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Abstract: This paper considers estimators of survivor functions subject to a stochastic ordering constraint

based on right censored data. We present the constrained nonparametric maximum likelihood estimator (C-

NPMLE) of the survivor functions in one- and two-sample settings where the survivor distributions could be

discrete or continuous and discuss the non-uniqueness of the estimators. We also present a computationally

efficient algorithm to obtain the C-NPMLE. To address the possibility of non-uniqueness of the C-NPMLE

of S1(t) when S1(t) ≤ S2(t), we consider the maximumC-NPMLE (MC-NPMLE) of S1(t). In the one-sample

case with arbitrary upper bound survivor function S2(t), we present a novel and efficient algorithm for finding

the MC-NPMLE of S1(t). Dykstra (1982) also considered constrained nonparametric maximum likelihood

estimation for such problems, however, as we show, Dykstra’s method has an error and does not always

give the C-NPMLE. We corrected this error and simulation shows improvement in efficiency compared to

Dykstra’s estimator. Confidence intervals based on bootstrap methods are proposed and consistency of the

estimators is proved. Data from a study on larynx cancer are analysed to illustrate the method. The Canadian
Journal of Statistics 40: 22–39; 2012 © 2012 Statistical Society of Canada

Résumé: Cet article considère les estimateurs des fonctions de survie basés sur les données censurées à droite

soumises à une contrainte d’ordonnancement stochastique. Nous présentons un estimateur du maximum de

vraisemblance non paramétrique contraint (C-NPMLE) des fonctions de survie dans le contexte d’un ou de

deux échantillons lorsque la distribution de survie peut être discrète ou continue. De plus, nous discutons de

la non-identifiabilité des estimateurs. Nous proposons aussi un algorithme, efficace au plan des calculs, pour

obtenir le C-NPMLE. Pour considérer la possibilité de la non-identifiabilité du C-NPMLE de S1(t) lorsque

S1(t) ≤ S2(t), nous considérons le C-NPMLE maximum (MC-NPMLE) de S1(t). Lorsque nous avons qu’un

seul échantillon et une borne supérieure arbitraire S2(t) pour la fonction de survie, nous présentons un

algorithme nouveau et efficace pour trouver le MC-NPMLE de S1(t). Dykstra (1982) a aussi considéré

l’estimation par maximum de vraisemblance non paramétrique pour de tels problèmes, mais, comme nous le

démontrons, il y a une erreur dans laméthode deDykstra et elle ne conduit pas toujours à un C-NPMLE.Nous

corrigeons cette erreur et des simulations montrent une amélioration de l’efficacité par rapport à l’estimateur

de Dykstra. Des intervalles de confiance basés sur des méthodes de rééchantillonnage sont proposés et nous

démontrons la cohérence de nos estimateurs. Notre méthode est illustrée à l’aide de données provenant

d’une étude sur le cancer du larynx. La revue canadienne de statistique 40: 22–39; 2012 © 2012 Société

statistique du Canada
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1. INTRODUCTION

Suppose that random variable T > 0 is the time until some specified event, such as death or

recurrence of a disease. Our interest centres on estimating the survivor function of T , S(t) =
P(T > t), t > 0. With right censored data, the Kaplan–Meier estimator (KM, Kaplan & Meier,

1958) is commonly used. In some instanceswith twoormore groups,wemayhaveprior knowledge

that the survivor function of one group is greater than or equal to that of another group at all times.

This type of constraint is called stochastic ordering and can arise in many contexts; for example,

with time from diagnosis to death of cancer patients where the survival probability for a lower

tumour stage group can be reasonably assumed to be larger than that in a higher stage group. As

well as wanting an estimator to be consistent with this prior knowledge, it can be expected that

an estimator that satisfies the constraint will be more precise, with lower sampling variability,

than one that does not utilize this knowledge, particularly in small sample size settings. As an

obvious example of the potential for substantial improvements in efficiency, consider three groups

with the middle group bounded both above and below. If the middle group has small sample size

compared to the other two, the efficiency of the constrained estimator will be substantially better

than that of the simple KM estimator for that middle group.

The cancer application mentioned above is just one example where distributions will be

ordered, there are numerous other examples in biomedical and other areas of research where

there is a strong rationale for an ordering of distributions. One approach to imposing ordering is

through parametric modeling, an alternative approach that imposes less assumptions is through

non-parametric estimation subject to an ordering constraint. In view of the frequency of situations

where ordering constraints are natural, the potential benefit by using these constraints, and the

mild nature of the assumptions, it is surprising to us that ordered constrained estimation is not

used more in applications.

Let T1 and T2 have survivor functions S1(t) and S2(t) respectively then T1 is stochastically less

than T2 (T1 ≤st T2) if S1(t) ≤ S2(t) for all t. There are many possible definitions of ordering of

survival functions (Shaked & Shanthikumar, 2007). The above one is called usual stochastic or-

dering. Other possible definitions that make stronger assumptions are hazard rate ordering, reverse

hazard ordering and likelihood ratio ordering. There are also weaker forms of ordering, such as

second-order dominance (Rojo & El Barmi, 2003) and stochastic precedence (Arcones, Kvam &

Samaniego, 2002). Which form of ordering is most appropriate in any application will depend on

the context. In this paper we focus on the usual stochastic ordering. First we consider a one-sample

problem in which data are available from S1(t) and S2(t) is known. Then we consider the more ap-

plicable two-sample problem in which S1(t) and S2(t) are unknown and data are available on both.

A constrained nonparametric MLE (C-NPMLE) is a nonparametric estimator that maximizes

the likelihood subject to the constraint. Since the initial work of Brunk et al. (1966), manymethods

and algorithms have been proposed to obtain the C-NPMLE for different situations, including the

one-sample case, the two-sample case, the linear ordering case, in which the constraint takes the

form T1 ≤st, . . . ,≤st TG, and a general partial ordering case, which includes constraints such as

T1 ≤st T2, T1 ≤st T3. Brunk et al. (1966) studied the C-NPMLE in the two-sample case without

censoring. Dykstra (1982) extended this work to accommodate right censored data in the one- and

two-sample cases. According to his work, the C-NPMLE is a modified KM type estimator with

an adjustment to the number of subjects in each risk set. In the case of linear ordering or general

partial ordering, Feltz & Dykstra (1985), Dykstra & Feltz (1989), Hoff (2000, 2003), and Lim,

Kim & Wang (2009) extended this work and proposed various methods to find the C-NPMLE.

The NPMLE of an unconstrained survivor function has jumps only at observed event times and

the C-NPMLE has been assumed to have jumps only at observed event times bymany researchers.

However, as can be seen in Section 3, in some cases there is no C-NPMLE that jumps only at

observed event times. This incorrect assumption that jumps only occur at observed event times
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has also been implicitly made in research on likelihood ratio tests (e.g., Thomas & Grunkemeier,

1975; Li, 1995; Murphy, 1995).

Some data configurations were not appropriately considered in themain theorem and the proof

in Dykstra (1982). As a consequence, the theorem that he stated is not correct and his algorithm

does not always give the C-NPMLE. More specifically, Dykstra’s estimator (D-estimator) is the

C-NPMLE in the one-sample case when estimating S1(t) subject to the constraint T1 ≥st T2.

However, for other constraints, his method fails and the purpose of this paper is to provide a

correctly stated theorem and associated algorithm.

As an illustration, we give a simple example of a one-sample case that the D-estimator is not

a C-NPMLE. Suppose that S1 and S2 are known to have probability mass only at times 1, 4, 5

and the observed event times from S1 are 1, 2+, 3+, and 5 (+ denotes censoring). The likelihood

based on the data is L = {S1(0) − S1(1)} × S1(2) × S1(3) × {S1(4) − S1(5)}. If the constraint

is S1(1) ≤ S2(1) = 0.8 and S1(4) ≤ S2(4) = 0.4. The D-estimator is S̃1(1) = S̃1(2) = S̃1(3) =
S̃1(4) = 0.4 and S̃1(5) = 0 with the corresponding likelihood L̃ = (1 − 0.4) × 0.43 = 0.0384. It

is easily seen that another constrained estimate, Ŝ1(1) = Ŝ1(2) = Ŝ1(3) = 2/3, Ŝ1(4) = 0.4 and

Ŝ1(5) = 0, gives a larger likelihood, L̂ = (1 − 2/3) × (2/3)2 × 0.4 ≈ 0.0593.

Some alternative estimators of constrained survivor functions have also been proposed. In

the two-sample case, Lo (1987) proposed a simple estimator that swaps the estimates of survivor

functions when the constraint is violated. Rojo (2004) and El Barmi &Mukerjee (2005) proposed

estimators that use the weighted average of the two KM estimators at times when the constraint

is violated with weights based on the initial sample sizes. In numerical work (Rojo & Ma, 1996;

Rojo, 2004), these alternative estimators were found to be superior to the C-NPMLE in terms of

pointwise mean squared error. However, these investigations used the incorrect C-NPMLE from

Dykstra (1982) and did not consider unequal censoring patterns between the two groups.

In this paper, to develop the ideas and the notation, we start with the simplest one-sample

case with discrete survivor function before considering the more important two-sample case. In

Section 2, we consider the discrete case, where we assume that Tg follows a discrete distribution

and the potential death times are also given. In Section 3, we extend to the case where S1(t) and

S2(t) are not discrete functions. In Section 4, we show the uniform consistency of the C-NPMLE

in the two-sample case. In Section 5, we analyse larynx cancer data in the two-sample case. In

Section 6, we propose methods to construct confidence intervals and in Section 7, we conduct a

simulation study to compare finite sample property of the C-NPMLE with the D-estimator, Lo’s

estimator and Rojo’s estimator. Proofs of the theorems and derivations of the algorithms are given

in the Supplementary Material.

2. ESTIMATION OF DISCRETE SURVIVOR FUNCTIONS

2.1. One-Sample Case
Consider a discrete failure time variable T1 with potential failure times a1 < · · · < am and let

a0 = 0 and am+1 = +∞. We are interested in estimating the discrete survivor function S1(t)

based on a right censored sample of T1. We further suppose that a discrete survivor function

S2(t) with the same potential failure times is given. Our problem is to estimate S1(t) under the

bounded below constraint (S1(t) ≥ S2(t)) or the bounded above constraint (S1(t) ≤ S2(t)).

The censoringmechanism is assumed independent and the right censored data are summarized

by:

d1i the number of events at ai, i = 1, . . . , m;

n1i the number at risk just prior to ai, i = 1, . . . , m; and

c1i the number of censored subjects in [ai, ai+1) i = 0, . . . , m.
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Let hgi = log
{
Sg(ai)/Sg(ai−1)

}
, g = 1, 2, i = 1, . . . , m, so that 1 − exp(hgi) is the discrete haz-

ard and log Sg(ai) = ∑i
j=1 hgj . The likelihood of S1(a1), . . . , S1(am) is

L(S1(·)) = S1(a0)
c10

m∏
i=1

[
{S1(ai−1) − S1(ai)}d1i S1(ai)

c1i
]
,

and the log likelihood written as a function of h1 = (h11, . . . , h1m), is

logL(h1) =
m∑

i=1

[
d1i log {1 − exp(h1i)} + (n1i − d1i)h1i

]
.

The likelihood is maximized subject to
∑i

j=1 h1j ≥ ∑i
j=1 h2j or

∑i
j=1 h1j ≤ ∑i

j=1 h2j, i =
1, . . . , m under bounded below or bounded above constraint respectively. Consider now a particu-

lar vector h∗
1 = (h∗

11, . . . , h
∗
1m). In the bounded below case, the ith constraint is said to be inactive

if
∑i

j=1 h∗
1j >

∑i
j=1 h2j , active if

∑i
j=1 h∗

1j = ∑i
j=1 h2j or violated if

∑i
j=1 h∗

1j <
∑i

j=1 h2j .

There is a similar definition in the bounded above case.

2.2. One-Sample Case: Bounded Below Constraint
Dykstra (1982) first proposed a method to obtain the C-NPMLE in the bounded below case,

and we next describe the associated theorem and algorithm. In preparation for this, we define a

function of k,

H(a, b, k) =
b∑

j=a

log
(
1 − d1j

n1j + k

)
−

b∑
j=a

h2j (1)

for a, b integer with 1 ≤ a ≤ b ≤ m. In (1) and elsewhere, if both d1j and (n1j + k) equal to

0, then 0/0 is interpreted as 0. Let D(a, b) = maxa≤i≤b d1i and V (a, b) = mina≤i≤b h2i. For

a ≤ i ≤ b, let K(a, b) be the unique solution of the equation H(a, b, k) = 0 if D(a, b) > 0 and

V (a, b) < 0; K(a, b) = +∞ if D(a, b) > 0 and V (a, b) = 0; K(a, b) = −∞ if D(a, b) = 0 and

V (a, b) < 0; and otherwise K(a, b) = 0. Further, let K+(a, b) = max{K(a, b), 0} and K−(a, b)

= max{−K(a, b), 0}.

Theorem 1 (Bounded Below Constraint (modified from Dykstra, 1982)). Let m′ = max(i :

n1i > 0) and τ = am′+1. For each a, b with 1 ≤ a ≤ b ≤ m′, let k̂i = mina≤i maxb≥i K
+(a, b),

and ĥ1i = log{1 − d1i/(n1i + k̂i)}. Then, theC-NPMLEofS1(·) is Ŝ1(t) = exp(
∑

i:ai≤t ĥ1i), t < τ.
The C-NPMLE can be defined arbitrarily for t ≥ τ subject to the constraint.

In this theorem, k̂i is a nonnegative real number. It can be shown that k̂1 ≥ k̂2 ≥ · · ·. This theorem
gives a method of obtaining the MLE, however, the ĥ1 can be obtained more easily using an

algorithm that was presented by Dykstra (1982). A computationally more adaptation of this

algorithm is given in the Supplementary Material.

2.3. One-Sample Case: Bounded Above Constraint
For the bounded above constraint, Dykstra (1982) presented a theorem to obtain the C-NPMLE

that is similar to the theorem of the bounded below constraint, except for an adjustment for an

“exception” that may happen before the first event time. For more details, see Dykstra (1982). The

proof, however, did not consider some data configurations in which the “exception” can occur

at later times and the method does not always yield a C-NPMLE. In this section, we present a
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correct theorem and algorithm for this type of constraint in the discrete case. Then in the next

section we discuss cases where S1(t) and S2(t) are not necessarily discrete functions.

The C-NPMLE may not be unique even before the last observed time. To circumvent this,

we define the maximum constrained NPMLE (MC-NPMLE) and then present a theorem and an

algorithm to obtain the MC-NPMLE under bounded above constraint.

Definition 1. The maximum C-NPMLE (MC-NPMLE) is the C-NPMLE that maximizes the
estimate of the survivor function in the class of all C-NPMLEs.

We demonstrate in the Supplementary Material that the MC-NPMLE exists and is unique.

Theorem 2 (Bounded Above Constraint). Let m′ = max(i : n1i > 0). For each a, b with 1 ≤
a ≤ b ≤ m′, let k̂i = mina≤i maxb≥i min(K−(a, b), n1b), and sequentially define

ĥ1i =




log{1 − d1i/(n1i − k̂i)} d1i > 0

min

{
0,

i∑
j=1

h2j −
i−1∑
j=1

ĥ1j

}
d1i = 0

then, the MC-NPMLE of S1(·) is Ŝ1(t) = exp
(∑

i:ai≤t ĥ1i
)
, t < τ, where τ = am′+1.

Even though the C-NPMLE may not be unique, it can be shown that the difference between

the MC-NPMLE and any other C-NPMLE can only be at times where d1i = 0 and n1i = k̂i.

Themajor difference between this theorem andDykstra’s incorrect result is in the definition of

k̂i. Dykstra defined k̂i = mina≤i maxb≥i K
−(a, b). However, k̂i cannot be larger than the number

at risk at any position between a and b in the solution of a C-NPMLE. For the right censored case,

n1b is the smallest in this range, so k̂i = mina≤i maxb≥i min{K−(a, b), n1b}.
A computationally efficient algorithm that obtains k̂i is given by:

Algorithm 1 (Bounded Above Constraint)

1. Set i0 = 0, � = 1, m′ = max(i : n1i > 0).

2. Let i� = minb>i�−1{b : H(i�−1 + 1, b, 0) > 0}. If no such i� exists, go to step 7, otherwise

go to step 3.

3. If d1i� = 0 and H(i�−1 + 1, i�, −n1i� ) ≥ 0, then set k� = n1i� and go to step 5, otherwise

set k� = −K(i�−1 + 1, i�) and go to step 4.

4. Let I = minb>i�{b : n1b > k� and H(i� + 1, b, −k�) > 0}. If no such I exists, then go to

step 5. Otherwise, set i� = I and go to step 3.

5. Let ĥ1j = log{1 − d1j/(n1j − k�)}, i�−1 + 1 ≤ j ≤ i� − 1

ĥ1i� = ∑i�
j=i�−1+1 h2j − ∑i�−1

j=i�−1+1 ĥ1j .

6. If i� = m′, stop. Otherwise, set � = � + 1 and go to step 2.

7. Let ĥ1j = log(1 − d1j/n1j), i�−1 + 1 ≤ j ≤ m′, stop.

Heuristically, the solution is a KM type estimator of modified data with right censoring

and left truncation. For i with i�−1 < i ≤ i�, the number at risk is modified to n1i − k�. Since

k1 ≥ k2 ≥ · · ·, the modified data can be described as k1 subjects being removed at time 0 and

replaced over time as left truncated data. In particular, k� − k�+1 are added (left truncated) at

ai�+, � = 1, 2, . . .. Note that the number at risk in the modified data can be zero at some times,

and when this occurs, the C-NPMLE may not be unique. This corresponds to the result that, for

left truncated data, the MLE is not unique when the number at risk is zero at an intermediate

point.
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Table 1: Results for Example 1.

ai 1 2 3 4 5 6 7 8 9 10 11 12

d1i 1 1 1 0 0 0 0 0 1 0 0 0

n1i 10 9 7 5 4 3 2 2 2 1 1 0

S2 0.94 0.92 0.86 0.68 0.52 0.40 0.36 0.32 0.30 0.26 0.22 0.20

S∗
1 0.90 0.80 0.69 0.69 0.69 0.69 0.69 0.69 0.34 0.34 0.34 0.34

Ŝ1 0.85 0.71 0.52 0.52 0.52 0.40 0.36 0.32 0.16 0.16 0.16 0.16

ĥ1i −0.16 −0.19 −0.31 0 0 −0.26 −0.11 −0.12 −0.69 0 0 0

k� ←−−−−−−−−− k1 = 3.2 −−−−−−−−−→ k2 = 3 k3 = 2 k4 = 2 ←−−−−−− k5 = 0 −−−−−−→

k̂i 3.2 3.2 3.2 3.2 3.2 3 2 2 0 0 0 0

SD
1 0.804 0.609 0.32 0.32 0.32 0.32 0.32 0.32 0.16 0.16 0.16 0.16

ai is potential event time with corresponding number of event d1i and number at risk n1i, S2 is constraint, S
∗
1 is

KM estimate, Ŝ1, ĥ1i and k� are results from Algorithm 1, k̂i is from Theorem 2, SD
1 is D-estimates (Dykstra,

1982), and the last observed time τ = 11.5.

Example 1 (One-sample case with a bounded above constraint). Suppose we have observed

survival times 1, 2, 2.5+, 3, 3.5+, 4.5+, 5.5+, 6.5+, 9, 11.5+ (+ denotes censoring). We assume the

potential event times are integers from 1 to 12, S1(t) ≤ S2(t), t = 1, . . . , 12, and the values for

S2(t) are given in Table 1.

Table 1 gives KM estimate, S∗
1 (t), and the MC-NPMLE, Ŝ1(t). The values of k̂i are from

Theorem 2 and those of k� are from Algorithm 1. The active constraints are at times 5, 6, 7 and 8.

As indicated above, if i = i�−1 + 1, . . . , i�, then k̂i = k�. For example, k̂1 = · · · = k̂5 = k1. As

can be seen in Figure 1, the major difference between the MC-NPMLE and the D-estimator is

that the former has jumps in the estimate for population 2 at times 6,7 and 8, where there is no

observed event for that population. As expected, the MC-NPMLE has larger log likelihood value

than the D-estimator (−12.41 vs. −13.22) and is closer to the KM estimator.

0 2 4 6 8 10 12
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0
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0.
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P
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T
>t

)

|
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Upper Bound
Kaplan−Meier(−10.65)
MC−NPMLE(−12.41)
Dykstra(−13.22)

Figure 1: Estimates of survivor functions under bounded above constraint in discrete situation. Log
likelihood values shown in parentheses. [Color figure can be viewed in the online issue, which is available

at wileyonlinelibrary.com]
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2.4. Two-Sample Case
The notation is similar to that in the one-sample case except that S2(ai) also needs to be estimated

so that d2i, n2i and c2i, 1 ≤ i ≤ m are also observed.

The likelihood of S1(a1), . . . , S1(am), S2(a1), . . . , S2(am) is

L(S1(·), S2(·)) =
2∏

g=1

[
Sg(a0)

cg0

m∏
j=1

{
Sg(aj−1) − Sg(aj)

}dgj Sg(aj)
cgj

]
,

and the corresponding log likelihood of hg = (hg1, . . . , hgm), g = 1, 2 is

logL(h1, h2) =
2∑

g=1

m∑
i=1

[
dgi log

{
1 − exp(hgi)

} + (
ngi − dgi

)
hgi

]
. (2)

A C-NPMLE in the two-sample case is an estimator that maximizes the log likelihood (2)

subject to the constraints,
∑i

j=1 h1j ≥ ∑i
j=1 h2j , and h1i, h2i ≤ 0, i = 1, . . . , m.

Amethod for the two-sample case was described by Dykstra (1982), but has the same problem

as for the bounded above constraint. Here again the C-NPMLE of the lower survivor function

may not be unique. We propose a theorem and an algorithm to estimate the C-NPMLE of S1(t)

and the MC-NPMLE of S2(t). In preparation for this, we define

H2(a, b, k) =
b∑

j=a

log

(
1 − d1j

n1j + k

)
−

b∑
j=a

log

(
1 − d2j

n2j − k

)
, 1 ≤ a ≤ b ≤ m.

Let Dg(a, b) = maxa≤j≤b dgj, g = 1, 2. For a ≤ i ≤ b, let K2(a, b) be the unique solution of the

equation H2(a, b, k) = 0 if D1(a, b) > 0 and D2(a, b) > 0; K2(a, b) = +∞ if D1(a, b) > 0 and

D2(a, b) = 0; K2(a, b) = −∞ if D1(a, b) = 0 and D2(a, b) > 0; and otherwise K2(a, b) = 0.

Further, let K+
2 (a, b) = max{K2(a, b), 0}.

Theorem 3 (Two-sample case). Letm′ = max{i : n1i > 0, n2i > 0}. For each a, bwith 1 ≤ a ≤
b ≤ m′, let k̂i = mina≤i maxb≥i min{K+

2 (a, b), n2b}, i ≤ m′ and k̂i = 0 if i > m′. Let

ĥ1i = log{1 − d1j/(n1j + k̂i)}

ĥ2i =
{
log{1 − d2j/(n2j − k̂i)} d2i > 0 or i > m′

min(0,
∑i

j=1 ĥ1j − ∑i−1
j=1 ĥ2j) d2i = 0 and i ≤ m′.

The C-NPMLE of S1(·) is Ŝ1(t) = exp(
∑

i:ai≤t ĥ1i), t < τ1, and the MC-NPMLE of S2(·) is
Ŝ2(t) = exp(

∑
i:ai≤t ĥ2i), t < τ2, where τg = max(ai+1 : ngi > 0). Sg(t), g = 1, 2 can be defined

arbitrarily for t ≥ τg subject to the constraint, g = 1, 2.

We also describe an efficient algorithm to obtain the solution.

Algorithm 2 (Two-sample case)

1. i0 = 0, � = 1, mg = max(i : ngi > 0), g = 1, 2 and m′ = min(m1, m2)

2. Let i� = min{b : H2(i�−1 + 1, b, 0) < 0}. If no such i� exists, go to step 7, otherwise go to

step 3.

3. If d2i� = 0 and H2(i�−1 + 1, i�, n2i� ) ≤ 0, then set k� = n2i� and go to step 5, otherwise set

k� = K2(i�−1 + 1, i�) and go to step 4.
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4. Let I = minb>i�{b : n2b > k� andH2(i� + 1, b, k�) < 0}. If no such I exists, then go to step

5. Otherwise, set i� = I and go to step 3.

5. Let ĥ1j = log{1 − d1j/(n1j + k�)}, i�−1 + 1 ≤ j ≤ i�
ĥ2j = log{1 − d2j/(n2j − k�)}, i�−1 + 1 ≤ j ≤ i� − 1

ĥ2i� = ∑i�
j=i�−1+1 ĥ1j − ∑i�−1

j=i�−1+1 ĥ2j .

6. If i� = m′, go to step 7. Otherwise, set � = � + 1 and go to step 2.

7. For g, such that mg > m′, set ĥgj = log(1 − dgj/ngj), i�−1 < j ≤ mg, stop.

As Dykstra (1982) described, the solution for population 1 can be obtained from a modified

data set in which k̂i of the observations from population 2 that are at risk at time ai are taken

as observations from population 1. From this point of view, k̂i must be less than or equal to n2i,

because population 2 in the modified data cannot have a negative at risk number at any time. The

solution of population 2, however, may not be obtained from its own modified data and depends

on the solution for population 1.

3. EXTENSION TO NON-DISCRETE CASE

In this section, we extend the results of Section 2 so as not to assume known potential event times.

Thus, in the one-sample case, suppose S2(t) is a known survivor function defined on [0, +∞) and

we seek the C-NPMLE under bounded below and bounded above constraints. In the two-sample

case, we estimate both S1(t) and S2(t) from data subject to T1 ≥st T2.

Let {X1, . . . , XN} be the union of all distinct observed event times from the populations 1

and 2, and set X0 = 0, XN+1 = ∞ for convenience. The number of events at Xi in population g

is dgi. Let C
(j)
gi , g = 1, 2,i = 1, . . . , N, j = 1, . . . , mgi be the censoring times of population g in

[Xi, Xi+1), i = 0, . . . , N, and let (Ygi, ∆gi) be observations, where Ygi is the observed time and

∆gi is the event indicator (∆gi = 1 if event occurred or ∆gi = 0 if right censored).

Proceeding as in Johansen (1978), the likelihood to maximize, subject to constraint, is

L(S1(·), SG(·)) =
G∏

g=1

ng∏
i=1

{Sg(Ygi−) − Sg(Ygi)}∆giSg(Ygi)
1−∆gi

=
G∏

g=1


mg0∏

j=1

Sg(C
(j)
g0 )

N∏
i=1

[
{Sg(Xi−) − Sg(Xi)}dgi

mgi∏
j=1

S1(C
(j)
gi )

] (3)

where G = 1 for the one-sample case and G = 2 for the two-sample case.

3.1. One-Sample Case With T1 ≥st T2 and S2(t) Is Known
If any survivor function S̄(t) satisfying the stochastic ordering constraint is replaced by a discrete

Ŝ(t) having possible jumps only at observed event times and Ŝ(Xi) = S̄(Xi) for all i, the likelihood

will not decrease and the constraint is not violated since Ŝ(t) ≥ S̄(t) for all t. Thus, the C-NPMLE

can be obtained within the class of survivor functions with jumps only at observed event times.

So the method for the discrete case can be directly used by setting the observed event times to

potential event times and estimating Ŝ1(t) for t ≤ max(Y1i), the last observed time.

3.2. One-Sample Case With T1 ≤st T2 and S2(t) Is Known
This is the most complicated case. The discrete method is not easy to apply because the constraint

may be relevant at all times if S2(t) is not a step function.
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One way to obtain a C-NPMLE of S1(t) is the “limit method,” in which we use the limit

of a discrete function to approach a continuous one. For example, we choose R evenly spaced

times between 0 and max(Y1i) as potential event times, apply the bounded above constraint at

these R times, and obtain the limiting estimate of Ŝ1(t) with Algorithm 1 as R goes to infinity.

However, this method is computationally intensive. We propose instead a method that, through

judicious selection of a finite number of appropriate potential event times, yields theMC-NPMLE

as described in Algorithm 3.

Algorithm 3. Let Ci, i = 1, . . . , nc be all distinct observed censoring times and let X−
i be the

time just before observed event time Xi.

1. Let X′
i, i = 1, 2, . . . be the distinct ordered times from the union of Xi, X

−
i nd Ci.

2. Estimate Ŝ1(t), which is the MC-NPMLE with potential event times at all X′
i, using Algo-

rithm 1.

3. S̃1(t) = min{Ŝ1(t), S2(t)}.
In practice, we set X−

i = Xi but order X−
i before Xi.

Theorem 4. S̃1(t) from Algorithm 3 is the MC-NPMLE of S1(t) subject to T1 ≤st T2.

Proof. See the Supplementary Material. �

Example 2 (One-sample case with a bounded above constraint, continuous case). In Example

1, suppose we take S2(t) to be piecewise linear with knots at the discrete points in Table 1.

The procedure for calculating the MC-NPMLE in this case with Algorithm 3 is illustrated in

Table 2 and Figure 2a. First, choose X′
i as in the first row of Table 2 and find d1i and n1i, the

number of events and the number at risk at time X′
i. Algorithm 1 with potential event times X′

i is

used to calculate Ŝ1(t) as shown in the sixth row in Table 2 and the dash plot in Figure 2a. Finally,

calculate the MC-NPMLE as min{Ŝ1(t), S2(t)} as shown with the thick dot-dash curve in Figure

2a. Note that the MC-NPMLE is not a step function in this example.

Figure 2b–d is the plots using the “limit method” with 12, 36, and 360 potential event times

respectively. As the number of potential points increases, the estimate becomes closer to the MC-

NPMLE obtained through Algorithm 3. The log likelihood is −12.4 with 12 potential event times

and decreases to −13.02 with 360 potential event times. This will approach −13.03, the same as

that from Algorithm 3, as the number of potential event times goes to infinity.

Table 2: Results for Example 2.

X′
i 1− 1 2− 2 2.5 3− 3 3.5 4.5 5.5 6.5 9− 9 11.5

d1i 0 1 0 1 0 0 1 0 0 0 0 0 1 0

n1i 10 10 9 9 8 7 7 6 5 4 3 2 2 1

S∗
1 1 0.90 0.90 0.80 0.800.80 0.69 0.690.69 0.69 0.69 0.69 0.34 0.34

S2 0.94 0.94 0.92 0.92 0.890.86 0.86 0.770.61 0.38 0.34 0.30 0.30 0.21

Ŝ1 0.94 0.80 0.80 0.65 0.650.65 0.47 0.470.47 0.47 0.38 0.30 0.15 0.15

ĥ1i −0.06 −0.18 0 −0.22 0 0 −0.41 0 0 −0.10 −0.11 −0.13 −0.69 0

The X′
i, d1i and n1i are defined in Algorithm 3, S2 is constraint, S

∗
1 is KM estimate, and Ŝ1 and ĥ1i are results

from Algorithm 1.
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Figure 2: Estimates of survivor functions under continuous bounded above constraint. Log likelihood
values shown in parentheses. (a) Algorithm 3; (b) Limit approachwith 12 potential points; (c) Limit approach
with 36 potential points; (d) Limit approach with 360 potential points. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com]

3.3. Two-Sample Case With No Potential Event Times
Consider any pair of survivor functions S̄1(t) and S̄2(t) satisfying the stochastic ordering constraint

S1(t) ≥ S2(t) for all t. If we replace these by discrete survivor functions Ŝ1(t) and Ŝ2(t) with pos-

sible jumps at observed event times, X1, . . . , XN , and Ŝg(Xi) = S̄g(Xi), g = 1, 2, i = 1, . . . , N,

the likelihood cannot decrease and the constraint is not violated anywhere. Thus, the C-NPMLE

can be obtained in the class of survivor functions with jumps only at observed event times, which

is the same as obtaining the C-NPMLE in the discrete case. Theorem 3 and Algorithm 2 can be

directly used to obtain Ŝ1(t) and Ŝ2(t) with the observed event times as the potential event times

and we estimate Sg(t) for t ≤ maxi(Ygi), g = 1, 2. Note that Ŝ1(t) is the unique C-NPMLE of

S1(t) and Ŝ2(t) is the unique MC-NPMLE of S2(t). As expected as the sample size of one group

(n1 or n2) becomes very large, the two-sample case estimator for the other group approaches the

corresponding one-sample estimator in Sections 3.1 and 3.2.

4. CONSISTENCY

Dykstra (1982) presented a proof of consistency of the D-estimator. Here, we give a proof of

consistency of the corrected C-NPMLE.

Suppose that (Cgi, Tgi), g = 1, 2, i = 1, . . . , ng are independent and identically distributed

(iid) with Cgi⊥Tgi. Suppose that τ > 0 satisfies P(min{Cgi, Tgi} > τ) = 0. Let n1 and n2 be the

respective sample size of sample 1 and 2. Meier (1975) has shown that the product limit estimator
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S∗
g (t) of the survivor function Sg(t) satisfies

lim
ng→∞ P

{
sup
x≤τ

|S∗
g (x) − Sg(x)| > ε

}
= 0 (4)

for any given ε > 0.

Theorem 5. Suppose the data are from the iid case as described above, where S1(t) ≥ S2(t) for
all t. Suppose further that Sg(τ) > 0, g = 1, 2 for given τ > 0. Then

lim
ng→∞ P

(
sup
t≤τ

|Ŝg(t) − Sg(t)| > ε

)
= 0 (5)

for any given ε > 0.

Proof. See the Supplementary Material. �

5. EXAMPLE

This example is a case study of survival times from diagnosis of male larynx cancer patients

(Kardaun, 1983). We analyze the data from the patients with larynx cancer stages 1 and 2, which

are shown in Table 3.

Table 4 summarizes the results. S∗
1 (t) and S∗

2 (t) are KM estimates for stage 1 and stage 2

patients respectively and are plotted in Figure 3a. The two plots cross each other, indicating that

there exist violations of the stochastic ordering constraint T1 ≥st T2. Times 0.2, 0.6, . . . , 7.4 in

Table 4 (first and sixth rows) are distinct observed event times. We set these as potential event

times and calculate Ŝ1(t) and Ŝ2(t) from Algorithm 2. The remaining times 9.3 and 10.7 are the

last observed censoring times of population 2 and 1. Figure 3b shows the C-NPMLE of survivor

functions subject to S1(t) ≥ S2(t) for each group. The D-estimator is the same as the C-NPMLE in

this case. Compared to the plots in Figure 3a, we can see that the effect of the constraint is to make

Ŝ1(t) larger than S∗
1 (t) and Ŝ2(t) smaller than S∗

2 (t) for all t > 0. The estimates of median life times

of stage 1 and stage 2 patients are 6.5 and 7.0 months from KM estimators, respectively, which

contradicts our belief about cancer stages; the corresponding estimates of 7.4 and 6.2 months from

C-NPMLEs, are more realistic.

Table 3: Survival times (in years) of male patients with larynx cancer stage 1 and stage 2 in example in

Section 5.

Stage 1 Stage 2

0.6 3.2+ 4.0 5.3 6.1+ 6.7+ 8.1+ 0.2 3.3+ 4.3+ 7.6+

1.3 3.3 4.0 5.5+ 6.2+ 7.0+ 9.6+ 1.8 3.6 5.0+ 9.3+

2.4 3.3+ 4.3 5.9+ 6.4 7.4 10.7+ 2.0 3.6+ 6.2

2.5+ 3.5 4.5+ 5.9+ 6.5 7.4+ 2.2+ 4.0 7.0

3.2 3.5 4.5+ 6.0 6.5+ 8.1+ 2.6+ 4.3+ 7.5+

+ represents censoring.
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Table 4: KM and C-NPMLE estimates of survivor functions for male patients with larynx cancer in

example in Section 5.

t 0.2 0.6 1.3 1.8 2.0 2.4 3.2 3.3 3.5 3.6

Ŝ1(t) 1 0.972 0.944 0.944 0.944 0.915 0.886 0.856 0.794 0.794

Ŝ2(t) 0.931 0.931 0.931 0.863 0.794 0.794 0.794 0.794 0.794 0.711

S∗
1 (t) 1 0.970 0.939 0.939 0.939 0.909 0.878 0.845 0.778 0.778

S∗
2 (t) 0.941 0.941 0.941 0.882 0.824 0.824 0.824 0.824 0.824 0.749

t 4.0 4.3 5.3 6.0 6.2 6.4 6.5 7.0 7.4 9.3 10.7

Ŝ1(t) 0.729 0.696 0.660 0.617 0.617 0.561 0.505 0.505 0.421 0.421 0.421**

Ŝ2(t) 0.617 0.617 0.617 0.617 0.494 0.494 0.494 0.370 0.370 0.370**

S∗
1 (t) 0.710 0.676 0.639 0.593 0.593 0.539 0.485 0.485 0.404 0.404 0.404**

S∗
2 (t) 0.665 0.665 0.665 0.665 0.532 0.532 0.532 0.399 0.399 0.399**

S∗
1 and S∗

2 are KM estimates and Ŝ1 and Ŝ2 are estimates from the C-NPMLE.

**denotes last observed time for each group.

Figure 3: Estimates of survivor functions, two-sample case. (a) KM Estimator; (b) C-NPMLE. [Color
figure can be viewed in the online issue, which is available at wileyonlinelibrary.com]

6. CONFIDENCE INTERVALS

If the true survivor functions S1(t) and S2(t) are never equal, then the asymptotic variances of

Ŝ1(t) and Ŝ2(t) are the same as those of KM estimators. This motivate one possible method to

obtain confidence intervals using asymptotic variances. In this method the confidence intervals for

unrestricted estimators are shifted and centred on the constrained estimators (Hwang & Peddada,

1994). We apply this idea on a log transformed scale in this paper and consider the following

approximate 100(1 − 2α)% confidence interval,

Ŝg(x) exp{±zασ∗
g (x)},

where σ∗
g (x) is standard error estimate of log S∗

g (x) and zα is the αth percentile of the standard

normal distribution (see Kalbfleisch & Prentice, 2002, page 17).

Another possible approach to construct confidence intervals is to use the bootstrap methods.

We consider two sampling schemes, a “standard” and a “restricted” scheme. In the standard
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scheme, survival time and censoring indicator pairs are sampled with replacement within each

group. In the restricted scheme (denoted R-Bootstrap), event times are drawn from the distribu-

tion 1 − Ŝg(t) and censoring times are drawn from 1 − Sc∗
g (t), where Sc∗

g (t) is the KM estimate

of the censoring survivor function for group g. For each bootstrap sample, a bootstrap estimate

Ŝ
b
g(t), b = 1, . . . , B is obtained by applying the C-NPMLE or the MC-NPMLE. Confidence in-

tervals can be constructed using the standard percentile method or the basic bootstrap method on

the h(s) = arcsin(
√

s) transformed scale (Davison & Hinkley, 1997, page 32). In the basic boot-

strap method, the confidence interval limits are derived from the percentiles of h−1[2h{Ŝg(t)} −
h{Sb

g(t)}].

7. SIMULATION STUDY

7.1. Two-Sample Case When Sample Size Is Small
Weconducted aMonteCarlo simulation study to compare finite sample properties of four different

estimators—Dykstra (1982), Lo (1987), Rojo (2004) and the C-NPMLE for the two-sample case

where S1(t) ≥ S2(t) for all t. The root mean square error (RMSE) of the estimates of the survivor

functions over a range of values of t are shown. Each simulation consists of 10,000 replications.

The upper (lower) plot of each sub-figure shows the RMSE of estimates of S1(t) (S2(t)). The

distributions and sample sizes for the simulations are shown in Table 5.

As before, let S∗
1 (t) and S∗

2 (t) be the KM estimates. Lo’s estimators are de-

fined as Ŝ
L
1 (t) = max{S∗

1 (t), S
∗
2 (t)} and Ŝ

L
2 (t) = min{S∗

1 (t), S∗
2 (t)}. Rojo’s estimators are

defined as Ŝ
R
1 (t) = max[S∗

1 (t), {n1S∗
1 (t) + n2S

∗
2 (t)}/(n1 + n2)] and Ŝ

R
2 (t) = min[{n1S∗

1 (t) +
n2S

∗
2 (t)}/(n1 + n2), S

∗
2 (t))], where n1 and n2 are sample size of population 1 and 2. In order

to minimize different effects from estimates beyond the last observed time in each population for

different estimators, we set the estimates of survivor functions as low as possible after the last

observed time for each population.

Dykstra’s estimator has similar efficiency compared to the C-NPMLE when population 2 is

significantly less censored (Figure 4c and f), but in other cases, the C-NPMLE has smaller MSE

compared to Dykstra’s estimator. In cases with the same censoring distributions (Figure 4a and d),

Rojo’s estimator behaves better than other estimators. The intuitive reason that the C-NPMLE is

not the best, despitemaximizing the likelihood, is because theC-NPMLE is focussed on estimating

the whole distribution, whereas the Rojo’s and Lo’s estimators are pointwise estimators, and

the RMSE is a pointwise criterion. However, if population 1 and 2 have significantly different

censoring distributions, the C-NPMLE is the preferred estimator. Specifically when population

Table 5: Distributions and sample sizes used in simulation study.

Event distributions Censoring distributions Sample size

log S1(t) log S2(t) log Sc
1(t) log Sc

2(t) n1 n2

Figure 4a −t −1.2t −1.5t −1.5t 100 40

Figure 4b −t −1.2t No censoring −3.0t 100 40

Figure 4c −t −1.2t −3.0t No censoring 100 40

Figure 4d −t −1.2t −1.5t −1.5t 40 100

Figure 4e −t −1.2t No censoring −3.0t 40 100

Figure 4f −t −1.2t −3.0t No censoring 40 100
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Figure 4: Comparison of RMSEs for different estimators. [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com]

1 is excessively censored (Figure 4c and f), Rojo’s estimator has large RMSE compared to the

C-NPMLE where the true survivor functions are small (<0.4). Lo’s estimator in general does

not behave well when the two populations have different censoring distributions (Figure 4b, c,

and f).
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7.2. Properties of Confidence Intervals
We conducted a simulation study to evaluate finite sample properties of the CIs proposed in

Section 6. The sample sizes and the underlying distributions are shown in Table 6. Each simulation

consists of 1,000 replications and bootstrap CIs are based on 199 bootstrap samples. We construct

bootstrap CIs using percentiles and basic bootstrap on arcsin(
√

s) transformed scale at times

0.29 and 0.69, where the survival probabilities of group 1 are 0.75 and 0.50, respectively. We

also evaluated basic bootstraps on the original scale and on the log(s) scale, and found that the

binomial variance stabilizing arcsin(
√

s) transformation gave CIs with slightly better properties

than other two transformations and hence we only report the results under this transformation.

Table 6 shows the mean squared errors (MSEs) and biases of the KM estimator and the C-

NPMLE. As expected, Ŝ1(t) is positively biased and Ŝ2(t) is negatively biased. The closer the two

distributions or the smaller the sample sizes, the larger the bias and the MSE of the C-NPMLE.

The MSE of the C-NPMLE is generally smaller than that of the KM estimator unless the two

survival probabilities are very close to each other (I, II, and V)

The coverage rates and average widths of the CIs described in Section 6 are shown in Table 7.

Bootstrap methods using the percentiles (columns 5 and 7 in Table 7) do not work well with fairly

low coverage rates when the two survivor functions are relatively close to one another (I, II, III, V,

and VI). However, we found that the basic bootstrap CIs (Bootstrap (arcsin(
√

s)) and R-Bootstrap

(arcsin(
√

s)) in Table 7) produce narrower intervals with reasonable coverage rates, especially

when using the restricted sampling scheme (R-Bootstrap (arcsin(
√

s)) in Table 7). In comparison,

Table 6: MSE (×104) and bias (×102).

Event time Sample MSE Bias MSE Bias

distributions sizes KM C-NPMLE KM C-NPMLE KM C-NPMLE KM C-NPMLE

t = 0.29 t = 0.69

I λ1 = 1 100 19.1 19.9 −0.01 2.45 36.1 39.3 0.21 3.41

λ2 = 1.01 50 41.3 53.7 0.16 −5.16 68.3 76.5 0.14 −5.95

II λ1 = 1 100 19.4 19.5 0.18 2.22 33.4 34.4 0.16 2.71

λ2 = 1.1 50 44.9 49.1 −0.17 −4.51 75.4 65.7 0.23 −4.60

III λ1 = 1 100 22.6 21.1 −0.09 1.59 35.7 33.7 −0.05 1.92

λ2 = 1.2 50 48.4 46.0 −0.05 −3.55 72.5 61.5 −0.32 −3.95

IV λ1 = 1 100 20.9 18.9 −0.08 1.20 33.7 30.8 −0.11 1.18

λ2 = 1.4 50 49.2 40.3 0.26 −2.25 71.5 57.3 −0.02 −2.23

V λ1 = 1 400 5.52 6.3 0.05 1.37 8.92 10.3 0.12 1.79

λ2 = 1.01 200 10.7 12.9 0.20 −2.54 18.3 20.9 0.10 −3.18

VI λ1 = 1 400 5.31 5.24 0.10 1.01 8.81 8.59 0.13 1.22

λ2 = 1.1 200 10.7 9.99 0.17 −1.69 17.4 14.9 0.24 −1.89

VII λ1 = 1 400 5.33 4.98 0.01 .611 8.73 8.15 0.11 0.73

λ2 = 1.2 200 11.9 10.2 0.00 −1.19 18.2 15.1 −0.06 −1.22

VIII λ1 = 1 400 5.06 4.84 −0.02 0.27 8.43 8.24 −0.03 0.20

λ2 = 1.4 200 12.4 11.4 −0.03 −0.56 16.1 15.1 −0.01 −0.39

Event time distribution is exp(λg), g = 1, 2 and censoring distribution is U(0, 1.5) for both groups in all

scenarios.
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Table 7: Coverage rates (×102) and average widths (×102) of 95% confidence intervals.

Sampling scheme Bootstrap R-Bootstrap

Estimator KM C-NPMLE K-M C-NPMLE

Confidence interval Percentile arcsin(
√

s) Percentile arcsin(
√

s) Sg(t) exp(±1.96σ∗
g )

t = 0.29 I S1(t) 95(17.5) 85(14.7) 94(15.2) 84(15.2) 95(16.0) 95(17.9) 93(18.5)

S2(t) 94(24.6) 73(20.5) 91(19.7) 68(22.0) 94(20.7) 93(25.2) 95(23.5)

II S1(t) 94(17.4) 85(14.9) 95(15.4) 84(15.2) 96(16.0) 95(17.9) 93(18.4)

S2(t) 93(25.2) 78(21.1) 92(20.4) 75(22.5) 94(21.3) 93(26.0) 97(24.5)

III S1(t) 93(17.4) 87(15.2) 91(15.7) 85(15.4) 93(16.2) 94(17.9) 93(18.3)

S2(t) 92(25.7) 85(21.6) 92(20.9) 84(22.9) 92(21.7) 93(26.5) 96(25.3)

IV S1(t) 94(17.4) 90(15.5) 94(16.0) 90(15.8) 94(16.5) 95(17.9) 94(18.2)

S2(t) 94(26.6) 91(22.9) 94(22.3) 91(23.7) 93(22.8) 95(27.5) 98(26.5)

V S1(t) 93(8.8) 82(7.6) 91(7.7) 80(7.8) 92(8.0) 94(9.0) 91(9.1)

S2(t) 94(12.3) 73(10.0) 90(9.7) 68(10.7) 95(10.3) 95(12.7) 95(12.2)

VI S1(t) 94(8.8) 87(7.8) 93(7.9) 86(7.9) 93(8.1) 94(9.0) 94(9.1)

S2(t) 94(12.7) 84(10.6) 92(10.3) 82(11.0) 93(10.7) 96(13.0) 97(12.7)

VII S1(t) 94(8.7) 90(7.9) 93(8.1) 90(8.1) 94(8.2) 95(9.0) 95(9.1)

S2(t) 94(13.0) 89(11.1) 91(10.9) 89(11.5) 90(11.2) 94(13.3) 97(13.1)

VIII S1(t) 95(8.8) 93(8.3) 94(8.4) 93(8.3) 94(8.4) 96(9.0) 96(9.0)

S2(t) 94(13.5) 93(12.3) 89(12.1) 93(12.4) 90(12.3) 96(13.8) 97(13.7)

t = 0.69 I S1(t) 94(22.4) 83(19.8) 92(19.8) 82(20.5) 94(20.6) 94(23.1) 92(24.7)

S2(t) 95(31.7) 74(23.8) 91(24.2) 70(25.8) 95(26.4) 96(32.9) 96(29.1)

II S1(t) 94(22.4) 88(20.0) 93(20.1) 86(20.6) 94(20.7) 94(23.2) 93(24.4)

S2(t) 93(31.7) 81(24.3) 92(24.8) 78(26.0) 94(26.7) 94(32.9) 97(29.7)

III S1(t) 94(22.5) 90(20.5) 92(20.5) 89(20.7) 94(20.7) 94(23.1) 94(24.1)

S2(t) 93(31.5) 86(25.0) 93(25.6) 84(26.0) 94(27.0) 95(32.8) 98(30.3)

IV S1(t) 94(22.4) 93(20.9) 94(20.9) 93(21.1) 94(21.1) 95(23.1) 96(23.8)

S2(t) 92(31.0) 89(25.7) 91(26.7) 90(26.4) 92(27.6) 94(32.5) 97(30.8)

V S1(t) 94(11.3) 83(10.0) 91(10.0) 81(10.3) 92(10.3) 95(11.6) 91(11.9)

S2(t) 93(15.9) 72(12.2) 90(12.2) 66(13.0) 93(13.1) 94(16.4) 93(15.3)

VI S1(t) 94(11.3) 89(10.3) 93(10.3) 88(10.5) 93(10.5) 95(11.6) 95(11.8)

S2(t) 95(15.9) 85(12.7) 92(12.8) 83(13.3) 93(13.4) 95(16.4) 97(15.7)

VII S1(t) 94(11.3) 91(10.5) 94(10.5) 91(10.6) 94(10.6) 95(11.6) 95(11.7)

S2(t) 94(15.8) 91(13.4) 91(13.5) 90(13.7) 91(13.8) 94(16.3) 97(15.9)

VIII S1(t) 94(11.2) 94(10.8) 93(10.8) 94(10.9) 92(10.9) 96(11.6) 96(11.6)

S2(t) 95(15.6) 93(14.3) 91(14.4) 94(14.4) 90(14.6) 96(16.0) 97(15.9)
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the shifted constant width CI that is centred on the C-NPMLE (last column in Table 7) has the

same width as the KM estimator on the log scale. The results suggest that the asymptotic variance

gives CIs with reasonable coverage rate, except that in some cases (e.g., IV at time 0.29 and III

at time 0.69), the CIs have too high a coverage rate. These intervals, however, tend to be wider

than those from the basic bootstrap. Based on our simulation results, the basic bootstrap approach

using the restricted sampling scheme (R-Bootstrap (arcsin(
√

s)) in Table 7) is preferable.

It should be noted that the estimate and the standard error is on appropriate data summary

when the information is symmetric about the estimate. But here, especially when S1(t) is close

to S2(t), the most appropriate CI are asymmetric. Thus simple repeating of the standard error for

Ŝg(t) based on an asymptotic variance is not recommended in this situation.

8. DISCUSSION

Dykstra’s estimator is the same as the C-NPMLE when the stochastically smaller population has

no censoring. When censoring exists in that population, our experience suggests that Dykstra’s

estimators and the estimators developed in this paper are usually different for small sample settings.

In large sample cases, they are frequently identical at early times but then differ in the tail. A

fundamental difference between Dykstra’s estimator and the C-NPMLE developed in this paper is

that the C-NPMLE can have probability mass at non-event times throughout the follow-up period

whereas, for Dykstra’s estimator, this can happen only prior to the first failure in the stochastically

smaller population.

The results from the simulation suggest that the C-NPMLE has a smaller or equal RMSE

when compared to Dykstra’s estimator. Rojo’s estimator has good properties under the pointwise

criteria because it is based on pointwise estimates. It does not, however, adapt well to unequal

censoring. There is the potential to develop an improved approach that might adapt the NPMLE

to the pointwise case.

Præstgaard & Huang (1996) established the asymptotic distribution of Dykstra’s estimator.

If, as seems likely, the Dykstra’s estimator and the C-NPMLE are asymptotically equivalent,

the asymptotic distribution should also apply to the C-NPMLE. However, in our opinion, the

asymptotic distribution is not very useful for finite sample inference. If S1(t) is strictly greater

than S2(t), then the asymptotic distributions of the C-NPMLE of Ŝ1(t) and Ŝ2(t) will be identical

to that of KM estimators, that is, the constraint becomes irrelevant asymptotically while the

constraint is still relevant everywhere in the finite sample case. IfS1(t) = S2(t), then the asymptotic

distribution ismathematically interesting, but probably not appropriate to use in this context where

one is willing to assume that S1(t) ≥ S2(t).

We are currently investigating extensions of these estimators and algorithms to settings with

more than two samples with linear ordering or partial ordering constraints. Hoff (2000, 2003)

and Lim, Kim & Wang (2009) have proposed different methods to obtain the C-NPMLE under

partial ordering constraints. However, we believe that the extension of the methods in this paper

will provide additional insights and have the potential to improve the methods through reducing

the number of parameters to compute and the number of constraints to apply.
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