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Summary

We investigated the utility of three interpolation techniques that ignored descriptive `soft' information

and one that used it for mapping topsoil texture classes: re-coding of soil map units within Geographical

Information Systems (GIS), Thiessen polygons, and classi®cation of probability vectors estimated by

ordinary indicator kriging and simple indicator kriging with local prior means. The results were compared

with texture maps based on a classi®cation of kriged maps of particle size distribution. The methods were

applied to two distinct regions, which represent large areas in rain-fed rice ecosystems and irrigated rice

ecosystems. The `hard' databases for both areas contained soil information needed for mapping at

regional scales (1:100 000±1:150 000). These data were complemented with `soft' information derived

from farmers and soil experts (Northeast Thailand) and soil maps (Nueva Ecija, Philippines).

Interpolated maps agreed with the texture map based on interpolation of particle size distribution, and

®eld estimates of soil texture proved to be valuable surrogates for laboratory measurements of soil texture

classes. The interpolation of categorical data such as soil texture classes allows for upgrading and

increasing the resolution of maps in sparsely sampled regions by using simple ®eld measurements.

Validation using independent test sets showed that indicator kriging with local prior means performed

best in the rain-fed lands, whereas soft information did not improve the predictions in Nueva Ecija. Local

knowledge in a formalized form was valuable in Northeast Thailand and the interpolated soil texture map

for this area had an accuracy and resolution to support agronomic decisions at the village scale. The poor

quality of the soil map and the fact that the gradually changing variability in young alluvial soils can be

modelled with fewer data explained the lower accuracy of simple indicator kriging with local prior means

in Nueva Ecija. Thiessen polygons performed well in the undulating rain-fed lands but were not as

reliable as indicator kriging in the gradually changing irrigated lands.

Introduction

Soil maps and their accompanying reports are important

sources of information on land resources. Their applicability,

however, depends on survey and mapping scale, which is not

appropriate for agronomic management decisions in many

regions (see, for example, OberthuÈr et al., 1996). Furthermore,

the ef®cacy of soil classi®cation depends on the environment:

Voltz & Webster (1990) showed that classi®cation performed

satisfactorily where the soil changes abruptly, but not as well

where the soil changes gradually. Also, conventional soil maps

take no account of the within-class heterogeneity. Quantifying

the uncertainty of the classi®cation and increasing map

resolution requires additional data, which can be used to

produce more re®ned maps. Sampling and analysis of

additional quantitative data are laborious and costly in

heterogeneous rain-fed rice lands because survey effort

increases with increasing intricacy in soil patterns (Bie &

Beckett, 1971). Alternatively, rapid ®eld tests and existing soil

survey reports provide valuable categorical information.

Categorical point information can be mapped using

techniques such as Thiessen polygons. An alternative is to

re-code map units using Geographical Information Systems

with values from point sources to function as spatial carriers of

information. Such simple approaches might not capture much

of the variation within the classes, and the resulting maps may

be of little value at larger scales. Kriging is now widely used
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for predicting continuous soil properties at unsampled

locations. Unlike continuous variables, categorical variables

cannot be estimated as mere linear combinations of

neighbouring observations. Indicator geostatistics (Journel,

1983), based on a prior coding of information into indicator

values, can handle categorical variables. Indicator (co-)

kriging allows one to estimate the probability of occurrence

of each class at unsampled locations (Goovaerts, 1994).

The prediction calls for the derivation of a single class

from the probability distribution, and classi®cation algo-

rithms such as the one developed by Soares (1992) might

be used for this purpose.

Various techniques have recently been tested for their

utility to improve the accuracy of geostatistical interpola-

tion techniques at acceptable costs: adjusting kriging

weights to the utility of available information (Heuvelink

& Bierkens, 1992) and kriging within strata (Boucneau

et al., 1998). Alternatively, Journel (1986) employed

indicator geostatistics to code jointly precise measurements

and descriptive information, and Goovaerts & Journel

(1995) applied the principles to combine soil map

information with laboratory data to model the spatial

variation of continuous soil properties.

Information which can locally describe the natural resources

in rice-growing environments includes remotely sensed data,

topographic maps and knowledge of farmers and experts. This

kind of descriptive information is referred to as `soft'

information because it relates indirectly to the primary

attribute, which is de®ned as `hard' information and measured

on either a categorical or continuous scale. Indigenous soil

knowledge has been much studied by anthropologists (e.g.

Sandor & Furbee, 1996), but few soil scientists and

agronomists have used this knowledge for quantitative

resource assessment (e.g. Arrouays, 1987), mainly because

the integration of soft and hard information posed dif®culties.

We know of no study of the utility of local knowledge for

improving spatial interpolations.

Most comparative studies of interpolation methods are

concerned with the prediction of quantitative soil properties

(Brus et al., 1996; Voltz & Webster, 1990; BaÂrdossy &

Lehmann, 1998). Few investigators have studied categorical

soil information: Bregt et al. (1992) compared Thiessen

polygons with interpretation of representative pro®les and

subsequent re-coding of soil map units. Re-coding of a

1:200 000 soil map proved to be the most reliable approach.

Finke et al. (1996) studied the utility of representative soil

pro®le information for characterizing spatial patterns of soil

properties related to water and solute transport. The results

discouraged the use of this type of information. Leenhardt

et al. (1994) investigated the ef®cacy of soil map classi®cation

for predicting soil physical and hydrological properties at

different scales. In comparison with information provided by

simple and strati®ed random sampling, information from soil

pro®les served as an accurate predictor at large scales

(< 1:25 000) but was less effective at smaller scales

(1:100 000).

Soil texture classes are categorical variables, whereas the

particle size fractions they summarize are continuous. How

might hand-texturing of soil in the ®eld compare with

continuous data acquired in the laboratory as the basis for

interpolation? Moreover, how might the integration of soft

information from farmers and hard information from soil

surveys improve the prediction of soil properties? To answer

these questions we compared the performances of three

techniques for mapping ®eld-estimated topsoil texture classes

(Thiessen polygons, re-coding of map unit information and

indicator kriging) that ignore soft information with indicator

kriging with local prior means that includes soft information.

Results were also compared with texture classes derived by

classifying interpolated maps of soil particle size distribution.

The study was done in two disparate regions with sparse data,

which are representative for large areas in rain-fed and

irrigated rice-growing land.

Case study 1: The young, alluvial plain in the Central
Luzon Basin, Philippines

Non-terraced alluvial plains are much used for lowland rice in

South and Southeast Asia, and our study area of 19 176 ha is

part of such a plain in the province of Nueva Ecija, about

160 km north of Manila (Figure 1). The project area lies in a

meandering ¯ood plain, where the original geological

sedimentation patterns have been reworked along the Talavera

River. Elevation declines gradually from about 80 m above sea

level in the northeast to 30 m above sea level in the southeast,

and most of the area has been fully irrigated for more than

20 years. Two rice crops are grown per year.

The soil was classi®ed and mapped during a reconnaissance

soil survey in 1940 (Alicante et al., 1941), and the map

(1:125 000) is still a major source of soil information (Figure 1)

in the Philippines. The soil was classi®ed at the soil series

level; within any one series the soil had similar natural

drainage conditions, relief and type of parent material. Map

units were almost exclusively delineated by qualitative soil

pro®le descriptions at various sites and supported by few soil

analyses; many soils mapped as silt loam have in fact a heavier

texture (OberthuÈr et al., 1996). According to the US Soil

Taxonomy (Soil Survey Staff, 1992) these soils would be

mainly Vertisols (Ustic Endoaquerts and Ustic Epiaquerts),

Al®sols and Inceptisols.

Soil sampling

Hard information. In 1993 we made a systematic soil survey,

for which soil samples were collected at 341 locations on a

regular 750 m 3 750 m grid and from 43 random locations. The

average sampling intensity of this semi-detailed survey was one

sample point per 50 ha, which supports mapping at scales of
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approximately 1:50 000 (Landon, 1991). Grid data were used

for mapping, while the random points served as a validation set.

Each location represented a small rice ®eld. Soil samples were

collected from 0 to 0.2 m depth (topsoil; soil monolith 0.2 m 3

0.2 m 3 0.2 m by spade) and from 0.2 to 0.4 m depth (subsoil;

Dutch auger with 0.1 m diameter). Five soil samples were

bulked, one from the centre of the ®eld, and four within a 6-m

radius around the centre of the ®eld. The samples were air-dried

and ground to pass through a 2-mm sieve. Soil texture was

determined with the pipette method. Texture classes were

estimated on auger borings in the ®eld centre and from

laboratory data using the US Department of Agriculture (Soil

Survey Staff, 1951) soil texture classi®cation.

Soft information. The only accessible source of soft informa-

tion was the 1:125 000 soil map of Alicante et al. (1941). An

exhaustive soft data set was created by superimposing a 250 m

3 250 m grid on the map and identifying the soil series at each

of the 2973 grid nodes within a Geographical Information

System (GIS).

Case study 2: Old alluvio-colluvial, terraced land in
Northeast Thailand

Terraced, gently sloping lands are widespread throughout rice-

growing countries of Asia, and rain-fed rice is the dominant

form of agriculture, although irrigation is applied where

available. For this kind of land we studied a part of the Khorat

Plateau (39 025 ha), which is extensively used to grow rain-fed

rice and lies within the basin of the lower Mae Nam Mun

River. One of its tributaries, Lam Dom Yai, borders the study

area in the southeast (Figure 2). Gently undulating land,

R
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interspersed with minor non-¯ood and ¯ood plains and some

isolated hills, dominates the Khorat Plateau. The only

available soil map (Figure 2), a semi-detailed reconnaissance

map at 1:100 000 scale (Changprai et al., 1971), is based on

Moormann's soil development theory (Moormann et al.,

1964), and soils in the project area include Aquults, Ustults,

Psamments and Aquepts (Soil Survey Staff, 1992).

Soil sampling

Hard information. The sampling layout comprised three

different sets to reveal soil heterogeneity over different spatial

scales (Figure 2). A regular 2000 m 3 2000 m grid with 91

sample locations was drawn on a map, and ®elds nearest to

these grid nodes were identi®ed using aerial photographs and a

Global Positioning System. To quantify short-range variation

within microcatchments, 29 transects with a total number of

117 sampling sites were sampled in a strati®ed random design.

Transect points and the grid points form the interpolation data

set. A validation set was formed by specifying the coordinates

of 70 additional ®elds in 14 strata using a random number

generator. Strata were de®ned by dividing the region into 14

equal-sized regions. The samples support mapping at scales of

approximately 1:100 000 (Landon, 1991). The method of

sampling was similar to that used in Nueva Ecija, except that

the samples were taken from 0 to 0.15 m for the topsoil and

0.15±0.4 m for the subsoil. Samples were air-dried and ground

to pass through a 2-mm sieve, and soil texture was determined

using the hydrometer method. Soil texture classes were

estimated in the ®eld and determined in the laboratory using

the US Department of Agriculture (Soil Survey Staff, 1951)

soil texture classi®cation.

Soft information. Farmers in Northeast Thailand characterize

their ®elds according to toposequential position as low,

medium and high land and integrate these features into risk-

avoiding cropping strategies. This knowledge was extracted in

interviews and compiled for locations sampled in the

aforementioned soil survey. The soil surveyor suggested that

those ®elds with an upper sandy horizon, which is thicker than

1.5 m, and ®elds frequently rejuvenated by alluvial sediments

of the Lam Dom Yai River system should be included in the

L

Figure 2 The Northeast Thailand project area with subarea and the sampling layout.
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farmers' ®eld classi®cation (FFC) as additional classes. This

classi®cation is referred to as updated farmers' ®eld classi®ca-

tion (UFFC) and constitutes the soft information.

Exhaustive coverage of the soft information, which is

required for simple indicator kriging with local prior means,

was achieved in a 18 000-ha subarea of the original study area,

for which scanned, pan-chromatic aerial photographs (1:4000)

were acquired to facilitate a time and cost-ef®cient classi®ca-

tion using the UFFC. Within a GIS, a 250 m 3 250 m grid was

superimposed on the subarea to assign each grid node to one of

the UFFC classes. Easily identi®able microcatchments dom-

inate in Ubon Ratchathani, and the 2864 grid nodes of the

subarea were allocated manually into UFFC classes using the

scanned aerial photographs and an elevation map as visual aids.

The procedure was validated in 1997 when locations of 100

randomly selected grid nodes were visited in the ®eld and the

classi®cation accuracy of about 96% was considered as

suf®cient.

Analytical methods for both study areas

Processing of ®eld soil texture classes prior to mapping

Large though they are, our data sets would not permit

meaningful kriging if we were not to reduce the number of

possible classes by merging some of those previously

recognized. Thus, original topsoil texture classes as estimated

in the ®eld or given in the representative soil pro®le

descriptions were aggregated into three major classes to obtain

suf®cient data for geostatistical modelling in each class.

Relative to the average soil texture in the speci®c study area,

these classes represent soils with light (class 1), medium

(class 2) and heavy (class 3) texture.

In Nueva Ecija, class 1 comprises loamy sand, sandy loam,

loam and silt loam, with only minor occurrences of loamy sand

or sandy loam. Class 2 includes sandy clay loam, clay loam

and silty clay loam. Clay and silty clay soils are in class 3.

Northeast Thailand is characterized by coarse-textured soils.

Consequently, class 1 in our de®nition represents sandy and

loamy sand soils and class 2 sandy loam. All samples classi®ed

as loam and heavier are assigned to class 3. Of course, the

merging makes it easier for any interpolation method to hit the

correct answer at any of the validation points; conversely,

failure to do so is a more serious error than it would be if the

number of classes were larger.

Measures of within-unit variability

The soil map units were analysed for within-unit variation by

computing the complement of the relative variance (Webster

& Oliver, 1990), denoted here as RVc. The complement of the

relative variance is a measure of the proportion of variance in

the data explained by the classi®cation. The total variance � 2
T

of an attribute Z in the region formed by the mapping units can

be given as (Leenhardt et al., 1994):

�
2

T
� � 2

W
� � 2

B
; �1�

where � 2
B

is the variation among the mapping unit means

(between-unit variance) and � 2
W

is the variation occurring

within each unit on average (within-unit variance). One-way

analysis of variance was used to compute s 2
T
, s 2

B
and s 2

W
, which

estimate � 2
T
, � 2

B
and � 2

W
, respectively. The RVc is then

calculated as

RVc � 1ÿ s 2
W

s 2
T

 !
: �2�

Four mapping units of the soil map of Nueva Ecija

(Maligaya Silt Loam, Maligaya Clay Loam, Prensa Sandy

Loam and Quingua Silt Loam) and four mapping units of the

soil map of Ubon Ratchathani (Roi Et, Roi Et/Phen, Phon

Pisay, Nam Phong) were analysed for within-unit variation.

Mapping of ®eld texture classes

Topsoil texture maps based on ®eld texturing were generated

by two conventional (see SM and TP below) and two

geostatistical methods (see IK and SIK below) and compared

with one another and with a map based on particle size

distribution (see OK below). All variograms were visually

®tted to a distance of 7±8 km, which permitted us to take into

account extensive knowledge about the area as well as

experience gained during work in the regions on different

scales. This was particularly useful for Nueva Ecija, where

sampling distances did not account for potential short-range

variability. Search radii for kriging were restricted to 3 km. In

Northeast Thailand, maps were produced only for the subarea,

yet the complete data set was used to compute variograms

under the assumption of stationarity. Such an assumption

agrees with the similarity of the proportion of texture classes

for the total and the subarea (Table 1). All sites of the original

area where both soft and hard information was available were

used for the calibration of hard and soft information (see

below).

R

Table 1 Number of sites (N) and the global proportion (D) of ®eld

texture classes 1 (light), 2 (medium) and 3 (heavy) for Nueva Ecija

and Northeast Thailand (total area and subarea)

Northeast Thailand

Nueva Ecija Total area Subarea

N D N D N D

Class 1 169 0.44 112 0.40 48 0.39

Class 2 109 0.28 103 0.37 45 0.36

Class 3 106 0.28 63 0.23 31 0.25
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Fitted variogram models include pure nugget variation, and

linear combinations of models containing pure nugget

variation and an exponential model (single or double) or pure

nugget variation and an exponential and a spherical model.

Pure nugget variation is de®ned as (Webster & Oliver, 1990)


�h� � c0f1ÿ ��h�g; �3�

where 
 (h) is the semivariance, c0 is the nugget variance, h is

the lag distance, and � (h) is a function that takes the value 1

when h = 0 and zero otherwise. The function


�h� �
c

3h

2a
ÿ 1

2

h

a

� �3
( )

if h � a

c if h > a

2664 �4�

de®nes a single spherical model. The shape of the function is

determined by the range a and the sill c. Single exponential

models are de®ned by the function


�h� � c 1ÿ exp ÿ h

r

� �� �
; �5�

where r is a distance parameter. The effective range of this

function is usually taken as 3r, a distance for which the

semivariance is approximately 0.95c (Webster & Oliver,

1990). The ARC/INFO GIS software (ESRI, 1991) and GSLIB

(Deutsch & Journel, 1992) were used for mapping by the

following methods.

SM: Re-coding and classi®cation of soil map units. In this

approach the digitized soil maps (Figures 1, 2) were used as

base maps. The map units were re-coded within a GIS to

display the representative texture class of each unit, which is

mainly based on ®eld estimation and obtained from the

accompanying soil survey report.

TP: Thiessen polygons method. Thiessen polygons allow one

to delineate the polygon of in¯uence of each sampling point

such that any location in the polygon is closer to the original

sample point than to any other sampling points. Thiessen

polygons were applied to ®eld estimates of soil texture classes.

OK: Ordinary kriging. Maps of sand (Northeast Thailand) and

clay (Nueva Ecija) content were produced from ordinary

kriging estimates of laboratory data. Texture classes at each

site were then obtained using the following classi®cation.

Nueva Ecija: Class 1 clay < 35%

Class 2 clay 35±50%

Class 3 clay > 50%

Northeast Thailand: Class 1 sand > 70%

Class 2 sand 60±70%

Class 3 sand < 60%.

We acknowledge that this classi®cation generates classes

that are not exactly identical to the classes produced by

grouping of ®eld texture classes as described above. This

modi®cation may explain some of the differences between the

®nal maps.

IK: Indicator kriging of soil texture classes, ignoring soft

information. Indicator kriging was used to estimate, from soil

texture classes determined in the ®eld with the ®nger test, the

probability of occurrence of each class at unsampled locations.

The ®nal categorical maps were obtained by applying Soares's

algorithm (Soares, 1992) to the vector of local probabilities

(see below).

SIK: Indicator kriging with local prior means, using soft

information. Indicator kriging with local prior means was used

to estimate, from hard (®eld estimations of soil texture classes)

and soft information (the soil map in Nueva Ecija; knowledge

of farmers and experts in Ubon Ratchathani), the probability of

occurrence of each class at unsampled locations. Class maps

were obtained using Soares's algorithm.

The indicator approach

Suppose {sk, k = 1, 2, ¼, K} is a set of K mutually exclusive

soil texture classes with n1 observations {s(u�), �= 1, 2, ¼.,

n1} that are considered as precise measurements (hard

information) of the class sk prevailing at u�. Additional (soft)

information that is available at all locations u Î A and relates

indirectly to the hard data is provided. The soft information

takes the form of a class �l out of a set of L mutually exclusive

classes, such as classes of elevation or land suitability. Using

both hard and soft information one aims to estimate the

probability for each soil texture class sk to prevail at any

unsampled location u:

pfu;skj�n1 � n2�g� ProbfS �u� � skj�n1 � n2�g
k � 1; 2; :::;K;

�6�

where the uncertainty about the unknown class at u, s(u), is

modelled by the categorical random variable S(u). The

notation |(n1 + n2) expresses the conditioning to the n1 hard

data {s(u�),�= 1, 2, ¼, n1} and the n2 soft data {�(u'�), �= 1,

2, ¼, n2} retained in the neighbourhood of u. The conditional

probability de®ned in Equation (6) can be interpreted as the

conditional expectation of the indicator random function

I(u;sk) given the information (n1 + n2). Thus, an estimate for

p{u;sk | (n1 + n2)} is provided by (co-)kriging I(u;sk) using the

neighbouring indicator transforms of hard and soft data. The

indicator co-kriging (CoIK) algorithm, which uses indicator

data related to any class, is theoretically better because it

accounts for transition probabilities between classes. Its

implementation, however, requires joint modelling of

K(K + 1)/2 cross indicator variograms and solving large and

L

462 T. OberthuÈr et al.

# 1999 Blackwell Science Ltd, European Journal of Soil Science, 50, 457±479



possibly unstable co-kriging systems. Moreover, Goovaerts

(1994) showed that CoIK does not necessarily provide more

accurate results than the straightforward indicator kriging,

which involves modelling only the K auto indicator variograms


I(h;sk). We decided to use indicator kriging instead of co-

kriging because the latter approach is rarely implemented in

practice.

The indicator coding of information

Joint processing of hard and soft information using indicator

algorithms depends on preliminary coding of the data into

local prior probabilities of type:

ProbfS�u� � skjlocal information at ug k � 1; 2; :::;K: �7�

The probability de®ned in Equation (6) can be seen as the

result of the updating of the local prior probability of

Equation (7), and is referred to as a posterior probability. If

there is no uncertainty about the soil texture class prevailing at

a sampled location u� then the prior probability is 1 for the

class recorded at u� and 0 for the (K ± 1) other classes. At

sampled locations, the local prior probabilities are binary

(hard) indicator data de®ned as

i�u�; sk� � 1 if s �u�� � sk

0 otherwise
k � 1; 2; :::;K:

�
�8�

Where hard information is absent, the local prior probabilities

are identi®ed as the conditional frequencies F*(sk | �l)

corresponding to the class �l prevailing at u:

y�u; sk� � F��skj�l�

�
Pn
��1

i�u�; sk� i�u�; �l�Pn
��1

i�u�; �l�
k � 1; 2; :::;K;

�9�

where i(u�;�l) is an indicator of occurrence of class �l, i.e.

i(u�;�l) = 1 if �(u�) = �l and zero otherwise. Whereas the

binary (hard) indicator data i(u�;sk) take the values 0 or 1, the

soft data y(u;sk) have values between 0 and 1 because the

attribute � provides imprecise information about whether a

particular class sk prevails at u. The conditional frequencies

F*(sk | �l) can be derived by calibration from those locations

where both hard and soft data are known (Goovaerts, 1997, p.

329). The ability of the soft information to separate the two

cases i(u;sk) = 1 and i(u;sk) = 0, that is to detect the presence of

a speci®c class sk, can be assessed from the calibration data

using the following coef®cient:

ÃB�sk� � Ãm�1��sk� ÿ Ãm�0��sk� 2 �ÿ1; 1�; �10�

where mÃ (1)(sk) is the arithmetic average of soft indicator data

y(u�;sk) at locations where i(u�;sk) = 1:

Ãm�1��sk� � 1Pn
��1 i�u�; sk�Xn

��1

y�u�; sk�i�u�; sk�:
�11�

Conversely, mÃ (0)(sk) is the arithmetic average of the soft

indicator data y(u�;sk) where i(u�;sk) = 0:

Ãm�1��sk� � 1Pn
��1f1ÿ i�u�; sk�gXn

��1

y�u�; sk�f1ÿ i�u�; sk�g:
�12�

Soft information y exactly predicts that class sk prevails at u� if

mÃ (1)(sk) = 1 and conversely, exactly predicts that the class sk is

absent at u� if mÃ (0)(sk) = 0 . The greater the coef®cient BÃ (sk),

the more information is provided by the soft data (Goovaerts,

1997, pp. 314±317).

Indicator kriging with local prior means (SIK)

Several indicator algorithms (e.g. indicator kriging with local

prior means, co-located indicator co-kriging, full indicator co-

kriging) can be used to estimate each of the K posterior

probabilities p{u;sk | (n1 + n2)} de®ned in Equation (6) as a

linear combination of neighbouring hard and soft indicator

data (Goovaerts & Journel, 1995). We used simple indicator

kriging with local prior means because it is easy to implement

and avoids joint modelling of K(K + 1)/2 indicator (cross-)

variograms. Using SIK, the global proportion of the class sk,

i.e. p �
k
; with

PK
k�1 p �

k
� 1, in the simple indicator kriging

(sIK) estimator

�pfu; skj�n1�g��sIK � fi�u; sk�g�sIK

� p�k �
Xn

��1

�sIK
� �u; sk� � fi�ua; sk� ÿ p�kg

�13�

is replaced by the local soft prior probabilities y(u;sk) and

y(u�;sk) to account for the soft information available at

locations u and u�. The term �sIK
� �u; sk� denotes the weight

assigned to datum i(u�;sk). The estimate in Equation (13) is

then rewritten:

�pfu; skj�n1 � 1�g��sIK �

fy�u; sk�g �
Xn1

��1

�sIK
� �u; sk�fi�u�; sk� ÿ y�u�; sk�g:

�14�

The weights are �sIK
� �u; sk� obtained by solving a simple

indicator kriging system:

R
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Xn1

��1

�sIK
� �u�; sk�CR�u� ÿ u�; sk� �

�u� ÿ u; sk� 8 � � 1 to n1;

�15�

where CR(h;sk) is the covariance of the residual random

function R(u;sk) = I(u;sk) ± y(u;sk). At each location u, the K

estimated probabilities, [p{u;sk | (n1 + 1)}]*, must be valued

within [0, 1] and must sum to 1:

pfu; skj�n1 � 1�g�� 2 �0; 1� k � 1; 2; :::;K; �16�

XK

k�1

�pfu; skj�n1 � 1�g�� � 1: �17�

The ®rst condition is not necessarily satis®ed because

kriging weights can be negative and therefore the kriging

estimate is a non-convex linear combination of the

conditioning data. Following Deutsch & Journel (1992,

p.72), the ®rst constraint of Equation (16) is met by

resetting the faulty probabilities to the nearest bound, 0

or 1. The K estimates [p{u;sk | (n1 + 1)}]* Î [0, 1] are then

divided by the sum
PK

k�1�pfu;skj�n1 � 1�g�� to meet the

second condition of Equation (17).

If the soft data do not allow a signi®cant differentiation

of s values then the L prior probabilities F*(sk | �l) would

be similar to the global proportion p�k . The estimator then

reverts to the simple indicator kriging estimator with

constant indicator mean. The following steps were involved

in simple indicator kriging with prior means (Goovaerts,

1997).

1 The proportion of ®elds where the estimated soil texture

class is sk was ®rst computed for each soft information class �l.

2 The calibration results were used to convert the soft data

into vectors of local prior probabilities y(u;sk), whereas ®eld-

estimated texture classes were coded into hard indicator data

i(u�;sk) using Equation (8).

3 The residual value r(u�;sk) was computed at all sampled

locations u� by subtracting the soft indicator datum y(u�;sk)

from the co-located hard indicator datum i(u�;sk). The

experimental variogram of residuals was then computed and

modelled.

4 The residual values were estimated at all unsampled grid

nodes using simple kriging, and the posterior probability was

obtained by adding the soft indicator datum y(u;sk) to the

residual estimate r*(u;sk).

Indicator kriging (IK)

If the soft information is ignored then the probability of

Equation (6) is obtained as a linear combination of indicator

data related only to the class sk being considered:

�pfu; skj�n1�g��IK �
Xn1

��1

�IK
� �u; sk� i�u�; sk�: �18�

The weights are obtained by solving the following ordinary

kriging system of (n1 + 1) equations:

Xn1

��1

�IK
� �u; sk� 
I�u� ÿ u�; sk� ÿ �IK

k �u� � 
I�u� ÿ u; sk�

8� � 1 to n1

Xn1

��1

�IK
� �u; sk� � 1; �19�

8>>>>>>>>>><>>>>>>>>>>:
where 
I(h;sk) is the indicator variogram, and �IK

k �u� is the

Lagrange parameter.

Classifying the grid nodes

Several classi®cation criteria might be considered to allocate a

node to a given class on the basis of the probability vector.

Intuitively, one would tend to allocate each node u to the class

associated with the largest local probability of occurrence.

This criterion results in classifying most of the nodes into the

most frequent classes since the local probability is likely to be

larger if the corresponding proportion p�k is already large. Such

a classi®cation is inadequate if one aims to reproduce the

sample proportions, which are deemed representative of the

entire study area (assumption of stationarity).

Soares (1992) developed a classi®cation algorithm that

preferentially allocates nodes to the class with the largest local

probability of occurrence under the constraint of reproduction

of the global proportions. The classi®cation algorithm is

dynamic in the sense that the allocation of a node can change

as the classi®cation progresses. The classi®cation of N grid

nodes proceeds as follows (Goovaerts, 1997, p. 356).

1 For each class sk the N grid nodes are ranked according to

decreasing conditional probabilities [p{u;sk | (n)}]*.

2 The nk nodes (nk = Np�k) with the largest conditional

probabilities [p{u;sk | (n)}]* are allocated to the class sk.

3 If a location u is allocated to two or more classes, e.g. sk

and sk', it is assigned to the class sk with the largest conditional

probability of occurrence, i.e. where [p{u;sk | (n)}]* > [p{u;sk' |

(n)}]*. The (nk' + 1)th node with the largest conditional

probability [p{u;sk' | (n)}]* is allocated to class sk' so that

the global proportion p�k is reproduced. The procedure is

repeated until each grid node belongs to a single class.

Validation of the mapping approaches

The validation set was compared with the outcome of the

classi®cations, and the results were arranged into an error

L
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matrix, which summarizes the overlap between estimated

elements (pixels) and elements of the validation set. Table 2

gives an example for N elements and K classes. The term in the

error matrix, denoted xlk, represents the number of elements

that are classi®ed into class l for the interpolated map and class

k for the reference map (validation set). Terms in the major

diagonal (i.e. l = k) represent agreement between the two maps.

The marginal row totals, denoted as xl·, are computed as

xl� �
XK

k�1

xlk: �20�

The term x·k denotes the marginal column totals, which are

calculated as

x�k �
XL

l�1

xlk: �21�

Classi®cation accuracy is then computed as the proportion of

correctly classi®ed elements (PCC) for the kth class as

PCCk � xkk

x�k
�22�

and globally as

PCC �
PK
k�1

xkk

N
: �23�

The PCC parameter does not consider off-diagonal elements

(errors of omission and commission) and the Kappa statistic

(Cohen, 1960), here denoted with A, was therefore globally

estimated according to Bishop et al. (1975) as

A �
N
PK
k�1

xkk ÿ
PK
k�1

xk�x�k

N2 ÿPK
k�1

xk�x�k

; �24�

and conditionally for each class k by

Ak � Nxkk ÿ xk�x�k
Nxk� ÿ xk�x�k

: �25�

The estimates of Equations (24) and (25) are the proportion of

agreement not due to chance and can range from ±1 to 1,

where 1 represents full agreement between true and estimated

classes.

The Kappa statistic does not account for the severeness of

misclassi®cation, yet a case of light soil texture wrongly

allocated to medium soil texture is not as erroneous as light

texture allocated to heavy texture. Therefore, Jolayemi's r

statistic (Jolayemi, 1990) was also computed as

r �
������������������

�2

�k ÿ 1�N

s
; �26�

where �2 is the Pearson chi-squared statistic to test the

independence for the observed con®guration in the error

matrix. The r coef®cient, ±1 < r < 1, is a measure of agreement

between the actual and predicted classes, which accounts for

the size of error that is associated with misclassi®cation

(Foody, 1994).

Results

Soil texture information from hard and soft data

Nueva Ecija. Average clay and silt contents in the Nueva Ecija

area were 42.6% and 37.8%, respectively (Table 3). A quarter

of the area has very heavy-textured soils with clay and silt

content exceeding 52% and 43%, respectively. Parts of the

area are light to medium textured as shown by sand content

greater than 28% in a quarter of the samples, mainly in the east

R

Interpolated and Validation set

classi®ed map 1 2 ... K ± 1 K Total

1 x1 1 x1 2 ... x1 K ± 1 x1 K x1·

2 x2 1 x2 2 ... x2 K ± 1 x2 K x2·

. . . . . . .

. . . . . . .

. . . . . . .

K ± 1 xK ± 1 1 xK ± 1 2 ... xK ± 1 K ± 1 xK ± 1 K x(K ± 1).

K xK 1 xK 2 ... xK K ± 1 xK K xK.

Total x·1 x·1 ... x· (K ± 1) x·K N

Table 2 Example error matrix for K classes

and N elements. Values in the main

diagonal, here shown in bold for clarity,

represent the number of elements of the

interpolated and classi®ed map that are

classi®ed correctly. Off-diagonal values

indicate errors of omission and commission
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and along the Talavera River. The existing soil map could

explain only 15±22% of the variation in clay, silt and sand

(Table 3).

Hand texture estimation resulted in 169 light, 109 medium

and 106 heavy-textured soil samples (Table 1). The change in

soil texture is due mainly to a change in clay and sand content.

The clay content in the heavy class (53.5%) is on average

about 20% larger than in the light class (33.8%). Sand

averages 26.9% in class 1 and 11% in class 3. Average silt

content differed little among all three classes (35.5±39.4%).

Table 4 shows, for each soil series, the probabilities of

occurrence of the three texture classes, which were derived

from the calibration set of 384 observations. These prior

probabilities F*(sk | �l) were used to derive the BÃ (sk)

coef®cients that measure the ability of the soft information

to predict the presence of each texture class. The small

coef®cients indicate that the soft information has little ability

to predict texture classes.

Northeast Thailand. Soil texture in the Northeast Thailand

study area is coarser than in Nueva Ecija, and the three texture

classes were different in sand, silt and clay contents (Table 3).

Half of the samples have more than 70% sand and less than 8%

clay. Average clay contents ranged from 6% in class 1 to

16.1% in class 3. The average sand content ranged from 55.8%

in class 3 to 79.8% in class 1. The RVc indicates that the soil

map did not explain more than 5% of the variation in sand, silt

and clay content. There are 112 samples in the light-textured

class while 103 and 63 are in the medium and heavy-textured

class, respectively (Table 1).

Differences between conditional probabilities are more

pronounced for Northeast Thailand, and larger BÃ (sk) coef®-

L

Table 3 Descriptive statistics and the complement of the relative variance for the irrigated rice lands in Nueva Ecija (Philippines; 384 samples)

and the rain-fed rice lands in Northeast Thailand (278 samples). Presented values are based on laboratory analysis of topsoil samples (0±20 cm

for Nueva Ecija, 0±15 cm for Northeast Thailand). Mean laboratory values of particle size distribution are also given for sites allocated to the

®eld-estimated texture classes 1 (light), 2 (medium) and 3 (heavy)

Mean SDa CVb Minc LQd Mede UQf Maxg Skh RVc
i Mean1j Mean2k Mean3l

Nueva Ecija

Clay /% 42.6 13.4 0.31 13.6 32.8 42.2 52.5 72.6 0.12 0.15 33.8 45.6 53.5

Silt /% 37.8 8.4 0.22 22.2 31.1 36.6 43.2 63.0 0.55 0.20 39.4 37.6 35.5

Sand /% 19.6 12.8 0.65 0.6 9.0 17.2 28.9 53.4 0.55 0.22 26.9 16.8 11.0

Northeast Thailand
Clay /% 9.4 7.2 0.77 1.0 5.3 7.2 10.4 48.4 2.60 0.01 6.0 8.9 16.1

Silt /% 20.5 10.5 0.51 0.1 12.1 18.2 27.9 54.1 0.77 0.05 14.3 22.8 27.9

Sand /% 70.1 15.0 0.21 23.3 60.9 73.1 82.2 92.5 ±0.96 0.05 79.8 68.2 55.8

aStandard deviation; bcoef®cient of variance; cminimum; dlower quartile, emedian; fupper quartile; gmaximum; hskewness; icomplement of the

relative variance for the 1:125 000 (Nueva Ecija) and 1:100 000 (Northeast Thailand) soil maps; jmean for ®eld texture class 1 (light); kmean

for ®eld texture class 2 (medium); lmean for ®eld texture class 3 (heavy).

Table 4 Probability of occurrence of texture classes 1±3 conditionally to the presence of soft information (soil series, topographic position).

The calibration sets include 384 observations for the Nueva Ecija study region and 278 observations for Northeast Thailand; the number of

observations within each class is given in parentheses. The last column gives the BÃ (sk) coef®cient that measures the ability of the soft

information to predict each texture class

Nueva Ecija Soil Series 1a Soil Series 2b Soil Series 3c Soil Series 4d Soil Series 5e BÃ (sk)

Class 1 0.4 (2) 0.64 (46) 0.40 (55) 0.38 (55) 0.54 (13) 0.04

Class 2 0.6 (3) 0.21 (15) 0.22 (31) 0.32 (47) 0.46 (11) 0.03

Class 3 0.0 (0) 0.15 (11) 0.38 (52) 0.30 (43) 0.0 (0) 0.06

Northeast Thailand Position 1f Position 2g Position 3h Position 4i Position 5j BÃ (sk)

Class 1 0.15 (11) 0.39 (41) 0.56 (37) 0.91 (21) 0.11 (1) 0.18

Class 2 0.31 (22) 0.46 (50) 0.39 (26) 0.09 (3) 0.33 (3) 0.04

Class 3 0.54 (38) 0.15 (17) 0.05 (3) 0.0 (0) 0.56 (5) 0.39

aQuingua Fine Sand; bPrensa Sandy Loam; cQuingua Silt Loam; dMaligaya Silt Loam; eMaligaya Clay Loam; fLow; gMedium; hHigh; iDeep

sands; jAlluvial sites.
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Figure 3 Experimental variograms and ®tted models (dashed line) for soil particle size distribution in the two study areas. Variation is slightly

anisotropic in Nueva Ecija; the directions shown are 30° (open circles) and 120° (®lled circles) clockwise from north.

Mapping ®eld-estimated soil texture classes 467

# 1999 Blackwell Science Ltd, European Journal of Soil Science, 50, 457±479



cients (0.04±0.39) suggest better predictive power of topo-

graphic ®eld positions (Table 4).

Spatial correlation of soil texture

Nueva Ecija. The semivariance for all particle size classes

increased gradually after sharp initial increases over the ®rst

2 km, which indicates a notable amount of short-range

variation (Figure 3).

All classes had a slightly anisotropic spatial structure, with

clay and sand showing a trend in the approximately NW to SE

direction (120° clockwise from north) perpendicular to the

¯ow direction of the Talavera River (Figures 1, 3). Spatial

correlation is evident for distances up to 6 km for silt. The

variograms for clay and sand indicate spatial correlation up to

5 km in direction 30° (approximately NE). We ®tted isotropic

models to the experimental variograms because the anisotropy

is not pronounced.

The indicator variograms for classes 1 and 3 reached a sill at

about 7 km, and for class 2 the variogram levels out at about

8 km (Figure 4). The relative nugget variance was larger for

class 2 than for other ones (Table 5). Indicator variograms

were modelled with a pronounced short-range structure to

account for small inclusions with light and heavy texture,

which were encountered during ®eld work but not fully

captured by the sampling design.

The variograms of residuals (Figure 5) have nuggets similar

to the ones of the indicator variograms for texture classes

(except class 3; Figure 4) because all prior probabilities are not

very different (poor discriminatory power of the soil series);

see the rows in Table 4. The ®tted spherical models reach their

sills at about 6 km and have nugget variances from 0.003 to

0.13 (Table 5).

Northeast Thailand. Unlike Nueva Ecija, most of the variation

in clay, silt and sand content in Northeast Thailand occurred

over distances of less than 2 km, and no directional trends were

observed (Figure 3). The exponential models ®tted to the

experimental variograms of clay and silt reach their sills

effectively at about 2 km (distance parameters of 0.62 km and

0.667 km, respectively), whereas for sand the effective range is

about 4 km (distance parameter of 1.4 km; Table 6, Figure 3).

The indicator variogram for class 1 has two nested structures

with distance parameters of about 0.14 km and 2.04 km. Soil

texture class 2 appears as pure nugget. The experimental

indicator variogram for class 3 was modelled using two

exponential structures of effective ranges 1.4 km and 7.9 km

(distance parameters of about 0.47 km and 2.6 km; Table 6,

Figure 4).

Short-range variation, which was observed along the

toposequential transects in the region, is re¯ected in the

exponential models ®tted to the residual variograms that reach

their sills shortly before or at around 1 km (Figure 5). Unlike

the indicator variograms, the residual variograms display only

short-range structures and small nugget effects (except class 1;

Table 6). The visual differences between variograms of

residuals and indicator variograms, most notably for the

medium texture class, emphasize the discriminatory power of

the soft information (see rows in Table 4).

Maps of soil texture classes

Nueva Ecija. The map based on re-coding of representative

pro®les (Figure 6b) showed no agreement with any of the

other texture maps because, on the basis of the soil series,

most of the area was allocated to class 1 (Table 7). The TP

map (Figure 6c), the OK map (Figure 7a), the IK map

(Figure 7b) and the SIK map (Figure 7c) exhibit similar

trends and re¯ect the distribution patterns of clay (Figure

6a): all classes are represented, the soil texture changes

from heavy to light in the west±east direction and medium

texture encloses heavy soil texture west of the centre.

Another concentration of heavy texture can be seen in the

south. All maps show a corridor with soil texture class 1

south of the centre.

Differences become apparent if the maps are examined

more closely, however: the TP map is most fractured and

appears unrealistically blocky. The indicator kriging map

reveals much detail but is less patchy than the TP map. Most

spatial consistency is seen in the maps generated using OK and

SIK. Compared with IK, SIK classi®es less land in the south as

heavy textured, whereas more medium-textured soil is found

in the north.

Northeast Thailand. Re-coding of the original soil map did

not match the proportions of soil texture classes estimated

from other maps because much land was assigned to class

2 (Table 7, Figure 8b). The Roi Et soil series (sandy loam;

Figure 2) dominates the original soil map, and soil texture

classes 1 and 3 are assigned only to marginal areas,

although they seem to cover much more land in reality.

Spatial patterns of texture classes in the map generated

using OK (Figure 9a) expectedly mirror the patterns of the

distribution of sand (Figure 8a). Thiessen polygons (Figure

8c) and IK (Figure 9b) are similar and show more heavy

soil texture than the OK map, but Thiessen polygons do

not realistically present information about short-range

variation from transects, which the algorithm maps as

elongated artefacts. The SIK map reveals a dendritic pattern

and much spatial detail of soil texture class distribution.

Texture classes change gradually from heavy to medium to

light and follow the main topographic and drainage pattern.

Larger coherent inclusions of light soil texture in the centre

and of medium to heavy soil texture in the NW and SW

suggest also that factors other than topography and drainage

in¯uence the spatial distribution of texture classes.

L
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Figure 4 Experimental, omnidirectional indicator variograms with the ®tted models (dashed line) for soil texture classes 1±3 in both areas.
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Map validation

Nueva Ecija. Indicator kriging performed well when the

interpolated maps were tested against the validation set (Table

8): the coef®cient of the Kappa statistic was larger (0.28) than

that of the SM map (±0.06), the OK map (0.22) and the TP

method (0.19). The conditional coef®cients of the Kappa

statistic con®rm that IK performed well for soil texture classes

1 and 3, but not for class 2. Good results were also achieved

with TP for class 3. However, Table 8 indicates that

accounting for soft information scarcely increases the

classi®cation accuracy: the PCC (0.55 against 0.53) and A

(0.28 against 0.27) are similar for IK and SIK. But indicator

kriging with local prior means is the only method that

produces good results for all classes. Also, SIK generates

slightly less severe misclassi®cations than IK as indicated by

the r statistic (0.20 against 0.19) but OK is less accurate in this

context (0.13).

Northeast Thailand. Unlike in Nueva Ecija, the integration of

soft information improved mapping in the Northeast Thailand

subarea (Table 9): agreement between the validation set and

estimated texture classes was closer for SIK (PCC = 0.66,

A = 0.37) than for IK (PCC = 0.53, A = 0.21), OK (PCC = 0.50,

A = 0.06) or TP (PCC = 0.55, A = 0.27). The Kappa and PCC

values suggest enhanced classi®cation accuracy for SIK for

heavy texture as already suggested by a large BÃ (sk) coef®cient

(Table 4), but only two validation sites were available in this

class, and careful interpretation is required. Soft information

reduces not only the proportion of wrongly classi®ed land, but

the large r statistic also proves that misclassi®cations using

SIK (0.30) are not as severe as those generated by the soil map

method (0.06), indicator kriging (0.08), ordinary kriging (0.07)

or Thiessen polygons (0.13).

Discussion for both environments

Methodological aspects

Maps based on ®eld texturing (i.e. SIK, IK and TP) resemble

the OK map, and this con®rms the ®nding of Hodgson et al.

(1976) that sound estimation of soil texture in the ®eld is

practically feasible. Some of the deviations can be explained

by the fact that the relation between ®eld and laboratory soil

texture classes can be considered only as an approximation

(Kuntze et al., 1994). Also, grouping of US Department of

Agriculture ®eld texture classes generated three broader

classes for interpolation, which were not identical to classes

generated by applying thresholds to ordinary kriging maps of

sand and clay. It may also be necessary to obtain additional

®eld data where other soil factors bias the ®nger texture

estimation, and we recommend intensive calibration with

reference samples for both areas. Surveyors have to be

cautious not to underestimate clay content for both regions

in places where microaggregates of clay and iron oxides give

the soil a sandy feel. In Northeast Thailand, clay contents are

sometimes locally overestimated because of larger than

average CaCO3 content in the soil.

If soft information was ignored, the simple Thiessen

polygons algorithm proved to be as ef®cient as more complex

geostatistical methods in the undulating rain-fed lands given

the generally available hard information. By contrast, the

variation in the gradually changing alluvial setting of Nueva

Ecija was more reliably captured by the geostatistical approach

as re¯ected by the validation statistics. Furthermore, indicator

L

Table 5 Variogram parameters for Nueva Ecija (based on 384 samples)

VM1
a c0

b c1
c r1 /md a1 /me VM2

a c2
f r2 /mg a2 /mh

Variograms

Clay exp 30.1 164.4 1362 ± ± ± ± ±

Silt exp 16.0 74.3 1752 ± ± ± ± ±

Sand exp 90.0 144.5 2131 ± ± ± ± ±

Indicator variograms

Class 1 exp 0.123 0.159 153 ± sph 0.263 ± 6949

Class 2 exp 0.138 0.176 221 ± sph 0.209 ± 7920

Class 3 exp 0.061 0.131 170 ± sph 0.212 ± 6847

Variograms of residuals

Class 1 sph 0.130 0.270 ± 5898 ± ± ± ±

Class 2 sph 0.106 0.259 ± 6540 ± ± ± ±

Class 3 sph 0.003 0.028 ± 6423 ± ± ± ±

aVariogram models for the short-range (VM1) and long-range structures (VM2): exp ± exponential model, sph ± spherical model; bnugget

variance; csill of the short-range variance; ddistance parameter of the short-range structure; erange parameter of the short-range structure; fsill

of the long-range variance; gdistance parameter of the long-range structure; hrange parameter of the long-range structure.
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Figure 5 Experimental variograms of residuals and ®tted models (dashed line) for soil texture classes in both areas.
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kriging combined with Soares's classi®cation algorithm

reliably reproduced the distribution of soil texture classes in

the survey data for both areas.

Soil maps are frequently used for agronomic planning or

regional crop modelling in both environments, but they were

not produced speci®cally for this purpose: the re-coded Nueva

Ecija soil map tends to underestimate the clay and silt content.

On the other hand, re-coding of the soil map overestimates the

clay content for most of the land in Northeast Thailand.

Incorporating soft information did not improve mapping

accuracy in Nueva Ecija, but the SIK map appears less

fragmented than other maps that were generated by interpola-

tion of ®eld-estimated soil texture classes. The lack of

improvement in accuracy when using SIK was expected given

the small values of the BÃ (sk) coef®cients, but we recommend

the soil map as a source of complementary information if

generating contiguous classes is of prime concern for regional

land assessment and planning. In the undulating rain-fed lands

of Northeast Thailand, knowledge of farmers and soil experts

implicitly re¯ected the spatial variation of soil texture classes,

and this soft information was incorporated in the geostatistical

approach to improve mapping accuracy. Unlike in Nueva

Ecija, the validation statistics strongly supported the integra-

tion of soft information. Soil texture classes followed a

dendritic pattern, which re¯ects partly the local topography

and drainage system. Considering only topography and

drainage pattern as soft information would not be suf®cient

because correspondence between these features and soil

L

Table 6 Variogram parameters for the complete study area in Northeast Thailand (based on 278 samples)

VM1
a c0

b c1
c r1 /md VM2

a c2
e r2 /mf

Variograms

Clay exp 5.0 54.5 620 ± ± ±

Silt exp 20.0 117.6 667 ± ± ±

Sand exp 47.6 145.6 1411 ± ± ±

Indicator variograms

Class 1 exp 0.120 0.175 136 exp 0.240 2038

Class 2 nug 0.235 ± ± ± ± ±

Class 3 exp 0.061 0.166 467 exp 0.197 2628

Variograms of residuals

Class 1 exp 0.143 0.193 350 ± ± ±

Class 2 exp 0.065 0.185 175 ± ± ±

Class 3 exp 0.014 0.05 175 ± ± ±

aVariogram models for the short-range (VM1) and long-range structures (VM2): exp ± exponential model, nug ± pure nugget; bnugget variance;
csill of the short-range variance; ddistance parameter of the short-range structure; esill of the long-range variance; fdistance parameter of the

long-range structure.

D SMa ± P TPb ± P OKc ± P IKd ± P SIKe ± P

Nueva Ecija

Class 1 0.44 0.94 0.45 0.28 0.44 0.44

Class 2 0.28 0.06 0.29 0.46 0.28 0.28

Class 3 0.28 0.00 0.26 0.26 0.28 0.28

Northeast Thailand

Class 1 0.39 0.05 0.46 0.69 0.39 0.39

Class 2 0.36 0.86 0.30 0.20 0.36 0.36

Class 3 0.25 0.09 0.24 0.11 0.25 0.25

aSoil map method; bThiessen polygons; cordinary kriging and GIS-based classi®cation;
dindicator kriging using Soares's classi®cation algorithm; eindicator kriging with prior local

means using Soares's classi®cation algorithm.

Table 7 Relative proportions (P) of texture

classes for the interpolated maps, and the

corresponding proportions for the ®eld

samples (D)
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Figure 6 Soil texture maps for the Nueva Ecija area. The clay content map (a) was created with ordinary kriging. Map (b) is the re-coded soil map for which soil texture classes of the

representative unit pro®les were assigned to the whole unit. The Thiessen polygons map (c) and the re-coded soil map were produced within the ARC/INFO GIS environment.
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Figure 7 Soil texture maps for the Nueva Ecija area. The clay content map (Figure 6a) was used to generate map (a) by GIS classi®cation. Maps (b) and (c) were generated by

applying Soares's classi®cation algorithm to probabilities of class occurrence, which were estimated using indicator kriging (b) and indicator kriging with local prior means (c).
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Figure 8 Soil texture maps for the Northeast Thailand subarea. The sand content map (a) was created with ordinary kriging. Map (b) is the re-coded soil map for which soil texture

classes of the representative unit pro®les were assigned to the whole unit. The Thiessen polygons map (c) and the re-coded soil map were produced within the ARC/INFO GIS

environment.
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texture class distribution is only partial: the size of typical

microcatchments in the area is often smaller than the extent of

the contiguous areas of soil texture classes.

Soil texture distribution

The changes of particle size distribution arise from the alluvial

nature of the Central Luzon Basin in Nueva Ecija. Variograms

suggest gradual changes in the textural composition re¯ecting

¯uvial sedimentation patterns. Silt content remains fairly

stable across the different soil map units, and spatial variation

is isotropic, and we do not have an explanation for this. Clay

and sand contents show a trend in direction 120°, which is

perpendicular to the ¯ow of the Talavera River system and

coincides with the direction of the change in elevation over

longer distances.

For the Northeast Thailand site, our results are not

consistent with the general belief that soils of the Khorat

Plateau are universally coarse textured (e.g. Ragland &

Boonpuckdee, 1988, pp. 1±20). The OK map (11%), the TP

map (24%) and the IK and SIK maps (25%) assign much land

to soil texture class 3 (loam and heavier). A loamy soil is

generally regarded as suitable for rice production. Only land

with soil texture class 1 appears consistent with the general

perception of sandy Northeast Thailand soils, but most

mapping approaches allocate only about half of the area to

this class (OK = 69%, TP = 46%, IK and SIK = 39%). The

reliance on soil maps may have contributed to the long-held

views about soil texture in Northeast Thailand. In reality, soil

texture in this region varies over short distances, and the soil

maps do not depict these changes. Colluvio-alluvial processes

over short distances and in situ soil development are as

important factors for the distribution of soils in Northeast

Thailand as is gradually changing Quaternary alluvial

sedimentation.

Conclusions

1 Field estimates of soil texture are valuable surrogates for

expensive and time-demanding laboratory measurements of

soil texture classes.

2 Soil maps at scales of 1:100 000 to 1:125 000 highlight the

important soil texture classes in the region but do not allow for

agronomic interpretations. Agronomic interpretations should

L

Table 9 Comparison of the different mapping approaches using the

validation data set (n = 36), Northeast Thailand. Three criteria are

considered: proportion of validation points that are correctly

classi®ed (PCC; class values and global value), the Kappa

coef®cient (here denoted A; class values and global value) and

Jolayemi's r-statistic (global)

Class 1 Class 2 Class 3 Global

Validation points (n) 21 13 2 36

SMa PCC 0.14 0.77 0.50 0.39

A 1.00 0.01 0.12 0.09

r 0.06

TPb PCC 0.57 0.46 1.00 0.55

A 0.40 0.22 0.21 0.27

r 0.13

OKc PCC 0.71 0.15 0.50 0.50

A 0.10 ±0.12 0.15 0.06

r 0.07

IKd PCC 0.48 0.69 0.00 0.53

A 0.31 0.31 ±0.06 0.21

r 0.08

SIKe PCC 0.81 0.38 1.00 0.66

A 0.37 0.30 0.47 0.37

r 0.30

aRe-coding of the soil map; bThiessen polygons; cordinary kriging

with GIS-based classi®cation; dindicator kriging and classi®cation

using Soares's algorithm; eindicator kriging with local prior means

and classi®cation using Soares's algorithm.

Table 8 Comparison of the different mapping approaches using the

validation data set (n = 40), Nueva Ecija. Three criteria are

considered: proportion of validation points that are correctly

classi®ed (PCC; class values and global value), the Kappa

coef®cient (here denoted A; class values and global value) and

Jolayemi's r-statistic (global). There is no r-statistic available for

the SM method, because the calculation involved division by zero

Class 1 Class 2 Class 3 Global

Validation points (n) 18 11 11 40

SMa PCC 0.83 0.09 0.00 0.40

A ±0.06 ±0.03 0.00 ±0.06

r ±

TPb PCC 0.55 0.18 0.64 0.47

A 0.19 ±0.13 0.50 0.19

r 0.15

OKc PCC 0.39 0.45 0.64 0.48

A 0.24 0.08 0.36 0.22

r 0.13

IKd PCC 0.72 0.09 0.73 0.55

A 0.26 ±0.15 0.54 0.28

r 0.19

SIKe PCC 0.56 0.36 0.64 0.53

A 0.25 0.02 0.69 0.27

r 0.20

aRe-coding of the soil map; bThiessen polygons; cordinary kriging

with GIS-based classi®cation; dindicator kriging and classi®cation

using Soares's algorithm; eindicator kriging with local prior means

and classi®cation using Soares's algorithm.
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Figure 9 Soil texture maps for the Northeast Thailand subarea. The sand content map (Figure 8a) was used to generate map (a) by GIS classi®cation. Maps (b) and (c) were generated

by applying Soares's classi®cation algorithm to probabilities of class occurrence, which were estimated using indicator kriging (b) and indicator kriging with local prior means (c).
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be based on maps generated by detailed soil surveys or on

combining ®eld texturing with TP, IK or SIK to produce

re®ned maps.

3 Indicator kriging is technically feasible for mapping

categorical data at regional scales in rain-fed and irrigated

environments and in particular is better than simpler

interpolation techniques where change is gradual. In hetero-

geneous environments such as Northeast Thailand simple

interpolation is almost as good as the more complex indicator

kriging.

4 Indicator kriging with prior local means is of particular

value in the heterogeneous rain-fed lands where other

interpolation techniques are not as good as the more complex

SIK if complementary information is available for the

interpolation.

5 The soft information used here is readily available in many

regions or does not cost much to obtain. Therefore, instead of

concentrating on additional sampling with greater density, SIK

provides an interesting cheap alternative for updating or

upgrading soil maps.

6 In Northeast Thailand, the integration of hard and soft

information revealed visually that colluvio-alluvial processes

act over short distances and in situ soil development is likely.

Large-scale variation, as suggested by the variograms and SIK

map, is not consistent with the widely held belief that

Quaternary alluvial sedimentation was the sole process

responsible for the distribution of soils in the region (see

Moormann et al., 1964).

7 There is no ideal interpolation technique for the two rice-

growing areas. It is worth investigating whether other readily

available information, such as elevation or local knowledge of

Nueva Ecija, can improve prediction of soil texture classes.
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