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Flexible flapping wings have garnered a large amount of attention within the micro aerial vehicle community: a

critical component of computationalmicro aerial vehicle simulations is the representation of the structural dynamics

behavior of the flapping-wing structure. This paper discusses the development of a new nonlinear finite element

solver that is based on a corotational approach and suitable for simulating flapping plate/shell-like wing structures

undergoing small strains and large displacements/rotations. Partial verification and validation studies are presented

on rectangular/elliptic wing structures to test the rigid body kinematics, nonlinear statics, and dynamics capabilities

of the solver. Results obtained showed good agreement with available analytical/experimental/commercial solutions.

The new structural dynamics formulation along with the numerical test cases contribute to the very limited set of

tools and examples existing in the flapping-wing micro aerial vehicle literature.

Nomenclature

A = stretching stiffness matrix
a = global acceleration vector
Ae = area of a triangular finite element
B = membrane-bending coupling stiffness matrix
Bb = strain-displacement matrix corresponding to

flexural strains and bending degrees of freedom
Bm = strain-displacement matrix corresponding to

membrane strains and membrane degrees of
freedom

C = assembled damping matrix in the global frame
c = mean chord length of the wing
Cel = element local damping matrix
Cel-g = element global damping matrix
D = bending stiffness matrix
Ds = plate stiffness
de = vector of displacements of a material point with

respect to the undeformed element frame
dpure = 18 � 1 vector of pure deformations of an element

dmpure = 6 � 1 vector of pure deformations at a node

E = element frame in the current configuration,
Young’s modulus

Eo = element frame in the undeformed configuration
F = assembled external force vector in the global

frame
f = plunging/flapping frequency
fij, qij = metrics of conversion from Cartesian coordinates

to curvilinear coordinates

Fpel = local force vector corresponding to inertial forces
due to prescribed rigid body motion

Fpel-g = global force vector corresponding to inertial forces
due to prescribed rigid body motion

G = matrix containing derivatives of shape functions,
shear modulus

g = global frame
H = distribution function used in the thin-plate spline

interpolation
h = discretized grid spacing
ha = stroke amplitude due to either prescribed plunge

motion or flap rotation at the wing root
hroot = chord-normalized plunge amplitude at the root

(ratio of plunge amplitude at the root and chord)
hs = plate thickness
I = inertial frame
Im = identity matrix of size 3 � 3
J = Jacobian matrix associated with the transformation

from Cartesian to curvilinear coordinates
J = torsional constant
j = iteration number within the Newton–Raphson

iteration loop
Jt = diagonal matrix containing inverse of finite

element Jacobian matrix as its components
Kb = stiffness matrix corresponding to plate bending

degrees of freedom
Keff = effective stiffness matrix
Km = stiffness matrix corresponding to membrane

degrees of freedom
Kt = assembled tangent stiffness matrix in the global

frame
Kdyn

el = element local dynamic stiffness matrix

Kshell
el = element shell stiffness matrix

Kshell-p
el = element shell stiffness matrix filtered through the

projector matrix
Kss

el = element stress stiffening matrix

M = assembled mass matrix in the global frame, typical
point in the bilinear interpolation method

Mel = element local mass matrix
Mel-g = element global mass matrix
N = matrix of shape functions of size 3 � 18
n = time level
Ne = number of finite elements
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Nmf = 2 � 2 matrix of membrane forces
Nn = number of finite element nodes
P = typical material point
p = distributed transverse load on the plate
p̂ = direction of rotation
Pr = projector matrix
pint = interpolated solution at an arbitrary point in the

bilinear interpolation
p̂x, p̂y, p̂z = components of the unit rotational pseudovector
q = vector of assembled nodal degrees of freedom
qe = finite element nodal degree of freedom vector of

size 18 � 1
qmdg = vector of displacements at node m with respect to

the undeformed local element frame
rintel = nonlinear local internal force vector

rint-pel = nonlinear internal force vector filtered through
projector matrix Pr

rintel-g = nonlinear global internal force vector
R = assembled nonlinear internal force vector in the

global frame
R = wing length
Re = Reynolds number
Rf = residual force vector
Rh = effective load vector
S = current nodal coordinate system, planform area of

the wing
So = initial nodal coordinate system
Sr = spectral radius parameter
T = transformation matrix used in the computation of

pure nodal rotations in the current element frame
�T = rotation matrix used to update a nodal coordinate

system
t = time
TEG = transformation matrix from global frame to the

current element frame
TGEo = transformation matrix from undeformed element

frame to global frame
TIG = transformation matrix from global frame to inertial

frame
TSnew = rotation matrix corresponding to a nodal triad in

the current Newton–Raphson iteration
TSold = rotation matrix corresponding to a nodal triad in

the previous Newton–Raphson iteration
TfGE = expanded form of the transformation matrix TGE
umE = pure nodal displacements at a node m
v = global velocity vector
vel = volume of a finite element
X = position vector of a material point with respect to

the inertial frame
XR = position vector of the flapping-wing structure’s

actuation point with respect to the inertial frame
xe = position vector of a material point with respect to

the undeformed element frame
xg = position vector of a material point with respect to

the global frame
xo = position vector of the origin of an element frame in

the undeformed configuration with respect to the
global frame

z = coordinate along the wingspan
�f , �m,
�nm, �

= parameters related to the generalized-� method

�q = incremental displacements in the Newton–
Raphson iteration loop

�ts = time step in the structural solution
�E1

, �E2
,

�E3

= pure nodal rotations at a node

��x, ��y, ��z = incremental rotations of a nodal triad
� = Poisson’s ratio
� = wingbeat amplitude in radians
� = rotational pseudovector

 = magnitude of rotational pseudovector
� = skew-symmetric matrix of the angular velocity

vector �!
�pn = skew-symmetric spin tensor corresponding to pure

nodal rotations
�! = angular velocity vector prescribed at the root
!n = column vector of incremental rotations of a nodal

triad

I. Introduction

F LAPPING-WINGmicro aerial vehicles (MAVs) are envisioned
as being small (maximum dimension of 15 cm), flying at low

speeds (10–15 m=s), and equipped with the capabilities of stable
hover and vertical takeoff. These vehicles are basically inspired by
biological flyers, including large insects and/or small birds. The
mechanical properties of a typical insect wing are anisotropic
because of its typical membrane-vein type configuration. It was
shown that, in a majority of insect species, the spanwise bending
stiffness is about one to two orders of magnitude larger than the
chordwise bending stiffness [1] and, in general, the spanwise flexural
stiffness scales with the third power of the wing chord while the
chordwise stiffness scales with the second power of the wing chord
[1]. High-speed cine and still photography and stroboscopy indicate
that most biological flyers undergo orderly deformation in flight and
that a controlled change of wing shape during the beat cycle may
prove to be essential for the development of adequate net lift and
thrust. The experimentally observed patterns of insect wing
deformation indicate that they involve significant camber motions
[2]. Finite element (FE) models of thin flapping wings should
therefore account for such deformations, and so plate/shell elements
will be appropriate to analyze them.

This work describes the development of a new shell element using
the corotational (CR) approach [3–5] to analyze flapping-wing
structures undergoing large (global) displacements and rotations but
small strains. The key motivating factors behind the development of
the CRmethods are simplicity of formulation and the ability to reuse
existing, very efficient, small strain, linear elements. They can also be
adapted to have large strains, as shown in [6]. A keymotivating factor
behind the development of a new shell element is that commercial
codes like MSC.Marc are not amenable to implicit coupling with an
external computational fluid dynamics solver for fluid–structure
interaction computations. Moreover, the proposed formulation is a
fundamental step toward other developments in flapping-wing
analyses. For example, if one wants to do gradient-based design,
model reduction, time-periodic schemes, etc., this formulation can
provide convenient Jacobians to support such analyses, while a code
like MSC.Marc may not do so in an effective way.

The CR approachwas previously applied by several researchers to
static modeling of structures undergoing large displacements/
rotations and small deformations [4,7]. In many of the cases where
the approach was applied in a dynamic context, the structures were
limited to beam elements [8–13]. Applications to the dynamics of
shell structures are very scarce in literature [14–17]; furthermore,
their application to shell elements for flexible multibody system
applications, including those of flapping wings, are evenmore scarce
[16,18,19].

As part of the current effort, the static CR formulation for shell
elements developed previously by Khosravi et al. [4,5] is adapted to
include the dynamics associated with flapping. The static element
formulation of [4,5] is new, in that the stiffness matrix for the shell
element was developed by combining the discrete Kirchoff triangle
(DKT) plate bending element [20] and the optimal triangle (OPT)
membrane element [21]. The DKT element was found to be most
effective among several nine-degree-of-freedom (DOF) triangular
plate elements studied in [20], based on criteria-combining accuracy,
computational cost, and simplicity in use. The formulation of the
OPT element is based on the assumed natural deviatoric strain
template [21], which is a general formulation that can produce a
group of elements by assigning different values to some free
parameters [4]: a special set ofwhich gives theOPTelement, which is
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insensitive to aspect ratio of the FE. Furthermore, a projector matrix
[22] was applied to the shell stiffness matrix in order to correctly
account for its rigid body properties. The tangent stiffnessmatrixwas
then obtained by including the effect of stress stiffening in the CR
frame using the Green–Lagrange strain-displacement relations. This
enables the element to account for larger rigid body structural
displacements and rotations than the conventional geometrically
nonlinear plate/shell elements, which use von Karman strains with
respect to a fixed frame. It may be noted that, although the current
work is based on many efforts that already appear in literature, the
paper incorporates many disparate techniques that have not been
incorporated before. Some of those include the use of the CR-total-
Lagrangian (CR-TL) representation of a triangular shell with multi-
body dynamics effects, numerical integration with the generalized-�
method [23,24], and (more important) the application to flapping-
wing structures.

The rest of the paper is organized as follows. Section II describes
the entire computational structural dynamics (CSD) formulation in
great detail, starting from the definitions of various coordinate
systems used in the analysis, the computation of virtual work due to
inertial forces, the formulation of the element tangent stiffness and
mass matrices, and the time integration of the governing equations of
motion using the generalized-�method [23,24]. Section III presents
some verification and validation studies for the CSD solver,
including examples to illustrate the rigid body kinematics, static, and
dynamic response capabilities of the code. Finally, the concluding
remarks are made in Sec. IV.

II. Computational Structural Dynamics Formulation
(University of Michigan Nonlinear Membrane

Shell Solver)

This section presents the theoretical formulation for the structural
dynamics solution [University of Michigan Nonlinear Membrane
Shell Solver (UM/NLAMS)] that was developed in this work. The
geometrically nonlinear shell FE formulation developed here is
based on a CR approach and has the capability to handle time-
dependent boundary conditions suitable for a flapping-wing prob-
lem. The nonlinear structural dynamics solution is based on aflexible
multibody-type FE analysis [3,16] of a flapping wing. It relies on the
use of a body-fixed floating frame of reference to describe the
prescribed rigid body motion and on a CR form of the TL approach
[25] to account for geometric nonlinearities. The solution is

implemented in the UM/NLAMS, written in Fortran 90. The CR
formulation has generated a great amount of interest in the last couple
of decades. A comprehensive list of references that discuss this
formulation is available in [3]. The idea of this approach is to
decompose the motion into rigid body and pure deformational parts
through the use of a local frame at each FE, which translates and
rotates with the element [26]. The components of the element’s
internal force vector are first calculated relative to the CR frame and
are then transformed to a global frame using a CR transformation
matrix. The CR frame transformation eliminates the element rigid
body motion so that a linear deformation theory can be used [3] as
long as theflexible deformations are smallwith respect to the element
dimensions. Hence, its main advantage is its effectiveness for
problems with small strains but large rotations [6].

TheCR formulation can be applied in two different forms, as listed
next:

1) In the corotational-total-Lagrangian approach (CR-TL), the
reference configuration is taken as the initial configuration but
translated and rotated in accordancewith themotion of the corotating
local system.

2) In the corotational-updated-Lagrangian approach (CR-UL), the
translated and rotated configuration at the previous time step is taken
as the reference configuration during the current time step [27].

The CR-TL approach is used in this work. The key motivation
behind the use of it is that the stiffness matrix for the triangular
shell element was originally formulated by Khosravi et al. [4]
using a CR-TL approach and extensively verified/validated. The
current work is an extension of their effort to include flapping-wing
dynamics. Application of this method to problems concerning
flapping-wing aeroelasticity are not available; however, recent
studies by Relvas and Suleman [17,28] reported the development
of a method involving the application of CR theory to nonlinear
aeroelasticity problems. Relvas and Suleman [17] discussed the
coupling of a vortex-ring method with a CR structural solution of a
four-noded shell FE and studied the stability of a nonlinear
clamped plate subjected to low-speed airflow to illustrate the fluid–
structure interaction procedure. In a subsequent effort, the same
authors [28] presented the coupling of an Euler flow solver with a
nonlinear CR beam FE solver and demonstrated it by studying the
dynamic response of two-dimensional NACA 0012 airfoil section
resting on a Winkler foundation. Two types of analyses were
performed: the first assumed that the airfoil was rigid and the
second assumed it to be flexible and discretized the airfoil surface
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Fig. 1 A schematic showing the undeformed (initial) and deformed configurations of a typical shell element and the various coordinate systems involved

in the analysis.
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with CR beam elements. The CR approach was successfully
applied to analyze flutter and limit-cycle oscillations by Attar and
Gordnier [29].

The three key issues identified during a literature survey in the
present work concerning the use of a CR formulation are 1) the
choice of a suitable local element frame, 2) the choice of a suitable
element (this is especially important for triangular shells, since they
are obtained as a superposition of membrane and plate models and
several combinations are possible), and 3) parameterization of local
and global rotations.

The first issue is discussed in [26,30,31]. While several
alternatives have been proposed for the choice of the local element
frame, for most problems where only small strains are involved, this
issue is not important. However, in such a case, it is critical that the
local element deformational displacements are small relative to the
element dimensions. In the current work, triangular elements will be
used for the FE discretization. The specific issues involved in
choosing local element frames concerning the use of triangular shell
elements are discussed in [7], and the choice of a suitable linear
element is discussed in [32]. The development of flapping-wing
dynamic FE equations of motion for thin shell structures is discussed
next. The formulation is a proposed extension for flapping-wing
dynamics of the static CR analysis of shell structures presented
previously [4,5,33].

The derivation of flapping-wing equations of motion using
nonlinear shell FEs via a CR approach to accommodate prescribed
time-dependent boundary conditions involves several key steps
discussed next (note that a matrix notation is followed in the
formulation).

A. Definition of Coordinate Systems in Analysis

Several coordinate systems are required to fully describe the
geometry and deformation of the shell structure. Figure 1 shows a
schematic of a typical triangular shell FE in its initial (undeformed)
and the deformed (current) configurations. A total of 2� Ne � Nn
(whereNe is the number of FEs, andNn is the number of nodes in the
discretized structure) coordinate systems are used in the analysis:

1) The first coordinate system used is an inertial frame that is
always fixed in time (I in Fig. 1).

2) The second coordinate system used is a floating (global) frame
for which the motion is known in the inertial frame by virtue of the
prescribed rigid body motion of the structure (g in Fig. 1).

3) The third coordinate system used isNe CR frames (one for each
element) that translate and rotate with the element as it deforms (Eo
and E in Fig. 1).

4) The fourth coordinate system used is Nn nodal coordinate
frames (one for each node) that are rigidly tied to their respective
nodes and rotate with them (So and S in Fig. 1).

The final equations of motion arewritten with respect to the global
frame g.

B. Computation of Inertial Velocities and Accelerations of a

Material Point

The position (in the inertial frame) of amaterial pointP (see Fig. 1)
in the structure is given by

X �XR � TIGxg (1)

whereX is the position vector in the inertial frame,XR is the position
vector of the structure’s actuation point (or the origin of the flapping/
global frame) in the inertial frame, xg is the position vector ofP in the
global frame, and TIG is a transformation matrix from the global
frame to the inertial frame. This matrix is a nonlinear function of the
components of the rotational pseudovector � (a unit vector that
defines a finite rotation in space) [34], which defines the orientation
of the global frame with respect to the inertial frame. The
pseudovector is defined as

� �  p̂ (2)

where  is the magnitude of rotation, and p̂ is the direction of
rotation, defined as

p̂��

 
�
(
p̂x
p̂y
p̂z

)
(3)

In general, both themagnitude and the direction of rotation p̂ could
be time dependent. In the case where the direction of rotation is
constant, the resultant motion of the tip of the pseudovector will be in
a plane. If the direction of rotation changes with time, the motion of
the tip will be in three dimensions. The former case is two-
dimensional and the latter is three-dimensional rotation [19,34]. The
transformation matrix TIG is defined, as in [35]:

T IG � Im � ~̂p sin � 2� ~̂p�2sin2  
2

(4)

where Im is a 3 � 3 identity matrix, and the tilde indicates a skew-
symmetric matrix. The position vector of the material point with
respect to the global coordinate system xg given in Eq. (1) can be
written as

x g � xo � TGEo�xe � de� (5)

where xo is the positionvector of the origin of an element frame in the
undeformed configuration with respect to the global frame expressed
as components in the global frame,TGEo is the transformation matrix
from undeformed element frame to the global frame, xe is the
position vector of the point with respect to the undeformed element
frame, and de is the vector of displacements of the point with respect
to the same. The position vector of the material point in the inertial
frame given in Eq. (1) then becomes

X �XR � TIGxo � TIGTGEoxe � TIGTGEode (6)

The time derivative of the transformation matrix in Eq. (4) is [36]:

_T IG ��TIG (7)

where� is a skew-symmetric matrix of the angular velocity vector �!
prescribed at the wing root. The velocity and acceleration of the
material point can then be computed by successive differentiation of
the position vector in Eq. (6) and are given as

_X� _XR ��TIGxo ��TIGTGEoxe ��TIGTGEode

� TIGTGEo _de (8)

�X� �XR � � _�����TIG�xo � TGEoxe � TGEode�

� 2�TIGTGEo
_de � TIGTGEo �de (9)

C. Computation of Virtual Work due to Inertial Forces

The virtual work due to inertial forces for an element is given by

�W � �s
Z
vel

�XT �X dvel (10)

where �X is the variation of the position vector; that is,

�X� TIGTGEo�de (11)

and vel is the volume of the element. The vector of displacements de
can be approximated as

d e �Nqe (12)

whereN is amatrix of shape functions of size 3 � 18, and qe is the FE
nodal DOF vector of size 18 � 1 with respect to the undeformed
element frame. Equation (11) is derived fromEq. (6) by following the
regular variational approach. In the variational process, the first,
second, and third terms in Eq. (6) vanish, since they are either
prescribed or constant. For example,XR is the position vector of the
structure’s actuation point with respect to the inertial frame. This is a
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prescribed quantity in this work; hence, the variation of this term is
simply zero. The variation of the position vector now becomes

�X� TIGTGEoN�qe (13)

The acceleration vector can be written as

�X� �XR � � _�����TIG�xo � TGEoxe � TGEoNqe�
� 2�TIGTGEoN _qe � TIGTGEoN �qe (14)

Using the previous terms, the virtual work expression in Eq. (10) now
becomes

�W � �s
Z
vel

f�qTeNTTTGEoT
T
IG

�XR � �qTeNTTTGEoT
T
IG� _�

����TIGxo � �qTeNTTTGEoT
T
IG� _�����TIGTGEoxe

� �qTe NTTTGEoT
T
IG� _�����TIGTGEoNqe

� 2�qTeN
TTTGEoT

T
IG�TIGTGEoN _qe

� �qTe NTTTGEoT
T
IGTIGTGEoN �qeg dvel (15)

From this expression, the element local mass matrix, gyroscopic
damping matrix, dynamic stiffness matrix, and the inertial
contribution to the force vector are given by

M el � �s
Z
vel

fNTTTGEoT
T
IGTIGTGEoNg dvel (16)

C el � 2�s

Z
vel

fNTTTGEoT
T
IG�TIGTGEoNg dvel (17)

K dyn
el � �s

Z
vel

fNTTTGEoT
T
IG� _�����TIGTGEoNg dvel (18)

Fpel ���s
Z
vel

fNTTTGEoT
T
IG

�XR �NTTTGEoT
T
IG� _�����TIGxo

�NTTTGEoT
T
IG� _�����TIGTGEoxeg dvel (19)

These equations are numerically integrated using a seven-point
Gauss quadrature [37]. The element mass matrix in Eq. (16) is
consistent. The damping matrix in Eq. (17) is a skew-symmetric
matrix arising fromCoriolis forces. The stiffnessmatrix in Eq. (18) is
a dynamic term representing the coupling effect between the large
rigid bodymotions and the elastic motions. The elastic portion of the
stiffness matrix will be discussed subsequently. The force vector in
Eq. (19) is due to the prescribed rigid body motion (inertial
contribution that initially appears with a �ve sign on the left-hand
side of the equations of motion but is brought to the right with a�ve
sign). The first term arises from rigid body translational motion. The
second and the third terms arise from rigid body angular and
centrifugal accelerations. A fourth term in the forcing vector will
arise due to aerodynamic loading.

D. Element Local Deformations (Corotational Approach)

As mentioned previously, the static CR formulation of a shell
element, as described in [4,5,33], is used in this work. While full
details of the approach are provided in those references, a brief
overview of it is presented here while extensively quoting from [4].
Referring to Fig. 1, the origin of the undeformed element frameEo is
chosen at node 1 of the element, and the axisEo1 (i.e., the local x axis)
is chosen as the line joining nodes 1 and 2. The axis Eo3 (the local z
axis) is the normal to the element midplane containing the nodes 1, 2,
and 3. The axis Eo2 (the local y axis) then defines a Cartesian right-
handed coordinate system. The coordinate system denoted by E is
the element CR system defined in a similar fashion but in the current

or deformed configuration. The nodal coordinate systems are
denoted by So andS in the undeformed and deformed configurations,
respectively (shown only for node 2 in Fig. 1 for clarity). The
orientation of So is arbitrary and is chosen to be parallel to the inertial
frame in this work. The coordinate system S in the current
configuration is obtained by updating its transformation matrix,
which defines the current orientation of the node in the global system.
This is done after every Newton–Raphson iteration using the
following expression:

T Snew
� �TTSold (20)

where

�T� Im �
~!n � 0:5 ~!2

n

1� 0:25j!nj2
(21)

!n � � ��x ��y ��z �T (22)

~!n �
0 � ��z ��y
��z 0 � ��x
� ��y ��x 0

2
64

3
75 (23)

The �� quantities are the incremental rotations of triad S computed in
the global coordinate system during the previous iteration. Once the
nodal coordinate systems in the current configuration are obtained,
the next step is the computation of the pure deformations (both
displacements and rotations) in the local coordinate system E. Pure
nodal displacements at a node m in E may be expressed by the
relation,

umE �
(
umE1

umE2

umE3

)
� TEG

�
qmdg � xmo � q1dg � x1o

�
� xme (24)

where m� 1, 2, and 3. TEG is a transformation matrix from the
global frame to the current element frame, qmdg is the displacement

vector of a nodem in the global frame, andxmo is the positionvector of
node m in the undeformed element configuration expressed in the
global frame. The variable x1o is equal to xo, introduced in Eq. (5).
Pure nodal rotations expressed in E are equal to the components of a
skew-symmetric matrix spin tensor defined as

� pn �
0 ��E3

�E2

�E3
0 ��E1

��E2
�E1

0

2
4

3
5 (25)

This tensor is found by using the following expressions:

� pn � 2�T � Im��T� Im��1 (26)

T � TEGTSnewTGEo (27)

where the matrices TEG and TTGEo transform the components of a

vector in the global frame into those in deformedCRand undeformed
CR frames, respectively. The vector of pure deformations at a node is
given by

d mpure � �umE1
umE2

umE3
�mE1

�mE2
�mE3
�T (28)

The vector of pure element deformations is obtained by combining
such vectors at all three nodes of the element and is given by

d pure �
d1pure
d2pure
d3pure

0
@

1
A (29)
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E. Element Stiffness Matrix/Nonlinear Internal Force Vector

A three-node triangular shell element involving an optimal
membrane element (OPT) [21] and a DKT plate bending element
[20] presented in [4,5] is used in thiswork. Both of these elements are
described briefly below:

1) The DKT element formulation is based on discrete Kirchoff
theory of thin plates. It begins with independent fields for lateral
displacement and for rotation of a midsurface normal line, like in
Mindlin elements [38]. In this approach, the strain energy contri-
bution due to shear stresses is neglected, and the normality to the
midsurface is enforced at discrete points at the element edges. With
these constraints imposed, a 9-DOF element is obtained with two
rotations and a displacement at each of the element nodes. Full details
of the DKT formulation are given in [38]. As a consequence of the
process by which the element is derived, the transverse displacement
is not explicitly defined in the interior of the element. Hence, the
shape functions required to form the mass, damping, dynamic
stiffness, and the stress stiffening matrix (discussed later) along with
the force vector are not available. This problemmay be overcome by
borrowing shape functions from other similar elements. Following
[4], for the displacement interpolation, the shape functions corre-
sponding to aBazeley, Cheung, Irons, and Zienkiewicz plate element
[37] are used. The stiffness matrix (of size 9 � 9) corresponding to
the plate bending DOF can be written as [4]

K b �
Z
BTbDBb dAe (30)

where Bb is the strain-nodal displacement matrix corresponding to
bending deformation,D is the bending stiffness matrix, andAe is the
area of the triangular FE.

2) The OPT element is termed optimal because, for any arbitrary
aspect ratio, its response for in-plane pure bending is exact. Like the
DKTelement, the OPTelement is based on an assumption on strains,
and so the shape functions are borrowed from another triangular
membrane element (linear strain triangle-retrofitted) with the same
DOFs as that of the OPTelement. The stiffness matrix (of size 9 � 9)
corresponding to the membrane DOF is [4]

Km �
Z
BTmABm dAe (31)

where Bm is the strain-nodal displacement matrix corresponding to
membrane deformation, and A is the stretching stiffness matrix.

The DKTand the OPTelement stiffness matrices are combined to
form the final shell stiffness matrix of the element and are further
modified to include the membrane-bending coupling effect for
laminated composite plates:

K shell
el �

Km
R
BTmBBb dAeR

BTbBBm dAe Kb

� �
(32)

where B is the membrane-bending coupling stiffness matrix. More
details of the stiffness matrices, including the definition of the
individual terms, are presented in [4].

The effect of nonlinear stress stiffening is added to the CR
formulation by including a geometric stiffness matrix [38]. The
expression for stress stiffening is obtained by considering the work
done by the membrane forces (computed from the solution of the
previous iteration) as they act through displacements associated with
small lateral and in-plane deflections. The final expression for the
stress stiffening matrix is given by

K ss
el �

Z
GT

Nmf 02�2 02�2
02�2 Nmf 02�2
02�2 02�2 Nmf

2
4

3
5G dA (33)

The submatrix Nmf of size 2 � 2, for which the components are the

membrane forces, is the same as ~N, defined in [4].More details on the
derivation of this expression along with a definition of the individual
terms are given in [4,38].

Using the pure element deformations in Eq. (29), the nonlinear
internal force vector is computed using the local element shell and
dynamic stiffness matrices [after rearranging them according to
desired order of DOFs, as in Eq. (29)], as

r intel � �Kshell
el �K

dyn
el �dpure (34)

Since the pure deformations obtained in Eq. (29) may not really be
pure (i.e., without any rigid body components), a projector matrixPr
can be introduced to bring the nonequilibrated internal force vector
into equilibrium. The details of the projection are beyond the scope of
this paper. The readers are referred to [22] for more details. The local
element stiffness matrix computed in Eq. (32) and the internal force
vector computed in Eq. (34) are filtered through the projector matrix
as follows:

K shell-p
el � PTr Kshell

el Pr (35)

r int-pel � PTr Kshell
el dpure (36)

In computing the projection of the internal force vector, as shown in
Eq. (36), the contribution due to the dynamic stiffness matrix is
excluded. At this point, if the membrane forces are expected to be
significant, the stress stiffness matrix obtained in Eq. (33) should be
added to the projected local element stiffness matrix in Eq. (35).

Having obtained the stiffness and mass matrices along with the
internal force vector in the element frame, they are all transformed
into the global frame before the FE assembly process. The trans-
formation of the element local stiffness matrix, which includes both
the elastic and the dynamic stiffness terms, is given as

K shelldyn-p
el-g � �TfGE��K

shell-p
el �Kdyn

el ��T
f
GE�T (37)

where the transformation matrix TfGE (previously mentioned) is an
expanded form of TGE (which is a transpose of TEG, defined earlier)
used to accommodate the transformation of all 18 DOFs of the
element. The subscript �g indicates that the corresponding element
matrix operates on the global DOFs. The superscript f indicates full/
expanded. Similarly, the element mass and the gyroscopic matrices
given in Eqs. (16) and (17), respectively, are transformed into the
global frame as follows:

M el-g � TGEoMelT
T
GEo

(38)

C el-g � TGEoCelT
T
GEo

(39)

Furthermore, the element internal force and the prescribed-motion
force vectors given in Eqs. (19) and (36), respectively, are
transformed to the global frame as

r intel-g � T
f
GEr

int-p
el (40)

F p
el-g � T

f
GEo
Fpel (41)

The global element mass, stiffness, and gyroscopic damping
matrices given in Eqs. (37–39), respectively, and the element global
internal force and prescribed-motion force vectors given in Eqs. (40)
and (41), respectively, are assembled for the entire structure to form
global matrices/vectors. The global mass, tangent stiffness, and
damping matrices are denoted as M, Kt (assembled form of

Kshelldyn-p
el-g matrix for the entire structure), and C, respectively, while

the global internal and the total force vectors are denoted asR andF,
respectively.

F. Direct Time Integration of University of Michigan Nonlinear

Membrane Shell Solver Governing Equations

The nonlinear structural dynamics FE governing equations of
motion can be written as
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Ma � Cv�R�q� � F (42)

where q is the nodal DOF vector in the global frame, and v and a are
the global velocity and acceleration vectors, respectively. In this
work, the numerical integration of the governing equations was
performed using either the Newmark or the generalized-� methods
[23,24]. Reference [23] discussed the application of the generalized-
� scheme for linear problems. In this work, it is extended to solve the
nonlinear equations of motion in a predictor–corrector-type of
framework similar to the one described for the Newmark method in
[39]. The generalized-� method discussed in [23] solves second-
order differential equations for a discrete time step n, using the
standard Newmark relations to update the displacements and
velocities, as shown next:

q n�1 � qn ��tsvn ��t2s ��12 � ��an � �an�1� (43)

v n�1 � vn ��ts��1 � �nm�an � �nman�1� (44)

The balance equation is given by

Man�1��m � Cvn�1��f �Rn�1��f � F�tn�1��f � (45)

where

a n�1��m � �1 � �m�an�1 � �man
vn�1��f � �1 � �f�vn�1 � �fvn
Rn�1��f � �1 � �f�Rn�1 � �fRn
F�tn�1��f � � �1 � �f�Fn�1 � �fFn

(46)

Substituting the relations in Eq. (46) into the balance equation in
Eq. (45) gives

M��1 � �m�an�1 � �man� � C��1 � �f�vn�1 � �fvn�
� �1 � �f�Rn�1 � �fRn � �1 � �f�Fn�1 � �fFn (47)

Using the Newmark update relation of displacements in Eq. (43), the
accelerations become

a n�1 �
1

��t2s

�
qn�1 � qn ��tsvn ��t2s

�
1

2
� �

�
an

�
(48)

a n�1 �
1

��t2s

�
�q ��tsvn ��t2s

�
1

2
� �

�
an

�
(49)

Substituting this into the velocity update relation equation (44) gives

vn�1 � vn ��ts�1 � �nm�an �
�nm
��ts

�q � �nm
�
vn

� �nm�ts
�

�
1

2
� �

�
an (50)

Substituting the previous two relations equations (49) and (50) in the
velocity and acceleration relations of Eq. (46) gives

an�1��m � �1 � �m�
1

��t2s

�
�q ��tsvn ��t2s

�
1

2
� �

�
an

�
� �man (51)

vn�1��f � �1 � �f�
�
vn ��ts�1 � �nm�an �

�nm
��ts

�q � �nm
�
vn

� �nm�ts
�

�
1

2
� �

�
an

�
� �fvn (52)

Using the tangent stiffness method [39], the internal forces at time
step n� 1 (i.e., Rn�1) can be written as

Rn�1 �Rn �Kt�q (53)

Rn�1��f � �1 � �f��Rn �Kt�q� � �fRn (54)

Substituting the previous set of equations in the balance equation,
Eq. (45) becomes

K eff�q�Rh (55)

whereKeff andRh are the effective stiffness matrix and the effective
load vector, and they are given as

K eff �
1 � �m
��t2s

M�
1 � �f
��ts

C� �1 � �f�Kt (56)

Rh �
1 � �m
��ts

Mvn �
1 � �m
�

�
1

2
� �

�
Man � �mMan

� C�1 � �f�Vn � 	 	 	 � C�1 � �f��ts�1 � �nm�an

� C�1 � �f�
�nm
�
vn � C�1 � �f�

�nm�ts
�

�
1

2
� �

�
an

� C�fvn � �1 � �f�Rn � �fRn � �1 � �f�Fn�1 � �fFn (57)

A step-by-step solution procedure to solve the system of equations
using the quantities computed in Eqs. (56) and (57) is given as
follows:

1) Initialize qo and its time derivatives.
2) Select a time-step size �ts and a spectral radius parameter Sr

(0 
 Sr 
 1): this parameter is inversely proportional to the high-
frequency dissipation. The time-integration method used in this
paper is implicit, and so the choice of time step should be based on the
desired solution accuracy and on the stability of the Newton–
Raphson algorithm. In the case of flapping-wing simulations, as
presented in this work, the time step was also chosen based on the
frequency and amplitude of prescribed motion, so the incremental
displacements and rotations within a time step (effectively a load
step) are small. For example, smaller time steps were needed for
larger (i.e., more nonlinear) amplitudes in order to force the Newton–
Raphson loop to converge.

3) Compute parameters �f ��Sr=�1� Sr� and�m � �1 � 2Sr�=
�1� Sr�.

4) Compute parameters �nm � 0:5� �m � �f and
�� 0:25�1� �m � �f�2.

5) Form the effective stiffness matrix from the individual mass,
damping, and tangent stiffness matrices using Eq. (56).

6) Form the effective load vector equation (57).
7) Solve for the displacement increments using Eq. (55). To

improve the solution accuracy and to avoid the development of
numerical instabilities, it is generally necessary to employ iterations
within each time step in order to maintain equilibrium [39]. The
following are the steps to be followed in a typical iteration j within
the iterative loop.

1) Evaluate the (j � 1)th approximation to the acceleration,
velocities, and displacements using

aco�
1��m
��t2s

; ac1�
�nm
��ts

ac2�
1

��ts
; ac3�

1

2�
� 1

ac4�
�nm
�
� 1; ac5�

�ts
2

�
�nm
�
� 2

� (58)

aj�1n�1 � aco�qj�1 � ac2 _qn � ac3 �qn
vj�1n�1 � ac1�qj�1 � ac4 _qn � ac5 �qn; qj�1n�1 � qn � �qj�1

(59)

2) Update nodal rotation matrices using the new approximation to
the solution q [last of Eqs. (20) and (59)].
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Fig. 2 Nonlinear FE solution process for flapping-wing shell structures implemented in UM/NLAMS.
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3) Evaluate the (j � 1)th residual force with

Rfj�1n�1 � �1 � �f�F�tn�1� � �fF�tn� �M�1 � �m�a
j�1
n�1

�M�man � 	 	 	C�1 � �f�vj�1n�1 � C�fvn � �1 � �f�R
j�1
n�1

� �fRn (60)

4) Solve for the jth corrected displacements using

K eff�q
j �Rfj�1n�1 (61)

5) Evaluate the corrected displacement increments with

� qj � �qj�1 ��qj (62)

6) Check for convergence of the iteration,

j �qj j
j qt � �qj j


 tol (63)

where tol is convergence tolerance for the iteration.
7) If the solution is not converged, return to the first step; if it does,

proceed to the next time step.
For a specific choice of the parameters involved in the generalized-

�method, other integration schemes could be obtained. For example,
if �f � 0 and �m � 0, the method reduces to the standard Newmark
scheme. The primary goal of the generalized-�method is to provide
the user with control over high-frequency dissipation while limiting
the impact on the low-frequency dynamics. In flapping-wing
aeroelastic simulations, this method could prove to be very beneficial
in dissipating nonphysical high-frequency oscillations that result due
to poor spatial resolution.

The generalized-� method was extended to systems of first-order
differential equations by Jansen et al. [40] and later applied by
Shearer and Cesnik [24] in the flight dynamic analysis of a highly
flexible aircraft.

Figure 2 highlights the key steps involved in the solution process
of UM/NLAMS.

III. Verification and Validation Studies of University
of Michigan Nonlinear Membrane Shell Solver

A. Rigid Body Kinematics

As a check for the rigid body kinematics implementation in the
solver UM/NLAMS, a simple test was conducted on a rigid
rectangular plate, shown in Fig. 3, actuated at point Awith prescribed
large amplitude sinusoidal rotation functions in three dimensions (all
in phase). The amplitudes of rotation are 30, 45, and 80 deg about X
(along span), Y (along chord), and Z (vertical) directions, respec-
tively. Three-dimensional displacements and velocities were
extracted at an arbitrary point B (also shown in Fig. 3) and are
plotted in Figs. 4 and 5. The results from UM/NLAMS have an
excellent correlation with the exact solution computed analytically
using the rotation tensor corresponding to the rotation vector [34].

B. Nonlinear Static Structural Response

Three cantilever plate configurations subjected to different static
loads (previously studied in [4,41]) are considered in this subsection.
Results presented include tip displacement as a function of the
applied load in all the cases discussed.

Fig. 3 Rectangular plate configuration used to check rigid body
kinematics implementation in UM/NLAMS and MSC.Marc.

Fig. 4 Displacements extracted at point B in Fig. 3 based on rigid body

kinematics prescribed at point A in the same figure.

Fig. 5 Translational velocities extracted at point B in Fig. 3 based on

rigid body kinematics prescribed at point A in the same figure.

Table 1 Parameters associated

with case 1

Parameter Value

Plate length 0.6 m
Plate width 0.3 m
Plate thickness 0.001 m
Young’s modulus 196.2 GPa
Poisson’s ratio 0.3
Number of FEs 512
Number of load steps 25
Error limit 10�3

Fig. 6 Normalized tip displacement as a function of the applied

moment for the plate in case 1 (displacement is normalizedwith respect to

plate length).
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1. Case 1: Cantilever Plate Subjected to Uniform End Moments

This case is used as one of the reference test cases to evaluate the
geometrically nonlinear static capability of UM/NLAMS. It
corresponds to a cantilevered isotropic plate of aspect ratio two
subjected to uniform applied moments along the tip edge. The key
parameters related to this case are included in Table 1. The analytical
solution for the case is given in [4] and is used for comparison with
results obtained from UM/NLAMS. Figure 6 shows the normalized
vertical displacement at a point on the tip (point A in Fig. 7) versus
the applied moment. The displacement is normalized with respect to
the length of the plate (also for all the cases discussed next unless
specified otherwise). The plot compares the solution computed in
UM/NLAMS with those provided in [4] (which also discusses
validation with analytical solutions). As seen in Fig. 6, there is an
excellentmatch between the two results. Themaximum tip deflection
obtained in this case is 0.4 m, which corresponds to 73% of the plate
length. Because of the applied moment, the cantilever plate forms a
circular arc, as shown in Fig. 7. To compute the solution as a function
of the applied load, a load control approach was followed in this
work: themaximum load in the analysis was broken into several load
steps and applied in increments. For each load increment, nonlinear
static equilibrium was sought to compute the corresponding static
response. The convergence criterion within each load step loop was

chosen as the absolute difference in the Euclidean norm of the entire
solution vector computed in any two consecutive Newton–Raphson
iterations. For the current case, the tolerance for it was set to 10�3.

2. Case 2: Cantilever Plate Subjected to an End Lateral Load

This case corresponds to an isotropic cantilever plate subjected to a
lateral load at one of its free corners (node A of Fig. 8). The key
parameters related to this case are included in Table 2. The results
obtained from UM/NLAMS are compared with those published in
[41]. Figure 9 shows the normalized vertical displacement at the tip
(node B of Fig. 8) versus the applied load. As before, the dis-
placement is normalized with respect to the length of the plate. The
maximum displacement found in this case was 45% of the plate
length. Figure 10 shows snapshots of the static wing deformation for
three different load steps. The maximum difference in the static
displacement computed in UM/NLAMS and that found in [41] is up
to 1% of the plate length. A reason for this is the difference in the
solution formulation of UM/NLAMS and that of [41]. While the
former is based on the CR form of the TLmethod, the latter is that of
the UL method.

3. Case 3: Cantilever Plate Subjected to an End Lateral Load

This case corresponds to an isotropic cantilever plate subjected to
shear forces at the three nodes of the tip (nodes A, B, and C in
Fig. 11). The load at nodes A and C is 10 N, whereas at node B, it is
20 N. Similar to the previous two cases, the load is applied
incrementally in several load steps. The key parameters related to this
case are included in Table 3. The solution obtained from UM/
NLAMS in this case is compared with the analytical solution
published in [4]. Figure 12 shows the normalized vertical
displacement at the tip (node A in Fig. 11) versus the total applied
load (sum of the loads on points A, B, and C). The maximum

Fig. 7 Snapshots of static wing deformation for the plate in case 1 (legend in meters).

Fig. 8 FE mesh configuration for the plate in case 2.

Table 2 Parameters associated

with case 2

Parameter Value

Plate length 40 m
Plate width 30 m
Plate thickness 0.4 m
Young’s modulus 0.12 GPa
Poisson’s ratio 0.3
Number of FEs 96
Number of load steps 25
Error limit 10�4 Fig. 9 Normalized tip displacement as a function of applied load for the

plate in case 2 (displacement is normalized with respect to plate length).
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displacement found in this case was approximately 68% of the plate
length. The agreement is very good up to 60% deformation, after
which UM/NLAMS struggles to converge within the maximum
number of subiterations (200) within a load step. This presents itself
as a softer behavior than that of [4]. The cause for this behavior is
unknown and requires further investigation.

C. Dynamic Structural Response

In this subsection, both rectangular and elliptic plate config-
urations are actuated with different types of prescribed dynamic
motions. In all the cases considered, responses computed using UM/
NLAMS are compared with either those from MSC.Marc or with
available experimental data. Results presented include tip displace-
ment as a function of time and snapshots of three-dimensional wing
deformation.

1. Case 4: Rectangular Plate Prescribed with Single-Degree-of-Freedom

Flap Rotation

A rectangular aluminum plate shown in Fig. 13 was prescribed
with a single-DOF large amplitude flap rotation about an axis
running through the chord. In the figure, the square block at the wing

root is constrained in all DOFs with respect to the global frame, and
the rotationwas prescribed as a sinusoidal variation. This enabled the
simulation to start from zero initial displacement and velocity,
obviating the need for a special starting procedure, as would have
been the case if a sine variation was prescribed. The key parameters

Fig. 10 Snapshots of wing deformation for the plate in case 2 (legend in meters).

ROOT

TIPA

C
B

Fig. 11 FE mesh configuration for the plate in case 3.

Table 3 Parameters associated

with case 3

Parameter Value

Plate length 0.1 m
Plate width 0.01 m
Plate thickness 0.001 m
Young’s modulus 117.72 GPa
Poisson’s ratio 0.
Number of FEs 128
Number of load steps 25
Error limit 10�4

Fig. 12 Normalized tip displacement as a function of the magnitude of
the total applied load for the plate in case 3 (displacement is normalized

with respect to plate length).

Fig. 13 Rectangular flat plate flapping-wing configuration for case 4.

Table 4 Parameters associated with case 4

Parameter Value

Plate length 80 mm
Plate width 27 mm
Plate thickness 0.2 mm
Young’s modulus 70 GPa
Poisson’s ratio 0.3
Material density 2700 kg=m3

Prescribed flap rotation profile 1-cosine
Flapping frequency 5, 10, and 30 Hz
Flapping amplitude 17 deg
Time-step sizes 1:5 � 10�4 and 10�5 s
Number of FEs 512
Error limit 10�4
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related to this case are included in Table 4. Figures 14–16 show the
normalized vertical displacement at the tip (point A in Fig. 13) as a
function of nondimensional time (time normalizedwith respect to the
period of the flap rotation) for three different flapping frequencies: 5,
10, and 30 Hz, respectively. The results are compared with either
those obtained from the commercial FE solver MSC.Marc or with
available experimental data [42]. The bilinear thin-triangular shell
element number 138 is used to discretize thewing inMSC.Marc (also
for all the MSC.Marc cases discussed here). The time-integration
schemes used are the nondissipative form of the Newmark and the
generalized-� methods. The former was used in the 5 and 10 Hz
cases, whereas the latter was used in the 30 Hz case with a spectral
radius value set to 0.4. The time-step size used in the 5 and 10 Hz
cases was 1:5 � 10�4 s and, in the 30 Hz case, it was 10�5 s. The
convergence criterion for the Newton–Raphson convergence loop is

a check on the absolute difference in the Euclidean norm of the entire
solution vector computed in any two consecutive iterations: set to
10�4 in the three cases considered here. As seen from the results in
Fig. 14, the agreement between UM/NLAMS andMSC.Marc for the
5 Hz frequency is very good. With an increase in frequency (30 Hz),
differences start to become apparent (Fig. 16), which is presumably
due to the stronger geometric nonlinearities as well as the increased
effect of the transient terms in Eq. (42). While the exact cause for the
discrepancies will require further investigation, part of the reason
could be the fact that MSC.Marc does not use the CR approach. In
any case, future studies should be conducted to address which
solution is more accurate under higher frequency regimes. Also, as
seen in Fig. 15, while the agreement between UM/NLAMS,
MSC.Marc, and the experiment is reasonable in amplitude, there is
some disagreement in phase. Each computational time step
(particularly including assembling of matrices and solving the
system of equations) for this case needed 20 s (approximately) of
CPU time on a single-node Intel Pentium 4 CPU 3.4 GHz processor.

Fig. 14 Rectangularflat plate responsedue toflapping excitation (5Hz)

in case 4 (displacement is normalized with respect to plate length).

Fig. 15 Rectangular flat plate response due to flapping excitation
(10 Hz) in case 4 (displacement is normalized with respect to plate

length).
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Fig. 16 Rectangular flat plate response due to flapping excitation

(30 Hz) in case 4 (displacement is normalized with respect to plate

length).

Table 5 Parameters associated with case 5

Parameter Value

Plate length 0.3 m
Plate width 0.1 m
Plate thickness 0.001 m
Young’s modulus 210 GPa
Poisson’s ratio 0.3
Material density 7800 kg=m3

Prescribed plunge profile 1-cosine
Plunge frequency 1.78 Hz
Plunge amplitude 0.0175 m
Time-step size 10�3 s
Number of FEs 1150
Error limit 10�4
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Fig. 17 Rectangular plate response due to plunge excitation in case 5

(displacement is normalized with respect to the amplitude of plunge).

Fig. 18 Zimmerman elliptic plate flapping-wing configuration.
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2. Case 5: Rectangular Cantilever Plate Prescribed with Pure

Plunge Motion

A rectangular cantilever steel plate was prescribed with a pure
plunge motion at the root. The key parameters related to this case are
included in Table 5. Figure 17 shows the normalized vertical dis-
placement at the tip versus the normalized time, with a comparison
between UM/NLAMS and the commercial FE solver MSC.Marc.
The displacements and time are normalized with respect to the
plunge amplitude and the period of plunge, respectively. The time-
integration method used is the Newmark scheme. As seen in Fig. 17,
there is an excellent match between the results computed in both the
codes. Each computational time step (particularly including
assembling of matrices and solving the system of equations) for
this case needed 10 s (approximately) of CPU time on a single-node
Intel Pentium 4 CPU 3.4 GHz processor.

3. Case 6: Elliptic Cantilever Plate Prescribed with Rotations About

all Axes

An elliptic isotropic plate of the Zimmerman planform (shown in
Fig. 18) is cantilevered along the root with respect to the global frame
and is actuated at its leading-edge point on the root, with prescribed
rotation functions about all three coordinate axes. The Zimmerman
planform is simply formed by two ellipses intersecting at the quarter-
chord point. Mathematically, it is defined by�
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(64)

where

c1� 0:75c; c2� 0:75c; S� c1R�
2
� c2R�

2
� cR�

2

Ar�
4R2

S
� 8R

c�

(65)

In Eq. (65), c is the chord length at the root,R is the length of thewing
defined as the length of the quarter-chord line along the wingspan,
and Ar is the aspect ratio of the full wing, which is 7.65 in this case.
The key parameters related to this case are included in Table 6.
Figure 19 shows the normalized vertical displacement at the tip
(quarter-chord point) versus the normalized time, with a comparison
between UM/NLAMS and MSC.Marc. As seen from the figure,
overall, there is a very good correlation between them, barring some
discrepancies at specific time instants. Figures 20 and 21 show
snapshots of wing deformation computed in both UM/NLAMS and
MSC.Marc for three different time instants (A, B, and C of Fig. 19).
As seen from the snapshots, there is an excellent agreement between
the three-dimensional wing deformation computed in UM/NLAMS
and MSC.Marc at points A and C, but there is a slight discrepancy
(approximately 3% of plate length) at point B, which is also seen
from Fig. 19.

IV. Conclusions

The development of a nonlinear structural dynamics solver
suitable for analyzing plate/shell-like flapping-wing structures that is
based on the CR form of the TL approach was presented. The
formulation of the present element is based on the combination of a
DKT plate bending element and an OPT membrane element and
included a consistent mass and dynamic stiffness/damping matrices
to analyze the structural dynamics of a flapping wing. Numerical
investigations related to partial verification and validation of the
solver are presented. Results showed good agreement between the
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Fig. 19 Elliptic flat plate response to prescribed flap rotations in case 6

(displacement is normalized with respect to plate length).

Table 6 Parameters associated with case 6

Parameter Value

Plate length at quarter chord 0.075 m
Plate width at the root 0.025 m
Plate thickness 0:2 � 10�3 m
Young’s modulus 7.34 GPa
Poisson’s ratio 0.3
Material density 1740 kg=m3

Prescribed rotation profile 1-cosine
Flap frequency 10 Hz
Flap amplitudes 5, 15, and 5 deg about

x, y, and z axes, respectively
Time-step size 1:5 � 10�4 s
Number of FEs 244
Error limit 10�4

Fig. 20 Snapshot of dynamic wing deformation in case 6 (perspective).

Fig. 21 Snapshot of dynamic wing deformation in case 6 (side view).
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solutions obtained using this element with available analytical/
experimental/commercial solutions. While there are several com-
mercial nonlinear FE solvers available, the use of the CR approach
that uses existing linear FEs in a nonlinear context resulting in a
simplified FE formulation is rare. Furthermore, typical numerical
examples presented in this work to illustrate the structural dynamics
response of flapping wings will be useful to the flapping-wing
community at large.
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