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Abstract: Fluorocarbons are quintessentially man-made molecules, fluorine being all but absent

from biology. Perfluorinated molecules exhibit novel physicochemical properties that include

extreme chemical inertness, thermal stability, and an unusual propensity for phase segregation.
The question we and others have sought to answer is to what extent can these properties be

engineered into proteins? Here, we review recent studies in which proteins have been designed

that incorporate highly fluorinated analogs of hydrophobic amino acids with the aim of creating
proteins with novel chemical and biological properties. Fluorination seems to be a general and

effective strategy to enhance the stability of proteins, both soluble and membrane bound, against

chemical and thermal denaturation, although retaining structure and biological activity. Most
studies have focused on small proteins that can be produced by peptide synthesis as synthesis of

large proteins containing specifically fluorinated residues remains challenging. However, the

development of various biosynthetic methods for introducing noncanonical amino acids into
proteins promises to expand the utility of fluorinated amino acids in protein design.

Keywords: fluorinated amino acids; 4-helix bundle proteins; protein stability; protein design;
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Introduction

Protein engineering has relied heavily on mutagene-

sis, both site-directed and random, as a tool to mod-

ify the structure and function of enzymes and pro-

teins. Until recently, this approach was limited to

substitutions within the 20 natural (proteogenic)

amino acids or post-translational chemical modifica-

tion of protein structure. However, the development

of various methods that allow a wide variety of non-

natural, or nonproteogenic, amino acids to be incor-

porated into proteins has expanded the possibilities

for modifying protein structure enormously. In par-

ticular, it is now possible to introduce a diverse

range of chemical functionalities into proteins that

are not seen in nature. Prominent among the non-

natural amino acids that have been investigated

are highly fluorinated analogs of hydrophobic

amino acids, representatives of which are shown in

Figure 1. These have attracted interest because of

the unusual physicochemical properties of perfluoro-

carbons and their potential to enhance the stability

of natural proteins.

The unique physical properties of fluorinated

molecules derive, in part, from the extreme electro-

negativity of fluorine. A CAF bond is polarized in

the opposite direction to a CAH bond, and is both

more stable, by about 14 kcal/mol, and less polariz-

able than a CAH bond. Fluorine is often considered

isosteric with hydrogen as the van der Waals radius
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of fluorine, 1.35 Å, is only slightly greater than that

of hydrogen, 1.2 Å; however, the CAF bond is signifi-

cantly longer, �1.4 Å, than a CAH bond, �1.0 Å.

Nevertheless, fluorine can frequently be substituted

for hydrogen in small molecules, with minimal

impact on their binding to proteins and enzymes.

This property has been widely exploited to increase

the hydrophobicity of pharmaceuticals and improve

their bioavailability.1

Perfluorocarbons are highly chemically inert

and extremely hydrophobic; for example, solvent

partitioning experiments have shown a trifluoro-

methyl group to be twice as hydrophobic as a methyl

group.2 They also exhibit unusual phase segregating

properties; for example, water, hexane, and perfluor-

ohexane are each mutually immiscible, and

may therefore be described as both hydrophobic and

lipophobic. This unusual property, which is known

as the ‘‘fluorous effect,’’ underlies the nonstick

properties of materials such as polytetrafluoroethyl-

ene. It has also been exploited in organic synthesis

to extract molecules equipped with fluorocarbon

tags from multicomponent reaction mixtures

into perfluorocarbon solvents,3,4 as illustrated in

Figure 2.

Fluorine is essentially absent from biology, mak-

ing the introduction of man-made fluorinated amino

acids a unique way to modify proteins. Fluorinated

amino acids have long been used as a sensitive and

nonperturbing NMR probes to examine changes in

local protein environment and dynamics.5–12 How-

ever, this review focuses on the more recent use of

fluorine to modulate the physicochemical properties

of proteins by incorporating highly fluorinated ana-

logues of hydrophobic amino acids, in particular leu-

cine, isoleucine, valine, and phenylalanine, into their

structures.13–15 Such proteins exhibit increased sta-

bility towards unfolding by chemical denaturants,

solvents and heat, and degradation by proteases. It

has also been postulated that a protein-based fluo-

rous effect could be created by incorporating highly

fluorinated residues at protein interfaces, thereby

introducing an interaction orthogonal to the hydro-

phobic effect with which to direct protein recognition

and ligand binding (Fig. 2).

Figure 1. Fluorocarbon analogs of hydrophobic amino

acids that have been incorporated into proteins; the

abbreviations given are those used in this review. (*denotes

a racemic stereocenter).

Figure 2. The fluorous effect in small molecules and proteins. (A) Triphasic mixtures are formed when fluorinated (green

layer) solvents are mixed with aqueous (blue layer) and hydrocarbon (yellow layer) solvents. Solvent immiscibility can be used

as a purification technique, when small molecules (purple spheres) are tagged with hydrocarbon (black) or fluorocarbon

(green) tails. (B) It has been proposed that this property of fluorocarbons could be extended to the design of self-segregating

proteins with either fluorinated (green) or nonfluorinated (yellow) hydrophobic cores.
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Synthesis of Highly Fluorinated Proteins

The incorporation of any nonproteogenic amino acid

into a protein poses a synthetic challenge. It has

been known for a long time that sparingly fluori-

nated analogs of many hydrophobic amino acids can

be incorporated biosynthetically with high efficiency

using bacterial strains that are auxotrophic for the

parent amino acid.16,17 However, extensively fluori-

nated amino acids are generally not recognized by

the endogenous protein synthesis machinery. There-

fore, most studies on highly fluorinated proteins

have focused on short proteins and peptides and uti-

lized solid phase peptide synthesis to introduce fluo-

rinated residues, which is straightforward and pro-

vides a great deal of flexibility.

Alternatively, Tirrell and coworkers have devel-

oped methods for residue specific incorporation of

fluorinated amino acids such as trifluoroleucine

(tFLeu), trifluoroisoleucine (tFIle), and trifluorova-

line (tFVal) that can be activated by endogenous

tRNA synthetases. The advantage of this method is

that large proteins can be fluorinated; however, pro-

tein expression does not result in 100% incorpora-

tion of fluorinated analogs due to the presence of

natural amino acid substrate derived from cellular

proteins; efficiencies of 70–90% are typical. In vivo

protein incorporation also results in global substitu-

tion of a particular amino acid, which limits some

applications. Highly fluorinated analogs such as hex-

afluoroleucine (hFLeu) are not efficiently recognized

by tRNA synthetases, and thus not incorporated

in vivo. However, this limitation has been overcome

by over-expression in E. coli of an engineered leucyl-

tRNA synthetase that activates hFleu with improved

efficiency.17–20

In principle, fluorous amino acids could be intro-

duced biosynthetically in a site-specific manner

using an evolved orthogonal aminoacyl-tRNA syn-

thetase/tRNA pair, an approach which has been pio-

neered by Schultz and coworkers.21,22 To our knowl-

edge, it has not been used so far to produce highly

fluorinated proteins, presumably because of the

technical barrier presented by the need to evolve the

requisite tRNA synthetase. Similarly, expressed pro-

tein ligation techniques23,24 offer a way to produce

semisynthetic proteins that contain segments of non-

natural residues, but again this technique has not

yet been used for the production of extensively fluo-

rinated proteins.

Stabilizing Proteins Through Fluorination

The hydrophobic effect is the major driving force in

protein folding, so it is not surprising that fluori-

nated amino acids, being more hydrophobic than

their hydrocarbon counterparts, are generally effec-

tive in stabilizing protein structure. For example,

solvent partitioning studies predict that the

increased hydrophobicity of hFLeu can stabilize a

protein by �0.4 kcal/mol/residue over Leu, although

predicted stability increases for proteins as high as

1.1 kcal/mol/hFLeu residue have been reported.25,26

Most studies have focused on the incorporation of

fluorinated analogs of valine, leucine, and isoleucine

into the hydrophobic core of small a-helical proteins.
In addition, the effect of fluorination on the stability

of b-sheet proteins, transmembrane proteins, and

other small globular proteins has also been studied.

Studies on parallel coiled-coil proteins

The first reports of fluorous amino acids enhancing

the stability of proteins came from laboratories of

Kumar, Tirrell and coworkers, who studied the

effects of fluorination on the coiled-coil domain of

GCN4 and a de novo-designed coiled-coil dimer, A1.

Substituting the four Leu and three Val residues in

GCN4 [Fig. 3(A)] by tFLeu and tFVal respectively

resulted in a relatively modest stabilization of �1

kcal/mol over the nonfluorinated version.27 Substi-

tuting the six core d-position leucine residues of A1

by tFLeu resulted in a protein that was 0.4 kcal/mol/

tFLeu residue more stable.17 Whereas increasing the

fluorine content of A1 by substituting hFLeu for Leu

resulted in a correspondingly higher stabilization of

A1 by �0.6 kcal/mol/hFLeu residue.28 Fluorinated

versions of the coiled-coil DNA binding protein,

GCN4-bZip, and its dimerization subdomain GCN4-

p1d have been produced synthetically.18 In this case,

substituting tFLeu for four d-position Leu residues

of GCN4-p1d substantially increased the thermal

stability of the protein and provided a modest

increase in the free energy of unfolding, DDGunfold

�0.6 kcal/mol. Importantly, the fluorinated GCN4-

bZip retained the ability of the wild-type protein to

bind DNA, suggesting that fluorination may be a

general strategy for increasing stability without

compromising biological activity.

Further studies on the biosynthetic incorpora-

tion of fluorous amino acids examined the stereo-

chemical preference of tRNA-synthetases for stereo-

isomers of tFVal, tFLeu and tFIle. Studies using

purified valyl- and isoleucyl-tRNA synthetase dem-

onstrated, somewhat surprisingly, that (2S,3R)-tFVal

was recognized by both enzymes with similar effi-

ciency, whereas the (2S,3S)-isomer was inactive.20,29

In vivo incorporation of tFVal into murine dihydrofo-

late reductase gave similar results with (2S,3R)-

tFVal being incorporated into both valine and isoleu-

cine positions in the enzyme.20 Similarly, it was

shown that the isoleucine analog 5-tFIle was effi-

ciently recognized by isoleucyl-tRNA synthetase and

incorporated into proteins, whereas the structural

isomer 3-tFIle was not recognized.19 The leucyl-

tRNA synthetase seems to be less discriminating

towards side-chain fluorination as both (2S,4S)-

tFLeu and (2S,4R)-tFLeu were biosynthetically
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incorporated into the coiled-coil protein, A1 with

similar efficiency.30

Studies on antiparallel coiled-coil proteins

Studies in our laboratory to understand the effects

of fluorination on the physical and biological proper-

ties of proteins have utilized a de novo designed

antiparallel 4-a-helix bundle protein, a4. a4H, the

parent protein, contains Leu at the three a and

three d positions of the heptad repeat, which forms

the hydrophobic core of the folded tetramer [Fig.

3(B)].25,31 In various studies, we have synthesized a

number of fluorinated versions of a4, designated

a4Fn, that incorporate hFLeu at different positions

within the core and examined their physical and bio-

logical properties. In all cases these proteins retain

well-folded, native-like properties despite the fact

that the hFLeu side-chain is �30% larger than Leu.

The stability of the a4F proteins progressively

increases as the number of hFLeu residues

increases, so that a4F6, in which all the Leu residues

are replaced by hFLeu, is 14.8 kcal/mol more stable

than a4H; a per residue increase of 0.6 kcal/mol/

hFLeu. The position and pattern of the hFLeu sub-

stitutions also has an effect on the stability of the

protein (Fig. 4). For the series of a4F2 proteins, each

of which contain two hFLeu residues per strand, the

stability increases from 0.09 to 0.26 kcal/mol/hFLeu

as the hFLeu residues are progressively moved from

the more solvent-exposed ends of the bundle to the

solvent-excluded center of the bundle.32 The most

stabilizing arrangement of hFLeu and Leu residues

seems to be an alternating pattern in which hFLeu

is incorporated at a positions and Leu at d positions,

or vice versa. Thus a4F3a, which contains hFLeu res-

idues in all a positions, is more stable than a4H by

0.8 kcal/mol/hFLeu residue. This result points to the

importance of considering packing effects, and not

just the degree of fluorination, when designing

ultra-stable fluorinated proteins

Figure 3. Coiled-coil proteins used as model systems to

study the effects of fluorination. (A) Helix wheel diagram

demonstrating the heptad repeat and hydrophobic packing

of the parallel coiled-coil GCN4. Three-dimensional

representation of GCN4 indicating the seven a and d

positions which have been modified with fluorinated

residues. (B) Helix wheel diagram demonstrating the heptad

repeat and hydrophobic packing of the antiparallel coiled-

coil a4. Three-dimensional representation of a4 indicating

the six a and d positions which have been modified with

fluorinated residues.

Figure 4. Thermodynamic stability of hFLeu substituted a4
proteins. (Top) GuHCl induced unfolding of a4 proteins

followed by circular dichroism at 222 nm, protein identities

are listed in the center. (Bottom) Cartoons illustrating the

packing of a4 proteins with Leu as tan spheres and hFLeu

as green spheres. Fluorination greatly increases protein

stability, DDGunfold (kcal/mol/hFLeu residue) shown as

increasing from left to right.
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Focusing on the a4F6 protein, we have also

examined how fluorination alters its resistance to

solvent denaturation and degradation by proteases,

properties which may have practical applications. In

water-alcohol mixtures containing methanol, ethanol

or 2-propanol a4F6 retains its helical structure

whereas a4H, which is itself quite a stable protein,

becomes increasingly more unfolded as the hydro-

phobic nature of the solvent increases.33 Contrary to

the behavior predicted by the fluorous effect, fluori-

nated solvents, such as trifluoroethanol or hexa-

fluoro-2-propanol do not preferentially unfold a4F6

but cause it to dissociate into highly helical mono-

mers; these fluorinated solvents have a similar effect

on a4H, consistent with their well-documented abil-

ity to increase the helicity of a large number of

peptides.

We have also found that fluorination protects

a4F6 against proteolysis. Whereas a4H was nearly

completely degraded in �2 hours by either trypsin

or chymotrypsin, far less proteolysis of a4F6 was

observed under the same conditions. This likely

reflects a much slower rate of unfolding by the more

thermodynamically stable fluorinated protein rather

than the inability of proteases to act on fluorinated

substrates.

Context effects

Whereas studies on coiled-coil proteins have found

that fluorinated leucine analogs invariably confer

greater stability, an interesting study by Cheng and

coworkers has concluded that, in the context of a

single helix, hFLeu is actually destabilizing relative

to Leu.34 Using a monomeric, alanine-based model

helix, various fluorinated and hydrocarbon side-

chains were introduced into a central ‘‘guest’’

position. The helicity of these peptides was then

compared relative to alanine at the guest position.

Comparing the helicity of ethylglycine with trifluor-

oethylglycine (tFeG), Leu with hFLeu, and Phe with

pFPhe, the fluorocarbon amino acids were found to

be significantly less helical than their hydrocarbon

counterparts. In the case of hFLeu, the helix propen-

sity is decreased eightfold compared to Leu, corre-

sponding to an energetic penalty of 1.15 kcal/mol/

hFLeu. The decrease in helical content is surprising

given that fluorinated amino acids are stabilizing in

helical coiled-coils.

Equally surprising is that in the context of a b-
sheet, fluorinated residues in solvent-exposed posi-

tions seem to stabilize the folded state.35 Evidence

for this comes from experiments in which hydrocar-

bon and fluorocarbon residues were introduced at a

solvent-exposed position on an internal strand of a

b-sheet in the small protein GB1. The fluorinated

residues tFeG, hFLeu, and pFPhe each increased

the protein’s stability by �0.3 kcal/mol over their

hydrocarbon counterparts. The reason that fluorina-

tion seems to exert opposite effects on protein stabil-

ity in the context of an a-helix versus in a b-sheet is
unclear. Moreover, the stabilizing potential of fluori-

nated amino acids in b-sheets has largely been over-

looked, making this an interesting avenue for future

research.

Koksch and coworkers have studied how the

spatial demands and polarity of fluorinated residues

influence the properties of proteins in a model anti-

parallel coiled-coil protein.36–38 They have looked at

ethylglycine and its fluorinated analogues: difluoroe-

thylglycine (dFeG), trifluoroethylglycine (tFeG), and

difluoropentylglycine (dFpG). This variety of small

fluorinated amino acids allows variation in hydro-

phobic volume and side chain polarity for the tuning

of stability in protein design. Analogs of the native

antiparallel dimer showed decreased stability when

any of the fluorinated amino acids were substituted

for Leu9 in the hydrophobic core or solvent exposed

Lys8. These results demonstrate a decrease in stabil-

ity due to both decreased hydrophobic volume and

changes in polarity of the hydrophobic core.

Studies on more complex protein structures

Although most studies have focused on simple a-hel-
ical proteins, the effects of fluorination on other pro-

tein folds have also been investigated. In one case,

the effect of substituting two valine residues by

tFVal on the folding kinetics and stability of the

globular a-b protein NTL9 (Fig. 5) was investigated.

The small isosteric change to the core of the globular

protein NTL9 did not disrupt the native fold but sig-

nificantly changed the stability and folding kinetics.

At one position, introduction of tFVal increased the

stability of the protein by 1.4 kcal/mol/tFVal resi-

due.39 Fluorination resulted in a marked decrease in

the unfolding rate and a slight increase in the fold-

ing rate. The change in folding kinetics was attrib-

uted to the increased hydrophobicity of the trifluoro-

methyl group stabilizing the transition state for

folding.

Other studies have investigated the 35-residue

independently folded ‘‘headpiece’’ subdomain of

Figure 5. Fluorinated proteins with more complex folds.

(Left) Model of NTL9 illustrating positions Val3 and Val21 in

green, which were substituted by tFVal. (Right) Model of

cVHP demonstrating packing interactions of core Phe

residues in green.
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chicken villin protein (cVHP), which has three phe-

nylalanine residues in the hydrophobic core

(Fig. 5).40,41 When these were substituted by penta-

fluorophenylalanine (pFPhe),40 only at one position

did the substitution stabilize the protein, whereas at

the other two positions pFPhe was actually destabi-

lizing. This could be due to steric effects caused by

the larger volume of pFPhe and/or due to changes in

the quadrupole moment of the aromatic ring induced

by fluorination—whereas a phenyl ring has an elec-

tron-rich center and a correspondingly electron-poor

periphery, the high electronegativity of fluorine

results in the center of the ring being electron-poor

and periphery being electron-rich. In contrast, large

stability increases were observed when residues in

the aromatic core of cVHP were replaced by tetra-

fluorophenylalanine, which were attributed to favor-

able polar interactions between aromatic hydrogens

and p-electrons.41

Quadupole-quadrupole interactions can make

important contributions to protein structure. The

energetic contribution of the quadrupole interaction

between a Phe-pFPhe pair in a de novo designed, di-

meric, 4-helix bundle protein designated a2D was

investigated by Zheng and Gao.42 The protein was

designed to assemble from two peptides; one contain-

ing two Phe residues at core positions, the other con-

taining two pFPhe residues. Mixing the peptides

resulted in a single, stable species with assembly

directed by the introduced quadrupole interactions.

By analyzing the folding energies through the use of

a double-mutant cycle, the stabilization due to the

quadrupole interaction, DGquad was estimated to be

�1.0 kcal/mol/Phe-pFPhe pair. Further stabilization

studies of a2D by systematic substitution of the

stacked core phenylalanine residues with mono-, di-,

tri-, tetra-, and pentafluorophenylalanine demon-

strated that a combination of dipole–dipole coupling

and hydrophobics contribute to stability.43 This

study identified the phenylalanine/ortho-tetrafluoro-

phenylalanine as being the most stable aromatic

pair with DDGfold of 6.7 kcal/mol. These studies

underscore how fluorine modification of aromatic

residues allows alteration of van der Waals, hydro-

phobic and electrostatic forces to modify protein

stability.

The potential for fluorous effects in

fluorinated proteins

The unusual tendency of fluorocarbons to self-associ-

ate, leading to phase separation of fluorocarbon and

hydrocarbon solvents, gave rise to the intriguing

possibility that highly fluorinated proteins might

possess similar properties. In proteins, the fluorous

effect might result in specific protein–protein inter-

actions through fluorous contacts between side-

chains that would be orthogonal to normal protein–

protein interactions. However, evidence for self-seg-

regating properties of fluorinated proteins is mixed

and may be protein fold dependent. There is still

some debate as to whether in the context of fluorous

proteins the fluorous effect is a driving force for sta-

bility or if the increased hydrophobic volume is the

main stability contributor.

Kumar and coworkers have demonstrated the

preferential interaction of a fluorinated parallel

coiled-coil dimer in both aqueous and membrane

environments.44–47 These experiments used peptides

that contained either Leu or hFLeu at the hydropho-

bic a and d positions that comprise the core of the

coiled-coil and Cys residues at their N-termini. Di-

sulfide bond formation allowed the two partner pep-

tides in the coiled-coil to be covalently cross-linked

and analyzed. It was found that the peptides prefer-

entially self-segregated into fluorinated (FF) and

nonfluorinated (HH) coiled-coils with less than 3%

of peptides forming heterodimers (Fig. 6).44 How-

ever, the interpretation of this experiment is compli-

cated by the fact that the fluorinated peptide formed

a tetramer rather than the intended dimer. It may

be simply that the bulkier hFLeu side chain was not

compatible with the hydrophobic core of a dimeric

coiled-coil.

Figure 6. Evaluating ‘‘fluorous’’ self-assembly in two

different protein systems. (Left) The disulfide-linked ‘‘mixed"

protein HF self-segregates into equilibrium populations

containing all-Leu cores, HH, and all-hFLeu cores, FF, in

the presence of a redox buffer. (Right) Upon combining

a4H, which contains an all-Leu core, and a4F6, which

contains an all-hFLeu core, mixtures of protein tetramers

are observed, indicating a lack of fluorous segregation.
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The self-association of fluorinated peptides

designed to form transmembrane helices has also

been demonstrated. Again, the peptides were

designed to form parallel coiled-coils containing

seven Leu or hFLeu at a and d positions, but in this

case the peptides were labeled with a fluorophore

and FRET used to determine whether the fluori-

nated and nonfluorinated peptides interacted. Simi-

lar to the soluble coiled-coils, the fluorinated and

nonfluorinated transmembrane peptides seemed

to preferentially self-associate; however, again,

whereas the nonfluorinated peptide was dimeric, the

fluorinated peptide adopted a tetrameric structure.

The results were interpreted as the fluorocarbon

side chains forming an interface orthogonal to that

of hydrocarbon lipid chains and protein side-chains.

Our laboratory has investigated the segregation

of fluorinated and hydrocarbon versions of the de

novo designed a4 proteins, which form antiparallel 4-

helix bundles (Fig. 6). This motif has proved highly

robust, and a4 tolerates fluorination without changing

its quaternary structure. In this system, we found lit-

tle or no evidence that these peptides undergo self-

segregation, contrary to the predictions of the fluo-

rous effect. Two experiments in particular point to

the absence of preferential fluorous interactions.

In one experiment, we used 19F NMR to examine

the interactions between a4H, which contains Leu at

all the a and d positions, and a4F6 which contains

hFLeu at all the a and d positions.33 a4F6 has a com-

plex 19F NMR spectrum that reflects the high sensi-

tivity of the 19F nucleus to slight differences in the

chemical environments of the hFLeu ACF3 groups.

Titrating a4F6 with increasing concentrations of a4H
resulted in progressive changes to the 19F NMR spec-

trum, with the signals becoming less disperse and

shifting downfield as a4H ratio was increased. Sedi-

mentation equilibrium analytical ultracentrifugation

measurements indicated that the peptide mixtures

remained tetrameric. Clearly, no change in the 19F

spectrum would be expected unless the a4F6 and a4H
peptides were interacting, so these results indicate

that the peptides form heterotetramers in which the

monomers exchange on the NMR timescale.

Further evidence against the idea that fluorine-

fluorine contacts per se can be used to engineer or-

thogonal interactions between proteins comes from

proteins with mixed hydrocarbon-fluorocarbon

cores.32 a4F3a and a4F3d have hFLeu in all the a or

all the d positions, respectively, which gives rise to a

hydrophobic core in which fluorocarbon residues are

interposed with hydrocarbon residues. These pro-

teins are very stable and, on a per-hFLeu-residue

basis, exceed the stability of the ‘‘all fluorine’’ protein

a4F6. These results suggest that optimizing core

packing to reduce steric hindrance and accommodate

changes in side-chain volumes is more important for

stability than potential self-segregating effects of flu-

orinated residues. The extent of any fluorous effect

in fluorinated proteins is complicated by the fact

that proteins rely on numerous weak interactions to

specify their folded structures.

Modulating the properties of bioactive peptides

Fluorination has also been used as a tool to modify the

properties of biologically active peptides and investi-

gate their mechanism of action. In particular, some

classes of peptides, notably antimicrobial peptides

(AMPs) and venom peptides, exert their biological

effect through direct disruption of cell membranes,

rather than specific peptide-protein or peptide-nucleic

acid interactions. This disruptive effect depends on the

overall balance of positively charged and hydrophobic

residues, rather than sequence-specific interactions,

making fluorination an ideal method to alter the

hydrophobicity of these peptides in a nondisruptive

manner (Fig. 7). The incorporation of fluorinated resi-

dues also allows peptide-membrane interactions to be

followed by 19F NMR.48,49

Studies on an analog of the bee venom peptide,

melittin, were among the first to show that incorpo-

rating fluorinated amino acids could modulate the

biological activity of membrane-active peptides.

Replacing four Leu residues with tFLeu in melittin

resulted in increased partitioning of the fluorinated

peptide into liposomes.50 In our laboratory, we have

used fluorinated amino acids to modulate the biolog-

ical activity of the potent synthetic AMP MSI-78 and

probe its interactions with membranes.

In one study, we replaced the two Leu and two

Ile residues in MSI-78 with hFLeu.51 Overall, the

resulting highly fluorinated AMP, dubbed fluorogai-

nin-1, exhibited very similar antimicrobial activity

to MSI-78 against a broad range of bacteria. Inter-

estingly, fluorogainin-1 displayed a significantly

lower MIC against Klebsiella pneumoniae and

Staphylococcus aureus than MSI-78. Whereas anti-

microbial activity was retained, fluorination seemed

to alter the mechanism of membrane disruption. Dif-

ferential scanning calorimetry measurements indi-

cated that the parent peptide, MSI-78, induces posi-

tive membrane curvature consistent with a toroidal

pore mechanism; in contrast, fluorogainin-1 induced

negative membrane curvature indicative of the bar-

rel-stave mechanism for membrane disruption.

In another study, we used fluorination to assess

the effects of increasing hydrophobicity in protegrin-

1 (PG-1), which is a potent member of the b-hairpin-
forming class of antimicrobial peptides. By replacing

two valine residues on the hydrophobic face of prote-

grin-1 with either two Leu or hFLeu residues52 we

were able to progressively increase hydrophobicity

although minimally perturbing secondary structure.

The Leu containing-peptide was significantly more

active than wild-type protegrin against several com-

mon pathogenic bacterial strains, whereas the
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hFLeu-substituted peptide, in contrast, showed sig-

nificantly diminished activity against several bacte-

rial strains. Isothermal titration calorimetry meas-

urements revealed significant changes in the

interaction of the peptides binding to liposomes that

mimic the lipid composition of the bacterial mem-

brane. Notably, both these substitutions seem to al-

ter the stoichiometry of the lipid-peptide interaction,

suggesting that these substitutions may stabilize oli-

gomerized forms of protegrin that are postulated to

be intermediates in the assembly of the b-barrel
membrane pore structure.

One significant obstacle to the therapeutic use

of AMPs is the inherent susceptibility of peptides

towards proteolysis. Strategies to increase proteo-

lytic stability of peptide-based therapeutics include

use of D-peptides, b-peptides and arylamide poly-

mers.53–55 It also seems that incorporation of fluori-

nated amino acids provides a further means of stabi-

lizing bio-active peptides that could increase their

therapeutic index. Thus, when bound to liposomes,

fluorogainin-1 proved far more resistant to proteoly-

sis than MSI-78. Whereas MSI-78 was degraded by

either trypsin or chymotrypsin in about 30 min,

under the same conditions fluorogainin-1 exhibited

no degradation after 10 hours. Similar results have

been obtained with other membrane-active peptides,

such as buforin and magainin,56 suggesting that flu-

orination may be a general strategy for prolonging

the lifetime of peptides in vivo.

Kumar and coworkers have used hFLeu to sta-

bilize glucagon-like peptide-1 (GLP-1), which is a

promising therapeutic to regulate blood glucose ho-

meostasis to treat type 2 diabetes. Clinical applica-

tions of GLP-1 are severely limited due to degrada-

tion by the regulatory serine protease, dipeptidyl

peptidase IV. Substituting any of the hydrophobic

positions 8, 9, and 10 with hFLeu conferred resist-

ance to proteolysis.57 However, fluorination seemed

to reduce the affinity of the peptide for its receptor,

possibly due to the increased volume of the hFLeu

residues.

Conclusions

The development of new methods to incorporate non-

canonical amino acids has ushered in a new era of

protein design with novel side chain functionalities

altering the chemistry of biology. Some of the unique

physicochemical properties associated with fluoro-

carbons can be introduced into proteins, imparting

them with useful characteristics—most notably

increased structural stability. Highly fluorinated

side-chains provide a valuable tool to modify protein

stability with minimal perturbation of structure and

function. We hope that the various examples of fluo-

rinated proteins discussed in this review, demon-

strates the utility of fluorination for increasing sta-

bility, probing biological mechanisms and developing

novel therapeutic agents.

Our understanding of the physicochemical prop-

erties of extensively fluorinated proteins is far from

complete and, in particular, is hindered by the ab-

sence of detailed structural information for any

extensively fluorinated protein or peptide. Atomic

level knowledge of how fluorinated residues are

accommodated within a protein environment would

aid the design of biomolecules with enhanced stabil-

ity and raises the possibility of rationally designing

Figure 7. Antimicrobial peptides (AMPs) are components of the innate immune system that act by disrupting bacterial

membranes. (A) Membrane disruption mechanism of AMPs is initiated by attraction of the positively charged peptide to the

negatively charged bacterial membrane lipid headgroups. Loss of membrane integrity results from three distinct pore forming

mechanisms. (B) Models of the AMPs, MSI-78 and protegrin-1, and venom peptide, melittin, with positions of fluorinated

amino acid substitution shown in green.
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unique protein-based fluorous phases. Obtaining

X-ray structures of the fluorous proteins we have

discussed in this review is a current goal in our

laboratory. We are optimistic that such structures

will be forthcoming in the near future.
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