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An integrated computational framework for textile polymer composites is introduced.
A novel polymer curing model is used in connection with modeling the manufacturing pro-
cess of textile composites. The model is based on the notion of polymer networks that are
continuously formed in a body of changing shape due to changes in temperature, chem-
istry and external loads. Nonlinear material behavior is incorporated through nonlocal
continuum damage mechanics that preserves mesh objectivity in calculations that go be-
yond maximum loads. The integrated model is applied to the curing of plain weave textile
composites made from carbon �ber tows and EponTM862 resin. The mechanical and chem-
ical properties are measured during curing using concurrent Brillouin and Raman light
scattering. It is shown that signi�cant stresses can develop during cure. The e�ect of these
stresses on the manufactured part performance, when subsequent service loads are applied,
is evaluated and a reduction in ultimate load, in agreement with experimental observations,
is observed.

Nomenclature

A Area, m2

Ad Damaged area, m2

A1; A2 Frequency constants, 1/s
C Sti�ness tensor, Pa

D Damage
D(t; s) Damage at time t in network created at time s
E Elastic modulus, Pa
F Force, N
�E1;�E2 Activation energy, J/mol
Hr Heat of reaction, J
K Bulk modulus, Pa
M Plane wave modulus, Pa
R Gas constant, J/mol/K
T Temperature, K
T Traction, Pa
�V Activation volume, m3/mol
c Speci�c heat, J/kg/K
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e Energy, J
k1; k2 Arrhenius type functions
‘ Length scale parameter, m
m;n Fitting constants for curing law
p Pressure, Pa
qi Heat 
ux, W/m2

r Heat source, W
s Time of network creation, s
t Current time, s
xi Spacial coordinate, m
� Linear coe�cient of thermal expansion, 1/m
� Parameter related to strain, used to �nd �
� Nonlocal parameter
"ij Strain
"c Curing strain
� Thermal conductivity, W/m/K
� Per-network shear modulus, Pa
� Degree of cure
� Density, kg/m3

�ij Stress, Pa

I. Introduction

Textile composites manufactured from carbon �ber tows and epoxy matrix are �nding wide use in
aerospace and other industrial applications. Such composites include 2D and 3D woven and braided com-
posites comprised of glass or carbon �ber and polymer matrix. In woven composites, the �bers are combined
into �ber tows consisting of thousands of individual �bers. These �ber tows are woven or braided using
many di�erent weaving patterns. Of interest in this study are 2 dimensional, triaxially braided composites
(2DTBC).1{5 In 2DTBC, bias tows are braided at an angle to an axial tow. What makes woven composites
an interesting material for engineering applications is their increased fracture toughness compared to pre-
preg and stitched composites due to the lack of a clear path for a macroscopic crack to progress. Due to
an undulating textile architecture, cracks progressing in the matrix can be arrested at intersections of �ber
tows. Thus, textile �ber composites are of great interest in the design of crashworthy vehicle structures.

Textile composites o�er the added advantage that high volumes of parts can be manufactured at relatively
reduced costs. In addition, textile preforms can be used for net-shape manufacturing which can lead to
reduced part count. During the manufacturing of a composite part from textile fabrics, the dry fabric is
placed in the mold and than the liquid resin is inserted into the mold afterwards using resin transfer molding
(RTM) process. The wetting of the �bers may be aided with the help of vacuum. The corresponding process
is called Vacuum Assisted Resin Transfer Molding (VARTM). Here, a vacuum is created inside the mold.
Liquid epoxy resin is ejected through one or several ports on one side of the mold and pulled to other
ports that are used to create the vacuum. RTM and VARTM can be performed at room temperature, thus
eliminating the need for an oven and allowing to manufacture large parts such as wind turbine blades.

The design process with these materials remains challenging. Material properties need to be identi�ed
and the response up to and including failure needs to be investigated properly. During the characteriza-
tion process of such a composite, Song et al.2 have noted that e�ective overall composite 2DTBC material
properties are not in agreement with properties based on calculations with individual \virgin" constituent
properties. The experimentally observed maximum service loads were found to be signi�cantly lower com-
pared to computational predictions. This disagreement has been attributed to changes in the state of the
matrix due to curing in the presence of �bers. These changes are due to a mismatch in the thermal coe�cient
of expansion, cure shrinkage of the epoxy and thermal gradients causing di�erent rates and degree of cure
throughout the curing volume of matrix material. Stresses are present at the end of cure that may reduce the
margin of load that can be applied to the part before the onset of inelastic response and failure. To capture
the correct stress state of the resin inside the fully relaxed (no external load applied) composite, attempts
have been made to measure the \in-situ" matrix properties.4,6 Here the material is treated to be stress free
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after cure and prior to loading, but e�ective or equivalent material properties are subsequently adopted. The
\in-situ" properties are extracted using an inverse modeling approach. The idealized complex geometry of
the textile composite is created in a �nite element (FE) model. Then the material properties of the matrix
material in the computational model are altered until the simulation results agree with the experimental
results of a suitable coupon level test. Such an approach is suitable to investigate the response of a speci�c
textile composite, and to obtain the \in-situ" material properties. However, this inverse modeling procedure
to �nd the \in-situ" properties has to be repeated each time the properties of the textile composite and
parameters of the curing process are changed.

In this paper, an integrated computational modeling approach that considers the textile composite manu-
facturing process and its subsequent service is presented. The only composite properties used in the numerical
model is the geometry. Material properties of �ber and matrix material including the evolution of material
properties of the matrix during cure are found from the constituents individually. As in previous studies
that investigated the cure of epoxy resins, it is necessary to include various physical concepts to properly
determine the importance of the various curing parameters. The curing of epoxy is a highly exothermic
reaction7{9 that can lead to appreciable temperature gradients in thick composites. The chemical evolution
is tightly linked to the temperature and �nally the evolution of stresses and material properties of the bulk
composite depends on both the temperature history and curing history of the resin.

In developing a model for the cure generated stresses, the possibility of matrix failure during cure and prior
to the onset of service load application must be considered. The computational models for failure prediction
employed in the past can roughly be divided into two categories. On the one hand macroscopic cracks and
failure have been captured through the use of discrete cohesive zone models (DCZM).10,11 These models
usually require a-priori knowledge of the intended crack path. The other major model to capture failure
is the continuum damage model (CDM).12,13 In CDM, micro cracks and voids are not explicitly modeled.
Instead damage due to microstructural changes are accounted for in an average sense by degrading material
properties. CDM models do not predict the formation of macroscopic cracks. On the other hand, when
modeling failure with CDM, the location where damage will occur does not need to be known. Therefore,
CDM within a nonlocal computational framework is employed to model failure of epoxy during and after
cure.

Finally, it is noted that the curing process can produce self-equilibrating internal stresses within the
material. If the process is modeled and understood properly, then the desired internal stress state can
be "designed" so that subsequent part performance is optimized. Such an approach has precedent in the
manufacturing process of auto-glass, where compressive surface stresses are \built-in" by tailoring the manner
by which the cooling process is controlled, as shown in the pioneering work by Lee et al.14 In that work, it
is shown that di�erent cooling rate histories can produce undesired surface tensile stresses, which if present,
can accelerate the propagation of surface 
aws like cracks, when tensile service loads are experienced. In
this paper, a novel model is introduced to capture the e�ects of the manufacturing process on the state of
the cured matrix within a plain weave composite. This model is used to evaluate the mechanical response
of the plain weave composite when subjected to service loads. The maximum applicable service load is
dependent on the curing related properties of the polymer matrix material. The holistic computational
modeling procedure introduced here (manufacturing and subsequent service loads) shows the need for an
approach that integrates materials science and engineering, leading to the title of this paper - \integrated
computational materials science and engineering of textile polymer composites".

A. Related Past Work

1. Mechanical properties of textile composites

The mechanical properties of textile composites have been extensively studied in the past and a summary
can be found in the work by Song.1 Early investigations were aimed mostly at predicting elastic properties
of plain weave composites.15{19 The onset of inelastic response of plain weave composites was considered
by Karkkainen and Sankar.20 They constructed the failure envelope of a plain weave woven unit cell and
noted a close relation to the Tsai-Wu failure criterion.21 Whitecomb and Srirengan22 investigated progressive
damage of plain weave composite. They used a static �nite element simulation to determine the locations of
largest stress and failure onset. At these points the material properties were modi�ed and a new equilibrium
state was calculated. This process was repeated until no further damage occurred and the global strain was
increased until the next onset of damage.
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Recently, the elastic properties and failure response of 2D triaxial braided composites (2DTBC) received
considerable attention. Quek et al.23 developed an analytical model to predict the sti�ness of 2DTBC. Each
tow was �rst modeled as a transversely isotropic material, where the e�ective elastic material properties
were determined using the concentric cylinder model (CCM). Then the undulating tows were idealized
as sinusoidal waves. To calculate compression response, a �nite element analysis of a representative unit
cell was performed that included both, geometric and material non-linearities.24 The �ber material was
treated as an elastic material and the epoxy matrix was modeled using elastic-plastic stress-strain relations
and incremental J2-
ow theory of plasticity. Song and co-workers investigated the compressive response of
2DTBC experimentally and through �nite element simulations.1{5 The �nite element model used was of
an idealized representative unit cell (RUC) consisting of �ber tow and matrix. The �bers were treated as
elastic and the matrix material was treated as plastic or plastic-damaging. The resulting nonlinear �ber tow
behavior was modeled using Hill’s theory of anisotropic plasticity.25

2. Cure of epoxy resin and composites

Manufacturing induced e�ects have usually been studied in the context of cure induced stresses and potential
failure during cure. Rabearison et al.26 give an example of how gradients in cure develop in a thick carbon
epoxy tube and subsequently cause defects such as cracks. Rabearison et al. than developed a numerical
model for curing of an epoxy. They calculate the curing of the epoxy in a glass beaker and conclude that
stresses large enough to cause cracks are developed during the curing process. In a similar fashion Corden et
al.27 have developed a curing model to predict the residual stresses in thick resin transfer molded laminated
cylinders. They identi�ed chemical shrinkage due to cure as a major contributing mechanism for stress build
up as they cured all parts at room temperature. During the experimental validation of the results with
di�erent laminate layouts it was noted that interlaminar cracking can occur due to di�erential shrinkage.
Plepys and Ferris28 noted the creation of cracks during isothermal cure of three-dimensionally constrained
epoxy resin in a glass cylinder. Chekanov et al.29 have identi�ed di�erent defect types that may occur
during the constrained cure of epoxy resins. At high temperature, cohesive defects intersecting the resin
were observed, at medium temperatures uneven voids were found and at low temperatures zigzag defects
and cohesive smaller defects were seen.

Besides stress generation and possible cracking during cure, geometric tolerances are another important
issue that needs to be considered. For example, a thick composite may be cured on a metal tool with two
perpendicular side faces to give an L-shaped composite part. Upon removal of the part from the mold,
a \spring-in" can be observed. Here, the two sides of the L-shaped part bend inwards giving a smaller
angle than the anticipated 90�.30{33 Equivalently, when a composite part is cured on a 
at tool, bending
or warpage can be observed due to thermal gradients and residual stresses build up during cure.34{36 The
dimensional accuracy and stress generation in woven composites has been studied in the context of woven
circuit boards.37 Proper knowledge of curing induced distortion can be used to design a mold that will
compensate for such e�ects, as demonstrated by Capehart et al.38

Studies that investigate the curing process of composites are commonly broken down into two parts:
chemical reaction, heat generation and heat conduction, and, the evolution of stress and development of
structural integrity. In order to understand and optimize the manufacturing process both issues must be
understood well. The temperature �eld is usually modeled using the standard heat equation and Fourier’s
law. The cure kinetics are usually modeled using a phenomenological model proposed by Kamal.39 The
evolution of stress on the other hand is modeled through a variety of approaches. Plepys and Farris28 and
Plepys et al.40 used incremental elasticity to describe the evolution of stresses and elastic properties as a
function of cure. They assume that during each time increment, the stress increment is related to the strain
increment as a linear isotropic elastic relation with a changing modulus as a function of cure. Bogetti and
Gillespie41 used a linear mixing rule based on degree of cure, elastic modulus of uncured and fully cured
resin moduli and a parameter to quantify stress relaxation and chemical hardening. Another material model
often used involves linear viscoelasticity.42{45 Here the evolution of the cure dependent and therefore time
dependent material properties was modeled with the aid of integral constitutive equations found in linear
viscoelasticity. A more sophisticated model has been proposed by Adolf and Chambers46 using non-linear
viscoelasticity. However, such a model with its large amount of parameters also requires extensive validation
and experimental investigation.47 The approach that will be used in this study is based on previous work by
Mei et al.48 and Mei,49 who investigated solidi�cation of epoxies using a novel network forming model where
networks are continuously created in a new reference con�guration as cure progresses and each network had
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di�erent visco-elastic material properties.
With the di�erent curing and stress generation models presented, various studies have been performed to

optimize aspects of the curing cycle. Li et al.50 solved a coupled thermal and chemical problem to investigate
an optimal curing cycle for thermoset matrix composites that was optimized for low curing time, but limiting
the maximum temperature found in the epoxy. White and Hahn36 optimized the curing process to reduce the
residual stress in a composite part using a three-step curing cycle. Gopal et al.51 also aimed for a reduction
in residual stress, but they only used a two step curing cycle. Finally, Zhu and Geubelle52 investigated the
sensitivities of the curing process parameters on the dimensional accuracy of L-shaped composite parts.

II. Material Model

The speci�c material of interest is a 2DTBC made of EponTM862 resin and carbon �bers. During the
manufacturing process, the un-wetted �bers are placed in a mold and a resin-hardener mixture is applied.
The mold is then compressed and kept at a prescribed boundary temperature. To fully understand the
manufacturing process, several physical e�ects have to be taken into consideration.

A. Heat Conduction and Curing

The curing of an epoxy is a highly exothermic chemical reaction (see, for example, studies regarding DSC of
epoxy7{9). The degree of cure is often measured by placing a small sample in a digital scanning calorimeter,
maintaining the sample at a constant temperature and measuring the heat that is generated during cure.
Denote the heat generated by H(t) and the degree of cure by �(t), both at time t. The degree of cure is
de�ned by39

�(t) =
H(t)

Hr
; (1)

where Hr is the total heat that is generated. Thus, �(t) monotonically increases from � = 0, at the uncured
state, to � = 1, at the fully cured state. Note that the rate of heat generation per unit mass is

r =
d (Hr�)

d t
: (2)

The process is modeled by a curing kinetics equation of the form

d�

d t
= f(T; �); (3)

where T is the temperature and f(T; �) � 0. Kamal39 has suggested that f(T; �) be given by,

f(T; �) = (k1(T ) + k2(T )�m) (1� �)
n
; (4)

k1(T ) = A1 exp

�
��E1

TR

�
; (5)

k2(T ) = A2 exp

�
��E2

TR

�
; (6)

in which m and n are constants, R is the gas constant, A1, A2 are frequency like constants and �E1, �E2

are activation energies. Choices for m, n, k1(T ) and k2(T ) for various epoxy-curing agent systems have
appeared in the literature. In applications, equation (3) is used to describe the curing process even when
the temperature varies with time.9

In a curing structural composite, there is both local heat generation due to curing and heat conduction
due to the presence of an external surface or along �bers. This process is governed by the local form of the
�rst law of thermodynamics,53,54

�
d e

d t
= � @qi

@xi
+ �r + �ij

d

d t
"ij (7)
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where e is the internal energy per unit mass, � is the current mass density, qi are the components of the
heat 
ux vector, r is the rate of heat supply per unit mass, �ij are the stress components and "ij are the
components of the in�nitesimal strain tensor.

For the applications considered here, the rate of mechanical work, �ijd "ij=d t, is assumed to be negligible
and the internal energy is assumed to be proportional to temperature, e = cT . The heat 
ux vector is related
to the temperature gradient by the Fourier law of heat conduction,

qi = �� @T
@xi

; (8)

where K is the thermal conductivity. It is possible that the thermal conductivity depends on the degree of
cure and the temperature, i.e. K = K(T; �) . Equation (7), with (2), (8) and these assumptions, becomes

�c
@T

@t
=

@

@xi

�
�(�; T )

@T

@xi

�
+ �Hr

@�

@t
: (9)

Equations and (3),(4) and (9) form a system of coupled nonlinear partial di�erential equations for the
spatial distribution and time variation of temperature, T (x; t), and degree of cure, �(x; t).

B. Stress Development

To develop an understanding of the stresses and deformations during polymer cure, a network model of a
polymer will be adopted. The networks interpenetrate each other, i.e. they occupy the same volume. On
the other hand the assumption is made that they do not interact with each other.

A second assumption is related to the interaction of the di�erent physical e�ects mentioned earlier: heat
conduction, chemical change and mechanical response. Curing of epoxy resins is often done under pressure.
This has in
uence on the rate of cure and can be taken into account. Ramos et al.55 measured and modeled
the cure kinetics and shrinkage for a DGEBA/ MCDEA epoxy system. The reaction rate was investigated
over a range of 200-600 bar pressure and a shift in reaction rate was noticeable. For this kind of analysis,
where the stress and chemical composition depend on each other, the term mechanochemistry has been used
in the past.56 Ramos et al.55 suggested to augment equations (5) and (6) such that:

ki(T; p) = Ai0 exp

�
��E1

TR

�
exp

��
��V

TR
+

1

V

@V

@p

�
(p� p0)

�
; i = 1; 2 (10)

where �V is the activation volume and p is the pressure. The dependency of rate of cure on temperature
is signi�cantly stronger than on pressure in the range 1-140 bar, which is observed during the curing process
in the mold.57{59 Therefore, the dependency on pressure will be ignored. It is also desirable to separate the
thermo-chemical problem from the mechanical problem from a numerical point of view. This leads to a one
way coupling. The temperature and chemical composition are independent of stress state but the stress state
depends on the degree of cure through evolving material properties and on temperature through thermal
expansion.

In what follows, a model for stress evolution that incorporates the notion of networks forming and
contributing to evolving sti�ness is derived for a 1D model and then generalized to three dimensions. The
creation of the epoxy networks as curing evolves is depicted in �gure 1.49 Initially, hardener and epoxy resin
are in a liquid state. They are mixed and poured into a mold with the �bers. Immediately after mixing,
the pure epoxy resin starts reacting, building connections and cross links. At some time t1 the �rst network
forms. It is assumed, that it forms in a stress free con�guration. The forming of the network is accompanied
by some shrinkage due to cure. There also might be additional strain due to changes in temperature and
externally applied loads. At some later time, t2, another network forms. This network has a di�erent stress
free reference con�guration. Even later, a new network forms at time t3. Its stress free reference con�guration
is di�erent than the one from the networks formed at time t1 and t2. Because all networks occupy the same
volume, their current con�guration is the same. On the other hand their stress free reference con�guration
is di�erent. As a result, the stress state in each network is di�erent. The sum of all stresses within the
networks is such that it balances out all externally applied stresses.

Figure 2 depicts the formation of networks as one dimensional springs. The derivation is similar to the
ones given by Mei49 and Hossain et al.60 A network forms at time t1 and might experience some external
strain due to external load. The response of the network is assumed to be elastic. The stress �(t; s) at time
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Figure 1. A schematic of the forming of networks as curing evolves
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t in a network created at time s is proportional to the mechanical strain "mech(t; s) relative to its stress free
reference con�guration multiplied with the elastic modulus E(s) associated with that network.

�(t; s) = E(s)"mech(t; s): (11)

The total strain at time t in the network formed at time s is the sum of all incremental strains since its
creation. This is the same as the mechanical strain including thermal e�ects and shrinkage e�ects. �"(ti) is
the increment in total strain from time ti�1 to time ti.

"(t; s) = �"(s) + �"(s+ �t) + � � �+ �"(t) (12)

= "mech(t; s) + �(s)�(T (t)� T (s))� "c(s) (13)

Here, "c(s) is the cure shrinkage strain of the network formed at time s. The sign of "c(s) is positive
when it decreases the strain. The stress in network 1 created at time t1 is given by:

�(t1; t1) = E(t1)(�"(t1) + "c(t1)� �(T (t1)� T (t1))) (14)

Curing strains begin to impact each network, after it is formed. Strains due to external loads and
temperature di�erences have to be accounted for at all times. The stresses in network 1 and 2 at the
formation time of network 2 are given by:

�(t2; t1) = E(t1)(�"(t1) + �"(t2) + "c(t1)� �(T (t2)� T (t1))) (15)

�(t2; t2) = E(t2)(�"(t2) + "c(t2)� �(T (t2)� T (t2)) (16)

Furthermore, in the next step, the total strains of the reference con�guration change by the amount �"3

after network 3 is created:

�(t3; t1) = E(t1)(�"(t1) + �"(t2) + �"(t3) + "c(t1)� �(T (t3)� T (t1))) (17)

�(t3; t2) = E(t2)(�"(t2) + �"(t3) + "c(t2)� �(T (t3)� T (t2))) (18)

�(t3; t3) = E(t3)(�"(t3) + "c(t3)� �(T (t3)� T (t3))) (19)

Each network is weighted to contribute to the total load carrying capability in a \rule of mixtures" sense.
During the creation of each network, the overall epoxy has cured by an amount of ��(ti) = �(ti)� �(ti�1),
where, � denotes the degree of cure as de�ned by equation (1). In the following, it will be assumed that an
equivalent interpretation of the degree of cure � is given by

�(t) =
mass cured at time t

total mass of material that can cure

= mass fraction of cured material

d� = mass fraction cured during the time interval from s to s+ d s

The total stress in the epoxy at time tN is given by:

�tot(tN ) =

NX
i=1

��(ti)�(tN ; ti) =

NX
i=1

��(ti)E(ti)

0@"c(ti)� �(T (tN )� T (ti)) +

NX
j=i

�"(tN ; tj)

1A (20)

The tot subscript will be omitted in the following, when it is clear that the total stress is meant. When
taking the limit of the above equation, the sums can be converted into integrals:X

��!
Z

d� and
X

�"!
Z

d "
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Figure 2. Forming of 1D networks, shown schematically

The discrete quantity "c(ti) represents the curing strain in the ith network formed at time ti. It’s
continuous equivalent is "c(s), the cure shrinkage in the network formed at time s. Equivalent expressions
exist for the material properties E(tN ) ! E(s) and �(tN ) ! �(s). With these substitutions, the stress up
to a certain amount of cure, represented by the cure fraction, � is given by:

�(�) =

Z �

0

~E(�)

 
"c(�)� �(T (�)� T (�)) +

Z "(�)

"(�)

d "

!
d� (21)

=

Z �

0

~E(�) ("c(�)� �(T (�)� T (�)) + "(�)� "(�)) d� (22)

The degree of cure �(s) increases monotonically with time which allows for the substitution, d� = d�
d s d s:

�(t) =

Z t

0

d�

d s
E(s) ("(t)� "(s) + "cure(s)� �(T (t)� T (s))) d s (23)

The elastic modulus E(s) depends directly on the degree of cure, and indirectly on time, by E(s) = ~E(�(s)).
The above equation can be generalized to three dimensions:

� =

Z t

0

d�

d s
1
h
K(s)tr

�
"(t)� "(s) + "c(s)� 1�(s)�T (t; s)

�
(24)

+2�(s)

�
"(t)� "(s) + "c(s)� 1

1

3
tr
�
"(t)� "(s) + "c(s)

���
+(1� �(t))Kliqtr("(t)� 1�liq�T (t))1

where K is the per-network bulk modulus, � is the per-network shear modulus and � is the linear
coe�cient of thermal expansion of each network. The notation, (:) indicates a second order tensor. The last

term in the equation is due to the fact that a liquid can hold compressive volumetric stresses.
The tensor quantity "

c
(s) describes the cure shrinkage strains of each network. It is assumed that curing

only produces normal strains.

"c(s) =

264"c(s) 0 0

0 "c(s) 0

0 0 "c(s)

375 (25)
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"
c
(s) can be chosen such that macroscopically, a linear shrinkage as a function of degree of cure can be

observed.
It is noted that formally �(s); �(s);K(s) are functions of time. But actually they are a function of

cure, which has to be related to time, so that �(s) = ~�(�(s)), �(s) = ~�(�(s)), K(s) = ~K(�(s)) and
"c(s) = ~"c(�(s)). These material functions can be determined from experiments.

C. Development of damage

The material response developed thus far is linear elastic upon full cure. It can therefore serve as a guide to
curing conditions that will lead to small or large residual stresses, but it lacks the capability of predicting
non-linear response during cure or subsequently in service. It will be shown that the epoxy in a composite
can experience large stresses that can lead to damage in the form of cracks during the curing process.26,28

This is also depicted in �gure 3, which shows a cross section image of a carbon �ber and HetronTMresin
tow.61 There is damage already present in the form of cracks in the composite just after cure and prior to
application of mechanical loads. Therefore, it is important to extend the model to allow for the possibility
of damage (non-reversible e�ects) to occur during the process of curing.

Figure 3. Crack in composite due to excessive stresses during cure

1. Damage in continuum mechanics

There is a multitude of ways to incorporate damage and failure into a material model. Classical small strain
plasticity o�ers a convenient framework but with several drawbacks. The unloading slope of a plastically
deformed \classical" solid will be proportional to the loading slope, as shown in �gure 4(a). That means,
the elastic properties are not altered in classical plasticity. Also, classical plasticity models are usually not
capable of \ending" a stress-strain law. That means, continued loading will not lead to a decrease in stress,
but will lead to continued 
ow, either with increasing stress (hardening) or constant stress (prefect plasticity).
The most important consequence of damage is the reduction in sti�ness (and/or stress) with continued
deformation. Models that incorporate reduction in stress beyond a peak stress are termed \softening" stress-
strain laws. Naturally, these laws will need to accommodate a negative tangent sti�ness in the stress-strain
response as schematically shown in �gure 4(b).

The physical signi�cance of continuum damage mechanics can be explained both for metals and for
polymers.62 In metals the damaging process might be regarded as the nucleation of microscopic cracks and
voids. With increasing strain these will grow, coalesce and eventually form a macroscopic crack. In rubbery
polymers on the other hand, damage can be seen as the rupture of polymer chains. Continued damage leads
to continued breakage of bonds and therefore loss of sti�ness. The earliest work in the area of continuum
damage mechanics is usually attributed to Kachanov (the translation can be found in63) who introduced an
internal variable to model creep failure. Rabotnov64 is attributed to giving physical meaning to the internal
variable, although there has been some debate about whether such a thing should be attempted.65 Let us
assume that damaged and undamaged load bearing cross sectional areas of a body are given by A and Ad
respectively as shown in �gure 6.66 Then the damage can be viewed as

D =
A�Ad
A

: (26)

If D = 0, the material is damage free. D = 1 corresponds to a fully damaged or ruptured body, i.e. it is
broken into two parts. Thus, 0 < D < 1, characterizes a partially damaged state. If one considers the force
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(a) Plastic material behavior (b) Softening material behavior,
including damage and plasticity

Figure 4. Comparison of plastic and damaging material behavior

Figure 5. Damage of polymer chains62

11 of 33

American Institute of Aeronautics and Astronautics



F acting normal to the surface A, the traction is given as T = F=A.67 Then, an e�ective traction is de�ned
by

T eff =
F

Aeff
=

T

1�D
; (27)

which leads, by the usual de�nition of stress and traction, T eff = � � n, to the e�ective stress

�
eff

=
�

1�D
: (28)

Using the linear elastic constitutive behavior, the relation between the stress and strain in the undamaged
and damaged material, respectively are given by

� = C : " (29)

�eff = Ceff : " (30)

This leads to the e�ective sti�ness

Ceff = (1�D)C (31)

Figure 6. The e�ective stress concept13

With that, the �nal constitutive equation is given by

� = (1�D)C : " (32)

It should be noted that implicitly the assumption has been made that damage can be described by a
scalar value. Furthermore, this scalar measure of damage D does not need to be monotonically varying with
stress and/or strain. For example, it can be speci�ed as a function of both, stress and strain in the form
of a lookup table based on experimental observation. However, in this work it is assumed that the values
of D must conform to a reduction in sti�ness with continued loading. That means, material healing is not
allowed. Since D is a scalar, the hypothesis of isotropy has been used. It simpli�es calculations signi�cantly
but higher order expressions have been developed before.13

2. Strain softening behavior

In what follows, the material constitutive law, (32) will be used. That is, it will be assumed that a uniaxial
stress-strain curve of the type shown in �gure 7 has been provided as material data. It will be assumed
that the post-peak response is solely due to damaging behavior. Thus, the model development will be for
an elastic-damaging solid, whose uniaxial stress-strain response is described in �gure 7.

It is often pointed out that a negative slope in the post-peak regime is physically not possible. It implies
an imaginary speed of sound.68 However it can be argued that the observed result is the combined response
of structural changes of a representative volume of material in which voids and cracks form in a distributed
manner. An imaginary speed of sound is not the only problem intrinsic to this stress-strain formulation. A
loss of objectivity can be observed in numerical calculations that adopt any type of discretization scheme.68

When calculating a solution using �nite element methods, the result will be strongly dependent on the
mesh size.54,68,69 Here, we propose a nonlocal formulation that provides mesh objectivity in the numerical
solution.
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Figure 7. Softening stress-strain curve

3. Nonlocal material model - formulation

Since the response of a body that exhibits strain softening behavior cannot be successfully calculated using a
standard �nite element approach, a non-standard approach that uses a non-local material model is adopted.
In non-local models, it is assumed that the material response at a point is not only a function of the state at
that point, but also of the state of surrounding points. In nonlocal theories, the �eld quantities describing
the material response are replaced by their nonlocal equivalent through a volume averaging procedure, as,

�f(x) =
1

V

Z
V

w(x� �)f(�)d � (33)

Common choices for the weight function, w(x � �), include the Gauss distribution, the bell function70

and Green’s function.71 They are shown in �gure 8, and stated below.

wGauss = exp

�
�ndimr

2

2‘2

�
(34)

wBell =

8<:
�

1� r2

R2

�2

if 0 � r � R

0 if r < R
(35)

wGreen =
1

2‘
exp

�
�jrj
‘

�
; (36)

where, r is the distance between the point of interest, x, and the surrounding points, �, and it is called

the interaction radius. ‘ and R are measures of the internal length scale. Jir�asek and Ba�zant68 suggested
that ‘ = R=

p
7 in one dimension for the bell function. It should be noted that the choice of weighting

function is to some degree arbitrary. The weight function needs to yield the local solution �f = f when f(x)
is constant. Therefore

R
V
w(�)d � = V . It can also be noted that when the weighting function equals the

Dirac delta function, the local solution is obtained.
While nonlocal theories provide a theoretically sound way to incorporate a length scale into the equations

governing the material response, the practical implementation into FE codes is quite cumbersome. Standard
FE programs only require information at integration points or nodes. Further, information is only needed one
element at a time. In the case of nonlocal theories, information from further away is needed and information
from neighboring elements is required. Secondly, deriving and including boundary conditions is not a trivial
task either.72,73 It is therefore desirable to �nd a representation of the governing equations that is related
to the nonlocal continuum theory, but where variables in the �nite element formulation and assembly can
be done one element at a time and where boundary conditions can be applied in the classical way. To that
end, expand the �eld of some strain measure � spatially through a Taylor series,74{76

�(x+ �) = �(x) +r�(x)� +
1

2!
r(2)�(x)� 
 � +

1

3!
r(3)�(x)� 
 � 
 � + � � �+ 1

n!
r(n)�(x)�(n) (37)
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Figure 8. 1D normalized nonlocal weight functions;
R1
�1 w(r)d r = 1

with rn denoting the nth order gradient operator and �(n) is a dyadic product of n terms. Substituting
this into the de�nition of a nonlocal �eld (33) yields

�(x) = �(x) + c21r2�(x) + c42r4� + � � � (38)

c1 and c2 are expansion parameters. They have the dimension of length. Therefore in (37), a length scale
parameter is present. By retaining only low order terms, one obtains the simplest approximation to nonlocal
theory as,

�(x) = �(x) + c21r2�(x) (39)

Due to the symmetry of the weighting function only even terms are retained,77 leading to an explicit
second gradient formulation. The nonlocal variable depends explicitly on its local counterpart, which makes
the evaluation especially easy. However this formulation is less suited for �nite element implementation,
because it requires C1-continuity in the nonlocal variable. That means, that at the �nite element nodes,
the variable and its derivative need to be continuous. This is necessary to ensure that the second derivative
in equation (39) is evaluated with a non-trivial value. This type of formulation is well known from the FE
solutions of Euler-Bernoulli beam equations, where displacements and their derivatives have to be continuous.
The explicit gradient formulation has been used by Askes and co-workers78,79 to calculate the solution to
gradient enhanced damage mechanics in a bar. However their numerical implementation used element free
Galerkin solutions that has no requirements on continuity. Dorgan and Voyiadjis80 used explicit gradients
and a mixed �nite element formulation of the evolution of damage, and isotropic and kinematic plasticity to
calculate the formation of shear bands. It should also be noted that the explicit gradient formulation is only
weakly nonlocal. That is, the nonlocality is limited to an in�nitesimal volume. From a �nite element point
of view this means that information of the nonlocal �eld is only important with respect to the neighboring
elements and the exchange of that information is ensured by the C1-continuity requirement. Values from
elements further away are not important. To remove these restrictions, implicit nonlocal formulations can
be adopted.71,76,78,79,81,82 To that end, apply the second order gradient operator to equation (39). Then,

r2� = r2� + c21r4� (40)

r2� = r2� � c21r4� (41)

and insert the result into the original equation (39). Then,
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� = � + c21(r2� � c21r4�) (42)

Rename the constant c1 to ‘ to signify its meaning as an internal length parameter, rearrange and neglect
higher order terms to �nally �nd,

�(x)� ‘2r2�(x) = �(x) (43)

This is termed an implicit formulation, because the nonlocal �eld cannot be written anymore directly but
is instead implicitly stated through a di�erential relationship with the local �eld variable. While equation (39)
is weakly nonlocal, equation (43) is strongly nonlocal. The nonlocal �eld variable now depends on a �nite
neighborhood around it. This can also been seen from a �nite element point of view: like all elliptic partial
di�erential equations that are solved with an implicit FE scheme, the entire body has to be considered at
once. That is, all degrees of freedom of the FE formulation are solved for simultaneously. In the same
manner it is necessary to consider the entire local �eld in the body to �nd the nonlocal �eld. Peerlings et
al.71 have shown that implicit gradient models provide physically meaningful solutions when analyzing wave
propagation. The wave speed in a bar was bounded for nonlocal and implicit gradient models, whereas that
was not the case for an explicit nonlocal model. Note that during the derivation of the implicit gradient
formulation, the assumption was made that the characteristic length parameter ‘ is small. However, Peerlings
et al.71 have shown that the solution to equation (43) is identical to a nonlocal model when Green’s function
has been used as the weighting function. In that case there is no restriction on the length parameter ‘.
Physically a larger length parameter increases the volume in which damage will occur. It will smooth out
the transition from undamaged to damaged material because a higher weight is given to the derivatives.

Having obtained the de�nition of the nonlocal �eld variable, it is possible to restate the stress-strain
relationship of the damaging law in equation (32), as,

�(x) = (1�D (� (x)))C : "(x) (44)

The damage is now a function of the nonlocal strain measure, �, which may be either obtained through
the explicit or the implicit gradient formulation. As opposed to the damage, stress and strain are treated
as local variables. Pijaudier-Cabot and Ba�zant73 commented on this by stating that without any damage
present, the classical solution of elasticity should be obtained. A similar formulation has been used by
Challamel.83 However he used the nonlocal damage �eld D directly instead of evaluating the nonlocal strain
measure and then evaluating the damage locally as D(�).

4. Extension of nonlocal continuum damage model to cure of epoxy

In the following the ideas of continuum damage will be combined with the ideas of the network creation
during cure. Previously, every network was treated as a linear isotropic solid with unique elastic properties,
cure shrinkage, thermal expansion coe�cient and stress free reference con�guration. Now each network will
also have some damage D associated with it. Speci�cally, recall the stress-strain relation from equation (24)
and allow all networks to damage individually by pre-multiplying the per-network bulk modulus K(s) and
the per-network shear modulus �(s) with a damage term of the form (1�D(t; s)).

�(t) =

Z t

0

_�(s)(1�D(t; s))
h
K(s)tr

�
"(t)� "(s) + "c(s)� 1�(s)�T (t; s)

�
(45)

+2�(s)

�
"(t)� "(s) + "c(s)� 1

1

3
tr
�
"(t)� "(s) + "c(s)

���
+(1� �(t))Kliqtr("(t)� 1�liq�T (t))1

The damage parameter D(t; s) depends on the current state at time t as well as on the history at times
s. Speci�cally it depends on the nonlocal �eld variable �(t; s). The nonlocal �eld variable depends on the
local �eld variable through equation (43). That is,

�(t; s)� ‘2r2�(t; s) = �(t; s) (46)
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The nonlocal �eld variables at di�erent times in history are independent of each other. Each network
created at time s = ti, is independent from the network created at time s = tj . That means equation (46)
has to be solved for all histories 0 � s � t, leading to an in�nite number of equations. At this point another
problem regarding the numerical formulation of equation (45) should be mentioned: taking the integral with
respect to time becomes increasingly di�cult. In the absence of damage, it is possible to split up the integral
into di�erent terms and evaluate it using a running update. That means the integral could be divided into
parts only depending on the current state at time t and other parts that depend only on the history at
times s. This is not possible when damage is included. The dependence of damage on the current state as
well as the history makes it necessary to save the histories of stress, strain, cure, curing rate, temperature
and damage during a FE simulation. It should be noticed, that the integral only needs to be evaluated
during a �nite time interval, 0 < t < tcure. At the curing time, tcure, the curing process is regarded to be
complete. Mathematically, full cure is approached asymptotically. Therefore �cure = 95% has been chosen
for convenience such that tcure = t(� = �cure). At full cure the rate of cure is zero and the portion of the
integral relating to subsequent times will be zero, as well. It is now possible to numerically evaluate the
integral using for example the trapezoidal or Simpson’s rule. Here, the kernel of the integral only needs to
be known at selected time intervals 0 = t0 < t1 < t2 < � � � < tN = tcure. The amount of history information
saved needs to be stated prior to performing a FE simulation. On the other hand it is not known a priori
how and when full cure will be achieved. Therefore the curing process is divided into equal intervals with
respect to degree of cure. That is, if N time slots are allotted to save history information, the times are given
by t0 = t(� = 0) = 0, t1 � t(� = �cure=(1�N)), : : :, tN�1 � tcure. The time steps are chosen by the �nite
element program and generally do not coincide with the times when the prescribed curing stages are reached.
Therefore, the times when to save the history information do not usually follow entirely the desired even
spacing in degree of cure. Inherent to this proposed integration scheme is the assumption that during the
curing, the loading and boundary conditions are su�ciently smooth and not subject to oscillations, which is
true for any realistic curing and loading scenario.

Finally, the nonlocal �eld variable only needs to be determined at the times that are used to numerically
evaluate the integral. That is,

�(t; t0)� ‘2r2�(t; t0) = �(t; t0)

�(t; t1)� ‘2r2�(t; t1) = �(t; t1)

...

�(t; tN�1)� ‘2r2�(t; tN�1) = �(t; tN�1)

In the �nite element program, the nodal variables will be grouped by times. That is, � = [�(t0);

�(t1); : : : ; �(tN�1)]T, where �(ti) are the nodal values of the nonlocal �eld variable belonging to the network
formed at time ti. The damage should only depend on the mechanical strain in a network. Therefore the
(local) �eld variable �(t; s) needs to be some invariant of the mechanical strain "m(t; s). The two most
promising choices are the maximum principal mechanical strain, which will be used in the following, or the
von Mises mechanical strain (the deviatoric part of the strain tensor). Both, von Mises strain and maximum
principal strain, collapse to the uniaxial strain in a one dimensional tension problem when only end loads or
displacements are prescribed. Other invariants of the strain might be possible to be used, for example the
mean hydrostatic strain.
The mechanical strain can be written as,

"m(t; s) = "(t)� "(s) + "
c
(s)� �(s)(T (t)� T (s)) (47)

where, "(t) is the total strain at current time, t, "(s) is the total strain at the time of the creation of
the network, s, "

c
is the cure shrinkage of the network created at time s, �(s) is the coe�cient of thermal

expansion and T (t) and T (s) are the current temperature and the temperature at the time the network was
created.

III. Determination of material properties

Several material properties of the epoxy need to be determined in order to use the described model in
�nite element calculation. The properties include elastic, thermal, chemical, and damage parameters.
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A. Elastic properties

The plane wave modulus, shear modulus and degree of cure are measured as a function of time through
concurrent Raman (RLS) and Brillouin (BLS) light scattering.84{86 The plane wave modulus M is the
elastic constant measured in a uniaxial strain �eld. It is related to the Lam�e constants and the bulk modulus
by M = �+2� = K+ 4

3�. Raman scattering provides cure information and Brillouin light scattering provides
mechanical information. This optical measurement method has the advantage of yielding mechanical and
chemical properties non-destructively. In contrast, classical methods that measure the mechanical properties
during cure, such as rheometers or bending tests,87 actively in
uence the boundary value problem that is
needed to extract the per-network properties for this approach.

It is important to note that experimentally, the response of all networks is measured simultaneously.
The individual response of each network has to be adjusted so that the total simulated response follows the
total experimentally measured response. To this end, assume that the network is cured in a uniaxial strain
�eld. After some time, a sudden jump in strain is applied. The jump needs to be considered for all times
during the curing history, because the material properties need to be extracted for all times during the curing
history. The stress response is measured in the direction the strain jump is applied, and in the perpendicular
direction. The boundary value problem (BVP) is depicted in �gure 9. It also shows the meaning of the
plane wave modulus, M . Two coordinate systems are shown, one aligned with the strain direction and an
internal coordinate system with some arbitrary direction. The latter is a useful tool to ensure the numerical
implementation into the �nite element program is correct. While reaction forces are reported in the global
coordinate system lined up with the axis of deformation, internally, the �nite element program calculates
stresses and strains with respect to the rotated coordinate system. The stress and strain tensor will be fully
populated and possible error in the programming of the material model will be easier to �nd.

Figure 9. Uniaxial strain boundary value problem used to determine material properties

Ignoring the in
uence of temperature, the stresses before and after the jump, respectively, are:

� =

264 �11 0 0

0 �22 0

0 0 �33 = �22

375 (48)

� + �� =

264 �11 + ��11 0 0

0 �22 + ��22 0

0 0 �33 = �22 + ��22

375 (49)

Thus,

�11 =

Z t

0

_�

�
K ["(t)� "(s) + 3"c(s)] +

4

3
� ["(t)� "(s)]

�
d s+ (1� �(t))Kliq"(t) (50)
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�11 + ��11 =

Z t

0

_�

�
K ["(t) + �"� "(s) + 3"c(s)] +

4

3
� ["(t) + �"� "(s)]

�
d s

+(1� �(t))Kliq("(t) + �") (51)

The di�erence between the two is

��11 = �"

Z t

0

_�

�
K(s) +

4

3
�(s)

�
d s+ �"(1� �)Kliq (52)

= �"

Z t

0

_�M(s)d s+ �"(1� �)Kliq (53)

The strain tensor of the uniaxial strain �eld is:

" =

264 " 0 0

0 0 0

0 0 0

375 (54)

This can be written as

��11 = �"11Mtot(t) (55)

where

Mtot =

Z t

0

_�M(s)d s+ (1� �(t))Kliq (56)

=

Z t

0

_�

�
K(s) +

4

3
�(s)

�
d s+ (1� �(t))Kliq (57)

is the total plane wave modulus, and M(s) is the plane wave modulus of each network formed at time
s. Di�erentiating with respect to time, t, re-arranging and applying the chain rule yields the per-network
properties.

M(�) =
dMtot(�)

d�
+Kliq (58)

The same BVP can be used to determine a second set of properties. For the direction perpendicular to
the one in which the strain is applied, it follows that:

��22 = �"

Z t

0

_�(K(s)� 2

3
�(s))d s+ �"(1� �)Kliq (59)

= �"

Z t

0

_��(s)d s+ �"(1� �)Kliq (60)

For this particular BVP,

��22 = �"11�tot(t) (61)

where

�tot =

Z t

0

_�(s)�(s)d s+ (1� �(t))Kliq (62)

so that the per-network Lam�e constant is
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�(�) =
d�tot(�)

d�
+Kliq (63)

This can be transformed to yield the per network shear and bulk moduli:

�(�) =
d�tot
d�

(64)

K(�) =
dKtot

d�
+Kliq (65)

Figures 10(a) and 10(b) show representative experimental data for M and � as functions of extent of
cure. For mathematical convenience the transition of these material properties is currently modeled with an
analytical function:

Xtot(�) =
arctan

��
�� 1

2

�
�X
�

arctan
�
�X

2

� (Xf �Xs) +

�
Xf +Xs

2

�
(66)

X = f�;Mg (67)

This leads to closed form solutions for the per-network properties:

�(�) =
1

2

�� (�f � �s)�
1 + (�� 1=2)

2
��

2
�

arctan (1=2��)
(68)

M(�) =
1

2

�M (Mf �Ms)�
1 + (�� 1=2)

2
�M

2
�

arctan (1=2�M )
+Kliq (69)

K = M � 4

3
� (70)

It should be noted that in reality, gelation occurs. Until gelation, the shear modulus of the material is
undetectable and the resin behaves like a viscous 
uid. This is shown in �gure 10(b). In the current model,
a small amount of shear sti�ness is assumed even for low amounts of curing. Finally, the bulk modulus of
the liquid epoxy is the one measured at the beginning of the experiment.

Kliq = Ktot(0) (71)

B. Cure shrinkage

To determine the correct cure shrinkage a boundary value problem needs to be found, where the change in
volume can be measured. Therefore, consider again the uniaxial strain BVP of a curing epoxy sample as
shown in �gure 9. The specimen is free to expand or contract in the 1-direction. No stresses are applied in
this direction. The stress and strain tenors are,

� =

264 �11 = 0 0 0

0 �22 0

0 0 �33 = �22

375 (72)

and

" =

264 " 0 0

0 0 0

0 0 0

375 (73)

The stress in the 1-direction is given by

19 of 33

American Institute of Aeronautics and Astronautics



(a) Plane wave modulus (b) Shear modulus

Figure 10. Experimental results of Brillouin and Raman light scattering

�11 =

Z t

0

_�(s)M(s)("(t)� "(s))d s+ 3

Z t

0

"c(s)K(s) _�(s)d s+ (1� �(t))"(t)Kliq; (74)

and it is equal to zero. There is a monotonic relation between time, t, and degree of cure, �. A change
in variables of t! � = �(t) = and _�d s! d� leads to:

�11(�) =

Z �

0

M(�)("(�)� "(�))d�+ 3

Z �

0

"c(�)K(�)d�+ (1� �)"(�)Kliq = 0 (75)

Di�erentiating with respect to the upper limit, observing that no stress was applied in the 1-direction
and rearranging, yields the �nal answer for the cure shrinkage

"c(�) =
1

3K(�)

"�
"(�)� (1� �)

d"(�)

d �

�
Kliq �

d"(�)

d �

Z �

0

M(�)d�

#
(76)

The total cure shrinkage of all networks "(�) can be measured through a gravimetric test method.88

Table 1 gives an account of the results that have been obtained for various epoxy systems.

Cure shrinkage/volume change Material Reference

6.9% MY750 88

4.5@100�C,200 bar DGEBA/MCDEA 55

>1% EPON828/DEP 43

2.75% after gelation Bisphenol F 89

<2% Epikote 828/MNA/BDMA 90

2% current study

Table 1. Cure shrinkage in various epoxy materials

C. Thermal expansion and thermal conductivity

Data for thermal expansion is sparse in the literature and given in table 2. Since no data was obtainable for
non-crosslinked epoxy the thermal expansion coe�cients are the same for cured and uncured networks.
Thermal conductivity can be modeled through a rule of mixture relation.

K = Kliq(1� �) +Kall networks (77)
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(Linear) Coe�cient of Material Reference

thermal expansion (ppm/K)

65 Bisphenol F/HHPA 91

61 Epon862/Epikure 3234 92

Table 2. Thermal expansion coe�cient of various epoxies

Varshney et al.93 have investigated the thermal conductivity of EPONTM862 resin, curing agent DETDA
and their mixture as well as the cross linked epoxy using molecular dynamics simulations. However, the data
di�ers more for di�erent types of simulations than for crosslinked vs. non-crosslinked networks. Therefore,
currently a constant value is chosen for the thermal conductivity.

D. Damage properties

In addition to the elastic properties as a function of cure which are obtained through BLS and RLS, properties
relating the onset and evolution of damage response need to be found. Speci�cally, the characteristic length,
‘, the strain at which damage initiates, "f , and the ultimate strain, where full damage is reached, "u,
are needed. Ideally, these values are determined for each network individually. To accomplish this, a
corresponding experiment would need to be conducted at various stages of the curing process. Possible
experiments include a double cantilever beam experiment as described below, or a compact tension test.
For a �rst estimate of the damaging material properties, assume the following: no cure strain ("

c
= 0) and

external strain are applied to the specimen during cure, the temperature is constant throughout and all
networks experience the same damage behavior. Then the stress as given in equation (45) can be simpli�ed
to give,

�(t > tcure) = (1�D(t))

��
1

1

3
tr"(t)

�Z tcure

0

_�K(s)d s+

�
"(t)� 1

1

3
tr"(t)

�Z tcure

0

_�2�(s)d s

�
(78)

This means that the cured epoxy will be regarded as a classical isotropic solid, and equation (78) has
now the same form as equation (32).

The remaining question is the proper choice of the length scale parameter, ‘, and the ultimate strain, "u.
‘, has in
uence on the size of the zone or volume in which damage occurs. The shape of the stress-strain
curve, and thus the value of "u prescribes how much energy is dissipated per unit volume during the damage
process. The length scale parameter ‘ is chosen to be 0:1 mm. To �nd a corresponding ultimate strain value,
an estimate of energy that is related to the damage process is needed. This has been investigated before,
on the laminate level, using Shapery theory.94{96 For pure epoxy such values are not readily available.
However, fracture energy is an energetic value related to failure that has been thoroughly studied.68 It will
therefore be used to obtain a value of "u. Using the data for EPONTM862 resin with EPIKURETM3234
curing agent from the literature, as given in table 3, the consistent damage related properties, as shown in
Table 4 were determined using simulation of a double cantilever cantilever beam test. It should be noted
that when applying an idealized stress-strain curve, as shown in �gure 7, the yield strain calculated from the
manufacturer data presented is 2.55%. This value was used for the failure onset strain, "f .

IV. Cure and subsequent mechanical response of a woven textile composite
unit cell

A. Problem description

The material model has been programmed into an ABAQUS user element99 and a �nite element simulation
has been performed of the curing of a 1x1 plain weave representative unit cell (RUC). This is one of the
simplest textile architectures and it allows for a creation of the problem geometry. In the previous studies,
the tows which consist of matrix and �bers have been homogenized, so that a unit cell consisting of a few
homogenized tows and the matrix material in between2,5 have been utilized for model development. For
these models, a viable homogenization technique needs to exist. Due to the novel nature of the proposed
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Property Value Unit Reference

Modulus 3.24 GPa 92

2.76 GPa 97

Yield Strength 82.7 MPa 92

86 MPa 97

Yield strain 6.6 % 92

Fracture energy 606 J/m2 97

280 J/m2 98

Table 3. Properties of EPON 862, obtained from literature

Property Value Unit

Final elastic modulus E 4.95 GPa

Damage initiation strain "f 2.55 %

Ultimate strain "u 5.0 %

Length parameter ‘ 0.1 mm

Table 4. Damage related properties of EPON 862 used in simulations

curing model such a homogenization technique is not readily available. An exception is of course the use
of a �ne scale �nite element model within a coarse scale �nite element model. However, currently such an
approach would be computationally very expensive. As an alternative to homogenization of the tows, they
will be modeled using micromechanics. That is, the tows will be represented as a collection of a few discrete
�bers and matrix. The size of the �bers is chosen such that the volume fraction and the outer dimension
of the tow is equivalent to the dimensions of an actual tow. In previous studies it was shown that for a
particular class of material properties the response of a unit cell consisting of 20 �bers or more is insensitive
to the packing.100 A similar behavior is expected when the �bers are arranged in undulating tows, instead
of uniaxial RUCs. However, in order to keep the computational size manageable, each tow will consist of 7
�bers, which are arranged in a compressed hexagon, as shown in �gure 11(c). The RUC is shown without
�bers in �gure 11(a) and with �bers and matrix in �gure 11(b)..

First, the RUC is fully cured using the formulation and implementation described earlier. Next, a
uniaxial displacement controlled tension test is performed. To allow for the tension test subsequent to cure,
boundary conditions as depicted in �gure 12 are needed. The surfaces in the 2-direction and 3-direction are
unconstrained and traction free at all times. The two surfaces with a normal along the 1-direction are also
free to move in the 2-direction and 3-direction. However, one of the two surfaces is completely constrained
in the 1-direction. The other surface with a normal in the 1-direction is constrained such that plane sections
remain plane. During cure that plane is free to expand and contract. During loading a concentrated force
is applied to a reference node, which in turn is coupled to that surface. These constraints are necessary,
because during cure the RUC deforms due to shrinkage and thermal e�ects, and boundary conditions are
always applied with respect to the undeformed shape, which is initially 
at.

B. Results and discussion

Figure 14 shows the normalized results of a cure and tension simulation. The displacement applied at one
side of the unit cell has been normalized by the RUC length to give an average strain. The total reaction
force has been normalized by the cross-sectional area to give an average stress. Five di�erent cases have
been considered in �gure 14. They are summarized in table 5. In Case 1, the RUC has been cured at 50�C
for one hour and was then cooled back down to room temperature. The inelastic material properties used
are shown in table 4 and the evolution of elastic properties is given in equations (68) and (70). Case 2 is
identical to Case 1, except that the global cure shrinkage has been increased from 2% to 6%. This cure
shrinkage is comparable to the one seen in HETRONTMresin, which has been used as a matrix material in
previous studies.1{5 In Case 3, neither cure shrinkage nor thermal expansion occurs, which is equivalent to
�(s) = 0 and "c = 0. Therefore the �ber and matrix are stress free prior to mechanical loading. In Case 4,
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(a) Only �bers shown (b) Fibers and matrix show, loading direction indicated

(c) Cross-section of idealized tow

Figure 11. 1x1 plain weave RUC

Figure 12. Top view of RUC to show boundary conditions applied during and after cure (only �bers are
shown)
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only cure shrinkage is considered, which is a material state that can be obtained by curing and loading at
the same temperature. Finally, Case 5 does not allow for any damage to occur during the cure and also
during subsequent mechanical loading. In this case the loading response is entirely linear.

Figure 13. Snap-back and snap-through in damaging models

Case Cure �T at the Damage Comments

shrinkage end curing step included

1 2% 30�C yes EPON 862 Baseline

2 6% 30�C yes This case corresponds to an

elevated cure shrinkage that

is found in HETRONTMresin

3 0% 0�C yes Room temperature cure

4 2% 0�C yes Room temperature cure

5 2% 30�C no Linear properties and response

Table 5. The 5 cases simulated for a woven RUC with carbon �bers and EPON 862 resin

In Cases 1-4, a large linear regime was observed and followed by a small non-linear regime. The lack
of prolonged softening behavior can be explained with the help of �gure 13. It has been seen in the litera-
ture76,101 that upon tensile loading a snap-back of the load de
ection curve can be observed. That means
that with continued softening due to accumulated damage, the load and displacement have to be lowered in
subsequent iterations to �nd an equilibrium position. To successfully calculate such a snap back behavior,
an arc-length method needs to employed, such as the RIKS method.102,103 If a standard implicit �nite
element solution scheme is used (without an arc-length solver), it is not possible to predict such a snap-back
behavior. Instead a snap-trough type behavior, when the loading slope becomes vertical leads to solution
divergence. At this point, a drop in load is observed and the subsequent equilibrium solution cannot be
found by a standard implicit �nite element solver. If the solver is an explicit solver, than a solution can be
found, but there is additional kinetic energy, that enters the problem. In the current work, which models the
evolution of material properties with time, the use of the RIKS method to solve the equilibrium equations
is not straight forward, because time is not an explicit input to such a solution scheme.

Figure 14 shows the macroscopic stress, �, and the macroscopic strain E for the 5 cases that were studies.
The maximum stresses, �, in Case 1, 3 and 4 are similar. The maximum � is largest in Case 3, where no
built-in stresses due to cure are present. The next largest maximum � occurs in Case 4, where only internal
stresses due to chemical shrinkage were considered, but not thermal gradients in time because the curing and
loading were performed at the same temperature. Case 1 contains stresses before mechanical loading due to
both chemical shrinkage and temperature changes in time. The maximum � is therefore lower. However, in
Case 1,2 and 4 no damage was observed at the end of the curing cycle. Case 2 is di�erent in that regard. Here
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damage occurs already during cure and the matrix material starts to soften locally prior to the application
of mechanical load. This is shown in �gure 16(c). This RUC also shows a signi�cantly reduced maximum �
in �gure 14. While the maximum � for Case 3 is 142 MPa, the maximum for Case 2 is 94 MPa, which is an
e�ective reduction of over 30% of the maximum �.

Figure 14. Global deformation response of woven RUC

To further investigate the reduction in maximum �, the internal stress and damage states of Case 1 and
Case 2 at the end of the curing process and shortly before reaching the maximum macroscopic strain, E, due
to mechanical loading are shown in �gures 15 and 16. Figure 15(a) shows the internal maximum principal
stresses, �max;1, in Case 1 due to cure, before external loads are applied. The maximum stress is largest in
the center of the �ber tow and is smallest away from the �bers. In the center of the �ber tow, the �bers act
as a constraints that prevent the matrix from shrinking as cure progresses and therefore stresses build up in
that region. From �gure 16(a) it can be seen that no damage is present before external mechanical loading
is applied. Figure 15(b) shows �max;1 in Case 1 after applying mechanical load and shortly before unstable
damage growth occurs. The maximum principal stress, �max;1, is largest where �bers are close together.
However, these areas of high �max;1 do not correspond to the damaged areas as shown in �gure 16(b) shortly
before unstable damage growth occurs . Damage is largest at the boundary of the unit cell. The di�erence
between the location of maximum damage and largest �max;1 has two reasons. First, damage initiation and
progression is dependent on strain, not on stress. Secondly, by de�nition, areas of increased damage have
softened and will only be able to hold a reduced amount of stress.

Figure 15(c) shows the maximum principal stress, �max;2, due to cure e�ects in Case 2 prior to applying
external mechanical loads. The stress pattern is similar to the one that can be found for Case 1 in �gure 15(a).
However, due to larger cure shrinkage the amount of �max;2 is generally larger, than �max;1 at the end of
cure. It can be seen from �gure 16(c) that damage is already existent in the cured part, prior to applying
external load. The location of the damage is identical to the one found in Case 1 after loading, as shown
in �gure 16(b). The maximum principle stress shortly before failure in Case 2 are shown in �gure 15(d).
Stresses are largest in the center of the �ber tow and where �bers are close together. Low �max;2 can be
found towards the edge of the RUC. In this region signi�cant amount of damage and softening took place, as
shown in �gure 16(d). Here the damage found before applying mechanical load has progressed. The damage
volume and the magnitude of damage have increased.

To further investigate the evolution of stress and damage during cure, consider Point A as shown in
�gure 17(a). At this point damage already develops during cure in Case 2. The evolution of damage in
Case 2 at Point A is depicted in �gure 17(c). The �gure shows the damage in the network that was created
at the beginning of the curing process. To also characterize the total combined damage in all networks by
a single value, a compound damage is introduced that weighs the damage in each network with the rate of
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(a) Case 1, maximum principal stress at end of cure

(b) Case 1, maximum principal stress at failure

(c) Case 2, maximum principal stress at end of cure

(d) Case 2, maximum principal stress at failure

Figure 15. Maximum principle stress in cross section �ABCD
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(a) Case 1, damage at end of cure

(b) Case 1, damage at failure

(c) Case 2, damage at end of cure

(d) Case 2, damage at failure

Figure 16. Damage in the �rst network, D(t,0), in cross section �ABCD
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cure. Thus,

Dtot(t) =

Z t

0

_�(s)D(t; s)d s (79)

The evolution of maximum principle stress is shown in �gure 17(d). To properly interpret the results
it is also necessary to consider the evolution of temperature and degree of cure at that point as shown in
�gure 17(b). The evolution of stress and damage can be divided into several stages. For the �rst 200 seconds
no signi�cant maximum principle stress can be seen due to vanishing shear modulus. At this point gelation
occurs and the continued chemical shrinkage leads to increasing stresses. Due to slower curing rates at later
times, as shown in �gure 17(b), the creation of stresses also slows down. After 700 seconds the strains in
the �rst network exceed damage onset strain. Continued cure shrinkage leads to an increase in damage.
After 1800 seconds full cure is reached and no further increase in damage or maximum principle strain due
to chemical e�ects can be observed. After 3600 seconds the temperature in the specimen is lowered. This
leads to further damage and stress generation. Strictly speaking, if the cured epoxy was treated as a solid
with stress-strain relations as described in �gure 7, an increase in damage due to an increase in strain should
be accompanied by a reduction in stress. This does not have to be the case in the curing of an epoxy.
Networks created at di�erent times have a di�erent damage state. Therefore, while the networks created at
the beginning accumulated a signi�cant amount of damage, the networks created at the end continue to carry
load. Generally it can be expected that networks created at the beginning show larger damage compared
to networks created at later times, because they show the largest di�erential mechanical strain relative to
their initial con�guration. It should be noted that despite the sharp decrease of temperature in �gure 17(b)
after 3600 seconds, the increase of damage in �gure 17(c) and maximum principal stress in �gure 17(d) is
spread out over the time from 3000 seconds to 4000 seconds. This due to the time discretization of the FE
simulation. Smaller time steps will resolve the cooling down phase better, but the computational time will
accordingly increase.

The �ndings of the 5 di�erent cases can be compared with previous studies by Song1 who did similar
tension tests in the laboratory for braided composite strips, in order to �nd the e�ctive (\in-situ") matrix
material properties. He also, subsequently, investigated the compression response of a 2D triaxial braided
textile carbon �ber and HetronTMmatrix composite. The �ber tows were modeled using the CCM model as a
homogenization technique. The matrix material included plastic and damage e�ects, where the damage was
closely related to the equivalent plastic strain, and calibrated against the \in-situ" matrix properties. The
maximum stress with \virgin" properties, that do not account for residual stresses due to cure, is 700 MPa.
The maximum stress with \in-situ" properties that include corrections for residual stresses is 300 MPa, thus
leading to a reduction in maximum stress of 57%.

The current study, as well as the one by Song1 aims to �nd the response of a braided composite in the
presence of manufacturing induced stresses. In the calculations by Song, the stress state after complete
cure was not known. Therefore, the e�ective \in-situ" material properties needed to be calibrated through
coupon level experimental stress-strain curves. The aim of the current study is to provide an integrated
computational framework that avoids such calibration procedures and instead directly captures the physical
aspects of the composite manufacturing process to arrive at a uni�ed and integrated framework to analyze
the subsequent deformation response of textile composite structures.

V. Conclusions

An integrated computational materials science and engineering framework for textile composites has been
presented. By understanding the role of the curing process of matrix materials (polymer resin) in textile
composites and the in
uence of stresses generated during the curing process due to chemical shrinkage and
thermal e�ects on subsequent performance of textile composites, it becomes possible to optimize the cure
cycle so that the curing induced e�ects can be made to be bene�cial in subsequent deformation response,
under service loads. To accomplish this, several physical aspects needed to be accounted for, including
thermal, chemical and mechanical e�ects. The evolution of temperature was coupled to a phenomenological
curing model. Both e�ects depend strongly on each other and the corresponding equations were solved
simultaneously.

A model was developed to describe the phase transition of a liquid epoxy resin and hardener mixture. The
idea of continuously developing networks has been used. These networks interpenetrate each other, but do
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(a) Location where evolution stress and damage is investi-
gated

(b) Temperature and degree of cure at Point A

(c) Evolution of damage at Point A (d) Evolution of maximum principle stress at Point A
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not otherwise interact with each other. Di�erent networks may have di�erent thermal, elastic and inelastic
properties and states. Especially, di�erent networks have di�erent stress free reference con�gurations. Due
to thermal gradients in time and space and cure shrinkage of newly generated networks, stresses develop.
These stresses may reduce (or increase) the margin of external loads that can be applied before the epoxy
starts failing. The application of the network curing model has been shown for woven composites.

Inelastic response during and after cure was modeled using a nonlocal damage model that preserves mesh
objectivity in �nite element calculations. The damage state can be di�erent for each network. The non-local
damage model prevents the introduction of pathological mesh sensitivity in strain localization due to post-
peak damage induced softening. Such e�ects take place in numerical simulations executed using the �nite
element method. The extended curing-damage model has been applied to a woven composite made of carbon
�bers and epoxy matrix. The woven tows have been modeled using representative �bers, thus eliminating
the need for a homogenization scheme of the curing and damaging �bers tows. For the representative unit
cell used in this study, the e�ect of cure shrinkage and cure at di�erent temperatures have been quanti�ed
and a reduction of the maximum applicable external load of over 30% for the given parameters was found for
the case of tension response. The material properties of the curing model was derived from Brilliouin and
Raman light scattering data. It was also shown how the material properties necessary to describe damage
can be related to matrix fracture energy. A computational framework that integrates multiple physics e�ects
in a uni�ed and executable numerical framework is valuable for several engineering applications of textile
composites.
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