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Orbital Targeting Using Reduced Eccentric Anomaly
Low-Thrust Coefficients
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A method to evaluate the trajectory dynamics of low-thrust spacecraft is applied to targeting and optimal control
problems. Averaged variational equations for the osculating orbital elements are used to estimate a spacecraft
trajectory over many spiral orbits. Fourteen Fourier coefficients of the thrust acceleration vector represent the
fundamental trajectory dynamics. Spacecraft targeting problems are solved using the averaged variational
equations and a general cost function represented as a Fourier series. The resulting fuel costs and dynamic fidelity of
the targeting solutions are evaluated. The goal of the method is not precise targeting, but easy reconstruction of the
basic elements of the thrusting trajectory and control law.

Nomenclature

semimajor axis

cosine coefficient, Fourier series of integrand
of cost function

sine coefficient, Fourier series of integrand
of cost function

semimajor axis offset correction term
vector of 14 key Fourier coefficients
initial control

cost function

eccentric anomaly

eccentricity

eccentricity offset correction term
thrust acceleration

radial thrust acceleration

normal thrust acceleration
circumferential thrust acceleration
identity matrix

inclination

inclination offset correction term
cost function

generalized cost function

mean anomaly

number of intermediate target states
= mean motion

any orbital element

radial unit vector

transfer time

control

= weighting matrix
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w = normal unit vector
X = state vector of orbital elements
Xg = initial state
X = final state
af"S = cosine coefficient, Fourier series of thrust
' acceleration
RW.S = sine coefficient, Fourier series of thrust acceleration
AV = velocity increment
So = adjustment to initial control
€ = coefficient used to determine mean anomaly
€1p = ¢ offset correction term
A = Lagrange multiplier
P = orbital element transition matrix
v = &
da | .
Q = longitude of the ascending node
Q, = longitude of the ascending node offset correction
term
10} = argument of periapsis
@, = argument of periapsis offset correction term

1. Introduction

DVANCES in electric propulsion have made low-thrust

engines a growing trend in the spacecraft industry over the past
few decades. The Deep Space 1, SMART-1, Hayabusa, Dawn, and
GOCE missions have demonstrated this technology, and it is slated
for launch on the LISA Pathfinder and BepiColombo missions,
among others. With high specific impulse and long engine lifetimes,
low-thrust propulsion is well-suited for many applications, including
orbit transfers with many spiral orbits.

Optimal control of low-thrust spacecraft, however, remains a
difficult problem. The general continuous-thrust problem requires
integration of the Newtonian equations of motion for the full tra-
jectory, which may comprise hundreds of orbits and is highly
sensitive to small changes in the thrust profile. Analytical solutions
exist for several special cases of low-thrust orbit transfer problems,
such as Forbes’s spiral [1], the logarithmic spiral [1-3], the expo-
nential sinusoid [4], the case of constant radial or circumferential
thrust [5—7], the case of variable radial thrust [§—10], Markopoulos’
Keplerian thrust arcs [11], Lawden’s spiral [12], and Bishop and
Azimov’s spiral [13]. The calculus of variations [14] and direct
optimization methods [15] have also been used to determine opti-
mal low-thrust control laws within certain constraints. Several
methods for open-loop, minimum-time transfers [16-18] and
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optimal transfers using Lyapunov feedback control [19,20] also
exist. Averaging methods, in combination with other approaches,
have proven effective in overcoming sensitivities to small variations
in initial orbit and thrust profile [21-24]. Yet all of these solutions
remain limited to certain regions of the thrust and orbital parameter
space.

Previous work by Hudson and Scheeres [25] has established the
validity of an averaging method to model the trajectory dynamics of
low-thrust spacecraft without these parameter restrictions. The
spacecraft thrust vector components are represented as Fourier series
in eccentric anomaly and the Gauss variational equations are
averaged over one orbit to define a set of secular equations. The
secular equations are functions of only 14 of the thrust Fourier
coefficients, regardless of the order of the original Fourier series, and
can represent thrust controls of varying magnitude and direction.

This method considers the three orthogonal components of the
thrust acceleration vector separately. The thrust in each direction may
be variable, constant, or zero. There are no upper or lower bounds on
the thrust, except that it must be of sufficiently low magnitude that the
size and shape of the orbit do not change significantly over one
revolution.

This paper describes the application of this method to orbital
targeting problems. Using a two-body Newtonian model, targeting
problems ranging from five to approximately 80 revolutions are
solved without restrictions on the orbital elements (except that
eccentricity may not be zero) or thrust direction. General two-point
boundary value problems are solved using an iterative method that
converges on the minimum-norm set of the 14 force Fourier coef-
ficients. Problems involving sequences of target states are also
solved, either by finding the optimal set of control coefficients
between each pair of states, or by fitting a single set of control coef-
ficients to the entire orbit transfer using a least-squares approach. The
resulting fuel costs and dynamic fidelity of the targeting solutions are
evaluated. The goal of the targeting method is not precision, but easy
reconstruction of the basic elements of the thrusting trajectory and
control law. These methods require significantly reduced computing
resources compared with integration of the full Newtonian equations
of motion.

Trajectory analysis using the reduced Fourier coefficients has
several potential fields of application, including mission design and
space situational awareness (SSA). Mission designers could use the
averaged secular equations to efficiently estimate control laws for a
large number of potential orbital paths, to compare fuel costs and
other trajectory characteristics, and to estimate the feasibility and
cost of proposed deviations from a selected path. In SSA appli-
cations, observers could reconstruct the orbital path of a suspected
low-thrust spacecraft from a few discrete observations to identify the
fundamental characteristics of the control law used, estimate fuel
consumption, and predict the future trajectory. The different methods
developed for solving orbital targeting problems and calculating
equivalent control laws have different strengths and weaknesses that
make them appropriate, respectively, for these different applications.

II. Methods

Previously, Hudson and Scheeres [25] developed a method to
model average low-thrust trajectory dynamics using 14 fundamental
coefficients. This section is intended to summarize the elements of
that method that are relevant to orbital targeting. For further details
and validating examples, readers are referred to [25].

Secular equations can be derived by averaging the Gauss form of
the Lagrange Planetary Equations over one orbit period with respect
to mean anomaly. The acceleration vector is assumed to have a
sufficiently low magnitude that the size and shape of the orbit do not
change significantly over one revolution

< 1 2,
0=— odM (1)
27 0
Here o represents any orbit element. The thrust acceleration vector F
is resolved along the radial, normal, and circumferential directions.

Each component of the thrust acceleration is represented as a Fourier
series expanded in eccentric anomaly

F = Fuf + FyW + Fy(W x £) @)
Fp= ;[(xf cos kE + B sin kE] 3)
Fy = ;:20[%?/ cos kE + B} sinkE] 4)
Fy= g[af cos kE + B3 sinkE] 5)

where r = "7‘ and w = \K:r When these Fourier series for the thrust

vector components are substituted into the averaged Gauss equations
and the independent parameter for the averaging is shifted to
eccentric anomaly, the orthogonality conditions eliminate all but the
zeroth-, first-, and second-order coefficients of each thrust accel-
eration Fourier series. Thus, the averaged secular Gauss equations
are:

3
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The element ¢, is used to determine the mean anomaly,
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M=/ndt+el—(9—|—a)) (12)

Average trajectories calculated using Egs. (6—11) show the correct
trends in the evolution of the osculating orbital elements and are good
approximations of the true trajectories. However, they may be offset
from the true averages and may diverge from true trajectories over
many orbits. This may be partially due to higher order effects not
captured in the averaging method, but it is often due to nontrivial
periodic components which can shift the mean value of the state from
the initial condition. This initial condition offset can be corrected by
the addition of an averaged periodic term to the initial conditions of
the secular equation for each orbital element. These correction terms,
. e, i, Q,, @,, €, are given in [25].

In [25], the averaged secular equations with corrected initial
conditions were shown to efficiently and accurately evaluate the
trajectory dynamics of low-thrust spacecraft. Numerical examples
demonstrated close agreement between the Newtonian equations of
motion and these averaged secular equations over many orbits of
general, low-thrust trajectories.

The method has certain limits of applicability. The averaged
secular equations are developed only for the restricted two-body
model; other gravitational perturbations or spacecraft mass effects
must be considered separately. The thrust acceleration must be able
to be represented by a Fourier series, as is true for almost any physical
system. The resulting controls are periodic in eccentric anomaly,
unless the control Fourier coefficients are changed from orbit to orbit.
The Gauss equations are singular for circular orbits; however, this
method can be used for all orbits with nonzero eccentricity. This
method can also model coast arcs by setting the thrust Fourier series
to zero.

III. Targeting

The averaged secular variational equations provide an efficient
means of solving low-thrust orbit transfer problems. Any spacecraft
targeting problem with a time span sufficient to allow low-thrust
transfer can theoretically be solved by numerical integration of the
averaged equations and iterative evaluation of the 14 thrust Fourier
coefficients.

Orbital targeting problems with fixed endpoint constraints are
considered. These problems take the form of two-point boundary
value problems in which a spacecraft must transfer from an initial
state to a final state, each defined by six orbital elements, in a fixed
amount of time.

The averaged equations solve these problems for the secular
orbital elements. The solutions will not precisely agree with the true
spacecraft trajectory, as calculated by the Newtonian equations of
motion, due to the short period offsets between them. However, the
secular solutions are useful approximations, as they represent the
average of the full solution. They may be used to estimate flight
requirements, such as velocity increment and fuel consumption, or to
initialize other optimization methods to determine the true optimal
trajectory.

A. Two-Point Boundary Value Problems

The targeting problem in the averaged equations is approached as
a two-point boundary value problem with given initial state x, final
state X 7, and transfer time T'. The equations of motion have the form

x = G(xX)a + F(x) (13)

where X is the state vector of orbital elements, a is the 14 x 1 vector
of thrust Fourier coefficients that appear in the averaged secular
equations, and F'(x) accounts for the additional mean motion term in
the differential equation for mean anomaly

e V~an 2
Q
—At
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The term G(x)a represents Eqs. (6-11).

Solutions to these problems will involve only the secular orbital
elements. The true trajectory, as calculated by the Newtonian
equations, will not match these solutions exactly due to the short
period offsets. Nonetheless, these secular solutions should accurately
represent the averaged dynamics of the true trajectory and are thus
useful for many applications.

An initial control that does not meet the targeting objectives is
assumed

Xf 7é X(T, o, X()) (14)

A small adjustment is added to o to make the state at time 7 equal to
the final state

x ;= x(T. &y + Set, X)) (15)

This is expanded as its first-order Taylor series approximation
0x
x (T, a,xq) ~ x(T, 0y, Xg) +a—~8a (16)
o

where & = o, + S, and solved for (g—;)&x

ox

(e Joo = xs = x(T. om0 an

However, this problem has an infinity of possible solutions as there
are 14 free variables in & and only 6 constraint equations. Therefore
an additional constraint is added, imposing that the one solution that
minimizes a cost function J(a) must be chosen.

The problem then becomes a constrained minimization problem,
which can be solved by defining a generalized cost function that
includes the boundary value constraints multiplied by a Lagrange
multiplier vector

j:](a)—f—k[x(T,a,xO)—xf] (18)

Here the Langrange multiplier A is represented as a six-dimensional
row vector. The necessary condition to minimize J(e¢) and satisfy the
boundary value conditions is

aJ

AR
- — do ot
s = b [ ] (19)

x(T,a,Xg) — Xy

The final state x(7', e, X)) is again replaced with its Taylor series
approximation, Eq. (16). For clarity, let g—z = W. To evaluate this
matrix, the partial derivative of Eq. (13) is taken with respect to a,

d . oF daG| (dx

The a%—f term, which will be small compared with G(x) if the
perturbing thrust coefficients are small, is ignored for computational
convenience. Solutions that use this approach converge, so this

neglect is believed to be appropriate. Equation (20) now has the form
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by = FW ()

(1) + G(x(1)) Q1)
V(0)=0 22)

Note that the matrix g—: has only one nonzero element. The
homogeneous system,

0O 0 0 0 0 O
0O 0 0 0 0 O
. 0O 0 0 0 0 O
Yi=1 0o 0000 o0l|Y 23)
0O 0 0 0 0 O
— %3 00 0 0 O
1 00 0 0 O
0 1 00 0O
0 01 0 0 O
0 00 01 0
— %%t 00 0 0 1
d0)=1 (25)
is solved, where ® = —0 is the orbital element transition matrix.

Using the standard procedure, the particular solution is found, then
the homogeneous and particular solutions are summed at ¢ = 0 to
find the general solution,

(1) = O(1) L "1 ()G (x(1)) de (26)

This expression for W can be used to numerically find the solutions
for the necessary conditions (19). Equation (26) can be integrated
concurrently with the trajectory to calculate W at each time step.
Beginning with the zero thrust case, the thrust coefficient vector
a = & + da is then iteratively updated by solving the two simul-
taneous vector equations

y +A-¥=0 27
0 | o+
X (T,09,Xg) + W80 —x;, =0 (28)
A cost function of the form
1 21
sy =5 [ sy am 29)
27'[ 0

is assumed, where F represents the force due only to the 14 relevant
terms in the component Fourier series. This total cost is evaluated
over one orbit, which agrees with the averaging result. Thus, this is
proportional to the average cost of the given thrust law.

If the integrand of the cost function is represented as a Fourier
series

f(F) = Za cos(jE) + b; sin(jE) (30)

j=0

and the independent variable of integration is shifted to eccentric
anomaly, only the first two terms of the Fourier series remain:

J(a)zérlzn[;a./cos(jE)+b_/sin(jE)i|(l—€COSE)dE 31)

=ayp— 54

By the definition of Fourier coefficients

] 2T
0= 5 / FOF)dE (32)
T Jo

a = / () cos(E) dE (33)
2 0

Evaluation of Eq. (27) requires the partial derivative a{,(:), which
has the form

=0t (34)

This partial derivative can be evaluated numerically for most cost
functions and may be evaluated analytically for certain simple cost
functions.

First, consider a cost function J(et) that represents the minimum of
the norm of the acceleration vector for the targeting problem, or the
total velocity increment of the thrust over one orbit. A negligible rate
of mass loss is assumed, such that this cost function is simply the
average thrust per orbit

1 2
J(@) =— / F% + F:+ F3,dM (35)
27 0

Equations (32) and (33) become

1 2
a0=—/ JP + 2 4 P dE (36)
27 0
2
=5 ), \/F3 + F2 + F}, cos(E) dE 37)

However, the partial derivatives of these coefficients are difficult to
evaluate analytically and are undefined in the zero thrust case

1 (L (F} + F3+ F}
day _ 1[5 Frt+ Fs + Fy) dE (38)
doa 4w Jo Fi + Fi+ F},
da, 1[5 (Fk + F§ + F}) cos(JE)

70— dE 39
do 4w Jy @

VFi+ Fi+ F3,

To avoid this problem, consider a different cost function J(e), the
square of the norm, representing the minimum energy solution

J(o) = f (F} + F2+ F})dM (40)

This cost function provides an upper bound on the velocity
increment, AV, per unit time. The AV between two time periods, ¢,
and t, + 6t, is

1o+t
AV:/ [la(?)|| dt 41)
)
10+31
- / Fat P2+ Fydi “2)
)

From the Cauchy—Schwarz inequality [26]
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1o+t 0461 1o+t
/ Fi4+Fi4Fdr< [ ( F,%+F§—|—F%V)2dz-/ dr
fo fo fo

(43)
o461
= / (F% + F3 + F}) dt- 6t (44)
fo
Therefore, AV is bounded by
AV < 26t/ J () (45)

The expressions for Eqgs. (32) and (33) are found using the
expansion and simplification shown in the Appendix

ag = % (oo + (@B + (@) + (@ (46)

1
a =5 Qagof + afe] + 20507 + ajo; + fif + 20 o

+alal + BrBY) @)

Now the partial derivative "Jag") is straightforward to evaluate

analytically:

3J (o) ( 1 )
=« ——eZ 48
o o 2 (48)
where
- 2 0
q4x4 0 1
0= q5x5 ) Gaxs = 1
0 95x5 | 14x14 0 1
) 0 (49)
1
q5x5 = 1
1
L0 1
0] 0200
Zxa 1{2010
Z= Z5%5 ) x4 =~ 0100
0 Z5x5 | 14x14 0000
02000 (50)
1 20100
Z5x%5 =§ O 1 O 0 0
00O0O01
100010

Equations (27) and (28) can now be solved to iteratively update a:

-r
8a=—(Q—%eZ) WIAT — 51

A= |:\IJ(Q - %ez)_TlI/T:|_l(x(T;oc, Xg) — X; — Way)  (52)

The initial condition offset corrections described in [25] improve
the accuracy of the targeting algorithm. The algorithm is initialized
with zero thrust, then the calculated Fourier coefficients are used to

Table 1 2PBVP targeting example:
initial and target states

Initial state Final state
a, km 7500 7700
e 0.1 0.15
i, deg 20 25
Q, deg 20 25
w, deg 20 25
M, deg 0 0
Time, h 0 8.9778

Table 2 2PBVP targeting example: final thrust acceleration
Fourier coefficients after nine iterations

Radial Normal Circumferential

af, m/s>  —0.0889 o, m/s?> —0.0038 «f, m/s> 0.0014
of,m/s>  —0.0007 o¥.m/s> 00396 ol m/s> 0.0025
of, m/s2 —0.0007 &), m/s? 0.0009 @3, m/s> 0.0001

R m/s? 0.0237 ¥, m/s>  —0.0025 2, m/s>  0.0144

BY,m/s>  —0.0000 B3, m/s*> 0.0007

correct the initial state of the subsequent iteration. Thus each
integration of the averaged equations has a slightly different initial
condition which more closely approximates the average of the
desired transfer trajectory. The initial condition of the jth iteration is:

a0+dp(j_])

eO+€p(.]_1)

N io+i,Gj—1)
=] o' T (53)

€0+ €, —1)

This method converges to a set of 14 Fourier coefficients that
describes a control law that solves the targeting problem in the
averaged secular equations. The true trajectory under this control
law, as determined by the Newtonian equations, generally compares
well with the averaged trajectory.

An example of this targeting method applied to a transfer in five
orbital elements is shown below. Table 1 shows the initial and final
states of the boundary value problem, between which the spacecraft
must transfer. The targeting algorithm was initialized with the zero
thrust case and terminated when the thrust coefficients changed by

60004
4000
2000

z (km)
[=)

-2000

4000

-6000

5000
5000

y (km) -5000 -5000 x (km)

Fig. 1 Two-point boundary value problem (2PBVP) targeting
example: solution trajectory after nine iterations.
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7500
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24 =
3 22

= 20

0 2 4 6 8 10
Time (h)

10

Time (h)
Fig. 2 2PBVP targeting example: solution trajectory after nine iterations.
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——Newtonian Equations
— ———Averaged Secular Equations | —
+ Target Point

0.2

o 0.15
0.1
0.05

>
Q
k)
(o]
20, 2 4 6 8 10
Time (h)
400
2 200
kS
= 0 *
0 2 4 6 8 10
Time (h)

Table 3 Target States for SMART-1 Example

Time, h a, km e i, deg Q, deg w, deg M, deg

Initial 0 26433 0.671 6.915 160.315 194.821 3.136
state

Target 1 155.833 26825 0.662 6.907 158.793 197.752 3.138
Target 2 342.702 27815 0.640 6.871 157.153 200.66 3.128
Target 3 487.163 28713 0.622 6.861 156.084 202.442 3.142
Target 4 680.502 29745 0.604 6.838 154.886 204.387 3.143
Target 5 853.156 30235 0.598 6.848 153.996 205.839 3.142
Target 6 1017.363 31380 0.573 6.826 153.178 207.342 3.144

less than 0.1% between iterations. This occurred after nine iterations.
The final & is shown in Table 2 and the transfer trajectory is shown in
Figs. 1 and 2. All simulations in this paper were integrated using
MATLAB’s ode45 function.

The simple example given by Table 1 is intended to illustrate the
differences between the true spacecraft trajectory and the average
solution. The true spacecraft trajectory, as calculated by the
Newtonian equations of motion, does not match the secular solution
exactly due to the short period offsets between them. In solving these
two-point boundary value problems, the equations of motion are
solved only for the secular orbital elements, so precise agreement
with the Newtonian equation solutions is not expected.

This method can also be used to solve more complex targeting
problems involving sequences of two or more target states. A lengthy
orbit transfer may be approached as a series of two-point boundary
value problems and the optimal set of control coefficients may be
calculated between each pair of states.

An example of this targeting through a series of states is shown
below. The target points, shown in Table 3, approximately reflect the
states of the SMART-1 spacecraft in the early days of its mission.
These states occur at fixed times over approximately 80 orbit periods.

Starting with the given initial state and zero thrust, the vector & was
iteratively updated to converge on a control law that drove the
average trajectory to the first target point. The first target point was
then used as the initial condition for the next two-point boundary
value problem, and so on. The iterative algorithm for each pair of
states was terminated when the thrust coefficients changed by less

fAdditional data available at http://sci.esa.int/science-e/www/object/
index.cfm?fobjectid=31517&farchive objecttypeid=30 [retrieved Decem-
ber 2010].

than 0.1% between iterations, which happened after four to six
iterations. Figures 3 and 4 show the final trajectory. The velocity
increment for this orbit transfer is 1300.6 m/s.

The average trajectory is continuous throughout the transfer;
however, the true trajectory may have discontinuities at the inter-
mediate target states due to short-period variations. Figure 5 is a
detail view of the semimajor axis plot near the first target state, in
which one of these discontinuities can be seen. In this example,
corrections of short-period offsets of the initial conditions, which
would also lead to discontinuities in the trajectory, are not included.
In practice, these discontinuities would make it impossible to
actually implement the trajectory, making this approach inappro-
priate for many applications.

In some cases, however, calculation of the precise trajectory
through the target states is not necessary. In the early stages of
mission planning, for example, the target points may represent
general mission goals with some flexibility in the actual trajectory.
This two-point boundary value method may be appropriate for these
applications.

B. Least-Squares Regression

In the second method for fitting sequences of orbital states, a least-
squares regression approach is used to calculate the low-thrust
trajectory. Here, priority is given to finding a single control law for
the entire orbit transfer, over precise targeting of the states. The
problem is approached using the averaged equations with a given
initial state X, a series of N intermediate target states
x = [x(t,), x(t,) ..., x(ty)], and a set of times associated with each
target state T = [t,, t,, . .., ty]. The equations of motion again have
the form of Eq. (13). To carry this out, a cost function of the form
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-1
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Fig. 3
4
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g 69 \_\\_/\
6.8
0 200 400 600 800 1000
Time (h)
210
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$ 200
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1900200 400 600 800 1000
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SMART-1 targeting example: trajectory calculated by 2PBVP method.

— Averaged Secular Equations

+ Target Point
0.7 1
° 065 1
06 .
0.55 . . . . .
0 200 400 600 800 1000
Time (h)
165
S 160 .
()
T
g 155 \\’\’\’—\4
1500200 400 600 800 1000
Time (h)
400
=
S 200§ AT ]
= “ e
0 1
0 200 400 600 800 1000
Time (h)

Fig. 4 SMART-1 targeting example: trajectory calculated by 2PBVP method.
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——Newtonian Equations
———Averaged Secular Equations
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2682 o
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1 1 1 1
153.5 154 1545 155

1
1555

1 1 1 1 1
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Time (h)

Fig. 5 SMART-1 targeting example: detail of discontinuity near first target state, semimajor axis.
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x10*

Fig. 6 SMART-1 targeting example: trajectory calculated by least-squares method.

N N
C@) =3 ) It 1) —x) Ix@ ) —x] (54 =@+ Y lx(e )~ xJulx(e ) —x] 67)

could be used. The necessary condition The minimum-energy cost function J(e), defined by Eq. (40), is
N minimized while also minimizing the least-squares difference

B_C _ Z[X(“ 1) — X](ELX) _ (55) between x(«, #;) and x;. A weighting matrix w, a 6 x 6 matrix of

oo o “\dee /, constants that can be independently selected to normalize numerical

differences between variables or emphasize certain elements, is

would be used to minimize C(e). The state at each target time, introduced. The necessary conditions are

x (e, t;), would be replaced with its Taylor series approximation,
Eq. (16), and then Eq. (55) would be solved for e to iteratively aJ RY —

= Ol =5+ D _[x(@.1) —xJw(¥),  (58)
=1

converge on a solution o)

N N T -1
So = [Z(Xi — x(0tg, 1;)) (a_x) ][Z (B_X) (a_x) ] (56) The matrix (g—;),» = (W), is calculated from Eq. (26). The partial
da); | L= \0er ) \Oe/ derivative for the cost function J(e) is evaluated by Eq. (48).

To solve Eq. (38), x(«, ;) is replaced with its Taylor series

However, the second bracketed term in Eq. (56) is singular in most approximation, Eq. (16), and the thrust coefficient vector o = o +
simulations. This is due to the fact that solutions are not unique, so Sa is iteratively updated
more than one possible thrust profile may solve the problem. To
resolve this issue, another constraint is added, a minimum-energy 1 N
cost function that must be minimized while solving the least-squares 0= (ay+ Se)” (Q — 7eZ) + Z[x(ao, t;) + V00 — x;Jw¥; (59)
targeting problem 2 i=1

i=1
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Fig. 7 SMART-1 targeting example: trajectory calculated by least-squares method.
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Fig. 8 SMART-1 targeting example: thrust acceleration magnitude (,/F% + F%, + F?2) of control laws calculated by both methods.
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Fig. 9 Orbital element trajectory calculated by least-squares method for SSA targeting example.

S = [—ag (Q - %ez) - XN:[x(oto, 1) — xi]w\p,} [Q _ % o7
i=1

N -1
+3 \yfw\yi] (60)

i=1

Figures 6 and 7 show an example of this method applied to the
same targeting problem as in Table 3. Beginning from a fixed initial
state and with zero initial thrust, the averaged secular equations were
integrated and Eq. (60) was used to iteratively calculate the 14 thrust
Fourier coefficients. The trajectory shown is the result after ten
iterations of this least-squares targeting method, when the algorithm
was terminated because the coefficients changed by a maximum of
0.1% between iterations.

The velocity increment for this transferis 410.3 m/s, less than half
the value calculated by the previous approach. As shown in Fig. 8, the
overall magnitude of the thrust calculated by the least-squares

method is less than that of the two-point boundary value method for
most of the simulation time. Because the least-squares algorithm was
not required to rigidly satisfy all the targeting criteria, it was able to
find a significantly lower-cost solution to the problem. Applications
where these average solutions may be useful, and where precise
targeting may be eschewed to find a single control law for the entire
orbit transfer, are discussed in Sec. IV.

The AV result from the least-squares approach is comparable to
the actual SMART-1 spacecraft over the same interval. From launch
through the final target state of this simulation, SMART-1 hada AV
of 665 m/s over 72 days and 946 hours of thrust time.f This
simulation does not include the first 30 days of the mission, during
which the electric propulsion system was used discontinuously, but
assumes continuous thrust over the remaining 42 days (1017 hours)
without coast arcs.

SAdditional data available at http://sci.esa.int/science-e/www/obiject/
index.cfm?fobjectid=34361 [retrieved Dec. 2010].
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Table 4 SMART-1 targeting example: mean difference between calculated average state and target state

a, km e i, deg Q, deg w, deg M, deg
2PBVP method —0.2135¢ —3 3.0370e —9 —1.5588¢ — 007 —5.8031e —007 8.5762¢ — 007 3.4883e — 004
Least-Squares method 31.4609 0.0183 —0.0094 —0.3208 —1.6875 —56.4976

Both the two-point boundary value method and the least-squares
method are able to calculate trajectories that closely approach each of
the target states. Table 4 shows the mean difference between the true
and calculated average value of each orbital element over the six
targets. The two-point boundary value method is very accurate, but
requires a different control law for each segment of the trajectory and
includes discontinuities. The least-squares method is less accurate,
but uses a single control law. The relative accuracy of each variable in
the least-squares method can be adjusted through the weighting
parameter w in Eq. (57). In this solution, mean anomaly was assigned
a weighting value lower than the other orbital elements.

The simulation using the two-point boundary value method
required 6.2 min of computational time on a personal laptop

6000
40004
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z (km)
o

20004
40004

60004

5000 o
5000

m o
y (km) -5000 -5000 x (km)

Fig. 10 3-D trajectory calculated by least-squares method for SSA
targeting example.

computer. The simulation using the least-squares method required
13.2 min of computational time.

IV. Applications

Trajectory analysis using the reduced Fourier coefficients has
several potential fields of application, including mission design and
SSA. The different methods described above for solving orbital
targeting problems have different strengths and weaknesses that
make them appropriate, respectively, for these different applications.

The averaged secular equations can be used in low-thrust mission
design to evaluate the control laws required for desired orbital
trajectories. The solutions obtained from these equations are not, in
themselves, optimal, but they satisfy the proposed targeting
problems. Thus, they could serve as useful initial estimates for other
optimization methods.

Using the averaged equations, mission planners can efficiently
estimate the control laws for a large number of potential orbital paths,
to compare the fuel costs and other trajectory characteristics. Once a
baseline mission profile has been selected, these equations can be
used to quickly determine the feasibility and cost of proposed
deviations from the selected path.

Generally, the two-point boundary value targeting method is best
suited for mission design applications. The precise agreement of the
averaged trajectory with the target states is desirable, and dis-
continuities in the true trajectory may be inconsequential in the early
mission planning stages, particularly if the solutions will later be
used to initialize other optimization methods. When the target states
represent flexible objectives, rather than strict targets, the segmented
solutions may help mission designers to shift the target states to
lower-cost alternatives. The two-point boundary value method also
converges fastest and does not require the user to define a weighting
matrix, which can be subjective.

SSA problems can also be solved using the averaged secular
equations. Given a few discrete observations of a suspected low-
thrust spacecraft, these equations can reconstruct its orbital path and
identify the fundamental characteristics of the control law used. Thus

Acceleration (m/sz)
A
T

Time (h)

Fig. 11 Thrust acceleration magnitude calculated by least-squares methods.
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Table 5 Target states for SSA example

Time, h a, km i, deg Q, deg w, deg M, deg
Initial State 0 6713.0 0.7842e — 3 51.6 234.0 300.6 0
Target 1 15.2049  6720.0 0.7841e — 3 51.6 234.0 300.6 0.0974
Target 2 39.5328 6728.2 0.7867e — 3 51.6 234.0 300.3 0.2865
Target 3 59.2991 6734.9 0.7936e — 3 51.6 234.0 300.0 0.8480

Table 6 Mean difference between calculated average state and target state for SSA example

a, km e i, deg Q, deg w, deg M, deg
LSQ —1.1257 6.8697¢ — 007 —3.6947e¢ — 008 0.0001 —0.0345 —16.5010
observers could estimate the amount of fuel remaining and Appendix

extrapolate to predict the future trajectory.

The least-squares targeting method is generally most appropriate
for SSA problems. In these cases, precise agreement between the
calculated and actual trajectory may be less important than simply
finding a reasonable estimate for the thrust profile and fuel
consumption. The SMART-1 example in Sec. IIL.B illustrates the
process of reconstructing a trajectory from a few known states using
this method. Another example of an SSA problem is shown in Table 5
and Figs. 9-11.

Table 5 shows a set of four states at which a hypothetical spacecraft
has been observed over six days. Analysts need to quickly char-
acterize the spacecraft’s propulsion system and control law and
determine its future path.

Figures 9—11 show the results of the least-squares targeting in the
averaged equations through this set of states, using the 14 critical
control coefficients. The targeting algorithm was terminated after
five iterations, when the coefficients changed by less than 0.1%
between iterations. The mean difference between the average
trajectory and the target states is shown in Table 6. In this simulation,
the mean anomaly was given a low weighting value to improve the
accuracy of the other orbital elements. This simulation required
2.9 min of computational time on a personal laptop computer.

The maximum total thrust acceleration was about 1.39¢ — 4 m/s?,
which would require a thrust of about 69.3 mN for a 500 kg
spacecraft. This is well within the thrust capability of existing electric
propulsion systems, such as the NASA Solar Electric Propulsion
Technology Application Readiness ion thruster used on the Deep
Space 1 and Dawn missions [27].

As low-thrust propulsion technology becomes increasingly
popular, SSA for low-thrust spacecraft may become an area of
increasing interest. Operators are more frequently using low-thrust
propulsion to place satellites in orbit, creating more opportunities for
collisions and radio frequency interference as these spacecraft travel
slowly through altitude ranges [28]. The averaged secular equations
could provide analysts with a valuable tool for quickly and accurately
assessing unknown low-thrust objects.

V. Conclusions

The averaged secular Gauss equations were used to solve orbital
targeting and optimal control problems. Two methods were devel-
oped for calculating averaged trajectories for multi-orbit transfers
through a finite number of orbital states. Both methods can efficiently
and accurately solve orbital targeting problems with a series of target
states. The two-point boundary value method generally results in
closer agreement between the average trajectory and the target states,
however, it requires implementation of a new thrust vector for each
interval. The calculated trajectory may have discontinuities due to
short-period offsets of the true trajectory from the averaged, so this
method may not be suitable for applications that require precise
targeting. The least-squares method generally calculates control laws
with lower dynamic fidelity, but provides a single control law for the
entire, continuous trajectory.

A simplified expression for the minimum energy cost function,
Eq. (40), can be found using the Fourier coefficients given by
Eqgs. (31-33). The Fourier series for each component of the thrust
acceleration is truncated to the key terms that appear in the average
secular equations

Fr=0af +af cosE + BRsinE + B8 sin2E (A1)
Fy=0of +a) cosE+ B sinE + o cos2E + BY sin2E (A2)

Fg=of +afcosE + B3 sinE + of cos2E + B5 sin2E  (A3)

The orthogonality conditions lead to a simplified expression for
Eq. (32)

1
ag -

2
= F% + F} + F3dE (A4)
2n 0

= @+ 1@ + (B + (B + (@l + 5[l
@+ B+ BYP]+ @) + 1@ + (@)

B+ (B3] =5 (o @) + @)+ (@)) (A9)

To simplify Eq. (33), note that the square of each force vector
component is a sum of products of two elements of & and two sines or
cosines of i E, where i = 0, 1, or 2. For clarity, the expansion is shown
for only one directional component,

F = () + (@)V)?cos’E + (a )2cos®2E + (BVY)?sin’E
+ (BY)*sin*2E + 20 ) cos E + 2o @ cos2E
+ 20 BY sin E + 2o B¥ sin 2E + 2 ¥ cos E cos 2E
+ 2o}’ BY cos Esin E + 20} BY cos E sin 2E
+ 20 BY cos 2E sin E + 20 BY cos 2E sin 2E
+ 2By BY sin Esin 2E (A6)

Using trigonometric identities, each product of sines and cosines of
iE can be represented as a sum of sines and cosines of jE, where
j=0,1,2,3,0r4.
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1 1
Fi o= (o)) + E(a‘l”)z(l + cos2E) + E(agv)z(l + cos4E)

+ % (BY)*(1 — cos 2E) + %(ﬁ?’ 2(1 — cos4E)

+ 20 al cos E + 2 o cos 2E + 2o BY sinE

+ 20 BY sin2E + oV @ (cos E + cos 3E) + o} B} sin2E
+ o BY (sin3E + sinE) + o BY (sin 3E — sin E)

+ o BY sindE + BV BY (cos E — cos 3E) (A7)

Thus the square of each force vector component is a finite sum

4
F}, =AY cos jE + BY sin jE (A8)
j=0

where
1 1 1 1
A = (of)* + 5(“{”)2 + 5(0‘;‘/)2 + E(ﬂYV)z + E(ﬂy)z»
AY = 2alfall + alal + BUY.

1 1
AY =~ (al)? - E(ﬂYV)Z + 20 ¥,

: AY = ool —pYBY.

1 1
AY =3P =3 (BYF. B =2oBY +alpY —alpY.
BY = 2a Y + ol Y.

B = afpy

Wo_ . WaWw W QW
BY =o' By + o) B,

This sum, and the analogous sums for the other two directional
components, are substituted for f(F) in Eq. (33). Then the orthog-
onality conditions are applied again to find a simplified expression
for a,

1
a1 = 5 (Qafof + afel + 2ajo] +afas + B3 + 20dal

+a)ey + BI'BY) (A9)
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