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Basal cell nevus syndrome (BCNS), also known as Gorlin syn-

drome (OMIM #109400) is a well-described rare autosomal

dominant condition due to haploinsufficiency of PTCH1.

With the availability of comparative genomic hybridization

arrays, increasing numbers of individuals with microdeletions

involving this locus are being identified. We present 10 previ-

ously unreported individuals with 9q22.3 deletions that include

PTCH1. While 7 of the 10 patients (7 females, 3 males) did not

meet strict clinical criteria for BCNS at the time of molecular

diagnosis, almost all of the patients were too young to exhibit

many of the diagnostic features. A number of the patients

exhibited metopic craniosynostosis, severe obstructive hydro-

cephalus, and macrosomia, which are not typically observed in

BCNS. All individuals older than a few months of age also had

developmental delays and/or intellectual disability. Only facial

features typical of BCNS, except in those with prominent mid-

foreheads secondary to metopic craniosynostosis, were shared

among the 10 patients. The deletions in these individuals ranged

from 352 kb to 20.5Mb in size, the largest spanning 9q21.33

through 9q31.2. There was significant overlap of the deleted

segments among most of the patients. The smallest common

regions shared among the deletions were identified in order to

localize putative candidate genes that are potentially responsible

for eachof thenon-BCNS features. Thesewere a 929 kb region for

metopic craniosynostosis, a 1.08Mb region for obstructive

hydrocephalus, and a 1.84Mb region for macrosomia. Addi-

tional studies are needed to further characterize the candidate

genes within these regions. � 2011 Wiley Periodicals, Inc.
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INTRODUCTION

Basal cell nevus syndrome (BCNS) is a well described cancer

predisposition and multiple malformation syndrome, manifested

by a constellation of findings that include lamellar calcification of

the falx cerebri at less than 20 years of age, palmar and/or plantar

pits, jawkeratocysts, basal cell carcinomas at less than30 years of age

(or more than four in a lifetime), cleft lip and/or cleft palate,

vertebral and rib anomalies, pre- or postaxial polydactyly, ocular

anomalies, occipitofrontal circumference of greater than 97th

centile, and an increased risk of childhood medulloblastomas

(primitive neuroectoderm tumor, PNET), lymphomesenteric or

pleural cysts, andovarianor cardiacfibromas [Kimonis et al., 2004].

Various dysmorphic facial features have beendescribed, including a

broad forehead with bossing, hypertelorism, epicanthal folds,

midfacial hypoplasia, short, high-set upturned nose, a long and

tented philtrum, and coarsened facies. This condition is known to

result from autosomal dominant loss of function mutations in the

PTCH1 gene and fromhaploinsufficiencyof thehumanhomolog to

the Drosophila patched protein [Hahn et al., 1996; Wicking et al.,

1997].While the average ageof clinical diagnosisofBCNS is25years

of age, with the increasing use of array-based comparative genomic

hybridization technology (CGH), individualswith contiguous gene

deletions that include PTCH1 are being identified at earlier ages,

often before manifestation of the characteristic age-dependent

BCNS features [Slater et al., 2000]. To date, 27 patients have

been reported with 9q22 deletions that either met clinical criteria

for diagnosis of BCNS, or include PTCH1 within the deleted

interval, excluding intragenic deletions [Sekhon et al., 1982; Ying

et al., 1982; Farrell et al., 1991; Robb et al., 1991; Evans et al., 1993;

Kroes et al., 1994; Shimkets et al., 1996; Paoloni-Giacobino et al.,

2000; L’Hermine et al., 2002;Olivieri et al., 2003;Haniffa et al., 2004;

Midro et al., 2004; Boonen et al., 2005; Cajaiba et al., 2006; Chen

et al., 2006; Redon et al., 2006; Fujii et al., 2007; Nowakowska et al.,

2007; de Ravel et al., 2009; Musani et al., 2009; Shimojima et al.,

2009; Yamamoto et al., 2009].

Recently, several authors have reported an emerging phenotype

separate from that ofBCNSresulting frommicrodeletions of 9q22.3

that include PTCH1 [Redon et al., 2006; Shimojima et al., 2009;

Yamamoto et al., 2009]. Macrosomia in these individuals has been

hypothesized to result from de novo deletions of the paternal allele

specifically, possibly due to the loss of one or more as-of-yet

unidentified imprinted genes, or possibly PTCH1 itself [Redon

et al., 2006; Yamamoto et al., 2009].

Here we report on 10 new patients with 9q22.3 deletions that

include PTCH1, of varying ethnic backgrounds and age at diag-

nosis, whose deletionswere analyzed by array CGHafter referral for

evaluation by a medical geneticist. We characterize new phenotypic

features not consistentwithBCNS (metopic craniosyntosis, obstruc-

tive hydrocephalus, macrosomia, and developmental delay), and

map the common areas of overlap among these deletions.

MATERIALS AND METHODS

Study Design
Patient 7 was ascertained by the lead and corresponding authors at

an outpatient referral for consultation by a medical geneticist. The

other authorswere then contacted directly for solicitationof similar

patients for inclusion in a retrospective case review series study,

after approval of the study and consent forms by the Stanford

Institutional Review Board (IRB). The other nine affected individ-

uals had been previously evaluated by one or more of the other

authors after referral from a medical geneticist evaluation. Clinical

andmolecular diagnosis of BCNSwas confirmed by detection of an

interstitial 9q22.3 deletion that included PTCH1 by array-based

CGH, including BAC array, 44K oligonucleotide array, 105K

oligonucleotide array, and/or SNP array; some individuals had

more than one of these analyses. The only study inclusion criterion

was a confirmed molecular diagnosis by one of the described

methods in a previously unreported individual.

Medical records regarding the affected individual’s phenotype,

including clinic notes by the authors, cytogenetic study reports, and

facial photographs if explicitly authorized, were sent by each

physician for compilation and review by the lead author. In

compiling the phenotypic features for each patient, macrosomia

was defined as both height or length andweight of greater than 95th

centile.

Analysis
Each individual’s reported deletion breakpoints were put into the

UCSC Genome Browser (http://genome.ucsc.edu/) NCBI36/hg18

March 2006 build for analysis, in accordance to the human genome

assembly used in the cytogenetic report for each patient [Kent et al.,

2002]. The isolated regions were then converted to the current

GRCh37/hg19 February 2009 human genome assembly to obtain

the revised breakpoints, using tools available at the Genome

Browser site. The revised, current build breakpoints were then

input into the NCBI MapViewer website for gene annotation

using human genome build 37.2 (http://www.ncbi.nlm.nih.gov/

mapview/). Basepairs described in this report are for the NCBI36/

hg18 March 2006 build.

RESULTS

The 10 affected individuals included 7 females and 3 males, who

ranged in age at time of initial geneticist evaluation from newborn

to 7 years. Their ages at the time of confirmed array-based molec-

ular diagnosis spanned from less than 1 month to 13 years.

Gestational ages at birth ranged from 37 to 41 weeks. Each of these

individuals was the only affected member in his or her family, and

the deletions were confirmed as de novo in the nine for whom

parental samples were obtained. The ethnic background was Euro-

peanCaucasian (8), oneofwhomwasMennonite,Mexican (1), and

Chinese (1). These findings are summarized in Table I.

Using the previously proposed diagnostic criteria of two major

features, or one major plus two minor features, only three indi-

viduals (Patients 4, 5, and 6) met a clinical diagnosis of BCNS

[Evans et al., 1993; Slater et al., 2000]. Eachpersonexhibited someof

the characteristic features of BCNS, which included absolute mac-

rocephaly (6/10), rib and/or vertebral anomalies (5/8), ocular

malformations (3/10), numerous basal cell nevi (3/10),mandibular

odontogenic keratocysts (3/10), Sprengel deformity (3/10), cardiac

fibromas (2/8), polydactyly (2/10), palmoplantar pits (2/10), and
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palatal clefting (2/10), among other features. Features not charac-

teristic of BCNS were metopic craniosynostosis, hydrocephalus,

macrosomia, and developmental delay with or without intellectual

disability. Trigonocephaly, resulting from metopic craniosynosto-

sis, was present in four individuals (Patients 1, 5, 7, and 8), each of

whom underwent corrective surgery. Obstructive hydrocephalus

was apparent in five individuals (Patients 2–5, 9), each of whom

required ventriculo-peritoneal shunting. One child, Patient 6, had

TABLE I. Summary of Patient Data

Features

Patient

1 2 3 4 5 6 7 8 9 10
Gender M F F M F F M F F F
Presenting age Birth 10 Days 2 Weeks 9 y Birth 9 mo 7 mo Birth 5 y 7 y
Race/Ethnicity Caucasian Caucasian Caucasian Mennonite Caucasian Chinese Mexican Caucasian Caucasian Caucasian
Diagnosis age 2 weeks 1 y 1 mo 9 y 13 y 2 y 2 y 2 mo 11 y 7 y
Last exam age 4 mo 5 y 9.5 mo 22 y 16 y 3 y 3 y 7 mo 13 mo N/A N/A
Deletion (Mb) 20.5 10.85 9.85 8.28 8.07 4.5 2.03 1.84 1.08 0.352
Metopic fusion þ � � � þ � þ þ � �
Hydrocephalus � þ þ þ þ � � � þ �
Macrosomia � � � � � þ þ/� þ � �
Delay ? Global Motora Global Global Global Global Motor Motor Motor
Intellect impaired ? þ ? þ þ ? ? ? � �
Molecular array BAC BAC, 105K 105K SNP 105K BAC, 105K BAC, 105K 105K 105K, MLPA 44K
BCNS FEATURES
Craniofacial

Bossing � þ þ þ � þ þ � � þ
Coarse face þ þ þ � þ � � � � �
Synophrys þ � � � � � � � � �
Epicanthal folds þ þ � � þ þb þ þ � �
Palpebral slanting � Down � � Up Down � � Down Up
Cleft Palate � � Uvula � � � � � �
Short nose þ þ � þ þ þ � þ � �
Philtrum:

Long þ þ � þ þ � � þ � �
Tented þ þ � � þ � � þ � �

Ears: low, angled þ � þ þ þ � � þ þ þ
Abnormal dentition ? � � � � � � þ þ �
Jaw keratocysts � � � þ þ � � � þ �
Macrocephaly � þ � þ þ þ þ þ � þ
Ocular anomalies � � Nerve � � � � Micro Retinal �

Skeletal
Rib anomaly þ ? � þ � þ þ ? þ �
Vertebral anomaly þ ? � � � þ � ? þ �
Sprengel deformity � � � þ � þ � � þ �
Pectus deformity � � þ þ � � � � � �
(Kypho)scoliosis þ þ � � � þ � � þ �
Polydactyly � � � � � þ � þ � �
Syndactyly � � � � � � � þ � �
Oligodactyly � � � þ þc � � � � �

Cardiac tumor RV � � � RA � � � ? ?
Dermatological

Basal cell Nevi � � � þ � þ þ � � �
Palmoplantar Pits � � � � � þ � � � þ

Neurological
Hypotonia þ þ þ � þ þ � � � �

þ, present; �, absent; ?, unknown or not assessed; 44K, 44K-oligonucleotide array; 105K, 105K-oligonucleotide array; BAC, bacterial artificial chromosome array; micro, microphthalmia and
optic nerve hypoplasia; MLPA, multiplex ligation-dependent probe amplification; N/A, not applicable; nerve, optic nerve anomaly; retinal, abnormal retinal myelination; RA, right atrial; RV, right
ventricular; SNP, single nucleotide polymorphism array.
aNot assessed for speech or other delays.
bEpicanthal folds were present, but were also consistent with patient’s ethnicity.
cBilateral thumb hypoplasia was present.
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mild ventricular enlargement that didnot require shunting.Macro-

somia was present in two individuals (6, 8), each of whom also had

macrocephaly. One child (Patient 7) had a height between the 90th

and 95th centiles, and a weight at the 98th centile. As this did not

meet our strict definition ofmacrosomia, his deletionwas excluded

from the overlap region analysis for macrosomia. In all eight

individuals who were older than a few months of age and who

could be fully assessed, developmental delays were apparent. Only

motor delays were seen in the children with the smallest deletions,

which in some cases resolved over time. Global motor, speech/

language, and social/behavioral impairments were observed in

those with the larger deletions. Intellectual disability was apparent

in the three globally delayed patients who were followed to school

age and older. Hypotonia was present in half of the individuals

(Table I).

Various dysmorphic facial features were present in a number of

patients, and included a broad forehead with bossing, vertical

forehead creases, epicanthal folds, angulated palpebral fissures,

micrognathia, and low-set and posteriorly rotated ears. Noted

among many of the patients were a short nose with the appearance

of being ‘‘high set,’’ and a long and tented philtrum (Table I; Fig. 1).

The facial features also coarsened over time in two individuals

(Patients 2, 8; Fig. 2).

Features present in some members of our population were

synophrys, hypertelorism, partial corpus callosum dysgenesis,

Chiari I malformation, seizures, joint hypermobility, camptodac-

tyly, ataxia, short stature, broad/webbed neck, and inguinal hernias

(data not shown). One child (6) had unilateral renal cysts, mild

ipsilateral ureterectasis that resolved spontaneously, and contrala-

teral mild renal pelviectasis. None of the other nine individuals had

any documented renal anomalies.

All of our reported individuals except Patient 9 had G-banded

chromosomal analysis. The deletions of Patients 1, 3, and 4 were

visible onhigh-resolutionanalysis. Theothershad lower-resolution

chromosomal analysis, and their deletions were not visible micro-

scopically (data not shown). Overall, the deletion sizes ranged from

352 kb, containing only PTCH1 and part of FANCC, to 20.5Mb,

spanning 273 genes, as illustrated (Fig. 3). Individual 3 also had a

second 44Kb deletion located at 9q21.3, which contained no genes

(data not shown). The smallest region of deletion overlap for the

five affected individuals with metopic craniosynostosis was 929 kb,

between bases 96,771,450 and 97,700,488, and which contained

FIG. 1. Five individuals with interstitial 9q22.3 deletions. Please note the short nose and long philtrum that is best observed in patients 1, 3, and 8, but

is alsopresent in patient 4, and the lowset andposteriorly rotated ears inall of the patients. Tenting of the philtrum is alsopresent inpatients 1and8.
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FIG. 2. Age progression in individuals with interstitial 9q22.3 deletions. A. Patient 2 at age 6 months and 19 months (top row, left-to-right), and at

34 months, 4 years, and 5 years (bottom row, left-to-right). Age progression in individuals with interstitial 9q22.3 deletions. B. Patient 5 at age

5 months (top and middle rows), 11 years (bottom left), and 16 years (bottom right). Again note the short nose and long, tented philtrum in both

patients.

FIG. 3. Schematic representation of thedeletions inaffected individuals. Thedeletions for eachaffected individual, listed on the left, are represented to

scale by horizontal bars of various colors, in comparison to a chromosome 9q ideogram along the top. Bars composed of two colors indicate the

presence of both features. The relative position and size of PTCH1 is represented by a vertical bar. Listed deletion breakpoints are according to the

NCBI 36/hg18 build.
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15 annotated genes other thanPTCH1. Therewas a commonarea of

deletionoverlapof 1.08Mbamongpatientswithobstructivehydro-

cephalus that contained 17 genes other than PTCH1. This region

localized to bases 96,848,332 through 97,930,074. The smallest

region of deletion overlap for the two patients with macrosomia

was 1.8Mb, located between bases 96,771,450 and 98,619,830. This

region contained 30 genes other than PTCH1.

DISCUSSION

We have expanded the phenotype of individuals with interstitial

9q22 deletions that contain PTCH1 to include metopic craniosy-

nostosis, obstructive hydrocephalus, and macrosomia, which are

separate from the typical features of BCNS. This would suggest that

there are genes other than PTCH1 in the deleted region that when

deleted contribute to these conditions.

The common area of overlap among the patients with metopic

craniosynostosis, resulting in trigonocephaly, was between base-

pairs 96,771,450 and 97,700,488. There are 15 genes other than

PTCH1 within this region. These are FANCC, encoding the

Fanconi anemia complementation group C protein, open reading

frames that encode a zinc aminopeptidase (c9orf3), a putative

repair/recombination helicase (c9orf102), and a nasopharyngeal

carcinoma-associated protein (c9orf130), four pseudogenes, two

hypothetical RNA-encoding genes (LOC100507319, LOC100507346),

one gene that is expressed in human heart and brain and encodes a

hypothetical protein of unknown function (LOC100506667), and

four microRNA genes. While there are no obvious candidate genes

among those listed, it is possible that the deleted regionmay include

one gene whose haploinsufficiency is but one of many factors that

influence the development of metopic craniosynostosis in affected

individuals, perhaps explaining why every individual who shared

our mapped minimal region for metopic craniosynostosis did not

demonstrate that finding. The presence of metopic craniosynos-

tosis in a substantial percentage of all reported individuals with

9q22.3 microdeletion is interesting. We do suggest that 9q22.3

microdeletion be included in the differential diagnosis for individ-

uals with metopic craniosynostosis in the absence of multiply

affected sutures, and as such, CGH studies may be indicated.

In comparison, the commonly deleted region among individuals

with obstructive hydrocephalus was located between 96,848,332

and 97,930,074. Within this region were the same three open

reading frames, four microRNA genes, FANCC, hypothetical pro-

tein gene, and one of the two hypothetical non-protein encoding

RNA genes which were also present in the deletions of individuals

with metopic craniosynostosis. Unique to this region was another

pseudogene, a non-protein coding RNA gene, and an additional

hypothetical RNA-encoding gene. Again, there are no obvious

candidate genes among them.

We note that asymmetric ventricles, dilated ventricles, and

dilation due to cerebral atrophy have been reported in the literature

on patients with the clinical diagnosis of BCNS [Chen et al., 2006].

We cannot determine whether all of these individuals have inter-

stitial deletions that contain PTCH1, as the diagnosis of BCNS was

purely clinical before the genetic etiology was identified [Hahn

et al., 1996]. Similarly, some of the 27 previously described indi-

viduals with known interstitial 9q22 deletions that contain PTCH1

by mapping or by BCNS diagnosis have had ventricular dilation of

varying degrees [Robb et al., 1991; Kroes et al., 1994; Midro et al.,

2004; Boonen et al., 2005; Cajaiba et al., 2006; Chen et al., 2006;

Redon et al., 2006; Fujii et al., 2007], or like many of our newly

reported patients, hydrocephalus requiring ventriculo-peritoneal

shunting [Farrell et al., 1991; Shimkets et al., 1996]. Without the

higher resolution mapping available with current technology, we

cannot refine the critical regions for those patients beyond those

large regions achieved by linkage analysis or BAC array-based

methods utilized in those studies. We do expect the critical region

to overlap with our proposed minimal intervals, however, due to

the large size of the reported deletions in the older case reports. In

two of the most recently described patients, mild dilation of one or

more ventricles was present, and linked to the presence of a space-

occupying lesion [Shimojima et al., 2009; Yamamoto et al., 2009].

Wedonot consider this to be obstructive hydrocephalus of a nature

similar to that in our described patients who required shunting,

though one of our patients (6) did have mild enlargement of the

ventricle and cerebral sulci (Table II). Overall, a higher proportion

of our newly reported individuals had more severe forms of

ventricular dilation requiring intervention than those reported

previously, whereas the earlier reports described a higher frequency

of less severe forms. This may be the result of the more severely

affected individuals being brought to medical attention at younger

ages in response to rapidly increasing head size, and/or seizures,

prompting additional evaluations for other abnormal phenotypic

features, and thus allowing diagnosis of 9q22.3 microdeletion

earlier than would otherwise be expected. Alternatively, milder

forms may only be ascertained incidentally as part of a brain

imaging evaluation for developmental delay or as part of the

neuroimaging for BCNS, may be generally underreported, or

may be missed altogether because such imaging is sometimes

difficult in developmentally delayed or impaired children who

are behaviorally noncompliant during the study. We suggest that

brain imaging be performed as part of the initial evaluation for

9q22.3microdeletion, and surveillancemonitoring of head circum-

ference be performed at all clinical visits (Table III).

We described two individuals with macrosomia, as pre-defined

by height or length and weight each at the 95th centile or greater.

The deletions of these children contained the common region of

basepairs 96,771,450 through 98,619,830. In addition to the pre-

vious 18 genes (other than PTCH1) described for the regions

common among affected individuals with metopic craniosynos-

tosis and among thosewith hydrocephalus, there were 12 genes that

were unique to this region. These included three pseudogenes, a

hypothetical RNA-encoding gene, and an open reading frame

(c9orf21) that encodes a protein with peroxiredoxin-like domains.

Also among the genes unique to this common deletion were the

genesHSD17B3, which encodes a 17-hydroxy-steroid dehydrogen-

ase; SLC35D2, which encodes an endoplasmic reticulum/Golgi

apparatus nucleotide sugar transporter; and, HABP4, encoding

an intracellular hyaluronan binding protein. Perhaps most inter-

estingly, also located within the region are CDC14B, encoding the

human homolog of a yeast cell division cycle protein, and ZNF510

and ZNF782, which encode novel zinc finger-containing proteins

that have been implicated in association studies with regard to

modulation of stature specifically within the Chinese population
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[Lei et al., 2009]. Of note, one of our two reported individuals with

macrosomia was Chinese.

Previous case reports have focused on correlating overgrowth in

individuals with 9q22.3 deletions that include PTCH1 with loss of

the paternal allele [Redon et al., 2006; Shimojima et al., 2009]. The

inference is that loss of one or more imprinted genes within the

region, perhaps even PTCH1, is a cause of macrosomia. In our

review of the 27 previously reported affected individuals, six had

macrosomia [Cajaiba et al., 2006; Chen et al., 2006; Redon et al.,

2006; Shimojima et al., 2009; Yamamoto et al., 2009]. Notably, this

number differs from those reviewed and reported by Shimojima

et al., as we included an individual with hemihyperplasia, and we

excluded the thirdpatient of Farrell et al. [Farrell et al., 1991;Cajaiba

et al., 2006]. This latter child had a birth length and weight of 90th

and 97th centiles, respectively, and her length had decreased to 75th

centile by 7months of age. Of the six individuals withmacrosomia,

TABLE III. Suggested Evaluations After a Diagnosis of 9q22.3 Microdeletion

Clinical concern Evaluation strategy
Hydrocephalus, ventricular dilation Brain imaging

Complete neurological evaluation
Cerebral tumorsa Surveillance monitoring of head circumference
Macrosomia, hemihyperplasia Surveillance monitoring of growth parameters
Metopic craniosynostosis Complete craniofacial assessment

Carefully consider cost versus benefit of radiographic imaging
Developmental delay Microarray/CGH of high resolution to confirm extent of deletion

Formal developmental assessment
Intellectual impairment Childhood intervention services referrals
Renal anomalies Renal ultrasound
Ovarian fibromaa Abdominal/pelvic ultrasound
Basal cell carcinomaa Periodic complete dermatological assessment

Avoidance of ionizing and UV radiation exposure
Cardiac anomalies, fibromaa Echocardiogram
Ocular anomaliesa Ophthalmological evaluation.
Skeletal anomaliesa Carefully consider cost versus benefit of radiographic imaging
Odontogenic keratocystsa

CGH, comparative genomic hybridization.
aIndicates a feature of BCNS.

TABLE II. Comparison of Patients With Interstitial 9q22.3 Deletions

Non-BCNS features

Affected individuals

This study Previous studies Total cumulative

Number Percent (%) Number Percent (%) Number Percent (%)
Metopic craniosynostosis 4/10 40 4/27 14.8 8/37 21.6
Ventricular dilationa

Hydrocephalus 5/10 50 2/27 7.4 7/37 18.9
Mild dilation 1/10 10 8/25b 32 9/35 25.7
Macrosomiac 2/10 20 6/27 22 8/37 21.6

Developmental delay
Motor only 3/8d 37.5 7/22e 31.8 10/30 33.3
Speech only 0/8 0 0/22 0 0/30 0
Global 5/8 62.5 14/23e 60.8 19/31 61.3
Intellectual disability 3/5 60 14/23e 60.8 17/28 60.7

aHydrocephalus refers to severe and obstructive ventricular dilation that required ventriculo-peritoneal shunting, whereas mild dilation did not, and may have been asymmetric,
or of only one ventricle.
bExcludes one case caused by cerebral atrophy and two cases caused by space-occupying masses.
cDefined as both height (length) and weight >95 percentile.
dExcludes patients with motor delay, but who were not old enough to assess speech and for other impairments.
eExcludes patients without clear description of delays and/or impairment.
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five had lost the paternal allele, though Yamamoto et al. did not

report the parent of origin for their patient’s allele [Farrell et al.,

1991; Cajaiba et al., 2006; Chen et al., 2006; Redon et al., 2006;

Shimojima et al., 2009; Yamamoto et al., 2009]. Three other

individualswith loss of thepaternal allele hadnormal orunreported

growth parameters [Shimkets et al., 1996; Olivieri et al., 2003; Fujii

et al., 2007]. In contrast, of the four people whowere known to have

lost thematernal allele, one was reported as having normal growth,

one was reported as having small stature, and the other two did not

have reported growth descriptions [Ying et al., 1982; Shimkets et al.,

1996; Midro et al., 2004; Fujii et al., 2007; Shimojima et al., 2009;

Yamamoto et al., 2009]. We did not determine the parental origin

for the deleted allele in our reported individuals, as these studies

were not originally performed for any of the individuals on whom

parental samples were available, and were outside of the scope

permitted by our institutional IRB-approved protocol and consent

for this retrospective study. In all of the previously reported

individuals with macrosomia for whom we could identify the

breakpoints from the published report, each shared the smallest

commonly deleted region identified in our two children with

macrosomia, though again, comparison with the earlier studies

before the use of array CGH technology is difficult [Chen et al.,

2006; Redon et al., 2006; Shimojima et al., 2009]. Based on all of the

reported patients to date, there is no consistent evidence for

imprinted genes located around or including PTCH1, as there

do not seem to be two distinct (opposite) phenotypes, each

segregating with loss of a particular parental allele, especially

with respect to growth. While we cannot definitively exclude the

possibility of candidate genes within the commonly deleted inter-

val, or their downstream effectors, being imprinted at this time,

there is no uniparental disomy 9 phenotype described the in the

medical literature [Wilkinson et al., 1996; Slater et al., 2000].We do

feel that additional study with regard to parent of origin for the

deleted alleles is warranted, and also suggest consideration of SNP

or array CGH as part of the evaluation of individuals with macro-

somia or generalized overgrowth. There is no evidence at this time

to determinewhether routine surveillance for abdominal tumors in

individuals with 9q22.3 microdeletion and macrosomia or hemi-

hyperplasia is warranted. It is expected that individuals with 9q22.3

microdeletion have the same or similar risk for tumor types that are

seen with increased frequency in individuals with BCNS, though

there is limited information available, given how few affected

individuals have been reported to date.

In all eight of our affected individuals who were of sufficient age

and could be adequately assessed, developmental delays and/or

intellectual disabilitywas present. The smallest deletion, containing

onlyPTCH1 and a portion of FANCC, was present in individual 10,

who exhibitedmotormilestone delays. It is likely that her delays are

related to PTCH1 haploinsufficiency alone. In our reported indi-

viduals with deletions of approximately 2Mb and larger, global

impairment, including impairment of speech and language, and in

the older individuals, intellectual disability, were present in addi-

tion to motor developmental delay. This phenomenon is not

unique to the specific genes within the deleted intervals, as numer-

ous contiguous gene deletion syndromes showmore severe impair-

mentwith increasing deletion sizes [Slavotinek, 2008;Musani et al.,

2009]. Our most severely affected person overall, with an approx-

imate 20.5Mb deletion, was too young to be fully assessed, but was

noted to have hypotonia and failure to thrive, and died in infancy of

complicationsof a respiratory illness.Hadhe lived, it is likely that he

would have had significant developmental and intellectual disabil-

ities in the future.

The majority of our reported individuals were female. While

equal numbers of affectedmales and females are expected, based on

the autosomal nature of the chromosome deletion, we cannot

explain this finding by any systemic ascertainment bias. Of the

27previously describedpeoplewith9q22deletions that causeBCNS

or include PTCH1, there were 14 males, 12 females, and 1 sex

unreported, showing no sex-related skewing.

Overall, as summarized in Table II, 40% of our population

demonstrated metopic craniosynostosis, compared to approxi-

mately 15% of the previously reported 27 individuals with inter-

stitial 9q22 deletions. In our reported affected individuals, half had

obstructive hydrocephalus, compared to approximately 7% of

those who have been previously reported. In contrast, almost a

third of the previously reported individuals presented with milder

forms,whereas only one child (10%) in our study did. Similar to the

previous reports, 20% of our population demonstrated macro-

somia of greater than 95th centile for height (or length) and for

weight. Developmental delay and/or irreversible intellectual

impairment was present to a similar degree both in our affected

individuals, and in those in the previous case reports, though direct

comparison is difficult because of limited data and the widely

variable ages of all of the patients.

It is unclear as to the mechanism which predisposes the 9q22.3

region to deletion. In silico analysis using the RepMask 3.27 tool

available on theUCSCGenomeBrowser (http://genome.ucsc.edu/)

identifiednumerous SINEs, largeLINEs, andLTRsflankingPTCH1

and adjacent genes in the region, which potentially could result in

recombinatory deletion and duplication events. Perhaps reflective

of a reciprocal recombination event to the 9q22.3 microdeletion, a

mother and child with the shared phenotype of microcephaly and

mild developmental delay was each reported to have a 360 kb

duplication of the 9q22.3 region that included PTCH1 and exon

1 of FANCC [Derwinska et al., 2009].

In summary,wedescribe10additional individualswithdeletions

involving 9q22 that include the PTCH1 gene. The findings in these

10 people broaden the phenotype to include metopic craniosynos-

tosis, hydrocephalus, macrosomia, and developmental delay with

intellectual disability.Whilemanyof the affected individuals shared

similar dysmorphic features that have been previously described

in patients with BCNS, no other unifying characteristic facial

phenotype was recognized, except with respect to that resulting

from metopic craniosynostosis. These findings have implications

for clinical care in individuals with 9q22.3 microdeletion

(summarized in Table III), as well as for identifying genes that

contribute to the expanded phenotype. Further studies are neces-

sary to further refine the smallest areas ofoverlap inorder to identify

the genes implicated in these findings.
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