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INTRODUCTION

Sequencing the genomes of numerous organisms has changed

the face of biology. Nevertheless, the knowledge of linear sequen-

ces of the genes and proteins themselves can only partially explain

the functions of the proteins in the cell. Further insight could

come from information about the three-dimensional (3D) struc-

ture of proteins and its interactions with other molecules in dif-

ferent cells or developmental stages. Since the protein structure

could directly reveal the mechanistic determinants of its function,

the availability of structural information about a given protein is

generally believed to contribute towards predicting its function.

However, the main pitfall of various structure-based function pre-

diction methods is that they are all limited to a relatively small

number of proteins for which high-resolution 3D structures are

available. Thus, a predictive method that could overcome this li-

mitation would be of great value.

In the past decade, several methods for de novo prediction of

protein structures from sequence have been developed (reviewed

in Ref. 1). For example, UNRES is a physics-based folding algo-

rithm in which conformation space is searched by global optimi-

zation.2 Rosetta, developed by Baker and coworkers,3 assembles

protein structures using small fragments (3- and 9-mers) from the

PDB structures. Using a different approach, Skolnick and

coworkers developed the TOUCHSTONE II, which constructs

protein structures guided by spatial restraints extracted from non-

homologous templates with the conformational space searched on

a lattice-based modeling system.4 In I-TASSER, developed by

Zhang and coworkers5,6 we first identify nonhomologous tem-

plates using multiple threading algorithms.7 The continuous frag-

ments are then excised from the threading alignment which is
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ABSTRACT

The function of DNA- and RNA-binding proteins

can be inferred from the characterization and accu-

rate prediction of their binding interfaces. However,

the main pitfall of various structure-based methods

for predicting nucleic acid binding function is that

they are all limited to a relatively small number of

proteins for which high-resolution three-dimen-

sional structures are available. In this study, we

developed a pipeline for extracting functional elec-

trostatic patches from surfaces of protein structural

models, obtained using the I-TASSER protein struc-

ture predictor. The largest positive patches are

extracted from the protein surface using the patch-

finder algorithm. We show that functional electro-

static patches extracted from an ensemble of struc-

tural models highly overlap the patches extracted

from high-resolution structures. Furthermore, by

testing our pipeline on a set of 55 known nucleic

acid binding proteins for which I-TASSER produces

high-quality models, we show that the method

accurately identifies the nucleic acids binding inter-

face on structural models of proteins. Employing a

combined patch approach we show that patches

extracted from an ensemble of models better pre-

dicts the real nucleic acid binding interfaces com-

pared with patches extracted from independent

models. Overall, these results suggest that combin-

ing information from a collection of low-resolution

structural models could be a valuable approach for

functional annotation. We suggest that our method

will be further applicable for predicting other func-

tional surfaces of proteins with unknown structure.
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then used to reassemble the full-length models by itera-

tive Monte Carlo simulations. Because of the combina-

tion of threading and ab inito folding methods, I-

TASSER has an advantage in automated modeling of

both template-based and free-modeling targets. As tested

comprehensively in Helles et al.,1 among 18 algorithms

for protein structure predictions, I-TASSER was found to

have the best performance in terms of both speed and

accuracy. I-TASSER was also ranked as the best perform-

ing structure modeling server at several CASP meetings

(CASP7, CASP8, and CASP9).6

DNA- and RNA-binding proteins play a central role in

all stages of the gene expression pathway from transcrip-

tion to translation.8,9 On the basis of the classical

assumption that structure infers function, homology

modeling and threading approaches have been shown to

be very effective in classifying DNA- and RNA-binding

proteins,10,11 as well as in predicting the nucleic acid

binding sites (e.g., Refs. 12 and 13). However, while

homology-based approaches are very valuable for func-

tion prediction, they are limited to cases for which a

structural homologue is available.14–16 In the past dec-

ade, several attempts have been made to predict DNA-

and RNA-binding function, exploiting various structural

and electrostatic features, as for example.17–20 In addi-

tion, propensity-based approaches have been successfully

applied to predict RNA-binding interfaces, for example

Ref. 21. We have recently developed a Nucleic Acid (NA)-

binding predictor that focuses on the properties of electro-

static patches on the protein surfaces to distinguish NA-

binding proteins from non-nucleic acid binding proteins.

The concept behind the NA-binding predictor is that the

large electrostatic patches on these proteins have unique

features that distinguish them from other proteins having

similar electrostatic properties. We have shown that large

patches of positive charges extracted from high-resolution

structures of proteins-NA complexes highly overlap with

the actual nucleic acid binding interface.22–24 Based on

the high overlap between the largest positive patch and the

real binding interface using a novel differential geometric

approach we have recently succeeded, for the first time, to

accurately distinguish DNA from RNA-binding interfaces

in experimentally solved protein structures.25

Here, we examine the competence of the patchfinder

algorithm to predict NA-binding interfaces from structural

models generated by I-TASSER. As a first step towards our

goal, we looked at whether a predicted protein structure (a

model) could be used to define correctly the largest posi-

tive patch on the protein model surface. We found a high

degree of overlap between the largest positive patch

extracted from NA-binding proteins’ high-resolution 3D

structure and their structural models. Furthermore, we

show that the patchfinder algorithm can predict the NA-

protein binding interface from structural models of pro-

teins with relatively high accuracy. Overall, this study

presents a novel approach for correctly identifying NA-

binding interfaces given the protein sequence alone. We

propose that the method can be further applicable for pre-

dicting other functional interfaces in a genomic scale.

MATERIALS AND METHODS

Dataset construction

A nonredundant set of 74 NA-binding protein struc-

tures, sharing less than 25% sequence identify, (Table S1)

was selected from the Protein Data Bank (PDB) com-

prised of 35 RNA-binding proteins (RBP) and 39 DNA-

binding proteins (DBP). For each protein, we ran the

I-TASSER structure predictor, deliberately ignoring the

information from the known structure. Consequently, 55

of the 74 proteins (33 DBP and 23 RBP, see Table S1) for

which five models were available from I-TASSER (see

below) were used for further investigation. Detailed in-

formation on each of the models generated by I-TASSER,

including the C-scores of the five best models as well as

the sequence identity and coverage of the top 10 tem-

plates used to build the models are available for each

PDB chain given in Table S1 via the link http://zhan-

glab.ccmb.med.umich.edu/RNA_project/ defining the

PDB code and chain number, for example http://zhan-

glab.ccmb.med.umich.edu/RNA_project/1jidA/.

Creating models using I-TASSER

The I-TASSER prediction pipeline includes four general

steps: template identification; structure reassembly; atomic

model construction; and final model selection. Initially, the

query sequence is threaded through a PDB library to identify

appropriate local fragments that are then adopted for further

structural reassembly. Subsequently, continuous fragments

are used to assemble full-length models with unaligned loop

regions built by ab initio modeling. The structure assembly

simulations (for both sets) are guided by a unified knowl-

edge-based force field.26 The cluster centroids from

I-TASSER are reduced models, with each residue represented

by its Ca and side-chain center only. The full-atomic models

are built by optimizing the H-bond networks, and the highest

scoring models are finally clustered and selected. I-TASSER

can produce between one and five different models per

sequence, ranked by a confidence score that is defined based

on the quality of the threading alignments and the conver-

gence of its structural assembly simulation.6 In addition a

maximum homology between the query and templates can

be defined based on sequence identity cutoff, that is, the

number of identical residues between template and query

divided by the total number of residues in the query sequence.

In this work, we ran our database several times through the

I-TASSER engine with different levels of homology with six

different cutoffs, including in each set all templates that had

lower sequence identity than the defined cutoff.
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Constructing patches and interfaces

The patchfinder algorithm was employed to extract the

largest positive patches on the protein’s surfaces. The

patchfinder algorithm implemented in a new improved

version of the PFPlus web server (version 2.0) http://

pfp.technion.ac.il/ uses the Poisson-Boltzmann equation

in order to calculate the electrostatic potential of a pro-

tein and then to construct the largest continuous positive

patch on the protein surface.22,24 Here, we used a local

PFPlus version. Interface residues were calculated using

Intervor http://cgal.inria.fr/abs/Intervor/, which detects

interface atoms using the Voronoi cells approach.27

Statistical analysis

To assess the ability of correctly predicting amino acids

(AA) in a patch, we computed the following parameters:

sensitivity, representing the proportion of the residues in

the actual patch that were predicted correctly; Positive

Predicted Value (PPV), representing the proportion of

amino acids correctly predicted to be in the patch rela-

tive to the real patch; and the Matthew’s Correlation

Coefficient (MCC), which combines both specificity and

sensitivity using the following equations:

Sensitivity ¼ TP

TPþ FN

PPV ¼ TP

TPþ FP

MCC ¼ ðTP � TNÞ � ðFP � FNÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTPþ FNÞðTPþ FPÞðTNþ FNÞðTNþ FPÞp

where TP (true positives) is the number of AAs predicted

correctly to be included in a positive electrostatic patch

(either the patch extracted from the experimentally solved

structure ‘‘real patch’’ or the interface as defined from the

protein-NA complex), FP (false positives) is the number

of AAs falsely predicted to be part of the patch/interface,

TN (true negatives), is the number of AAs not in the

patch/interface that are predicted correctly, and FN (false

negatives) is the number of AAs in the patch/interface

that were mispredicted and were not included in the

patch. PPV and sensitivity values range from 0 (all wrong

predictions) to 1 (perfect prediction), while the values of

MCC range from 1 (perfect prediction) to 21 (all wrong

predictions).

RESULTS AND DISCUSSION

Extracting positive patches on proteins
surfaces based on structural models

To enable us to compare the results produced by patch-

finder on structural models to those obtained for the

solved structures, we first selected a nonredundant set of

NA-binding proteins for which 3D structure has been

solved experimentally in the holo state and have no more

than 25% sequence identity between them (see Materials

and Methods). For each protein in the dataset, we gener-

ated 3D models using the I-TASSER predictor, deliber-

ately ignoring the information from the known structure

and their close homologues (>95% sequence identity).

Further, we computed the largest positive patch for each

I-TASSER model and compared it to the patch calculated

for the experimentally solved protein structure and to the

NA-protein binding interface extracted from the NA-pro-

tein complex. Consequently, we checked the overlap

between the ‘‘model patch’’ (calculated by patchfinder

applied to five different models generated by I-TASSER)

and the ‘‘real patch’’ (calculated by patchfinder applied

to the experimentally solved protein structure available

in PDB). Overall, we obtained a relatively high overlap

between the ‘‘model patch’’ and the ‘‘real patch’’ with

sensitivity and PPV ranging from 0.64/0.60 to 0.68/0.66,

respectively. The median MCC value for all models was

0.3 (see Supporting Information Fig. S1). Interestingly,

although the I-TASSER method implies that the quality

of the models declines from the first to the fifth model,

we did not notice a significant decline in the overlap

between the ‘‘model patch’’ and the ‘‘real patch’’ when

calculating the patch from lower ranked I-TASSER mod-

els (Fig. S1). To further explore whether the quality of

the models influences patch predictions, we calculated

the overlap between the ‘‘model patch’’ versus the ‘‘real

patch’’ when considering independently models with low

(<0.5) and high (>0.5 ) TM-scores (a score used to esti-

mate the structural similarity between the models and

the native structure28). As illustrated in Figure S2, while

we did notice a higher overlap between the ‘‘model

patch’’ and the ‘‘real patch’’ among the models with

higher TM-scores (considered to share a similar fold

with the templates), still the differences were not re-

markable (P-value50.002 applying Wilcoxon ranked test

on the MCC). Notably, models with TM-score <0.17

were removed from this study as in this range the mod-

els are considered to have random folds. Furthermore,

we detected a weak significant difference in the MCC

(P-value 5 0.01 applying Wilcoxon ranked test) when

comparing models with relatively high RMSD (>2.5 Å)

to the more accurate models with lower RMSD (<2.5 Å)

(Fig. S3). Overall, the lack of strong correlation,

observed here, between the patch prediction and the

model quality reinforces our previous observations that

while the electrostatic patch prediction is highly sensitive

to details of the structure (resolution, rotamers, etc.),24

a rough but still valuable patch prediction could be

obtained from relatively low-resolution models. Based

on these results we were encouraged to test if the patch-

finder algorithm could be boosted by using information

from multiple models.
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Different from other standard structure-prediction

comparative modeling algorithms, I-TASSER creates a 3D

model based on structural fragments from different tem-

plates.6 Generally, I-TASSER will choose the best available

fragment to build a model based on the sequence identity

between query and templates. Nevertheless, I-TASSER

allows limiting the quality of templates chosen from the

template library. To examine the overlap between the

patches of the models and solved structures as a function

of model quality, we tested six different groups of models

differing in the cutoff defined for the best sequence iden-

tity of the model to the template (10, 15, 30, 50, 70, and

95% sequence identity). For each group, we compared the

overlap between the ‘‘model patch’’ and the ‘‘real patch’’.

As shown in Figure 1, the MCC dropped significantly

below the 30% sequence identify cutoff (0.16 in 10%),

suggesting that prediction quality decreases when the

templates available are not evolutionary related. However,

MCC values did not vary significantly between the 95, 75,

and 50% cutoffs. Taken together, these results suggest that

when a close homologue (>30% sequence identity) is

available, the patchfinder is not highly sensitive to the

model’s accuracy. However, for low-quality models patch-

finder cannot be used as an accurate predictor of the elec-

trostatic patch. On the basis of these results we decided to

select the default option of 95% cutoff for further investi-

gation. It is important to emphasize that the models fur-

ther used in the study were of variable qualities, ranging

from 21% to 95% sequence identify to the template with

variable coverage lengths (Table S1). Detailed information

on each of the individual models is available at http://

zhanglab.ccmb.med. umich.edu/RNA_project/ (see

example in Materials and Methods).

Combined information from several models
contributes to patch sensitivity

As demonstrated in Figure S4, the I-TASSER models

calculated for a given protein can differ considerably from

one another resulting in different electrostatic patches. We

speculated that if an AA is predicted to be included in the

largest positive patch in several different models, it is

more likely to be part of the ‘‘real patch’’ (i.e., the patch

predicted on the solved structure). To investigate this, we

defined a new term, we named: ‘‘combined patch,’’ which

includes only AAs that were predicted to be included in

the ‘‘model patch’’ in at least x models (x ranging from 1

to 5). Further, we compared the ‘‘combined patch’’ with

the ‘‘real patch’’ and evaluated the overall sensitivity and

specificity (PPV) of the method to detect the real patch

(Fig. 2). Notably, the analysis was performed only for the

55 proteins for which five I-TASSER models were avail-

able. As illustrated in Figure 2(A), the positive predicted

value between the ‘‘real patch’’ and the ‘‘model patch’’

increased as the ‘‘combined patch’’ was constructed from

a larger number of models. On the other hand, as

expected, the sensitivity of the ‘‘combined patch’’

improved when we were less stringent (e.g., the patch was

constructed from AAs found in the patch in at least one

model) [see Fig. 2(B)]. Overall, as demonstrated in Figure

2(C), the MCC, which takes into account both sensitivity

and specificity, reached its peak (median 5 0.38) when

including at least three models in the ‘‘combined patch’’

and declined gradually when requiring that the AAs will

be present in all four or five ‘‘model patches’’.

On the basis of the latter results, two possible

approaches for constructing the largest positive patch

from multiple structural models could be considered.

The more conservative approach would be to construct a

patch using AAs that were found in all five ‘‘model

patches.’’ In this case, we expect that most of the AAs

selected will also be found in the ‘‘real patch.’’ However,

one would miss a large fraction of the AAs which should

be in the patch (i.e., higher specificity but lower sensitiv-

ity). The second, more permissive approach would be to

construct the largest positive patch using AAs that were

found in at least one patch. In this case, we would

improve sensitivity at the expense of specificity (PPV). In

order to account for both sensitivity and specificity, we

suggest defining an AA in the ‘‘model patch’’ if it was

found in the patch of at least three of the five best mod-

els. The example shown in Figure 3 emphasizes the

strength of the latter approach. In this example we show

the electrostatic patch calculated on the solved structure

of the Ebola virus matrix protein vp40 n-terminal do-

Figure 1
Comparison between the ‘‘model patch’’ and the ‘‘real patch’’. The

histogram represents the mean MCC between the largest positive patch

calculated using each I-TASSER model and the solved structure.

Standard deviations are shown.
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main (PDB 1h2c) compared with different predicted

patches constructed using different stringencies. As

shown in Figure 3(B), when including AAs in the ‘‘model

patch’’ that were found in all five models, we obtained a

small defined patch with very high specificity but low

sensitivity. Very interesting, in this example the small

patch based on all five models [Fig. 3(B)] highly overlaps

with the real RNA-binding interface [shown in orange in

Fig. 3(C)].

Nucleic acid binding interfaces can be
predicted based on the ‘‘model patch’’

Previous studies have shown that in general, the largest

positive patch calculated on the protein structure highly

overlaps with the nucleic acid binding interface.22–24

Clearly, the ultimate goal would be to use the patch

extracted from the model as a predictor of the nucleic

acid binding interfaces. As shown in the example given

in Figure 3, when including in the patch AAs found in

multiple ‘‘model patches,’’ we increased the positive pre-

diction value of the ‘‘combined patch’’. To test whether

multiple models could be useful for defining nucleic acid

binding interfaces, we calculated the overlap between the

patch calculated from I-TASSER models and the nucleic

acid binding interface.

As shown in Figure 4(B), when including an increasing

number of models to construct the patch, we noticed a

decrease in sensitivity values compared to the real bind-

ing interface. However, the PPV values, which capture

the specificity of the prediction, clearly improved. As

shown, the PPV obtained from the ‘‘combined patch’’

(including all five models) was notably higher than the

PPV obtained when comparing the ‘‘real patch’’ to the

‘‘real interface.’’ Additionally, the MCC values calculated

for patches constructed from the structural models

Figure 2
Comparing the different ‘‘combined patch’’ approaches. The box plots illustrate the (A) PPV (B) sensitivity and (C) MCC (see Material and

Methods) between five different ‘‘combined patches’’ and the ‘‘real patch’’. Each bar represents results obtained when considering a different number

of models required to define the AAs included in the patch (see text for details).

Figure 3
Illustrating the combined patch approach on the Ebola virus matrix protein vp40 n-terminal domain in complex with RNA (PDB 1h2c). The

protein is shown in CPK representation and the RNA in yellow sticks. A: ‘‘Real patch’’ produced by patchfinder on the PDB structure (AAs

belonging to the patch are colored blue). B: Three different ‘‘combined model’’ patches calculated based on a different number of I-TASSER models

(dark blue, AAs that were found in five patches; cyan, AAs that were found in four patches; and light green, AAs that were found in three patches).

C: The calculated protein-nucleic acid interface extracted from the PDB using the intervor algorithm (colored orange).

I. Dror et al.

486 PROTEINS



(median MCC of 0.32, 0.32, and 0.28, when combining

three, four, and five models, respectively) were only

slightly lower than the MCC calculated for the ‘‘real

patch’’ and the NA-binding interface (MCC 5 0.39).

Overall, these results show that the ‘‘combined patch’’ is

a good indicator of NA-binding interface. Very interest-

ingly, the sensitivity of the ‘‘combined patches,’’ including

AAs that were found in at least three models, in identify-

ing the real binding interface was similar to the overall

sensitivity of the ‘‘real patch’’. These results suggest that

including multiple models could be useful in defining the

nucleic acid binding region even in cases in which the

crystal structure is known.

To further investigate the contribution of the multimo-

del approach to identify NA-binding interfaces from

structural models, we examined the overlap between the

model’s patch and real interface in each of the proteins

for which I-TASSER produced five models. The heat

maps in Figure 5 show the PPV [Fig. 5(A)] and sensitiv-

ity [Fig. 5(B)] calculated for 43 out of the 55 proteins

included in our dataset. The 12 proteins not shown in

the heatmap are proteins for which we could not extract

a ‘‘combined patch’’ due to the lack of overlap between

the patches in the different models. From the results pre-

sented in Figure 5, it is evident that PPV generally

improves when including in the ‘‘combined patch’’ AAs

that appear in a higher number of models, while (as

expected) sensitivity has the opposite trend. Overall

when employing the ‘‘combined approach’’, including

AAs that were found in the positive patch of at least

three models, the average overlap with the real binding

interface was 70% (Table S2) which is slightly lower than

the average overlap between the patch of the solved

structure and the real interface (74%) and comparable to

our earlier findings on RNA and DNA-binding unique

datasets (68% and 80% for RNA and DNA, respec-

tively).22–24 As shown in Figure 5, in 14/43 cases

(excluding the 12 proteins for which the combined patch

approach was not available) the results of the ‘‘combined

3 patch’’ were improved relative to the ‘‘real patch’’. Inter-

estingly, in 13/43 cases the sensitivity improved as more

models were used to define the patch and in five of these

cases both the PPV and sensitivity improved. An intrigu-

ing example is the human Pumilio 1 (PUM1 1m8wA)

homology domain (P53r in Table S1). As shown in Fig-

ure S5, the largest electrostatic patch calculated by patch-

finder (Fig. S5(A), cyan) completely misses the real bind-

ing interface (Fig. S5(B), red), while the patch that was

calculated when including information from 1 model

only (Fig. S5(C), blue) or combining 3, 4, and 5 models

(Fig. S5(D) S5(E) S5(F) S5(B-D), respectively) over-

lapped with the real binding interface (see Fig. 5S(B-D)).

The latter case is a unique case where patchfinder fails to

predict the real binding interface in the bound crystal

structure of the PUM1 domain due to a segmentation of

the large positive patch on the protein surface in the

bound state of the protein, while in each of the best 5

models the patch was predicted correctly. Nevertheless,

when considering both the sensitivity and specificity the

combined patch approach usually improves the predic-

tion of the real interface compared to the one model

approach. Clearly, the most accurate interface prediction

would be from the experimentally solved structure; how-

ever, currently for the majority of the proteins this infor-

mation is not available.

CONCLUSIONS

In this paper, we combined an electrostatics-based

approach with structure-based modeling to extract the larg-

est positive patches on proteins. As shown, the largest posi-

tive patches on protein surfaces predicted from structural

Figure 4
The overlap between the patch and the NA-binding interface. (A) PPV (B) sensitivity, and (C) MCC evaluating the overlap between the largest

positive patch, calculated from the models or the solved structure, and the protein-nucleic acid interface. Each bar represents a different number of

models required to define the AAs included in the patch (see text for details).
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Figure 5
The overlap between the ‘‘combined patch’’ and the NA-binding interface for individual proteins. Heat maps demonstrate the change in PPV (A)

and sensitivity (B) calculated for the overlap between the patch and the NA-binding interface calculated from one I-TASSER model, ‘‘combined 3

patch’’, ‘‘combined 5 patch’’ and solved structure (PDB codes are given in Table S1). Color intensity correlates with PPV and sensitivity values,

ranging from 0 to 1. In bold are PDBs which their ‘‘combined 3 patch’’ was in better agreement with the NA-binding interface when compared

with the patch calculated from the solved structure.
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models obtained with I-TASSER 6 usually overlap the larg-

est positive patch predicted from the experimentally solved

structure. Since the largest positive patch on DNA- and

RNA-binding proteins has been shown to correlate strongly

with the DNA- and RNA-binding interfaces of these pro-

teins, respectively,22–24 this implies that this approach

could be useful for predicting nucleic acid binding interfa-

ces from sequences. Here, we show that the electrostatic

patches extracted from an ensemble of structural models

were compatible with the real binding interfaces of the NA-

binding proteins tested in this study. Interestingly, we

observed that for several proteins, the combined positive

patch was in better agreement with the real binding inter-

face compared with the patch extracted from the solved

structure. Overall, this study proposes a new approach for

predicting nucleic acid binding interfaces from protein

sequence alone. Given the recent advancements in success-

fully distinguishing between DNA- and RNA-binding pro-

teins based on the differential geometric properties of the

largest electrostatic patches,25 we postulate that in the

future it will be possible to uniquely predict DNA- and

RNA-binding proteins from sequence.
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