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Two-dimensional simulations of the Richtmyer-Meshkov instability with re-shock are 

carried out based on the single-mode Mach 1.21 air/SF6 shock tube experiments of Collins 

and Jacobs. A second-order accurate MUSCL-Hancock scheme and several high-order 

WENO schemes are used for shock capturing along with a gamma-based model for interface 

capturing to allow for the stable and accurate representation of fluids of different ratios of 

specific heats. The present results are compared qualitatively and quantitatively with 

existing theoretical models, experimental data and computational results. Good quantitative 

agreement with the observed amplitude growth, interface velocity and time of reshock are 

achieved. The amount and role of numerical dissipation of different schemes on the physical 

properties of the flow such as the circulation, enstrophy, mixing and kinetic energy of the 

small scales are also investigated.  

Nomenclature 

A = Atwood number 

0a  = post shock amplitude of perturbation 


0a  = post shock Richtmyer velocity of the interface 

c = sound speed 

E = specific total energy 

F = vector of convective fluxes for the Euler equations in the x direction 

G = vector of convective fluxes for the Euler equations in the y direction 

k = wave number 

Lx = shock tube length in the x-direction 

Ly = shock tube length in the y-direction 

M = molecular mass  

Ma = Mach number 

MIX = total mixing 

Mt = Mach number of the small scales 

P = pressure 

R = specific gas constant 

KE = kinetic energy of the small scales 

U = vector of conserved variables for the Euler equations 

u = velocity in the x direction 

u  = turbulence intensity 

ui,shock = incident shock velocity 

v = velocity in the y direction 

xinterface = initial location of the interface 

xshock = initial location of the shock wave 

Y = mass fraction  

z = volume fraction  
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Γ = circulation 

Γ΄ = circulation deposited per unit length of an unshocked planar interface   

Δu = velocity of the unperturbed interface after interacting with the incident shock wave 

Ω = vorticity distribution function 

γ  = specific heat ratio 

η = density ratio  

λ = wave length 

ρ = density 

ω = vorticity vector 

ENS = enstrophy 

I. Introduction 

HE Richtmyer-Meshkov (RM) instability occurs when a shock interacts with a perturbed interface separating 

fluids of different densities.
1,2

 The misalignment of the density gradient across the interface and the pressure 

gradient across the shock wave leads to baroclinic vorticity generation along the interface which is the basic 

mechanism for the amplification of any perturbations initially present along the interface.
3
 The vorticity evolution 

equation for the two-dimensional compressible inviscid flows simplifies to  

 

                     

(1) 

 

where u is the vorticity vector normal to the plane of the motion. The shock wave initially compresses the 

perturbations existing along the interface. Shortly after the passage of the shock, a vortex sheet is created by the 

baroclinic vorticity (first term on the right-hand side of Eq. 1) and induces different velocities at each point relative 

to the unperturbed interface. The relative motion along the interface causes the lighter gas to penetrate into the 

heavier gas, thus forming a bubble, and the heavier gas to rise into the lighter gas and roll-up forming a spike. The 

heavy/light configuration, which is stable in the Rayleigh-Taylor instability, is also unstable in the RM instability 

and the amplitude will grow after a phase inversion.  The secondary instabilities, such as the Rayleigh-Taylor and 

the Kelvin-Helmholtz instabilities also occur at later times and help the roll-up process at spike leading to the 

appearance of mushroom-like structures.
4
 

There are different applications for the RM instability at different scales. At large scales, the observed early 

appearance of heavy elements (like Ni and Co) in the photosphere of supernova 1987A indicates that the RM and 

Rayleigh-Taylor instabilities have significant and observable effect.
5
 The RM instability also occurs in supersonic 

combustion applications affecting the mixing rate of the air and fuel in ramjet engines.
6
 At small scales, the RM 

instability plays a dominant role in the implosion of the deuterium-tritium capsule in Inertial Confinement Fusion 

and reduces the efficiency by mixing the ablator with the fuel.
7
 The hydrodynamic instabilities occurring in systems 

that obey the Euler equations are invariant under scale transformation ranging from astrophysical applications to 

small-scales instabilities in Inertial Confinement Fusion.
8
 Although cylindrical and spherical configurations are 

more representative of the applications mentioned above, most of the work in the literature has been performed in a 

planar geometry with single or multimode perturbations for simplicity. In this work, we have also chosen scales 

similar to those of planar configuration shock tube experiments to perform our numerical investigations. 

In the planar case, the geometry may be such that, after the shock has passed through the interface, it reflects off 

the end wall and impinge upon the distorted interface again (reshock). Complex small-scale features appear right 

after reshock and enhance the mixing rate. Secondary baroclinic vorticity is generated and affects the small scale 

features responsible for the increase in circulation on each side of the interface.
9
 The mixing region eventually 

becomes turbulent and molecularly mixed at late times. Vortex stretching effects that are not present in two-

dimensional simulations may have dominant role in the interface behavior especially after reshock when the flow 

becomes turbulent. Due to limitations of the computing facilities, three-dimensional simulations of the RM 

instability are not still practical for Inertial Confinement Fusion design. Recently, there have been some efforts to 

understand the turbulence behavior of the three-dimensional RM instability by using large-eddy simulation.
10

   

In this work, we have carried out a set of simulations using a second-order MUSCL-Hancock scheme and 

several high-order WENO shock capturing schemes to investigate the single-mode Richtmyer-Meshkov instability 

with reshock.
11-15

 The interface-capturing method used in this work enables us to model interfaces separating fluids 

of different specific heats ratio without generating spurious pressure oscillations at the interface. The initial 

conditions correspond to the Collins and Jacobs experiment.
16

 The amplitude growth rates for different schemes 

T 

  uwP
Dt

D
.

1
2

 






 

American Institute of Aeronautics and Astronautics 
 

 

3 

show good agreement with the experiment specially before the reshock for all of the schemes on the resolutions used 

here and are also compared with analytical models. The effects of resolution and numerical dissipation of the 

different schemes on the physical properties of the flow are discussed in detail both qualitatively and quantitatively.  

II. Governing Equations 

The two-dimensional inviscid Euler equations are solved in conservative form 

 

(2) 

 

where the conserved variables U and convective fluxes F and G are 

 

                        
 TEvuU  ,,, ,   TPEuuvPuuF   ,,, 2 ,   TPEvPvuvvG   ,,, 2

        (3)
 

Here, ρ is density, P is pressure, (u,v) is the velocity vector,     1/2/22  PvuE  is the total energy per 

unit volume. The ideal gas equation ρRTP   is used as the equation of state. 

For multicomponent problems, we need to solve an additional equation describing the fluid composition to 

complete our set of equations. In order to prevent spurious pressure oscillations at interfaces, a γ -based model is 

used.
17,18

 In this model, a transport equation is solved for  1γ1/ 
 
in the non-conservative (advection) form. The 

mass and volume fractions can be recovered from  1γ1/   by using the following equations: 

 

(4) 
 

 

(5) 

 

(6) 

 

                                                                              
2112

21
1

MYMY
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z


                                                                           (7) 

where M is the molecular mass, and Y and z are the mass and volume fraction of each species respectively. 

 The simulations were carried out using a finite volume MUSCL-Hancock shock-capturing scheme and high-

order finite volume WENO schemes with Roe’s approximate Riemann solver.
19

 The current interface-capturing 

formulation with variable γ allows us to represent the correct transmitted and reflected shock speeds, time of 

reshock, and initial interface velocity, which was not the case in some prior works that used a single-γ formulation.
20

 

III. Numerical simulation parameters 

The initial conditions for the present numerical simulations correspond to the Ma=1.21 experiments of Collins 

and Jacobs performed in a vertical shock tube.
16

 In that work, a novel technique was used to generate the perturbed 

membrane-free gas-gas interface between air (acetone) mixture and sulfur hexafluoride (SF6) gas and more resolved 

small features were captured by using planar laser-induced fluorescence (PLIF) flow visualization technique. The 

initial values are summarized in Table. 1. The post-shock Atwood number is 0.627 and the initial conditions across 

the shock wave are calculated by using Rankine-Hugoniot relations. 

The current simulations were performed using a Fortran 90 code parallelized using MPI and run on the Nyx 

cluster at the Center for Advanced Computing at the University of Michigan. For each simulation, up to 160 

processors were used. Three different grid resolutions corresponding to 148, 297 and 594 cells per wavelength 

(coarse, medium, fine) were used for the results presented in the next section. To represent the shock tube geometry, 

inflow boundary conditions are used at the entrance of the shock tube test section and reflecting boundary conditions 

are used along the remaining boundaries.    
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IV. Results and discussion 

A. Qualitative analysis of density and vorticity evolution 

Fig. 1 represents the density and vorticity fields at 2.0, 4.0, 6.0 and 6.6ms after the shock passes the interface. In 

the vorticity plots, the blue and red colors correspond to negative and positive vorticity. The mixing layer amplitude 

of the pre-shock perturbation decreases initially due to the compression of the incident shock wave. The Atwood 

number defined as )ρ(ρ)ρ(ρ 1212 
 

is positive for the initial interaction. Consequently, the mixing layer 

amplitude starts to grow linearly, as predicted by impulsive models, and the interface keeps its sinusoidal shape until 

the amplitude-to-wavelength ratio reaches 0.1.
3
 At 2ms, the ratio of the amplitude to the wavelength is close to 

unity, which shows that non-linear effects have started affecting the flow. The heavier gas, SF6, starts to penetrate to 

the lighter air mixture while the vorticity distribution leads to roll-up and a mushroom structure at later times. A 

small layer with vorticity of the opposite sign can be seen close to the spike, which helps the roll-up process. At 

4ms, the vorticity bi-layer can be seen in the vorticity plot. During the roll-up process, vorticity of opposite sign is 

generated due to the secondary baroclinic vorticity.
9
 The new vorticity distribution enhances the roll-up rate, thus 

6.8ms 

 

7ms 

 

7.2ms 

 

7.4ms 

 

 

 

Figure 2. Density fields after reshock. The shock impacts the interface from the bottom and leads to the 

formation of small-scale features. 

 

  

 
2ms 

 
4ms 

 
6ms 

 
6.6ms 

 
 

w  

    

 

Figure 1. Density (top) and vorticity (bottom) after the passage of the initial shock. The shock came from top 

to bottom; air is on top, SF6 on the bottom. The mushroom-type structures characteristics of the RM 

instability develops. 

 

λ (m) 0.0594 xinterface (m) 0.03 A 0.605 

k (1/m) 105.77 treshock (s) 0.0066 P (Pascal) 95600 

a (m) 0.00183 ui,shock (m/s) 370.98 Mair (g/mol) 34.76 

Lx (m) 0.78 Ma 1.21 MSF6 (g/mol) 146.05 

Ly (m) 0.0594 ρair (Kg/m
3
) 1.351 γ air 1.276 

xshock (m) 0.01 ρSF6 (Kg/m
3
) 5.494 γ SF6 1.093 

Table 1. Summary of initial parameters of Collins and Jacob’s shock tube experiments. 
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resulting in the formation of more small scale features that can be seen in the density plots. As more SF6 penetrates 

the air mixture, the hat width of the mushroom structure increases while the neck thickness decreases.  

At 6.6 ms, reshock occurs. At this time, the interface profile is more complex compared to the initial sine wave 

and a vorticity distribution of different signs already exists along the interface. Hence, a greater rate of baroclinic 

vorticity is generated, compared to the first interaction between the shock wave and the interface. The Atwood 

number is negative for the SF6-air configuration, so that baroclinic vorticity, mostly of opposite sign, is deposited 

along the interface. After reshock, the neck thickness of the mushroom structure decreases more while new complex 

structures are generated at places where we have a close to planar interface at 6.8ms. The numerical dissipation of 

shock-capturing schemes affects the small-scale features appearing during and after the reshock process. By using 

either a higher-order accurate scheme or a higher resolution, we can minimize the numerical dissipation resulting in 

more small-scale features in the density plots. This can be seen in Fig. 2, which also results in a higher increase in 

the total mixing rate. 

B. Amplitude growth rate analysis 

Impulsive models for the amplitude growth rate such as the Richtmyer model and the Meyer-Blewett model are 

derived by substituting the constant acceleration in the Rayleigh-Taylor instability models with an impulsive 

acceleration.
21

 These models predict a constant amplitude growth rate which is applicable only for very early times 

that the flow is still in the linear regime. These velocities are used for scaling purposes. The non-dimensional time τ 

is defined as τ=k 
0a t where k is the wave number and 

0a  =kA
+ 

0a Δu is the post-shock Richtmyer velocity where A
+ 

is the post shock Atwood number, 
0a  is the post shock amplitude and Δu is the velocity of the unperturbed 

interface. Perturbation models such as the Zhang-Sohn model
22

 using a Pade expansion approximation and the Sadot 

et al model
23

 which are based on the asymptotic expansion of the linear perturbation equations make a very good 

agreement with the experimental results. The Zhang-Sohn model does not predict the 1/t asymptotic growth rate at 

late times while the Sadot et al model predicts the correct growth 1/t asymptotic growth rate. In Fig. 3, MUSCL 

simulation on the fine grid and experimental data from Collins and Jacobs are compared with the predictions of 

models. All the models predict a similar behavior in the linear regime untill τ=0.7. The Sadot et al model predicts a 

higher amplitude growth rate than the Zhang-Sohn model. Comparisons between bubble and spike amplitudes are 

also presented in Fig. 4. Our results for different schemes on the resolutions used here show good agreement with 

the experimental results for all of the cases. 

C. Circulation deposition on the perturbed interface 

The interaction of the shock and the interface results in vorticity deposition along the interface with maximum 

values at the spikes and minimum values at the bubbles. For sufficiently small perturbation amplitude, linear 

stability theory for incompressible flows can be used to evaluate the strength of the vortex sheet in the linear stage.
24

 

The vorticity distribution can be written as 

 

(8) 

 

Integrating (8) over one half wavelength yields  

 

  kyay sin2 

 
Figure 3. Time evolution of the dimensionless 

perturbation amplitude for different models.  

 
Figure 4. Time evolution of the bubble and spike 

dimensionless amplitude for different models.  
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                                                                                                                                                                                (9)        

 

In another approach, Samtaney and Zabusky used shock polar analysis to calculate the circulation deposition on 

shock-accelerated interfaces.
25

 Retaining only the first-order term, the non-dimensionalized vorticity distribution 

becomes 

 

(10) 

 

where  

 

(11) 

 

 

 The vorticity field can be extracted numerically from the velocity field by putting a box around the interface.
9
 

The vorticity distribution can be calculated from (12).  

 

 

(12) 

     

 Circulation then can be calculated by integrating the vorticity distribution. The total circulation is the summation 

of vorticity with positive and negative values in each cell. Fig.5 shows a comparison between the vorticity 

distributions of our simulations with the analytical models.   

 Following the passage of the shock wave, there is a jump in the circulation due to the baroclinic vorticity 

generation. The total circulation increases due to the secondary baroclinic vorticity generation until reshock 

happens.
9
 The total, positive and negative circulation over the interface are plotted in Fig. 6. The absolute value of 

the negative circulation is a good representative of the strength of the bi-layer vorticity with opposite sign. The 

circulation plots also show that the present schemes deposit an adequate initial amount of vorticity along the 

interface. 

D. Integral parameters 

The instantaneous average of an arbitrary field  tyxf ,, over the spanwise direction y is defined as  

                                                                                                                                                                               (13) 
  

The first integral parameter considered here is the total kinetic energy of the small scales (KE). At each cross 

section, the mean velocities, û  and v̂ , are subtracted from the pointwise velocities to calculate the pointwise 

velocity fluctuations. The average KE for each section, k, is obtained by using (15). The KE can be obtained by 

integrating k over the whole domain. 

                                                                                                                                                                               (14)
 

                                                                                                                                                                               (15) 
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Figure 5. The initial baroclinic vorticity distribution    Figure 6. The time evolution of the positive, negative 

along the interface by the incident shock.                        and total circulation just after the initial shock interaction.                                                                                           
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                                                                                                                                                                              (16)        

                                                                                                                                                                               
 

After the first interaction between the incident shock and the interface, a jump is observed in the KE. As 

expected, a larger amount of KE is produced on the fine grid and remains almost constant until reshock. At the 

reshock, KE increases dramatically by two orders of magnitude. Although the KE reaches almost the same peak on 

both of the medium and fine grids, the decay rate is higher on the medium grid due to larger numerical dissipation.  

The Mach number based on the velocity fluctuation of the small scales at each cross section, tM , is defined as 

the ratio of the turbulent intensity, u , to the average of sound speed, c, where 

                                                                                                                                                                               (17) 

 

 Fig.9. shows the evolution of the maximum Mach number of the small scales versus time. Higher values during 

the interaction times suggest that compressibility effects are more dominant at these stages. Before the reshock, 

 kdxKE 

                                                                
Figure 8. Evolution of total kinetic energy of small scales, KE, versus time.  

 

c

u
Mandpcku t


 ,/., 

 
Figure 9. Maximum Mach number of the small 

scales versus time. 

 

 
Figure 10. The time evolution of the total mixing.  

                                                                
Figure 7. The average spanwise kinetic energy of small scales, k(x), before (right) and after (left) reshock  
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compressibility effects in the turbulence are not large for the current simulation.  The KE and tM  defined above in 

the current two-dimensional simulations correspond to the turbulent kinetic energy and turbulent Mach number of 

the flow in a full three-dimensional simulation. Since the present simulations are two-dimensional, these values are 

interpreted as the kinetic energy and Mach number of the small scales 

 The second integral parameter considered here is the total mixing, MIX, defined as 

                                                                                                                                                                                    (18) 

 

 The above equation can be thought of as the total reaction rate in a hypothetical chemical reaction between fluid 

1 and fluid 2 where the reaction rate constant does not vary with temperature.
26

 In interface-capturing methods, a 

material interface between fluids 1 and 2 is smeared along a number of cells similarly to a shock in shock-capturing 

schemes. By using either a higher-order scheme or a finer grid, less numerical dissipation is added, thus resulting in 

a sharper interface/shock profile. The time evolution of the MIX is shown in Fig. 10. The more diffuse material 

interface profile on the coarse grid results in a higher value of the MIX until the reshock. The presence of more 

small-scale features on the fine grid before the reshock results in a higher rate of increase in the MIX for the fine 

grid after the reshock. At later times, the rate of increase in the MIX on the fine grid decreases again because of the 

role of numerical dissipation as discussed above. In the Richtmyer-Meshkov instability, mixing is coupled to the 

dynamics by homogenizing the density variations across the interface, thus affecting the baroclinic vorticity 

generation mechanism. In the present work, physical diffusion of mass is neglected, but grid-dependent numerical 

diffusion is added. Thus, MIX is a measure of entrainment and dispersion, and some numerical diffusion of mass.
27 

The last integral parameter considered here is the mass-weighted total enstrophy (ENS), 

                                                                                                                                                                               (19) 

 

 dxdyYYMIX 21
2

   dxdyuENS
2



Scheme MUSCL-Hancock WENO5 Mapped WENO5 WENO7 

Total CPU time(sec) 1853 8501 9103 10479 

Ratio 1 4.58 4.91 5.65 

Table 2. ?. 
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Figure 11. The Density field at t=4msec on different grids. 

 

 

 

                                                                                                        
Figure 12. The time evolution of enstrophy versus time using WENO5 on different grids.  
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As shown in Fig. 11, using either a high-order scheme or a fine grid results in more small-scale features with 

higher kinetic energy and vorticity. For the current problem, the enstrophy plots provide a good means to compare 

the efficiency of different schemes employed in this paper. The enstrophy evolution is presented in Fig. 12. 

Similarly to the KE and the total circulation plots, the enstrophy increases suddenly due to the initial interaction with 

the shock and after reshock. 

E. Comparison between the second-order MUSCL-Hancock and high-order WENO schemes 

The high-order accurate finite volume simulations of the Euler equations also require a high-order integral 

approximation of the fluxes at the interface. In order to satisfy this requirement, it is required to solve the Riemann  

problem twice at each interface at the Gaussian points and also to perform the WENO reconstruction in the both x 

and y directions to achieve high-order accuracy. This procedure makes the finite volume WENO approach 

approximately two times more expensive in two -dimensions and approximately four times more expensive in three 

-dimensions compared to the finite difference WENO approach. 

In this paper, we have used a second-order MUSCL-Hancock scheme and several finite volume WENO 

schemes.
11

 Standard fifth-order and seventh-order accurate WENO schemes of Jiang and Shu
13

 and a fifth-order 

accurate mapped WENO
14

 scheme is used for comparison. It is worthwhile to mention that the seventh-order finite 

volume WENO is implemented with two Guassian points
15

, so that is really at best fourth-order accurate but with 

better resolution properties. The advantage of using a second-order scheme for the finite volume approach is that the 

Riemann problem is solved only once at each cell edge and the reconstruction is performed only once in either the x 

or y direction.  

A comparison between the total CPU time and amount of numerical dissipation added by each scheme on the 

coarse grid quantified by means of enstrophy is presented below. The CPU times are calculated by running all of the 

test cases until 0.05msec on the coarse grid and are normalized in the table with respect to the MUSCL-Hancock 

results. The results show that mapped WENO5 and WENO7 results are very close to each other and are superior to 

the MUSCL-Hancock and WENO5 results. Considering that, in a two-dimensional calculation, reducing the grid 

size by a factor of two will approximately increase the total CPU time by a factor of eight and Table. 2, our results 

suggest that Mapped WENO5 is more efficient than WENO5 and even WENO7. 

F. The Euler versus Navier-Stokes simulations of shock dominated problems 

Shock-capturing schemes are capable of representing a shock wave on a grid by adding numerical dissipation. 

The amount of numerical dissipation scales with the grid size resulting in a sharper shock profile on a finer grid. As 

discussed in the previous section, as the grid is refined, more small-scale features appear before reshock, thus 

resulting in different flow behavior at late times. In nature, physical viscosity introduces a cut-off length scale, 

which means that for true direct numerical simulation (DNS) of these problems the grid size should have the same 

order of magnitude as this length scale. At these scales, physical viscosity should be dominant compared to the 

numerical dissipation. Thus, viscosity will determine the amount of small-scale features generated in the mixing 

region. 

Scheme MUSCL-Hancock WENO5 Mapped WENO5 WENO7 

Total CPU time(sec) 1850 8500 9100 10500 

Ratio 1.00 4.59 4.92 5.67 

Table 2. Total CPU time for different schemes on the coarse grid until 0.05msec. 

 

 

 

                                                                                 
Figure 13. Comparison of the enstrophy evolution for different schemes. 
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In order to investigate the role of viscosity and thermal conduction, the Navier-Stokes equations are solved with 

viscous and heat diffusion as diffusion fluxes.
28

 Mass diffusion is ignored. The heat conduction and viscosity 

coefficients of the mixture are determined from Herning and Zipper approximation for binary mixing and the 

temperature dependent pure component transport properties.
29

 As discussed in the previous sections, the enstrophy is 

a good measurement of the amount of small-scale features present at each time. For a converged solution, we expect 

the plots of enstrophy to lie on top of each other. 

First, series of runs are performed with the diffusion coefficients corresponding to the actual diffusion 

coefficients of air and SF6 and the results are presented in Fig. 14. Effects of the diffusion terms are negligible on the 

results obtained before reshock on the grids used in the current work. After reshock, results are slightly different 

which shows that adding the diffusion terms could affect the results after reshock. Although some of the integral 

parameters show converging behavior, Fig. 14 suggests that we are far from the cut-off scale, as expected due to the 

high Reynolds number.  

Second, the Reynolds number is decreased artificially by increasing the diffusion coefficients by two and three 

orders of magnitude. The main purpose is to determine the cut-off length scale and observe a converged behavior on 

an affordable grid. Fig. 15 shows a comparison of the enstrophy evolution between the Euler and Navier-Stokes 

simulations. Results show that increasing the diffusion coefficients will result in a decrease in the amount of 

difference in enstrophy generation on the coarse and medium grids. The plots for the lowest Reynolds number case 

that corresponds to increasing the diffusion coefficients by three orders of magnitude almost lie on top of each other 

which shows the converged behavior discussed above. The enstrophy plots of the Euler and Naveir-Stokes 

calculations with two orders of magnitude smaller Reynolds number on the coarse grid almost lie on top of each 

other. The viscous simulation on the medium grid shows less increase in enstrophy after reshock compared to the 

Euler simulation, illustrating the fact that the smallest scales generated by the Euler calculations may be unphysical. 

                      
Figure 14. Comparison of the enstrophy evolution between the Euler and Navier-Stokes simulations 

with the actual diffusion coefficients. 

 

                      
Figure 15. Comparison of the enstrophy evolution between the Euler and Navier-Stokes simulations 

with two (left) and three (right) orders of magnitude times the actual diffusion coefficients. 

 



 

American Institute of Aeronautics and Astronautics 
 

 

11 

V. Conclusion 

The development of the Richtmyer-Meshkov instability has been studied numerically for the single mode, Mach 

1.21 air(acetone)/SF6 shock tube experiment of Collins and Jacobs.
16

 The amplitude measurements from these 

simulations are in good agreement with analytical models and experimental data. The rate of baroclinic vorticity 

generation and its role in the evolution of the perturbed interface are also investigated. By using a γ-based model for 

preventing the spurious pressure oscillations at the interface, we were able to capture the correct transmitted and 

reflected shock speeds, time of reshock, and initial interface velocity comparing to other single- γ numerical 

simulations. 

For the current simulations, a converged behavior of the amplitude growth rate, total circulation and KE were 

observed, specifically before reshock, with the schemes and resolutions employed. A CPU time and numerical 

dissipation analysis is performed and our conclusion is that Mapped WENO5 is more efficient compared to WENO5 

and WENO7. The viscous and heat diffusion terms are added to achieve a converged solution and determine the 

DNS requirements for a given Reynolds number. 
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