
 

American Institute of Aeronautics and Astronautics 

 

1 

Simulation of Spacecraft Fuel Tank Self-pressurization 

Using Eulerian-Lagrangian Method 

Jaeheon Sim
*
 and Chih-Kuang Kuan

†
 

University of Michigan, Ann Arbor, MI, 48109 

and 

Wei Shyy
‡
 

University of Michigan, Ann Arbor, MI, 48109 

Hong Kong University of Science and Technology, Kowloon, Hong Kong 

A 3-D adaptive Eulerian-Lagrangian method is further implemented with a phase change 

model to study the thermal effect in a spacecraft fuel tank, especially the self-pressurization 

of a cryogenic propellant tank. The stationary (Eulerian) frame is used to resolve the flow 

field, and the marker-based triangulated moving (Lagrangian) surface meshes are utilized to 

treat fluid interfaces and solid boundaries. The main focus of the present study is to improve 

the accuracy of the sharp solid boundary treatment and to implement a phase change model. 

The energy and mass transfer across the interface due to phase change is computed from 

Stefan condition using probe-based temperature gradient computations. Uniform flow past a 

cylinder, 1-D Stefan problems, and 2-D melting cases by natural convection flow are 

presented for validation purpose of the present approaches. The self-pressurization in a 

liquid hydrogen fuel tank is simulated and it is shown that the conduction-only solution 

underestimates the pressure rise, and the full Navier-Stokes and energy equation solution is 

required to study liquid fuel tank pressurization due to the influence of transport 

phenomena. 

I. Introduction 

PACE missions – including rocket launchers, the space stations, and interplanetary space flights – require an 

understanding and managing of the cryogenic liquid propellants under varying acceleration conditions. This 

understanding is crucial because cryogenic liquid dynamics have a significant impact on the engine operation, 

vehicle dynamics, spacecraft design, and even the overall mission. Moreover, the thermal effect in a cryogenic 

propellant has huge influence on the spacecraft safety as well as fuel dynamics. Even small heat leak from incident 

solar radiation, aerodynamics heating, or spacecraft structure causes thermal stratification and fuel vaporization 

since the boiling temperature of cryogenic propellant is extremely low, and usual space missions require a long 

operational time. The fuel vaporization results in cryogenic propellant loss and self-pressurization in a fuel tank, and 

this determines the design safety of a fuel tank as well as the operational time and the required fuel amount.  

It is known that the cryogenic vaporization due to filling process and heat leak causes mass loss and self-

pressurization in the storage tank, and improving the fuel tank storage and lower heat transfer results in significant 

cost savings through reduction of launch mass.
1
 Many researchers have conducted studies on the cryogenic storage 

tank under normal and micro-gravity conditions. Aydelott showed the rate of pressure rise is lower in reduced-

gravity than normal gravity because of the increased liquid-wetted wall area.
2
 Poth and Van Hook showed that a 

mixing jet could be used to minimize thermal stratification and reduce pressure rise in a tank.
3
 Application of 

subcooled jet mixing is further studied experimentally, and both passive insulation and active cryocooler technology 

is now implemented to reduce self-pressurization.
4-6

 The numerical studies followed for deeper understanding and 
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overcome the experimental limitation. However, due to its complexity including flow motions, heat transfer, and 

phase change, the numerical and theoretical studies are conducted in a limited condition. Many researchers just 

focus on the thermal effect in cryogenic liquid region by assuming homogenous condition in vapor phases using a 

lumped thermodynamic model of vapor region.
7, 8

 Another popular topic is the study on the mixing jet and thermal 

distributions in a liquid region by ignoring phase change and self-pressurization.
9-11

   

Considering microgravity conditions in a typical spacecraft environment, the capillary effect becomes very 

important due to small Bond number, the ratio of body (or gravitational) forces to surface tension forces. Thus, a 

study on the multiphase flow including interfacial dynamics is required in order to understand the liquid fuel 

dynamics in a spacecraft. However, experimental studies are limited because the microgravity conditions are hard to 

realize on the ground. Drop tower tests and in-flight tests have been conducted, but their short operational times 

prohibited simulating practical engineering problems. Thus, a high fidelity numerical simulation of such a 

multiphase flow in a space environment is crucial to compensate the limitation of experiment. However, the 

numerical simulations of such problems are also challenging due to multiple time/length scales, large variations in 

fluid properties, moving boundaries, and phase changes. 

The multiphase flow includes an interface between different phases having distinct physical properties, and 

consequently involves identifying interface location and modeling interfacial dynamics, including a steep jump in 

fluid properties in response to surface tension effects. Various methods have been proposed and improved and each 

method has its own relative strengths and weaknesses.
12, 13

 

In order to represent interface in moving boundary computations, three main categories exist as reviewed by 

Shyy et al.;
12

 Lagrangian (moving grid), Eulerian (stationary grid), and Eulerian-Lagrangian methods. The 

Lagrangian method uses body-fitted grid for tracking interfaces, and is accurate since interfacial conditions can be 

applied at the exact interface location. However, maintaining grid quality is difficult, and computationally expensive 

to use when large deformation or movements occur. The Eulerian (stationary grid) method extracts the interface 

location via post processing with a help of a scalar function on a stationary computational grid, and its simplicity 

and natural handling of topological change makes these methods very popular. However, implicit interface 

extraction causes errors in interface location or surface tension computation. Eulerian-Lagrangian method utilizes a 

separate set of moving (Lagrangian) mesh and associated marker/tag system representing interface on a stationary 

(Eulerian) grid used to compute the flow fields. Thus, the interface can be tracked explicitly, and these methods 

possess several desirable features when compared with Lagrangian or Eulerian method. 

Another challenging issue is handling of the interfacial dynamics even if we know the location and shape of the 

interface at a given time. Across an interface, in general, the pressure and viscous stresses show discontinuities and 

fluid properties suddenly jump due to surface tension. Moreover, phase change includes mass and heat transfer 

across an interface. How to treat such a phase discontinuity and associated capillary effects can be classified into 

two categories: the sharp interface method and the continuous interface method. The sharp interface method is a 

class of techniques which satisfy the jump condition across phase boundary exactly on the interface of zero 

thickness. Compared to the sharp interface method, the continuous interface method smoothes out the fluid 

properties and interfacial forces around phase boundary instead of a zero thickness interface. A popular and highly 

successful continuous interface technique is the immersed boundary method proposed by Peskin.
14

 It utilizes a 

single fluid formulation for the entire domain by smoothing out the fluid property and modeling the surface tension 

forces as a momentum source term within finite range. The continuous interface method is implemented 

successfully by many researchers to simulate large deformable or merger/breakup fluid flows.
15, 16

 Ye et al. 

presented a sharp interface approach based on the Eulerian-Lagrangian approach, which treats the interfacial physics 

without smearing.
17, 18

 Mittal et al. further implemented a sharp interface method with the help of ghost cells by 

reconstructing the solution on those to satisfy the jump condition across interface.
19

 The cut-cell and ghost fluid 

methods belong to this category. Usually, a fluid/solid interface is modeled by a sharp interface method due to small 

deformation and there is no need to solve solid phase while fluid/fluid interface is modeled by a continuous method 

because it is easier to implement and has better capability in handling various multiphase problems even with large 

deformation and moving interfaces. 

The phase change and following mass transfer across phase boundary has not been well understood due to its 

physical and numerical complexity. Son et al. solved the boiling bubbles problem using the level set method. They 

assumed the temperature inside the bubble to be constant and computed mass transfer with temperature gradient 

only at the liquid side.
20

 This assumption is applied with the VOF method by Welch and Wilson.
21

 Juric and 

Tryggvason extended an immersed boundary method into a boiling problem by adding a smoothed latent heat source 

term into the energy equation. They iterated the whole solution procedure estimating the amount of mass transfer.
22

 

Shin and Juric simplify the method of computing the mass transfer from the known temperature gradient, but at both 

the liquid and the vapor sides.
23

 However, continuous treatment with diffused material property of thermal 
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conductivity limited the accuracy of heat transfer across the interface. Luo et al. implemented a hybrid method using 

sharp treatment for temperature computation with a standard continuous level-set method.
24

 Morgan improved 

accuracy in a phase change computation by correcting the temperature around the interface and directly using linear 

interpolation based on the interface temperature. This hybrid approach is very popular due to its simplicity and 

accuracy. However, the material properties are computed differently for momentum equations and the energy 

equation, and the sharp treatment is not appropriate for large deformable interfacial flows. Ferziger conducted an 

interesting study to demonstrate that the errors in continuous temperature treatment may be from the incorrect 

smoothed average of thermal conductivity around the interface in steady pure heat conduction problem with no 

phase change.
25

 

In the present study, we have further developed the previously reported 3-D adaptive Eulerian-Lagrangian 

method
16, 26, 27

 by implementing both continuous and sharp interface methods for energy equation with phase change 

effect. This numerical method utilizes the stationary (Eulerian) frame to resolve the flow field, and the marker-based 

triangulated moving (Lagrangian) surface meshes to treat the phase boundary interfaces. The large-deformable fluid 

boundaries are modeled using a continuous interface method, and the surface tension between fluid interfaces is 

smeared within finite distance. The solid boundaries are treated by a sharp interface method along with the ghost cell 

method by reconstructing the solution on the ghost cell based on the known solid boundary condition. The contact 

line where the fluid interface meets the solid boundary is modeled using a contact line force model, which enforces 

the given contact angle dynamically. For moving contact line treatment, local slip condition is applied around the 

contact line. The adaptive Cartesian grid method is implemented to resolve the sufficient computation resolution, 

especially around interface with effective computation. The energy equation solver is added into the previous study, 

and Boussinesq approximation is used for Buoyancy force computation in an incompressible flow solver. The phase 

change model using continuous treatment for temperature is developed with modified smoothing of material 

properties. 1-D Stefan problems and 2-D melting case by convection/diffusion flow are presented for validation 

purpose of the present approaches. The self-pressurization in a liquid hydrogen fuel tank under normal gravity is 

simulated with various heat distributions and liquid fill-levels. 

 

II. Numerical Methods 

In the present study, the marker-based 3-D adaptive Eulerian-Lagrangian method is further implemented to 

perform interfacial flow computations including phase change. The bulk flow variables are solved on the stationary 

(Eulerian) background grid, whereas interface variables are handled by moving (Lagrangian) surface meshes. Figure 

1 shows brief illustration of the present Eulerian-Lagrangian method, and detailed numerical method can be found in 

the previous works.
16, 26, 27

  

 

 
(a) (b) 

Figure 1. Eulerian-Lagrangian methods. (a) Interface representation and tracking using moving meshes 

on the stationary Cartesian grid. (b) Solution procedures. 
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A. Governing equations 

A single fluid formulation for all fluid phases is made possible by smoothing out the properties across the 

interface. Non-dimensionalized incompressible Navier-Stokes equations for mass and momentum conservation are 

given in Eqs. (1) and (2) respectively, which accounts for the interfacial dynamics as source terms in the governing 

equations; surface tension effects of fluid interfaces as a momentum forcing term (  ), and the latent heat effects 

across fluid interfaces as a energy source term (  ). In Eqs. (1) and (2),   is the velocity vector, and  ,  , and   is 

the density, viscosity, and pressure, respectively.  

  

  

  
          (1) 

   

  
              

 

  
             

 

  
   

 

  
   (2) 

    

  
                      (3) 

 

Here, all variables are non-dimensionalized by a characteristic velocity ( ) and length scale ( ), standard gravity 

(  ), and liquid material properties (density   , viscosity   , and surface tension  ). The non-dimensional parameters 

of Reynolds, Froude, and Weber numbers in Eq. (2) are defined as,           ,            , and    
   

    . In addition, the capillary number and bond number can be defined as                and    
           

   , respectively. 

The single set of equations formulation for all fluid phases in the whole domain is achieved with the help of an 

approximate Dirac delta function (  ) and an indicator function ( ). The approximate Dirac delta function, originally 

proposed by Peskin,
14

 is implemented over finite thickness of 4 cell width instead of the analytical form of Dirac 

delta function, which has a non-zero value only at the zero-thickness interface. The Indicator function is a scalar 

function varying from zero to one smoothly across the interface and has a value of 0.5 at the interface location. The 

smoothed fluid properties such as density and viscosity are computed using Eqs. (4)-(7). 

 

               (4) 
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                          (6) 

  

 
  

  

 
 
 
    

  

 
 
 
  

  

 
 
 
   (7) 

 

Separate indicator functions for fluid and solid interface are used to separate the designation of solid interface, 

modeled by a sharp interface method, from fluid interface modeled by a continuous interface method. The indicator 

function is computed using a discrete form of the Heaviside step function in Eq. (8) by integrating 1-D form of 

discrete Dirac delta function. This approach is known being applicable more generally than Poisson equation solver 

method since it requires only distance information from interface, and thus gives accurate values even at the 

boundaries.
26

  

  

                         
 

  

 (8) 
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B. Solution procedure: Projection Method 

The governing equations (1)-(3) are solved using a projection method with a staggered grid finite volume 

formulation. The pressure and fluid properties are stored at the cell center and face-normal velocities are stored on 

the Cartesian cell faces. The convection term ( ) is discretized using a 3rd order ENO scheme in space and a 2nd 

order Runge-Kutta integration in time. The central difference scheme and Crank-Nicholson method is implemented 

for the viscous term ( ). The discretized solution procedures are summarized in Eqs. (9)-(12). In Eq. (13),        

term is zero if the phase change doesn’t occur and mass is not transferred across the interface. 

 

       

  
               

 

       
              

      (9) 

     

  
            

 

    
                      (10) 

       
  

    
    (11) 

         
  

    
      (12) 

 

with Pressure Poisson equation of Eq. (13) by taking divergence of Eq. (12). 

 

          
  

    
                (13) 

 

C. Interface representation and tracking 

In this marker-based Eulerian-Lagrangian method, the interface is represented by massless markers in 

coordination with each other for maintaining the interface connectivity information. The corresponding data 

structure is established via line-segments in two-dimensional and triangles in three-dimensional domains, as 

represented in Figure 1(a). The marker locations, denoted by   in Lagrangian frame, are updated from the velocities 

at its location,     , in Eq. (14). 

  

  
      (14) 

Fluid interfaces use the computed flow solution field to obtain the marker velocities as shown in Eq. (15). In this 

equation, the discrete Dirac delta function,       , is employed for converting the Eulerian velocity field,     , to 

Lagrangian form,     . The interface velocity is exactly same to fluid velocity if there is no mass transfer in Eq. 

(15). However, with phase change, the velocity component from mass transfer should be considered. On the other 

hand, solid interfaces use the prescribed velocity field to advance the marker points using Eq. (14). 

 

                  
 

 
  

  

   (15) 

 

In order to maintain consistent computational accuracy, the spacing between marker points is rearranged by 

adding or deleting markers whenever two markers come too close or too distant from each other. The level-contour-

based interface reconstruction technique with connectivity information is also implemented to handle topological 

changes such as merger or break-up. Detailed numerical method can be found in the previous works.
16, 26, 27
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D. Interfacial dynamics modeling 

The continuous interface method is implemented for all fluid phases by a single fluid formulation due to its 

effectiveness in modeling highly deformable fluid interfaces. The surface force computation of Eq. (16), where   is 

the surface tension and   is the curvature of interface, is applied as source term in the momentum equation, Eq. (2). 

              
    

 (16) 

Solid interfaces is modeled using the sharp interface method by reconstructing solution fields around an interface 

to incorporate the given boundary condition on the solid interface in an Eulerian Cartesian grid. The velocity 

reconstruction on the solid side is implemented via ghost cells, which are defined as solid cells having at least one 

neighboring fluid cell. This approach works well even with contact line where fluid interface meets solid interface. 

When a fluid-fluid interface intersecting a solid surface, the treatment of the tri-junction locations, called contact 

line, is required to account for the presence and interactions of all three phases, fluid-fluid-solid. One of the most 

discussed issues for modeling these contact lines with Navier-Stokes equations is that the imposed no-slip condition 

for velocity leads to a non-integrable singularity in stress. In the present research, the contact line force is imposed 

with local slip condition to overcome this singularity issue. 

The basic idea of these two different approaches is shown in Figure 2, and the details can be found in our 

previous works.
16, 26, 27

 

E. Improvement of solid boundary treatment 

In the present sharp interface method for solid boundary treatment, the boundary condition of solid surface is 

enforced through the usage of ghost cells which are defined as solid cells having at least one neighboring fluid cells. 

Thus, the accuracy is directly related to the accuracy of interpolations at ghost cells. In Figure 3, the quadratic 

interpolation is implemented with two additional imaginary points (IP) in fluid phase instead of the previous linear 

interpolation with just one imaginary point. 

Two imaginary points, IP1 and IP2 are built by extrapolating the normal of the interface originated from a ghost 

cell toward the fluid phase with a constant interval while the solid point (SP) is the intersection point of the normal 

and interface. The minimum cell width is used as the interval for SP to IP1 and IP1 to IP2. Bi/tri-linear interpolation 

is applied to determine the values at the imaginary points. Four cells with square stencil are implemented for bilinear 

reconstruction in two-dimensional domain and eight cells with cubic stencil for tri-linear interpolation in three-

dimensional domain. As shown in Figure 3, velocity of IP1 is reconstructed based on chosen cells marked by red 

square dash line and so as the green square for IP2. An algorithm that guarantees such a geometric pattern is 

necessary for every image point that needs bi/tri-linear interpolation. The formulas of bi-linear and tri-linear 

interpolation are 

                   (17) 

                                       (18) 

  
(a) (b) 

Figure 2. Interfacial dynamics modeling. (a) Fluid interface: continuous interface method with smeared 

interface within finite zone. (b) Solid interface: sharp interface method with the zero-thickness interface. 
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Once the interpolated values at IP1 and IP2 are available, the next step is to build a quadratic representation of 

variables at the normal line of interface, a one-dimensional line composed by SP, IP1, and IP2. With the no-slip 

condition at SP and information at IP1 and IP2, quadratic formula with three coefficients is 

                
  (19) 

The velocity at ghost cell can be extrapolated by Eq. (19) directly with the known distance between SP and ghost 

cell. The conservative way is using linear extrapolation through the gradient of U(X) at SP as shown in Figure 3(b). 

Ye et al. presented quadratic reconstruction method by single image point to approximate second-order accurate 

boundary condition.
17

 It requires at least 6 cells for two-dimensional domain and 10 cells for three-dimensional 

domain. Sometimes it is difficult to establish appropriate multi-points stencil for interpolation especially when the 

image point is close to solid interface. Bi/tri-linear reconstruction is relatively easy to determine a suitable 

interpolation stencil in comparison to quadratic reconstruction. Moreover, utilizing two IP points whose variables 

are reconstructed by bi-linear interpolation to build a one-dimensional quadratic representation provide flexible 

boundary treatment with 2nd order accurate approximation in at the normal of interface. 

Another issue most discussed for modeling sharp interface method is mass/energy conservation on the boundary 

cells. Solid boundary which is not aligned with grid causes confliction between no-slip condition on the surface and 

mass conservation of boundary cells. Many researchers implemented finite difference method instead of finite 

volume method in order to detour such an issue.
19

 Mass/energy source/sink approach was proposed to compensate 

non-divergence free condition of boundary cells, but it just guarantees convergence of pressure Poisson solver, and 

the mass is still not conserved with computed no-slip conditions.
28

 Local correction method, which is our previous 

approach, is also a kind of mass source/sink method, and has same issues on the accuracy.
26

 When the Reynolds 

number is small and grid is fine, the velocity fields are almost steady around surface, and the error can be negligible. 

However, high Reynolds or Rayleigh number flow exacerbates the accuracy. In the present study, pressure boundary 

condition is implemented for accurate mass/energy flux computation instead of velocity boundary condition during 

solving pressure Poisson equation in the Projection method. 

Our current approach imposes Neumann pressure boundary condition implicitly in Poisson equation. When 

solving the pressure Poisson equation, pressure of ghost cells is used to enforce zero normal pressure gradients at the 

immersed solid wall. The zero normal pressure gradients is equivalent to non-permeable wall, and thus mass 

conservation should be satisfied for fluid cells if ghost cell pressure is updated consistently. For each ghost cell, 

Neumann condition means ghost cell pressure is equal to that of the respective imaginary point. Hence, the ghost 

cell pressure of imaginary point could be determined by a weighting combination of multiple fluid cells adjunct to 

its respective image point. In a three-dimensional domain, pressure at an imaginary point is represented by a linear 

function of its coordinate vector [1 x y z] and so as its surrounding fluid cells. 

 
 

 

(a) 

 

(b) 

Figure 3. Quadratic interpolation scheme with two imaginary points (IP). (a) Schematics of reconstruction 

stencil (b) One-dimensional quadratic interpolation for a ghost cell. 
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  (20) 

In the iterative solving procedure of Poisson equation, the P1 to P4 are unknown objects. With the inverse of 

coordinate matrix [1 X Y Z], a ghost cell pressure is associated linearly to its respective fluid cells with zero wall 

normal derivative enforced. 

                               

  

  

  

  

       

 

   

 (21) 

The discretized Poisson equation together with embedded Neumann boundary condition is solved by bi-

stabilized conjugate gradient solver with diagonal preconditioning. 

F. Mass transfer due to phase change 

Mass transfer computation is one of the key issues in the phase change process since it is related to the 

movement of phase boundary and the amount of latent heat in energy transfer process. In the energy equation of Eq. 

(3), the latent heat is computed by Eq. (22), where     is mass transfer due to phase change and   is the latent heat. 

 

                
 

 (22) 

 

Similar to the transformation of surface tension, the latent heat of the interface due to phase change is also 

transformed from a Lagrangian quantity ( ) to an Eulerian quantity ( ) via the approximate discrete Dirac delta 

function,        . 
In the present study, the mass transfer is computed in Eq. (23) based on the Stefan condition using the 

temperature gradient with discontinuous material properties for simplicity and accuracy. Where, L is latent heat and 

k is thermal conductivity. The interface temperature is assumed equal to the saturation temperature since it is an 

adequate assumption in macroscopic problems.
22

 

 

                   
   

  
 
 
   

   

  
 
 
 (23) 

 

The energy equation of Eq. (3) is solved using continuous treatment with smoothed material properties in Eqs. 

(4)-(7), and the projection method in Eqs. (9)-(13) is applied to solve momentum equation. The mass conservation 

equation in Eq. (1) is coupled by assuming          when we solve pressure Poisson equation in Eq. (13). 

However, the divergence of velocity is not zero around the interface if the phase change occurs and mass is 

transferred across the interface. Shin and Juric developed the conservation of mass in Eq. (24),
23

 and in the present 

work, the modified version of Eq. (25) is implemented for the non-conservative form of equation. 

 

            
       

  

            
    

 (24) 

    
 

 
        

  

  

 
    

 

 
 
       

  

            
    

  (25) 
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G. Adaptive Grid 

Multiphase flow problems involve multiple length scales. In order to effectively resolve the flow features in such 

cases, adaptive grid based on isotropic refinement is implemented. The cells are split into four and eight equal 

sibling cells in two- and three-dimensions, respectively to better handle regions which require higher resolution. The 

grid is represented using unstructured data that connects cells through cell faces. The details of the algorithm can be 

found in Singh and Shyy.
16

 Adaptation is performed based on the flow solution quality for effective computation as 

well as the interface location. 

H. Overview of the present numerical method 

Figure 4 shows the schematic drawing of the present approach for multiphase flow computation.  

 

 

 

 
 

 

  

 

Figure 4. Illustration of the present numerical approach. 
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III. Computational Assessment 

A. Validation of the solid boundary treatment: uniform flow past a circular cylinder 

The simulation of a flow past circular cylinder immersed in a free stream is chosen to verify improvement of the 

present solid boundary treatment. Computational domain spans 40 times the diameter of cylinder in both x and y 

direction with a cylinder in the center of domain. Slip boundary is applied at the top and bottom of computational 

domain and non-reflective boundary is specified at the outlet with fixed pressure P0. The spatial boarder provides 

enough room for pressure field to diffuse without interact with inlet and slip boundary condition too much. Adaptive 

mesh is used with 2nd order RKCN convection-diffusion flux scheme. The minimum grid sizes of test cases are 

1/16D, 1/32D and 1/64D, where D denotes the cylinder diameter. Computations perform at Reynolds number 40, 

100 and 200. Drag coefficient CD, lift coefficient CL, pressure coefficient Cp and Strouhal number are computed and 

compared with others. 

 

 
Figure 5 presents pressure contour and streamlines at Reynolds number 40. Pressure contour lines normal to the 

solid interface shows that pressure is well approximated by homogeneous Neumann condition. Figure 6 presents the 

pressure coefficient at the upper half cylinder circumference together with Fornberg’s results.
29

 Overall pressure is 

well resolved with fair grid size. At Reynolds number 100 and 200, the vortex shedding behavior is captured and 

non-dimensional parameters, Strouhal number and periodic fluctuation of drag and lift coefficient are tracked and 

plotted in Figure 7. The computed Stroual numbers are 0.164 and 0.192 for Reynolds number 100 and 200 with lift 

coefficient 0.31 and 0.68 respectively. Our current results agree well with previous studies
30, 31

 using immersed 

boundary method, whose Strouhal number around 0.196 and averaged lift coefficient 0.68 for case of  Reynolds 

number 200. In case of Reynolds number 40, drag coefficient is 1.52 and length of recirculation zone is 2.22 

diameter of the circular cylinder, which matches well with Ye at al.’s quadratic interpolation results.
17

 

 

 

Figure 5. Pressure contour and streamline at Re = 40. Figure 6. Pressure coefficient at cylinder surface, 

Re = 40. 

 

  
(a) (b) 

Figure 7. Lift and drag coefficient. (a) Re = 100. (b) Re = 200. 
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B. Validation of phase change model: 1-D Stefan problem 

A one dimensional phase change test problem is performed to evaluate the present computational approach for 

phase change. 1-D two-phase Stefan problem with no density effect are first validated and compared with theoretical 

solution.
32

 The phase change with density effect is further simulated for open and closed container, and self-

pressurization in a closed container is measured in a closed container case. 

Figure 8 shows the numerical configuration for 1-D two-phase Stefan problem with the same density on a semi-

infinite slab, where the left wall was maintained at a constant temperature    with the interface location,     , 

denoted by separating the vapor and liquid phases on the left and right sides respectively. The initial temperature of 

phase 2 is a certain value,   , but varies in time due to heat transfer from phase 1. The initial conditions and 

boundary conditions are summarized in Table 1.  

 

Table 1. One dimensional two-phase Stefan problem 

Interface temperature                           
Stefan condition                   

              
     

Initial condition 
                          
       

Boundary condition 
                          
   
   

                     

 

 

The theoretical interface location and temperature distribution for two-phase Stefan problem are given by Eqs. 

(26)-(29), where   and   are thermal diffusivity and heat capacity and   is the latent heat of phase change such as 

evaporation or melting. Parameter   is obtained by solving the transcendental Eq. (29). 

The computations are started with the initial interface location at         , assuming      at the left end and 

      at the right end with the saturation temperature       . The thermal conductivity ratio is varying from 

0.1 to 10. The parameter   is computed based on the solution of transcendental equation for the chosen fluid 

properties. The theoretical temperature distribution at the time that corresponds to the initial interface location is 

imposed as the initial condition of the present numerical study, with the computational domain from x=0 to x=1 

using 200 grid cells. 

           (26) 

           
       

      
     

 

     
                      (27) 

           
       

             
      

 

     
                      (28) 

  
           

                
 

           

                
               

 (29) 

 
  

Figure 8. The numerical configuration of one dimensional two-phase change test problem. 
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The interface location history during phase change process is shown in Figure 9(a) for the different thermal 

conductivity ratio from 0.1 to 10. The interface moves fast in the beginning and slows down as time goes on because 

the temperature gradient becomes smaller as the interface goes far from the hot temperature at x=0. It is known that 

the continuous interface treatment has some errors in simulating thermal effect. However, Ferziger demonstrated 

that the error is due to an incorrect smoothed averaging of material properties in the stationary heat conduction 

problem with no phase change.
25

 In the present study, the thermal conductivity is averaged using in the Eqs. (4)-(7), 

and it demonstrates substantial agreement with analytical solution, even for phase change cases. The different 

temperature profile for each case is shown in Figure 9(b), where small thermal conductivity in phase 2 produces a 

large temperature gradient, and it results in fast movement of interface due to a large mass transfer. 

The density effect in a phase change is studied in the open and closed container system. The liquid density is 

assumed to be twice that of the gas density, and the given material properties and boundary conditions are shown in 

Table 2. When the liquid phase is transferred into gas phase, the mass of liquid phase is conserved during the phase 

change according to the rule of mass conservation. However, the volume of transferred phase is not conserved. 

Because the density ratio of liquid to gas is twice from the beginning, the volume of the transferred gas is initially 

twice that of the volume of the corresponding liquid. The difference of volume results in a rise of density and 

pressure in the gas phase, and/or a volume expansion of gas phase. In Figure 10(a), a container open at right end is 

considered, where the gas phase will expand and the liquid phase will move to right during phase change process. If 

we assume there is no mechanical drag, the bulk of the liquid will move with no mechanical force, and the density of 

the gas will be same to the original density as the gas phase expands to the right end. Figure 11(a) shows the 

interface location change in the phase change process, and the open container simulation is identical with the 

analytical solution.  

The closed container case is shown in Figure 10(b), where the both end are closed, and the liquid cannot move to 

the right; therefore, the gas cannot be expanded. This causes the pressure to rise in the gas phase of confined 

container as the self-pressurization occurs in a closed spacecraft fuel tank system. Figure 11(a) shows the interface 

moves slowly in a closed system since the liquid phase cannot move and the interface movement is completely 

dominated by the amount of phase change. Figure 11(b) compares the pressure between two systems. In the open 

container, the liquid moves freely, so the pressure of the gas is maintained. This is the same as it is in the beginning 

because the expanded gas pushes the liquid up and into the right side. When the phase change occurs in the closed 

system, the pressure of gas phase rises when density increases. However, the speed of pressure rise decreases in 

time, and it reaches asymptotic values as the density ratio decreases. 

 

       
(a) (b) 

Figure 9. The comparison of the present numerical study and analytical solution for two-phase Stefan 

problem. (a) Interface location. (b) Temperature profile at time = 0.5. 
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(a) (b) 

Figure 11. The comparison of the interface location and the pressure rise between open and closed 

container system. (a) Interface location. (b) Pressure rise of gas phase. 

 

  
(a) (b) 

Figure 10. The numerical configuration of one dimensional Stefan problems with density effect. (a) Open 

container system with gas expansion and no density change.  (b) Closed container with pressure rise. 

 

Table 2. Parameters for 1-D two-phase Stefan problem with density effect. 

Parameter Phase 1 (gas) Phase 2 (liquid) 

Temperature at end                

Saturation temperature          

density ( ) 1.0 2.0 

heat capacity ( ) 1.0 1.0 

thermal conductivity ( ) 1.0 1.0 
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C. 2-D melting in a square cavity by natural convection 

Two-dimensional melting driven by natural convection in a square cavity is considered to present the fidelity of 

the phase-change approach implemented. The simulation is performed in a rectangular tank filled with a pure 

substance of solid phase, which is suddenly exposed to high isothermal surface at left vertical wall and thermally 

insulated at top and bottom walls. The initial temperature of the material in this cavity is uniformly    as the 

temperature of right vertical wall, and gravity is parallel to the vertical wall. Constant material properties are 

assumed for each phase through the melting process. Figure 12 shows the configuration of a 2-D melting in a square 

cavity by natural convection flow. The liquid/solid interface is initially located at the left wall, and moves to right by 

melting process since the heat is transferred by convection and diffusion flow from hot wall of the left side to solid 

surface. The isothermal temperature is assumed in the solid phase. 

In the case of melting driven by natural convection in a square cavity, dimensional analysis shows the heat 

transfer rate can be expressed in terms power laws of Rayleigh number (            ) at high Prandtl number 

(      ) range while it is function of    times    at low Prandtl number range.
33, 34

 Here,   is gravitational 

acceleration,   is thermal expansion,    is the difference of temperature between hot wall and an interface, and   is 

the height of cavity.   and   are kinematic viscosity and thermal diffusivity, respectively. In this study, two 

numerical tests of            and         are simulated at a constant Prandtl number Pr=0.02 and Stefan 

number St=0.01. Figure 13 shows the location of the interface between liquid and solid phase with temperature 

contour for           . The buoyancy force stir the flow field to generate multiple recirculation cells at the 

beginning of melting and circulations gradually merge into a dominated one when interface come to the middle of 

cavity. The time history of interface location is similar to the benchmark work reported by Bertrand et. al.
34

 The 

evolution of the averaged Nusselt number on the hot wall and liquid fraction are presented in Figure 14. In the case 

of           , the Nusselt number matches with Lacroix’s work. High frequency fluctuation of Nusselt 

number is observed for case of           , which is similar to the results captured by Le Quéré.
34

 The 

oscillatory behavior may be due to the repeat of production and merge of recirculation cells. The liquid fraction 

shows consistent trend with respect to Lacroix’s work at           , and to Gobin’s work at           . 

 

 

 
 

 
 

Figure 12. The configuration of a 2-D melting in a square cavity by natural convection flow. 
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(a)                                                                                  (b) 

 

Figure 14. The comparison of (a) averaged Nusselt number at hot wall and (b) the liquid phase fraction in 

a melting process by natural convection. 

 

 

 
 

 
 

 

Figure 13. The snapshots of the temperature contours and velocity fields during melting process in a square 

cavity by natural convection flow at           . 
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(a)                                                                                  (b) 

 

Figure 15. The numerical configuration. (a) Fuel tank geometry. (b) Axisymmetric computational domain 

with different tank-wall heat distributions. 

D. Self-pressurization in a liquid fuel tank 

The self-pressurization in a cylindrical liquid hydrogen fuel tank is considered. Figure 15(a) shows the geometric 

configuration of the test case. The ground test at normal gravity is assumed since the interface can be more distorted 

and the liquid position and vapor bubble distributions are usually unknown under microgravity condition. The 

axisymmetric numerical computation in Figure 15(b) is conducted due to its effective computation in order to 

establish a guideline on the amount of self-pressurization at a given heat leak. 

First, two different numerical approaches are tested and compared with each other in order to ascertain the role 

of transport phenomena in the pressurization process of a liquid fuel tank; conduction-only solution with no flow 

motion and full Navier-Stokes and energy equation solution. For studying the influence of heat distribution, gas-only 

heating, uniform heating and liquid-only heating cases are simulated with 50% fill level in Figure 15(b). The study 

on the influence of liquid fill-level is followed for uniform heating case with three different fill-levels of 25%, 50% 

and 75%. The total heat power input is fixed at QT=4.71mW with qH=0.1 W/m
2
 for uniform heating case and qH=0.2 

W/m
2
 for gas-only and liquid-only heating cases. The used material properties at T=20.369 K are summarized in the 

Table 3. 

 

 
 

Table 3. Material properties at T=20.369 K. 

 Vapor hydrogen Liquid hydrogen 

Density,   [kg/m
3
] 1.3322 70.850 

Thermal conductivity, k [J/m·s·K] 0.017085 0.10382 

Dynamic viscosity,   [kg/m·s] 1.0786×10
-6

 1.3320×10
-5

 

Specific heat, Cp [J/kg·K] 1.2036×10
4
 9.772×10

3
 

Thermal diffusivity,   [m
2
/s] 2.56×10

-6
 1.82×10

-7
 

Thermal expansion coefficient,   [K
-1

] 0.04909 0.0168 

Surface tension,   [N/m] 1.9452×10
-3

 

Latent heat,   [J/kg] 4.456×10
5
 

Normal boiling temperature,    [K] 20.369 

Normal saturation pressure,    [Pa] 1.01400×10
5
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Figure 16 shows the comparison of temperature contour and streamlines between conduction-only solution with 

no flow motion and full Navier-Stokes/energy equation solution. The uniform heating and 50% of liquid fill-level is 

assumed. During a phase change process like a boiling, the amount of the mass transfer and following vapor 

pressurization is determined by the temperature distribution around the interface. In the conduction-only solution of 

Figure 16(a), the heat stays on the heated wall, and the temperature around interface is maintained low due to less 

heat transfer from the wall. However, in the full Navier-Stokes/energy equation solution, the convection flow as well 

as the conduction transfer heat from the wall into the interface due to natural convection by buoyancy force, which 

develops especially thin warm liquid layer along the wall in Figure 16(b). This makes in a huge difference in the 

pressure rise in Figure 17(a), where, less heat transfer of conduction-only solution due to the absence of convection 

transport phenomena results in underestimated pressure rise. Figure 17(b) shows clearly the difference of the 

temperature distribution along the centerline axis. This comparison shows that the full Navier-Stokes and energy 

equation solution is required for the accurate numerical study on the pressure rise in a liquid fuel tank. 

 

 

 

 

      
(a)                                                                                  (b) 

Figure 17. The comparison of the fuel tank pressurization between conduction-only solution and full 

Navier-Stokes/energy equation solution. (a) The saturation pressure change in a fuel tank. (b) The 

temperature profiles along the centerline axis of a fuel tank. 

 

                                 
(a)                                                                                  (b) 

Figure 16. Temperature contour and streamlines in a fuel tank. (a) conduction-only solution (b) full 

Navier-Stokes and energy solution. 
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The effects of heat distribution are studied with three different heat conditions; gas-only heating, uniform heating 

and liquid-only heating. The same total heat power of 4.71 mW and 50% liquid fill-level are assumed for all three 

cases. In the saturation pressure change of Figure 18(a), the gas-only heating case shows the highest pressure rise, 

and liquid-only heating results in less pressure rise. The pressure rise rate of Figure 18(b) shows it more clearly. The 

higher pressure rise rate is observed in the gas-only heating, especially in the beginning. However, the pressure rise 

rate becomes similar as time goes. It shows that the transport phenomena in the vapor region are important due to 

shorter time scale of vapor region to understand the pressurization, especially in the beginning of pressurization. The 

study on the effects of liquid fill-level is followed with three different levels. The higher fill level shows higher 

pressure rise in the beginning, but it does generally lower pressure rise in Figure 19(a). The pressure rise rate of 

Figure 19(b) shows that 75% fill-level has dramatic rise in the beginning due to the fast heat transport in a smaller 

gas-region. However, the influence decreases quickly, and all three cases show similar pressure rise rates. The 

longer simulation is needed for considering the influence from liquid region as well as vapor region. 

 

 
 

  

 

      
(a)                                                                                  (b) 

Figure 19. The effects of liquid hydrogen fill-level for fuel tank pressurization. (a) The saturation pressure 

in a fuel tank. (b) The saturation pressure rise rates. 

      
(a)                                                                                  (b) 

Figure 18. The effects of heat distributions for fuel tank pressurization. (a) The saturation pressure 

change in a fuel tank. (b) The saturation pressure rise rates. 
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IV. Summary and Conclusions 

In this paper, a 3-D adaptive Eulerian-Lagrangian method for multiphase flow computation is further developed 

with phase change model for the simulation of spacecraft fuel tank self-pressurization. The governing equations are 

solved on an Eulerian Cartesian grid with a dynamic local grid adaptation for appropriate resolution. The Lagrangian 

triangulated surface meshes are implemented for tracking interfaces including different fluid phase boundary and 

arbitrary shaped solid geometries. The phase change computation is computed from the Stefan condition using 

temperature gradient across an interface, and is implemented easily with both present continuous fluid/fluid interface 

framework and sharp solid/fluid interface framework. Numerous test cases have been adopted to evaluate the 

performance of the modeling and computational capabilities of the present approach, including: 

(1) Uniform flow past a circular cylinder, 

(2) 1-D two-phase Stefan problem including density effects, 

(3) 2-D melting in a square cavity by natural convection, 

(4) Self-pressurization in a cylindrical liquid fuel tank. 

 

Specifically, the following observations can be made in the fuel tank self-pressurization case: 

(1) The transport phenomena play an important role in the self-pressurization of a liquid fuel tank, and 

conduction-only solution underestimates the pressure rise,  

(2) The heat transfer in the vapor region has a large influence on the pressurization, especially in the beginning, 

(3) The full Navier-Stokes and energy equation solution is required to respect the heat transfer via both 

convection and conduction in both vapor and liquid phases. 

 

We are in the process of further refining and assessing the computational techniques along with detailed code 

verification and validation exercises for practical engineering problems involving spacecraft thermal stratification 

and self-pressurization from normal to micro-gravity condition with various heat distributions and jet mixing 

conditions. 
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