery after cessation of therapy should be
roughly the same for all PPIs, with a half-life of
approximately 48 hours, which is the pump-
protein half-life in humans.?"** What occurs, in
fact, is that half-lives of recovery differ among the
agents.”

In a pharmacokinetic-pharmacodynamic model
based on data from human subjects, recovery
from lansoprazole and omeprazole inhibition was
faster than anticipated, with half-lives of turnover
of approximately 13 and 27 hours, respectively.”
The duration of action for pantoprazole was
much longer, with a half-life of turnover of
approximately 46 hours, close to that expected if
de novo synthesis of proton pumps were the sole
mechanism of restoring activity. This behavior is
consistent with in vitro experiments in which the
naturally occurring intracellular sulfhydryl-
reducing agent glutathione rapidly and
completely restored H* K*-ATPase activity after in
vivo inhibition by omeprazole, esomeprazole,
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Figure 2. Activation pathway for proton pump inhibitors. *Pantoprazole. (From reference 14.)



PHARMACOLOGY OF PROTON PUMP INHIBITORS Welage 77S

lansoprazole, or rabeprazole.? In contrast,

glutathione only partially restored activity to
pantoprazole-inhibited H*,K*-ATPase. The
investigators concluded that pantoprazole’s
binding to cysteine 822 confers resistance to the
accelerated reversal of binding seen with the
other PPIs and suggests that pantoprazole has a
longer duration of action.

Pharmacokinetics

The oral drugs are formulated as enteric-coated
delayed-release prodrugs that are extensively
absorbed in the small bowel.""'* Although oral
products undergo first-pass metabolism to
inactive products, they have relatively high
bioavailability.'> ** In contrast, when pantoprazole
is administered intravenously, it bypasses hepatic
first-pass metabolism.** The bioavailability of
omeprazole and esomeprazole after oral
administration increases over the first 5 days of
therapy.”*® These increases in area under the
concentration-time curve (AUC) and bioavail-
ability result from a decrease in first-pass
extraction, which likely is due to a decrease in
acid degradation in the gastric lumen as gastric
pH rises over the first few days of therapy, and
inhibition of the drug’s own metabolism.?*-?®
With omeprazole, the most acid-labile PPI, the
gradual decrease in amount of gastric acid
delivered into the duodenum as the agent takes
effect may protect more of it from degradation.?**’

Others suggested that increases in AUC and
bioavailability with omeprazole and esomeprazole
result from autoinhibition of metabolism.*®
Support for this theory comes from data showing
a decrease in systemic clearance of esomeprazole
after intravenous dosing.”® Thus, these increases
during the first few days of omeprazole and
esomeprazole therapy are most likely
multifactorial.> *® The oral bioavailabilities of
lansoprazole, pantoprazole, and rabeprazole are
consistent over time, and substantial increases
over the first few days of therapy do not
occur.*7?

The PPIs have relatively short elimination half-
lives; however, this has minimal bearing on their
pharmacodynamic properties in that covalent
binding to the H*,K*-ATPase enzyme predomi-
nately influences the duration of antisecretory
action.! Specifically, covalent binding to the
cysteine residues of the proton pump leads to a
duration of action that is substantially longer
than would be predicted based strictly on the
plasma concentration profile.*"#

All PPIs undergo extensive metabolism, with
metabolites eliminated in urine and feces." *> 3
They are all metabolized in part by cytochrome
P450 (CYP) 2C19 and 3A, but to various degrees.
Omeprazole is predominately metabolized by
CYP2C19, with dose-dependent saturation of the
isoenzyme.’? Pantoprazole is metabolized by
both 2C19 and 3A and is metabolized by
sulfotransferase, a non-CYP isoenzyme.> 3?
Rabeprazole is not only metabolized by 2C19 and
3A, but it also undergoes nonenzymatic
reduction to a thioether metabolite." >’

The CYP2C19 isoenzyme, which sometimes is
referred to as S-mephenytoin 4'hydroxylase,
displays genetically determined polymorphism.** >
The 2C19 gene is located on chromosome 10,
and at least two different mutations have been
associated with poor metabolizer phenotype: a
single base-pair mutation (guanine to adenine) in
exon 5 (CYP2C19,,;) and in exon 4 (CYP2C19,,,).>>
** Individuals without the mutant gene are
considered extensive metabolizers of PPIs (as
well as other 2C19 substrates), whereas those
with the mutation are considered poor
metabolizers. Mutant alleles are particularly
prevalent in Asian populations, affecting
12.6-23% of Japanese and Korean populations
compared with 2.5-6% of European and North
American Caucasian populations.****  Although
all PPIs are metabolized to some degree by 2C19
and are likely affected by metabolizer status,
some suggested that the metabolism of
rabeprazole is least affected by 2C19 phenotype
in that the drug is also metabolized nonenzy-
matically to a thioether.**?

Slow metabolizers have higher plasma
concentrations and longer elimination half-lives
than fast metabolizers. Moreover, response to
PPIs, as measured by intragastric pH or cure rates
for Heliobacter pylori infection, was higher in
poor 2C19 metabolizers compared with extensive
metabolizers.’®*” The greater response rate is
most likely the result of higher plasma
concentrations and higher AUC in poor
metabolizers, thus allowing for greater exposure
of parietal cells to the agent.’®

The PPIs also have stereoselective metabolism.
This is best illustrated by comparing omeprazole
and esomeprazole. When omeprazole is given as
a racemic mixture, the R-enantiomer is rapidly
cleared by the liver, whereas clearance of the S-
enantiomer is much slower. When esomeprazole
is given, one is giving only the S-enantiomer of
omeprazole and thus it has slower clearance as
compared with the racemic mixture. In extensive
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metabolizers, the AUC for esomeprazole was 60%
higher than that of omeprazole.”” In contrast, in
poor 2C19 metabolizers, plasma concentrations
of esomeprazole were approximately 20% lower
than those of omeprazole. Overall, compared
with omeprazole, plasma concentrations of
esomeprazole differ less between extensive and
poor 2C19 metabolizers.

Pharmacodynamics

When PPI therapy is begun, the degree of acid
suppression increases over the first 3 days until a
new steady state for acid secretion is achieved.’
This reflects the changes in the number of active
pumps available for inhibition each day. The
PPIs inhibit only active proton pumps, and
before administration on day 1, approximately
80% of pumps are active after a stimulus such as
food and are available for inhibition by the first
dose. Before administration of the PPI on day 2,
newly synthesized pumps and the remaining 20%
of pumps that were not inhibited the first day are
available to be inhibited. Again, approximately
80% of these pumps are activated and available
for inhibition. This process, in which inhibition
by the PPI and regeneration of new pumps
counteract one another, is repeated until
pharmacodynamic steady state is reached in
which the number of pumps inhibited each day
equals the number of new pumps generated each
day. The overall decrease in number of active
pumps results in acid suppression, reflected in an
increase in the percentage of the day during
which gastric pH is maintained above 4.7
Therefore, it takes several days for maximum acid
suppression to be achieved. If necessary,
administration twice/day (before breakfast and
before the evening meal) can reduce the time
required to achieve sufficient acid suppression.*®
However, unlike with H,RAs, maximum relief is
not achieved with the first dose and PPIs are
generally not recommended for immediate
symptom relief. For example, gastric pH above 4
could be achieved within 6 hours of adminis-
tration of ranitidine but not omeprazole.*

The timing of PPI dosing is critical to
achieving maximum acid suppression and
therapeutic benefit. Dosing should be 30-60
minutes before breakfast (or the first substantial
meal of the day), as the greatest number of
pumps is activated with a meal that follows a
prolonged fast. This allows the drug to be
absorbed and to reach parietal cells when the
greatest number of pumps is likely to be activated

and available for inhibition.’® * The advantage

of administration before breakfast instead of an
evening meal is clear, as median pH is 5.0 after a
morning dose of omeprazole, compared with 4.5
after an evening dose (p<0.01).* If greater acid
suppression is required, an additional dose
should be given before dinner.

Food can influence absorption of some PPIs.
Specifically, maximum concentration and AUC of
lansoprazole and esomeprazole are diminished
when they are taken with food.""* In contrast,
the bioavailabilities of pantoprazole, omeprazole,
and rabeprazole are unaffected by food.** **

The degree of acid inhibition for a given PPI is
related to the AUC.>” The AUC is an indirect
measure or surrogate for exposure of parietal
cells to the PPI over time. The longer the plasma
concentration remains above the threshold
concentration necessary to inhibit the proton
pumps, the greater the number of pumps that can
be inhibited as they become activated during the
day.”* For a given agent, the higher the AUC,
the greater the degree of inhibition of acid
secretion.” *° This relationship also provides an
explanation as to why poor CYP2C19 metabolizers
have a better response to most PPIs than
extensive metabolizers.’®*’

Conceptually, inhibition of acid secretion by
PPIs is influenced by the dwell time of the drug
in parietal cells. Exposure of the proton pump to
a PPI over time is influenced by the AUC.’’
Thus, the longer plasma concentrations remain
above the threshold required to inhibit the pump,
the greater the number of proton pumps that will
be inactivated over time with subsequent meals.
The duration of action of a PPI is then influenced
by binding to cysteine residues of active proton
pumps.*

Unlike H,RAs, tolerance does not develop
during PPI therapy.* Once effective acid
suppression has been achieved with a PPI, it can
be maintained over the long term without
increasing the dosage. In contrast, tolerance to
H,RAs develops rapidly within 3-5 days of
therapy.** For example, loss of pharmaco-
dynamic effect (tolerance) was seen within 48-72
hours during continuous infusions of ranitidine
but not with continuous infusions of omeprazole.*

After cessation of PPI therapy, as with H,RA
therapy, rebound acid hypersecretion may
occur.”® This probably reflects increases in
gastrin secretion during acid suppression, which
in turn stimulates growth of ECL cells
responsible for histamine release. The increase in
ECL cell number increases the capacity for
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gastric acid secretion, which results in acid
hypersecretion. In rats, acid hypersecretion
persisted for at least 70 days,” but it is unclear
whether it is likely to last as long in humans.

Potential for Drug Interactions

Since H,RAs and PPIs increase gastric pH, they
can alter the absorption of drugs that are weak
acids or bases, are prone to acid or alkaline
degradation, or are formulated in a pH-
dependent controlled-release dosage form.">® A
high gastric pH increases absorption of digoxin,
nifedipine, aspirin, midazolam, didanosine, and
methadone, but the clinical significance of these
effects is unclear.® More important, absorption
of weak bases such as ketoconazole, cefpodoxime
proxetil, itraconazole, and enoxacin is decreased
when gastric pH is increased, which can reduce
clinical efficacy. These types of interactions are
difficult to minimize because they reflect the
pharmacologic effects of acid suppressors.

Although all PPIs are metabolized to some
degree by CYP2C19 and 3A, their propensity to
interact with the CYP system varies. Omeprazole
and esomeprazole inhibit 2C19 and interact with
diazepam, phenytoin, and the R-isomer of
warfarin.!>*>! Lansoprazole induced metabolism
of CYP1A2 and led to a slight increase in
metabolism of theophylline.! Rabeprazole and
pantoprazole do not interact with the CYP
system.'

Summary

The PPIs are an important advance in the
management of acid-related disorders. With the
introduction of esomeprazole, five drugs are now
available. They share a common core structure, a
similar mechanism of action, and many clinical
characteristics. They are highly potent suppressors
of gastric acid secretion and are agents of choice
for the treatment of many acid-related disorders.
Differences in their chemical structure result in
subtle pharmacokinetic differences that
theoretically may translate into differences in
efficacy and safety profile. The availability of an
intravenous PPI extends the use of these agents
to the hospital setting.
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