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The Flying Fish autonomous solar-energy-harvesting seaplane was designed for persis-

tent deployment on the open ocean as a combination aerial-observation and drifting-buoy

platform. Two generations of �eld-tested vehicles have demonstrated continuous sequences

of self-initiated autonomous �ight operations in marine and freshwater environments. The

addition of solar energy collection in the second-generation vehicle brings extended-to-

perpetual system deployment within reach. This paper presents the implementation and

preliminary results of the modeling and planning utilities meant to achieve energy-aware

mission management for safe, long-term unattended, vehicle deployment. Results are pre-

sented from �ight-test-derived simulations and models.

Nomenclature

�sol Solar array e�ciency
� Wind heading
�� Plan valuation weights: value-to-utility (�V ), bene�t-to-utility (�B), and cost-to-utility (�C)
�0 Initial exploration value associated with a plan waypoint
�T Weighting factor for time-since-last-visit waypoint value evaluation
!S ,!A Goal waypoint: Surface/Landed and Airborne/Flying, respectively
� Satisfaction priority of mission goals or constraints
�,�, Euler Attitude Angles: Roll, Pitch, and Yaw, respectively
�array Solar array incidence (in vehicle frame, pitch axis)
~s� Solar incidence vector in a given coordinate frame
Asol Solar array surface area
as Solar azimuth angle
C,B,V Plan valuations parameters: Cost, Bene�t, and exploration Value (respectively)
CBH Flight planning constraint: Hard boundary (inviolable containment region)
CBS Flight planning constraint: Soft boundary (advisory containment region)
COH Flight planning constraint: Hard obstacle (inviolable exclusion region)
COS Flight planning constraint: Soft obstacle (advisory exclusion region)
Ecost Energy expenditure required to complete a �ight plan
Emax Maximum energy storage capacity of vehicle
Ercvr Energy that can be recovered as a result of �ight plan completion
Esol Energy collected from the solar power system
Esys Energy currently stored by vehicle
es Solar elevation angle
Pspec Power, per unit area, available from incident solar radiation
U Total Utility for the completion of a given mission
u Airspeed
w Wind speed
COA Certi�cate of Authorization, FAA certi�cation device for research UAS
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FMS Flight Management System
NREL National Renewable Energy Laboratory
UAS Unmanned Aerial System

I. Introduction

T
he Flying Fish system represents a new unmanned aerial system (UAS) operating paradigm wherein
the onboard avionics system must manage not just a single �ight but a potentially-perpetual series of

�ight and surface maneuvers for continuous operator-independent deployment. The �rst element of this
process, the execution of sequential self-managed �ight operations, has been demonstrated over the course
of two vehicle programs1,2 wherein a multi-mode gain-scheduled PD control scheme has proven e�ective for
directing stable �ight operations from auto-takeo� through auto-landing.3

To move beyond basic �ight operations the onboard �ight management system (FMS) must plan the
pace and order of goal satisfaction, monitor vehicle systems, and diagnose failures to ensure that the sys-
tem remains survivable, long-term, without recovery. The FMS planning utility must be able to forecast
energy collection and expenditure to plan sequential �ights to achieve primary, auxiliary, and opportunistic
mission goals. The planner must also account for overnight survivability and have reasonable estimates of,
and responses to, the e�ects of inclement weather on solar energy and vehicle position. The system must
be capable of planning obstacle avoidance maneuvers given a priori obstacle data and re-plan missions if
unexpected obstacles are encountered. The collected system requirements dictate a need for high level data
interpretation and decision mechanisms that can still be executed with the limited resources of an embedded
computer.

The remainder of this introductory section brie�y presents background information on the existing Flying
Fish FMS. Section II details the models utilized by the estimation and planning system that is subsequently
presented in section III. Section IV features simulated deployment results and the results of basic mission
planning strategies. The paper concludes in section V with a discussion of the capabilities and limitations
of the current system and the ongoing e�orts to add �delity and functionality to the Flying Fish FMS.
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Figure 1: Wolverine FMS Architecture

Flight management systems �rst became standard equipment
on major commercial aircraft in 1982 where they were used
to o�oad vehicle management tasks from the pilot and, as a
result of spiking aviation fuel costs in the preceding decade,
to plan and guide fuel-optimized trajectories.4 The prolifera-
tion of these systems marked a major turning point for �ight
software as the FMS was, up to that point, the most software
intensive system onboard a commercial aircraft. The purpose
of the FMS goes beyond that of an autopilot to include: �ight
planning, navigation, guidance, performance prediction and op-
timization, communication, control, and the management of
user interfaces. The FMS is now part of the standard equip-
ment of all commercial aircraft and in the age of the glass
cockpit and rising fuel costs it plays an even greater roll in sys-
tem management and �ight optimization. Flight management
systems are generally comprised of some sort of �ight management computer executing the collected FMS
software, some communication equipment, and a user control/display unit that serves as an interface for the
FMS user.

The �rst-generation Flying Fish FMS managed: vehicle sensors, communications, data storage, navi-
gation, guidance, and �ight control and in the second-generation began to add fault detection routines5

and performance estimation. The Flying Fish FMS is based on the Wolverine FMS, an open-source �ight
management software package developed in the Autonomous Aerospace Systems Laboratory (A2Sys) at the
University of Michigan.6 The Wolverine FMS has been adapted to four other A2Sys-a�liated platforms to
date, including an aerobatic UAS,7 a highly-�exible �ying-wing UAS,8 and the �rst3 and second-generation
Flying Fish UAS.9 Figure 1 shows the structure of the Wolverine FMS architecture as it has been adapted
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to Flying Fish. The prediction portion of the Wolverine FMS executes two procedures (Vehicle_Model and
Environment_Model) highlighting the two broad categories of prediction required for energy-aware �ight
management and planning. The Vehicle_Model procedure (Fig. 1), divided between motion and energy
modules, provides the mechanisms required for energy state estimation and �ight execution prediction. The
Environment_Model procedure (Fig. 1), divided into solar, wind, and water modules, provides estimates
of short and long term environmental conditions for planning purposes. Details of the preliminary models,
the �ight management computer, avionics, and customized Wolverine-FMS implementation can be found in
Ref. 9.

II. System and Environmental Models

The Flying Fish FMS relies on a number of modeling faculties for the computation of performance
estimates and mission plans. These models generally fall into two broad categories which, as �rst indicated in
the previous section, are classi�ed into: 1) vehicle models, and 2) environment models. Vehicle models provide
the FMS with tools for estimating vehicle performance and sub-system states/processes while environment
models provide estimates of the external states and processes that e�ect the UAS mission. The basic
models employed for the Flying Fish FMS were proposed in a previous publication.9 For clarity this section
provides a high-level overview of the existing models together with the new/updated models but will omit
any previously presented derivation, implementation, and background information.

II.A. Vehicle Models

Primary motion estimation and vehicle trajectory propagation utilize a wind-aware bank-to-turn kinematic
model (Eqns. 1-3). Based on the well-studied unicycle model with bank-to-turn augmented turn dynamics10

the Flying Fish model adds wind to the translational dynamics as wind e�ects are a critical consideration
for seaplane deployment. Here g is gravitational acceleration, � and  are the bank and heading angles,
respectively, and x and y are the Cartesian coordinates of the aircraft in the navigation-axes (locally-level
inertial frame with the x-axis pointed North and y-axis East). The model is subject to the local wind speed
w, wind heading �, and the airspeed u of the aircraft.

_x = u cos( ) + w cos(�) (1)

_y = u sin( ) + w sin(�) (2)

_ =
g tan(�)

u
(3)

To complete the vehicle motion model we make several assumptions about seaplane motion, add parameters
from curve-�t �ight data, and utilize a length-optimal path generation method to connect waypoints. The
primary assumption governing our motion model is that takeo� and landing can, and will, be �own into the
wind. This assumption is both reasonable and practical as non-slipping/non-skidding �ight is aerodynam-
ically e�cient and naturally adopted by a seaplane in unconstrained transit over water or, when airborne,
during stabilized stick-free �ight. The takeo�, climb, and decent performance of the vehicle are modeled
on extensive �ight data that yielded consistent accelerations, velocity thresholds, and average durations for
each of those mission segments. Finally, classical dubins paths are employed for waypoint-to-waypoint tra-
jectory generation.11 Dubins paths are provably minimum-length paths composed of arcs (�own at a �xed
� typically maximum � turn-rate) connected by straight-line cruise segments. While �ight vehicles cannot
�y the exact course of a dubins path due to the implicit requirement for instantaneous acceleration changes,
these paths serve as an useful, smooth, piece-wise continuous, minimum-length baseline path that can still
be �own with reasonable accuracy given good control and guidance strategies.

In addition to the motion model an energy-aware FMS must maintain accurate models of power sub-
systems including solar-energy-collection performance, battery performance, and propulsion and avionics
loads. The energy collected by a solar array can be modeled by he integral of the spectral power density
(W=m2) of the incident sunlight with the cosine of the solar incidence angle and the area (Asol) and e�ciency
(�sol) of the solar array :

Esol =

� tf

t0

�solAsolPspec(t) cos(\~sA(t))dt (4)
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The solar incidence vector (~sA), in the coordinate frame of the solar array, is determined from the inertial-
frame solar incidence vector (~sI) via a sequence of rotations about the navigation axes (locally-level, x-axis
North, y-axis East) by the Euler-Angles of the vehicle f�; �;  g and the vehicle-relative solar-array pitch
angle (�array):

~sA = Rx(� + �array)Rz( )Rx(�)~sI (5)

The cosine of the solar incidence to the array can subsequently be determined by a dot-product of the
array-frame incidence vector, ~sA, and the vertical array-normal vector (namely the z-axis of the array-frame
coordinate system). The solar spectral power density Pspec(t) and the inertial-frame solar incidence vector
~sI(t) are environment processes and are discussed below.

Figure 2: NREL-Saft Battery Model12

The authors previously proposed a battery model based on
curve-�ts of charge/discharge curves of laboratory and �ight
test data from the actual Flying Fish lithium-polymer �ight
batteries.9 While the linear-�t was true to measured data
the model was unable to represent the dynamic response of
lithium batteries to heavy loading. A number of alternative
lithium battery models have been developed in recent years13,14

with much of the research driven by growing interest in electric
transportation.12,15 The newest Flying Fish battery model is
adapted from a model presented in a National Renewable En-
ergy Laboratory (NREL) lithium-battery technical report.12

The model was attributed to lithium-battery manufacturer Saft, but seems to be a variation on previously
know models.13,14 The NREL-Saft model represents the battery as a parallel resister-capacitor network with
input/output impedance (Fig. 2). The linear model of this system is given by:"
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Figure 3: Battery Simulation: Two Flights

The model treats battery energy as charge on a large
capacitor, with the charge/discharge response set by the
output impedance, and a smaller capacitor that models
the nonlinear potential-reduction region of a lithium bat-
tery under heavy load. The model has been tuned to
the capacity and voltage of a single Flying Fish battery
cell by the appropriate selection of impedance and ca-
pacitance (Re = 1:1m
; Rc = 0:4m
; Rt = 2:2m
; Cb =
18:45kF; Cc = 4:0kF). The authors have also changed the
sign of the current input Is block of Eq. (7) which is a sus-
pected error in the original NREL report as the published
model gives increasing voltage under heavy loads. Series
battery voltage is recovered by scaling the model to the
cell-count of a Flying Fish battery pack and battery-bank
capacity is handled by dividing loads over the number of
batteries in each bank. The Flying Fish has two large
main battery banks charged by the solar array (loaded by
the avionics and primary propulsion) and a smaller central bank that is charged by the primary banks (and
loaded by the avionics and an auxiliary propulsion system). A simulation of the Flying Fish power system
with the NREL-Saft battery model over two 1.5-minute �ight cycles with solar charging is shown in Fig. 3.

Propulsion loads are modeled primarily from �ight-derived parameters. A calibration curve from throttle
position to motor current has been developed for both the main and boost propulsion systems. This curve
can be applied to the throttle vector over a �ight pro�le to determine system loads and then, by applying the
battery model, to compute cumulative energy expenditures. Throttle settings for each stage of �ight: takeo�,
climb, cruise, and descent have been extracted from �ight data and are used to estimate the power required
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for each leg of a �ight. Once �ight times are computed for each leg of a mission the total energy expenditure
can be determined. This process is straightforward for linear �ight segments but an averaging/integration
mechanism is required to propagate power and energy consumption over curved trajectories. Currently
the model assumes that the straight-line cruise segment of each dubins turn-�y-turn trajectory serves as
a reasonable average �ight direction for that segment. Subsequently a solution of the the wind-heading
velocity triangle is used to determine the slipping-�ight speed along the cruise path which divides the entire
turn-�y-turn segment length to produce segment �ight time. The �nal assumption used for mission segment
modeling is that the di�erence in dubins trajectory length between turning at a waypoint and turning before
a waypoint, to intercept it on an arc, are negligible.

All avionics loads are assumed, with the exception of surface-deployed payloads, to be active during
�ight but the system is subject to a number of loads that are �sheddable� when the vehicles is on the water.
Assuming that the vehicle must maintain situational awareness on the water the always-on �xed �hotel� loads
include: avionics computer (ACPU), inertial navigation system (INS), wireless communications (can be idled,
but must monitor command channels), and the miscellaneous regulator/interface overhead. The routinely
sheddable loads on the water include the control actuation mechanisms (regulators, servos, & controllers),
and the ultra-sonic altimeter. Auxiliary payloads are assumed to be �any time� sheddable for the purposes
of survival. Table 1 provides an estimate of best case �xed and sheddable loads onboard a seaplane UAS
in the same class as the Flying Fish. To be clear, this analysis ignores the complexity that load-shedding

Table 1: Flying Fish Fixed and Sheddable Loads

(a) Fixed Hotel Loads

Pon (W) Pidle (W) Psleep (W)

ACPU 1.0 - -

Modem 4.83 0.7 0.133

INS 1.2 - -

Misc 0.9 - -

(b) Sheddable Loads

Pon (W) Pidle (W) Poff (W)

Ultrasonic 1.47 - 0.0

Servo Controller 0.5 - 0.0

Control Servos (ea) 3.15 0.264 0.0

Servo Receiver 0.075 - 0.0

imparts to vehicle design. Whenever a load is made to be sheddable additional power switching must be
added which increases the complexity of both the wiring and control systems and creates additional possible
failure points. There are also safety issues to be considered if a critical load might be accidentally �shed�
during �ight. For example, while the Flying Fish has the infrastructure to switch the the servo mechanisms,
they have remained un-switched throughout development for the sake of safety and reliability. Operating
in this fashion the best-case Flying Fish load-shedding can only assume idle servos and ultrasonic-altimeter
deactivation.

II.B. Environment Models
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Figure 4: Daily Solar Energy Model

The Flying Fish solar power model is based on NREL-published
solar position and irradiation calculators.16,17These models are
capable of solving for the sun azimuth (as) and elevation (es)
angles and atmosphere-corrected solar power density (Pspec(t))
for a given date and geographic location. The inertial-frame so-
lar incidence vector can subsequently be constructed from the
sun azimuth and elevation angles using Eq. 8. With these en-
vironmental processes modeled we can apply the vehicle solar-
power model in Eq. (4) to determine the available power (inte-
grand) and energy (integral). An example of a daily solar en-
ergy simulation showing the solar incidence angle (on a 1:34m2

horizontal solar array), total atmospheric incident solar power,
and e�ciency-scaled harvestable solar power is presented in
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Fig. 4.

~sI =

264 cos(as) cos(es)

sin(as) cos(es)

sin(es)

375 (8)

Several additional environment phenomena, including wind and ocean currents, are modeled as random
nonzero-mean noise processes. The wind process directly e�ects both the vehicle drift rate/direction and
vehicle �ight performance. Ocean currents directly e�ect the vehicle drift rate and direction. Because
it is di�cult, and not strictly necessary, to separate the contributions of ocean currents from wind in the
cumulative drift behavior the drift model treats drift as a single process rather than a combination of a wind-
based and current-based process. The characteristics of these signals are drawn from vehicle measurements
on each deployment and in the simulation and planning systems they generally simplify to average values
with error-bounds.

III. Mission Planner

In order for the deployed Flying Fish to negotiate a series of potential �ight goals it must have both a
de�ned mission domain and an optimization mechanism to evaluate and trade mission value against cost
and long-term energy balance. To this end the system requires a robust planning capability that is able to
assemble and revise daily operational plans to maintain a balanced energy budget and provide for overnight
survivability. For this purpose we �rst introduce a uniform planner entry format that is used to represent both
missions and constraints. We subsequently describe the types and implementation of constraints followed
by a description of the environment and missions in the planning domain. For missions we pay particular
attention to the special considerations and assumptions associated with planning for an energy-harvesting
seaplane. We then describe the mechanisms for constructing and evaluating mission plans. An illustrative
example from the planner is presented below and full daily mission plan is presented in the results section
IV.

Within the Flying Fish planner every entry, be it a goal waypoint or constraint, takes the form of an
augmented waypoint that is endowed with a uniform set of attributes: time, position, velocity, Euler-angle
attitude, spacial dimensions, activation value, execution priority, description, and type. Not all entries use
all of these attributes but almost any type of entry can be represented without additional attributes which
makes bookkeeping and software development more straightforward. Every planner entry takes the form:

Pi = ftype; time;position; velocity; attitude; dimensions;priority; value, descriptiong (9)

= fTYP; t; (x; y; z); ( _x; _y; _z); (�; �;  ); (r1; r2; h); �; �o;DESg
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Figure 5: Planning Environment

We de�ne four types of constraints: hard obsta-

cles (COH), soft obstacles (COS), hard boundaries

(CBH), and soft boundaries (CBS) and two types
of goal waypoints: surface goals (!S), and aerial

goals (!A). Constraint boundaries de�ne contain-
ment regions for vehicle operations while constraint
obstacles de�ne exclusion regions. Hard and soft
constraints are considered either inviolable to ensure
vehicle survival or advisory, permitting violations
for vehicle survival, respectively. Each goal's value
(�) is computed over time as the sum of the initial
value attribute (�o) plus a weighted time-since-last-
visit incentive that encourages re-exploration: (�T ):

�i = �0;i + �T;i ��t (10)

Goal values are zeroed at the moment of goal sat-
isfaction and subsequent value is derived only from
the time-since-last-visit incentive. Priority is a separately considered waypoint/constraint valuation method.
In the event that di�erentiation needs to be made between soft constraints or when goal values are insuf-
�cient to discriminate between goals the priority provides an auxiliary ranking. For example, given two
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soft constraints if one constraints must be violated for vehicle survival a secondary value may be required
to decon�ict the selection. Similarly, if initial goal waypoint values and time-since-last-visit valuations are
insu�cient to encode su�cient value to a critical goal, then a goal priority may be applied. Priorities are
assigned values between 0 and 10, inclusive, with higher values indicating higher priority.

The environment of Flying Fish, and of the mission planner, is de�ned by the set of all known constraints
and the environmental processes for which models were previously discussed. The environmental constraints
are de�ned using the planner entry format with position, velocity, and size attributes and may include soft
and hard boundaries and obstacles. An example constraint environment (with unused planner attributes
omitted for brevity) is presented in tabular form in Table:2 and graphically in Fig. 5.

Table 2: Planner Environment Description

Type Position Velocity Dimension Description

CBH;1 Hard Boundary (0,0,0) (0,0,0) (500,500,100) �Shore Line�

CBS;1 Soft Boundary (0,0,0) (0,0,0) (400,400,500) �Advised Airspace�

COH;1 Hard Obstacle (-100,200,0) (-10,20,0) (15,15,15) �Boat�

COH;2 Hard Obstacle (20,20,0) (0,0,0) (3,3,4) �Buoy�

COH;3 Hard Obstacle (250,-300,0) (0,0,0) (150,150,5) �Reef�

COS;1 Soft Obstacle (100,-200,0) (1,-1,0) (50,50,0) �Oil Slick�

COS;2 Soft Obstacle (-100,-100,0) (0,-1,0) (30,30,0) �Algae Bloom�

Flying Fish missions are speci�ed in much the same way as any UAS except that there are a number of
vehicular and environmental considerations that uniquely impact the missions and operations of an energy-
harvesting seaplane. Perhaps the largest di�erence, as previously discussed, is that Flying Fish cannot
be assumed, a priori, to have a terminal mission plan; Flying Fish must continue to create, select, and
�y goal-satisfying missions inde�nitely to survive. The second major consideration for a seaplane UAS is
that while operation over the ocean provides several clear operational bene�ts it also imparts several added
challenges for mission planning. If surface obstacles are momentarily ignored it can be argued that the
ocean provides during a given �ight pro�le: 1) an e�ectively in�nite landing surface, with 2) little to no
air tra�c, and 3) easily avoided surface tra�c. Unfortunately the near in�nite surface of the ocean is: 1)
continuously changing shape, 2) subject to harsh environmental conditions, and 3) provides no guaranteed
stationary loiter point on the water. From this last condition alone we �nd that signi�cant mission activity
may arise just from the speci�cation of a hard or soft boundary. Environmental disturbances will naturally
result in the traversal of most any �xed region on the water and subsequently require routine �ight to avoid
constraint violation. If solar-energy collection is also considered, the boundary-constraint mission results in
the selection of surface goals that maximize the drift time across the constraint region in order to maximize
energy collection. In general, a solar-power seaplane UAS planner must maximize energy recovery which will
most often be accomplished by maximizing time spent in the lowest energy state (drift). Finally the planner
must maintain awareness of system energy levels and respect the limits of the system capacity; no more
energy can be harvested than the batteries can store nor can more energy be expended than the system can
supply. As a result we ultimately de�ne the Flying Fish mission as the satisfaction of zero or more surface
goals !S;i and zero or more airborne goals !A;i subject to the set of all vehicle and environmental constraints.
An example set of goals are given in Table 3 and are also graphically represented in Fig. 5.

Table 3: Planner Mission Description

Type Position Vel. Att. Dim. Priority Value Description

wS;1 Surface (-250,-250,0) - - - 8 0 �Point of Interest�

wS;2 Surface (-300,-50,0) - - - 7 0 �Point of Interest�

wS;3 Surface (300,100,0) - - - 8 10 �Point of Interest�

wA;1 Airborne (250,300,20) - - - 8 0 �Point of Interest�

wA;2 Airborne (-250,200,20) - - - 8 0 �Point of Interest�

wA;3 Airborne (100,-200,20) - - - 8 0 �Point of Interest�
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Figure 6: Expansion of All Possible Mission Trajectories

Given a constrained environment, mission description, and estimation models a planner can be enacted
on the set of all possible mission plans to determine the best set of actions to take over the course of a single
�ight operation and ultimately over the course of a daily mission plan. A number of steps must be performed
at each planning stage. First the planner assembles the combinatorial set of all waypoint sequences starting
from the current drift location (including waypoints generated for constraint avoidance) and ending at a
surface goal. Any sequence of waypoints that includes multiple surface goals or that has surface goals in the
middle of a sequence are eliminated because each landing marks a new planning stage. For each remaining
waypoint sequence the models discussed in section II are applied to develop �ight trajectories satisfying each
set of waypoints (Fig. 6). The models subsequently yield �ight time (Tk) and energy expended (Ecost;k)
over each path. The planner then uses the models to estimate the amount of energy that can be recovered
(Ercvr;k) on a subsequent drift from each terminal waypoint. The planner assumes that the recovered energy
is the lesser of either the energy available from drifting to the boundary (Ercvr;k) or the total energy that
the vehicle can store (Emax � Ecurrent). Given the energy cost and recovery associated with each path the
planner computes the utility (Uk) of each mission, given the a set of weights f�V ; �B ; �Cg and the mission
waypoint values (�i):

Vk = �i(�i) (11)

Bk = min(Ercvr;k; (Emax � Esys)) (12)

Ck = Ecost;k (13)

Uk = �B �Bk + �V � Vk + �C � Ck (14)

At every stage of planning a �no operation� (no-op) action exists wherein the planner may elect to drift until
a boundary is encountered (or the system energy becomes full). The utility of the no-op mission (Eq. 14)
assumes zero cost (Cno�op = 0) and zero value (Vno�op = 0) but has an energy-recovery bene�t as de�ned by

8 of 12

American Institute of Aeronautics and Astronautics



Eq. (12). The mission with the highest utility is selected by a �greedy� best-�rst search algorithm and the
planner advances to the end of this highest-utility mission. The planner then repeats this process expanding
the set of all waypoints starting from the new location until an entire day of missions have been planned.
Alternate search strategies may also be employed to ensure, or increase, the optimality of the result, but
the best-�rst search is a reasonable starting point to develop a complete daily-mission plan before mission
actions are required.

IV. Results

Figure 7: COA Operating Region - Douglas Lake

Using the above planning and modeling infras-
tructure a number of planning problems were pro-
cessed. All plans were developed for the Flying Fish
FAA Certi�cate-of-Authorization (COA) test site in
North Michigan where the system is deployed from
the University of Michigan's biological station into
the Fishtail Bay region of Douglas Lake (Fig. 7). All
�ight plans are constrained to the con�nes of Fish-
tail Bay. The solar model uses the clear-sky solar
conditions projected for Douglas Lake on the �rst
day of the conference to which this paper has been
submitted: 29 March 2011.

The �rst critical test is to see if solar condi-
tions are su�cient for overnight survival. The plan-
ner is initialized with no �xed exploration goals, a
soft constraint providing 50m clearance from the
shore, and a hard constraint that marks the shore-
line. The planner starts with a fully charged system
(~3200kJ) and plans from one minute after mid-
night for two consecutive days of operation. The re-
sulting plan (Fig. 8a) accommodates the boundary
constraints with a series of �ights that either maxi-
mize energy-recovery potential or minimize energy-
collection waste. The resulting balanced energy budget is shown in Fig. 8b. Notably, mission utility values
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Figure 8: Boundary Maintenance Mission

will indicate �ight operations whenever the vehicle batteries become full which is not necessarily a long term
best-practice strategy. For the given location and time of year a sustainable plan can be found for moderate
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winds but persistent winds in excess of 10m/s can imbalance the energy budget by increasing the cost of
upwind �ight and rate of downwind drift. Under di�erent solar conditions higher winds can be tolerated.
For example, solar conditions at Douglas Lake in June would provide ~20% more energy and a deployment
closer to the equator could provide another ~10% improvement with more favorable solar incidence angles.

Given that a balanced energy budget was achieved with the basic mission pro�le a more advanced
mission was attempted. The second plan was initialized with the same conditions and constraints as the
base mission with the addition of a stationary surface exploration goal. The second plan (Fig. 9a) produced
another balanced daily energy budget (Fig. 9b) while visiting the exploration goal as many as 100 times in
a two-day plan. Here again plan viability is subject to the accuracy of the environmental measurements. A
dramatic reduction in solar insolation or increase in wind speed can tip the balance of the energy budget
away from sustainability.

In order to test the system against a more challenging planning problem a set of multiple surface and
airborne waypoints were combined with the base mission constraints and another two-day plan was developed
(Fig. 10a). In this �nal case the value given to exploration in combination with the limitations of the greedy
search resulted in system energy sacri�ces and an imbalanced energy budget (Fig. 10b). Here the value of
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Figure 9: Boundary Maintenance + Surface Goal Plan
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Figure 10: Multi-Goal Plan
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exploration becomes a critical factor as the time between visits grows for growing numbers of goal points and
the increased average exploration incentive leads the planner to trade energy for goal satisfaction. Further,
with increasing numbers of goal waypoints the combinatorial set of all mission paths grows exponentially
and the likelihood of the best-�rst search �nding the optimal path decreases.

V. Conclusion

This paper has described a comprehensive set of system and environmental models that can be used
to estimate and optimize the performance of an energy-harvesting seaplane UAS. A summary of the types
and variety of loads that a seaplane UAS must manage and the general challenges and bene�ts involved
with open-ocean operation have been presented. A planning infrastructure has been described and the
models and planner together have been shown capable of providing viable multi-day mission plans for a
variety of pertinent seaplane UAS operations. A major goal satis�ed by this work is the determination
of overnight-survivable plans for the baseline constrained-operating-region mission as well as the extended
basic exploration mission. The infrastructure of this planning system can now be leveraged to determine
reasonable operational limits for an energy-balanced vehicle deployment.

The planner will next be applied to di�erent operating regions, solar conditions, wind/drift speeds, and
mission goals to characterize vehicle and planner limitations. There is also room in the model/planner
infrastructure to increase accuracy and �delity and to broaden the planner's capabilities. Key updates will
include alternate search mechanisms for planning optimality and precise curved trajectory integrations. It
might also be bene�cial to explore alternate mission valuation mechanism. If an alternate valuation could
be found that gives a better indication of the long-term utility of a mission the best-�rst search results could
be improved without dramatically longer planning times. Valuations currently under consideration include
mission segment duration and average rate of energy change, both of which might be used to increase the
value of missions that will have higher energy harvesting potential.
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