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An experimental investigation of pitching and plunging flat plate at a prescribed effective angle of attack 
in the St range of 0.16 to 0.32 and k range of 0.5 to 1.0 is presented. Force measurements and PIV technique 
were used to analyze and quantify the unsteady flow field created by the wing kinematics. A momentum-
balance based non-intrusive force measurement technique and a systematic vortex detection algorithm were 
successfully implemented as a post-processing for PIV data to gain insight on the interplay between the 
unsteady force generation and vortex dynamics. It was determined that the inertial effects, which are 
proportional to the St, dominate the unsteady force generation while the differences in the force generation 
for the same St kinematics are contributed by the circulatory effects such as the size and location of the 
leading edge vortex. The normal force with respect the flat plate was the primary contributor to the lift and 
drag production, and the projection of the normal force due to high pitch amplitude at higher St prompted 
higher thrust generation. 
 

Nomenclature 
 

 Geometric angle of attack [rad or °] 

0  Mean angle of attack [rad or °] 

eff ( )t  Effective angle of attack [rad or °] 

plmax  Maximum plunge angle of attack [rad or °] 

 Circulation [m2/s] 

1 2,  Vortex core and boundary criteria 

0  Pitch amplitude [rad or °] 

( )t  Pitch rate [rad/s or °/s] 
 Kinematic viscosity of water [m2/s] 
 Density of water [kgm-3] 

 Phase lag between pitching and plunging motions [rad or °] 

 3-component vorticity vector 
 
b  Span length [m] 
c  Chord length [m] 
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, , ,l d m pc c c c  Lift, drag, moment, and power coefficient 

D  Drag force [N] 
f  Motion frequency [s-1 or Hz] 

,x yF F  Tangential and normal force component [N] 

F  3-component force vector [N] 
h  Plunge amplitude [m] 

0h  Normalized plunge amplitude, /h c  

( )h t  Plunge rate [m/s] 

k  Reduced frequency, /fc U  

L  Lift force [N] 
M  Total moment force [Nm] 

zM  Moment force about the half-chord location [Nm] 

n  3-component unit normal vector 
P  Power [W] 
Re  Reynolds number, /cU  

St  Strouhal number, 0 02 / 2 /fch U kh  

t  Time [s] 
T  Period of motion, 1/ f  [s] 

T  Viscous tensor [kgm-1s-1] 

u  3-component velocity vector [m/s] 
U  Free stream velocity [m/s] 

x  3-component position vector [m] 
 
 

I. Introduction 
 

The study of pitching and plunging airfoil has been the topic of interest by aerodynamicists and 
biologists as a suitable mechanism for micro air vehicles (MAV) which has a high potential for serving in 
surveillance and reconnaissance missions. Flapping wing mechanisms seen on birds and insects are 
thought to be more suitable than fixed wing configuration at small length scales as the aerodynamic 
characteristics are substantially affected by the low Reynolds number, Re [1-3]. The attractiveness of the 
flapping wing configuration is the combined lift and propulsive mechanism which would allow MAVs to 
operate without a dedicated propulsive device. The flapping wing mechanism, however, imposes 
challenges that are unseen in fixed wing vehicles, namely the formation of large scale vortical structures, 
unsteady three-dimensional effects, separation and reattachment, and fluid structure interaction [4]. There 
have been many experimental and computational studies on pitching and plunging wing in periodic 
motion with simplifying assumptions to obtain fundamental understanding in unsteady aerodynamics [5]. 
In particular, the Strouhal number, St,  which characterizes the vortex dynamics of the wake and shedding 
behavior of vortices of a flapping motion is identified to be the relevant non-dimensional parameter [6].  



This paper focuses on a rigid two-dimensional pitching and plunging wing with kinematics that 
produce large vortical structures. The amplitude and the frequency of the motion are chosen such that the 
force generated from these kinematics deviates from the classical theory of unsteady aerodynamics [7,8]. 
The unsteady aerodynamics of pitching and plunging wing first emerged in studies of flutter and 
helicopter blade aerodynamics [9]. The formation of a leading edge vortex (LEV) during dynamic stall 
results in an increase in lift coefficient well beyond the static stall value [9]. Although the reported 
dynamic stall occurs at Re much larger than relevant to MAV applications, similar vortical structures are 
found in many unsteady low Re flows. At low Re, the formation of LEV is believed to be critical in force 
generation in hovering insects through delayed stall by the LEV [10-16]. Shyy and Liu [17] reported that 
the LEV is common flow feature observed in flapping wing aerodynamics, but emphasized the fact that 
the characteristics and the effect on force generation can vary as Re, k, St, wing flexibility, and kinematics 
are changed. While the unsteady aerodynamics of insects is three-dimensional in nature, large vortical 
structures are also reported in two-dimensional airfoil undergoing pitching and plunging motions [18,19]. 
Many two-dimensional pitching and plunging wing studies show that the wake patterns that produce 
thrust are governed by the St [20-24]. The commonly accepted form of St in pitching and plunging wing 
is defined as the ratio between the plunge amplitude multiplied by motion frequency, and the free stream 
velocity. The parameters involved in St are closely related to the effective angle of attack profile 
generated by the plunge motion but it does not include any information about the pitching motion. This 
imposes difficultly in analyzing the characteristic of pitching and plunging wing solely based on St as 
there can be multiple kinematics that share the same St. 

To better understand the role of St on pitching and plunging airfoils, a parametric study varying St, k, 
and 0 while preserving the effective angle of attack profile was performed by Baik et al. [25] The Re 
based on chord was at Re = 1×104 and a sinusoidal effective angle of attack profile with the minimum of  
-6° and maximum of 22° was considered which led to the formation of a large LEV [26]. The motion 
frequency and amplitude were varied to achieve a St range from 0.1 to 0.2. The LEV core trajectory in the 
frame of reference moving with the airfoil was measured and it was shown that reduced frequency was 
the dominant non-dimensional parameter controlling formation time of the LEV. The sinusoidal effective 
angle of attack profile was motivated by Read et al. [27] where it was reported that a sinusoidal effective 
angle of attack at higher St increases the thrust coefficient substantially compared to the effective angle of 
attack profile produced by a sinusoidal plunge motion. Hover et al. [28] expanded the work by 
performing a series of experiments with different airfoil kinematics with the effective angle of attack 
profiles consisting of a square wave, a symmetric sawtooth wave, a cosine wave, and sinusoidal wave 
plunge motion. It was concluded that the cosine wave effective angle of attack and the sinusoidal plunge 
motion produces the highest propulsive efficiency of 64%, but the cosine wave profile produced nearly 4 
times greater thrust coefficient. Moreover, Schouveiler et al. [29] investigated the effects of St and the 
maximum angle of attack on a harmonically flapping foil and reported high thrust and high efficiency. 
From these observations, it is strongly suggested that the plunge motion should be modified to produce 
the same effective angle of attack profile as the St is increased.  

This paper extends the parametric study of pitching and plunging flat plates [25] by increasing St and 
k ranges up to 0.32 and 1, respectively. The main focus here is to explore the role of aggressive wing 
kinematics on vortical and inertia force producing mechanisms and their relative efficiency. A detail flow 
topology is reported by the 2D PIV with the unsteady force measurements acting on the flat plate. The St 
above 0.3 is of interest because many biological flyers operate at St between 0.25 and 0.35 [30], and this 
range of St is reported to produce optimum propulsive efficiency [31]. The Re based on chord for the 
present study is 5,000 and the effect of Re is expected to be negligible due to separation at the leading 
edge of the flat plate produced by the effective angle of attack profile [32,33]. Two force measurement 



techniques are used in this study. Direct force measurement using a 6-component strain gauge balance 
provides the lift and drag forces as well as the pitching moment acting on the airfoil. The second approach 
is to use the “Flux Equation” proposed by Noca et al. [34] which uses PIV measurements of the velocity 
field and momentum balance to determine the force acting on an airfoil cross-section. This method is non-
intrusive and attractive for the present study since the velocity field is already known from PIV 
measurement, which gives an independent measurement of sectional force coefficients. The vortex 
identification method proposed by Graftieaux et al. [35] was implemented as a post-processing procedure 
to provide detailed characterization of LEV location and size during the motion. The purpose of the LEV 
analysis is to identify the effects of LEV on the overall force generation. 
 
 

II. Methodology 
 

A. Experimental setup 
 

The experiments are conducted at the University of Michigan low-turbulence water channel facility. 
The test section is 2-by-2 feet and is capable of generating free stream velocities ranging from 6 cm/s to 
40 cm/s. The free stream turbulence intensity at the free stream conditions of the present tests (6 cm/s) 
was measured to be approximately 1%. This value was computed by averaging 200 PIV images without 
the model in the test section. The turbulence intensity value of 1% is typical for low speed flows and the 
measurements were reproducible on different days. The turbulence level is much improved at higher free 
stream velocities with a reported value of order of 0.1%.  

The model used in current experiment is an infinite aspect ratio (AR) stainless steel flat plate wing 
with rounded leading and trailing edges. It has a 6.25% thickness to chord ratio with a chord length of 3 
inches. An endplate was installed just below the free surface to minimize free surface effects and the 
distance between the wing and the bottom surface of the channel wall was kept at approximately 1 mm. 
Figure 1 shows schematics of the water channel facility and the mounting setup. A 6-comopnent force 
sensor (ATI Industrial Mini40 model) was used for the direct force measurements. The sensor axis was 
placed at the half-chord location. For the present experiments, the pivot point of the airfoil pitching 
motion was the quarter-chord location. As shown in Figure 1, the model was attached in a cantilever 
fashion to the rotary stage (Velmex B4872TS) which in turn was attached to the linear traverse (Velmex 
BiSlide) such that pitching and plunging motion could be implemented. The motors are stepper motors 
and are controlled by a motor controller (Velmex VXM-1-1) which is connected to a computer. Each 
motor is controlled by specifying the speed and the displacement of the motor through a scripted 
computer code.  

There are three main experimental techniques used in current study; dye flow visualization, 2D 
particle image velocimetry (PIV), and direct force measurement. Dye flow visualization was used for 
qualitative and exploratory study of pitching and plunging wing kinematics. The flow visualization 
system consists of a dye rake, two syringe pumps, 2 syringes, and food coloring dye. The dye rake 
consists of seven uniformly spaced dye streams spaced 1-inchc apart placed approximately one chord 
length upstream of the airfoil. The 1-inch spacing between the dye streams is adequate since the 
amplitude of the airfoil plunging motion does not exceed 6 inches. The flow visualization is simple, yet a 
powerful technique to identify large scale structures in the flow field which also serves as a qualitative 
validation for a PIV data set acquired for the same conditions. A more detailed description of dye 
injection system can be found in Baik et al. [25] 
 



 

Figure 1. Water channel facility and the experimental setup at the University of Michigan. 
 

The PIV system consists of a double-pulsed Nd-YAG laser (Spectra Physics PIV 300), light sheet 
formation optics, a mechanical shutter, a dual frame digital camera (Cooke Corp. PCO.4000), a Nikon 
105-mm Micro-Nikkor lens, computer image acquisition system, a signal generator, and a micro-
controller based synchronization electronics. The 
Dioxide particles (Sigma-Aldrich) and a small amount (8 drops) of a dispersant (DARVAN C-N, 
Vanderbilt) was used to produce a uniform distribution of particles and to help maintain the particles in 
suspension for the duration of experiment. The goal is to acquire phase-locked 2D PIV images such that 
phase-averaging can be performed at the post-processing stage. The synchronization electronics is 
responsible for synchronizing the laser trigger, the laser shutter, and the camera, with the model motor 
controller in order to produce a phase-locked PIV images with consistency. The drift in airfoil position 
measured after 50 cycles was approximately 1 ~ 2 pixels, which is negligible in the data analysis. The 
magnification for the present experiments is 12 pixels/mm and the camera field of view is 334mm-by-
222mm, which corresponds to the 4008-by-2672 pixels frame size of the PCO-4000. This field of view 
successfully captured approximately 4 chord lengths in the free stream direction and 3 chord lengths in 
the plunge motion direction. The time between image pairs was adjusted to give 6 pixels displacement at 
free stream velocity. A typical experiment consists of 55 motion cycles where the first 5 cycles are 
discarded to neglect initial transient effects. A total of 100 PIV image pairs were acquired for each phase 
of the motion by repeating the experiment twice. After the data acquisition, the images were analyzed 
using in-house developed MATLAB software. The software filters the data, removes the outliers, and 
performs statistical averages to output phase-averaged results. A detailed description of the PIV post-
processing software can be found in Baik et al. [25] 

The direct force measurement system consists of a force/torque sensor (ATI industrial automation 
Mini40), interface power supply (ATI industrial automation 9105-IFPS-1), a data acquisition card 
(National Instrument PCI-6625), and a computer. Attachment of the force/torque sensor to the model is 
shown in Figure 1. The Mini40 is a 6-component silicon-strain-gauges based sensor capable of measuring 
forces in the plane of the airfoil cross section up to ±80N and ±240N in the orthogonal direction. It also 
measures torque up to ±4 Nm in all 3 axis. The resolution is 1/50 N for force and 1/2000 Nm for torque. 
The reference axes convention of the force/torque sensor readings is shown in Figure 2. 
 



 
Figure 2. A schematic of sign convention used for the force/torque sensor readings. 

 
Fy is the normal force, Fx is the tangential (chordwise) force, Mz is the torque of the model, U  is the free 
stream velocity,  is the geometric angle of attack, (t) is the pitch angle, and h(t) is the plunge 
displacement. The value of lift, drag, and moment is derived from the measured forces and the geometric 
angle of attack and it is shown in Eq. (1). 
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The second term in the moment calculation is introduced because that the pivot location is located at the 
quarter-chord location and the force/torque sensor axis is located at the half-chord location. The symbol c 
denotes the chord length.  The power is also computed through knowledge of the prescribed pitching and 
plunging motion and it is shown in Eq. (2). ( ) is the plunge velocity and ( ) is the pitching rate in 
rad/s. 

 ( ) ( )P L h t M t  (2) 
 
The power is used to compute the thrust efficiency, , which is the ratio of the thrust and power 
coefficients. The equations for computing the lift, drag, moment, and power coefficients are summarized 
in Eq. (3).  is the density of water, c is the chord length, b is the span of the wing, and  is the free 
stream speed. 
 

 2 2 2 2 3, , ,
0.5 0.5 0.5 0.5l d m p

L D M P
c c c c

cbU cbU c bU cbU
 (3) 

 
Two different tests were performed to obtain time history of force coefficients: a tare test and a force 

test. The tare test was performed in air to measure the inertial load on the force/torque sensor; the water 
level was lowered in the test section to perform the tare test. After the tare test, the water level was raised 
to the span of the wing model and the force test was performed. The tare test results were then subtracted 
from the force test results to obtain hydrodynamic loading on the wing model. 

Similar to the PIV data acquisition, the force measurements were phase-averaged over 500 motion 
cycles for each wing kinematic. A typical force measurement experiment consisted of 110 measurements 
with 5 seconds of pre-trigger data. The purpose of pre-trigger data was to eliminate the bias readings as 
the raw voltage readings with sensor at rest position varied in time. The oscillation in the raw voltage 



readings after conversion to forces was documented to be within ±0.05N with a period of approximately 2 
hours. The running time of a typical experiment with the longest period of approximately 7.2 seconds is 
13 minutes, which results in 0.01N bias between the first cycle and the last cycle within the data set. 
However, this bias had a negligible impact on the phase-averaged data set due to the large number of 
samples with measurements exceeding order of 0.01N.  The first 5 and the last 5 cycles were discarded 
for two reasons. Firstly, discarding the first 5 cycles is consistent with the elimination of the initial 
transient effect used in PIV acquisition. Secondly, the force data were low-pass filtered using a sharp-
frequency-cut-off Fourier filter which introduced significant initial and end transients lasting 
approximately three cycles. The force/torque sensor electronics did not include an analog filter to remove 
EMI and other analog noise. In order to remove the analog noise, a sampling frequency above 1000 Hz 
was needed to capture the broadband analog noise which was later removed by the low-pass filter. All the 
data sets were sampled at 2000 Hz and low-pass filtered with a cutoff frequency of 1 Hz. The filter cutoff 
frequency was chosen to remove force sensor signal associated with structural vibration of the 
cantilevered wing, which was at approximately 6 Hz and the noise was still present in the data at 2 Hz 
filter cutoff frequency.  

 
B. Noca’s Flux Equation (FE) 

 
For the indirect force measurement, the “Flux Equation” (FE) developed by Noca et al. [34] was 

implemented. It is a momentum-balance approach and the formulation allows the force coefficients to be 
calculated from the measured velocity vector fields and their time derivatives, which are readily available 
from PIV data. Noca et al .[34] developed several formula to compute the force acting on a body given an 
arbitrary control volume that encloses the body. In particular, the FE only requires a surface integral 
whereas the other formulas require a volume integral over the control volume. The FE is given below 
where ( )  and ( )  denotes arbitrary control volume enclosing the body and body boundary, 
respectively. 
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 is the unit normal 3-component vector,  is the 3-component velocity vector,  is the 3-component 
position vector,  is a unit matrix or identity matrix,  is the viscous tensor, and  is the dimension. The 
2nd term in the FE is equal to zero because of no slip condition at the surface of the body. The 3rd term can 
be ignored because the thickness of the airfoil is small. Therefore, only the information on the surface of 
the control volume enclosing the body is needed to obtain the force coefficients. Compared to other 
formulations introduced by Noca et al. [34], the FE circumvents the need for volume integrals including 



the velocity field near the body surface which are difficult to measure in experiments. The FE assumes 
that the flow is divergence free which is satisfied for incompressible flow. However, if the PIV-measured 
flow field is not entirely divergence free it may be a possible source of error in the results.  

It was documented from numerical and experimental data that the FE is sensitive to the origin and 
control volume locations. It is mentioned in Noca et al. [34] that the computed force coefficient is larger 
in magnitude if the control volume is too small i.e. too close to the airfoil. It is also apparent from his 
results that the force coefficient value changes as the origin is varied. In order to investigate these 
problems, each term in the FE was carefully examined. By gathering the terms proportional to the 
position vector, , it can be shown that the FE is independent of the origin location when the rate of 
change of circulation equals to the net flux of vorticity in the control volume, as shown in Eq. (4). In 
order for this equality to hold at different control volume and origin locations, the spatial and time 
derivatives will both have to be accurate. To test this hypothesis, the force coefficients using FE was 
computed for 11 different control volumes with 25 uniformly scattered origin locations at each control 
volume. Figure 3 illustrates the control volume and origin selections. 
 

 z

d u
dl u n dS

dt t
 (4) 

 

 
Figure 3. (a) A schematic of different control volume used to test the control volume and origin independence in FE, and 

(b) an illustration of 25 uniformly scattered origins for a given control volume. 
 

A central time differencing scheme was implemented to compute the time derivates of velocity 
vectors which requires 3 successive images in time. The control volume must be the same for the 3 
images used in order to apply FE successfully. Control volume #1 has the largest field of view which 
captures approximately 3.5 chord lengths downstream, and control volume #11 has the smallest field of 
view with approximately 0.5 chord lengths downstream. A total of 25 origins were uniformly scattered 
within the control volume as shown in Figure 3(b). This resulted in 25 different force coefficients and 
they were averaged to compute the mean force coefficients for a given control volume. For the present 
measurements, the PIV light sheet entered the test section on one side which resulted in a shadow region 
behind the airfoil in the opposite direction. The shadowed region is easily noticeable by irregular contours 
present in the flow field just below where the airfoil is present. To obtain data in the shadow region the 
experiments were repeated with the laser sheet entering the test section on the other side of the airfoil. 
These experiments were conducted on the same day to minimize errors. The resulting two sets of PIV 



images were used to compute phase averages and the phased-averaged PIV data were stitched together to 
complete the entire closed contour around the airfoil. However, it is shown in Figure 3 that the stitching is 
not perfect; there are some discontinuities present between the top and bottom where the stitching occurs. 
Since the FE requires information on the control surface that surrounds the body, approximately 1/8 of the 
bottom image was stitched in order to overcome the shadowed region in the flow field. The remaining 
shadowed region in the middle of the image did not affect the FE calculations. The effect of the 
discontinuity has not been explored. The only feasible way to avoid stitching of the images for FE 
application is to acquire data with dual laser sheet, and this is an option for future experimental efforts.  

Numerous calculations were performed for different control volumes: circulation, rate of change of 
circulation, lift coefficient, and drag coefficient from FE methodology. Figure 4 summarizes these results 
for the flow field shown in Figure 3. There are two ways to compute circulation: closed integral around 
the control surface involving velocity vectors, and summation of  component in the control volume. 
This comparison verifies the accuracy of the computed vorticity, and Figure 4(a) shows good agreement 
between the two methods used to compute circulation. A slight discrepancy was found at control volume 
#3 through #5, and this is due to a discontinuity in the stitching region where strong vorticity is present. 
Figure 4(b) assesses the control volume and origin independence in FE by calculating the rate of change 
of circulation from Eq. (4). The difference, which is shown in circles, should be zero if FE is independent 
of origins. The results show that either the time rate of change of the velocity vector is under-predicted, or 
the  flux is over-predicted. Both methods require numerical integration along the control surface and 
considering that the magnitude of  is an order of magnitude higher than the time rate of change of 
velocity, a significant numerical integration error could be present. On the other hand, if the time 
increment between the images is too large, the rate of change of velocity can suffer from inaccuracy 
where large vortical structures are present. This explains why there are large discrepancies present at 
control volumes #3 through #5 where a large vortical structure introduces large vorticity magnitude and 
velocity gradients along the control surface. The best results were obtained at control volumes #5, #8, and 
#9 and the results for the lift and drag coefficients are shown in Figure 4(c) and (d). The values of lift and 
drag coefficients are similar and the errors originating from different origin locations are small compared 
to other control volumes. The error bars denote 95% confidence interval for 25 different force coefficients 
computed at different origins. The average of origin and control volume independent values is reported as 
the lift and drag coefficients at each phase of the motion in the ‘Results’ section of this paper. 

 
C. Vortex identification method 
 

The main focus of vorticity analysis dynamics in current study is to determine the evolution of the 
LEV since it is believed to have a critical role in generating high lift in unsteady aerodynamics. It 
involves two steps: the detection of the vortex core and the analysis of its strength by computing the 
circulation from the vortex boundary. A popular method of identifying the vortex core and its boundary is 
to perform point-wise analysis of the velocity gradient tensor [36]. However, the main drawback of such 
method is that it computes multiple vortex cores within an enclosed vortex boundary due to small-scale 
turbulence present within the vortex [25]. Vortex identification method used by Graftieaux et al. [35] 
overcomes this problem by introducing 2 scalar functions derived from the velocity vector fields which 
identify the LEV core locations and its boundary; 1 criterion identifies the vortex core, and 2 criterion 
identifies the boundary of a vortex. 1 and 2 criteria are given by Eq. (5) and (6), respectively.  

 



 
Figure 4. For a different control volume the following were computed: (a) circulation calculation involving the velocity on 
the control surface and summation of  in the control volume, (b) rate of change of circulation calculation involving the 
time rate of change of velocity around the control surface and  flux, (c) lift coefficient from FE, and (d) drag coefficient 
from FE. 
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p is any point on the flow field,  is the position vector,  is the velocity vector,  is the unit vector in the 
z-direction, and N is the total number of points in a control volume. The algorithm selects N number of 
points around a point P and computes 1 and 2. A total of 9 points were used in a control volume for 
current study and  is the average velocity at point P computed from surrounding 9 points. The 
maximum value of 1 and 2 is 1 by construction. A vortex core typically has a | 1| value greater than 0.9. 



2 criterion determines whether the flow at point P is dominated by strain or rotation; if | 2| is less than 2  it is strain dominated and if | 2| is greater than 2  it is rotation dominated. It is possible to have a 
rotating flow with no definite vortex core but still have | 2| greater than 2 . While the theoretical 
threshold value of | 2| for rotation dominated flow is 2 , the method is weakly dependent on the 
distance between points and a characteristic length scale of the vortex. Graftieaux et al. [35] showed that 
the threshold value of | 2| stays within the range of 0.6 ~ 0.7 regardless of the ratio of characteristic 
lengths. The processed PIV data have a set distance between points of 16 pixels and | 2| threshold value 
was set at 0.65. A sample plot of vortex identification algorithm is shown in Figure 5. 
 

 
Figure 5 The velocity vectors with (a) contour of | | , and (b) contour of | | 

 
Figure 5(a) shows a vortex core at x/c  excellent agreement with the velocity vectors. At 
x/c | 1| value of 0.85 is recorded which indicates the possibility of secondary vortex formation. 
The boundary of the vortex core located x/c Figure 5(b). Notice that there are 3 distinct 
regions captured by the | 2| contours in the shear layer location. This flow region is rotation dominated 
but it does not have a definite vortex core. The boundary of the LEV enables the computation of its 
circulation through Eq. (7), where  is the circulation. 
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The enclosed area of the LEV found from | 2| criterion consists of N number of points in the PIV grid 
and the integral simplifies to summation of all the vorticity with the normal in the in-plane direction. The 
number N is also used to compute the LEV cross section area. 
 
 

III. Results 
 

This paper aims to highlight the features in unsteady force generation in pitching and plunging flat 
plate by considering a specific airfoil kinematic, namely a kinematic that preserves a sinusoidal effective 
angle of attack. The equations used to generate the kinematics are presented along with chosen cases with 
governing non-dimensional parameters. There are a total of 3 cases with k ranging from 0.5 and 1.0, and 
St ranging from 0.16 and 0.32. Initially, the PIV and force measurements for each case are presented in 
detail. Then, the force measurements are compared with FE to gain insight on different components of the 



force contributing to the overall force acting on the flat plate. Lastly, the vortex dynamics associated with 
these cases and force measurement comparison is discussed to draw meaningful conclusions.  
 
A. Airfoil kinematics 
 

The wing motion kinematics considered in this paper is a pitching and plunging motion that produces 
a sinusoidal effective angle of attack profile with pivot location at the quarter-chord. A sinusoidal 
effective angle of attack, eff( ), is produced by the enforcing a sinusoidal effective angle of attack 
produced by the plunge motion, as shown in Eq. (8). 

 
 eff 0 0 plmax 0 pitch plunge( ) cos(2 ) sin(2 )t ft ft  (8) 

 0 is the mean angle of attack, 0 is the pitch amplitude,  is the motion frequency,  is the phase lag 
between the pitching and plunging motion, and plmax  is the maximum angle of attack produced by the 
plunging motion. In this equation, the plunging motion is unknown and it must be obtained by integrating 
Eq. (9), which is derived from the angle of attack produced by the free stream and the plunge directions. 
 

 plmax
( )atan sin(2 )h t

ft
U

 (9) 

 ( ) is the velocity of plunging motion, and  is the free stream velocity. After some rearrangements, 
the ordinary differential equation for the plunge motion is given by Eq. (10).  
 

 plmax 0( ) tan sin(2 ) ( )h t U ft h c F t  (10) 

 
ho is the normalized plunge amplitude, typically normalized by the chord length, c. Since the plunging 
motion amplitude equals hoc, it follows that the F must satisfy the integral condition shown in Eq. (11). 
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Regardless of the motion trajectory, the model must travel displacement equal to one amplitude every 
quarter-chord. ( ) is found numerically through an iterative procedure where the value of plmax  is 
assumed initially. It is determined that the value of plmax is a function of St, and this also implies that the 
pitch amplitude, 0, is a function of St. The St for current study is defined in Eq. (12). 
 

 0 02 2fch kh
St

U
 (12) 

 
The plunge motion for sinusoidal effective angle of attack is not sinusoidal for St greater than 

approximately 0.1. For sinusoidal plunge motion with St greater than 0.1, higher harmonics are 



introduced in the effective angle of attack time profile. Figure 6 illustrates the difference between 
sinusoidal motion and sinusoidal effective angle of attack producing plunging motion at St = 0.32. The 
difference in plunging motion is subtle between two cases but the resulting effective angle of attack 
profile differs greatly. The maximum discrepancy in effective angle of attack is approximately 6° and 
there exists a double peak for the sinusoidal motion on the effective angle of attack. These double peak 
phenomena is observed at St greater than 0.2 and it becomes more apparent as St increases. 
 

 
Figure 6. a) Difference in plunging motion for sinusoidal motion and sinusoidal effective angle of attack producing motion, 
and b) difference in effective angle of attack profile for two different motions at St = 0.32. 

The effective angle of attack profile used in current study ranges between -6° and 22°, and this 
particular profile has been explored in many studies [25,26,32,33]. The initial angle of attack is set at 8° 
and the angular amplitude considered is ±14°. The phase lag between the pitching and plunging motion is 
fixed at  = 2 and the Re based on chord is kept at 5,000. The profile is shown in Figure 6(b). In 
order to achieve different reduced frequency, the motion frequency was varied such that St value up to 
0.32 was achievable. The targeted non-dimensional parameters space for the current study is best 
presented in the k-h0 space as shown in Figure 7. 

 

 
Figure 7. k-h0 space depicting high and low reduced frequency cases. 



 
There are a total of 3 cases and corresponding non-dimensional parameters are shown in the figure as 

well as in Table 1. Cases 1 and 2 have constant h0 of 0.5 and St is varied by altering k from 0.5 to 1.0. For 
cases 2 and 3, the reduced frequency is fixed at k = 1.0. Baik et al. [25] reported similarities in the flow 
structures with respect to the airfoil for the same k value with the highest reported k value of 0.63 and St = 
0.2. The expectation from current cases is that the delayed formation of the LEV will still be present in 
the flow field even at k = 1.0 with St = 0.32. Notice that the pitch amplitude for St = 0.32 is at 33.7° which 
results in maximum and minimum geometric angle of attack of 41.7° and -25.7°, respectively. One of the 
main objectives of the present research is determine if the flow structure observed at lower k cases are 
observed at higher k value with high geometric angle of attack. 
 

Case St k h0 | 0| (°) T (s) 
1 0.16 0.5 0.50 13.16 7.14 
2 0.32 1.0 0.50 33.73 3.57 
3 0.16 0.5 0.25 13.16 3.57 

Table 1. Summary of parameters used in current study.  
 
B. Case 1 (k = 0.5, St = 0.16) 
 

Flow visualization and PIV measurements were taken at every 30° phase, resulting in data set for t/T 
= 0.000, 0.083, 0.167, 0.250, 0.333, 0.417, 0.500, 0.583, 0.667, 0.750, 0.833, and 0.917. Figure A1 
(Appendix A) summarizes the flow visualization, normalized x-component velocity ( / ) contours, 
normalized vorticity contours ( / ), and vortex boundary ( 2) during the down stroke of the cycle, 
namely t/T = 0.00 to 0.50. Figure A2 summarizes the same data set for the up stroke, namely t/T = 0.500 
to 0.917. The flow topology resulting from case 1 kinematic is similar to past experiments conducted at 
different k-St combination and Re for a flat plate [25]. The formation of a large LEV followed by a small 
TEV is a typical flow structure observed for the prescribed effective angle of attack [26]. A strong 
concentration of vortices are observed during the initial formation of LEV, t/T = 0.083 to 0.333, but it 
rapidly decays as the size of the LEV is increased. From t/T = 0.250 to 0.583, a trail of small vortical 
structures with similar size and spacing are observed with the starting location at the trailing edge of the 
flat plate. These structures are created as a part of shear layer induced at the trailing edge of the flat plate 
as it performs plunging and rotation maneuver, and they are also captured in the flow visualization. 

The force measurements for case 1 are shown in Figure 8. All the values are normalized as discussed 
in the ‘Methodology’ section. The tangential (Fx) and the normal (Fy) forces are normalized using the 
same normalization factor for the lift and drag coefficients. The small dotted lines above and below the 
dark line represent 95% confidence interval for the 500 phase-averaged measurements in the tangential 
and normal force plots. The confidence interval is approximately ±0.02 in normalized scale and it is only 
visible in tangential force plot due to the resolution of the y-axis. Small confidence interval over 500 
samples indicates that the force measurements were reproducible with a maximum error of approximately 
±0.02 in the lift and drag coefficients. The tangential force created by the case 1 kinematic is an order of 
magnitude small compared to the normal force generation. This evidently results in strong resemblance 
between the normal force and the lift coefficient time history. The lift coefficient time history exhibits a 
sinusoidal profile that is correlated to the effective angle of attack profile. The peak lift coefficient 
exceeds a value of 2 with a mean value of 0.362. The drag coefficient time history shows two thrust peaks 
at t/T = 0.25 and 0.75. At t/T = 0.25, it produces high thrust and lift coefficient values whereas high thrust 
and down force is recorded at t/T = 0.75. From the PIV vorticity contours, the LEV resides on top of the 



flat plate at t/T = 0.50 and it records similar to the mean lift coefficient value and highest drag coefficient. 
The mean drag coefficient was computed to be -0.137 which indicated that case 1 is a thrust producing 
maneuver.  

The mean power coefficient value of 0.39 was used to compute the thrust efficiency of case 1 
maneuver, and the resulting thrust efficiency was approximately 35%. The power coefficient exhibits dual 
peaks similar to the drag coefficient profile. The peaks at t/T = 0.25 and 0.75 are expected since the 
plunging motion reaches its maximum velocity at these points along with maximum and minimum values 
of lift coefficients. The moment coefficient shows different trend compared to the lift and drag 
coefficients; a sharp peak at t/T -0.07. 
From the sign convention described in the ‘Methodology’ section, a negative moment coefficient 
indicates that the motion produces overall pitching up moment about the quarter-chord location.  

 

 
Figure 8. Case 1: Summarized force measurement results showing tangential force (Fx), normal force (Fy), drag 

coefficient (cd), lift coefficient (cl), moment coefficient (cm), and power coefficient (cp). 
 
 



 
C. Case 2 (k = 1.0, St = 0.32) 
 

The same experimental techniques from case 1 were applied to case 2 kinematic and the summarized 
flow visualization and PIV measurements are shown in Figure A3 for the down stroke motion and Figure 
A4 for the up stroke motion. Again, the flow topology resulting from case 2 kinematic is similar to past 
experiments conducted at different k-St combination and Re for a flat plate, however, there are differences 
that are worth noting. The development of LEV is delayed compared to case 1 which is expected with 
increased reduced frequency; the sign of LEV development does not show until t/T = 0.250. The size of 
the LEV is smaller compared to that of case 1 as the faster motion of case 2 does not allow the LEV to 
grow in size. The up stroke motion is in effect when the LEV is convected approximately half-chord 
downstream from the leading edge of the flat plate and the concentrated vorticity values in the LEV from 
t/T = 0.50 to 0.75 suggests that the up stroke motion prohibits the LEV to grow in size; the up stroke 
motion stops the shear layer that feeds the LEV and this is shown at t/T = 0.583. From t/T = 0.583 
onwards, small vortical structures are observed with concentrated vorticity from the leading edge of the 
flat plate. These small vortical structures were also observed in Baik et al. [32] during up stroke motion 
for a flat plate with same effective angle of attack at Re = 10,000. The LEV detaches from the flat plate at 
t/T = 0.750 and a small TEV is observed between the LEV and the trailing edge of the flat plate at t/T = 
0.833. The geometric angle of attack of the flat plate at t/T = 0.75 is 41.7° and the detached LEV is 
convected downstream with a significant downward motion induced by the high geometric angle of attack. 
The detached LEV can be observed from t/T = 0.000 to 0.417 and the size of the LEV does not change 
while the less concentrated vorticity at the core indicates viscous dissipation. Similar to case 1, a trail of 
small vortical structures at the trailing edge of the flat plate is observed from t/T = 0.333 to 0.667. The 
size and the spacing between these structures are comparable to case 1 but higher vorticity concentration 
is recorded for case 2. This is a strong indication that the formation of these structures are due to the 
instability of the shear layer created at the trailing edge while the difference in concentration is a result of 
faster motion kinematic.  

The force measurements for case 2 kinematic are shown in Figure 9. The main highlight for case 2 
kinematic is the measured normal force component; the magnitude reaches up to 4.5 with a dual peak 
profile that is different from a sinusoidal profile observed for case 1. The tangential force does show 
different profile from case 1 but the magnitude remains similar for both cases which indicate that the 
contribution from tangential force is negligible compared to the normal force contribution. In addition, 
similar 95% confidence interval as case 1 was measured for case 2. After projecting the tangential and 
normal forces to compute lift and drag coefficients, the drag coefficient profile shows a sinusoidal 
behavior and the lift coefficient profile resembles the normal component despite the fact that there is a 
large variation in the geometric angle of attack. A thrust peak with a value of approximately 2.1 is 
measured at t/T = 0.25 and a drag peak with a value of approximately 1.3 is measured at t/T = 0.75. This 
is contrary to the dual thrust peak observed for case 1 at these phases. It is evident that a significant part 
of the normal force was projected towards thrust and drag due to the high magnitude of geometric angle 
of attack at these phases. The geometric angle of attack at t/T = 0.25 and 0.50 are -25.7° and 41.7°, 
respectively. The mean drag coefficient value of -0.284 indicates a thrust producing maneuver and this 
value is twice the value of mean thrust coefficient for case 1. The lift coefficient shows two peaks at t/T  
0.25 and 0.50 with a value of approximately 4 and 3.5, respectively. There exists a sudden decrease in lift 
between t/T = 0.50 and 0.75 and this coincides with the start of the up stroke motion. It is interesting to 
note that the LEV resides on the suction side of the flat plate as the model performs the up stroke motion. 



It is clear that inertial force created by the up stroke motion overwhelms the lift force generated by the 
attached LEV, causing a drop in the lift coefficient. 

The mean power coefficient was computed to be 0.686 and the resulting thrust efficiency for case 2 
was approximately 41%. A high value of power coefficient is recorded during the down stroke of the 
motion, especially at t/T = 0.25 which recorded a peak value that is associated with the highest thrust 
coefficient production. The large consumption of power during the down stroke was offset during the up 
stroke motion where the presence of lift reduced the overall power consumption between t/T = 0.50 and 
0.75. The moment coefficient profile displays similarities to the lift coefficient time history with a peak 
located at t/T = 0.50. A large value of positive moment indicates that a strong pitching down moment is 
present at the quarter-chord location at t/T = 0.50.  

 

 
Figure 9. Case 2: Summarized force measurement results showing tangential force (Fx), normal force (Fy), drag 

coefficient (cd), lift coefficient (cl), moment coefficient (cm), and power coefficient (cp). 
 
 



 
Figure 10. Case 3: Summarized force measurement results showing tangential force (Fx), normal force (Fy), drag 

coefficient (cd), lift coefficient (cl), moment coefficient (cm), and power coefficient (cp). 
 
D. Case 3 (k = 1.0, St = 0.16) 
 

Case 3 serves as an intermediate case that links cases 1 and 2 together; the St = 0.16 is the same with 
case 1 and the k = 1.0 is the same with case 2. The summarized flow visualization and PIV measurements 
are shown in Figure A5 for the down stroke motion and Figure A6 for the up stroke motion. The flow 
topology shows strong similarities with case 2; the delayed LEV formation time, LEV size, peak vorticity 
values and their locations, and LEV detachment location and the formation of TEV is in good agreement 
with case 2. This is not surprising given they share the same k value of 1.0 which seem to govern the 
formation time of LEV for this particular effective angle of attack profile and therefore allowing the flow 
structure to be similar around the pitching and plunging flat plate. As the LEV starts to develop at t/T = 
0.25, the amount of concentrated vorticity within the LEV is larger compared to case 2. The size and the 
strength of the LEV involving computation of LEV circulation will be discussed in more detail in the 
latter part of the paper. The LEV detachment occurs at t/T = 0.833 and a small TEV is observed between 



the LEV and the trailing edge of the flat plate. The difference between cases 2 and 3 at this phase is the 
trajectory of the LEV after detachment; the geometric angle of attack for case 3 at t/T = 0.833 is not as 
steep as case 2 and therefore the detached LEV convects downstream without much down ward velocity, 
shown from t/T = 0.000 to 0.417. A trail of small vortical structure at the trailing edge of the flat plate 
have similar vorticity strength as case 2, confirming that the strength of these vortical structures and the 
motion frequency are positively correlated. 

The force measurements for case 3 are summarized in Figure 10. Contrary to the similarities found in 
the flow topology between cases 2 and 3, it is rather surprising to observe that the force measurements for 
case 3 resembles to the case 1 measurements. A good level of agreement is present at qualitative and 
quantitative level. The sinusoidal profile of tangential and normal forces is observed with similar 95% 
confidence interval levels. A dual thrust peaks are present at t/T 
thrust coefficient of 0.0415 is approximately 3 times less than case 1. However, there is an improvement 
in the mean lift coefficient which recorded 0.459. Compared to 0.362 of case 1, it is 27% increase in lift. 
The lift coefficient profile indicates that the residence time at high magnitude lift coefficient is small; the 
lift peak is achieve at t/T = 0.25 but it rapidly decreases at subsequent phase, and similar trend is observed 
at t/T  

The moment coefficient profile is the only profile that shows discrepancy with case 1 but similarity 
with case 2. This is an indicator that the moment coefficient profile is correlated to the pitching frequency 
since k value is the same for cases 2 and 3. The mean moment coefficient is 0.0515 which indicates an 
overall pitching down moment for the maneuver. The thrust efficiency suffered from low mean thrust 
coefficient while the mean power coefficient remained approximately the same between cases 1 and 3. 
The computed thrust efficiency was 13.2% which is approximately 1/3 of the thrust efficiency of case 1. 
The power consumption peaks at t/T = 0.25 and 0.75 are primarily due to the plunging motion 
counteracting with the lift force.  
 
E. Flux equation 
 

The main idea behind FE analysis is not to verify the accuracy of the force sensors, but to gain insight 
on the components of the force by analyzing different components contributing to the overall force acting 
on the flat plate; this is the strength of using FE to compute the force coefficients which direct force 
measurements will not be able to provide. The comparison of lift and drag coefficients computed from FE 
and force measurements for all cases is shown in Figure 11. The qualitative agreement between the two 
methods is established although the quantitative agreement could be better. In terms of capturing the trend 
in the time history, the lift coefficient profile seems to perform better than the drag coefficient profiles; 
FE is constantly over- or under-predicting the drag coefficient values compared to the force 
measurements. For case 2, the drag coefficient values from the FE does not record high peaks and the first 
peak seem to occur with a phase lag. The comparison is improved for the lift coefficient although the FE 
does not capture the first peak in the lift coefficient. The best qualitative comparison is found for case 3 
lift coefficients where the entire force measurements seem to have an offset of approximately 0.5 in cl. 
There are several factors that introduce error in the computed lift and drag coefficient values from FE: 
discontinuity introduced from stitching of the images, integration error due to insufficient spatial and/or 
time resolution, and 3D flow structures in a 2D flow setup. To resolve these issues, additional 
experimental works are required to verify the sensitivity of FE on PIV data.  

The FE was decomposed into 5 components, namely A, B, C, D, and E, and it is shown in Eq. (13). 
The overall force, or the ‘Total’ force, is the sum of all the force components. The main distinction in 
these components is the terms involved; C component has information about vorticity, D component 



possess time rate of change of velocity field, and E component computes the viscous effects on the overall 
force. Notice that components C, D, and E have the origin location as a variable. The breakdown of each 
force component and the ‘Total’ force for lift and drag coefficients are summarized in Figure 12. The E 
component was omitted from the plots because the values were two orders of magnitude smaller than the 
rest of the terms. The A and B components were added together for more efficient comparison.  
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The most dominant term in the FE is the D component which is the time rate of change of velocity at 

the control surfaces. This is observed by determining the effect that D component has on the ‘Total’ force, 
and the simplest way to determine this is to compare the gradient of both profiles. For most of the lift and 
drag coefficient profiles, it is observed that the gradient of the D component is in a good agreement with 
the overall force coefficient time history; the trend observed in the D component influences the ‘Total’ 
force effectively. It is difficult to distinguish whether LEV has a direct impact on the D component since 
the D component does not involve vorticity as a variable but it does introduce time rate of change of 
velocity field as the LEV size grows. By considering the effect a vortex has on neighboring fluid particle 
to a moving flat plate, the moving flat plate will affect the velocity field at a faster rate than a vortex 
simply due to the fact that the motion occurs at a faster rate than the development of a large vortical 
structure. This would imply that the D component is more likely to be a contribution from the flat plate 
motion itself rather than from the generation of a vortex in the flow, and it may explain why case 2 
generates more forces than cases 1 and 3. 

There are instances where the C component will compete for the dominance and a good example is 
shown for case 2 at t/T = 0.167 to 0.417 where the C and D components are offsetting each other to result 
in a lift coefficient value. There are also instances where the C component is the dominant contributor to 
the force. For example, case 1 drag coefficient profile at t/T = 0.00 to 0.25 shows the C component 
affecting the overall drag coefficient, and case 3 lift coefficient profile at t/T = 0.667 to 0.917 also 
exhibits similar features where the D component force is offset by the A+B component forces. The C 
component force involves vorticity and it will be further discussed in the vortex dynamics section. 

The identification of a dominant force component not only distinguishes which terms are important to 
the overall force generation, it also suggests the types of data required for an accurate force coefficient 
computation. Since the D component is a dominant component for the most part, it is a necessary 
requirement that the time derivatives of the velocity vector field at the control surfaces are computed 
accurately. If the C component is a dominant component, then the vorticity should be sufficiently 
converged. Acquiring accurate data set will also help in resolving problems associated with origins and 
control volume dependence on the force coefficient computation. 

 
 



 
Figure 11. Comparison of lift and drag coefficients computed from FE and force measurements for all cases. 

 
 
F.  Effects of inertia and vortex dynamics 
 

The force measurements for all 3 cases are compiled and plotted against each other for comparison as 
shown in Figure 13. Cases 1 and 3 display strong similarities in the normal force coefficient despite 
having different flow topology arising from different k value. The tangential force coefficients do not 
show any specific trends between all 3 cases, but the values are small compared to the lift coefficients. It 
is clear that case 2 outperforms cases 1 and 3 in both thrust and lift generation; the recorded thrust peak is 
an order of magnitude higher, and the recorded lift peak is more than double compared to other 2 cases. 
Case 1 shows more rapid decrease in lift from t/T = 0.30 to 0.75 compared to case 3, and this difference is 
examined in detail by considering the force differences between 2 cases. There are 2 comparisons done in 
total: cases 1 and 3, and cases 2 and 3. Cases 1 and 3 share the same St but different k values and the force 
coefficients are in a good agreement with each other. Cases 2 and 3 share the same k but different St 
values and they share similar flow topology. The two comparisons are shown in Figure 14. 

 



 
Figure 12. Breakdown of components in FE contributing to the overall force; See Eq. (13) for terms in A, B, C, and D. 

 

The main highlight from Figure 14 is the effect of inertia and vortex dynamics that have on the 
discrepancy in force generation between cases. The force components from FE lift coefficients were 
analyzed to distinguish the dominant contributor to the overall force and it is shown in Figure 15. The 
drag coefficients comparison was not performed on FE due to large amount of fluctuations present 
relative to the magnitude of the drag force, and therefore a lack of qualitative consistency. For cases 1 and 
3, it is evident from Figure 15 that the C component is the dominant contributor to the overall lift force; 
the combined components of A and B offsets the D component, and the trend between the overall drag 
coefficient and the C component is in a good agreement. The C component is associated with the vorticity 
in the flow field and this implies that the discrepancy in the force generation between cases 1 and 3 is 
mainly due to the circulatory effects, not inertial effects. Given that the plunging motion is proportional to 
St, comparable inertial effects between the two cases seem plausible since they share the same St = 0.16. 
In order to assess the cause of lift coefficient discrepancy in more detail, the LEV size and strength 
calculation was performed and it is shown in Figure 16. The strength of the circulation is measured by the 



normalized magnitude of the circulation (| |) within LEV boundaries. The normalized circulation at t/T 
 0.40 is approximately 1.5 for case 1 and 1.0 for case 3, and given the fact that both cases have LEV 

present on top of the flat plate explains why case 1 exhibits higher lift coefficient compared to case 3. 
From t/T = 0.50 to 0.75, case 3 exhibits more lift than case 1 because the LEV is still attached and on top 
of the flat plate whereas the LEV detaches for case 1 at the start of the up stroke hence the loss of lift. The 
vorticity contours for case 1 and 3 are shown in Figure A1 and A5, respectively. From Figure 17(b), both 
cases show linear growth in the strength of LEV with case 1 growing at a faster rate. Both cases reaches 
maximum LEV strength at t/T = 0.50 where a decrease in normalization circulation value is reported at a 
subsequent phase. The size of LEV is larger for case 1 and the rate of LEV size growth is nonlinear 
whereas the case 3 shows almost a linear growth in LEV size.  
 

 

Figure 13. Comparison of force sensor measurements for cases 1, 2 and 3. 
 

For cases 2 and 3, the main difference in the force generation is caused by the inertial effect; the St is 
doubled for case 2 compared to case 3. It is not plausible to account for the large discrepancy in force 
coefficients solely due to circulatory effect, especially when the flow topology for both cases is similar. It 
is evident from Figure 15 that the C and D components are competing for the overall lift contribution for 
cases 2 and 3. A rapid increase in lift coefficient from t/T = 0.00 to 0.25 is due to inertial acceleration at 
the start of the motion. Between t/T = 0.417 and 0.583 is where the D component approximately equals to 
the difference in lift generation for two cases, and this is a strong evidence that the non-circulatory effects 
are the source of additional lift. The decrease in lift after t/T = 0.583 also follows the trend of the D 
component. The strength of the LEV for case 2 was computed to be slightly higher than case 3 with 
similar qualitative feature such as peak strength at t/T = 0.50. There are two factors that contribute to the 
discrepancy in the LEV strength: the pitching rate of the flat plate and the development characteristic of 
the LEV. The difference in the pitching rate definitely introduces extra circulation in the control volume 
and the subtle differences in the LEV strength found in Baik et al. [25] was believed to be caused by the 



difference in pitching rate for constant k kinematics. Another explanation is the fact that the area of LEV 
for case 2 was measured larger than the LEV observed in case 3. This observation was not available in 
previous study primarily due to the fact that the k value was not high enough. The LEV for case 2 starts to 
develop during the end of the up stroke motion rather than t/T = 0.00. In Figure A4, a small rotation 
dominated zone is captured at the leading edge of the flat plate at t/T = 0.917 that grows in size to become 
the LEV in subsequent phases. This effectively shifts the LEV size growth curve to a new origin to t/T  
0.9 and the resulting curve in Figure 16(b). If the strength of LEV is dominated by the k value, it is a 
possible that the increase in LEV area will cause higher circulation within the LEV. Further investigation 
at same k but different St needs to be performed to verify the effect of St on the strength of LEV. 

 

 
Figure 14. Differences in drag and lift coefficients between cases 1 and 3, and cases 2 and 3. (‘Case 1&3’ denotes force 

coefficients from case 1 subtracted by case 3) 
 

 
Figure 15. Breakdown of force components in FE for lift coefficients between cases 1 and 3, and cases 2 and 3. (‘Case 1&3’ 

denotes force coefficients from case 1 subtracted by case 3) 
 

The LEV core trajectory exists independent of the geometric angle of attack of the flat plate as long 
as the effective angle of attack of the prescribed motion remains constant. In order to verify the 
repeatability of previous findings, the LEV core locations were plotted on top of the previous cases, and it 
is shown in Figure 17. The conclusion from the LEV core trajectory analysis is that the trajectory 



becomes distorted at high St kinematics, and not high k. The fit between the recent cases and previous 
cases are good; two cases from previous study [25] were chosen with St = 0.15 because cases 1 and 3 
have St = 0.16. The Re is 5,000 for the current cases and 10,000 for previous cases. A second order 
polynomial was curve fitted through the LEV core locations with an exception of case 2 coordinates since 
they did not fit the trend. A good fit implies that the LEV core trajectory is repeatable and the Re has a 
negligible effect on the LEV trajectory. Case 2 LEV core trajectory showed mirror image about the x-axis 
of the LEV trajectory at lower St kinematics. This may be associated with the high magnitude geometric 
angle of attack during the motion accompanied by the high pitching rates. 
 

 
Figure 16. (a) Normalized circulation of LE, and (b) normalized LEV area for all cases. 

 
 

 
Figure 17. Vortex core trajectory with respect to the flat plate for various cases. 

 
 

IV. Conclusions 
 

An experimental investigation of pitching and plunging flat plate at a prescribed effective angle of 
attack in the St range of 0.16 to 0.32 and k range of 0.5 to 1.0 is presented. Force measurements and PIV 
technique were used to analyze and quantify the unsteady flow field created by the wing kinematics. A 
momentum-balance based non-intrusive force measurement technique and a systematic vortex detection 
algorithm were implemented as a post-processing tool for PIV data to gain insight on the unsteady force 
generation and vortex dynamics. The main conclusions are the following: 

 



 The inertial force, which is proportional to the St, is a dominant contributor to the overall force 
generation in pitching and plunging flat plate. The qualitative accuracy of ‘Flux Equation’ 
enabled a detailed analysis of force components associated with the force generation and it was 
found that the time rate of change of the velocity field contributes to the overall force generation 
more than vorticity in the flow field. The circulatory component, such as LEV, was unable to 
account for the differences in the force generated between cases 2 and 3 where flow topology and 
the computed LEV strength was comparable to each other. 

 The circulatory component of the force contributes to the difference in the force generation 
between kinematics with the same St by manipulating the development and convection of LEV 
through reduced frequency. Similar amount of power was consumed for cases 1 and 3 and the 
computed thrust efficiency was 35% and 13%, respectively. The difference in drag and lift 
coefficient was caused by the size and location of the LEV in the flow field with respect to the 
flat plate. The delayed development of LEV due to higher k value was consistent with the 
previous findings. 

 The normal force component is more significant than the tangential force in force generation. The 
pitching amplitude increased as the St increased from conserving the effective angle of attack 
profile, which led to increase in thrust and drag production through projection of normal force. 
The recorded propulsive efficiency of case 2 was approximately 42% with significant amount of 
thrust resulting from the projection of the normal force to the thrust component.  

 The LEV core trajectory with respect to the flat plate holds for kinematic up to St = 0.20. The 
repeatability was established at different Re, indicating the insignificance of Re effect on the 
dynamics of LEV. The trajectory was disrupted for higher St = 0.32 kinematic due to high 
magnitude of geometric angle of attack and higher pitching rates. 

 The ‘Flux Equation’ successfully captured qualitative features of computed force coefficients; the 
lift coefficients compared better than the drag coefficients due to larger magnitude of force 
measured in the lift. The condition required to achieve origin and control volume independent 
solution was tested and successfully implemented. However, sensitivity to the spatial and time 
resolution of the PIV data need to be further investigated for more quantitatively accurate 
solutions. 
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Appendix A 
 

 
Figure A1. Case 1: Flow visualization, normalized x-component velocity contours, normalized vorticity contours at t/T = 

0.000, 0.083, 0.167, 0.250, 0.333, 0.417, and 0.500. 



 
Figure A2. Case 1: Flow visualization, normalized x-component velocity contours, normalized vorticity contours at t/T = 

0.500, 0.583, 0.667, 0.750, 0.833, and 0.917. 
  



 
Figure A3. Case 2: Flow visualization, normalized x-component velocity contours, normalized vorticity contours at t/T = 

0.000, 0.083, 0.167, 0.250, 0.333, 0.417, and 0.500. 



 
Figure A4. Case 2: Flow visualization, normalized x-component velocity contours, normalized vorticity contours at t/T = 

0.500, 0.583, 0.667, 0.750, 0.833, and 0.917. 
 



 
Figure A5. Case 3: Flow visualization, normalized x-component velocity contours, normalized vorticity contours at t/T = 

0.000, 0.083, 0.167, 0.250, 0.333, 0.417, and 0.500. 
 



 
Figure A6. Case 3: Flow visualization, normalized x-component velocity contours, normalized vorticity contours at t/T = 

0.500, 0.583, 0.667, 0.750, 0.833, and 0.917. 
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