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Initial condition inverse problems are ill-posed and computationally expensive to solve.

We present a computational approach for solving inverse problems in the realm of one-

dimensional contaminant transport. The approach employs finite differencing as a forward

solver and probabilistic methods for inversion. Markov Chain Monte Carlo sampling is used

to efficiently recover posterior probabilities. The results show that the Bayesian framework

is a robust approach for initial condition inversion.

I. Introduction

Real-time modeling of accidental or intentional contaminant spread in urban settings is critical to home-
land security and environmental safety. Knowing with good confidence where and when to evacuate prior
to loss of health or even loss of life is of the utmost importance to decision making organizations. However,
before such organizations can take action, knowledge must be obtained concerning both the origin and the
evolution of the pollutants. The associated computational problem is inherently ill-posed, as many different
inputs can give the same or very similar outputs. This problem is also computationally expensive: just
modeling a forward dispersion problem in a realistic urban environment can take several hours using state-
of-the-art computational fluid dynamics, and the proposed inverse problem is significantly more expensive.
This paper presents a computational framework for probabilistic inversion, in which solutions are given as
probability distributions for initial conditions.

This paper first presents the theory behind our approach. One-dimensional contaminant transport physics
is discussed briefly and finite difference schemes used to numerically solve the linear convection-diffusion
equation are detailed. The corresponding inverse problem is then posed in a Bayesian framework, and a
Monte Carlo Markov Chain (MCMC) algorithm for performing efficient inversions is discussed. Results
follow, in an effort to demonstrate the applicability of a probabilistic approach for inverting convective-
diffusive processes.

II. Approach and Methodology

Our problem consists of solving both the forward and inverse convection-diffusion problems. While the
forward problem is relatively easy to solve, the inverse problem requires finding the initial conditions which
led to a set of known contaminant sensor readings from some current time. This is inherently ill-posed
and computationally expensive to implement. Previous work took a fully deterministic approach, yielding a
single best-fit solution to the inverse problem.1,2 However, this can be both time-consuming and misleading,
and does not account for uncertainties such as sensor measurement error. Instead, we take a probabilistic
approach, in which probability distributions of the initial concentration profile are sought instead of a single
solution. Our solution relies on an application of Bayesian statistical methods and utilizes MCMC algorithms.
(Another approach would be to solve for the moments of the probability distributions, but this does not
work well when the distributions are far from normal.) Before we can solve the inverse problem, we must
develop an efficient method of producing solutions to the associated forward problem. Efficiency is critical in
this first step as tens of thousands of forward solutions are typically required for generating accurate MCMC
statistics.
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A. Forward Convection-Diffusion

Consider a city, in which sensors capable of registering concentrations of contaminants have been placed
strategically. We pose the following question: given the contaminant’s initial concentration profile, i.e. the
initial conditions, what concentrations will the sensors read after a finite amount of time? In order to solve
this “forward” problem, we must first understand the physics of the contaminant transport.

In this work, we assume that the contaminant transport is governed by a linear convection-diffusion
equation. Specifically, we have

Du

Dt
− d∇2u = 0, (1)

where d is the carrying medium’s diffusivity and u(x, t) represents the concentration profile being transported.
For simplicity, we’ll discuss the implications of (1) in one dimension only; thus, we’ll consider the following
restatement of the convection-diffusion equation in the x̂ direction:

∂u

∂t
+ a

∂u

∂x
− d

∂2u

∂x2
= 0, (2)

with a being the carrying medium’s velocity. Furthermore, we’ll assume that both the convection velocity
and the medium’s diffusivity remain constant throughout the domain. The non-dimensionalized ratio of
convective to diffusive transport is given by the Péclet number,

Pe =
aL

d
, (3)

where L is the characteristic domain length. In this work, we assume that convection dominates the con-
taminant transport, so that Pe ≫ 1.

To obtain numerical solutions to (2), we employ finite differencing methods, discretizing space and time
into meshes. Specifically, we have

u(x, t) = u(i∆x, n∆t) = ui,n, (4)

where i and n belong to the natural numbers and ∆x and ∆t are the respective sizes of the space and time
intervals. To solve (2) in this context, we chose a second order accurate discretization in both space and
time, along with a second order backwards Euler integration scheme. (The ∂u

∂x
term was discretized via the

upwind method for stability purposes.) Thus, for any given (i, n) pair, equation (2) becomes

3ui,n+1 − 4ui,n + ui,n−1

2∆t
+ a

3ui−1,n+1 − 4ui,n+1 + ui+1,n+1

2∆x
− d

ui−1,n+1 − 2ui,n+1 + ui+1,n+1

∆x2
= 0. (5)

When this equation is enforced throughout the space-time domain, the problem becomes an algebraic one,
which can be easily solved via software packages such as LAPACK.

Two sets of conditions must be specified in order to solve the algebraic equations produced by (5). First,
we give boundary conditions, i.e. conditions to be enforced on the edges of the spatial domain. We chose
periodic boundary conditions for our implementation, i.e. we have

u0,n = uitot,n (6)

for all n, where itot is a prespecified number. For simplicity, we assumed that the initial contaminant
concentration profile took on a Gaussian shape, such that

u(x, t0) =
A

σ
√

2π
exp

(

− (x − µ)2

2σ2

)

, (7)

where A is the cloud’s initial amplitude, σ is the initial spread, and µ is the initial mean location. Specifying
these free parameters, as well as the time-since-release (T ), completely determines a solution. By time-since-
release, we mean the amount of time elapsed from when the contaminants started to convect and diffuse to
the unique time at which all the sensors take readings. In this manner, we can say that t0 = 0, so that the
time at which the sensors read values is exactly the time-since-release.

Once we have specified all free parameters, we can easily apply (5) to find u(x, T ) for any x within our
periodic domain. To finish the forward problem, we must specify how the sensors read values at time T .
Real-world sensors take data with some error, which we model as being Gaussian. If yk represents the exact
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measurement that the kth sensor would recover in a perfect world, we model each recovered measurement
as being given by

Ȳk = yk + N (0, ǫ). (8)

Hence, we are considering each measurement to be a random variable distributed normally about yk with
standard deviation ǫ. (For simplicity, we’ll take ǫ to be constant amongst sensors.) In order to determine
what values yk obtain, we only need to decide where each sensor is placed within the domain. Several
different placements are discussed in section B.

B. Inverse Convection-Diffusion

Inverse problems form a unique branch of mathematics and engineering, as each problem is inherently ill-
posed and generally results in large computational requirements. Furthermore, solving each problem requires
sufficient knowledge of the associated forward problem. In this paper, we’ll investigate the following: given
knowledge of sensor readings only, what can we say about the conditions that led to our measurements?
This is a more likely scenario than the forward problem, as contaminant spread in urban settings usually
restricts itself to detailed knowledge of the current time only.

We take a Bayesian approach, accepting that the inverse problem does not give us much prior knowledge.
Not only is there uncertainty about the contaminants’ originating circumstances, but there is also uncertainty
built into the sensor readings. As characterized in (8), each sensor has some associated measurement error,
which will be built into our method. A Bayesian approach is a natural choice in this situation, as Bayesian
statistics yields itself to problems which require procuring information about multiple unknowns from limited
prior knowledge.

We follow a similar approach as outlined in Galbally et al.3 Treating the initial conditions as a random
variable in four dimensions, so that a realization would be b = (µ, T, σ,A), we look for the conditional
distribution of the initial conditions given a vector of realized sensor measurements (ȳ). According to Bayes’
Theorem, we have

p(b|ȳ) =
p(ȳ|b)p(b)

p(ȳ)
, (9)

commonly referred to as the posterior probability distribution. The posterior is made of three parts: the
likelihood function (p(ȳ|b)), the prior probability (p(b)), and a normalizing constant. Our sensor model
provides a Gaussian likelihood function; i.e.

p(ȳ|b) α exp

(−1

2ǫ2
(ȳ − y(b))T (ȳ − y(b))

)

. (10)

Generally, the prior distribution is uniform over the allowable domain, such that the posterior is zero wherever
prior knowledge tells us that the initial conditions could not possibly exist. Thus, taking A to be the allowable
domain, we wish to find the following posterior:

p(b|ȳ) α

{

exp
(

−1
2ǫ2

(ȳ − y(b))T (ȳ − y(b))
)

, b ∈ A
0 , otherwise

. (11)

Visualizing the posterior given above is not a simple task, as each different set of initial conditions requires
solving the forward problem to find y(b). A first approach would be to fix two elements of b (e.g. T and
A), and evaluate the further conditioned (11) on a fine mesh over the remaining initial conditions. An
iso-probability plot could be constructed, and the most likely point would be the best guess of the remaining
initial conditions. This “brute-force” approach is costly to perform, but would undoubtedly reveal the
conditioned posterior.

A more elegant approach, which is less costly for more than two unknowns, involves using an MCMC
algorithm known as the Metropolis-Hastings algorithm. In this approach, we explore the posterior probability
distribution function via a Markov Chain. Following the method outlined by both Calvetti and Somersalo4

and Galbally et al.,3 we start with an arbitrary b0 ∈ A, and proceed with the following:

1. Given bi, randomly select bp via q(bp|bi), a uniform distribution over A.
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2. Calculate the acceptance ratio, given by

α(bp|bi) = min

[

1,
p(bp|ȳ)q(bp|bi)

p(bi|ȳ)q(bi|bp)

]

. (12)

3. Flip the “α-coin”:

Draw t from the unit uniform distribution; If t < α, bi+1 = bp, otherwise bi+1 = bi.

This algorithm will generate a Markov Chain which converges to the posterior distribution. That is, as the
number of samples increases, the distribution of samples represents the posterior more and more closely. (For
general distributions, a finite number of samples will only give an approximation to the posterior.) Once we
have generated enough samples via the Markov Chain, we can visualize the marginal posterior distributions
by plotting histograms of the random walk. Again, the set of most likely values in each marginal distribution
would be the best guess of the initial conditions given the sensor measurements. Although this method still
requires solving the forward problem for each bi, the overall computing time should be less than that of the
brute-force approach, especially as the number of unknown parameters grows.

III. Implementation and Results

The approach detailed above provides a way to solve both the forward and inverse convection-diffusion
problems. Although the inverse problem is inherently ill-posed, our Bayesian framework allowed us to
accept the uncertainty as an integral part of the problem. In order to test our methods, we prototyped the
method first in Matlab, and then implemented our solution in C for both speed and portability. Algebraic
manipulation was performed via calls to LAPACK, and several tests were run concerning mesh size and
sensor placement. Each test was run serially on a desktop computer with 4 GB of RAM and a 2.80 GHz
Pentium Dual-Core CPU (E6300).

A. Finite Differencing

As outlined in section A, we discretized the one-dimensional convection-diffusion equation with second order
accuracy on a periodic domain. For simplicity, we took the domain to have unit length, assumed that the
carrying medium was convecting with a constant unit velocity, and chose a high enough Péclet number to
simulate atmospheric conditions (Pe = 103). Our choices of a, L, and Pe determined the medium’s diffusivity
via (3). As will be explained later, we determined that, for a second order accurate discretization, the space
mesh could have itot = 28+1 points and still remain accurate enough for testing. (Tests in upcoming sections
contain meshes with different values of itot, but we’ll treat 28 + 1 as our standard mesh.) Again, our choices
of L and itot determined that ∆x = L/itot = 2−8 m.

In earlier work, we employed a first order forward Euler integrator, so choosing a value for ∆t required
satisfying the CFL condition and ensuring that the heat number was less-than-or-equal-to a half. The most
straightforward solution was to take ∆t = ∆x. For the high Péclet number in this work, both conditions are
easily satisfied with this choice. Upon switching to a second order backward Euler integrator, we kept our
choice of ∆t purely for convenience.

While our choice of itot may seem arbitrary, it follows from our sensor model. We chose a contaminant
concentration of u = 1 unit to represent a lethal dose and took ǫ = 0.01 in (8). A quick test showed that
approximately 0.0049886 units of concentration were lost due to numerical diffusion only. As the numerical
diffusion was captured well within one standard deviation of the mean sensor error, we determined that
28 + 1 points would present trustworthy results.

Figure 1, on the next page, shows an initial contaminant concentration profile and the corresponding
forward solution after one second. To create the initial concentration profile, we used µ = 0.5 m, σ = 0.1 m,
and A = 5 units of concentration. As one second passes between Figure 1(a) and Figure 1(b), we could say
that T = 1 s for this test. The solution presented here took 0.03 s to compute, and was found with 28 + 1
points – our standard number of mesh points.

B. Sensor Numbers and Placement

The first inverse convection-diffusion tests looked at the effects on the posterior due to the number and
arrangement of sensors within the periodic domain. To do so, we took a two-step approach. For any given
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Figure 1. Convection-diffusion forward solution with itot = 28 + 1.

number and arrangement of sensors, we picked a set of “true” initial conditions (bt) and solved for y(bt).
(From here on, we used y in place of ȳ to eliminate a confounding variable.) Then, we used the brute-force
method outlined in section B in order to recover the posterior. This required finding y(b) over a mesh of
two initial conditions: we chose µ and σ as the unknowns, fixing T = 1 s and A = 5 units of concentration.

In order to only test the effects of the number and arrangement of sensors, we knowingly commited an
“inverse-crime” by having itot = 28 +1 in both of the above steps. This would be a bad choice in any regular
situation, but the results in the following section will show how much of a confounding effect using two
different meshes can create. The following sections will also include tests that combine both sensor numbers
and placement with a refined “exact” mesh.

We have yet to discuss the different arrangements of sensors that were used during testing. We chose
four types of sensor arrangement, which we believed represent a variety of one-dimensional arrangements.
These arrangements are as follows:

• Uniform – the sensors are placed equal lengths apart

• Random – the sensors are placed via the unit uniform distribution

• Left Uniform – the sensors are placed equal lengths apart within the left half of the domain

• Left Skew – the sensors are placed via an exponential distribution, with mean 0.3.

Figures 2-5 on this page and the next show the results of placing different numbers of sensors via the above
distributions.
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Figure 2. Effect of uniform sensor placement on posterior PDF.
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Figure 3. Effect of random sensor placement on posterior PDF.
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Figure 4. Effect of left uniform sensor placement on posterior PDF.
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Figure 5. Effect of left skew sensor placement on posterior PDF.

Each plot was generated with true initial conditions µt = 0.5 m, Tt = 1 s, σt = 0.1 m, and At = 5 units
of concentration. Although the conditioned posteriors clearly differ from one sensor arrangement to another,
each iso-probability plot (except 5(a)) is centered about the true initial conditions that we wished to recover.
This is misleading, however, as we committed an inverse-crime in recovering the data. The main point of
these plots is to show how much sensor arrangement can effect the posterior. We immediately concluded
that the arrangements which favored one side would not work for this problem, and that uniform sensor
placement may work best for performing inversions. We were not able to conclude anything about what
number of sensors would work best at this point. It is interesting to note, however, that more sensors do
not necessarily give better results – for an example, compare the changes in the posterior between Figures
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Figure 6. Effect of mesh size on posterior PDF, inversions performed with itot = 28 + 1.

3(a), 3(b), and 3(c). It seems, from these figures, that arrangement plays a bigger role in yielding a reliable
posterior than does the number of sensors. The brute-force results shown in this section took anywhere from
350 s to 1447 s to complete, depending on the coarseness of the grid that was used.

C. Mesh Tests

In the previous section, we knowingly committed an inverse-crime, in an attempt to isolate the effects of
sensor numbers and placement. Next, we investigated the effects of using different numbers of points for
the space mesh by changing itot. As previously stated, we originally found 28 + 1 points to be adequate
for solving the forward problem. For this group of tests, we used a refined mesh of 29 + 1 points in order
to procure the true sensor measurements (y(bt)). Each posterior was then recovered by the brute-force
method, using different numbers of mesh points to find y(b) for use in (11). As in the previous section, we
fixed T = 1 s and A = 5 units in order to facilitate computations. Unless otherwise stated, sensors were
arranged via the uniform distribution (see previous section) in each mesh-related test, although the number
of sensors was changed between tests. Figures 6 and 7 show the effects on the posterior of using different
meshes when performing inversions.
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Figure 7. Effect of mesh size on posterior PDF, inversions performed with itot = 27 + 1.

Just as before, each plot was generated with true initial conditions µt = 0.5 m, Tt = 1 s, σt = 0.1 m,
and At = 5 units of concentration. Eliminating the inverse-crime from our setup showed that performing
inversions with coarser meshes causes the posterior to walk around parameter space. The only plot that
seems unaffected by this can be seen in Figure 6(b). (Even with itot = 27 + 1 points, inverting with four
uniform sensors results in a posterior that walks about much less than do the other two in Figure 7.) Upon
comparing the posterior in Figure 6(b) to the similar posterior in Figure 2(b), we concluded that using four
sensors in a uniform arrangement might give the best results. Before going on, however, we investigated the
combined effect of inverting with a coarser mesh and arranging sensors in ways other than uniformly. Both
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sensor arrangements which favored the left side gave wildly incorrect posteriors, so we have only included
here plots in which sensors were arranged randomly via the unit uniform distribution.
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Figure 8. Effect of mesh size and random sensor arrangement on posterior PDF, inversions performed with

itot = 28 + 1.

As throughout this section, true data for Figure 8 was generated with 29 + 1 mesh points, along with
initial conditions µt = 0.5 m, Tt = 1 s, σt = 0.1 m, and At = 5 units of concentration. We chose to perform
inversions using 28 + 1 mesh points, discarding the itot = 27 + 1 case for accuracy’s sake. Surprisingly, these
results are on the whole better than those shown in Figure 6. The posterior means barely deviate from
(0.5, 0.1), and the iso-probability curves are similar to those shown in Figure 3. It seems that uniformly
random sensor placement helps to compensate for any loss in information due to inverting with a coarser
mesh. Perhaps a sensor arrangement which involves randomly perturbing a perfectly uniform arrangement
would be closer to the optimal choice for solving inverse convection-diffusion. For the data presented in this
section, the average computation time for posteriors which performed inversions using 28 + 1 mesh points
was 338 s, while the average time for posteriors using 27 + 1 mesh points was 45 s. We do not, however,
advocate inverting with less than 28 + 1 points, due to accuracy issues.

D. MCMC Inversions

Thus far, we have recovered the posterior via the brute-force method only. This has limited us to viewing
twice-conditioned posteriors, and has proved to be computationally expensive. Now, we investigate inverse
convection-diffusion using Markov Chains. Following the Metropolis-Hastings algorithm, outlined at the
end of section B, we take a random walk through parameter space which eventually should converge to the
posterior distribution. As the first member of the random walk is a guess, there will most likely be some
burn-in period associated with the completed Markov Chain. In this work, we discarded the burn-in period
heuristically, focusing only on the part of the walk which appeared as random noise.

Validation of our MCMC approach was performed by gathering samples from conditioned posteriors, as
in the previous section. As before, we set A = 5 units of concentration and T = 1 s prior to performing
the inversion, so that only µ and σ would be altered in the random walk. The proposal distribution which
we used to gather our samples (q(bp|bi) from section B) was a uniform distribution over the allowable
domain (A). For these tests, we considered to be prior knowledge that µt ∈ [0, 1] and σt ∈ [0, .5] – the
Cartesian product of which formed the allowable domain. Furthermore, as is common practice,4 we scaled
the proposal distribution to achieve an optimal acceptance ratio of anywhere between 20% and 30%. Figures
9 and 10 on the next page show the MCMC walks and corresponding histograms after truncating the first
1,000-1,500 samples to remove burn-in.

These figures show the ability of the MCMC approach to recover the same posterior as does the brute-
force method (see Figures 6(b) and 8(b) for comparison). Again, we used the same true initial conditions
for µ and σ as before, taking µt = 0.5 and σt = 0.1. With 4 uniform sensors, our walk gave µ̄ = 0.4999 and
σ̄ = 0.1; the random setup walk gave µ̄ = 0.5 and σ̄ = 0.0999. Note that no inverse-crime was committed
in either case, so we expected the recovered means to deviate slightly from the correct values. Both two-
parameter MCMC inversions performed here were 50,000 samples long, to ensure usable results. The first
inversion (Figures 9(a) and 10(a)) had an acceptance rate of 0.2681 and took 1,654 s to run, whereas the
second (Figures 9(b) and 10(b)) had an acceptance rate of 0.27052 and a total runtime of 1,652 s.
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Figure 9. Two-parameter MCMC updates.
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Figure 10. Two-parameter MCMC histograms.

After ensuring the Metropolis-Hastings algorithm would work for our problem, we wished to perform a
complete inversion, considering all members of bt to be unknown. However, we preface this last inversion
with two more brute-force posteriors. Figure 11 shows posteriors resulting from both uniform and random
placement of four sensors, where we’ve taken µ and T to be unknown. (Now, we’ve conditioned on A = 5
units of concentration and σ = 0.1 m.) As one would expect, there is a strong relationship between the
initial location of the contaminants and the time-since-release. Diffusion prevents this from being overly
problematic, but having not committed an inverse-crime has led to similarly shifted posteriors for both
sensor arrangements. As the parameter grids used here were bigger than used before, we saw wall times of
around 8,190 s while performing each inversion.

Now, we present the complete MCMC inversions, where we’ve allowed all members of bt to change
throughout. Again, we try to recover the true initial conditions, which are µt = 0.5 m, Tt = 1 s, σt = 0.1 m,
and At = 5 units of concentration. Figure 12 on the following page shows the resulting MCMC walks for both
uniform and random sensor placements, which do not seem to converge to any recognizable posterior, even
within 50,000 samples. This can be explained by the strong correlation between µ and T (see Figure 11),
which causes the marginal posteriors to widen significantly. Even though we scaled the proposal distribution
such that both inversions achieved acceptance rates between 20% and 30% – the optimal range – we could not
converge quickly enough to guarantee usable results. In order for the random walks to accurately depict the
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Figure 11. Posterior PDFs, T vs. µ.

posterior, we could, for example, dramatically increase the number of samples, but this would result in heavily
increased computation times. Future work could also attempt to relieve this by sampling the posterior via
an anisotropic proposal distribution, rather than the uniform one used here. Indeed, the updates in Figure
12 exhibit trend-like low-frequency behavior, meaning that the proposal scaling was too small to efficiently
explore the posterior. With an anisotropic proposal, one could retain an optimal acceptance rate with a
much larger proposal window.
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Figure 12. Four-parameter MCMC updates.

As it seems four-parameter MCMC inversions which treat time-since-release as unknown do not currently
give efficient results, we investigated the feasibility of three-parameter inversions. For these final tests, we
conditioned the posterior on time-since-release, taking T = 1 s throughout the random walk. Again, a
successful inversion should present marginal distributions with mean values identical (or very close, as no
inverse-crime was committed) to the true initial conditions. Results of inverting with both uniform and
random sensor arrangements are shown in Figure 13 on the next page. For the uniform sensor setup, the
MCMC updates were almost identical in appearance to those shown in Figure 9, so only the truncated
histograms are included here. The random sensor setup, however, resulted in a walk that, as in the four-
parameter inversion, did not explore enough of the posterior within 50,000 samples. As before, the updates
in Figure 13(b), although now somewhat truncated for burn-in, show trend-like low-frequency behavior:
an anisotropic proposal seems to be necessary in this case as well. The histograms in Figure 13(a) are
encouraging, however, and the marginal distributions have means of µ̄ = 0.5 m, σ̄ = 0.0999 m, and Ā = 5.006
units of concentration. Furthermore, this random walk had an acceptance ratio of 0.2538 and took only
1,631 s to complete, making three-parameter inversion times comparable to the two-parameter times seen
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before. It appears that when the “right” proposal distribution is selected for a given posterior, MCMC
inversions can give accurate and efficient results over multiple unknowns.
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Figure 13. Three-parameter MCMC inversions.

IV. Conclusion

A probabilistic approach for solving inverse convection-diffusion in one-dimension was presented, and
a Monte Carlo Markov Chain algorithm for efficiently performing inversions over multiple unknowns was
discussed. In order to facilitate inversions, a one-dimensional contaminant transport forward solver was
implemented. The arrangement of sensors within the domain of interest was found to have a significant effect
on the size and shape of the posterior PDFs, and arrangements favoring one side of the domain were shown
to provide unusable results. Upon performing mesh tests to eliminate the effects of any inverse-crimes, four
sensors in a uniform or random setup were found to provide posteriors which exhibited adequate resilience
to changes in mesh size. The MCMC approach was then validated for two unknowns; computation times
were found to be similar to those of the previously used brute-force method. MCMC inversions over three
and four unknowns were also performed, yielding usable results only over reasonably isotropic posteriors. As
optimal acceptance rates were always achieved, we concluded that anisotropic proposal distributions could
help explore similarly anisotropic posteriors distributions. Multiple-parameter MCMC inversions showed
promising computation times, and we believe the MCMC approach is a clear win over the brute-force
method.

Future work will include introducing anisotropic proposal distributions to MCMC inversions, in hopes that
time-since-release can be treated as an unknown. Other methods of increasing efficiency during inversions
will be explored, and may include replacing our primal forward solver with an adjoint-based solver. This
and other model reduction techniques will become essential when performing inversions in two or three
dimensions. Once we reach higher dimensions, we believe that probabilistic methods such as those presented
in this paper will become invaluable to providing efficient and usable results.
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