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Throughout this supplementary material, we will rely on the notation set out in the main

manuscript.

1 Model and Algorithm Details

1.1 Joint Model:

Let Ci,j = {{µi′1,j}i′∈Ni,j
, {µ̃i′2,j}i′∈Ni,j

, {νi′2,j}i′∈Ne
i,j∩Sj}. We use notation Xj(µ2,j, µ̃2,j) to

denote the jth covariate vector which emphasizes its dependence on the parameters µ2,j and

µ̃2,j. The joint distribution of all the data and parameters is

M∏
j=1

nj∏
i=1

π(Yi,j | µi,j,Σj)π(Σj)π(µi,j | {µi′j}i′∈Ni,j
,Ψj)π(Ψj) (1)

×
M∏
j=1

ne
j∏

i=1

π(Wi,j | νi,j,∆j)π(∆j)π(νi,j | {νi,j}i′∈Ne
i,j
,Ωj)π(Ωj)

×
M∏
j=1

nj∏
i=1

π(Ỹi2,j | Yi1,j,µi1,j, µ̃i2,j,∆j)π(µ̃i2,j | µi1,j, Ci,j,Ωj)

×
M∏
j=1

π(dj | Xj(µ2,j, µ̃2,j),Ω2K)π(Ω2K),

where

[
Yi,j | µi,j,Σj

]
∼ N(µi,j,Σj), [Wi,j | νi,j,∆j] ∼ N(νi,j,∆j), (2)

[Σj] ∼W−1(I4, 5), [∆j] ∼W−1(I4, 5), (3)[
µi,j | {µi′j}i′∈Ni,j

,Ψj

]
∼ N

[
µ∗i,j, |Ni,j|−1Ψj

]
, µ∗i,j = |Ni,j|−1

∑
i′∈Ni,j

µi′,j, (4)[
νi,j | {νi,j}i′∈Ne

i,j
,Ωj

]
∼ N

(
ν∗i,j, |N e

i,j|−1Ωj

]
, ν∗i,j = |N e

i,j|−1
∑
i′∈Ne

i,j

νi′,j, (5)

[Ψj] ∼W−1(I4, 5), [Ωj] ∼W−1(I4, 5), (6)
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and

[
Ỹi2,j | Yi1,j,µi1,j, µ̃i2,j,∆j

]
(7)

∼ N
(
µ̃i2,j + ∆21,j (∆11,j)

−1 (Yi1,j − µi1,j

)
, ∆22,j −∆21,j(∆11,j)

−1∆12,j

)
,[

µ̃i2,j | µi1,j, Ci,j,Ωj

]
(8)

∼ N
(
µ̃∗i2,j + Ω21,j(Ω11,j)

−1(µi1,j − µ∗i1,j), |N e
i,j|−1(Ω22,j − Ω21,j(Ω11,j)

−1Ω12,j)
)
,[

dj | Xj(µ2,j, µ̃2,j),Ω2K

]
∼ N(ηjK , 1), (9)

where (
µ∗i1,j
µ̃∗i2,j

)
= |N e

i,j|−1

 ∑
i′∈Ne

i,j∩Sj

(
νi′1,j
νi′2,j

)
+

∑
i′∈Ne

i,j∩Hj

(
µi′1,j

µ̃i′2,j

) (10)

and ηjK is defined in (41).

1.2 Stage I:

For stage I parameters, some of the full conditional distributions have nice distributional

forms from which we can directly sample, others require a Metropolis-Hastings update. The

algorithm we use to draw stage I parameters is thus an hybrid Metropolis-within-Gibbs

algorithm.

1.2.1 Updating Σj

By conjugacy, it is straightforward to derive the full conditional for the covariance matrix

Σj for subject j. A priori, Σj ∼W−1 (I4, 5). Combining this prior with the data distribution
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(first distribution in (2)), we obtain

π
(
Σj |

{
µi,j

}nj

i=1
, {Yi,j}nj

i=1

)
∝

nj∏
i=1

π(Yi,j | µi,j,Σj)π(Σj)

∝ |Σj|−nj/2 exp

{
−0.5

nj∑
i=1

(Yi,j − µi,j)
TΣ−1

j (Yi,j − µi,j)

}
×

|Σj|−
5+4+1

2 exp
{
−0.5 tr(Σ−1

j )
}

= |Σj|−(nj+10)/2 exp

{
−0.5 tr

(
Σj
−1

[
nj∑
i=1

(Yi,j − µi,j)(Yi,j − µi,j)
T + I4

])}
,

which is the kernel of an inverse Wishart distribution. Let

S1,j =

nj∑
i=1

(
Yi,j − µi,j

) (
Yi,j − µi,j

)T
.

Then, [
Σj |

{
µi,j

}nj

i=1
, {Yi,j}nj

i=1

]
∼W−1 (S1,j + I4, nj + 5) . (11)

1.2.2 Updating Ψj

Given the prior Ψj ∼W−1(I4, 5) we can easily derive its full conditional:

π
(
Ψj |

{
µi,j

}nj

i=1

)
∝

nj∏
i=1

π(µi,j | Ψj, {µi′,j}i′∈Ni,j
)π(Ψj) = π

({
µi,j

}nj

i=1
| Ψj

)
π(Ψj)

∝ |Ψj|−nj/2 exp

{
−0.25

∑
i∼i′

(µi,j − µi′,j)
TΨj

−1(µi,j − µi′,j)

}
×

|Ψj|−10/2 exp
{
−0.5 tr(Ψ−1

j )
}

= |Ψj|−(nj+10)/2 exp

{
−0.5 tr

(
Ψ−1
j

[
0.5
∑
i∼i′

(µi,j − µi′,j)(µi,j − µi′,j)
T + I4

])}
,

where we have generalized results from Higdon et al. (1997) to obtain

π
({

µi,j

}nj

i=1
| Ψj

)
∝ |Ψj|−nj/2 exp

{
−0.25

∑
i∼i′

(µi,j − µi′,j)
TΨj

−1(µi,j − µi′,j)

}
.

4



Let S2,j = 0.5
∑

i∼i′
(
µi,j − µi′,j

) (
µi,j − µi′,j

)T
. Then,

[
Ψj |

{
µi,j

}nj

i=1

]
∼W−1 (S2,j + I4, nj + 5) . (12)

1.2.3 Updating µi,j

Recall that the summary statistic vector, Xj, depends on Ω1j only through {µi2,j}
nj

i=1 and

{µ̃i2,j}
nj

i=1. The full conditional of µi,j is

π(µi,j | {µi′,j}i′∈Ni,j
,Yi,j,Σj,Ψj, dj, µ̃i2,j,Ω2K) (13)

∝ π(Yi,j | µi,j,Σj)π(µi,j | {µi′,j}i′∈Ni,j
,Ψj)π(dj | Xj(µ2,j, µ̃2,j),Ω2K)

×π(Ỹi2,j | Yi1,j,µi1,j, µ̃i2,j,∆j)π(
{
µ̃i2,j

}nj

i=1
|
{
µi1,j

}nj

i=1
, {νi2,j}i∈Sj ,Ωj)

∝ π
(
µi,j | Σj,Ψj,Yi,j, {µi′,j}i′∈Ni,j

)
π(dj | Xj(µ2,j, µ̃2,j),Ω2K) (14)

×π(Ỹi2,j | Yi1,j,µi1,j, µ̃i2,j,∆j)π(
{
µ̃i2,j

}nj

i=1
|
{
µi1,j

}nj

i=1
, {νi2,j}i∈Sj ,Ωj),

which does not have a nice distributional form from which we can easily sample and so we

resort to a Metropolis-Hastings update. Note that the first term in (14) does have a nice

distribution form:

π
(
µi,j | Σj,Ψj,Yi,j, {µi′,j}i′∈Ni,j

)
∝ π(Yi,j | µi,j,Σj)π(µi,j | Ψj, {µi′,j}i′∈Ni,j

)

∝ exp
{
−0.5(Yi,j − µi,j)

TΣj
−1(Yi,j − µi,j)

}
×

exp
{
−0.5|Ni,j|(µi,j − µ∗i,j)

TΨ−1
j (µi,j − µ∗i,j)

}
= exp

{
−0.5

[
µT
i,j(Σ

−1
j + |Ni,j|Ψ−1

j )µi,j

−2µT
i,j

(
Σ−1
j Yi,j + |Ni,j|Ψ−1

j µ∗i,j
)]}

,

which is the kernel of a normal distribution. Thus

[
µi,j | Σj,Ψj,Yi,j, {µi′,j}i′∈Ni,j

]
∼

N
[(
|Ni,j|Ψj

−1 + Σj
−1
)−1 (|Ni,j|Ψj

−1µ∗i,j + Σj
−1Yi,j

)
,
(
|Ni,j|Ψj

−1 + Σj
−1
)−1
]
. (15)
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Therefore, we propose a new value of µprop
i,j from (15), which simplifies the acceptance prob-

ability and results in a high acceptance rate. The acceptance probability is given by

αµ = min {1,R} , (16)

where the superscript prop represents a new proposed sample and current represents the

current sample and

R =
π(dj | Xj(µ{−i}2,j,µ

prop
i2,j , µ̃2,j),Ω2K)π(Ỹi2,j | Yi1,j,µ

prop
i1,j , µ̃i2,j,∆j)

π(dj | Xj(µ{−i}2,j,µ
current
i2,j , µ̃2,j),Ω2K)π(Ỹi2,j | Yi1,j,µcurrent

i1,j , µ̃i2,j,∆j)

×
π
({

µ̃i2,j

}nj

i=1
| µprop

i1,j ,
{
µk1,j

}nj

k=1
, {νi2,j}i∈Sj Ωj

)
π
({

µ̃i2,j

}nj

i=1
| µcurrent

i1,j ,
{
µk1,j

}nj

k=1
, {νi2,j}i∈Sj Ωj

) .
1.2.4 Updating νi,j

For healthy tissue voxels, analogous to (15), the full conditional of νi,j for voxel i ∈ N e
i′,j∩Hj,

is: [
νi,j | Ωj,∆j,Wi,j, {νi′,j}i′∈Ne

i,j

]
∼

N
[(
|N e

i,j|Ω−1
j + ∆j

−1
)−1 (|N e

i,j|Ω−1
j ν∗i,j + ∆−1

j Wi,j

)
,
(
|N e

i,j|Ω−1
j + ∆−1

j

)−1
]
. (17)

While for voxel i ∈ N e
i′,j ∩ Sj, we have that the full conditional of νi,j is

π(νi,j | {νi′,j}i′∈Ne
i,j
,Wi,j,∆j,Ωj, {µ̃i2,j}i′∈Ni

, µ̃i2,j, {µi′1,j}i′∈Ni
,µi1,j) (18)

∝ π(Wi,j | νi,j,∆j)π(νi,j | {νi′,j}i′∈Ne
i,j
,Ωj)π

({
µ̃i2,j

}nj

i=1
|
{
µi1,j

}nj

i=1
, {νi2,j}i∈Sj ,Ωj

)
∝ π

(
νi,j | ∆j,Ωj,Wi,j, {νi′,j}i′∈Ne

i,j

)
π
({

µ̃i2,j

}nj

i=1
|
{
µi1,j

}nj

i=1
, {νi2,j}i∈Sj ,Ωj

)
, (19)

which does not have a nice distributional form. However, the first term in (19) has distri-

bution (17). Thus, we propose a new value νpropi2,j , i ∈ N e
i′,j ∩ Sj from (17) and accept it with

probability:

αν = min

1,
π
({

µ̃i2,j

}nj

i=1
|
{
µi1,j

}nj

i=1
,νpropi2,j , {νk2,j}k∈Sj ,Ωj

)
π
({

µ̃i2,j

}nj

i=1
|
{
µi1,j

}nj

i=1
,νcurrenti2,j , {νk2,j}k∈Sj ,Ωj

)
 . (20)
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1.2.5 Updating ∆j

The full conditional distribution of the covariance matrix ∆j for subject j is

π(∆j | {Wi,j}
ne
j

i=1, {νi,j}
ne
j

i=1, {Ỹi2,j}
nj

i=1, {Yi1,j}
nj

i=1, {µi1,j}
nj

i=1, {µ̃i2,j}
nj

i=1) (21)

∝
ne
j∏

i=1

π(Wi,j | νi,j,∆j)π(∆j)

nj∏
i=1

π(Ỹi2,j | Yi1,j,µi1,j, µ̃i2,j,∆j)

∝ π(∆j | {Wi,j}
ne
j

i=1, {νi,j}
ne
j

i=1)

nj∏
i=1

π(Ỹi2,j | Yi1,j,µi1,j, µ̃i2,j,∆j), (22)

which does not have a nice distributional form from which to draw. However, the first term

in (22) has an inverse Wishart distribution:

[
∆j | {Wi,j}

ne
j

i=1, {νi,j}
ne
j

i=1

]
∼ W−1

(
S3,j + I4, n

e
j + 5

)
, (23)

where S3,j =
∑ne

j

i=1 (Wi,j − νi,j) (Wi,j − νi,j)
T for all i ∈ H ∪ S. Therefore, we propose a

new value of ∆prop
j from (23) and accept this value with probability

α∆ = min

{
1,

nj∏
i=1

π(Ỹi2,j | Yi1,j,µi1,j, µ̃i2,j,∆
prop
j )

π(Ỹi2,j | Yi1,j,µi1,j, µ̃i2,j,∆
current
j )

}
. (24)

1.2.6 Updating Ωj

From (1), we have

π(Ωj | {νi,j}
ne
j

i=1, {µi1,j}
nj

i=1, {µ̃i2,j}
nj

i=1, {νi′2}i′∈Ne
i ∩Sj) (25)

∝
ne
j∏

i=1

π(νi,j | {νi,j}i′∈Ne
i,j
,Ωj)π(Ωj)π

({
µ̃i2,j

}nj

i=1
|
{
µi1,j

}nj

i=1
, {νi2,j}i∈Sj Ωj

)
∝ π(Ωj | {νi,j}

ne
j

i=1)π
({

µ̃i2,j

}nj

i=1
|
{
µi1,j

}nj

i=1
, {νi2,j}i∈Sj Ωj

)
. (26)

The first term in (26) has an inverse Wishart distribution:

[
Ωj | {νi,j}n

e

i=1

]
∼W−1

(
S4,j + I4, n

e
j + 5

)
, (27)
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Thus we propose a new value Ωprop
j from (27) and accept this value as a draw from the full

conditional with probability

αΩ = min

1,
π
({

µ̃i2,j

}nj

i=1
|
{
µi1,j

}nj

i=1
, {νi2,j}i∈Sj ,Ω

prop
j

)
π
({

µ̃i2,j

}nj

i=1
|
{
µi1,j

}nj

i=1
, {νi2,j}i∈Sj ,Ω

current
j

)
 (28)

1.2.7 Updating Ỹi2,j and µ̃i2,j

Now we derive the conditional predictive distribution of Ỹi2,j and the posterior distribution

of µ̃i2,j. Since under the null, we define the joint distribution of Yi1,j and Ỹi2,j by[(
Yi1,j

Ỹi2,j

)
|
(
µi1,j

µ̃i2,j

)
,

(
∆11,j ∆12,j

∆21,j ∆22,j

)]
∼ N

[(
µi1,j

µ̃i2,j

)
,

(
∆11,j ∆12,j

∆21,j ∆22,j

)]
, (29)

where Yi1,j = (Yi11,j, Yi12,j)
T, representing the baseline diffusion and perfusion intensities at

voxel i, while Ỹi2,j =
(
Ỹi21,j, Ỹi22,j

)T

is the predicted null response at time point 2. Let

(
µ∗i1,j
µ̃∗i2,j

)
= |N e

i,j|−1

 ∑
i′∈Ne

i,j∩Sj

(
νi′1,j
νi′2,j

)
+

∑
i′∈Ne

i,j∩Hj

(
µi′1,j

µ̃i′2,j

) . (30)

The prior for the mean vector in (29) is[(
µi1,j

µ̃i2,j

)
|
(
µ∗i1,j
µ̃∗i2,j

)
,

(
Ω11,j Ω12,j

Ω21,j Ω22,j

)]
∼ N

[(
µ∗i1,j
µ̃∗i2,j

)
, |N e

i,j|−1

(
Ω11,j Ω12,j

Ω21,j Ω22,j

)]
. (31)

The conditional distribution of Ỹi2,j given Yi1,j and model parameters has a nice distribu-

tional form from which we can directly sample. It is a normal distribution (Rao (1973),

Chapter 8):

[
Ỹi2,j | Yi1,j,µi1,j, µ̃i2,j,∆j

]
(32)

∼ N
(
µ̃i2,j + ∆21,j (∆11,j)

−1 (Yi1,j − µi1,j

)
, ∆22,j −∆21,j(∆11,j)

−1∆12,j

)
.
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The posterior distribution of µ̃i2,j is

π(µ̃i2,j | Ỹi2,j,Yi1,j,µi1,j, µ̃i2,j, Ci,j,∆j,Ωj, dj,Xj(µ2,j, µ̃2,j),Ω2K) (33)

∝ π(Ỹi2,j | Yi1,j,µi1,j, µ̃i2,j,∆j)π(µ̃i2,j | µi1,j, Ci,j,Ωj)π(dj | Xj(µ2,j, µ̃2,j),Ω2K)

∝ π(µ̃i2,j | Ỹi2,j,Yi1,j,µi1,j, µ̃i2,j, Ci,j,∆j,Ωj)π(dj | Xj(µ2,j, µ̃2,j),Ω2K). (34)

We propose a new value µ̃prop
i2,j from the first term in (34) which has a normal distribution:[

µ̃i2,j | Ỹi2,j,Yi1,j,µi1,j, µ̃i2,j, Ci,j,∆j,Ωj

]
(35)

∼ N
(
θi2,j + Λi21,j

(
Λi11,j

)−1 (
µi1,j − θi1,j

)
, Λi22,j − Λi21,j

(
Λi11,j

)−1
Λi12,j

)
,

where

Λi,j =

(
Λi11,j Λi12,j

Λi21,j Λi22,j

)
=

[
|N e

i,j|
(

Ω11,j Ω12,j

Ω21,j Ω22,j

)−1

+

(
∆11,j ∆12,j

∆21,j ∆22,j

)−1
]−1

and

θi,j =

(
θi1,j
θi2,j

)
= Λi,j

[
|N e

i,j|
(

Ω11,j Ω12,j

Ω21,j Ω22,j

)−1(
µ∗i1,j
µ̃∗i2,j

)
+

(
∆11,j ∆12,j

∆21,j ∆22,j

)−1(
Yi1,j

Ỹi2,j

)]
.

We then accept this proposed value with probability

αµ̃ = min

{
1,

π(dj | Xj(µ2,j, µ̃{−i}2,j, µ̃
prop
i2,j ),Ω2K)

π(dj | Xj(µ2,j, µ̃{−i}2,j, µ̃
current
i2,j ),Ω2K)

}
. (36)

1.3 Checking Covariance Structures

Next we check whether the covariance structures are similar (see the discussion in the main

manuscript under the heading “Predicting tumor response under the ‘null’ ”). Note that all

the calculations in this part are for each subject j. We suppress the subject subscript j to

simplify notation.

To investigate whether Σ11 and ∆11 are similar as well as Ψ11 and Ω11 as these describe

the baseline residual covariances and spatial covariances, we compare the posterior expected
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values of these leading sub-matrices after fitting our model to the data. Assume

Σ
(t)
11 =

(
σ

(t)
11 σ

(t)
12

σ
(t)
21 σ

(t)
22

)
, ∆

(t)
11 =

(
δ

(t)
11 δ

(t)
12

δ
(t)
21 δ

(t)
22

)
,

Ψ
(t)
11 =

(
ψ

(t)
11 ψ

(t)
12

ψ
(t)
21 ψ

(t)
22

)
, Ω

(t)
11 =

(
ω

(t)
11 ω

(t)
12

ω
(t)
21 ω

(t)
22

)
,

where σ
(t)
12 = σ

(t)
21 , δ

(t)
12 = δ

(t)
21 ,ω

(t)
12 = ω

(t)
21 , ψ

(t)
12 = ψ

(t)
21 , and (t) indicates tth posterior draw.

We computed the root mean squared relative difference between the three unique ele-

ments in the leading 2 × 2 sub-matrices, where the mean is computed over draws from the

posterior. The relative root mean squared difference between the leading 2× 2 sub-matrices

of ∆ and Σ (relative to ∆) is calculated as:

rms1 =

√√√√ 1

3T

T∑
t=1

2∑
j≥i

2∑
i=1

(
σ

(t)
ij − δ

(t)
ij

δ
(t)
ij

)2

,

and the relative root mean squared difference between the leading 2 × 2 sub-matrices of Ω

and Ψ (relative to Ω) is calculated as:

rms2 =

√√√√ 1

3T

T∑
t=1

2∑
j≥i

2∑
i=1

(
ψ

(t)
ij − ω

(t)
ij

ω
(t)
ij

)2

.

1.4 Summary Statistics

To compute the Kullback-Leibler divergence, we create two histograms with the poste-

rior draws of µi2h and µ̃i2h; one for diffusion, h = 1 and one for perfusion, h = 2. The

bin width is b = 3.5σ/n1/3 (Scott (1979)) where σ is the standard deviation of all draws

of µi2h and µ̃i2h and n is number of tumor voxels. Let (µmin2h , µmax2h ) denote the range of

the histogram corresponding to image type h, where µmin2h = min({µ̃i2h}ni=1, {µi2h}ni=1) and

µmax2h = max({µ̃i2h}ni=1, {µi2h}ni=1). The Kullback-Leibler divergence for image type h is ap-

proximated by
∑

` P`h ln (P`h/Q`h), where the summation is over all bins and P`h is the
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proportion of the {µ̃i2h}ni=1 that fall in bin ` and Q`h is the proportion of the {µi2h}ni=1 that

fall in bin `. If P`h = 0, we set P`h ln(P`h/Q`h) to zero and if Q`h = 0, we set Q`h = 1.0e−5

so that the divergence is well-defined. Thus:

dKLD =
∑
`

P`1 ln(P`1/Q`1) (37)

pKLD =
∑
`

P`2 ln(P`2/Q`2). (38)

The conditional diffusion and perfusion statistics are straightforward to calculate:

cDS = n−1

n∑
i=1

I [µi21 > q0.975 (µ̃i21)] (39)

cPS = n−1

n∑
i=1

I [µi22 < q0.025 (µ̃i22)] . (40)

1.5 Stage II:

The GNLM-BMARS model with K bases functions is:

π(Zj = 1 | Xj,Ω2K) = g(ηjK), ηjK =
K∑
k=0

βkBk(Xj),

Bk(Xj) =

{
1, k = 0,∏Lk

l=1[slk(Xjwlk
− tlk)]+ , k = 1, 2, . . . , K.

(41)

1.5.1 Updating the latent vector d

Introduce a continuous latent variable, dj, such that [dj | Xj,Ω2K ] ∼ N (ηjK , 1) for each j.

Let d = (d1, . . . , dM). Define the conditional distribution of Zj given dj by

π(Zj = 1 | dj) = 1 if dj > 0, and = 0 if dj ≤ 0. (42)

Marginalizing (42) over dj is equivalent to π(Zj = 1 | Xj,Ω2K) in (41):

π(Zj = 1 | Xj,Ω2K) =

∫ ∞
−∞

π(Zj = 1 | dj)π(dj | Xj,Ω2K)ddj = Φ(ηjK).
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It is equally easy to show that

π(dj | Zj = 1,Xj,Ω2K) = π(dj | Xj,Ω2K)I(dj > 0)/

∫ ∞
0

π(dj | Xj,Ω2K)ddj

and

π(dj | Zj = 0,Xj,Ω2K) = π(dj | Xj,Ω2K)I(dj ≤ 0)/

∫ 0

−∞
π(dj | Xj,Ω2K)ddj

which are densities of truncated normal distributions. That is,

[dj | Zj = zj,Xj,Ω2K ] ∼
{

N(ηjK , 1) truncated at the left by 0 if zj = 1
N(ηjK , 1) truncated at the right by 0 if zj = 0

. (43)

1.5.2 Updating βK, ν and λ

A priori, [βK | v,K] ∼ N(0, vIK+1). By definition, [dj | Xj,Ω2K ] ∼ N(ηjK , 1), independently,

so that the distribution of the latent vector [d | X ,Ω2K ] ∼ N(BKβK , IM). Therefore,

π(βK |d, v,ΘK ,X ) ∝ π(βK | v,K)π(d | X ,Ω2K)

∝ exp
{
−0.5

[
v−1βK

TβK + (d− BKβK)T(d− BKβK)
]}

∝ exp
{
−0.5(βK −m∗K)T(V ∗K)−1(βK −m∗K)

}
(44)

where

V ∗K = [(vIK+1)−1 + BT
KBK ]−1, (45)

m∗K = V ∗KBT
Kd. (46)

Thus,

[βK | d, v,ΘK ,X ] ∼ N(m∗K , V
∗
K). (47)

Equation (44) follows from the identity

v−1βK
TβK + (d− BKβK)T(d− BKβK) =

(βK −m∗K)T(V ∗K)−1(βK −m∗K) + dTd− (m∗K)T(V ∗K)−1m∗K . (48)
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Standard conjugacy results state that the full conditional distribution of v−1 is gamma:

[v−1 | βK , K] ∼ Gamma[0.001 + 0.5(K + 1), 0.001 + 0.5βT
KβK ], (49)

and that

[λ | K] ∼ Gamma(1 +K, 0.2 + 1). (50)

1.5.3 RJMCMC moves

Now we derive the acceptance probabilities for the birth and death moves in the RJMCMC

algorithm. The general form of the acceptance probability for the reversible jump algorithm

is given in Green (1995). All parameters vectors in ΘK change dimension as well as βK . At

each iteration we randomly (with probability 0.5) choose to increase the number of BMARS

bases by 1 (a birth move) or decrease it by 1 (a death move).

We begin by defining the acceptance probability of a birth move. The number of bases

K, is allowed to increase by one to K + 1. Thus, the dimension of the parameter space Ω2K

changes by 2 + 3LK+1: βK and LK increase in dimension by 1 while wK , sK and tK increase

in dimension by LK+1. However, as we show below, βK and βK+1 will be integrated out

of the respective posterior distributions and thus we do not need to propose a new βK+1

in the birth step. If the birth proposal is accepted, a new vector βK+1 is drawn from it

full conditional (47). Thus the dimension of the parameter space increases by 1 + 3LK+1

in the birth step. The RJMCMC algorithm relies on what Green (1995) calls dimension

matching. We propose a random vector, say U, of length 1 + 3LK+1 and append it to ΘK .

A bijective transformation, T, is then contrived between ΘK ∪ U and ΘK+1. The rate of

acceptance crucially depends on this transformation and finding a good transformation can

be the most difficult aspect of the RJMCMC algorithm. The transformation should be easy

to compute, its Jacobian should be readily accessible and the acceptance rates of the moves

should be high. The Jacobian of this transformation is multiplied into the acceptance ratio
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of the proposal to account for the transformation. However, as will become evident in the

next paragraph, T is the identity transformation and thus the Jacobian is 1. Integrating

out βK and βK+1 from the posterior distribution is key to achieving a high acceptance rate

(Denison et al. (1998), Denison et al. (2002), Holmes and Denison (2003) and Mallick et al.

(1999)).

Suppose there are K bases in the BMARS model. We first describe how we draw the

augmentation vector U. Each basis can consist of either a main effect or an interaction. We

first draw an interaction level, LK+1 ∈ {1, 2} for the K + 1 basis with

π(LK+1 = 1) = π(LK+1 = 2) = 1/2. (51)

Next, we draw LK+1 elements, {w1,K+1, . . . , wLK+1,K+1}, from the set {1, 2, 3, 4} without

replacement. These are the covariate elements from the vectors Xj, j = 1, . . . ,M . Each

subset of size LK+1 from {1, 2, 3, 4} is drawn with equal probability
(

4
LK+1

)−1
. Thus,

π(w1,K+1 = w | LK+1 = 1) = 1/4 for w = 1, 2, 3, 4. (52)

π[(w1,K+1, w2,K+1) = (w,w′) | LK+1 = 2] = 1/6 (53)

for (w,w′) = (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4).

Next, we draw knot locations: draw tl,K+1, at random, from {X1wl,K+1
, . . . , XMwl,K+1

} for

l = 1, . . . , LK+1. That is,

π(tl,K+1 = Xjwl,K+1
| wl,K+1) = 1/M for l = 1, . . . , LK+1. (54)

Finally, we draw sl,K+1 ∈ {−1, 1} with the following probabilities:

π(sl,K+1 = −1) = π(sl,K+1 = 1) = 1/2 for l = 1, . . . , LK+1. (55)

Set U = (LK+1, w1,K+1, . . . , wLK+1,K+1, t1,K+1, . . . , tLK+1,K+1, s1,K+1, . . . , sLK+1,K+1). Let q(U)
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denote the proposal probability of the set of parameters U. Then

q(U) = π(LK+1)π[(w1,K+1, . . . , wLK+1,K+1) | LK+1]

LK+1∏
l=1

π(tl,K+1 | wl,K+1)π(sl,K+1).

The acceptance probability of the birth of a new BMARS basis can now be written as

α = min

{
1,
π(d | X ,Ω2,K+1)π(ΘK+1 | λ)π(βK+1 | v,K + 1)π(v−1)π(λ)πdeath

π(d | X ,Ω2K)π(ΘK | λ)π(βK | v,K)π(v−1)π(λ)q(U)πbirth

}
. (56)

Now πdeath = 0.5 is the probability of a proposing a death and πbirth = 0.5 is the probability

of a proposing a birth. Furthermore, it is easy to show that

π(ΘK+1 | λ)πdeath

π(ΘK | λ)q(U)πbirth

= λ/(K + 1),

so that the acceptance probability reduces to

α = min

{
1,
π(d | X ,Ω2,K+1)π(βK+1 | v,K + 1)λ

π(d | X ,Ω2K)π(βK | v,K)(K + 1)

}
. (57)

Also, it is straightforward to show that

π(d | X ,Ω2K)π(βK | v,K) ∝ (2π v)−(K+1)/2 exp
{
−0.5

[
v−1βT

KβK +

(d− BKβK)T(d− BKβK)
]}

= (2π v)−(K+1)/2 exp
{
−0.5(βK −m∗K)T(V ∗K)−1(βK −m∗K)

}
×

exp
{
−0.5

[
2dTd− (m∗K)T(V ∗K)−1m∗K

]}
, (58)

where the equality follows from (48). Now integrating out βK+1 and βK from their respective

joint full conditionals (58) the acceptance probability simplifies to:

αbirth = min

{
1,

π(d | X ,Ω2,K+1, v)λ

π(d | X ,Ω2K , v)(K + 1)

}
= min

{
1,
|V ∗K+1|1/2 exp(aK − aK+1)λ

v1/2|V ∗K |1/2(K + 1)

}
(59)

where aK = (dTd−m∗TK (V ∗K)−1m∗K)/2.
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For a death move suppose there are K BMARS basis excluding the intercept term. We

randomly draw one of the current K BMARS bases to delete each with probability 1/K.

The acceptance probability of this death step is

αdeath = min

{
1,

v1/2|V ∗K−1|1/2K
|V ∗K |1/2 exp(aK−1 − aK)λ

}
. (60)

1.5.4 Updating Knot Locations

The final step in the algorithm for stage II is to propose a move of a knot location. To

move a knot we first draw a basis at random each with probability 1/K. Suppose the chosen

basis has index k. Given this basis we draw a factor, `, from the set {1, . . . , Lk} with equal

probability (if there is a single factor (Lk = 1), ` = 1 with probability 1, if there are two

factors (Lk = 2), ` = 1 with probability 0.5). Propose to move knot tlk from its current

position by sampling a new position from {X1wlk
, . . . , XMwlk

} each with probability 1/M

(note that there is probability of 1/M that the knot will not move from its current position.

The current knot location is tlk. Call the proposed position tproplk . Update column k of BK

and call the propose matrix Bprop

K . Compute the proposed vector m∗,propK and matrix V ∗,propK

from (46) and (45) using Bprop

K . Compute aprop

K = (dTd −m∗,propK
T

(V ∗,propK )−1m∗,propK )/2. The

acceptance probability of this move is

αmove = min

{
1,
|V ∗,propK |1/2 exp(aK − aprop

K )

|V ∗K |1/2

}
. (61)

2 Cross-validated Prediction

Cross-validated prediction was introduced by Gelfand et al. (1992). Following the notation

in the parent manuscript, the predictive probability that Zj = 1 given Z{−j} and Y is

π(Zj = 1 | Z{−j},Y) =

∫ ∫
π(Zj = 1 | Ω1j,Ω2)π(Ω1,Ω2 | Z{−j} = z{−j},Y)dΩ1dΩ2. (62)
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Note that after marginalizing over the hyperprior parameters v and λ, we have

π(Ω1,Ω2 | Z = z,Y) ∝
M∏
j=1

π(Zj = zj,Yj | Ω1j,Ω2)π(Ω1j)π(Ω2)

π(Ω1,Ω2 | Z{−j} = z{−j},Y) ∝
M∏

i=1;i 6=j

π(Zi = zi,Yi | Ω1i,Ω2)π(Ω1i)π(Ω2)×

π(Yj | Ω1j)π(Ω1j)

and

π(Ω1,Ω2 | Z = z,Y)

π(Ω1,Ω2 | Z{−j} = z{−j},Y)
=
π(Zj = zj,Yj | Ω1j,Ω2)

π(Yj | Ω1j)
= π(Zj = zj | Ω1j,Ω2). (63)

Now rewrite (62) using (63):

π(Zj = 1 | Z{−j},Y)

=

∫ ∫
π(Zj = 1 | Ω1j,Ω2)

[
π(Ω1,Ω2|Z{−j}=z{−j},Y)

π(Ω1,Ω2|Z=z,Y)

]
π(Ω1,Ω2 | Z = z,Y)dΩ1dΩ2∫ ∫ [π(Ω1,Ω2|Z{−j}=z{−j},Y)

π(Ω1,Ω2|Z=z,Y)

]
π(Ω1,Ω2 | Z = z,Y)dΩ1,Ω2

(64)

=

∫ ∫
π(Zj = 1 | Ω1j,Ω2) [1/π(Zj = zj | Ω1j,Ω2)]π(Ω1,Ω2 | Z = z,Y)dΩ1dΩ2∫ ∫

[1/π(Zj = zj | Ω1j,Ω2)]π(Ω1,Ω2 | Z = z,Y)dΩ1dΩ2

(65)

≈
1
T

∑T
t=1 π

(
Zj = 1 | Ω(t)

1j ,Ω
(t)
2

)
/π
(
Zj = zj | Ω(t)

1j ,Ω
(t)
2

)
1
T

∑T
t=1 1/π

(
Zj = zj | Ω(t)

1j ,Ω
(t)
2

) . (66)

We note that in (64) the denominator equals 1 and that (65) only depends on the posterior

distribution of the parameters given the entire data. Furthermore, (66) is computed from the

MCMC draws from the posterior distribution of the parameters given the full data. Thus, we

only need to run the algorithm once, on the entire data set, and estimate the cross-validated

predictive probability for each subject j using (66).

3 Pseudocode

Initialize parameters
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Stage I:

For each subject

1. Set µi = Yi, i = 1, . . . , n.

2. Set νi = Wi i = 1, . . . , ne.

3. Set Σ = Ψ = ∆ = Ω = I4.

End for each subject

Stage II:

1. Set K = 0 (intercept term only).

2. Set v = 1.

3. Set λ = 5.

4. Set dj = 1 if Zj = 1 an dj = −1 if Zj = 0, for j = 1, . . . ,M .

5. Draw β from distribution (47) (β = β0 when K = 0 and B0 = B0(Xj) =

(1, . . . , 1)T, a vector of ones of length M).

Iterate For t = 1 to 100, 000 discarding the first 50, 000 as burn-in.

Stage I:

Iterate over all subjects, j = 1, . . . ,M . (Each subject has her/his own set of

parameters. The subject index j is suppressed to be consistent with the main

manuscript).

1. For tumor ROI:

(a) For each voxel i = 1, . . . , n, propose µprop
i from (15).

Accept µprop
i with the probability (16).

(b) Draw [Σ | {µi}
n
i=1 , {Yi}ni=1] from (11).
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(c) Draw [Ψ | {µi}
n
i=1] from (12).

2. For healthy tissue ROI:

(a) Draw
[
νi | Ω,∆,Wi, {νi′}i′∈Ne

i

]
, i ∈ N e

i′ ∩H, from (17).

(b) For each i ∈ N e
i′ ∩ S, propose νpropi from (17).

Accept νpropi with probability (20).

(c) Propose Ωprop from (27).

Accept Ωprop with probability (28).

(d) Propose ∆propfrom (23).

Accept ∆ with probability (24).

3. Predict tumor response under null:

(a) Draw
[
Ỹi2 | ·

]
, i = 1, . . . , n, from (32).

(b) For i = 1, . . . , n, propose µ̃prop
i2 from (35).

Accept µ̃prop
i2 with probability (36).

4. Calculate the summary statistics for each subject j (covariate vector Xj):

(a) Calculate dKLD using equation (37) and pKLD using equation (38).

(b) Calculate cDS using equation (39) and cPS using equation (40).

End iterate over subjects.

Stage II: Assume there are currently K basis functions.

Iterate 10 times (oversample) q = 1 to 10.

1. Attempt a Move step by altering a spline basis function if K > 0, else

go to 2:

(a) Draw a BMARS basis, k, at random, with equal probability 1/K, from

the set of bases {1, . . . , K}.
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(b) Draw a factor, l, at random, with equal probability 1/Lk, from the set

of factors {1, . . . , Lk}.

(c) Draw a knot location, tlk, at random, with equal probability 1/M ,

from {X1wlk
, . . . , XMwlk

}.

(d) If move (new knot location) accepted with probability αmove (61).

i. Draw latent variables [dj | Zj = zj,Xj,Ω2K ], j = 1, . . . ,M , from

(43).

ii. Draw [v−1 | βK , K] from (49).

iii. Draw [βK | d, v,ΘK ,X ] from (47).

iv. Draw [λ | K] from (50).

else, keep current knot location.

2. RJMCMC: Draw U ∼ Bernoulli(0.5) if K > 0 otherwise set U = 0.

(a) if U = 0 Birth step.

i. Draw LK+1 according to (51).

ii. If LK+1 = 1, draw w1,K+1 | LK+1 from the set {1, 2, 3, 4} with equal

prob. 1/4, see (52).

else draw (w1,K+1, w2,K+1) | LK+1, with equal prob., from the set

{(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}, see (53).

iii. Draw the knot point(s) tl,K+1, l = 1, . . . , LK+1, see (54).

iv. Draw sl,K+1, l = 1, . . . , LK+1, see (55).

v. Accept the birth with probability αbirth (59).

(b) if U = 1 Death step.

i. Remove kth basis from the model with probability 1/K.
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ii. Accept the death with probability αdeath (60).

3. Draw latent variables [dj | Zj = zj,Xj,Ω2K ], j = 1, . . . ,M , from (43).

4. Draw [v−1 | βK , K] from (49).

5. Draw [βK | d, v,ΘK ,X ] from (47).

end oversample

End Iterate

4 Image Processing

All the MR images are spatially co-registered by using the pretreatment anatomical images

as the reference data set. This step allows all images of a given patient to be viewed and

analyzed from a fixed frame of reference. The co-registration was performed by using the

“mutual information for automatic multi-modality image fusion” (MIAMI FUSE) program

(Meyer et al. (1997)). After co-registration, tumors were manually segmented by a neu-

roradiologist. Only the intersection of the segmented tumors at the two time points were

retained as our tumor ROI. To define the healthy tissue ROI, we reflected the tumor ROI to

the contralateral hemisphere of the brain where the axis of reflection is determined on axial

slices of the brain (Figure 1). The axial midline of the brain is not perfectly aligned with the

vertical axis. Therefore, after reflection, we visually inspected whether the healthy tissue

ROI intersected any non-brain tissue regions such as the ventricles, meninges or the skull. If

it intersected any of these structures, we translated the ROI a small amount, but as large as

necessary, to remove the intersection. Translations of 3 to 10 voxels was all that was required

for our data set. Seventeen of the 47 subjects required healthy tissue ROI translations. A

sensitivity analysis was conducted where the healthy tissue ROIs were translated by varying

amounts (up to 20 voxels), while ensuring that the ROIs were completely within brain tissue.
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The distribution of healthy tissue intensities were similar and the varying translations did

not substantively affect the posterior distributions of the summary statistics.

5 Identifying Ỹi2 and µ̃i2

There is an issue of identifiability when simultaneously predicting Ỹi2 and estimating µ̃i2

(tumor response under the “null”) in the healthy tissue ROI. To see this, note that

π
[
Ỹi2, µ̃i2 | Yi1,µi1, ·

]
∝ π

[(
Yi1

Ỹi2

)
,

(
µi1

µ̃i2

)
| ·
]

= π

[(
Yi1

Ỹi2

)
|
(

µi1

µ̃i2

)
, ·
]
π

[(
µi1

µ̃i2

)
| ·
]
.

Now, [(
Yi1

Ỹi2

)
|
(

µi1

µ̃i2

)
, P−1

]
∼ N

[(
µi1

µ̃i2

)
, P−1

]
[(

µi1

µ̃i2

)
|
(

µ∗i1
µ̃∗i2

)
, Q−1

]
∼ N

[(
µ∗i1
µ̃∗i2

)
, Q−1

]
,

where P and Q are the inverses of the covariances in (29) and (31). Let(
µ∗i1
µ̃∗i2

)
= |N e

i ∩H|−1
∑

i′∈Ne
i ∩H

(
µi′1

µ̃i′2

)
. (67)

Then

π
[
Ỹi2, µ̃i2 | Yi1,µi1, ·

]
∝ exp

[
−0.5

(
Yi1 − µi1

Ỹi2 − µ̃i2

)T

P

(
Yi1 − µi1

Ỹi2 − µ̃i2

)]
×

exp

[
−0.5

(
µi1 − µ∗i1
µ̃i2 − µ̃∗i2

)T

Q

(
µi1 − µ∗i1
µ̃i2 − µ̃∗i2

)]
, (68)

for all i ∈ H. Now it is obvious that the density (68) is invariant when an arbitrary constant

vector δ is added to Ỹi2 and µ̃i2 for all i ∈ H. Hence, Ỹi2 and µ̃i2 are not identifiable.
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To solve this identifiability problem, we expand the healthy tissue ROI by a one voxel

thick shell and estimate the posterior distribution of the parameters for the healthy tissue

expanded ROI. In (68), further condition on the νi, i ∈ S so that (67) becomes

(
µ∗i1
µ̃∗i2

)
= |N e

i |−1

 ∑
i′∈Ne

i ∩S

(
0
νi′2

)
+

∑
i′∈Ne

i ∩H

(
µi′1

µ̃i′2

) . (69)

We can no longer add a constant δ to Ỹi2 and µ̃i2 for all i ∈ H without changing the density

(68). To see this, consider a voxel i in H such that N e
i ∩ S is non-empty. For this voxel, µ̃∗i2

depends on some νi, i ∈ S, on which we have conditioned, therefore, the second exponential

in (68) is no longer invariant to the addition of an arbitrary constant to all the µ̃i2, i ∈ H.

Furthermore, this lack of invariance propagates to all µ̃i2, i ∈ H. In fact, in the PWDP or

mPWDP model, the joint prior distribution of the means is not a proper distribution (Besag

(1993)) and the means are not, a priori, identifiable. However, the posterior is a proper

distribution (Besag (1993)) and the means are a posteriori identifiable. The difference here

in the predictive setting is that some of the data, the Ỹi2, are not observed.

6 Simulation Studies and Sensitivity Analyses

Simulation Studies: We perform a series of simulation studies to assess the mPWDP

model performance. To simplify the simulations, we only consider the Kullback-Leibler

divergence statistics. The cDS and cPS are completely dependent on the mPWDP model

and are extremely complicated to generate, if at all possible (we do not see a way), in a

proper simulation study. Under each simulation scenario, we generate N = 1000 simulated

data sets and compute the average relative mean squared error (rMSE) and relative bias
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(rBias) of the KLD statistics:

rMSE = N−1

N∑
i=1

[(
KLDi −KLDtrue

i

)
/KLDtrue

i

]2
rBias = N−1

N∑
i=1

(
KLDi −KLDtrue

i

)
/KLDtrue

i ,

where KLDi is the posterior mean and KLDtrue
i is the true KLD from the ith simulation.

We also calculate the percentage of time that the 95% HPD (Highest Probability Density)

interval covers the truth.

Without loss of generality, we assume that there is only one image type. Rather than

construct ROIs, we randomly select ROIs from the glioma data. Given a simulation scenario,

we generate 1000 simulated image pairs—baseline and week 3 images (full brain images).

For each simulated image pair, one tumor/healthy tissue ROI pair is selected with equal

probability from the set of observed ROIs from the glioma data set. These ROIs are then

placed within the brain template. To simulate a baseline image, we first assume that the

baseline mean intensities of all tumor voxels, µi1, and healthy tissue voxels, νi1, are inde-

pendently and identically distributed as N(1, 3). We then generate week 3 mean images

assuming different location shifts between the underlying distributions of all voxels in the

healthy tissue and tumor ROIs: µi2 = µi1 + φi, where φi ∼ N (θ, σ2); νi2 = νi1 + ϕi, where

ϕi ∼ N (0.05, σ2). Next, spatial correlation is induced in the images by smoothing each im-

age using an isotropic Gaussian kernel at three levels of smoothing: FWHM = 3, 5 and 7mm.

FWHM is an acronym for full width at half maximum. For isotropic normally distributed

data with a common variance σ2 it is defined by FWHM = 2
√

2 ln 2σ. We consider these

smoothed images as the truth. The voxel means of the smoothed images are distinguished

from the voxel means of the unsmoothed images by the superscript ∗. The true KL diver-

gence statistic is then calculated as the marginal distribution difference between tumor ROI

voxels µ∗i2 and healthy ROI voxels ν∗i2, i = 1, . . . , n.
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To obtain the final simulated images, we add random noise to the smoothed images:

Wi1 = ν∗i1 + εi1, Wi2 = ν∗i2 + εi2, Yi1 = µ∗i1 + εi1 and Yi2 = µ∗i2 + εi2, where εi1 ∼ N (0, 0.03),

εi2 ∼ N (0, 0.04), εi1 ∼ N (0, 0.05) and εi2 ∼ N (0, 0.06). The values of all the parameters in

the simulation study are determined based on the posterior parameter estimates given the

glioma data. We then apply our mPWDP model on the simulated data sets with different

combinations of location and scale shifts, θ, σ2, as well as the three levels of smoothing (Table

1). When θ = 0.05 and σ2 = 0.01 the simulated data follow the null response. From Table

1 (mPWDP model), we can see that the relative MSE and bias are relatively small, and

decrease as the location shift θ increases. Moreover, the 95% HPD interval coverage is close

to the nominal 95% level.

Next, we compare the mPWDP model with a simpler model that ignores spatial corre-

lation. This simpler model is [Yi2 | Yi1] ∼ N(Yi1 + η1, σ
2
1) and [Wi2 | Wi1] ∼ N(Wi1 + η2, σ

2
2),

independently. We predict tumor response, [Ỹi2 | Yi1] ∼ N(Yi1 + η̂2, σ̂
2
2), under the “null”

by using the MLE estimates η̂2 and σ̂2
2 of η2 and σ2

2, respectively. The KL divergence is

then estimated between the marginal distributions of the observed tumor ROI voxels and the

predicted (under the null) tumor ROI voxels. The relative MSE and bias are tabulated in

the last two columns of Table 1. Ignoring the spatial correlation in the data results in rMSE

and rBias that are an order of magnitude larger than when spatial correlation is accounted

for, demonstrating the importance of accounting for this correlation.

Sensitivity Analysis: In stage II, the only informative prior is that on K, the number

of BMARS basis: [K | λ] ∼ Poisson(λ), λ ∼ Gamma(α, β) where we set α = 1, β = 0.2.

Given the small sample size, 47 patients, we believe that a parsimonious model is in order.

A prior on K that favors a large number of basis functions may result in over-fitting of the

data and a potential decrease in predictive power (Denison et al. (2002), Chapter 2). Thus,

we choose to place an informative prior on K with a small mean. We do note, however, that
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marginalizing the joint distribution of [K,λ] over λ results in a negative binomial distribution

for K. Further, we estimate λ as well. Hierarchically modeling K and λ in this fashion

removes some of the dependence of λ, and hence of K, on the prior and places more weight

on the data.

We perform a sensitivity analysis on our choice of prior for λ, and hence, marginally,

on K. We change the values of α and β as well as the distribution of λ to a uniform prior

distribution on [0, 10]. Correct classification results are tabulated in Table 2. The overall

classification rate is not very sensitive to these changes in the prior distribution of λ. For

this sensitivity analysis, at most one extra subject is misclassified.

We also assess prediction sensitivity to the thresholds used to derive cDS and cPS. Recall

the thresholds used are the 97.5th and the 2.5th percentile, respectively, of the conditional

distribution of the means of the predicted tumor response at week 3 under the null. We

change these thresholds to the 99.5th/0.5th and to the 95.0th/5.0th percentile. The CCRcv is

reduces to 0.74 for both sets of thresholds—two more subjects are misclassified. Nevertheless,

this is still an acceptable classification rate and is higher than all other (simpler) models

considered in the main manuscript.

In stage I, we assign inverse Wishart distributions with identity scale matrix and 5

degrees of freedom to the the covariance matrices in our model. We argue that these priors

have little influence on the posterior due to the large number of tumor voxels. We now

provide support in favor of our argument via a sensitivity analysis. We assess the change in

the marginal posterior distributions of the four summary statistics as we vary the a priori

degrees of freedom of the covariance matrices. We set the degrees of freedom to four values:

0, 5, 10 and 15. In Figures 2 and 3 we graph the marginal posterior densities of the four

summary statistics for two subjects. In Figure 2 we show them for the subject with the

smallest tumor and in Figure 3 we show them for a randomly selected subject. The marginal
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posterior distributions of the four statistics are minimally affected, and this is true for all 47

patients.
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Figure 1: Obtaining the healthy tissue ROI. Left image: original T1-weighted contrast
enhanced MRI; Middle image: overlay the original MRI with tumor mask to obtain the tumor
region of interest; Right image: mirror the tumor mask to the contralateral hemisphere of
the brain to get the healthy tissue region of interest.
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Figure 2: Sensitivity of the summary statistics to the prior number of degrees of freedom
for the covariance matrices Σ, Ψ, Ω and ∆ for the subject with the smallest tumor. The
statistics are robust to changes in the degrees of freedom due to the large number of voxels
in the tumors.
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Figure 3: Sensitivity of the summary statistics to the prior number of degrees of freedom for
the covariance matrices Σ, Ψ, Ω and ∆ for a randomly selected subject. The statistics are
robust to changes in the degrees of freedom due to the large number of voxels in the tumors.
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Table 1: Simulation studies — rMSE and rBias of KLD in stage I of the mPWDP model vs.
a spatial independence model.

FWHM1 θ σ2 mPWDP model Independence model
rMSE (SD)2 rBias (SD)3 Coverage4 rMSE (SD)5 rBias (SD)6

3 mm

0.05 0.01 1.41(2.59) 4.60(9.01) 95.0 65.2(20.5) 74.5(19.2)
0.05 0.05 1.48(2.65) 4.66(9.09) 95.1 66.1(20.7) 75.0(20.3)
0.05 0.10 1.53(2.67) 4.73(9.15) 95.3 66.6(21.4) 75.7(20.5)
0.10 0.01 1.27(2.43) 4.47(8.67) 95.2 56.1(18.9) 70.2(15.6)
0.10 0.05 1.31(2.50) 4.51(8.83) 95.4 57.9(19.1) 70.7(16.3)
0.10 0.10 1.33(2.52) 4.58(8.99) 94.3 59.2(19.5) 72.1(17.1)
0.50 0.01 1.08(2.30) −4.13(6.79) 95.1 37.8(28.3) −36.4(36.6)
0.50 0.05 1.15(2.31) −4.17(6.98) 95.5 38.1(28.9) −38.3(37.5)
0.50 0.10 1.19(2.33) −4.25(7.23) 95.3 39.3(29.5) −38.1(38.3)

5 mm

0.05 0.01 1.67(2.60) 4.71(9.67) 95.3 70.3(21.2) 81.2(19.9)
0.05 0.05 1.78(2.71) 4.81(9.77) 95.6 71.2(21.7) 81.9(20.6)
0.05 0.10 1.75(2.67) 4.78(9.72) 95.4 72.0(22.4) 82.3(21.1)
0.10 0.01 1.45(2.51) 4.63(9.27) 95.3 57.9(20.1) 75.6(16.0)
0.10 0.05 1.59(2.47) 4.69(9.61) 95.7 59.3(20.5) 76.0(17.5)
0.10 0.10 1.62(2.58) 4.75(9.93) 94.4 61.5(21.0) 77.1(18.0)
0.50 0.01 1.13(2.32) −4.21(7.65) 95.3 38.7(29.3) −39.6(37.1)
0.50 0.05 1.19(2.36) −4.30(8.01) 95.5 39.5(31.5) −40.5(38.0)
0.50 0.10 1.24(2.41) −4.36(8.36) 95.4 40.1(33.3) −41.6(38.5)

7 mm

0.05 0.01 2.17(2.95) 5.10(10.3) 94.4 74.4(23.5) 85.3(20.8)
0.05 0.05 2.25(3.01) 5.18(10.7) 94.5 74.9(24.0) 86.1(21.3)
0.05 0.10 2.24(3.02) 5.19(10.9) 95.8 75.5(24.6) 86.5(21.6)
0.10 0.01 1.99(2.80) 4.93(9.77) 94.6 61.7(21.0) 83.8(17.9)
0.10 0.05 2.06(2.81) 5.05(9.82) 94.4 62.5(22.3) 84.1(18.4)
0.10 0.10 2.13(2.87) 4.08(9.91) 94.7 63.8(23.1) 85.0(19.6)
0.50 0.01 1.42(2.60) −4.56(8.93) 95.7 44.7(31.3) −48.5(41.8)
0.50 0.05 1.51(2.71) −4.67(9.09) 95.4 45.6(32.0) −49.7(42.7)
0.50 0.10 1.73(2.75) −4.73(9.15) 94.3 47.8(33.1) −50.6(44.0)

1full width at half-maximum. In the imaging literature, this a a common way to describe the variability of
an isotropic gaussian. If the common variance is σ, then FWHM = 2

√
2 ln 2σ.

2,3,5,6×10−2. That is, all numbers are to be multiplied by .01
4Percentage of time that the 95% HPD interval of the posterior draws of KLD covers the truth.
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Table 2: Sensitivity analysis of different hyperprior distributions for λ in the proposed model.
CCRcv denotes the leave-one-out cross-validated classification rate.

Prior of λ Prior mean Prior variance CCRcv
Gamma(0.6, 0.2) 3.0 15.0 0.766
Gamma(0.8, 0.2) 4.0 20.0 0.787
Gamma(1.0, 0.2) 5.0 25.0 0.787
Gamma(1.2, 0.2) 6.0 30.0 0.787
Gamma(1.4, 0.2) 7.0 35.0 0.787
Gamma(1.8, 0.2) 8.0 45.0 0.766
Gamma(0.5, 0.1) 5.0 50.0 0.787
Gamma(2, 0.2) 10.0 50.0 0.766
Gamma(2, 0.4) 5.0 12.5 0.787
U [0, 10] 5.0 8.3 0.766
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