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APPENDIX
Algorithm 4 (Bounded Below Constraint (modified from Dykstra, 1982)).

1. Set i0 = 0, ℓ = 1 and m′ = max{i : n1i > 0}.
2. If there exists b > iℓ−1 such that K(iℓ−1 + 1, b) > 0, then let iℓ = min

{
argmaxb>iℓ−1

K(iℓ−1 + 1, b)
}

and kℓ = K(iℓ−1 + 1, iℓ). Otherwise, let iℓ = m′, kℓ = 0.
3. Let ĥ1j = log{1− d1j/(n1j + kℓ)}, iℓ−1 + 1 ≤ j ≤ iℓ.
4. If iℓ = m′, stop. Otherwise, set ℓ = ℓ+ 1 and go to step 2.

Note that this algorithm gives a KM type estimator in which the number at risk is potentially
modified at each potential failure time. It can be shown that k1 ≥ k2 ≥ · · · , so that this estimate
is essentially a KM estimate based on modified data where k1 more subjects are placed at risk at
time 0, and at time aiℓ , kℓ − kℓ+1, ℓ = 1, 2, . . . of these additional subjects are censored.

Step 2 in Algorithm 4 is looking for the next active constraint in the solution. A root finding
procedure is needed to calculate K(iℓ−1 + 1, b). To find a root with high precision is compu-
tationally intensive, so it is inefficient to calculate K(iℓ−1 + 1, b) for all b > iℓ−1 to find the
index of the next active constraint. Instead we propose another algorithm that is equivalent to
Algorithm 4 but only calculates K(iℓ−1 + 1, b) when necessary.

Algorithm 5 (Bounded Below Constraint).
1. Set i0 = 0, ℓ = 1 and m′ = max(i : n1i > 0).
2. Let iℓ = minb>iℓ−1

{b : H(iℓ−1 + 1, b, 0) < 0}, then set kℓ = K(iℓ−1 + 1, iℓ). If no such
iℓ exists, set iℓ = m′ and kℓ = 0 and go to step 4.

3. Let I = minb>iℓ {b : H(iℓ + 1, b, kℓ) < 0}. If no such I exists, then go to step 4. Other-
wise, set iℓ = I and repeat step 3.

4. Let ĥ1j = log{1− d1j/(n1j + kℓ)}, iℓ−1 + 1 ≤ j ≤ iℓ.
5. If iℓ = m′, stop. Otherwise, set ℓ = ℓ+ 1 and go to step 2.

The two Algorithms are equivalent because steps 2 and 3 in Algorithm 5 are looking for
min

{
argmaxb>iℓ−1

K(iℓ−1 + 1, b)
}

as in Algorithm 4. However, Algorithm 5 implements a
root finding procedure only when it finds a position b, where K(iℓ−1 + 1, b) is larger than the
previously found maximum K(iℓ−1 + 1, iℓ). This significantly improves the efficiency of the
calculations.

Proof of Theorem 4. First, we show that S̃1(t) is a C-NPMLE. Let S̄1(t) be a C-NPMLE sub-
ject to T1 ≤st T2. Note that Ŝ1(t) is the maximum likelihood estimator subject to fewer con-
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straints (only at times X ′
i) compared to S̄1(t), we have that L(Ŝ1(t)) ≥ L(S̄1(t)). Further

L(S̄1(t)) ≥ L(S̃1(t)) since S̃1(t) = min(Ŝ1(t), S2(t)) ≤ S2(t). Note that at every time X ′
i ,

i = 1, · · · , ntot, Ŝ1(X
′
i) ≤ S2(X

′
i), the difference between Ŝ1(t) and S̃1(t) may only occur

in time interval (X ′
i, X

′
i+1) for some i. The five possible time intervals are (C,C), (C,X−),

(X,C) (X−, X) and (X,X−), where C represents censoring time, X event time and X− time
just before X . None of these intervals includes C, X or X−, the three elements that determine
likelihood (3). So L(S̃1(t)) = L(Ŝ1(t)) = L(S̄1(t)), which implies that S̃1(t) is a C-NPMLE
subject to T1 ≤st T2.

Then, we show that S̃1(t) is the MC-NPMLE. Suppose it is not, we must be able to
find a time x∗ where S̄1(x

∗) > S̃1(x
∗) = min{Ŝ1(x

∗), S2(x
∗)}. Then S̄1(x

∗) > Ŝ1(x
∗) since

S̄1(x
∗) ≤ S2(x

∗). Consider another survivor function S′
1(t) with jumps only at the times X ′

i and
S′
1(X

′
i) = S̄1(X

′
i) for all i, S′

1(t) is constrained estimator of S1(t) subject to discrete constraint
at all X ′

is. Since S′
1(x

∗) = S′
1(max(X ′

i : X
′
i ≤ x∗)) = S̄1(max(X ′

i : X
′
i ≤ x∗)) ≥ S̄1(x

∗) >

Ŝ1(x
∗) and Ŝ1(t) is the MC-NPMLE with discrete constraint, S′

1(t) is not a C-NPMLE subject
to the discrete constraint. So L(S̄1(t)) = L(S′

1(t)) < L(Ŝ1(t)) = L(S̃1(t)), which is a contra-
diction. Thus, S̃1(t) is the MC-NPMLE.

Proof of Theorem 5. To fix notation, let a0 = 0, a1, a2, · · · am be the complete ordered observed
event times of any given data in the two sample case, i0 = 0, i1, i2, · · · iL the index of active
constraint times, and k1, k2, · · · , kL be the corresponding k values from Algorithm 2.

The last active constraint time from Algorithm 2 satisfies aiL ≤ τ . Ŝ1(t)/S
∗
1 (t) is non-

decreasing and Ŝ2(t)/S
∗
2 (t) is non-increasing in t in any sample. At the last active constraint

aiL , S∗
1 (aiL) ≤ Ŝ1(aiL) = Ŝ2(aiL) ≤ S∗

2 (aiL).
So for any x ≤ aiL ,

S∗
1 (x) ≤ Ŝ1(x) ≤ S∗

1 (x)
Ŝ1(aiL)

S∗
1 (aiL)

≤ S∗
1 (x)

S∗
2 (aiL)

S∗
1 (aiL)

≤

[
sup

t≤aiL

S∗
2 (t)

S∗
1 (t)

]
S∗
1 (x) ≤

[
sup
t≤τ

S∗
2 (t)

S∗
1 (t)

]
S∗
1 (x)

Similarly,

S∗
2 (x) ≥ Ŝ2(x) ≥

[
inf
t≤τ

S∗
1 (t)

S∗
2 (t)

]
S∗
2 (x).

For any x > aiL in the same sample,

S∗
1 (x) ≤ Ŝ1(x) = Ŝ1(aiL)×

S∗
1 (x)

S∗
1 (aiL)

≤
[
sup
t≤τ

S∗
2 (t)

S∗
1 (t)

]
S∗
1 (aiL)×

S∗
1 (x)

S∗
1 (aiL)

=

[
sup
t≤τ

S∗
2 (t)

S∗
1 (t)

]
S∗
1 (x).

So, regardless of where aiL is, in any sample, for any x ≤ τ , we always have

S∗
1 (x) ≤ Ŝ1(x) ≥

[
sup
t≤τ

S∗
2 (t)

S∗
1 (t)

]
S∗
1 (x) and S∗

2 (x) ≥ Ŝ2(x) ≥
[
inf
t≤τ

S∗
1 (t)

S∗
2 (t)

]
S∗
2 (x)

As n1, n2 go to ∞, from (4), for any x ≤ τ , S∗
1 (x) → S1(x) and S∗

2 (x) → S2(x). So
S∗
2 (x)

S∗
1 (x)

→ S2(x)

S1(x)
⇒ sup

x≤τ

S∗
2 (x)

S∗
1 (x)

→ sup
x≤τ

S2(x)

S1(x)
= 1,

in probability if indeed S1(t) ≥ S2(t) for all t. Thus P
{
supx≤τ |Ŝ1(x)− S∗

1 (x)| > ϵ
}
→ 0 for

every ϵ > 0. Then using Meier’s result (4), we obtain the desired result for Ŝ1(t).
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Similarly, we can show that P
{
supx≤τ |Ŝ2(x)− S∗

2 (x)| > ϵ
}
→ 0 for every ϵ > 0 and hence

we obtain the desired result for Ŝ2(t).
To simplify the proof, we only show consistency of the C-NPMLE in the case of iid data.

However, it can be shown that the estimators are consistent in the more general situation as
discussed in Dykstra (1982).

Proof of Theorem 3. Recall that mg = max{i : ngi > 0}, g = 1, 2 and m′ = min(m1,m2). In
this section, we prove that the ĥgi, g = 1, 2, i = 1, . . . ,mg in Theorem 3 and Algorithm 2 is the
C-NPMLE. We use ĥA

gi and ĥT
gi to distinguish the results from Algorithm 2 and Theorem 3 before

we prove that they are the same. In Lemma 2, we show that ĥA
gi = ĥT

gi, and in Lemma 3, we show
that ĥ1i is the C-NPMLE and ĥ2i is the MC-NPMLE.

Characteristics of Results From Theorem 3 and Algorithm 2

Steps 2,3 and 4 in Algorithm 2 are used to calculate kℓ. Suppose the algorithm has Rℓ itera-
tions with initial step 2 to 3 (0th iteration) and step 4 to 3 (1st, . . . , Rth

ℓ iteration) before it finds
iℓ. Here, i(r)ℓ and k

(r)
ℓ , r = 0, . . . , Rℓ are results from iteration r. Let i(−1)

ℓ = iℓ−1 and k
(−1)
ℓ = 0

for convenience. Note that H2(a, b, k) is a non-decreasing function in k and strictly increasing if
there is at least one observed event between a and b.

Lemma 1. The result for any data from Algorithm 2 has the following properties:
(a).

∑iℓ
j=1(ĥ

A
1j − ĥA

2j) = 0, ℓ = 1, . . . , L;
(b). kℓ = min{K2(iℓ−1 + 1, iℓ), n2iℓ} and H2(iℓ−1 + 1, iℓ, kℓ) ≤ 0;
(c). k

(r)
ℓ > k

(r−1)
ℓ , r = 1, . . . , Rℓ;

(d).
∑i

j=1 ĥ
A
1j ≥

∑i
j=1 ĥ

A
2j , i = 1, . . . ,m′;

(e). k1 ≥ k2 ≥ · · · ≥ kL > 0.

Proof. (a) It is obvious since
∑iℓ

j=iℓ−1+1 ĥ
A
2j =

∑iℓ
j=iℓ−1+1 ĥ

A
2j , ℓ = 1, . . . , L.

(b) From step 3 in Algorithm 2, kℓ can take two values: kℓ = n2iℓ if H2(iℓ−1 + 1, iℓ, n2iℓ) ≤
0 (in this case K2(iℓ−1 + 1, iℓ) ≥ n2iℓ ), or kℓ = K2(iℓ−1 + 1, iℓ).

(c) Show by contradiction. Suppose there exists r′ such that k(r
′)

ℓ ≤ k
(r′−1)
ℓ . It follows that

H2(iℓ−1 + 1, i
(r′)
ℓ , k

(r′)
ℓ ) ≤ H2(iℓ−1 + 1, i

(r′)
ℓ , k

(r′−1)
ℓ )

= H2(iℓ−1 + 1, i
(r′−1)
ℓ , k

(r′−1)
ℓ ) +H2(i

(r′−1)
ℓ + 1, i

(r′)
ℓ , k

(r′−1)
ℓ )

= H2(i
(r′−1)
ℓ + 1, i

(r′)
ℓ , k

(r′−1)
ℓ ) < 0 ( step 2 or 4 in Algorithm 2 ).

(6)

However, from step 3 in Algorithm 2, k(r
′)

ℓ must either satisfy:

K2(iℓ−1, i
(r′)
ℓ ). Then H2(iℓ−1 + 1, i

(r′)
ℓ , k

(r′)
ℓ ) = 0, which contradicts (6); or

n
2i

(r′)
ℓ

. Then k
(r′−1)
ℓ ≥ k

(r′)
ℓ = n

2i
(r′)
ℓ

, which contradicts the condition n
2i

(r′)
ℓ

> k
(r′−1)
ℓ that

is required to reach iteration r′ in step 4 of Algorithm 2.

(d) Suppose there exists i′ such that
∑i′

j=1 ĥ
A
1j <

∑i′

j=1 ĥ
A
2j , equivalently

∑i′

j=iℓ′−1+1 ĥ
A
1j <∑i′

j=iℓ′−1+1 ĥ
A
2j . Then each of the three possible valid ranges of i′ leads to a contradiction. That

is either:

i′ = iℓ,ℓ ≤ L. Then
∑i′

j=1 ĥ
A
1j =

∑i′

j=1 ĥ
A
2j , which contradicts Lemma 1 (a); or

i′ > iL. Then H2(iL + 1, i′, 0) =
∑i′

j=iL+1(ĥ1j − ĥ2j) < 0, which contradicts the condition
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H2(iL + 1, b, 0) ≥ 0 for all b > iL in step 2 of Algorithm 2; or
iℓ−1 < i′ < iℓ for a ℓ ≤ L. Then for r′ = max{r : i

(r)
ℓ < i′},

H2(iℓ−1 + 1, i′, kℓ) =
i′∑

j=iℓ−1+1

(ĥ1j − ĥ2j) < 0.

It follows that H2(iℓ−1 + 1, i′, k
(r′)
ℓ ) < 0 since k

(r′)
ℓ < k

(Rℓ)
ℓ = kℓ from (c) and H2(iℓ−1 +

1, i
(r′)
ℓ , k

(r′)
ℓ ) +H2(i

(r′)
ℓ + 1, i′, k

(r′)
ℓ ) < 0. Thus H2(i

(r′)
ℓ + 1, i′, k

(r′)
ℓ ) < 0, which implies

that there exists r∗ with r∗ > r′ and i
(r∗)
ℓ ≤ i′. This is impossible because if so, then i′ =

i
(r′+1)
ℓ and for any r′ + 1 < Rℓ, we have

0 = H2(iℓ−1 + 1, i
(r′+1)
ℓ , k

(r′+1)
ℓ ) < H2(iℓ−1 + 1, i

(r′+1)
ℓ , kℓ) =

i′∑
j=iℓ−1+1

(ĥA
1j − ĥA

2j) < 0.

(e) Suppose there exists ℓ such that kℓ+1 > kℓ > 0. Then kℓ < kℓ+1 ≤ n2iℓ+1
. Moreover,

H2(iℓ + 1, iℓ+1, kℓ) < H2(iℓ + 1, iℓ+1, kℓ+1) ≤ 0. It follows that the algorithm must not have
stopped at Rth

ℓ iteration in step 4 of Algorithm 2, which is a contradiction.

Lemma 2. Based on the same data, the results from Algorithm 2 and Theorem 3 satisfy:
(a) k̂i = kℓ if i = iℓ−1 + 1, . . . , iℓ, ℓ = 1, . . . , L and k̂i = 0 if i > iL;
(b) ĥT

gi = ĥA
gi, g = 1, 2, i = 1, . . . ,mg.

Proof. (a) If iℓ−1 < i ≤ iℓ for ℓ ≤ L, then for any a ≤ i, there exists ℓ′ ≤ ℓ such that iℓ′−1 <
a ≤ iℓ′ . Then from Lemma 1 (b),

H2(iℓ′−1, iℓ′ , kℓ′) ≤ 0 = H2(a, iℓ′ ,K2(a, iℓ′)).

It follows that H2(a, iℓ′ , kℓ′) ≤ H2(a, iℓ′ ,K2(a, iℓ′)), since H2(iℓ′−1, a− 1, kℓ′) ≥ 0 from
Lemma 1 (d) and so K2(a, iℓ′) ≥ kℓ′ ≥ · · · ≥ kℓ from Lemma 1 (e). Thus

H2(a, iℓ,K2(a, iℓ)) = 0 = H2(a, iℓ′ ,K2(a, iℓ′)) +
ℓ∑

j=ℓ′+1

H2(ij−1, ij , kj)

≥ H2(a, iℓ′ , kℓ) +

ℓ∑
j=ℓ′+1

H2(ij−1, ij , kℓ) = H2(a, iℓ, kℓ).

It follows K2(a, iℓ) ≥ kℓ > 0 and min(K+
2 (a, iℓ), n2iℓ) ≥ kℓ since kℓ ≤ n2iℓ from Lemma 1

(b). Therefore,
k̂i = min

a≤i
max
b≥i

min{K+
2 (a, b), n2b} ≥ min

a≤i
min{K+

2 (a, iℓ), n2iℓ} ≥ kℓ.

However, obtaining k̂i is a minimization problem and its lower bound can be reached when
a = iℓ−1 + 1 and b = iℓ. Thus k̂i = kℓ.

If i > iL, then K2(iL + 1, b) ≤ 0 for all b > iL because H2(iL + 1, b, 0) ≥ 0 from step 2
of Algorithm 2. So K+

2 (iL + 1, b) = 0 for all b > iL. Hence, 0 ≤ k̂i ≤ maxb≥i min{K+
2 (iL +

1, b), n2b} = 0, i.e. k̂i = 0.
(b) For population 1, ĥT

1i = log[1− d1i/(n1i + k̂i)], ĥA
1i = log[1− d1i/(n1i + kℓ)] and

k̂i = kℓ if iℓ−1 < i ≤ iℓ, i = 1, . . . , L, so ĥT
1i = ĥA

1i for all i ≤ iL. If i > iL, then ĥT
1i = log[1−

d1i/n1i] = ĥA
1i, iL < i ≤ m1.

For population 2, we use induction.

Let ĥA
20 = ĥT

20 = 0, then the result holds for j = 0;
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Assume for all i ≤ j, ĥA
2i = ĥT

2i;
For the next index j + 1, there are possible cases (i), (ii), (iii):

(i). d2(j+1) > 0. Then

ĥT
2(j+1) = log[1− d2(j+1)/(n2(j+1) − k̂i)]

= log[1− d2(j+1)/(n2(j+1) − kℓ)] = ĥA
2(j+1), if iℓ−1 < j + 1 ≤ iℓ, i ≤ L

ĥT
2(j+1) = log[1− d2(j+1)/n2(j+1)] = ĥA

2(j+1), if iL < j + 1 ≤ m2.

(ii). d2(j+1) = 0 and j + 1 ̸= iℓ, ℓ = 1, · · · , L. Then ĥA
(j+1) = 0. So∑(j+1)

i=1 ĥA
1i −

∑j
i=1 ĥ

A
2i =

∑j+1
i=1 (ĥ

A
1i − ĥA

2i) ≥ 0. It follows that

ĥT
(j+1) = min{

j+1∑
i=1

ĥT
1i −

j∑
i=1

ĥT
2i, 0} = min{

j+1∑
i=1

ĥA
1i −

j∑
i=1

ĥA
2i, 0} = 0 = ĥA

(j+1);

(iii). d2(j+1) = 0 and j + 1 = iℓ. Then
∑j+1

i=1 (ĥ
A
1i − ĥA

2i) = 0. So

ĥT
(j+1) = min{

j+1∑
i=1

ĥT
1i −

j∑
i=1

ĥT
2i, 0} = min{

j+1∑
i=1

ĥA
1i −

j∑
i=1

ĥA
2i, 0} = ĥA

2(j+1).

Optimization Problem for the Two-sample Case

Consider a general nonlinear optimization problem with inequality constraint
minimize f(θ)

subject to gj(θ) ≤ 0, j = 1, 2, . . . ,m,

for θ ∈ Rn. Define the Lagrangian as

Lagr(θ,λ) = f(θ) +
m∑
j=1

λjgj(θ).

For continuously differentiable functions f and gj , Karush (1939) and Kuhn & Tucker (1951)
independently derived the necessary conditions at the solution θ∗. Assume the existence of La-
grange multipliers λ∗ ∈ Rm, then at the solution θ∗, the following conditions must be satisfied:

∂f

∂θi
(θ∗) +

m∑
j=1

λj
∂gj(θ

∗)

∂θi
= 0, i = 1, . . . , n

gi(θ
∗) ≤ 0, i = 1, . . . ,m

λ∗
i gi(θ

∗) = 0, i = 1, . . . ,m

λ∗
i ≥ 0, i = 1, . . . ,m.

These conditions, known as KKT conditions, also constitute sufficient conditions if f(θ) and
gi(θ) are also convex functions. For more details, see Snyman (2005).

In the two-sample problem, we maximize the log likelihood (2) subject to a stochastic or-
dering constraint. As seen in Theorem 3 and Algorithm 2, we estimate ĥgi for i ≤ mg, g = 1, 2,
since for i > mg, there is no data available in population g. Further, if we set ĥ1i = 0 for all
i > m1 and ĥ2i = −∞ for all i > m2, the stochastic ordering constraint is automatically satis-
fied given

∑m′

j=1(ĥ1j − ĥ2j) ≥ 0 for all i > m′. So the log likelihood (2) can be maximized
separately for i ≤ m′ and i > m′. Like the KM estimator, the log likelihood is maximized
by ĥgi = log(1− dgi/ngi), m′ + 1 ≤ i ≤ mg. So in Lemma 3, we only consider maximizing
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∑2
g=1

∑m′

i=1

{
dgilog

(
1− ehgi

)
+ (ngi − dgi)hgi

}
under the stochastic ordering constraint.

Lemma 3. The result {ĥgi, g = 1, 2, i = 1, . . . ,mg} from Theorem 3 and Algorithm 2 is the
solution of maximizing the log likelihood (2) under stochastic ordering constraint

∑i
j=1(h2j −

h1j) ≤ 0, i = 1, . . . ,m′, and h1i, h2i ≤ 0, i = 1, . . . ,mg .

Proof. The optimization problem here is:

minimize −
2∑

g=1

m′∑
i=1

{
dgilog

(
1− ehgi

)
+ (ngi − dgi)hgi

}
(7)

subject to


gi(h1,h2) =

∑i
j=1 (h2j − h1j) ≤ 0

gm′+i(h1,h2) = h2i ≤ 0

g2m′+i(h1,h2) = h1i ≤ 0

and the corresponding Lagrangian is

Lagr(h1,h2,λ) = −
2∑

g=1

m′∑
i=1

{
dgilog

(
1− ehgi

)
+ (ngi − dgi)hgi

}
+

3m′∑
j=1

λjgj(h1,h2).

Thus the KKT conditions are:

d1ie
ĥ1i

1− eĥ1i

− (n1i − d1i)−
m′∑
j=i

λ̂j + λ̂i+2m′ = 0 (8a)

d2ie
ĥ2i

1− eĥ2i

− (n2i − d2i) +
m′∑
j=i

λ̂j + λ̂i+m′ = 0 (8b)

i∑
j=1

(ĥ2j − ĥ1j) ≤ 0 (8c)

λ̂i

i∑
j=1

(ĥ2j − ĥ1j) = 0 (8d)

λ̂i, λi+m′ , λi+2m′ ≥ 0 (8e)

ĥ1i ≤ 0, h2i ≤ 0 (8f)

λ̂i+mĥ2i = 0 (8g)

λ̂i+2mĥ1i = 0 (8h)

We define λ̂i, λ̂i+m′ and λ̂i+2m′ , i = 1, · · · ,m′ as follows :

λ̂i =


kL if i = iL

kℓ − kℓ+1 if i = iℓ, ℓ = 1, . . . , L− 1

0 otherwise

(9)

λ̂i+m′ =


0 if d2i > 0,

n2i − kℓ if d2i = 0 and iℓ−1 < i ≤ iℓ, ℓ = 1, . . . , L

n2i if d2i = 0 and i > iL

(10)
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λ̂i+2m′ =

{
0 if d1i > 0

n1i +
∑m′

j=i λ̂j if d1i = 0
(11)

Conditions (8c) and (8f) are satisfied by Algorithm 2. Condition (8e) is also satisfied since
k1 ≥ · · · ≥ kL > 0 (Lemma 1 (e)) and kℓ ≤ n2iℓ ≤ n2i (Lemma 1 (b)) if iℓ−1 < i ≤ iℓ. Al-
gorithm 2 always gives ĥ1i = 0 if d1i = 0 and λ̂i+2m′ = 0 if d1i > 0 from (11), so condi-
tion (8h) is satisfied. If d2i = 0, ĥ2i < 0 only when i = iℓ for some ℓ and kℓ = n2iℓ . So
in this case, λ̂i+m′ = 0 from (10), which can lead to (8g). From (9), λ̂i ̸= 0 when i = iℓ.
However,

∑iℓ
j=1(ĥ2j − ĥ1j) = 0, so condition (8d) is also satisfied. From (9), we also know

that
∑m′

j=i λ̂j = kℓ and
∑m′

j=i λ̂j = 0 if i ≥ iL. If d1i = 0, then the condition (8a) is −n1i −∑m′

j=i λ̂j + λ̂i+2m′ = 0, which is satisfied with definition of λ̂i+2m′ in (11). If d1i > 0, then
λ̂i+2m′ = 0 from (11), so the condition (8a) is also satisfied. Similarly, the condition (8b) is
satisfied.

All KKT conditions are satisfied at the solution from Algorithm 2, and (7) reaches the global
minimum since the optimization function and all constraints are convex.

Lemma 4. From Theorem 3 and Algorithm 2, {ĥ1i, i = 1, . . . ,m1} is the unique C-NPMLE of
h1i and {ĥ2i, i = 1, . . . ,m2} is the unique MC-NPMLE of h2i under the stochastic ordering
constraint.

Proof. In this proof, we first remove some unnecessary stochastic ordering constraints; then we
show that k̂i =

∑m′

j=i λ̂j are unique; last we discuss the uniqueness of the C-NPMLE of h1i and
the MC-NPMLE of h2i.

For any C-NPMLE, ĥ1i = 0 if d1i = 0, because λ̂i+m′ = n1i +
∑m′

j=i λ̂j > 0 if i ≤ m1. So∑i
j=1(ĥ2j − ĥ1j) ≤ 0 for d1i = 0 will be automatically satisfied given

∑i
j=1(ĥ2j − ĥ1j) ≤ 0

for d1i > 0 and ĥ1i, ĥ2i ≤ 0.
Thus for d1i = 0, the condition (8d) is not necessary, or we can simply set λ̂i = 0. Based on

this setting of λ̂i, we show that k̂i =
∑m′

j=i λ̂j is unique.

Suppose k̂i is not unique, then we can find two sets of {k̂i} and {k̃i} from {λ̂i} and {λ̃i}
that satisfy the KKT conditions with corresponding solutions {ĥgi} and {h̃gi}. Let i∗ = min(i :

k̂i ̸= k̃i). Without loss of generality, assume k̂i
∗
> k̃i

∗ ≥ 0. Then
i∗−1∑
j=1

(h̃2j − h̃1j) = 0. (12)

Because λ̃i∗−1 = k̃(i
∗−1) − k̃i

∗
= k̂(i

∗−1) − k̃i
∗
> k̂(i

∗−1) − k̂i
∗
= λ̃i∗−1 ≥ 0.

Let î = min{i ≥ i∗ :
∑i

j=1(ĥ2 − ĥ1) = 0, d1i > 0}. Then λ̂j = 0 for j = i∗, . . . , î from
condition (8d). So

k̂i
∗
= · · · = k̂î > k̃i

∗
≥ · · · ≥ k̃î (13)

and λ̃i+m′ = n2i − k̃i > n2î − k̂î ≥ 0 from condition (8b) if d2i = 0, i = i∗, . . . , î. So

h̃2i = 0 if d2i = 0, i = i∗, . . . , î (14)
from condition (8g). Therefore,

î∑
j=1

(h̃2j − h̃1j) =
i∗−1∑
j=1

(h̃2j − h̃1j) +
î∑

j=i∗

(h̃2j − h̃1j) =
î∑

j=i∗

(h̃2j − h̃1j) (from (12))
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=
î∑

j=i∗

{log(1− d2j/(n2j − k̃j)− log(1− d1j/(n1j + k̃j)} (from (14))

>

î∑
j=i∗

{log(1− d2j/(n2j − k̂j)− log(1− d1j/(n1j + k̂j)} (from (13))

≥
î∑

j=i∗

(ĥ2j − ĥ1j) ≥
i∗−1∑
j=1

(ĥ2j − ĥ1j) +
î∑

j=i∗

(ĥ2j − ĥ1j) = 0.

which contradicts condition (8c). Thus k̂i is unique and ĥ1i is unique, because ĥ1i = log{1−
d1i/(n1i + k̂i)} if d1i > 0 and ĥ1i = 0 if d1i = 0.

Also ĥ2i = log{1− d2i/(n2i − k̂i)} if d2i > 0, and ĥ2i = 0 if d2i = 0 and k̂i < n2i (be-
cause λ̂i+m′ = n2i − k̂i > 0). Therefore, all C-NPMLEs may only differ from each other in
population 2 when d2i = 0 and k̂i = n2i.

If we sequentially set ĥ2i = min(
∑i

j=1 ĥ1j −
∑i−1

j=1 ĥ2j , 0) if d2i = 0 as in Theorem 3,
then

∑i
j=1 ĥ2j is maximized. Because if

∑i−1
j=1 ĥ2j is maximized, the maximum possible

value of
∑i

j=1 ĥ2j is min(
∑i−1

j=1 ĥ2j ,
∑i

j=1 ĥ1j), which can be obtained by setting ĥ2i =

min(
∑i

j=1 ĥ1j −
∑i−1

j=1 ĥ2j , 0) if d2i = 0. Since ĥ2i sequentially takes a unique value, the MC-
NPMLE is also unique.

The results of Theorem 1 (Theorem 2) can be directly obtained from Theorem 3 by treating
the sample size of stochastically smaller (larger) group goes to infinity and so the proofs are not
presented here.
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