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Abstract

Diabetic retinopathy (DR) is a leading cause of blindness in Western society. Since the prevalence of diabetes
continues to increase dramatically, the impact of DR will only worsen unless new therapeutic options are
developed. Recent data demonstrate that oxidative stress contributes to the pathology of DR and inhibition of
oxidative stress reduces retinal vascular permeability. However, direct mechanisms by which oxidative stress
alters the blood-retinal barrier (BRB) and increases vascular permeability remain to be elucidated. A large body
of evidence demonstrates a clear role for altered expression of cytokines and growth factors in DR, resulting in
increased vascular permeability, and the molecular mechanisms for these processes are beginning to emerge. The
pathology of DR is likely a result of metabolic dysregulation contributing to both oxidative stress and cytokine
production. This review will examine the evidence for oxidative stress, growth factors, and other cytokines in
tight junction regulation and vascular permeability in DR. Antioxid Redox Signal. 15, 1271-1284.

Introduction
The Retina

HE RETINA IS A TRANSPARENT, MULTI-LAYER TISSUE

flanked by the choroid and the vitreous body in the posterior
eye. This complex organ is designed to detect light and convert
this signal into electrical impulses that are then transmitted via the
optic nerve to the brain for interpretation of the image. In pri-
mates, the macula, which includes the fovea and foveola, pos-
sesses a high density of cones and is more sensitive in bright-light
conditions, providing acuity and color perception. The peripheral
retina operates in dim-light conditions and functions to detect
motion and peripheral vision. Figure 1 provides a fundus pho-
tograph of the normal human retina demonstrating the optic
nerve head, blood vessels, macula, fovea, and foveola.

A variety of cell types in the retina coordinate their activity
to achieve the conversion of light to neural signals. Neurons
including photoreceptors, ganglion, bipolar, horizontal, and
amacrine cells; macroglia including Miiller cells and astro-
cytes; microglia or resident macrophages; retinal pigment
epithelium (RPE), and microvascular cells including both
pericytes and endothelial cells (Fig. 2A) all interact to create
the light-stimulated neural impulse interpreted by the brain as
vision. The neurons are organized in layers creating the outer
nuclear layer (ONL) made of rods and cones, the inner nuclear
layer (INL) consisting of bipolar, horizontal, and amacrine
cells, and the ganglion cell layer (GCL). These neurons make
synaptic connections in the outer plexiform layer (OPL) and

the inner plexiform layer (IPL) (Fig. 2B). The rods also interact
with the RPE as part of the visual cycle to recover rhodopsin
after light signal transduction. Miiller cells and astrocytes
provide nutritional and regulatory support to neurons and
integrate vascular and neuronal signals. Microglia are resi-
dent macrophages that monitor the local environment and
provide immunomodulatory functions. Finally, the inner
retinal circulation stems from the central retinal artery, which
branches to three capillary plexuses that anastamose across
the inner most superficial region of the retina, through the
ganglion cell layer, and throughout the inner nuclear layer
(113). Diffusion from the choroidal blood vessels across the
RPE provides metabolic support for the outer retina.

Similar to the central nervous system (CNS), retinal func-
tion depends on cellular communication among neurons and
metabolic exchange between neurons and support cells. These
interactions require a defined environment that is achieved by
the formation of the blood-brain barrier (BBB) and blood-
cerebrospinal fluid barrier (BCSFB) in the CNS (23a) and the
blood-retinal barrier (BRB), thereby separating neural tissue
from the circulation. The RPE contributes to the outer BRB
and allows oxygen diffusion from the choroidal circulation to
the highly metabolic rods and cones. The inner BRB (iBRB) is
formed by the blood vessels in the inner retina. The BRB serves
as a selective barrier providing immune privilege and regu-
lating osmotic balance, ionic concentration, and the transport of
nutrients (sugars, lipids, and amino acids), thereby helping to
control the specialized environment of the retina. In addition,
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FIG. 1. Fundus photograph of the normal human retina
demonstrates the optic nerve head with blood vessels that
radiate from the central retinal artery. The macula, fovea,
and foveola are shown in consecutively smaller circles. The
macula remains avascular since this region and the contained
fovea have the highest concentration of cones providing
central visual acuity. Macular edema is closely associated
with vision loss in DR. Adapted from (6). (To see this illus-
tration in color the reader is referred to the web version of
this article at www.liebertonline.com/ars).

pericytes, which are modified smooth muscle cells, share a
common basal lamina and directly contact vascular endothelial
cells. Formation of the iBRB requires specialized differentiation
of the vascular endothelial cells induced by astrocytes, Miiller
cells, and pericytes (Fig. 3 and reviewed in Ref. 33).

An important component of both the BBB (23a) and BRB is
the endothelial tight junction complex. Over 40 proteins have
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been found to be associated with tight junctions and include
transmembrane, scaffolding, and signaling proteins (51). In
particular, the transmembrane proteins occludin, tricellulin,
the claudin family, and junction adhesion molecules (JAMs),
along with the scaffolding zonula occludens proteins (ZO-1,
—2, —3) play major roles in the formation and regulation of
the tight junction barrier (14a, 16a, 51a, 89a). Alterations to
these proteins contribute to the loss of the blood-retinal barrier
in diabetic retinopathy.

Diabetic retinopathy

Diabetic retinopathy (DR) is a complication of both type 1
and type 2 diabetes and is the leading cause of acquired
blindness in people aged 20-74 years in the United States (91).
DR is classified as either nonproliferative (NPDR) or prolifer-
ative (PDR). Diabetic complications such as retinopathy are
often characterized as microvascular disorders but many reti-
nal cells are affected in diabetes (6). However, vascular changes
are clearly linked to loss of visual acuity and observed changes
to the retinal vasculature direct clinical care. Early vascular
changes include leukostasis, aggregation of platelets, altered
blood flow, degeneration of pericytes, and basement mem-
brane thickening (33). Increased retinal vascular permeability is
a well-established pathology associated with DR (43) and may
result from changes in the tight junction and adherens junction
complexes or from increased endothelial cell death (Fig. 4).
Macular edema is closely associated with loss of visual acuity in
DR (82, 47) and increased permeability of the BRB is believed to
contribute to macular edema (93, 100). Therefore, under-
standing mechanisms of vascular permeability and subsequent
macular edema may provide therapeutic options to prevent or
reverse loss of retinal function in diabetes.

Hyperglycemia has been proposed to result in the micro-
vascular pathogenesis of DR due to increased alterations in cell
signaling pathways, including increased polyol pathway flux,
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FIG. 2. Schematicof retinal structure (A) and hematoxylin and eosin stain of normal human retina (B). (A) The schematicillustrates
neurons, glial cells, microglial cells, retinal pigment epithelia (RPE), and blood vessels. These cells interact to convert light signal to an
electrical impulse carried by the ganglion cells to the visual cortex in the brain. Adapted from (6). (B) The stain demonstrates the ganglion
celllayer (GCL), inner plexiform layer (IPL), inner nuclear layer (INL), outer plexiform layer (OPL), and outer nuclear layer (ONL). Blood
vessels are detectable in the GCL as indicated by the arrowheads. Arterioles and capillary plexuses branching from the central retinal
artery support the inner retina, whereas diffusion across the RPE from the choroidal blood vessels (not shown) provides support for the
outer retina. (To see this illustration in color the reader is referred to the web version of this article at www.liebertonline.com/ars).
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Microglia

FIG. 3. Components of a healthy BRB. Glial cells (Miiller
cells and astrocytes) are the interface between neurons and
the vasculature providing nutritional and regulatory support
for the neurons. Pericytes share a common basal lamina and
come into direct contact with endothelial cells. Microglia are
resident macrophages that monitor the local environment
and provide immunomodulatory functions. Astrocytes,
Miiller cells, and pericytes are required for the specialized
differentiation of endothelial cells needed to form the BRB.
This figure is re-published from (33), with permission of
Springer Science + Business Media. (To see this illustration in
color the reader is referred to the web version of this article at
www liebertonline.com/ars).
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FIG. 4. Disruption of the BRB in diabetic retinopathy. As a
result of metabolic dysregulation leading to increased pro-
duction of growth factors and cytokines (small circles) in DR,
the vasculature undergoes a number of changes including
increased leukostasis, vascular occlusion, and pericyte loss. A
combination of these factors leads to tight junction alterations
and cell death of vascular endothelial cells, resulting in in-
creased vascular permeability and subsequent macular ede-
ma. This figure is re-published from (33), with permission of
Springer Science + Business Media. (To see this illustration in
color the reader is referred to the web version of this article at
www liebertonline.com/ars).
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increased advanced glycation end-product (AGE) formation,
activation of protein kinase C (PKC) isoforms, and increased
hexosamine pathway flux (18). Alternatively, diabetes induces
expression of growth factors and inflammatory cytokines in the
retina that are the target of multiple phase 3 clinical trials (re-
viewed in Ref. 46). This review will consider the evidence for
the direct effect of hyperglycemia-induced reactive oxygen
species (ROS) production and subsequent vascular damage in
the diabetic retina and also examine the data suggesting that
metabolic dysregulation in diabetes results in cytokine pro-
duction that alters the BRB and induces vascular permeability.
The final section will consider how these two hypotheses may
both contribute to the observed disease etiology.

Oxidative Stress and ROS in Diabetic Retinopathy

The term oxidative stress has been used to define a number
of different processes that are altered in DR. In this review we
will refer to oxidative stress as a prolonged or persistent al-
teration in the NADH (NADPH)/NAD™* (NADP™) ratios,
while ROS refers to production of reactive oxygen species.
Changes in oxidative stress may impact cell processes by a
number of mechanisms. Importantly, loss of NADPH can re-
duce the activity of glutathione reductase, an enzyme necessary
to maintain the intracellular pool of reduced glutathione (GSH).
GSH plays a central role in detoxification by reducing hydro-
gen peroxide, so alterations in NADPH/NADP* ratio may
lessen the ability of cells to respond to ROS (13). There are many
potential sources of oxidative stress and ROS production in the
diabetic retina, including increased polyol pathway flux, al-
tered mitochondrial metabolism, increased NADPH or xan-
thine oxidase activity, and the increased formation of reactive
nitrogen oxide species (RNOS) such as peroxynitrite (Fig. 5).
ROS can oxidize cellular macromolecules, resulting in altered
function and contribution to disease pathogenesis. The evi-
dence examining a role for each of these sources of oxidative
stress and ROS in models of diabetes, as well as in endothelial
cells treated with high glucose, will be examined.

Polyol pathway

Excess intracellular glucose may be metabolized in the
polyol pathway (35) with evidence for increasing flux
through this pathway in the diabetic rat retina (89). Aldose
reductase (AR) first reduces glucose to sorbitol using
NADPH as a cofactor, potentially limiting the availability of
NADPH for glutathione reductase. The sorbitol is then oxi-
dized to fructose with the corresponding reduction of
NAD + to NADH (Fig. 5). This has been reported to result in
an increased NADH/NAD + ratio that mimics hypoxia (due
to impaired oxidation of NADH to NAD+) and has been
referred to as hyperglycemic pseudohypoxia (107). The ex-
cess NADH may become a substrate for NADH oxidase
leading to production of ROS (72). In support of the hyper-
glycemic pseudohypoxia hypothesis, exposure of retinas
from normal rats to high glucose concentrations (20 and
30mM) for only 2 hours induced a hypoxia-like increase in
the lactate-to-pyruvate ratio (indicative of an increased ratio
of NADH/NAD+) (85, 103).

A number of preclinical studies support a role for the polyol
pathway in the pathology of DR. The accumulation of sorbitol
and fructose has been correlated with changes in the activa-
tion state of astrocyte and Miiller glial cells as measured by
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FIG. 5. Sources of oxidative stress and ROS in diabetic
retinopathy. Excess glucose has the potential to activate the
polyol pathway whereby glucose is converted to sorbitol by
aldose reductase (AR) and then to fructose by sorbitol de-
hydrogenase (SDH). These reactions result in the depletion
of NADPH and an increase in the NADH/NAD™ ratio, re-
sulting in oxidative stress (A). DR leads to increased NADPH
oxidase activity, resulting in increased production of super-
oxide. Superoxide can react with NO to form the RNOS
peroxynitrite (B). Alterations in the mitochondrial electron
transport chain can also result in the production of ROS in
diabetes. Electrons from NADH and FADH, are donated to
complex I and complex II, respectively. Complexes I and II
then donate electrons to coenzyme Q, which donates elec-
trons to complex III followed by cytochrome ¢ and finally
complex IV. Alterations in electron transport can cause co-
enzyme Q to donate electrons to molecular oxygen, resulting
in the production of mitochondrial superoxide (C).

immunoreactivity of glial fibrillary acidic protein (GFAP) and
an increase in the number of apoptotic neurons. These effects
were prevented with the aldose reductase inhibitor (ARI)
sorbinil (9). Increased retinal lipid peroxidation and vascular
endothelial growth factor (VEGF) protein expression in dia-
betic rats as well as increased ROS production in high-
glucose-treated bovine retinal endothelial cells (BREC) were
prevented by the ARI fidarestat (86). ARIs have also been
shown to prevent vascular permeability changes (101) and
retinal basement membrane thickening (20) in diabetic rats. In
addition, sorbinil treatment of diabetic rats prevented both
microvascular cell apoptosis and the formation of acellular
capillaries, a morphological measure believed to be related to
pericyte apoptosis (25). The ARI fidarestat diminished the
prevalence of microaneurysms, basement membrane thick-
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ening, and pericyte loss in the retinas of diabetic rats in a dose-
dependent manner (63). In bovine retinal pericyte cell culture,
the ARI SNK-860 prevented high-glucose induced apoptosis
and decreased GSH content (78).

Data from AR deficient mice also support a role for the
polyol pathway in DR. In mice, AR expression was localized
to astrocytes, Miiller cells, retinal ganglion cells, and the
neurons of the INL. In the blood vessels, AR staining was
visualized in the pericytes, but not the endothelial cells. The
intensity of staining was increased in the db/db mouse model
of type II diabetes, suggesting an increase in expression of
AR in the retina of diabetic mice. In AR-deficient mice, a
number of diabetes-induced pathologies were normalized as
compared to AR-expressing diabetic mice, including pericyte
loss, vascular leakage, oxidative-nitrosative stress, VEGF
expression, glial cell reactivity, neuronal cell apoptosis, and
neovascularization (23).

In contrast to the above results, Winkler et al. found that the
content of ATP and lactate in retinas did not differ between
fresh tissue and tissue incubated in high glucose (108). Later
work revealed no differences in either the NADH/NAD + or
lactate/pyruvate ratios between control and diabetic rat ret-
inas and once again, no differences in lactate or pyruvate
levels were observed between fresh retinas and those incu-
bated in media containing high glucose (29). In a study by Ola
et al., the lactate/pyruvate ratio was actually found to de-
crease in rat retinas with increasing duration of diabetes, but
this same study found increased flux through the polyol
pathway with increasing duration of diabetes, suggesting that
depletion of NADPH may make a contribution to oxidative
stress in the retina of the diabetic rat (89). Finally, a clinical
research trial using sorbinil was not effective in the treatment
of retinopathy (1). In summary, there remains uncertainty
about the contribution of the polyol pathway to the pathology
of DR and in particular loss of the BRB.

Mitochondria

The metabolism of glucose by the tricarboxylic acid (TCA)
cycle generates the electron donors NADH and FADH,,
which donate electrons to the mitochondrial electron trans-
port chain. The electron transport chain utilizes a series of
redox reactions to pump protons across the inner mitochon-
drial membrane, resulting in a voltage gradient used to drive
the synthesis of ATP. Oxygen is the final electron acceptor and
thus respiration yields H,O production. While the electron
transport chain is essential for energy metabolism, the system
has also been implicated in production of ROS due to in-
complete and premature reduction of oxygen to form free
radicals (Fig. 5).

In 1996, Giardino et al. suggested that hyperglycemia can
result in the production of ROS in cultured bovine aortic en-
dothelial cells (BAEC) (50). This work was followed in 2000 by
Nishikawa et al. (84), who demonstrated that the hypergly-
cemia-induced increase in ROS could be prevented by
blocking the electron transport chain function with either an
inhibitor of electron transport chain complex II, an uncoupler
of oxidative phosphorylation, or by overexpression of un-
coupling protein-1 (UCP-1). Uncoupling proteins can relieve
the proton gradient without ATP generation and thereby
regulate ATP production. In addition, overexpression of the
mitochondrial ROS scavenger, manganese superoxide dis-
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mutase (MnSOD) blocked ROS production. These studies
linked hyperglycemia-induced ROS production in BAEC to
mitochondrial function (84). This group further demonstrated
that normalizing levels of mitochondrial ROS prevented
glucose-mediated activation of protein kinase C (PKC), for-
mation of advanced glycation end products (AGEs), and
sorbitol accumulation from the polyol pathway, which are
three key factors in the pathogenesis of diabetes (84).

Hyperglycemia was subsequently shown to activate a
fourth contributor to the pathogenesis of diabetes, the hex-
osamine biosynthetic pathway, via mitochondrial superox-
ide production in BAEC (31). Furthermore, through the use of
JC-1, a dye that is responsive to increasing mitochondrial
membrane potential, and the use of digital imaging, it was
demonstrated that hyperglycemia increased the mitochon-
drial proton electrochemical gradient in BAEC and that
overexpression of UCP-1 was able to restore the gradient to
normal (30). This accumulation of evidence resulted in the
proposal by Brownlee that the single event of increased su-
peroxide production by the mitochondrial electron transport
chain results in four important molecular mechanisms im-
plicated in glucose-mediated vascular damage (18).

Mitochondrial generation of ROS may contribute to retinal
pathology in DR. Scavenging ROS by administration of the
thiol antioxidant, alpha-lipoic acid for the entire duration of
diabetes in rats inhibited capillary cell apoptosis, reduced the
number of acellular capillaries, and reduced oxidative dam-
age to DNA (8-hydroxy guanosine levels) and proteins (ni-
trotyrosine) in the retina as compared to nontreated rats after
11 months of diabetes (68). In support of a role for production
of ROS in this pathology, MnSOD mRNA expression and
activity were reduced in the retinas of diabetic rats, an effect
that was prevented by long-term treatment with lipoic acid
(65). Overexpression of human MnSOD under the f-actin
promoter was achieved in mice with an increase in retinal
MnSOD protein and enzyme activity levels of 60% and 70%,
respectively. These mice were protected from diabetes-
induced oxidative stress as observed by decreased oxidative
damage to DNA and proteins (67). Furthermore, mitochon-
dria isolated from diabetic mouse retina had increased su-
peroxide levels and decreased activity of complex III
Overexpression of MnSOD attenuated both of these effects
and blocked the increased formation of acellular capillaries in
diabetic mice (62). In addition, overexpression of MnSOD
prevented apoptosis and oxidative damage to DNA and pro-
teins in high-glucose-treated BREC, indicating that the in vivo
observations could at least in part be due to a direct effect on
microvascular endothelial cells (65). Cui et al. also observed
high glucose induced increase in mitochondrial membrane
potential and ROS production in BREC (24). In addition, the
hyperglycemia-induced increase in the mitochondrial mem-
brane potential was blocked by the angiotensin-converting
enzyme inhibitor perindopril through upregulation of peroxi-
some proliferator-activated receptor y (PPARy) and subsequent
UCP-2 expression (114). However, caution must be used when
interpreting the cell culture hyperglycemia data in relation to
the diabetic retina. Cell culture experiments are carried out with
isolated cells and over a time course of hours to days while
diabetic animals have a complex metabolic derangement in-
cluding hyperglycemia for weeks to months.

The above studies suggest that increased ROS production
in diabetes is the result of an increase in the mitochondrial
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membrane potential. However, in a study utilizing human
retinal endothelial cells (HREC), oxidative damage of mito-
chondrial DNA (mtDNA) was observed only 3 hours after
high glucose treatment closely followed by decreased ex-
pression of mtDNA encoded respiratory chain subunits and
decreased mitochondrial membrane potential. Increased mi-
tochondrial ROS production began 12 hours after the start of
high glucose treatment, followed by apoptosis at 24 hours.
This series of events suggests that oxidative damage of
mtDNA is the initiating event in hyperglycemia-induced
mitochondrial ROS production and, in contrast to the studies
outlined above, is the result of a decrease in mitochondrial
membrane potential due to decreased expression of respira-
tion chain subunits (109). Further, high glucose treatment of ex
vivo retinas from control and diabetic rats did not result in an
increase of TCA cycle flux, suggesting that mitochondrial
hyperpolarization is not the source of excess ROS in DR (89).
Collectively, while much of the data regarding mitochondrial
contribution to ROS production in response to hyperglycemia
is compelling, this hypothesis still requires a mechanistic
explanation to describe why elevated ATP and NADH fail to
prevent excess TCA cycle flux and normal, negative feedback
regulation. In addition, it is not yet clear how mitochondrial
ROS production regulates such disparate functions as the
hexosamine biosynthetic pathway or the polyol pathway in
the cytoplasm.

NAD(P)H Oxidase

NAD(P)H oxidases are membrane-associated enzymes
that catalyze the 1-electron reduction of oxygen using
NADH or NADPH as the electron donor (Fig. 5). NADPH
oxidase in phagocytic cells is a multiprotein complex con-
sisting of membrane-bound NOX2 and p22phox, cytoplas-
mic p47phox and p67phox, and the GTPase Rac. In addition
to these subunits, vascular endothelial cells also express the
NOX2 homologues NOX1, NOX4, and NOX5 (44). NADPH
oxidase can be activated by G protein-coupled receptor ag-
onists, cytokines, growth factors, hypoxia-reoxygenation,
and mechanical stimulation (74). Phosphorylation of
p47phox is a key post-translational modification involved in
the activation of NADPH oxidase and PKC isoforms are
believed to be the major kinases responsible for this event
(44). This is of particular relevance since the activation of
PKC isoforms has been implicated as a key factor in the
pathogenesis of diabetes (18).

Increased activity of NAD(P)H oxidase has been observed
in diabetic patients and animals. In a model of non-insulin-
dependent diabetes (BBZ/Wor rat), higher activity of
NADH oxidase-dependent H,O, production was visualized
using electron microscopy of the retinal blood vessels of di-
abetic rats. In addition, this increase in H;O, was positively
correlated with increased vascular endothelial growth factor
(VEGF) expression (40, 41). The activity of NAD(P)H oxidase
and expression of enzymatic subunits was increased in the
aorta of diabetic rats (64) and in both the saphenous vein and
internal mammary artery of diabetic patients (53). Apocynin,
an inhibitor of NADPH oxidase, blocked the increased reti-
nal leukostasis observed in the streptozotocin (STZ)-induced
diabetic rat model (22). Deletion of NOX2 or treatment with
apocynin in a mouse model prevented the diabetes-induced
increase in ROS formation, intercellular adhesion molecule
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(ICAM)-1 expression, leukostasis, and vascular permeability
(5). AGE-induced permeability in rat retinas was inhibited
by apocynin, indicating a role for NADPH oxidase down-
stream of RAGE activation (105). Aortic endothelial cells in
culture exposed to high glucose increased free radical pro-
duction as measured by electron spin resonance (ESR), an
effect that was abolished when inhibitors of NAD(P)H oxi-
dase and PKC were used (57). These cell culture studies were
further supported by in vivo experiments using STZ-induced
diabetic rats. Using ESR, an increase in oxidative stress
was observed in the abdominal area of diabetic rats in vivo
and this effect was normalized by treatment with either a
PKC-specific inhibitor or an NAD(P)H oxidase inhibitor (97).
Taken together, these studies suggest a key role for PKC-
dependent activation of NAD(P)H oxidase in the production
of ROS in diabetes.

Statins have also been shown to modulate NADPH oxidase
in DR. Statins are a class of drugs widely prescribed to treat
hyperlipidemia, and in addition to their ability to reduce the
cardiovascular complications of diabetes, statins have also
been shown to improve signs of DR (110). Simvastatin was
shown to decrease the expression of both NOX2 and p47
phox, signal transducer and activator of transcription 3
(STATS3) activation, the formation of ROS, VEGF expression,
and vascular leakage in the retinas of STZ-induced diabetic
rats (4). A recent study by Li et al. showed that both NOX4 and
VEGEF expression were increased in the retinas of db/db mice,
an effect that was abrogated by lovastatin. Moreover, siRNA-
mediated depletion of NOX4 in db/db mice significantly
decreased NADPH oxidase activity, VEGF expression, and
retinal vascular permeability. These results were confirmed in
hypoxia and high glucose-treated retinal capillary endothelial
cells and are consistent with the hypothesis that lovastatin
inhibits NOX4, resulting in decreased VEGF expression and
reduced vascular permeability in diabetic animals (73). These
studies provide evidence that statins, either directly or indi-
rectly, have the ability to affect the function of NADPH oxi-
dase and lower the formation of ROS in the diabetic retina.
Statins inhibit 3-hydroxy-3-methyl-glutaryl coenzyme A re-
ductase, one of the rate-limiting steps in cholesterol biosyn-
thesis. In addition to blocking the production of cholesterol in
cells, statins also inhibit isoprenoid biosynthesis, which is
thought to account for many of the anti-inflammatory effects
of these drugs (116). Therefore, more mechanistic studies
are required to determine the direct role of statins in BRB
regulation.

Xanthine oxidase

The two terminal reactions of purine degradation are cat-
alyzed by the enzyme xanthine oxidoreductase (XOR) that, in
the form of xanthine oxidase (XO), produces ROS. XO cata-
lyzes the conversion of hypoxanthine to xanthine and xan-
thine to uric acid reducing oxygen and generating ROS in each
step (55) and the expression of XO has been detected in cap-
illary endothelium (58). Inhibition of xanthine oxidase with
allopurinol improved nonretinal vascular and neural function
in an STZ rat model of diabetes (56). Moreover, cytokines and
hypoxia regulate XOR gene expression in a variety of cell and
organ systems (16), indicating a potential role for this enzyme
in DR pathogenesis. However, current evidence for a direct
role of XO in DR is lacking.
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Nrf2/ARE

In addition to production of ROS, the synthesis of ROS
scavengers and antioxidant enzymes contributes to the redox
state of the cell. A number of transcriptional factors are re-
sponsive to cellular redox state and in particular, NF-E2-
related factor-2 (Nrf2) acts through the antioxidant response
element (ARE) inducing the expression of antioxidant
genes in vascular cells (45). These genes include glutathione
reductase, NAD(P)H:quinone reductase, and glutathione
S-transferase among others (99). Evidence from Nrf2 knock-
out mice indicate that this transcription factor contributes to
the cellular control of ROS production since deletion of Nrf2
enhanced ROS production and amplified the pathology of
diabetic nephropathy compared to wild-type mice (59, 111).
However, evidence for a direct role of Nrf2 in DR is lacking
and is an area for future research.

Growth Factors and Cytokines in Diabetic Retinopathy

The diabetic condition promotes a retinal inflammatory
response as observed by nuclear factor-xB (NF-«xB) activa-
tion (19) and induction of pro-inflammatory molecules such
as ICAM-1. Increased ICAM-1 and other cell adhesion mol-
ecules promote leukostasis, resulting in increased vascular
permeability and further exacerbating the inflammatory
milieu of the retina (14, 79). However, no evidence of frank
leukocyte infiltration has been observed in the retina. Leu-
kostasis is also thought to contribute to breakdown of the
BBB under pathological conditions (23a); however, the exact
cell type that adheres to the retinal vasculature in diabetes
remains to be elucidated. Thus, the pathology in DR may
result from hyperglycemia-induced oxidative stress in en-
dothelial cells, as discussed above or may occur indirectly, in
which the diabetic condition induces production of cyto-
kines from a number of potential cell types that act on the
vascular endothelium and alter the BRB. A study by Busik
et al. (19) in 2008 examined the role of high glucose and cy-
tokines in the generation of ROS and the activation of in-
flammatory and apoptotic pathways in HREC. Significantly,
this study found that treating HREC with high glucose did
not increase glucose consumption nor increase the produc-
tion of ROS, activate NF-xB or mitogen-activated protein
kinase (MAPK) pathways, induce tyrosine phosphorylation,
nor increase interleukin (IL)-1f5, or tumor necrosis factor
(TNF)-o production. In contrast, high glucose treatment re-
sulted in increased glucose consumption and IL-15 produc-
tion in human RPE and Miiller cells. Moreover, cytokine
treatment of HREC resulted in increased glucose consump-
tion, ROS production, MAPK phosphorylation, NF-«B acti-
vation, tyrosine phosphorylation, and caspase activation
(19). This study points to an important role for the produc-
tion of cytokines by nonendothelial retinal cells in the vas-
cular pathogenesis of DR.

Also in support of an indirect effect of hyperglycemia on
the endothelial cell tight junction complex, high glucose failed
to increase endothelial permeability to 70 kDa rhodamine-B-
isothiocyanate (RITC) dextran, 467 Da tetramethylrhodamine,
or the transport of water, and failed to alter ZO-1 im-
munolocalization or claudin-5 expression in BREC (74a).
However, high glucose treatment induced Miiller cell trans-
lational regulation of VEGF both in cell culture and in
the retina without affecting VEGF mRNA content and gene
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deletion of eukaryotic initiating factor 4E binding proteins 1
and 2 blocked the high glucose induction of VEGF protein
translation (95).

VEGF

VEGF promotes both vascular permeability and angio-
genesis and is elevated in ocular tissues from patients with
PDR (2, 3, 75, 76). Recent clinical trials demonstrating the
effectiveness of anti-VEGF antibody therapy in promoting
visual acuity in conjunction with laser treatment attests to the
importance of this cytokine in DR (42). Direct measures of
water and solute transport across BREC monolayers demon-
strate that VEGF induces permeability to both fluids and
solutes (21, 27, 71).

Mechanisms of VEGF-induced vascular permeability are
beginning to be elucidated. In particular, occludin regulation
by VEGF signal transduction is emerging as an essential
component of tight junction regulation in the retina. Mice
that do not express occludin form tight junctions with nor-
mal morphological appearance and barrier function in in-
testinal epithelia. However, these mice have abnormalities in
several tissues, including calcification in the brain that sug-
gests a complex role for occludin in tight junction regulation
(92). STZ-induced diabetes in rats has been shown to in-
crease vascular permeability, reduce occludin content in the
retina (8), and alter its distribution from continuous cell
border localization to intracellular punctae (11). Subse-
quently, this redistribution of occludin in diabetes was
linked to increased vascular permeability (12). Concanavalin
A (ConA) is a plant lectin with a specific binding affinity for
a-D-glucosyl and o-D-mannosyl glycoproteins, and will
therefore bind to endothelial basement membranes. ConA
binding in STZ-diabetic rat retinas was associated with re-
distribution of occludin staining from the plasma membrane
to the cell interior in retinal vascular endothelial cells (Fig. 6),
an effect that was also observed after intraocular injection
of VEGF. VEGF was also shown to increase occludin phos-
phorylation in rat retinal vasculature and endothelial cell
culture (7). PKC activation by VEGF was later found to be
necessary and sufficient for occludin phosphorylation (54).
Specifically, the classic f# isoform of PKC mediates VEGEF-
induced phosphorylation of occludin since a PKCf-specific
inhibitor as well as expression of a dominant negative PKCJf
mutant abolished VEGF induced occludin phosphorylation
and inhibited endothelial permeability (54). Recently, mass
spectrometry was used to identify five phosphorylation sites
on occludin following VEGF treatment (98). Phosphorylation
at serine 490 was subsequently shown to be essential for
VEGF-induced ubiquitination, internalization of occludin,
and increased endothelial permeability in response to VEGF
(Fig. 7) (83). This work provides a mechanistic description of
how VEGF, a growth factor known to play a role in DR
pathogenesis, stimulates signal transduction in endothelial
cells resulting in tight junction alterations and increased per-
meability.

Inflammatory cytokines

In addition to growth factors, inflammatory cytokines such
as IL-1$ and TNF-o are increased in DR and may contribute to
vascular defects. IL-1f is elevated in the retina of diabetic
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FIG. 6. Increased vascular permeability corresponds to re-
gions of reduced occludin immunoreactivity. Concanavalin A
(ConA) is a plant lectin with binding affinity for «-D-glucosyl
and o-D-mannosyl glycoproteins and will therefore bind to the
endothelial basement membrane. Rats were perfused with
ConA after 1 month of STZ diabetes, and the retinas were la-
beled with a polyclonal antibody to occludin. Whole-mounted
retinas were viewed by confocal microscopy. Single confocal
images from the outer plexiform layer capillary bed are shown.
(A) A compound image of ConA (green) and occludin (red); (B)
the same field photographed with the laser for ConA excitation
turned off to show occludin immunoreactivity alone. Many
capillaries were labeled with ConA (A, arrows) but some were
not (A, arrowhead). The vessels with ConA binding had less
occludin (B, arrows), whereas those that had less ConA binding
had more occludin immunoreactivity (B, arrowhead). These
data suggest that paracellular permeability was increased in
regions with cellular redistribution of occludin. Magnification,
X60. Bar, 20 um. This figure is re-published with permission
from (12). (To see this illustration in color the reader is referred to
the web version of this article at www liebertonline.com/ars).

animals (48, 69). Caspase-1 protease cleaves the precursor
form of IL-1f, forming the mature peptide (49) and is acti-
vated in the retinas of diabetic mice, humans, and high glu-
cose-treated retinal Miiller cells (80, 81, 104). Minocycline, a
tetracycline derivative that inhibits caspase-1 as well as a
multitude of additional targets, blocked caspase-1 activity
and IL-1f production in the retina of mice at 2 months of
diabetes and prevented retinal capillary degradation at 6
months of diabetes. Diabetic mice deficient in the IL-1 recep-
tor demonstrate decreased caspase activation and reduced
formation of acellular capillaries as compared to diabetic
wild-type mice, indicating a role for IL-1f in DR pathogenesis
in this animal model (104).

Expression of both TNF-« and IL-1§ were elevated in the
vitreous and serum of patients with PDR (28) and TNF-« serves
as an independent serum marker for PDR in type I diabetic
patients (52). TNF-« expression was elevated in NPDR as well
(94). Further support for a role of inflammation in DR comes
from mice with gene deletions in either ICAM-1 or its binding
partner CD18. Studies examining retinal pathology in diabetic
mice with either of these gene deletions indicate that these
proteins are required for the increased leukocyte adhesion to
the retinal vasculature and increased permeability, acellular
capillaries, and pericyte ghosts observed in the diabetic retina
(60). Increased leukocyte adhesion, vascular leakage, and
ICAM-1 expression, but not VEGF expression, were reduced
by a soluble TNF-« receptor/Fc construct (etanercept) in dia-
betic rat retinas indicating a key role for TNF-x in vascular
leakage independent of VEGF (61). In addition, increased TNF-
o levels were observed and treatment with pegsunercept, a
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FIG. 7. VEGEF induces occludin phosphorylation and ubiquitination. Tight junction localization and interaction of oc-
cludin with ZO-1 in the absence of VEGF (A). VEGF induces serine 490 phosphorylation of occludin by PKCp, followed by
ubiquitination (B). Occludin subsequently interacts with Epsin-1, epidermal growth factor receptor pathway substrate 15
(Eps15), and hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs). These proteins are modulators of intracel-
lular trafficking that contain the ubiquitin-interacting motif. These events lead to internalization of occludin and other tight
junction proteins and increased vascular permeability (C). (To see this illustration in color the reader is referred to the web

version of this article at www liebertonline.com/ars).

second-generation TNF-o inhibitor, blocked the increased en-
dothelial and pericyte apoptosis, and pericyte ghost and acel-
lular capillary formation in rat models of both type 1 and 2
diabetes (15). An examination of TNF-o induced permeability
reveals a mechanism with several unique features compared to
VEGF induced permeability. TNF-o does not induce occludin
Ser490 phosphorylation and increases occludin mRNA and
protein expression. Conversely, TNF-« reduces claudin 5 and
Z0O-1 mRNA and protein expression in an NF-kB dependent
manner and induces a profound disorganization of the tight
junction complex (10). Similar to retinal endothelial cells, TNF-o
also causes barrier loss in cultured intestinal epithelial mono-
layers and the TNF-neutralizing antibody infliximab restores
the intestinal barrier in Crohn’s disease patients (59a, 96).
Collectively, these data demonstrate a contribution of inflam-
matory cytokines to the pathogenesis of DR including loss of
BRB function.

The Interaction of Reactive Oxygen Species
and Cytokines in DR

ROS appear to contribute to vascular permeability in DR,
but a clear mechanism has not yet emerged. Since ROS are
known to modulate signal transduction, it is possible that
ROS production results in tight junction alterations through
the induction of growth factors and cytokines. For example,
studies have demonstrated that ROS derived from NADPH
oxidase activate kinases such as Akt, Src, and MAPKs as well
as the transcription factors NF-xB, activator protein-1, p53, E-
twenty six, and hypoxia-inducible factor-1 (44). A number of
studies support a role for ROS in the activation of signal
transduction pathways that result in increased production of
growth factors and cytokines.

The formation of RNOS has been reported to stimulate
growth factor expression in DR. Nitric oxide (NO) rapidly

reacts with superoxide to form peroxynitrite, which can lead
to lipid peroxidation, oxidation of sulfthydryl groups, DNA
damage, and disturbed electron transport. The reaction of
peroxynitrite with proteins may result in the formation of
nitrotyrosine residues that can be used as a marker for per-
oxynitrite production (77). Inhibition of NOS has been
shown to prevent DR pathology in rats (32, 38, 66). Inhibition
of NOS or scavenging of peroxynitrite prevented the in-
creased permeability, formation of lipid peroxides, ni-
trotyrosine, and increased expression of VEGF observed in
the retinas of diabetic rats (38). In vitro, high glucose treat-
ment of retinal endothelial cells resulted in increased pro-
duction of endothelial NOS (eNOS) protein, NOS activity,
NO, superoxide, and nitrotyrosine formation. Increased
superoxide and peroxynitrite production was shown to be
the result of high glucose-induced uncoupling of eNOS
leading to the production of superoxide instead of NO and
L-citrulline. This uncoupling may occur when the NOS
substrate, L-arginine, or its cofactor, tetrahydrobiopterin
(BH4), is limited (36). In microvascular endothelial cells,
peroxynitrite induced increased expression of VEGF mRNA
and protein, an effect that was mediated by the transcrip-
tion factor STAT3 (90). However, this area remains con-
troversial since other studies have failed to detect
hyperglycemia-induced changes to endothelial cell function
(19, 74a).

In addition to VEGF expression, peroxynitrite also medi-
ates VEGF signal transduction. High glucose treatment of
retinal endothelial cells has been shown to result in apoptosis
through the tyrosine nitration of PI 3-kinase by peroxynitrite,
resulting in reduced activity of Akt-1 kinase and resultant
pro-survival signaling (39). In addition, the peroxynitrite de-
composition catalyst 5,10,15,20-tetrakis(4-sulfonatophenyl)-
prophyrinato iron (III) (FeTPPS) inhibited the sustained
phosphorylation of vascular endothelial growth factor re-
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FIG. 8. Possible mechanisms of tight [A
junction dysregulation by hyperglyce-
mia. In the non-disease state, cells of the
neural retina, including glial cells and
pericytes, produce pro-barrier factors that
contribute to the maintenance of tight |\
junction integrity and the BRB (A). Hy-
perglycemia can disrupt tight junction
integrity by either a direct or indirect
interaction with endothelial cells. Hy-
perglycemia may directly lead to mito-
chondrial, NADPH oxidase, and sorbitol
pathway production of oxidative stress,
ROS and RNOS in endothelial cells lead-

Homeostasis
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ing to tight junction disruption and apo-

ptosis (B). Alternatively, hyperglycemia may result in the production of cytokines and growth factors by cells of the neural
retina which then interact with endothelial cells thereby altering tight junction integrity and increasing vascular permeability
(B). It is likely that cytokines and ROS interact with each other to result in the complete pathology of DR. (To see this
illustration in color the reader is referred to the web version of this article at www.liebertonline.com/ars).

ceptor (VEGFR)2 induced by VEGF, and subsequent endo-
thelial cell migration and tube formation. These data suggest a
role for VEGF-induced peroxynitrite formation in the VEGF
signal transduction pathway (37).

There is also evidence for an interaction of ROS and IL-1p.
Intraocular injection of IL-1f in normal rats increased oxida-
tive stress as measured by DNA oxidation and NO produc-
tion. Conversely, the increased levels of IL-1f in the diabetic
rat retina were normalized in a prevention trial with antioxi-
dant treatment over a 2-month period (69). In addition, BREC
treated with high glucose had increased expression of IL-1f
and BREC treated with IL-1 had increased NO expres-
sion, caspase-3 activity, and apoptosis (70), suggesting a role
for IL-1f in endothelial cell death.

Finally, pigment epithelium-derived factor (PEDF) is a
potent inhibitor of angiogenesis and anti-permeability factor
originally identified in retinal pigment epithelial (RPE) cells
(102,26). Decreased levels of PEDF have been observed in the
vitreous and aqueous humor from patients with PDR (17, 34,
87, 88). The decreased levels of PEDF and increased levels
VEGF, NADPH oxidase activity, oxidative damage, and
vascular leakage observed in the retinas of diabetic rats were
prevented by systemic treatment with PEDF (112). In BREC,
PEDF blocks the increased expression of VEGF mRNA and
protein induced by high glucose through increased expres-
sion of UCP-2 and the subsequent decrease in mitochondrial
ROS production and Janus kinase 2/STAT3 activation (112).
These studies indicate that PEDF acts to prevent generation of
ROS and inflammatory mediators in the diabetic retina
thereby reducing vascular leakage.

Conclusion

In conclusion, the vascular pathology of DR is likely the
result of a complex interaction of growth factors, cytokines,
and ROS induced by the action of diabetes-associated met-
abolic abnormalities. Understanding which cells are pri-
marily affected by these metabolic abnormalities and
providing a mechanistic understanding of the resultant pa-
thology will yield novel insight for therapeutic development.
One potential model that is emerging suggests that meta-
bolic abnormalities, including hyperglycemia, contribute to
oxidative stress and subsequent ROS production in support

cells such as glia, microglia, and pericytes. These cells re-
spond with increased cytokine (TNF-o, IL-1f), and growth
factor (VEGF) production, potentially as a compensation
for the metabolic distress but eventually leading to mal-
adaptation and subsequent alterations to the tight junctions
increasing the BRB permeability and preventing normal
neuronal function. Production of ICAM-1 and leukostasis
leads to vascular occlusion and creates regions of hypoxia,
further exacerbating the retinal pathology. Ultimately, con-
tinued ROS production and inflammation leads to loss of
pericytes and vascular endothelial cells, and this vascular
degeneration may contribute to loss of visual function
(Fig. 8). The relative contribution of each of the diabetes-
induced alterations to disease pathology and loss of vision
remains to be determined. However, the potential effective-
ness of anti-VEGF treatment and anti-inflammatory steroids
provide hope that effective, long-term medical intervention
to preserve vision is possible.
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Abbreviations Used

AGE = advanced glycation end-products
AR =aldose reductase
ARI = aldose reductase inhibitor
BAEC =bovine aortic endothelial cells
BRB = blood-retinal barrier
BREC = bovine retinal endothelial cells
ConA = concanavalin A
COX = cyclooxygenase
DR = diabetic retinopathy
eNOS = endothelial nitric oxide synthase
FeTPPS = 5,10,15,20-tetrakis(4-sulfonatophenyl)
prophyrinato iron (III)
GCL = ganglion cell layer
GFAP = glial fibrillary acidic protein
GSH = glutathione
HREC =human retinal endothelial cells
ICAM = intercellular adhesion molecule
IL = interleukin
INL = inner nuclear layer
IPL =inner plexiform layer
MAPK = mitogen-activated protein kinase
MnSOD = manganese superoxide dismutase

mtDNA = mitochondrial DNA
NF-«B = nuclear factor-xB
NOS = nitric oxide synthase
NPDR = nonproliferative diabetic retinopathy
ONL = outer nuclear layer
OPL = outer plexiform layer
PDF = pigment epithelium-derived factor
PDR = proliferative diabetic retinopathy
PKC = protein kinase C
PPAR = peroxisome proliferator-activated receptor
RITC =rhodamine-B-isothiocyanate
RNOS =reactive nitrogen oxide species
ROS = reactive oxygen species
RPE = retinal pigment epithelia
STAT =signal transducer and activator
of transcriptions
STZ = streptozotocin
TNF = tumor necrosis factor
UCP = uncoupling protein
VEGF = vascular endothelial growth factor
VEGEFR = vascular endothelial growth
factor receptor
XO =xanthine oxidase
XOR = xanthine oxidoreductase
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