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Abstract 

Fast Ionization Wave (FIW), nanosecond pulse discharge propagation in nitrogen and helium in a 
rectangular geometry channel / waveguide is studied experimentally using calibrated capacitive probe 
measurements. The repetitive nanosecond pulse discharge in the channel was generated using a custom 
designed pulsed plasma generator (peak voltage 10-40 kV, pulse duration 30-100 nsec, voltage rise time 
~1 kV/nsec), generating a sequence of alternating polarity high-voltage pulses at a pulse repetition rate of 
20 Hz. Both negative polarity and positive polarity ionization waves have been studied. Ionization wave 
speed, as well as time-resolved potential distributions and axial electric field distributions in the 
propagating discharge are inferred from the capacitive probe data. ICCD images show that at the present 
conditions the FIW discharge in helium is diffuse and volume-filling, while in nitrogen the discharge 
propagates along the walls of the channel. FIW discharge propagation has been analyzed numerically 
using quasi-one-dimensional and two-dimensional kinetic models in a hydrodynamic (drift-diffusion), 
local ionization approximation. The wave speed and the electric field distribution in the wave front 
predicted by the model are in good agreement with the experimental results. A self-similar analytic 
solution of the fast ionization wave propagation equations has also been obtained. The analytic model of 
the FIW discharge predicts key ionization wave parameters, such as wave speed, peak electric field in the 
front, potential difference across the wave, and electron density as functions of the waveform on the high 
voltage electrode, in good agreement with the numerical calculations and the experimental results. 
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1. Introduction 

Over the last three decades, Fast Ionization Wave (FIW) discharges have been 
extensively studied, both experimentally and theoretically. An overview of experimental results 
and theoretical models published before mid-1990’s is given in review by Vasilyak et al. [1]. 
More recently, a significant amount of experimental data on FIW dynamics and structure has 
been obtained at Moscow Institute of Physics and Technology in 1994-2008 [2-8], in studies of 
fundamental kinetic processes in nanosecond pulse discharges and their applications. At the 
present time, there exists an extensive body of data on fast ionization wave speed and attenuation 
coefficient in various gases in a wide range of pressures and peak voltages, on wave front 
dynamics and mechanisms of its formation, and on generation of high-energy (runaway) 
electrons in the wave front. Recent experimental results also include sub-nanosecond wave front 
imaging [5], visible / UV emission spectra of FIW discharges [6,7], and inference of electric 
field and electron density distributions in the wave front from calibrated capacitive probe 
measurements [2]. 

The main difference between streamer discharges [9-12] and FIW discharges is that the 
latter demonstrate high spatial uniformity and reproducibility, thus allowing accurate 
measurements of discharge parameters in a repetitively pulsed mode. Similarity between these 
two types of discharges is due to the fact that key elementary processes controlling discharge 
propagation are electron impact ionization in the discharge front and photoionization. Due to the 
high reduced electric field in the discharge front [13], the role of high-energy electrons in 
ionization kinetics can be significant [14,15]. The transition between the streamer and the 
ionization wave mode is rather gradual. Thus, reducing the pressure while keeping the high 
voltage pulse waveform fixed increases the streamer diameter [12], and at sufficiently low 
pressures in a large-volume chamber the discharge transforms into a spherical wave propagating 
from the high-voltage electrode [16]. Previously, development and propagation of FIW 
discharges in long tubes (at the conditions when the electrode gap is much greater compared to 
the discharge tube diameter) has been studied at low pressures (1-10 Torr), at peak pulse voltages 
of 10-20 kV, and at relatively high pressures (up to 1 bar), at pulse voltages of 100-200 kV. In 
both cases, pulse voltage rise rate was of the order of 1 kV/ns or higher, and pulse duration was 
within a few tens of nanoseconds. It has been shown that at these conditions, the discharge 
always initiates near the high-voltage electrode, with the current loop closed by the displacement 
current, with the wave speed (determined from time-resolved measurements of electrical 
potential distributions and optical emission in the wave front) is in the range of 1-10 cm/ns. The 
dependence of the wave speed on pressure and discharge tube diameter is discussed in [17].  

Current interest in characterization of FIW discharges is driven mainly by their potential 
for applications such as plasma chemical fuel reforming, plasma-assisted combustion, high-speed 
flow control, pumping of electric discharge excited lasers, and generation of high-energy 
electrons. A unique capability of FIW discharges to generate significant ionization and high 
concentrations of excited species at high pressures and over large distances, before ionization 
instabilities have time to develop, is very attractive for these applications. Recent advances in 
laser optical diagnostics, such as Thomson scattering, nanosecond and picosecond Coherent 
Anti-Stokes Raman Spectroscopy (CARS), Laser Induced Fluorescence (LIF) and Laser 
Collision Induced Fluorescence (LCIF) are finally making possible detailed, non-intrusive, 
spatially and time-resolved measurements of electron density and electric field distributions in 
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high-speed ionization wave discharges, on nanosecond time scale. Insight into FIW formation 
and propagation dynamics also requires development of predictive kinetic models, and their 
validation by the new experimental results. Note that although numerical kinetic models may 
incorporate detailed kinetics of charged and neutral species in the propagating ionization wave 
front (including non-local electron kinetics), analytic models remain attractive due to their 
capability of elucidating fundamental trends of discharge development. 

The main objectives of the present work are (i) development and testing of the 
experimental apparatus for studies of FIW discharges which lends itself to the use of advanced 
optical diagnostics, (ii) measurements of FIW speed and electric field in the wave front by a 
calibrated capacitive probe, (iii) comparison of the experimental results with kinetic modeling 
calculations, and (iv) development of a predictive analytic model of FIW propagation. 

 

2. Experimental 

The schematic of the experimental apparatus for studies of Fast Ionization Wave 
discharge propagation is shown in Fig. 1. The ionization wave is generated in a rectangular cross 
section quartz channel, between a high voltage electrode on the left and a grounded electrode on 
the right. The high voltage electrode is a 12 mm outside diameter, 10 mm inside diameter hollow 
cylinder 32.5 mm long, with a 10 mm thick circular base 45 mm in diameter, made of copper. 
The grounded electrode is a 16 mm thick, 100 mm x 100 mm square copper flange, with a 
circular port 25 mm in diameter. The 22 mm x 13.5 mm outside dimension rectangular cross 
section, 20 cm long quartz channel with 1.75 mm thick walls is fused to two quartz tube sections 
14 cm long and 25 mm in diameter on both ends, as shown in Fig. 1. The grounded flange is 
connected to two copper waveguide plates 76 mm wide, mounted above and below the quartz 
channel, as shown in Fig. 1. The distance between the waveguide plates can be adjusted. In the 
present experiments, the waveguide plates are set 40 mm apart. The distance between the edge of 
the high voltage electrode to the grounded electrode is 28 cm. The high voltage electrode is 
placed between two Teflon flanges, as shown in Fig. 1, and is connected to a high voltage 
terminal of a custom-designed, high-voltage, nanosecond pulse generator. The grounded terminal 
of the pulse generator is connected to the waveguide plates, thus forming a plane geometry 
plasma waveguide. Both the Teflon flanges and the grounded copper flange are mounted on a 
base plate made of glass fiber-reinforced plastic. 

In the present experiments, a capacitive probe has been used to detect the arrival of 
ionization wave generated when a voltage pulse is applied to the high voltage electrode and 
traveling along the waveguide. This technique has been extensively used previously for FIW 
discharge diagnostics [2-4]. The capacitive probe is mounted in a 5 mm wide slot machined in 
the top waveguide plate and tightened with set screws, with the probe tip extending into the 
waveguide through the slot. The probe can slide along the discharge channel, between the 
leftmost and the rightmost positions, x=5 cm and x=25 cm from the edge of the high voltage 
electrode. Details of the probe operation and its use for the surface charge, electric potential, and 
electric field distribution measurements in nanosecond pulse discharges are discussed in [2]. The 
design of the probe used in the present experiments is described in greater detail in our recent 
publication [18]. Basically, the probe is a custom-made coaxial feed-through capacitor (a few 
pF) connected to a Tektronix 3054B oscilloscope through a 50 Ω terminator. The probe has a 
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rectangular flat tip 3 mm x 12 mm, placed horizontally 8 mm above the top wall of the discharge 
channel. During the ionization wave propagation along the discharge channel, the probe operates 
as a capacitive voltage divider, together with a stray capacitance between the charged wall of the 
channel and the plasma formed by the ionization wave front. Basically, the probe detects surface 
charge buildup on the top wall of the channel. If the amplitude and the time response of the 
probe are known, time-resolved electric potential on the discharge channel wall at the location of 
the probe tip can be inferred from the probe signal. In the present work, time response and 
amplitude response of the probe are determined by calibration, as discussed in Section 3. 

Optical access to the discharge channel, for discharge imaging and emission 
measurements, is available from the sides (see Fig. 1). Additional optical access is provided from 
the ends of the discharge channel, through the quartz windows fused to the ends of 25 mm 
diameter quartz endpieces at a Brewster angle and a hollow cylinder high-voltage electrode, as 
shown in Fig. 1. The endpieces are connected to 25 mm diameter, 25 cm long gas flow inlet and 
exhaust tubes, made of glass (see Fig. 1). The main purpose of this design is to have no grounded 
or floating metal parts close to the high voltage electrode, to preclude nanosecond pulse 
discharge propagation toward them. The present experiments have been conducted in nitrogen 
and in helium at pressures of P=10-20 Torr. The baseline helium flow rate is 1 slm, which 
corresponds to the flow velocity through the discharge channel of approximately u=7 m/sec at 
P=10 torr. The baseline nitrogen flow rate is 100 sccm (u=0.7 m/sec at P=10 torr). The flow rate 
through the discharge section and the pressure are controlled by mass flow controllers and by a 
shutoff valve between the test section and the vacuum pump. 

The high-voltage nanosecond pulse generator used in the present experiments has been 
custom designed to generate alternating polarity pulses with peak voltage of 10-30 kV, pulse 
duration 30-60 nsec, and pulse repetition rate up to 50 kHz. In the present work, the pulser is 
operated at low repetition rates of 10-20 Hz. The high-voltage pulses are generated using 
magnetic pulse compression. The pulse output voltage is regulated by varying the voltage of a 
DC power supply (Heinzinger HN 1200-01, 0-1200 V, 0-100 mA) providing input to the pulse 
generator, UDC=500-800 V. Increasing input DC voltage also reduces the output pulse duration. 
Figure 2 shows typical positive and negative polarity pulse shapes generated in nitrogen at P=10 
torr and ν=10 Hz. The experimental voltage waveforms shown in Fig. 2 can be approximated by 
a Gaussian shape pulse, 
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with τ=45 nsec, 38 nsec, 30 nsec, and 26 nsec for UDC=560 V, 640 V, 720 V, and 800 V, 
respectively (FWHM of 75 nsec, 63 nsec, 50 nsec, and 44 nsec). The high-voltage pulser also 
produces a trigger output pulse, generated 400 nsec before the main high-voltage pulse, for 
synchronization with optical diagnostics. The jitter of the trigger pulse relative to the main pulse 
is low, about 1 nsec for positive polarity pulses and less than 2 nsec for negative polarity pulses. 

 
3. Kinetic models 

To model the ionization wave propagation in the rectangular geometry channel, shown 
schematically in Fig. 3 in a simplified quasi-two-dimensional geometry, we used a two-fluid 
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hydrodynamic plasma model in the drift-diffusion approximation. In Fig. 3, the channel length 
and half-height are L=30 cm and a=0.5 cm, respectively, the dielectric thickness is h=1.5 cm, 
and the dielectric constant is ε=1. The governing equations in the discharge channel are as 
follows, 
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plasma (see Fig. 3) is determined from the Laplace equation, 0 . Boundary conditions on 
the positive polarity high-voltage electrode and on the grounded electrode are as follows, 
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Initial conditions for the electron and ion densities and for the potential in the discharge channel 
are 
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The surface charge density on the dielectric wall is 
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ywE  are transverse electric fields on the wall (i.e. at y=a, see Fig. 3), on the 

plasma side and on the dielectric side, respectively. 

 Following the method developed by Lagarkov and Rutkevich [19], i.e. integrating Eqs. 
(2-4) over the transverse coordinate (y), while assuming that the potential distribution has the 
same y-dependence as in a linear electrostatic wave and that transverse nonuniformity of the 
ionization wave is weak, Eqs. (2-4) can be reduced to a system with only one (axial) coordinate 
x, 
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In Eqs. (2′-4′), k is the wavenumber of a linear electrostatic wave formed in a weakly pre-
ionized, rectangular geometry waveguide (see Fig. 3) at the conditions when ionization is 
negligible [19], 
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For small wavenumbers (i.e. long wavelengths), a simple asymptotic expression for the 
wavenumber is valid, 
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 In the present work, we assume that the rate of electron impact ionization is controlled by 
the local electric field. The expression for the ionization frequency, νi, used in Eqs. (2′-4′) is a fit 
to the experimental data on Townsend ionization coefficient in nitrogen and helium as a function 
of the reduced electric field, E/p [20], 
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This problem formulation also does not incorporate photo-ionization and ionization in 
collisions of excited species. A constant electron mobility, μep = 0.42·106 cm2·Torr /V·s for N2 
and μep = 0.86·106 cm2·Torr /V·s for He [20], was assumed. Since both electron-ion 
recombination and ion drift are extremely slow on the time scale of wave propagation (tens of 
nanoseconds), the recombination rate coefficient, β=10-8 cm3/s, and the ion mobility, μ+p = 
0.21·104 cm2·Torr /V·s, have almost no effect on the results. Similarly, both electron diffusion 
and ion diffusion are completely negligible on this time scale. The initial electron density is 
taken to be n0=107 cm-3. 

In addition to 1-D simulations, two-dimensional simulations were performed with 
nonPDPSIM, a 2-D plasma hydrodynamics model with radiation photon transport. In 
nonPDPSIM, continuity equations for charged and neutral species, and Poisson’s equation for 
electric potential are integrated coincidently in time with the electron energy equation, with 
transport coefficients obtained from stationary solutions of the Boltzmann equation. The use of 
the electron energy equation allows for non-equilibrium between the local electric field and 
electron transport coefficients. The spatial discretization in nonPDPSIM is based on a finite 
volume method on an unstructured mesh. The time integration of Poisson’s equation and charged 
particle transport are implemented with a fully implicit Newton iteration method.  The transport 
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of photon radiation is addressed using a propagator - Green’s function method.  The details of 
the model and the solution method are described in Refs. [21,22]. 

The 2-D geometry used in the model is based on the experimental setup described above, 
shown in Fig. 1, including the powered and the grounded electrodes, the metal waveguide, and 
the dielectric discharge channel filled with nitrogen with a small amount of oxygen (N2/O2 = 
99.9%/0.1%) at 10 Torr and 300 K. Adding a small amount of O2 does not significantly affect 
the FIW dynamics but does provide a mechanism for photo-ionization which, for a positive 
polarity discharge, is required to provide seed electrons ahead of the ionization front. The 
discharge is assumed to be symmetric about the channel center line. The initial electron density 
in the channel is assumed to be zero, except for a small spot of plasma (0.5 cm in diameter, 
maximum electron density of 1010 cm-3) near the tip of the powered electrode. This seeding is 
required to initiate the plasma in the absence of electric field emission from the positively biased 
electrode. A nonzero electron density ahead of the ionization front, necessary for the propagation 
of the ionization front in the positive polarity case, is produced through photoionization of O2 
additive by the UV photon flux from radiating nitrogen species N2(C

3Πu), generated behind the 
ionization front. 

Both in the 1-D and in the 2-D modeling calculations, the experimental pulse voltage 
waveforms were approximated by a Gaussian shape pulse, given by Eq. (1).  

 

4. Results and discussion 

4.1. Wave speed  and electric field measurements 

In the present work, the capacitive probe was calibrated using two separate procedures. 
First, the time response of the probe was determined by placing the probe tip next to a coaxial 
cable transmitting a rectangular shape voltage pulse (peak voltage 4 V, 50 nsec pulse duration, 8 
nsec rise time, 7 nsec fall time) produced by a SRS DG535 delay generator. To detect the pulse, 
part of the cable coaxial shielding was removed. The response time of the probe, τ=8 nsec, was 
found from the following equation [18],  
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where U(t) is the voltage pulse shape in the cable and V(t) is probe signal. The amplitude 
response of the probe, A, was measured by placing a rectangular cross section shell made of 
copper foil inside the quartz discharge channel, with the foil following closely the channel walls. 
The shell was connected to the high-voltage electrode, powered by the high-voltage nanosecond 
pulse generator, and extended along the entire channel. Thus, a high-voltage pulse U(t) of known 
amplitude and shape, measured on the electrode by a Tektronix P6015A high voltage probe, was 
applied to the entire shell. The amplitude response of the capacitive probe, with the tip located 8 
mm above the quartz channel, was again obtained from Eq. (12), A=5.0·103. After calibration, 
the height and the orientation of the probe tip were kept the same. As discussed in Section 2, for 
measurements at different locations the probe was translated along the discharge channel by 
sliding along the slot machined in the top waveguide plate. 
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Figure 4(a) plots raw capacitive probe signals measured in helium, at P=20 torr, ν=20 Hz, 
and UDC=500 V, for a positive polarity wave (pulse peak voltage +10.5 kV). The probe signals 
are taken for multiple probe tip locations ranging from x=5 cm to x=25 cm from the high voltage 
electrode, 1 cm apart. The traces in Fig. 4(a) are averaged over 200 positive polarity discharge 
pulses (i.e. 20 seconds). It can be seen that the results are reproduced very well run-to-run, with 
excellent signal-to-noise. Note that this is critical for inference of the electric field from the 
probe signals. The high-voltage pulse waveform is also shown in Fig. 4(a), on the same time 
scale. Figure 4(b) plots electric potentials at these probe locations, φ(t), inferred from the raw 
probe signals, V(t), using Eq. (12). The potentials in Fig. 4(b) are also plotted together with the 
high-voltage pulse (i.e. the potential on the high-voltage electrode, U(t)). Figure 4(b) illustrates 
that the wave of electric potential propagates to the right, from the high voltage electrode to the 
grounded electrode. The potentials measured by the probe start decreasing when the wave 
reaches the grounded electrode, which occurs approximately at t=72 nsec. Figure 4(c) plots time-
resolved axial electric field at midpoints between the probe locations, i.e. at x=5.5, 6.5, … 24.5 
cm, determined from the potential difference at these locations. It can be seen that the wave front 
initially steepens while peak electric field increases considerably (from less than 1 kV/cm to 
more than 2 kV/cm), before reaching a quasi-steady-state shape (at x≈14 cm), when peak electric 
field in the front starts gradually decreasing. Finally, Figure 4(d) plots the wave front location, as 
well as peak electric field and potential at the moment when the field peaks, vs. time. From Fig. 
4(d), it can be seen that far from the high voltage electrode (at x>11 cm), the wave speed 
becomes nearly constant, V=0.32 cm/nsec at x=11-25 cm. In this region, peak electric field in the 
wave front and the potential at the location of the peak field are gradually decaying, E≈2.0-1.8 
kV/cm and U=5.0-4.0 kV, respectively. 

Figures 5,6 plot time-resolved electric field and the wave trajectory, along with peak 
electric fields and corresponding potentials, for positive and negative polarity waves in nitrogen, 
at P=10 torr, ν=20 Hz, and UDC=640 V (pulse peak voltages +20 and -21 kV, respectively). It can 
be seen that the negative polarity wave is more spread out, with peak electric field in the wave 
front not exceeding E=3 kV/cm (compared to approximately E=4 kV/cm in the positive polarity 
wave). In both cases, the wave initially steepens before reaching quasi-steady-state and decaying 
gradually. The negative polarity wave speed is significantly lower compared to that of the 
positive polarity wave, V=0.53 cm/nsec vs. V=0.67 cm/nsec (both values averaged over x=10-25 
cm). The results obtained at a higher DC voltage, UDC=760 V (positive and negative pulse peak 
voltages of +28.3 kV and -29.7 kV, respectively), are similar to the ones plotted in Figs. 5,6, and 
show similar trends. In this case, the wave speed was significantly higher, V=1.02 cm/nsec for 
positive polarity and V=0.88 cm/nsec for negative polarity (a difference of approximately 15%), 
averaged over x=10-25 cm. 

Figure 7 shows broadband, 10-shot average ICCD images of positive and negative 
polarity ionization waves in helium, at P=20 torr, ν=20 Hz, and U=500 V (pulse peak voltages 
+10.5 kV and -11.0 kV). In the images, the wave propagates left to right. The wave speed at 
these conditions is V=0.32 cm/nsec and V=0.21 cm/nsec, respectively, such that the 4 nsec 
camera gate provides spatial resolution of approximately 1 cm. The field of view of the images is 
4.6 cm by 3.1 cm. The camera was triggered externally, by a trigger pulse provided by the high-
voltage pulse generator. The trigger pulse jitter relative to the main high voltage pulse is low, 
about 1 nsec for positive polarity pulses and less than 2 nsec for negative polarity pulses. Pulse-
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to-pulse reproducibility of the ionization wave launch timing and wave speed and is so good that 
10-shot images shown appear essentially identical to the single-shot images. One can see that 
emission intensity distribution from the positive polarity wave is fairly uniform, while in the 
negative polarity wave emission is brighter near the top and bottom walls of the channel. 

Figure 8 shows broadband single-shot ICCD images of positive and negative polarity 
ionization waves in nitrogen, at P=10 torr, ν=20 Hz, and UDC=500 V (pulse peak voltages +15.5 
kV and -16.0 kV). The wave speed at these conditions is V=0.40 cm/nsec and V=0.36 cm/nsec, 
providing spatial resolution of approximately 1.5 cm. From Figure 8, it can be seen that the 
ionization wave in nitrogen propagates mainly along the walls of the discharge channel. This is 
consistent with the visual observation of the discharge through the windows in the endpieces of 
the discharge channel (see Fig. 1), which also shows that emission is brightest along the 
perimeter of the discharge channel. 

 

4.2. Comparison with numerical calculations 

Figure 9 compares the experimental results in helium, at P=20 torr, ν=20 Hz, and 
UDC=500 V, for a positive polarity wave with the modeling calculations using a quasi-one-
dimensional model described in Section 3 (pulse peak voltage Upeak= +10.5 kV, τ=50 nsec in Eq. 
(1)). The wave trajectory predicted by the model is in fairly good agreement with the 
experimental data. The predicted wave speed (i.e. the slope of the wave trajectory in Fig. 9) 
increases as the wave amplitude (peak electric field) is increased, and decreases when the wave 
begins to decay. Note, however, that the wave speed increase and reduction are not observed in 
the experiment, where the wave speed remains nearly constant both when its amplitude increases 
and when it begins to decay, V=0.32 cm/nsec at x=10-25 cm (see Fig. 4(d)). The model also 
considerably overpredicts peak electric field in the wave and potential at the peak field location 
in the region close to the high-voltage electrode, by more than a factor of two at x=5-10 cm. 

Figure 10 compares the experimental results in nitrogen, at P=10 torr, ν=20 Hz, and 
UDC=760 V with the modeling calculations, for positive and negative polarity waves (pulse peak 
voltages of Upeak= +28.3 and Upeak= -29.7 kV, τ=29 nsec in Eq. (1)). In both these cases, the 
wave trajectory predicted by the model is in good agreement with the experimental data. The 
model predicts almost no difference in the wave speed for different polarity waves, although the 
average experimental speed of the positive polarity wave is approximately 15% higher compared 
to that of the negative polarity wave. Peak electric field in the positive polarity wave, predicted 
by the model, is also in good agreement with the experiment, although the potential at the peak 
field location is underpredicted, by 20-25% in the quasi-steady-state region. For the negative 
polarity wave, on the other hand, the predicted potential distribution is in good agreement with 
the data, while the field is underpredicted. The experimental data for the negative polarity wave 
have somewhat more scatter and not as well reproduced run-to-run, compared to the positive 
polarity data. 

Figure 11 plots distributions of electron density, space charge density, ρ=e(n+-n-), 
potential, and axial electric field in the FIW discharge in nitrogen at the conditions of Fig. 10, 
predicted by a quasi-one-dimensional FIW discharge model, for positive and negative polarity 
waves. All distributions are plotted for multiple moments of time 5 nsec apart. Again, it can be 
seen that the model predicts almost no difference between the positive and the negative wave 
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dynamics. As expected, the wave amplitude (peak electric field and peak charge density in the 
front) first increases with the potential on the high-voltage electrode, until wave gradual 
attenuation takes over at large distances from the electrode, and the amplitude is reduced. The 
predicted wave speed basically follows the amplitude, first increasing and then gradually 
decaying. The wave attenuation is caused by the residual electric field behind the wave, E≈1 
kV/cm, which results in a significant potential drop as the wave travels over a significant 
distance, Δx=10-20 cm. At low pulse amplitudes and/or large distances between the electrodes, 
this effect may cause complete wave decay before it can reach the grounded electrode. The 
residual field behind the wave also results in additional ionization, thus coupling additional 
energy to the plasma and further increasing the electron density in the discharge channel. Note 
that since the wave speed appears to be controlled by the peak electric field in the front (i.e. by 
the potential difference across the wave), predicting it at long distances from the wave origin 
requires accurate prediction of the residual electric field behind the wave. 

Figure 12 compares experimental and predicted time-resolved axial electric field in FIW 
discharge in nitrogen, at different distances from the high-voltage electrode at the conditions of 
Fig. 10(a) (for positive polarity wave). Note that for the purpose of comparing with the 
experimental data, the predicted electric field plotted in Fig. 12 has been approximated as a 
difference between the potentials at two axial locations ∆x=1 cm apart, i.e. Ei+1/2≈φi-φi+1. This 
value is 15-20% lower than the actual electric field, Ex=-dφ/dx, calculated by the model. It can 
be seen that both peak electric field and the residual electric field in the plasma after the wave are 
predicted fairly accurately. Note that, compared to the experiment, the model predicts 
significantly higher peak electric field in the region near the high-voltage electrode (at x=6.5-
10.5 cm), where two-dimensional effects are expected to be most significant. Summarizing the 
results of Figs. 10-12, predictions of the quasi-one-dimensional numerical model of the FIW 
discharge in nitrogen are in fairly good agreement with experimental measurements of wave 
speed, peak electric field in the wave front, and the residual electric field behind the positive 
polarity wave. For the negative polarity wave, the wave speed predicted by the model matches 
the experimental results rather closely, although peak electric field in the front is significantly 
underpredicted. The level of agreement between the quasi-1-D model and the experiment is 
rather encouraging, considering significant transverse nonuniformity of FIW discharges in 
nitrogen, apparent from the images of Fig. 8. 

Although the modeling calculations discussed above describe the majority of the 
experimentally observed trends, some aspects of the problem are not easily captured in the one-
dimensional model, such as radiation transport, charging of dielectric surfaces, and curvature of 
electric potential surfaces. To investigate the importance of these more subtle features, two-
dimensional modeling of the generation and propagation of a FIW in nitrogen was performed.  A 
more detailed discussion of the multi-dimensional dynamics of FIW, with comparison with the 
present experiment, will be presented in a separate paper. Figure 13-15 show the results of 2-D 
modeling for the experimental conditions of Fig. 10(a) (nitrogen, P=10 torr, ν=20 Hz, UDC=760 
V, pulse peak voltage Upeak=28.5 kV achieved at t0=75 nsec, Gaussian pulse width parameter in 
Eq. (1) τ=29 nsec). 

In Figure 13, the electron temperature, Te, the electron density ne, and the electric 
potential φ are plotted at t = 55, 65, and 75 ns. The peak electron temperature is near 15 eV and 
concentrated at the ionization front, where the electric field reaches values of 6.9 kV/cm 
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(reduced electric field approximately E/N=2100 Td). The potential drop across the ionization 
front varies in the range 10-12 kV. As the plasma column forms behind the ionization front 
having an electron density of ne~1012 cm-3, the anode potential is extended, resulting in a 
relatively low electric field (600 V/cm, reduced electric field approximately E/N=190 Td) in the 
bulk plasma. Using the electron temperature as a marker for the location of the ionization front, 
the speed of the ionization wave is found to be approximately V=0.92 cm/nsec, slightly lower 
than in the experiment (see Fig. 10(a)). The electric potential contours show that the wall of the 
channel is rapidly charged by the passing ionization wave. These results also show that the 
structure of the ionization front does not significantly change as it propagates through the 
channel.  

The electron density, the axial electric field, and the electron impact ionization source at 
the ionization front at t=65 ns are plotted in Fig. 14.  Peak values of these parameters, as well as 
of the photon production rate, are achieved close to the wall rather than near the channel center 
line. This is caused by the electric field enhancement near the wall due to the jump in 
permittivity, as well as by secondary photo-electron emission from the wall irradiated by the UV 
photons from the plasma. Qualitatively, peak electron production rate predicted near the wall is 
consistent with the experimental observations of optical emission in nitrogen (see Fig. 8). The 
peak electron density behind the ionization front, approximately 1.2·1012 cm-3, is nearly 
independent of the axial location. The axial electric field, ~6.9 kV/cm, peaks in a narrow axial 
region approximately 5 mm thick and decays more rapidly behind the ionization front than ahead 
of it.  The peak electron impact ionization rate is about 2.5·1021 cm-3 s-1, achieved slightly behind 
the peak in the electric field, and emphasizes the short electron acceleration distance across the 
ionization front. Finally, the predicted time history of the axial electric field on the channel 
center line, for different axial locations of the capacitive probe, is shown in Fig. 15. For direct 
comparison with the experiments, the electric field here is obtained by using two-point potential 
difference, as was also done in the 1-D case (see Fig. 12). The resulting electric field is found to 
be 10% lower than the instantaneous local value produced by differentiation of the electric 
potential obtained from the model. The shape of the axial electric field is quite close to the 
experimental measurements, and the quantitative agreement at x>12.5 cm is rather good 
(compare with Fig. 12(a)). Near the powered electrode (at x < 12.5 cm), the computed values are 
about a factor of two higher than in experiment (see Fig, 12(a)). However, this discrepancy is 
somewhat expected as the details of the 3-D, cylindrical shape powered electrode are not well 
captured in the 2-D planar simulations.  

 

4.3. Self-similar analytic solution for ionization wave propagation 

Following the approach [19] and introducing a self-similar spatial coordinate ξ=x+Vt, 

where V is wave speed (such that 



x

, 


 Vt ), while neglecting ion drift, 

recombination, and diffusion on a short time scale, Eqs. (2′-4′) can be reduced to a system of 
ordinary differential equations for the electron density (n), space charge density (ρ) and axial 
electric field (E): 
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Here, w=μE is the electron drift velocity, such that w<< V. The difference between the positive 
and the negative polarity waves is that the sign of the drift velocity is changed from plus to 
minus. The ionization frequency is approximated as follows, 
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where A=12 1/cm·Torr and B=342 V/cm·Torr for nitrogen (see Eq. (11)). 

An approximate analytic solution of Eqs. (13-15) has been derived in Ref. [19], to predict 
the dependence of the ionization wave speed and amplitude (peak electric field) on the potential 
drop across the wave. However, an accurate self-similar solution for the electric field, electron 
density, and space charge density distributions in the wave front and behind the wave has not 
been obtained. Also, wave speed and amplitude have not been related to the voltage pulse 
parameters on the electrode (such as voltage rise time). In the present work, the self-similar 
solution is obtained in three separate regions, (I) “upstream of the wave” (before breakdown), 
(II) in the wave front (during breakdown), and (III) “downstream of the wave” (in the plasma 
shielded by space charge in the ionization wave front). In this solution, the wave speed, V, is 
assumed to be constant and is one of the input parameters of the model. A schematic of the 
quasi-one-dimensional ionization wave structure is shown in Fig. 16. The results for key 
parameter values and distributions in the wave are given below. 

Region I (linear wave before breakdown): 

Peak electric field in the ionization wave front, E*, breakdown potential, φ*, and the point 
where breakdown initiates, ξ*, are given as follows:  
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Electron density and space charge density at breakdown point, η*, are calculated as 
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In Eqs. (17-19), k0 is the wavenumber of a linear electrostatic wave “upstream” of breakdown 
point (at ξ< ξ*, η<0), obtained from Eq. (9) when the plasma conductivity is very low, 

 /)/(0 dtd , 
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Electric field, potential, space charge, and electron density distributions in Region I are found 
from the following equations: 
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Region II (primary breakdown wave): 

Electric field, potential, electron density, and space charge distributions in this region are 
calculated as follows, 
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is the point where the space charge density peaks, with the peak value of  
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Potential difference across the primary wave and the electron density after the primary wave can 
be found as 
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Region III (secondary linear wave and secondary ionization wave): 

The boundary between regions II and III is found from the following matching condition, 
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The wavenumber of the secondary linear wave, k∞, can be obtained from Eq. (9) when the 
plasma conductivity is high,  /)/(0 dtd , 
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This gives the minimum value of the electric field downstream of the primary ionization wave, 
Emin, and the location of the minimum, ηmin, 
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At η=ηmin, the electric field reaches minimum, E=Emin, since the field is shielded by the 
space charge in the primary wave front, and then starts increasing again, producing the secondary 
linear wave propagating over the plasma ionized by the primary ionization wave. When the field 
becomes sufficiently high for the ionization to begin again, the resultant charge separation causes 
the field to nearly level off, and it reaches a quasi-steady state value Emax near point ηmax, 
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Ionization in this secondary wave starts affecting the electric field and the electron density 
distributions at the point maxmin   , such as  
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Until this happens (i.e. at   ), the field and the potential distributions both rise 
exponentially, while the electron density remains constant: 
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After ionization begins again (i.e. at   ), the field, the potential, and the electron density are 
given as 
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At  max  the electron density continues to increase with distance approximately linearly, 
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Finally, space charge density in the entire Region III is calculated as 
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The value of the “residual” electric field downstream of the wave, Emax, given by Eq. (35), along 
with the rate of voltage rise on the high-voltage electrode, are the two critical parameters 
controlling the ionization wave speed and the wave attenuation coefficient. Indeed, since 
Emax=dφ/dξ│electrode = dU(t)/dξ, where U(t) is the voltage on the electrode, and V=dξ/dt, it is easy 
to see that to maintain constant wave speed, the voltage on the electrode needs to increase at the 
rate 
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On the other hand, if the voltage on the electrode, U, remains constant in time, the potential 
difference across the wave will decrease with distance, with the relative attenuation coefficient of 
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Breakdown field near electrode and initial wave speed: 

For a Gaussian high-voltage pulse, given by Eq. (1), breakdown field near the high-
voltage electrode and the initial wave speed are given as follows, 
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where Ubr is breakdown voltage,  
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and tbr is breakdown time. Note, however, that Eqs. (48,49) can be used only as estimates since 
in reality breakdown near the electrode may strongly depend on the electrode geometry and 
surface material. 

Summarizing, key results characterizing fast ionization wave propagation include  

(a) peak electric field in the primary ionization wave front, E*, and potential difference 
across the primary wave, φ* (“breakdown potential” of the primary wave), Eq. (17) 
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(b) electron density after the primary ionization wave, n∞, Eq. (30) 

(c) quasi-steady-state “residual” electric field achieved in the secondary ionization wave, 
Emax, Eq. (35) 

(d) electron density rise rate in the secondary ionization wave, dn/dη, Eq. (44) 

(e) voltage rise rate on the high-voltage electrode to maintain constant wave speed, dU/dt, 
Eq. (46) 

(f) wave relative attenuation coefficient if the voltage on the electrode remains constant, δ, 
Eq. (47) 

To illustrate the accuracy of the present self-similar analytic solution, Fig. 17 compares a 
numerical solution of Eqs. (2′-4′) and an analytic solution for the electron density, space charge 
density, potential, and axial electric field in the positive polarity ionization wave in nitrogen at 
P=10 torr and V=1 cm/nsec. This corresponds to the experimental conditions of Fig. 10(a), i.e. 
positive polarity wave in nitrogen, P=10 torr, ν=20 Hz, UDC=760 V, and nearly constant wave 
speed of V=1.02 cm/nsec at x=11-25 cm. From Fig. 17, it can be seen that the analytic solution is 
in good agreement with the exact numerical solution. The model somewhat underestimates peak 
electric field, peak space charge density, and the potential difference across the primary wave. 
However, the shape of the electron density, electric field, and potential distributions are 
reproduced fairly well. In particular, the rate of electron density rise in the secondary ionization 
wave, as well as the residual electric field and the wave attenuation coefficient given by the 
numerical model and the analytic solution are close. 

Figure 18(a) plots peak electric field in the wave front, E*, and the residual electric field, 
Emax, vs. wave speed, V, for different initial electron densities in the channel. As expected, wave 
speed, which is controlled primarily by the rate of ionization in the wave front, νi (see Eq. (17)), 
has a strong (exponential) dependence on E*. In other words, E* has logarithmic dependence on 
wave speed. Although peak electric field also has a relatively weak (double logarithmic) 
dependence on the initial electron density, n0, it can be seen that increasing n0 by several orders 
of magnitude reduces the peak field significantly. Finally, Eq. (17) shows that peak electric field 
in the wave front in fact depends on the product of the wave speed, V, and the wavenumber, k0, 
which is controlled by the channel geometry and by the dielectric constant (see Eq. (20)). 
Therefore reducing the channel height, 2a, and the distance between the waveguide plates, 2h, as 
well as increasing the dielectric constant, ε, may substantially increase peak electric field in the 
wave. The residual electric field, Emax, given by Eq. (35) also exhibits a weak logarithmic 
dependence on wave speed and is nearly unaffected by the initial electron density. 

Figure 18(b) shows that the electron density after the primary ionization wave, n∞, given 
by Eq. (30), increases with the wave speed almost linearly. In fact, it is proportional to the 
product Vk0, and therefore the electron density can also be increased by reducing the waveguide 
transverse dimensions and by using a dielectric with higher ε. At higher initial electron densities, 
n∞ is reduced significantly because charge separation in the wave front and self-shielding of the 
plasma occur more rapidly, thereby terminating ionization behind the wave front sooner. 

Figure 18(c) demonstrates that maintaining higher wave speeds requires higher rate of 
voltage rise on the high-voltage electrode, dU/dt (see Eq. (45)). Since the residual electric field, 
Emax, given by Eq. (35), exhibits relatively weak dependence on wave speed and initial electron 
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density (see Fig. 18(a)), dU/dt is the most critical parameter which controls wave speed. The 
present results predict that maintaining ionization wave speeds of V=1-3 cm/nsec in nitrogen 
requires rates of voltage increase of dU/dt ~ 1-5 kV/nsec. Finally, Fig. 18(d) plots estimated 
initial breakdown field and initial wave speed at its origin near the high-voltage electrode, 
predicted by Eqs. (48,49), vs. voltage pulse width, τ, for a Gaussian shape voltage pulse given by 
Eq. (1). It can be seen that a shorter voltage pulse (with a higher dU/dt) capable of maintaining a 
high-speed ionization wave also needs to have higher amplitude to generate breakdown near the 
electrode. 

 

5. Summary 

In the present work, Fast Ionization Wave discharges propagating along a rectangular 
geometry channel / plasma waveguide in nitrogen and helium are studied experimentally and 
using kinetic modeling. The repetitive nanosecond pulse discharge in the rectangular cross 
section channel was generated using a custom built pulsed plasma generator (peak voltage 10-40 
kV, pulse duration 30-100 nsec, voltage rise time ~1 kV/nsec), generating a sequence of 
alternating polarity high-voltage pulses at a pulse repetition rate of 20 Hz. Using this plasma 
generator, both negative polarity and positive polarity ionization waves can be studied at the 
same experimental conditions, using a low-jitter output trigger produced by the generator on 
either positive or negative polarity pulses. The ionization wave speed, as well as time-resolved 
potential distributions and axial electric field distributions in the propagating FIW discharge have 
been inferred from the capacitive probe data. The probe is calibrated using voltage pulses of 
known pulse shape and amplitude.  

The experiments have been conducted in helium and nitrogen, at pressures of 10-20 torr, 
at pulse peak voltages of 10-30 kV. As expected, wave speed increases with pulse peak voltage, 
as voltage rise time on the high-voltage electrode is reduced. Both the wave speed and the wave 
amplitude (peak axial electric field in the wave front) for the positive polarity wave exceed those 
for the negative polarity wave. ICCD camera images demonstrate that the ionization wave 
discharges in helium appear diffuse and volume-filling, although emission intensity in the 
negative polarity wave is higher near the top and bottom walls of the channel. On the other hand, 
ionization wave discharges in nitrogen propagate essentially along the walls of the discharge 
channel. 

FIW discharge propagation has been analyzed numerically, using quasi-one-dimensional 
and two-dimensional kinetic models in a hydrodynamic (drift-diffusion), local ionization 
approximation. The wave speed and the electric field distribution in the wave front predicted by 
the model are in good agreement with the experimental results in nitrogen. A self-similar 
analytic solution of the fast ionization wave propagation equations has also been obtained. The 
analytic model of the FIW discharge predicts key ionization wave parameters, such as wave 
speed, peak electric field in the front, potential difference across the wave, and electron density 
as functions of the waveform on the high voltage electrode, in good agreement with the 
numerical calculations and the experimental results. 
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Figure 1. Schematic of the fast ionization wave discharge apparatus. 

Figure 2. Typical positive and negative polarity voltage pulse waveforms 
generated by the pulsed plasma generator for different input DC voltages. 
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Figure 3. Schematic of the plasma channel and the dielectric 
layer in simplified quasi-two-dimensional geometry. 
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(c) 

(d) 

Figure 4. (a) Raw capacitive probe data plotted together with the high voltage pulse waveform; 
(b) time-resolved potentials; (c) time-resolved axial electric fields; (d) ionization wave front 
location vs. time, peak electric field, and potential across the wave front at different probe 
locations. Data obtained for 21 different locations of the capacitive probe 1 cm apart, ranging 
from 5 cm to 25 cm from the high voltage electrode. Helium, P=20 torr, ν=20 Hz, U=500 V, 
positive polarity wave (pulse peak voltage +10.5 kV). 

(a) (b) 
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(a) 

(a) (b) 

Figure 5. (a) Time-resolved axial electric fields; (b) ionization wave front location vs. time, 
peak electric field, and potential across the wave front at different probe locations. Nitrogen, 
P=10 torr, ν=20 Hz, U=640 V, positive polarity wave (pulse peak voltage +20 kV). 

(b) 

Figure 6. (a) Time-resolved axial electric fields; (b) ionization wave front location vs. time, 
peak electric field, and potential across the wave front at different probe locations. Nitrogen, 
P=10 torr, ν=20 Hz, U=640 V, negative polarity wave (pulse peak voltage -21 kV). 
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Figure 8. Broadband single-shot ICCD images of (a) positive and (b) negative polarity 
ionization waves in nitrogen, at P=10 torr, ν=20 Hz, and U=500 V (pulse peak voltages +15.5 
kV and -16.0 kV, respectively). Wave propagates left to right. Camera gate 4 nsec, providing 
spatial resolution of approximately 1.5 cm. Field of view is 4.6 cm by 3.1 cm. 

(a) (b) 

Figure 7. Broadband ICCD images (10-shot average) of (a) positive and (b) negative polarity 
ionization waves in helium, at P=20 torr, ν=20 Hz, and U=500 V (pulse peak voltages +10.5 
kV and -11.0 kV, respectively). Wave propagates left to right. Camera gate 4 nsec, providing 
spatial resolution of approximately 1 cm. Field of view is 4.6 cm by 3.1 cm. 

(a) (b) 
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Figure 9. Comparison of experimental and predicted ionization wave front location vs. time, 
peak electric field, and potential across the wave front at different locations. Helium, P=20 
torr,  ν=20 Hz, U=500 V, positive polarity wave.  Numerical calculations using a quasi-one-
dimensional FIW discharge model. 

Figure 10. Comparison of experimental and predicted ionization wave front location vs. time, 
peak electric field, and potential across the wave front at different locations. Nitrogen, P=10 
torr, ν=20 Hz, U=760 V, (a) positive and (b) negative polarity waves. Numerical calculations 
using a quasi-one-dimensional FIW discharge model.

(a) (b) 
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Figure 11. Distributions of (a) electron density, (b) space charge density, (c) potential, and (d) 
axial electric field in the FIW discharge in nitrogen at the conditions of Fig. 10. Solid curves, 
positive polarity wave; dashed curves, negative polarity wave. All distributions are plotted for 
multiple moments of time 5 nsec apart. Numerical calculations using a quasi-one-dimensional 
FIW discharge model. 

(a) (b) 

(c) (d) 
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Figure 12. Comparison of (a) experimental and (b) predicted time-resolved axial electric field 
at different distances from the high-voltage electrode at the conditions of Fig. 10(a) (positive 
polarity wave). Numerical calculations using a quasi-one-dimensional FIW discharge model. 

(a) 

(b) 
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(a) 

(b) 

Figure 13. 2-dimensional FIW simulation of a positive polarity wave in nitrogen, at 10 Torr and U=760V.  
(a) electron temperature (flood contours) and electric potential (lines); (b) electron density (flood  
contours) and electric potential (lines), shown at t = 55, 65 and 75 ns. The spacing of the potential contour 
lines is 2 kV. Peak electron temperature 15eV, peak electron density approximately 1012 cm-3. The wave 
speed is approximately 0.92 cm/nsec.  

(a) (b) 
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Figure 14. Contours of a) electron density, b) axial electric field and c) ionization source rate, 
illustrating the structure of the ionization front at the conditions of Fig. 13, at t=65 nsec. 

 
 

Figure 15. Time history of the electric field on the channel centerline predicted by the two-
dimensional model, for several axial locations of capacitive probes, at the conditions of Fig. 13.  
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Figure 16. Schematic of a quasi-one-dimensional ionization wave structure 

I II III 



32 

 

 

Figure 17. Comparison of numerical solution and self-similar analytic solution for (a) electron 
density, (b) space charge density, (c) potential, and (d) axial electric field in the wave front in 
nitrogen, at P=10 torr and V=1 cm/nsec (positive polarity wave), i.e. close to the conditions of 
Fig. 10(a). 

(a) (b) 

(c) 

(d) 
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Figure 18. Summary of ionization wave parameters in nitrogen at P=10 torr, predicted by the 
analytic model: (a) peak electric field and residual electric field vs. wave speed; (b) electron 
density achieved after the primary ionization wave vs. wave speed; (c) voltage rise rate on 
high-voltage electrode to maintain constant wave speed; (d) breakdown voltage near the 
electrode and initial wave speed for a Gaussian voltage pulse vs. pulse width. 

(a) (b) 

(d) (c) 


