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The development of hypersonic vehicle control algorithms requires the ac-
curate prediction of vehicle aerodynamic loads. This paper focuses on nding
time-accurate unsteady loads due to the oscillation of multiple vehicle elastic
modes. The reduced-order modeling methodology consists of using convolu-
tion of modal step responses along with a correction factor to take di erent
oscillation amplitudes, ight conditions, and nonlinear aerodynamic e ects due
to multi-modal oscillations into account. Thus, the model is valid over a range
of conditions rather than one speci ¢ set of conditions upon which it is con-
structed. When compared with CFD simulations, the errors are shown to be
relatively small in most cases over a range of Mach numbers, modal frequen-
cies, and modal oscillation amplitudes. Also, an error estimation methodology
is developed to give a general sense beforehand as to the errors expected to
be incurred through the use of the model.

I. Introduction

Among the many challenges faced in the design of hypersonic vehicles is the development of accurate
control algorithms. The aerodynamic forces in the hypersonic regime are quite large, so any misprediction
of these loads will potentially result in inaccurate control algorithms, which in turn could result in loss of
control of the vehicle. Even though hypersonic vehicles are inherently sti  structures, they still do experience

exible deformations while in ight. Thus, to accurately model the aerodynamic loads on the vehicle, it is
important to create the tools to accurately model the unsteady aerodynamic e ects caused both by these
structural deformations as well as rigid body pitch/plunge motions.

Computational uid dynamics (CFD)-based reduced-order models provide an e ective way to model the
unsteady aerodynamic loads. Once constructed, the models run orders of magnitude faster than full CFD
solutions while preserving a high level of the accuracy seen by the computational simulations. However, a
major drawback of many reduced-order models is that they are only valid for ight conditions immediately
around those from which the model was constructed. E orts have been made to make the ROMs valid
over a range of parameters. Glaz et al.> use an unsteady surrogate-based approach to construct a model
for unsteady rotorcraft dynamics over a range of pitch/plunge motions and Mach numbers. Silva® uses a
convolution-type of methodology to construct a state-space ROM which is then used over a range of velocities
in the transonic regime by modifying the time step of the numerical integration. Other e orts for parameter-
independent ROMs have focused on the analysis of ight test data. Lind et al.3 create velocity-independent
kernels by using curve ts of ight test data gathered at di erent conditions. Baldelli et al.* create a model
valid over a range of dynamic pressures by combining linear and nonlinear operators for model construction.
Prazenica et al.> extrapolate kernels found at di erent ight conditions to create one model valid over
a range of conditions. Omran and Newman® use Volterra series submodels in di erent domains, such as
pre-stall and post-stall, to construct an overall global piecewise Volterra series model.

Graduate Research Assistant, University of Michigan, Email: tskujins@umich.edu, Member AIAA.
YProfessor, Department of Aerospace Engineering, University of Michigan, Email: cesnik@umich.edu, 1320 Beal Avenue,
3024 FXB, Ann Arbor, MI 48109-2140, Ph. (734) 764-3397, Fax: (734) 764-0578, AIAA Associate Fellow.

1of 14

Copyright © 2011 by Torstens Skujins and Carlos E.S. Cesni@‘%gmd ‘39%5\%%6%'%9%%% ﬂgg@aﬁEggﬂHﬂgﬁonautics, Inc., with permission.



Ref. 7 lays out the basic framework for a reduced-order model (ROM) technique for the hypersonic vehicle
unsteady aerodynamics. The methodology is based on the convolution of modal step responses combined
with a nonlinear correction factor to account for amplitudes of motion and ight conditions away from those
around which the ROM was constructed. However, as detailed in the paper, the method was limited to
cases with only a single mode of oscillation. This work extends this formulation to take into account multi-
modal oscillations and provides an assessment of the e ects of reduced frequency on the accuracy of the
model. In order to construct the nonlinear correction factor, a certain number of CFD sampling runs must
be completed. This work also lays out a quantitative metric for determining an optimal number of sampling
points to use and provides an estimate of the errors expected to be incurred through the use of the ROM
methodology.

I1. ROM Methodology

A convolution-based ROM was chosen due to the ease of implementation into a CFD code. In general,
the process involves convolving the modal step response with arbitrary modal motion to nd the uncorrected
ROM response. Then, the nonlinear correction factor is applied to give the nal corrected ROM response.
The overall unsteady aerodynamic ROM framework is shown in Fig. 1. The inputs are the structural mode
shapes and modal amplitudes at each time step, from which the modal motion can be obtained. The outputs
are the time-accurate coe cients and/or generalized aerodynamic forces. See Ref. 7 for details on the CFD
runs necessary for model construction.

CFD runs used for
model construction

Structural
Mode
Shapes

y
Modal Linear
Amplitudes Convolution
Inputs
ROM Nonlinear
construction Correction
Factor Outputs

Time-
accurate
coefficients
and/or GAFs

Figure 1. Unsteady aerodynamic ROM schematic

A. Convolution

The response of a linear system to an arbitrary input can be found if the response of the system to a unit
step (H (1)) or unit impulse (h(t)) function is known. The response y(t) due to an arbitrary input f(t) is
found through the use of convolution:8:°

thf
y@®@=~fOH(@®+ 0a()H(t )d M

Since the unit impulse is the derivative of the unit step, integration by parts yields
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Equations 1 and 2 are the two forms of Duhamel’s integral.

The reduced-order model presented here is based on the step convolution described above. Volterra series
is the nonlinear extension of convolution. However, for the cases tested here, the ROM using convolution
and the correction factor described subsequently showed improved agreement with direct CFD results when
compared with Volterra results. The uncorrected ROM solution is found by convolving the arbitrary modal
motion with CFD modal step input response results.

B. Correction Factor, Single Mode

The results in Ref. 7 showed that, as the input amplitude and ight conditions strayed from those used in
the step response, the accuracy of the lift, drag, and moment coe cients signi cantly decreased. Thus, a
nonlinear correction factor was introduced, de ned as follows for the oscillation of a single mode:

Yo
Y
f.= I; ©))
dy
In Eq. 3, Y; is the nal, quasi-steady response (c; or other coe cient) to a step input of amplitude d;, and
Y, is the nal response to an input of amplitude d,, which may also be at a di erent ight condition. For a
linear system, this ratio would always equal 1, as the outputs scale with the inputs.
Latin hypercube testing combined with kriging methodology was used to construct surfaces for f. pertain-
ing to each of the coe cients throughout the parameter space of interest. Results showed that multiplying
the convolved response with this correction factor greatly improved the accuracy of the reduced-order model.

C. Kiriging

Kriging is a methodology which creates surface ts of functions using sampling data points obtained through
computational experiments. Unlike actual experiments, which inherently contain random error, computa-
tional simulations will give the same answer for the same simulation when repeated. Thus, a kriging surface
will pass through all test points, whereas a least squares t surface will not in general directly pass through
each point. This is accomplished through the use of a regression model coupled with a random function.
Refs. 10 and 11 provide detailed explanations of the kriging methodology and model construction.

D. Correction Factor, Multiple Modes

The extension of the correction factor to multiple modes is investigated at rst using two di erent methods.
Consider a sample airfoil undergoing oscillations in each of the rst m modes. The rst method is to simply
use superposition of individual modal responses to nd the total response. Using this method, the response
of each mode is calculated as detailed above. Then, each response is added together to nd the nal response.

The second method is to create a correction factor that can be easily extended to multiple modes. This can
be accomplished by de ning the multi-modal correction factor f.n, as follows, here presented for simplicity
as a three-mode excitation:

Y123
fom = 4
em Yi+Yy,+ Y3 )

In Eq. 4, Y123 is the nal quasi-steady response after steps of certain amplitudes have been simultaneously
applied to each of the rst three modes; the denominator is the superposition of uncorrected individual
modal responses Y1, Y2, and Y3; and is an o set introduced to prevent numerical issues. A kriging surface
is created by nding correction factor values at sampling points throughout the parameter space; in this case,
the variables are Mach number and modal amplitudes. Then, to apply the correction factor, the motion of
each of the modes is individually convolved with the step response and added together via superposition
to nd the uncorrected response Y. Rearranging Eq. 4, the nal corrected response value Y. is found as
follows:

Ye = fem (Yu )+ ®)
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Note that a separate kriging surface is found for each of the coe cients of interest.

E. Basic Problem De nition and Setup

The CFD code used in this study is CFL3Dv6, developed at NASA Langley.'? The code is capable of
solving the Euler/Navier-Stokes equations for both steady and unsteady ows on two and three-dimensional
structured grids and has mesh deformation capability. Grids are created using the mesh generator ICEM
CFD from ANSYS.13 All results shown are Euler solutions. Modal inputs are given to the airfoil geometry,
described below, by utilizing the code’s mesh deformation capabilities. Response quantities tracked are the
lift, drag, and moment coe cients.

1. Geometry

The geometry used is a two-dimensional half diamond airfoil with a at top surface. It is 2:5% thick and has
a length of 1:6m. This is not intended to be representative of any speci c airfoil or vehicle, as the method is
general and can be applied to di erent con gurations. The grid, shown in Fig. 2 (zoomed in on the airfoil)
isa 548 674 structured grid with points concentrated more closely near the airfoil surface. The rst mode
step response obtained is virtually indistinguishable to that from a more re ned grid of 644 866 points.

X

Figure 2. CFD half-diamond airfoil grid

2. Mode Shapes

Some fundamental deformation modes of the elastic structure must be used when creating the unsteady
aerodynamic ROM. Typically, those fundamental modes are elastic mode shapes of the structure, and they
would come from the solution of the structural dynamics part of the problem. To simulate those in our present
study, three chordwise mode shapes were assumed. Like the geometry itself, the mode shapes assumed here
do not correspond to any speci ¢ con guration. Figure 3 shows a plot of the centerline displacements of
these mode shapes; the amplitudes shown correspond to those used for the step inputs.

F. Error Metric

The error metric used to judge the accuracy of the ROM is described as follows. At each time step, the
ROM and CFD response values are compared, as shown in Eg. 6 with the various CFD quantities de ned
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Figure 3. Mode shapes

in Fig. 4; i ranges from 1 to the nal time step considered.

JCFD; ROM;j
error = ma 100% 6
X CFDmax CFDmin ° ©)

I1l. Reduced Frequency Studies

Due to the high ow velocity, hypersonic vehicles tend to have low values of reduced frequency k, de ned
in Eq. 7,

Y
k=G ™

where b is the airfoil’s half-chord, ! is the frequency of oscillation, and U is the freestream velocity. Since
reduced frequency is an key determining factor of the ow’s unsteadiness, it is important to investigate how
the ROM is a ected by increasing k values.

Results showing the errors with increasing reduced frequency have been obtained for individual excitations
of each of the rst and third modes for the two-dimensional half-diamond airfoil. Figures 5(a) and 5(b) show
the results for each mode for situations in which all ight conditions and modal amplitudes remain the same,
but the reduced frequency, by changing the oscillation frequency, is modi ed on each CFD run. Though the
errors do increase with k, they remain relatively small over the range tested, which corresponds to oscillation
frequencies ranging from 125 rad=s to 1250 rad=s. These two cases are run at Mach 8, which is the same
Mach number as the step response upon which the ROM is based (i.e. the modal step of amplitude d;, and
hence response Y4, in Eqg. 3 are found at Mach 8).

Next, consider a case similar to that in Fig. 5 but with the Mach number di erent than that of the base
step response. Figure 6 shows the errors a rst mode case at Mach 5 and amplitude 33 . The solid lines
represent the errors if the Mach 8 step was used as the base (d; and Y; from Eq. 3), while the dashed lines
represent the errors if the base is a Mach 5 step response. The plot shows that the errors for the Mach 5
base are smaller than the Mach 8 base. Once a new CFD step response has been obtained for a speci ¢

ight condition, it does not take any extra computational time to use this new response in the ROM. Thus,
it will be bene cial to have several di erent step responses available to use and to pick the one with ight
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conditions closest to those in the simulation. Other than the step responses themselves, no additional CFD
runs will be necessary, as the correction factor can be based on any arbitrary step response.
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Figure 6. Mode 1, Mach 5, amplitude=33

V. Multi-Modal Oscillations

To test the multi-modal correction factor, test cases with sinusoidal oscillations of each of the rst three
modes were conducted. Latin hypercube sampling'* was used to pick the parameter values, which consisted
of the Mach number, modal amplitudes, and modal oscillation frequencies, for each run. Table 1 shows
the range of values used as well as the values of the speci c test case shown below. Note that the reduced
frequency range corresponds to a modal oscillation frequency range of 100 rad=s to 1;000 rad=s.

Table 1. Multi-modal oscillation parameter values

Parameter Max Min Example

M 5:0 9:5 7
dq 60 60 53
d; 25 25 13
ds 25 25 19
ka 0:028 0:535 0:19
ko 0:028 0:535 0:38
k3 0:028 0:535 0:27

Overall, the ROM showed good agreement with the CFD over the range tested. Figs. 7 and 8 show the
ROM-CFD comparisons for the example case described in the table. Additionally, the straight superposition
of individual modal responses is plotted as well.

Table 2 summarizes the maximum errors seen for the example case mentioned above. For each coe -
cient, the ROM had less error than superposition. Though each captured the lift coe cient relatively well,
superposition did not predict the peaks as well for the moment coe cient as the ROM and thus had a larger
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error. For the drag coe cient, superposition is not close to the CFD results, as quanti ed by the over 50%
error seen for that case. The ROM matches the CFD drag coe cient results well qualitatively; the errors
seen are around the peaks of the plot.

Table 2. ROM and Superposition Errors (percent)

Coe cient ROM error Superposition error

Lift 1:78 4:51
Moment 3:28 12:86
Drag 10:04 53:79

Overall, the ROM matched the CFD results relatively well for each of the cases tested. However, this
does not provide any sort of quantitative error estimate for the ROM methodology in general when applied
to this con guration. Because of this, it is necessary to create an error estimation methodology give a more
con dent estimate of the errors expected to be incurred by the use of the ROM.

V. Error Estimation

When considering the overall error incurred by the ROM, two separate areas need to be considered. The
rst is the error of the kriging surface compared to the function it is modeling. Among the important issues
faced when constructing the ROM is deciding on how many sampling points are needed for the correction
factor kriging surface. Too few points would result in an inaccurate representation of the function and thus
loss of accuracy of the ROM in general. However, using more points than necessary would result in unneeded
computational expense. Thus, the rst part of the error estimation focuses on nding the optimal number
of sampling points to use. One method which assesses the error of kriging surfaces is the E cient Global
Optimization (EGO) algorithm.®1® The purpose of this algorithm is to nd global maxima and minima
on surfaces; this is accomplished by placing points at locations of maximum expected improvement and
uncertainty on the surface. The method presented here is similar to the EGO algorithm except for the fact
that the purpose is to simply minimize the error on the surface, not to nd the speci c location of extrema.
Thus, the addition of sampling points is based solely on the mean squared error of a location on the surface,
not the likelihood of a new extrema being at a certain location.
The second area is the error of the function when compared with the truth model, thus far considered
to be the CFD results. Even if the kriging surface matched the intended function exactly, the methodology
would still result in some error. The second part of the error estimation focuses on quantifying this error.

A. Error of Kriging Surface Compared to Function

Due to the high computational expense of CFD simulations and thus kriging surface sample point calcula-
tions, it is important to know the number of points and location within the parameter space of each point
before beginning model construction. Because of this, it is not feasible to use CFD itself to determine these
items. Instead, some sort of simpli ed, computationally inexpensive models must be used. For this study,
piston theory has been implemented.

Piston theory'”18 is a simpli ed method for calculating unsteady pressures on a supersonic body by
using the approximation that a planar slab of uid initially perpendicular to the ow direction will remain
that way as it passes over a body. The normal velocity of the body surface may cause the slab to expand
or compress as it travels down the surface, resulting in a changing pressure. Using the piston analogy, the
pressure p(x;t) on a point of the surface can be found by:1°

1lv 1
p(Xt) =pa 1+Ti (8)

In Eq. 8, pa is the freestream pressure, is the ratio of speci ¢ heats, vy, is the velocity of the surface normal
to the ow direction, and a; is the freestream speed of sound. Taking a third-order binomial expansion of
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the above expression, the third-order piston theory pressure at a certain location on the surface of the body

is found as follows:
" #

2 3
Y +1 v +1 v
n+ n + n

PGt =pa+ p1 —
as

4 ag 12 ajg (9)
Note that piston theory breaks down when the normal velocity of the surface approaches the speed of sound as
well as in areas where curvature introduces three-dimensional e ects, as ina ow moving down a cylindrical
body.

Figure 9 shows a diagram of this rst error analysis section methodology. To start with, a beginning
number of sampling points within the parameter space is selected using Latin hypercube sampling. At each
sampling point, piston theory is used to calculate the nal coe cient values instead of CFD. Then, using
Eq. 4, these piston theory values are combined with CFD step responses to nd the correction factor values
at each of the points. Note that CFD is used for the step responses due to the relatively low computational
cost involved, as the step response in general does not need to be at the same ight conditions as the sampling
point in the parameter space, and thus only a small number of step responses will need to be calculated.
Next, the kriging surface is constructed with the available sampling point data, and the maximum mean
squared error (MSE) is calculated at points throughout the surface. This error s? at location x in the
parameter space is found as follows:'®

" #
1 1'’R 11

2 — 2 0 1
sc(x )= 1 rR "r+
) 1'R 11

(10)
In Eq. 10, is the surface’s variance, r is a column of the correlation matrix R, and 1 is a column vector

of ones. See Refs. 10,11, and 15 for the derivation and a detailed explanation. In this work, this error
calculation is obtained from a built-in MATLAB subroutine.

Use LH to pick starting
number of sampling points [ CFD step responses ]

in parameter space
CFD can still be used here due to
Mach number, modal amplitudes relatively low computational cost
. : : v
I Ufetp'?to'l‘ the?fry t‘: ] Find correction factor at
calculate final coeff. values each sampling point
at each point T
~
Point in process where piston Calculate maximum mean
theory replaces CFD squared error on Kriging surface |

Currently defined in terms of Add points until max. MSE is
surface’s variance below chosen stopping value

Figure 9. Error analysis: comparison of Kriging surface to function

A new sampling point is then added at the location of the maximum MSE. The process is repeated
until the error has fallen below the designated stopping criterion. A bene t of this methodology is that
the stopping criterion can be input by the user and is quantitative rather than qualitative. Currently, this
criterion is de ned in terms of the kriging surface’s variance, as shown in Eq. 11, where max s? is the
maximum MSE on the surface:

max s> <0:01 2 (11)
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Figures 10 and 11 show a simple graphical example of this process. Five sampling points are at rst
selected to model the functiony = (x 2)(x 4)(x 9). The corresponding kriging t and MSE plot are
shown in Fig. 10. Then, the above process is applied, and the end result is shown in Fig. 11. Three more
sampling points were added, and the function and kriging t are indistinguishable in the plot.
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Figure 10. Kriging t and MSE with initial sampling points
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Figure 11. Kriging t and MSE, error criterion satis ed

Using the stopping criterion detailed above, around 90 sampling points were necessary for the construction
of the kriging surface of the two-dimensional half-diamond airfoil with Mach number and each of the three
modal amplitudes as parameters. Latin hypercube test points were generated using MATLAB'’s lhsdesign
subroutine;?° 100; 000 iterations were used, and the sampling points with minimum correlation were chosen.
Note that since the speci ¢ beginning sampling points will di er, the exact number of points necessary to
achieve the stopping criterion was slightly di erent for each time the above process was repeated.

B. Error of Function Compared to Truth Model

Once the kriging surface has been constructed in such a way that it matches up well with the intended
function, it is necessary to evaluate how well the function itself represents the truth model. Fig. 12 shows
the overall process that has been implemented. As before, piston theory is utilized due to low computational
expense.

The overall error is investigated by comparing ROM and truth model results over a large sample of test
cases throughout the parameter space. To begin with, Latin hypercube sampling is used to pick points at
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Figure 12. Error analysis: comparison of function to truth model

which to run sinusoidal test cases. In addition to Mach number and modal amplitudes, modal frequencies
are also included as variables. These test points are in general di erent than the points used for kriging
surface construction. For this study, 1;000 test points have been used. At each point, the the sinusoidal
input response is calculated in two di erent ways: once using the ROM based on a CFD step response and
piston theory correction factor and once using straight piston theory. The straight piston theory result here
replaces the CFD model as the \truth" model for comparison. Finally, the error of ROM as compared to
piston theory results is found for each run. The ROM methodology’s accuracy is assessed by calculating the
mean and standard deviation of the errors over all runs.

Table 3 shows the range of parameters used for this study as well as the speci ¢ parameters of the run
which had the highest error (denoted as \Max. Error™). Fig. 13(a) shows a scatter plot of the errors of
each run along with the mean and standard deviation superimposed on the plot, while Fig. 13(b) shows the
comparison of the ROM, piston theory, and CFD results for the maximum error case.

Table 3. Error analysis parameters

Parameter Min. Value Max. Value Max. Error

M 5 9.5 8:56
di 60 60 7:71
do 25 25 13:02
ds 25 25 13:13
ky 0:028 0:375 0:168
ko 0:028 0:375 0:044
ks 0:028 0:375 0:059

In general, the errors are relatively small. The overall mean of the errors, denoted by the solid red line in
the qgure, is 8:89% with a standard deviation of 4:44%. The largest error, for which the ROM-truth model
comparison is shown in Fig. 13(b), is just over 45%. For this case, piston theory shows a closer agreement
with the results than the ROM. For this geometry, piston theory has been shown to agree well with the
CFD results in general. However, for more complex con gurations, such as highly three-dimensional bodies,
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Figure 13. Results: comparison of function to truth model

piston theory will be expected to break down, whereas the ROM can be applied to any con guration.

The goal of this methodology is not to give an exact error that is expected to be incurred but rather a
general picture of the error. For the more complex geometries, where piston theory will not be expected to
give as accurate of results, the use of piston theory and/or other simpli ed models serve to give a picture of
the general trends expected with the error, not a detailed accurate analysis of any speci ¢ errors seen.

VI. Concluding Remarks

A convolution-based reduced-order modeling methodology for the unsteady aerodynamics of a hypersonic
vehicle has been extended from capturing single-modal oscillation e ects to multiple-modal oscillations.
Studies have looked at the error incurred as functions of increasing reduced frequency. An error estimation
methodology has been developed to investigate prior to model construction the general trends of the error
expected to be encountered. This methodology includes a quanti cation of the number of sampling points
necessary to construct the kriging surface as well as the use of simpli ed models to replace CFD results. For
the two-dimensional half-diamond airfoil geometry used in this work, the major conclusions are as follows:

Errors were shown to increase with increased reduced frequency. However, they remained relatively
small over the range considered.

The multi-modal correction factor was successfully applied to this con guration over a range of fre-
guencies, modal oscillation amplitudes, and Mach numbers and showed improved agreement with CFD
results over straight superposition of individual modal responses.

Using the error estimation methodology, the mean error over 1;000 sample runs was found to be just
under 9% with a standard deviation of slightly over 4%.

Future work will consist of the application of the ROM to a three-dimensional rocket-type body where piston
theory will not be expected to provide as accurate of results. Also, the error quanti cation results presented
above are only valid for this speci ¢ con guration and do not provide general error bounds for the method.
Further investigations will explore these bounds in terms of geometry and the ROM methodology’s extension
into other ight regimes.
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