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A novel measurement point selection (MPS) technique for bladed disks (blisks) is pre-
sented and applied to a new modal damping identification method. When gathering data
to be used for applications such as mistuning identification in blisks, it is important to mea-
sure points which provide sufficient and accurate information for the analysis. However, to
reduce the experimental time and cost, the measurement points should be chosen optimally
so that the minimum number of measurements have to be collected. This paper discusses a
modified form of the effective independence distribution vector (EIDV) method presented
by Penny et al. and adapted by Holland et al. The key novel aspect of the proposed
method is that it uses only single sector-level calculations instead of the whole system.
A residual weighting optimizes the MPS technique for noisy measurements. The method
presented is equivalent to the full system EIDV method, but it decreases the computational
cost, increases the robustness of the identification, and minimizes the measurement time.
Also, a novel method to identify damping parameters for each mode in a frequency range
of interest is presented. This method utilizes the proposed MPS technique to increase the
accuracy of the identification. Measurement locations and modal damping results for a 30
degree of freedom system and a blisk with a complex geometry are presented. Using the
proposed methodologies it is possible to obtain an accurate modal damping identification
with a decreased computational and measurement cost.

I. Introduction

Realistic structures such as bladed disks (blisks) have a complex geometry. Capturing the motion of such
complex structures can be very difficult and typically involves finite element models with a large number of
degrees of freedom (DOFs). These models employ parameters which are often not well known. One such
parameter is damping. Thus, identification techniques are needed to determine the actual damping. These
identification techniques require measurements of the vibratory response of the structure. In general, the
more measurement points are used the more accurate the identification is. However, as the number of mea-
surement locations increases, the cost of the experimental work increases greatly. Conceptually, the effective
independence distribution vector (EIDV) method1 determines the amount of modal information for each
point in a candidate set of measurement locations. Holland et al.2 extended the EIDV method to determine
the minimum number and the best locations of the necessary measurements. Those approaches used whole
system models which required a heavy computational effort. In this work, an optimized measurement point
selection (MPS) technique is introduced to reduce the computational effort for blisks and to increase the
robustness of the selection process.

Small sector-to-sector variations (mistuning) in the mass or stiffness of blisks can cause an increase in
the maximum vibration amplitudes and stresses compared to their analog cyclically symmetric (or tuned)
structures. This increase can lead to high cycle fatigue failure. In an effort to minimize the effects of
vibrations, damping coatings can be applied to these structures. As mistuning may significantly affect certain
modes, the damping coatings should decrease the response of these modes. To determine the effectiveness of
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Figure 1. Cyclically symmetric model (blisk)

damping coatings, the modal damping of systems with and without the coating have to be determined. There
are many methods for damping identification.3–16 In general, these techniques only apply to low dimensional
systems or to systems with low modal density. These methods can be grouped into two categories. The
methods in the first category require measuring damped eigenvalues and mode shapes, and do not require
measurements of the excitation. The methods in the second category require constructing (full) frequency
response functions, and therefore require knowledge of the excitation. Herein, a novel modal damping
identification method is presented which accurately identifies the modal damping, is less sensitive to noise
than other methods, works well with both full order and reduced order models (ROMs) for (low and) high
modal density cases, and only requires knowledge of the relative forcing (i.e. forcing has be known only up
to a multiplicative constant). Such forcing is obtained in many cases where the applied forcing is only known
to be the same as a reference forcing, whereas the actual magnitude of the reference forcing is unknown. An
example of such a case is the forcing calibrated by using the procedure proposed by Holland et al.2

Griffin et al.17 found that slightly mistuned system modes can be well represented as a linear combination
of tuned system modes. This relationship has been used in studying the effects of crack propagation,18–20

and multi-stage phenomena.21 Therefore, the optimal measurement locations for a set of tuned system
modes of a blisk (in a frequency range of interest) are also the best locations for the slightly mistuned blisk.
Moreover, the damping identification does not require cyclic symmetry, but it assumes that the mass and
stiffness matrices are already identified.22,23 Therefore, the optimal MPS and damping methods apply to
both cyclically symmetric and slightly mistuned systems.

II. MPS Extension

In this section, the EIDV method is extended in three different ways. First, the EIDV procedure is
modified to take advantage of cyclic symmetry. Next, a residual weighting which considers the effects of
noise is added to the EIDV method. Third, an algorithm is introduced to determine the measurement
locations when the number of candidate DOF is very large.

A. EIDV and Cyclic Symmetry

The EIDV-based procedure presented by Holland et al.2 uses the full tuned system modes to calculate the
optimal measurement locations. When the model of interest has many sectors with many candidate mea-
surement locations, the matrices involved can become prohibitively large. However, using cyclic symmetry
and exploiting the properties of the matrices involved in the EIDV procedure, one may redefine the minimum
EIDV value and transform the method as to require only single sector calculations. As a result, the matrix
sizes reduce from the total number of DOFs in all sectors in the system to the number of DOFs in a single
sector. Therefore, the computational and memory costs are dramatically reduced. Next, we discuss such an
EIDV-based method with cyclic symmetry.

The EIDV matrix is defined as

EIDVfull
a = diag

(
ΦΦΦ
[
ΦΦΦTΦΦΦ

]−1
ΦΦΦ
)
, (1)
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where ΦΦΦ is a subset of tuned system modes in a frequency range of interest. Many such subsets can be
chosen. To refer to one of these subsets, the subscript a is used to indicate the ath subset.

Note that EIDVfull
a is idempotent and symmetric, and

ΦΦΦ = (F⊗ Id×d)ΦΦΦsec, (2)

where F is the real Fourier matrix of size s × s (with s being the number of sectors in the system), d is
the number of candidate DOFs in one sector, and ΦΦΦsec is a block diagonal matrix containing the ath subset
of tuned system modes for a single sector. Each block in ΦΦΦsec corresponds to a different nodal diameter.
Substituting Eq. 2 into Eq. 1, one obtains

EIDVfull
a = diag

(
[F⊗ Id×d]ΦΦΦsec

[
ΦΦΦT

secΦΦΦsec

]−1
ΦΦΦT

sec [F⊗ Id×d]
)
,

where ΦΦΦsec

[
ΦΦΦT

secΦΦΦsec

]−1
ΦΦΦT

sec is idempotent. The trace of any idempotent matrix is equal to its rank. This
key observation1 can be used to select as measurement DOFs the DOFs which correspond to the largest
values on the diagonal of EIDVfull

a . For a cyclically symmetric system, the entry of EIDVfull
a for a DOF

on one sector is the same for all sectors. Hence, the same DOF that is chosen for one sector is also chosen
as a measurement DOF for the all other sectors. Also, the rank of two matrices related through a similarity
transformation is the same. Therefore, the cyclic expansion in Eq. 2 is not needed, and the first sector can
provide all the required information. Now define

EIDVsec
a = diag

(
ΦΦΦsec

[
ΦΦΦT

secΦΦΦsec

]−1
ΦΦΦT

sec

)
.

Since ΦΦΦsec is block diagonal,

EIDVsec
a = diag


. . . 0 0

0 Az

[
AT

z Az

]−1

AT
z 0

0 0
. . .

 , (3)

where Az is the zth block of the ath subset of tuned sector modes corresponding to the zth nodal diameter.
Each block of EIDVsec

a is an idempotent matrix, where the diagonal values are the contribution of each
DOF to the linear independence of that block of modes. Let

da,z = diag

(
Az

[
AT

z Az

]−1

AT
z

)
,

where diag refers to the diagonal entries of the enclosed matrix. The values in the vector da,z are the
candidate DOF in one sector for the modes from ΦΦΦsec which have nodal diameter z. These values need to
be combined to determine the overall EIDV value. For nodal diameters with mode pairs, da,z contains two
values for each candidate DOF (otherwise da,z only contains one value per DOF). Therefore, let d̄a,z be a
matrix where the bth column contains the bth occurrence of the candidate DOF in da,z. If nodal diameter z
has a single mode (not a pair), then d̄a,z = da,z. Define the new EIDV value to be

EIDVa =
∑
z

∑
b

d̄
b
a,z, (4)

where b is 2 for nodal diameters with mode pairs, and 1 otherwise. The DOF corresponding to the minimum
value of EIDVa contributes the least to the linear independence of the nodal diameters. Therefore, the
sum of these values is an indicator of the contribution to the linear independence of the candidate DOFs
for the modes in the frequency range of interest. Similar to the original EIDV method,1 the MPS approach
eliminates as a candidate DOF the DOF (one on each sector) which corresponds to the lowest value in
EIDVa.

B. Residual Weighting

To be robust and to provide accurate results, a MPS method must be insensitive to measurement noise.
Therefore, we introduce a residual weighting which examines the error (associated with each measurement
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location) caused by noisy measurements. The MPS (with residual weighting) is normally used for both
mistuning identification (not discussed here) as well as damping identification. First, a numerical forced
response is performed at frequencies ωy near the system natural frequencies. For increased computational
efficiency, a ROM is used. To ensure that the selected measurement points are statistically optimal for
any mistuning pattern (with some known maximum mistuning in each blade), multiple forced responses are
calculated. Each forced response is calculated for a random level of mistuning and cyclic modeling error22

within model specific limits (e.g. between -5% and +5% mistuning). Noise is then injected into the calculated
response to obtain surrogate data which mimic experimental data. Let Xq

noisy (ωy) be the forced response of
DOF q after noise has been injected into the actual (exact) response Xq

act (ωy). Then, low responding data
is removed from both the actual and the noisy data. Next, for each ωy, the noisy responses of all candidate

DOF q are grouped in a vector Xnoisy (ωy). Let Xtrans (ωy) = ΦΦΦ
[
ΦΦΦTΦΦΦ

]−1
ΦΦΦTXnoisy (ωy). The residual

weighting for the qth candidate measurement DOF is defined as

Resqa =

ϵ+minq=1...DOF

(∑
y

|Xq
act (ωy)−Xq

trans (ωy)|

)
ϵ+

∑
y

|Xq
act (ωy)−Xq

trans (ωy)|
, (5)

where | · | denotes the absolute value. The residual in Eq. 5 contains information about the sensitivity of the
measurement locations to noise (when a specific ROM is used). Note that Resqa is a positive value between
zero and 1. A low value of Resqa (close to zero) corresponds to a high sensitivity to noise. A high value of
Resqa (close to 1) corresponds to a low sensitivity to noise.

For DOFs with low values in the residual weighting, the MPS becomes dominated by the residual weight-
ing. For DOFs with high values in the residual weighting, the MPS is dominated by the EIDV method. To
achieve a balance between the noise sensitivity of each DOF and their contribution to the linear independence
of the measurements, ϵ is defined as

ϵ = meanq=1...DOF,y |Xq
act (ωy)| .

In Eq. 5, the residual of the transformation from the physical to modal and back to physical coordinates
|Xq

act (ωy)−Xq
trans (ωy)| is calculated, and the mean value over the surrogate and noise realizations is re-

tained. As each sector contains the same DOF, the minimum residual weighting over each blade becomes
the final residual weighting vector. This weighting cannot be done using sector-level calculations. However,
as the residual is only calculated one time (for the set of all candidate DOF) the residual weighting is less
expensive computationally than the EIDV method.

The new MPS method combines the EIDV method with the residual weighting. Let

MPSq
a = Resqa EIDV q

a .

The minimum MPSq
a corresponds to the DOF q (one on each blade) which contributes the least to the

linear independence and is more sensitive to noise than the other candidate locations. The best measure-
ment locations for different ROMs can be easily obtained by determining MPSq

a for q = 1...DOF for the
corresponding set a of modes in each ROM.

C. Optimized MPS

Next, the process of determining the best set of measurement points is described using an optimized MPS
technique, as shown in Fig. 2. This algorithm is particularly important when there is a large number of
candidate DOF because reducing the memory usage and the calculation cost are often necessary in such
cases.

First, a set of candidate measurement locations is chosen. These locations should contain regions on the
structure which are considered to be of interest and are physically possible to measure. Such locations may be
chosen from a finite element model with a very fine mesh. Thus, it may be necessary to further sub-select from
the candidate set. To do this sub-selection, the geometric information of the candidate points is used to choose
a smaller set of locations where the reduced candidate measurement locations are uniformly distributed over
the structure. From the reduced candidate measurement locations, the MPS method determines an initial
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Figure 2. Optimal MPS algorithm

set of measurement locations. If desired, a local refinement step can be performed as follows. Taking all
candidate locations (from the original set) that are in a region close to the previously chosen measurement
points, one can define a new reduced set of candidate measurement locations. Applying the MPS method
again on this new candidate set (containing only points near the previously chosen measurement points)
provides a refined, optimal set of measurement locations.

III. Modal Damping

The measurement points chosen using the algorithm in the previous section can be used for structural
identification. In particular, a novel modal damping identification method is presented next. This method
identifies a damping parameter for each mode in a ROM. The formulation applies to both tuned and mistuned
systems.

A. Modal Damping Model

The equations of motion for a linear structure can be expressed as

Mẍ+Cẋ+Kx = f̄, (6)

where M is the mass matrix, C is the damping matrix, K is the stiffness matrix, x is the response, and f̄
is the applied forcing. This forcing is assumed harmonic with amplitude f and frequency ω. Therefore, the
physical response x is harmonic and has a magnitude X given by

−ω2MX+ jωCX+KX = f, (7)

where j is the imaginary unit.
Next, X is converted to tuned (or mistuned) modal coordinates X = ϕϕϕp, where ϕϕϕ is a matrix containing

the undamped tuned (or mistuned) system normal modes. The matrix ϕϕϕ is of size N×N , where N is the total
number of DOF in the model (and is also the total number system modes). Note that for a mistuned system,
ϕϕϕ can be computed also as the transformation from physical coordinates to mistuned coordinates under the
assumption that the mistuned modes are a linear combination of tuned system modes.24 Pre-multiplying
Eq. 7 by ϕϕϕT , one obtains

−ω2p+ jωϕϕϕTCϕϕϕp+ΛΛΛp = ϕϕϕT f, (8)

where the system modes are mass normalized, and ΛΛΛ = ϕϕϕTKϕϕϕ is a diagonal matrix containing the tuned (or
mistuned) eigenvalues.

Let C = 2Mϕϕϕdiag (ζu/ω
u
n)ϕϕϕ

TK, where ζu is the viscous modal damping coefficient for mode u, and ωu
n is

the undamped natural frequency of mode u. For simplicity, let ζζζ = diag (ζuω
u
n). Next, assume that outside

a given frequency range of interest, pv ≈ 0 for a known index set v. Then the v columns of ϕϕϕ can be ignored.
So, ϕϕϕ reduces to a matrix ΦΦΦ of size N ×m, where m represents the number of modes in the frequency range
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of interest. These m modes are used to construct ROMs in the frequency range of interest. The forced
response can be obtained by solving

−ω2p+ 2jωζζζp+ΛΛΛp = ΦΦΦT f (9)

for p. Next, converting from p to X, one obtains

X = ΦΦΦ
[
−ω2I+ 2jωζζζ +ΛΛΛ

]−1
ΦΦΦT f. (10)

B. Modal Damping Identification

For excitation at frequencies ωi and ωk with forcing such that fi = αkfk (with known αk ∈ C), Eq. 9 becomes

−ω2
i pi + 2jωiζζζpi +ΛΛΛpi = ΦΦΦT fi, and − ω2

kαkpk + 2jωkζζζαkpk +ΛΛΛαkpk = ΦΦΦTαkfk. (11)

Such forcing is obtained in many cases where the applied forcing is only known to be the same as a reference
forcing, whereas the actual magnitude of the reference forcing is unknown. An example of such a case is the
forcing calibrated by using the procedure proposed by Holland et al.2 In that case αk = 1. Rearranging,
Eq. 11 becomes

2jζζζ (ωipi − αkωkpk) = ω2
i pi − ω2

kαkpk −ΛΛΛ (pi − αkpk) .

Rearranging ζζζ (ωipi − αkωkpk) and recalling the definition of ζζζ, one obtains

2j diag (ωu
n [ωipiu − αkωkpku])


ζ1
...

ζN

 = ω2
i pi − ω2

kαkpk −ΛΛΛ (pi − αkpk) , (12)

where diag (ωu
n [ωipiu − αkωkpku]) is a diagonal matrix with the uth diagonal entry given by ωu

n [ωipiu − αkωkpku].
The viscous modal damping identification equation is then obtained as

ζ1
...

ζN

 = Im
{
diag (2ωu

n [ωipiu − αkωkpku])
−1 [

ω2
i pi − ω2

kαkpk −ΛΛΛ (pi − αkpk)
]}

, (13)

and holds for all pairings of frequencies ωi and ωk as long as ωipiu − αkωkpku ̸= 0.
To eliminate zero-mean noise, the mean of Eq. 12 can be computed over all available frequency pairings

measured. One obtains
ζ1
...

ζN

 = Im
{
diag (2ωu

n ⟨ωipiu − αkωkpku⟩)−1 [⟨
ω2
i pi − ω2

kαkpk

⟩
−ΛΛΛ ⟨pi − αkpk⟩

]}
,

where < · > denotes the mean over all the frequency pairings.

C. Identification Filtering

To increase the accuracy of the modal damping identification, four identification filtering techniques are
proposed. The first two filters eliminate measurement data that can cause erroneous solutions. The first of
these filters removes low responding data, which can be greatly affected by noise. Responses with magnitudes
below a fraction Tl of the maximum response magnitude are removed. That is, measurements Xq

meas (ωy)
(collected at DOF q for an excitation with frequency ωy) which satisfy

maxq=1...DOF |Xq
meas (ωy) | < Tl maxq=1...DOF,y|Xq

meas (ωy) |

are removed. The superscript q represents the measurement DOFs.
The second filter removes measurements which have a relative error greater than a desired threshold

Rthresh in the transformation from physical to modal and back to physical coordinates. The measurements
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Figure 3. Sample forced response for the 30 DOF system

collected at frequencies ωy for all q = 1...DOF are grouped in a vectorXmeas (ωy). MeasurementsXmeas (ωy)
which satisfy

||ΦΦΦ
[
ΦΦΦTΦΦΦ

]−1
ΦΦΦTRe (Xmeas (ωy))−Re (Xmeas (ωy)) ||2 > Rthresh||Re (Xmeas (ωy)) ||2 or

||ΦΦΦ
[
ΦΦΦTΦΦΦ

]−1
ΦΦΦT Im (Xmeas (ωy))− Im (Xmeas (ωy)) ||2 > Rthresh||Im (Xmeas (ωy)) ||2

are removed, where Re and Im denote real and imaginary parts, and || · ||2 indicates the 2-norm.
The third and fourth filters remove from identification the damping for modes which are either not

responding or have modal amplitudes which cannot be correctly determined. The third filter is based on
the ith modal response resulting in negligible modal information. Responses which are too low (based on
a maximum modal response threshold Pthresh) are considered to be too sensitive to noise. Thus, if mode
u has an amplitude piu such that |piu| ≤ 0.5 maxr|pir| (where r = 1...m), or |piu| < Pthresh, then mode
u is ignored. The fourth and last filter removes measurements where the ith and kth modes are similar.
Therefore, a pair of measurements (i,k) is removed when

|piu − αkpku| ≤ Pthresh.

IV. Results

In this section, the proposed method is validated using a 30 DOF system and the University of Michigan
validation blisk. The 30 DOF spring-mass system has mass and stiffness matrices

M = diag ([1 2 · · · 2 1]) kg,

and

K =


2.4 · 109 −0.6 · 109 0

−0.6 · 109 1.2 · 109 −0.6 · 109
. . .

−0.6 · 109 1.2 · 109 −0.6 · 109

0 −0.6 · 109 1.9 · 109


kg

s2
,

where diag([·]) indicates a diagonal matrix with entries given by the included vector [·]. Figure 3 shows a
sample forced response where the excitation was applied to DOF 3. Responses below 4 kHz are in a region
of low modal density, whereas responses at frequencies higher than 4 kHz correspond to high modal density.

A ROM was created using modes 19 to 29 (ordered by frequency) with 20 DOF measured using the
proposed MPS technique. These 11 modes were chosen since they are closely spaced, and therefore the
damping is more challenging to identify. The values in the diagonal damping matrix C for this ROM are
displayed in Fig. 4a. A force of magnitude 10 N and phase of 0 was applied to each measured DOF near
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Figure 4. Damping ID for 30 DOF system

the natural frequency of each mode, and the physical response Xq
meas (ωy) was recorded at frequencies ωy

for all measured DOF q. To simulate a physical experiment, measurement noise was injected using

Xq
noisy (ωy) = Xq

meas (ωy) +NpR
q
1X

q
meas (ωy) +

√
2

2
NpR

q
2 maxq=1...DOF,y (X

q
meas (ωy)) ,

where Np is the maximum relative noise introduced, Rq
1 are randomly generated numbers drawn from a

uniform distribution between -1 and 1, and Rq
2 are complex numbers composed of real and imaginary parts

with values drawn from a uniform distribution between 0 and 1. Rq
1 introduces relative measurement noise,

whereas Rq
2 introduces absolute and bias noise.

The characteristics and validation of the measurement point selection and damping identification are
presented for the 30 DOF system first. The following results show the mean and standard deviation of
1,000 identifications using different noisy measurement sets. The same 1,000 noise realizations (Rq

1 and Rq
2

separately chosen for each q DOF) were used to generate each of the following graphs. Standard deviation
error bars are provided in the figures and are denoted by Std. Also, the filtering thresholds in the identification
are Rthresh = 0.3, Tl = 0.35, and Pthresh = 1.0× 10−5.

The results in Fig. 4a-4d demonstrate that the 30 DOF damping identification is accurate using a ROM
and for regions of high modal density. Figures 4a and 4b show that the identified damping values are accurate
when the noise level is low. The non-optimal and optimal MPS chose the same measurement locations for
both 1% and 5% noise. Figures 4c and 4d show that as the noise level increases, the optimal MPS chooses
two different locations compared to the non-optimal MPS. The optimal MPS balances linear independence
with sensitivity to noise. Therefore, the damping identified for the modes which are insensitive to noise may
be less accurate than the damping identified using the non-optimal MPS, whereas the damping identified
for modes which are more sensitive to noise should be more accurate. This change in accuracy can be seen
in Figs. 4c and 4d, where the damping values for modes 20, 23, and 28 are more accurately identified with
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Figure 5. Damping ID for validation blisk

the optimal MPS, but less accurately identified for modes 21, 25, and 26. Note that the standard deviation
of most identified damping values is less than the level of the noise (e.g., the standard deviation is less than
10% for 10% noise in Figs. 4c and 4d). Modes 21 and 26 have a standard deviation greater than the level
of the noise. Some of the mean damping values in Fig. 4a slightly exceed the 1% noise level. However, all
of the mean values have errors below the corresponding noise levels in Figs. 4b, 4c, and 4d. In general, the
proposed method accurately identifies the modal damping with an error less than the corresponding noise
level. Also, the optimal MPS improves the accuracy of the damping identification.

Care needs to be exercised when choosing the filtering parameters. If the filtering is too lax, the iden-
tification uses measurements that have less accurate modal coordinates due to a larger amount of noise in
the response. Therefore, the identification becomes more contaminated by the noise effects. However, if the
filtering is too strict, then the identification depends on too few measurements. As a result, the identification
is also less accurate (since zero mean noise is not eliminated). The results presented are from the region of
filtering which provides a balance between using measurements with less modal participation (of the modes
for which the damping is to be identified) and elimination of zero mean noise. Note that different systems
and measurements may require different values for Rthresh, Tl, and Pthresh.

Next, results for a more complex structure (in the form of the University of Michigan validation blisk25)
are presented. This blisk has mistuning of approximately 2% (composed of 1% zero mean mistuning and 1%
cyclic modeling error2). The damping identification uses the actual mistuning to assess the accuracy of the
proposed measurement point selection and damping identification methods. The following results show the
mean and standard deviation of 100 identifications using different noisy measurement sets.

The results in Fig. 5a-5d demonstrate that the mistuned validation blisk damping identification is accurate
for regions of high modal density, uses a ROM, and typically has an error less than the measurement noise
level. Figures 5a and 5b display the identification results where 1% and 5% noise respectively have been
injected into the numerically generated measurement data. For these figures, the ROM contained 17 modes.
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The damping was successfully obtained with a level of error in the identified damping similar to the level
of the measurement noise. Both the standard deviation and mean damping values in Figs. 5a and 5b are
well below the corresponding noise level. Figure 5d displays the identification results for 10% noise. The
standard deviations and mean damping values for all modes except mode 15 are below the 10% noise level.
Note that some modes in Figs. 5b and 5d were not identified. That is because the increase in the noise
level made the identification filtering either remove all the measurement data or determine that the missing
modes would not be accurately identified.

The effect of the size of the ROM used for identification can also be explored. Figure 5c shows that
using a larger ROM causes errors in the identified damping of some modes (due to loss of rank in the
ΦΦΦ matrix), although most modes (7 to 25) are accurately identified. Therefore, a ROM with greater size
requires different measurement locations drawn from a larger candidate set. That is likely because modes
in the larger ROM include disk motion. Hence, measurements which include the disk are needed for larger
ROMs.

This behavior of the ROMs has already been explored in the context of mistuning identification.22 When
introducing the concept of inverse ROMs (IROMs) for system identification, Madden et al.22 noted that
some ROMs can result in an inaccurate analysis. Madden et al.22 presented an algorithm to test and select
a subset of the full IROM for obtaining an accurate result. The methods proposed herein allow for the
MPS and damping methods to be implemented in the same algorithm by defining the modal matrix for each
IROM.

V. Conclusions

Two methods used for a new damping identification were proposed. The optimized measurement point
selection (MPS) method improves robustness of the identification to noise. Also, by taking advantage of
cyclic symmetry, the computational cost of utilizing the MPS method is dramatically reduced. In addition,
an algorithm was presented which describes an effective procedure incorporating the MPS method into
experiment preparation.

The second method involves identifying the damping associated with each system mode. The benefits
of the proposed method include the ability to maintain accuracy despite reducing the order of the models
used to predict the system response and despite the fact that regions of high modal density are encountered.
The proposed method was shown to be relatively insensitive to noise, to apply to mistuned systems, and to
require knowledge of only the forced response, the relative forcing, and a finite element model.

The novel modal damping identification method was demonstrated using a numerical simulation of a
low dimensional system and a more complex system (the University of Michigan validation blisk). Results
involving several reduced order models (ROMs) of various sizes and various noise levels were presented. To
increase the accuracy of the proposed method, the optimized MPS technique was implemented. Results
indicate that using the optimal MPS technique increases the accuracy of the identification as compared to
only using points chosen based on the (classical) EIDV method.
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