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Abstract 

We present two approaches for conflict resolution between two fault detection schemes, detecting the same 
fault, via optimization with bounded adjustment of detection thresholds. In our first method, we assume 
initially that there is no conflict and optimize the thresholds of both schemes with respect to a partial cost 
function that penalizes false alarms and missed detections. Then we continuously update thresholds based on 
a comprehensive cost function that penalizes conflicts in addition to false alarms and missed detections. Our 
updates are bounded and controlled in such a way that the cost function always assumes the lowest possible 
cost as a function of thresholds. We make use of residual signals to minimize computational complexity. In 
our second method, we present a more general solution to the conflict resolution problem using a Markov 
Decision Process framework that generates an optimal policy for fault detection threshold. This method is 
computationally more complex but it is more general, does not require knowledge of residuals, and does not 
require initial optimization of the thresholds.  We introduce an error signal that indicates failure in resolving 
the conflict using threshold updating in which case, a supervisor (human or computer) can be alerted and 
prompted to take a corrective action. We implemented our methods on a spacecraft attitude control thruster-
valve system simulation with high noise. Our results show good performance and substantial reduction in 
conflicts under highly uncertain conditions.  
 

Nomenclature 
ia+  =   Penalty weight for missed detection of fault by detection scheme i 
ia−  =   Penalty weight for false alarm of fault by detection scheme i 
ib  =   Binary flag indicating presence of fault detected by scheme i (depends on thresholds and input to the 

fault detection scheme). 
iv  =   Threshold value for fault detection in scheme i  
iv  =   Optimal value of threshold based on receiver operating characteristics of detection scheme i  
iv

)
 =   Upper bound on threshold value based on penalties in the cost function 

iv
(

 =   Lower bound on threshold value based on penalties in the cost function 
q  =   Penalty on conflict between detection schemes 
c  =   Binary flag representing presence of conflict 
J  =   Cost function  

)( iMDP  =   Probability of missed detection for scheme i 

)( iFAP   =   Probability of false alarm for scheme i 
ir  =   Residual signal for scheme i indicating difference between the output and the threshold 
iα  =  Primary parameter indicating the optimal amount by which threshold should change to resolve the 

conflict  
iβ  =  Secondary parameter indicating the optimal amount by which threshold should change to resolve the 

conflict  
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if  =   Binary flags indicating whether or not the threshold of scheme i must be changed to resolve a conflict. 
iσ  =   Change in the cost function due to change in threshold to resolve a conflict 

e  =   Binary flag indicating failure of threshold change in resolving the conflict  
κ  =   Binary flag indicating oscillatory behavior of fault flags in both schemes 

i
−φ  =   Penalty on false alarm for the MDP (Markov Decision Process) 
i
+φ  =   Penalty on missed detection for the MDP 
ϕ  =   Penalty on conflict for the MDP 

S  =   Set of states for the MDP { }NssssS ,...,,, 321=  

M  =   Set of actions for the MDP { }NOOPM ,,,, 2211
−+−+= µµµµ  

)( isR  =   Reward of state si in the MDP  

),,( p
k
ri ssT µ  =   Probability of transitioning from state si to sp by executing action µr

k 

 
I Introduction 

Autonomous aerospace systems require increasingly sophisticated fault protection systems that maximize their 
ability to maintain a safe operational state in the presence of onboard system failures or environmental anomalies 
that pose risk or degrade performance. Several strategies have been proposed1-5, 7 to detect, diagnose, and 
reconfigure in the presence of faults. The Markov Decision Process (MDP) and variants have been considered to 
manage discrete system models,5, 8 while signal filtering, system identification, and adaptive control algorithms have 
been developed to manage physics-based (continuous) system models.7 While many of the decisions made by 
discrete versus physics-based deliberation engines are distinct, many decisions or conclusions can also impact or 
overlap with the others.12  
   Considering the cost of space missions, their associated communication constraints, and the amount of risk 
involved due to hostile and uncertain deep space environment, it is desirable for space missions to have multiple 
fault detection schemes. In this situation, two or more detection schemes may occasionally render inconsistent 
decisions about the occurrence of a fault. Therefore, a conflict resolution algorithm is desirable. 
   This paper presents a formal language and protocol by which symbolic and physics-based fault management 
systems can share information to negotiate consistent decisions with respect to fault detection. Specifically, we 
present two methods of conflict resolution that minimize or eliminate discrepancies between the fault information 
obtained from two separate fault detection algorithms. Our methods apply to any pair of detection algorithms that 
satisfy corresponding assumptions.  Our first method is based on initial threshold optimization with respect to a 
partial objective function and subsequent threshold updating that is optimal with respect to a specified cost function. 
While optimizing the thresholds, we make use of residual signals to minimize computational complexity. If the 
resulting minimum value of the objective function allows a persistent unresolved conflict, an error flag is generated 
that can be used to alert a human supervisor. The updating equations for thresholds attempt to keep the thresholds as 
close to the optimal values as possible without causing a conflict, with changes optimized within bounds imposed to 
achieve minimum acceptable performance criteria.  
   Our second conflict resolution method is based on a Markov Decision Process (MDP). This approach makes use of 
the reward function and discount factor to optimize changes in fault detection thresholds. This method does not 
require knowledge of residual signals but it is also more computationally-intensive. 
   In this paper we apply our conflict resolution strategy to a spacecraft example in which we model continuous time 
dynamics of the spacecraft and associated faults, as well as a limited number of discrete parameters (e.g., instrument 
on/off, valve open/shut). Our first fault detection scheme is based on an Interacting Multiple Model (IMM) 
framework that uses multiple models for the spacecraft to represent dynamics associated with certain specific fault 
conditions. With this strategy a bank of observers use the sensor data to compute the residuals for each fault models. 
The model with the lowest residual is assumed to be the true model and the fault condition that it relates to is 
considered to be the true condition of the spacecraft. Our second fault detection scheme is based on state transition 
system8 with Markov assumption. Fault detection is based on the likelihood of reaching failure states given the 
transition probability table.  
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   In the next section, we define the problem and present the two fault detection schemes in the context of a limited 
spacecraft fault detection model. In Section III, we present our threshold optimization and updating methods. 
Section IV shows simulation results, and Section V describes conclusions and future work. 
 

II Basic Threshold Adjustment Approach to Conflict Resolution 
 
To motivate the subsequent developments, we consider a system that uses two detection schemes to detect a 
particular fault. We assume that the performance of each scheme is represented by the probabilities of missed 
detection P(MD) and false alarm P(FA), that are functions of adjustable parameters or thresholds associated with 

each scheme.  Let ),( 21 vvJ  be a risk-based cost function which determines the combined performance of two fault 
detection schemes (1 and 2) as a function of two scalar fault parameters v1 and v2, one parameter for each scheme, 
  

( ) ( ) ( ) ( )22222211111121 ||||),( vMDPavFAPavMDPavFAPavvJ +−+− +++=  (1) 

Here 2211 ,,, +−+− aaaa are positive weights that can be adjusted to emphasize missed detection and false alarms of 

either schemes. Note that ),( 21 vvJ  is a separable function of its arguments, i.e., it can be represented as 

)()(),( 2
2

1
1

21 vJvJvvJ += .   
   Suppose now the two schemes make calls regarding the presence or absence of a particular fault, given the vector 
of current inputs and operating conditions, U . The fault flags of the two schemes are denoted by 

),(),,( 222111 UvbUvb .  The fault flag functions take binary values, either 0 or 1 , depending on the inferred 
absence or presence of a fault.   

   The existence of a conflict corresponds to a situation in which ),(),( 222111 UvbUvb ≠ , i.e., one of the schemes 
indicates a fault and the other does not. To resolve an apparent conflict, a fault or no fault decision needs to be made.  

Such a call can be made by adjusting 1v  and 2v so that ),(),( 222111 UvbUvb =  and J is minimized.  

0),(),(

..

min),(
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,
21

21
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UvbUvb
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vvJ vv

      (2)

 

 

Due to the discontinuous nature of the fault flags, ),( 111 Uvb  and ),( 222 Uvb , which take binary values, it is not 
easy to solve the above optimization problem other than by a systematic grid search. 
   The case in which an easier solution strategy can be defined is when the parameter iv  is an additive threshold, i.e., 
the fault flags satisfy 

1,2)(i   0)(h iff 0),( i =≤−= iiii vUUVb     (3) 

Here, )( ii Uh are outputs (smooth functions) that we compare against the thresholds, and iii vUh −)(  are referred to 
as residuals. In case of multiple thresholds, where vi and hi(Ui) are vectors, the inequalities in equation (3) are 

understood in component-wise sense.  In this case, given that the objective function ),( 21 vvJ  is separable, the 
original optimization problem reduces to a finite number of smooth optimization problems that can be solved 
numerically.  Modifications of these ideas will be used in the subsequent sections to define and illustrate two 
conflict resolution schemes. 
A. Assumptions 
   We now discuss specific assumptions about the two fault detection schemes for which conflicts are to be resolved: 

A.1 Both detection schemes use numerical thresholds that determine the values of fault flags based on the 
information available and the inputs to the detection schemes. 

A.2 The residual signal which is the difference between an output and a threshold, based on which the fault flag 
is set, is known. 

A.3 The probabilities of false alarm (FA) and missed detection (MD) for each overlapping fault in both 
detection schemes are known (not necessarily analytically) and are monotonic functions of thresholds. 
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A.4 The communication of the information between the conflict resolution and fault detection schemes, and 
computations, are instantaneous.  

These assumptions are justified for many practical detection schemes. A specific case study for spacecraft 
application is now introduced. 
B. Spacecraft Case Study 
In the paper we use a spacecraft case study to illustrate the use of two fault detection schemes and associated 
conflict resolution strategy.  One of the fault detection schemes makes use of the physics-based dynamics model and 
the other makes use of a qualitative, logic-based model.  
   Consider a 1 DOF satellite attitude control system with two thrusters as shown in Figure 1. The dashed line shows 
the axis of rotation. Two thrusters are mounted in such a way that they produce equal and opposite forces resulting 
in torque about the axis of rotation.    
 
 
 
 
 
 
 
 
 
 

 
 

Figure 1: 1 DOF Satellite Schematic 
 
The equations of motion for this system in normal (no-fault) mode can be written as 

)()()(

)()()()1(

kNkCxky

kDkBukAxkx c

η
ε

+=

++=+
      (4) 

Here, vector x represents orientation and angular velocity of the spacecraft, uc є {0, 1} represents an impulsive thrust 
value of off (0) or on (1); y represents sensor readings, ε represents system disturbances, and η represents sensor 
noise. We assume disturbance and noise are normally distributed with zero mean values and known variances. Our 
physics-based fault detection technique relies on the Interacting Multiple Model (IMM) approach9. In this approach, 
we make use of the fact that, under certain faults (or combination of faults), the system has a specific and known 
dynamic model. Transitions between the set of possible dynamics models can be treated as discrete jumps. In this 
paper we consider only one fault case i.e. thrust failure. This leads to a discrete state m(k) taking values in state set S 
= 0,1.  At each decision step k, transition probability )(kijπ  of the model can be defined by 

1,01)(
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     (5) 

Now, consider a system model representing the fault states plus a nominal operation state (0). 

1,0
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    (6) 

with the following values for disturbance and noise covariances  

jIPIRIQ

PxxRkkQkk
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jjjjjjj
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],[)0(];),([)(];),([)(

ηξ

ηηξξ ΝΝΝ
.  (7) 

Each cycle of IMM-based fault detection consists of four steps:  mixing of estimates, model-conditional filtering, 
mode probability update and fault detection and diagnostics (FDD) logic, and combination of estimates.9 Details of 
these steps for n-fault case are presented as Appendix. Fault flag b for the fault is set based on whether or not the 
likelihood of a mode has crossed corresponding threshold v1. 
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For our spacecraft, we define candidate probability functions for missed detection (MD) and false alarm (FA) for 
IMM. As mentioned earlier, we assume that these functions are monotonic with the value of v1 (see Figure 2).  
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Figure 2: Example MD and FA Probabilities versus Threshold for IMM 

   Our second fault detection scheme for the same 1 DOF spacecraft is based on a qualitative model of the system 
that models components, their composition, and possible discrete value sets. As shown above in Figure 1, the main 
spacecraft components of interest are valves and thrusters. For fault detection purposes, we define the following 
logical clauses to describe the healthy system: 

21

21

121

211

)(

)(

)(

)(

TTiv

TTiii

VTTii

TTVi

¬∨

∨¬

¬∨∧

¬∨¬∨

       (10) 

Here, V1 represents that valve is open and its complement¬  V1 represents a closed valve. Similarly Ti represents 
thruster i in on mode and its complement¬  Ti represents an off thruster. In this model, we make use of the facts that 
the valve must be open for the thrusters to be on and the thrusters operate as a pair. This model can detect faults 
based on sensor readings. To identify faults, we may use the scheme presented by Williams et al.8 We define  the 
system by triplet ( )ΩΣΠ= ,,S  for the valve V1 where Π denotes the set of possible state features, Σ is the set of 
possible feature value sets, and Ω is a finite set of transitions between states. In our example, we have 

{ }

{ })332()332(21 ,...,,

}},,{},,,{},,{{

,,

×××××=Ω

=Σ

=Π

τττ
nonecloseopennonecloseopenfailednormal

senoutcmdinstatus

  (11) 

Each transition is characterized by transforming the state variables from one set of values to the same set or any 
other set reachable through a transition in Ω . Thruster states are a function of valve states; therefore we do not 
model thrusters with separate transitions. For each given state configuration, there is a set of possible transitions 
with associated probabilities, where the sum of all probabilities is equal to 1. This leads to the transition probability 
table of size 18×18 which we assume to be known.  
   If we represent Ot as the set of observations at time t and µt as the set of possible commands or actions, we can 
obtain the set of feasible states at time t+1 as 
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Once, St+1 is computed, we can determine the most likely trajectories using Bayes rule 
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t
t OP

POP
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ττ
τ =        (13) 

In equation (13), if τ(St-1) and Ot are disjoint sets then clearly P(Ot| τ) = 0. Similarly, if τ (St-1) is a proper subset of Ot 
then Ot is entailed and P(Ot| τ) = 1, and hence the posterior probability of τ is proportional to the prior. If neither of 
the above two situations arises then P(Ot| τ) < 1. Estimating this probability is intricate and requires more research.8 
Finally, the best estimate of current state is found using conflict directed best first search. Once the conclusion is 
made about the current state of the valve, fault flag b for the fault is set (1) if a valve has status = failed and is 
cleared (0) otherwise.  Failure status is computed from observation O and hence the thresholds since the observed 
values depend upon comparison of sensor values against the thresholds 
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     (14) 

This scheme can detect thruster failures based on valve failures. For example, let us consider the case where valve 
V1 is used to supply fuel to thrusters. If cmdin = open but senout = close after an appropriate delay from initiation of 
the open instruction then the valve is failed in close mode; note that in this simplified model we assume a failed 
sensor will reliably give a SensorFailed status. The probabilities in Figure 3 depend upon the threshold, control 
command, and the previous state of the valve itself. For the conditions when probabilities change with threshold i.e. 
trying to open a closed valve or close an open valve, we can model the probabilities as functions of threshold in a 
similar way as we did for the IMM based detection scheme. In Figure 3 we present example relations between 
probabilities and threshold for the case when a closed valve is commanded to open (corresponding fault is stuck shut 
or failed in close mode). 
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Figure 3: Performance Probabilities vs. Threshold for knowledge based detection Scheme 

The above curves are based on 5 volt fuel pressure sensor where output is either 0 or 1 indicating the valve as close 
or open, respectively. Note that, as we increase the threshold, the probability of false alarm increases because there 
is greater chance of sensor reading 0 when it actually might be 1 and hence producing an incorrect detection of the 
valve as close when it actually is open. Analogous behavior is exhibited in probability of missed detection. Note that 
the chosen sigmoid functions are monotonic and given by 
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   Although the two fault detection schemes are based on different models, they share key properties that can be 
utilized. Specifically, we can manage their thresholds to resolve conflicts at the expense of decreased performance in 
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terms of MD and FA probabilities. Below we introduce a framework to recursively optimize thresholds so that the 
conflicts are minimized while maximizing performance in terms of MD and FA probabilities.  
 
 

III Conflict Resolution 
 

Consider the following conflict resolution cost function Jc. 

( ) ( )[ ] ( ) ( )
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,,|| 222111

∈∀>>>
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  (16) 

In this equation, superscript i represents the detection scheme, ia+ , ia− , q  are penalty factors or weights, v1 and v2 
are thresholds, and U1 and U2 are inputs to the detection schemes.  
   The objective function (16) has two main terms. The first term can be interpreted as a measure of risk incurred by 
changing the thresholds. The second term penalizes conflicts between the specific faults detected by the two 
schemes. Note that the second term depends on Ui which represents the command and sensor signals available to the 
detection scheme i.   
 
A.1 Threshold Optimization 
Define the first term of (16) as  
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We assume nominal threshold values iv  are chosen to minimize J so that 
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We denote ),( 21 vvJ by J*. Note that J is a separable function i.e. we can optimize FA and MD probabilities for 
each fault detection scheme separately. The following result then follows. 
Theorem 1: Based on the assumptions in section II-A, the minimum of Jc is achieved at thresholds 1v  and 2v such 

that either 11 vv =  or 22 vv =  or both. 
 
Proof: The proof follows from the observation that the fault flag changes if there is a change in the threshold 
exceeding the residual, monotonicity of P(FAi|vi), P(MDi|vi) as functions of vi and positivity of the weights. 
A.2 Residual-based Conflict Resolution 
We now present our first method of conflict resolution using knowledge of residuals for threshold variation of two 
fault detection schemes detecting the same fault. Underneath is the mathematical formulation of threshold update 
equations for both fault detection schemes. With threshold updating, we are able to resolve fault decision conflicts in 
situations where the disagreement is not strong. By strong disagreement, we mean the cases for which the required 
change in thresholds causes the cost function increase beyond a given bound. We define the upper bound of cost 
function based the penalty weight on the conflict. For the cases where disagreement is strong, the thresholds are kept 
at their optimal values while an error signal is generated to alert a higher level supervisor that the conflict was not 
resolved. 
   The upper bound on cost function is defined as 

qJJ += *
max         (20) 

   The cost of resolving the conflict based on the knowledge of the residual signal for each scheme is given by 
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Here, ∆vi is the change in threshold for the ith scheme required to resolve the conflict without changing the threshold 
for the other scheme. 
   The threshold for each scheme is updated based on the following equation 
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B. Conflict Resolution based on the Markov Decision Process  
In this subsection, we present a different solution to the conflict resolution problem based on Markov Decision 
Process (MDP) framework. In this case we eliminate assumption A.2 of Section II A which states that we have 
knowledge of residual signals. Hence we solve the problem of conflict resolution for any two schemes with 
independent fault detection such that each fault flag depends upon the value of a scalar parameter. Even though this 
parameter is not necessarily a threshold, we will refer to it as a threshold for consistency. The optimal MDP policy is 
then generated for adjusting the threshold(s) of the schemes to reach consensus between the fault flags. 
   The MDP framework uses a set of MDP states s1, s2, s3… and leads to an optimal policy that can maximize the 
time-discounted utility of states i.e.  
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The states of an MDP-based conflict resolution algorithm for a fault detected by two schemes can be defined as 
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Here, S contains states with all possible values of fault flags and thresholds related to the fault. We represent the 

threshold value set with a finite number of equally spaced discrete values k
iv . Number of states N depends upon the 

size of ∆v and the range of v. In particular, if number of possible values of each threshold is z, then N = 4z2. 
The actions are represented as 

{ }NOOPM ,,,, 2211
−+−+= µµµµ       (25) 

and correspond to increasing ( 1
+µ ) or decreasing ( 1

−µ ) the threshold of first detection scheme by ∆v1; to increasing 

( 2
+µ ) or decreasing ( 2

−µ ) the threshold of second detection scheme by ∆v2; and to no change (NOOP). Note that 
each action can result in four possible states. This is because we can change the threshold but cannot guarantee a 
specific transition in fault flags as the latter is determined by other signals the flags depend upon. Also NOOP 
results in the states with the same thresholds and same values of fault flags. 
   Rewards for each state can be represented as 

{ } 0,,,,...,2,1
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         (26) 
Note that the reward depends upon MD and FA probabilities as well as conflicts in each state. 
Using Monte Carlo simulations, one can construct the transition probabilities, 

{ } { } { }Npirk

ssTT p
k
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   In the MDP, an optimal policy can be calculated using the value iteration algorithm. The policy that selects the 
optimal action may be found as 
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There is a direct relationship between the utility of a state and the utilities of all the states that can be reached from 
that state in a single optimal action. This relationship can be expressed using the Bellman equation:  
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    (29) 
where Γt+1(si) is the utility of state si at iteration t+1, R(si) is the immediate reward of state si, and T (si , µr

k, sp) is the 
probability of transitioning from state si to sp by executing action µr

k.  With this structure, the MDP computes the 
best available threshold setting (action) for each state. The computational complexity of value iteration algorithm is 
5N2 per iteration of equation (29). The number of iterations required for convergence within a specified error 
tolerance depends upon the tolerance itself and the discount factor γ. 
C. The Supervisor Alert 
Since neither of our conflict resolution schemes guarantee 100% resolution of conflicts, it is important to have a 
supervisor (a human or software) that can handle strong conflicts. Detailed algorithm for such supervisor is beyond 
the scope of this paper however, one approach to generating an alert flag for a supervisor can be based on the 
following equation 
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(30) 
Equation (30) has two interesting properties. First, it has a moving window that indicates a persistent conflict. The 
moving window is important to avoid intermittent anomalous situations that may be due to short term external or 
internal disturbances. The second feature is the use of an oscillation flag that avoids the generation of an error flag 
for the case of non-persistent fault flags causing a persistent conflict. The oscillation flag can also be used to detect 
particular failures such as power system failures causing fluctuations in voltages etc. The information about 
unresolved faults can be used to make adjustments in system models and/or in the fault detection schemes to account 
for a change in the environment or the system itself. 
 

IV Simulation results 
A. Residual-based Conflict Resolution 
We tested our threshold adjustment conflict resolution strategies for the case study of section II. Recall that for the 
IMM based fault detection the residual is the difference between the threshold v1 and the probability of fault mode 
(8) and for logic based fault detection; the residual is the difference between the threshold v2 and the voltage output 
of the fuel pressure sensor (14). Based on our assumptions, the fault flag switches when the residual changes sign. 
For these simulations, we command the thruster on/off periodically with time period of 20 time steps and incorporate 
zero mean Gaussian noise in the residuals with variance of 60% of their maximum value i.e. variance of 3 for the 5 
volt sensor output in logic based fault detection and variance of 0.6 for the probability of fault mode in IMM based 
fault detection. We did not inject the fault in our simulations. Therefore the conflict resolution is equivalent to 
mitigating a false alarm in one of the two schemes. 
   We selected the cost function as 

),(),()|(7)|(5)|(7)|(5 22211122221111 UvbUvbvFAPvMDPvFAPvMDPJ −++++=   

(31) 
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Figure 4: Thruster Valve System 

 
Figure 5 illustrates the cost J defined in (17) based on our weights selected in (31). The value of J* is 6.3129 and 
Jmax = 7.3129 from (20) and (31). We measure the performance gain for our conflict resolution scheme as 

100
),(

max

21
max ×

−
=

J
vvJJ

PG       (32) 

Table 1 shows the simulation results for conflict resolution algorithm based on the knowledge of residuals. Note that 
the conflict is resolved 100% of the time and average performance gain is about 54%. 

Table 1: Simulation Results for Residual Based Conflict Resolution  

No. of Simulations No. of conflicts incurred No. of Conflicts Resolved Average Performance 
Gain  

50 5 5 54.15% 
500 52 52 54.% 

5000 554 554 54.05% 
25,000 2463 2463 54.08% 
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Figure 5: Cost as a Function of Thresholds 

B. MDP based Conflict Resolution Method 
We next consider the use of the MDP based conflict resolution algorithm. Also, in these simulations, the thruster is 
commanded periodically on and off with same time period as above. We used the following parameter values for our 
simulations. 
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   Our numerical experiment consisted of executing the optimal policy on fault flags generated from both schemes 
based on similar residual signals as for simulation of residual based algorithm. The difference here though is that 
this algorithm does not make use of the residual signals and hence number of optimal actions required to resolve a 
given conflict is unknown.  

Table 2: Simulation Results for MDP Based Conflict Resolution with 2 Actions per Conflict  

No. of Simulations No. of conflicts incurred No. of Conflicts Resolved Average Performance 
Gain  

50 8 6 53.2% 
500 41 34 53.1% 

5000 413 312 52.97% 
25,000 2215 1698 52.99% 

Table 2 shows the simulation results where we allowed maximum of two actions per conflict. The performance gain 
is evaluated based on (32). Note that MDP is unable to resolve all the conflicts with in 2 changes in the thresholds. 
But if we allow more changes, more conflicts can be resolved as shown in Table 3 where we allowed MDP to 
execute up to 5 actions per conflict. 

Table 3: Simulation Results for MDP Based Conflict Resolution with 5 Actions per Conflict  

No. of Simulations No. of conflicts incurred No. of Conflicts Resolved Average Performance 
Gain  

50 3 3 54.04% 
500 39 39 54.04% 

5000 386 386 54.04% 
25,000 2052 2052 54.04% 

 
From the comparison of results in tables 2 and 3, it seems as if we allow sufficient number of actions for an MDP 
based resolution scheme, we can get 100% conflict resolution. It is important to understand, however, that this is not 
always the case. For example, when the conflict is strong, the required change in thresholds will be so large that the 
reward obtained for resolving the conflict will be less than loss of reward due to sub-optimal threshold.  
  

V Conclusions 
We have presented two conflict resolution algorithms capable of resolving differences in faults detected by diverse 
fault detection schemes; we presented two candidate fault detection schemes for our study, one based on IMM and 
one based on Markovian state transition system. Both our conflict resolution schemes share a common resolution 
strategy: they change missed detection vs. false alarm thresholds for one or both fault detection algorithms as a 
method of converging on a common fault set. In the first conflict resolution method, we optimized the changes in 
thresholds with respect to a cost function that takes into account not only the conflicts but also the probabilities of 
missed detection and false alarms for both schemes and that uses residuals to update threshold values. In our second 
strategy, we optimize the change in thresholds using a Markov Decision Process based on rewards, transition 
probabilities of fault flags, and a discount factor but without knowledge of residuals. We have demonstrated the 
ability of both conflict resolution algorithms to resolve conflicts using a simple example of spacecraft thruster 
failure. Simulation results show that our approaches are able to resolve conflicts, with the residuals method offering 
a faster solution and the MDP method offering a more general resolution method not dependent on knowledge of 
residuals. In future work we plan to extend our models to accommodate more than two fault detection schemes and 
to handle multiple faults, initially with independent thresholds then ultimately with interdependencies. 
 

Appendix: The IMM Cycle9 
The four steps for IMM-based fault detection based on the system given in Equations (6) and (7), and generalized to 
the case of n faults are given below (n = 1 in the case study which we considered).  These steps include mixing of 
estimates, model-conditional filtering, mode probability update and FDD, then combination of estimates. 
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1. Interaction/Mixing of the estimates (for j = 0,1,2,…,n): 

predicted mode probability: ∑=+≡+
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2. Model-conditional filtering (for j = 0,1,2,…,n): 
projected state (from k to k+1): 
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residual covariance: j
T
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3. Mode probability update and FDD logic (for j = 0,1,2,…,n): 

likelihood function: )]1()1()1(
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mode probability: 
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4. Combination of estimates: 

aggregated estimate: ∑ +++=+≡++ +

j
jj

k kkkxykxEkkx )1()1|1(ˆ]|)1([)1|1(ˆ 1 µ  

aggregated covariance: 

[ ][ ][ ]
[ ][ ][ ]∑ +++−++++−+++++=

++−+++−+≡++ +

j
j

T
jjj

kT

kkkxkkxkkxkkxkkP

ykkxkxkkxkxEkkP

)1()1|1(ˆ)1|1(ˆ)1|1(ˆ)1|1(ˆ)1|1(

|)1|1(ˆ)1()1|1(ˆ)1()1|1( 1

µ  

 
Acknowledgement 

The authors would like to thank the Institute of International Education for their fellowship and travel support for 
the first author. 

 
 
 



13 
 

References 
1Meier, L., Ross, D.W. and Glaser, M.B., “Evaluation of the Feasibility of Using Internal Redundancy to Detect and 
Isolate Onboard Control Data Instrumentation Failures,” Tech. Report AFFDL-TR-70172, Wright-Patterson Air 
Force Base, Dayton, Ohio, Jan., 1971. 
2Deyst, J.J. and Deckert, J.C., “Maximum Likelihood Failure Detection Techniques Applied to the Shuttle RCS 
Jets,” J. Spacecraft and Rockets, AIAA, Vol. 13, 65-74, 1976. 
3Clark, R.N., Fosth, D.C. and Walton, W.M., “Detecting Instrument Malfunctions in Control Systems,” IEEE Trans. 
Aerospace and Electronic Systems, IEEE, Vol. AES-11, 465-473, 1975. 
4Walker, B.K. and Gai, E., “Fault Detection Threshold Determination Technique Using Markov Theory,” Journal of 
Guidance, Control and Dynamics, AIAA, Vol. 2, 313-319, July-Aug. 1979. 
5Patton, R.J., Frank, P.M., and Clark, R.N., Fault Diagnosis in Dynamic Systems: Theory and Applications, 
Prentice-Hall, Englewood Cliffs, NJ, 1989. 
6Russell, S. and Norvig, P., Artificial Intelligence: A Modern Approach, 2nd Edition, Prentice-Hall, Upper Saddle 
River, New Jersey 07458, 2005. 
7Zhang, Y., Jiang, J., “Bibliographical review on reconfigurable fault-tolerant control systems,” Annual Reviews in 
Control, Elsevier Ltd, Volume 32, Issue 2, December 2008, Pages 229-252. 
8Williams, C.B., and Nayak, P.P., “A Model-Based Approach to Reactive Self-Configuring Systems,” in 
Proceedings of AAAI-96, pages 971-978, AAAI, AAAI Press, Cambridge, Mass., 1996. 
9Zhang, Y.M. and Jiang, J, “Integrated Active Fault Tolerant Control Using IMM Aproach”. IEEE Transactions on 
Aerospace and Electronic Systems, IEEE, Vol. 37, No. 4, 1221-1235, October 2001. 
10Frank, P.M. and Ding, X., “Survey of Robust Residual Generating and Evaluation Methods in Observer-Based 
Fault Detection Systems,” Journal of Process Control, Elsevier Ltd, Vol. 37, No. 6, 403-424, 1997. 
11Patton R. J., Lopez-Toribio C. J., & Uppal F. J., “Artificial Intelligence Approaches to Fault Diagnosis,” Applied 
Mathematics and Computer Science, Technical University of Zielona Gora, Poland, Vol. 9, No. 3, 471-518, 1999. 
12Nasir, A. and Atkins, E.M. “Fault tolerance for Spacecraft Attitude Management,” AIAA Guidance, Navigation, 
and Control Conference, Toronto, Ontario, Aug. 2-5, 2010 (AIAA-2010-8301). 
 

http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%235647%232008%23999679997%23701834%23FLA%23&_cdi=5647&_pubType=J&view=c&_auth=y&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=ac31a3a1e3b3cb35a498e83dd162f40d

