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In this work we contribute to the study of the engine ”unstart” problem
on the assumption that noise caused by shock-induced separation of the
turbulent boundary layer can contribute to the problem. This noise is
caused by strong discrete vortices encountering the foot of the reflected
shock. It can be transmitted along the shock. We have made extensions to
the theory of Geometrical Shock Dynamics that permit very rapid estimates
of this noise up to distances of 400 times the core radius of the vortex, and
find that in some cases there is only slight reduction of amplitude. These
calculations are validated by comparing them, for shorter distances, with
solutions obtained from the Euler equations.

I. Introduction

The work to be described here had its origins in the practical problem of ”engine unstart”
This term relates to the fact that airbreathing engines fitted to a supersonic vehicle need
to have the inlet flow compressed to a subsonic state before it enters the engine. This is
commonly achieved by sending the air through a series of oblique shockwaves, which reflect
between the walls of the intake. For hypersonic flight, the number of shocks may be quite
large, and the setup is described as a ”"shock train”. Such a train is illustrated in Figure 1.
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Figure 1. Representative Scramjet engine

These shock trains are prone to break down and collapse, and the reason for this remains
mysterious. Our work began in an attempt to investigate if the shocks could be subjected
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to strong oscillations originating in the interaction of a reflected shock with a turbulent
boundary layer. It has been known for some time that such a reflection is characterized by
noise at a frequency considerably below the frequencies found in the approaching boundary
layer. A mechanism for generating this noise was proposed by Pirazzolli and Grasso? on
the basis of very detailed DNS simulations. These showed that the separation bubble found
beneath the reflected shock was highly unsteady. Its boundary is marked by a series of strong
discrete vortices that meet with the foot of the shock, and cause a large displacement and

distortion of the shockwave, as shown in Figure 2. The rms variation of Mach number in

Figure 2. DNS results of Pirozolli and Grasso® showing vortices interacting with the pulsating shock at
different time intervals. Plots of the gradient of the pressure field at different times

this region is about 0.35, so some perturbations are much greater than this. The simulations
also showed waves propagating along the shock surface in a very two-dimensional manner as
in Fig 3.

The waves appear to diminish in amplitude and increase in wavelength as they leave the
region. It was initially unclear whether these waves were physical or numerical in origin.
Assuming that they are physical it is natural to ask how far they may travel. For example,
if they are capable of reaching the site of the next reflection, they might act as a forcing
effect at the resonant frequency. It would be difficult to investigate this numerically because
the waves would have to propagate over many times their wavelength (which seems to be
of the order of the boundary layer thickness) Therefore we looked into the possibility of
investigating the problem by simpler methods.

Specifically we looked at Whitham’s theory of Geometrical Shock Dynamics,'® proposed
in 1957 as a way to investigate the propagation of a shock without needing to know all
of (indeed, any of) the postshock flow. We hoped to find solutions that could be verified

2 of 16

American Institute of Aeronautics and Astronautics



Figure 3. Shock oscillations shown from DNS studies. Results of Pirozolli and Grasso® of a reflected oblique
shock configuration

by Euler calculations, and hoped to establish the asymptotic rate of decay of these waves.
We were actually successful in this, but only after making substantial enhancements to
the Whitham theory. The great advantage of this theory, in its original form, was that
it reduced the dimensionality of the problem. Disturbances to two-dimensional shocks are
governed by one-dimensional equations, and perturbations to three-dimensional shocks are
governed by two-dimensional equations. Additionally the equations have fewer variables, so
that a reduction of orders of magnitude in computing time can be anticipated and was infact
achieved.

However, the theory in this form had only been formulated for two-dimensional shocks
propagating into a stationary fluid. It had not been found possible to retain these advantages
if the shock propagated into a moving fluid, or was three-dimensional. In these cases no
reduction in dimensionality had been achieved. Rather surprisingly, we found very simple
methods, apparently overlooked, that restored the simplicity of the original formulation to
these new contexts.

We than applied the two-dimensional theory to the problem of shock vortex interaction.
We realized that the Whitham theory had little hope of modeling the initial stages of the
interaction, but hoped that it would predict how the waves would behave at greater distances.
We were able to show the existence of waves that decay rather slowly (like the inverse square
root of distance). Calculations with the full Euler equations have confirmed that such waves
are indeed created under some circumstances.

We have an incomplete version of the three-dimensional code, but not yet any significant
results from it. However, a consideration of qualitative features of the three dimensional
problem already indicates the possibility of very strong coupling between different parts of
the shock train.

II. Whitham’s Geometrical Shock Dynamics

Whitham'® proposed GSD in 1957 as a way to study the evolution of shockwaves without
needing to know any details of the flow behind them. At that time, he considered only the
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Figure 4. Part of the net of shock locations and rays.

case of a shock advancing into stationary fluid and we will, to begin with, do the same. He
introduced coordinates (&, t) such that curves t = const represent snapshots of the shockwave
at the corresponding time, and curves £ = const are orthogonal to the snapshots. Each curve
& = const is called a ray and the region between two closely spaced rays is called a raytube.
An economical derivation of the basic result comes from defining vectors m(¢,¢) and g(§,t)
such that elements of the coordinate system are given by g(&,t) d§ and m(&,t) dt. The
magnitude m of m is the speed with which the shockwave advances normal to itself, and
with a suitable choice of units is the normal Mach number. The vector representing an
arbitrary line element is dr = gd¢ + mdt so that around any closed curve we have

fgdf—kmdt —0 (1)

This has the appearance of a conservation law,! with g as the conserved quantity that
advances in time due to the gradient of a flux function m. Discretisation of the conservation
law is trivial; around the cell ABC'D we have

(ra—rp)—(r¢ —rp)=(ra—rc) — (rg —rp). (2)

To make this useful, physics must be added in the form of some relationship m(g). For
example, if we simply take m = const, we recover Huyghen’s Principle. Whitham'® derived
a flux function by assuming that the shock would propagate along each raytube as though
the raytube were a narrow channel. This leads to a relationship of the form

9/9x = f(m)/ f(mx), (3)

where mx, gx are (possibly fictitious) reference states.

Some justification for this was provided by Maslov!'! and by Best,?? who showed that
shockwave propagation could be rigorously represented by a hierarchy of models, each of them
correcting the previous model by adding information relating to one more normal derivative
of the post-shock flow. From this viewpoint, the Whitham model could be regarded as the
zeroth-order description. Prasad!® has claimed that at least one more derivative needs to
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be taken into account, and introduced a quantity N, being a lumped version of the normal
derivatives. It is debatable how useful this is, because in most cases it is difficult to supply
data for this variable. Therefore, we follow Whitham by seeking a simple closure m(g). If
one is available, then we can rewrite 1 as a nonconservative pair of hyperbolic equations

Ohg —m(g)9¢0 = 0 ()

whose characteristic speeds are A\j o = £4/ M in the £ —t coordinates. In the physical

coordinates the wavespeeds are ¢; 2 = ++/—m(g)m/(g)g.

A weakness of Whitham'’s closure is that it badly underpredicts (by a factor of two) the
speed with which waves travel along a weak shock. We propose a new closure by matching
these wavespeeds to the actual speed with which a disturbance propagates along a shockwave.
Simple geometry gives the exact speed of propagation c¢ along the shock as

2 _ 2 2

where we have from the exact shock relationships that

2 —1
i 20— @ @+(—DMY) (2 -5
wo o (y+DMPT 6 (v +1)?
Then setting
PN = 2
gives a differential equation
g (v + Dm?

that can be integrated to give

2+ m(y — 1)
m?—1

g(m) = (6)
The propagation speeds according to this model and the original Whitham model are shown
in Figure II, together with a relation derived by Prasad for weak shocks

g(m) = (m — 1)"2el-2m-V)

It can be seen that the present, exact, result agrees with Prasad’s model at low Mach
numbers, and with Whitham’s model at high Mach numbers.

In fact, experiments show that any of these closures produces a model with very similar
qualitative behavior, and since no version of GSD can be used for more than qualitative
prediction, the choice of closure does not matter greatly. Results here use the new closure,
because it is considerably simpler than Whitham’s, and at high Mach numbers more accurate
than Prasad’s.

5 of 16

American Institute of Aeronautics and Astronautics



—e— Prasad's g(M)

2.57 | —=—Whitham's g(M)
—— Roe's g(M)
2,
cl5
l,
0.5
0 L
1 2 3 4 5 6

Figure 5. Wave-speeds in the physical space along the shock

II.A. Numerical treatment of GSD

Our numerical solution of GSD follows the usual lines of ”high-resolution” shock-capturing
finite-volume methods,® but with a distinctly geometrical flavor. We use the discrete form of
the geometrical conservation law (equation 2) and the numerical task is to estimate a typical
"flux vector” such as QT. The magnitude and direction of this vector are simply m and 0,
which are found by solving a Riemann problem with m, g(m) and € in the neighboring cells
as data, as shown in Figure 6.

A detail that is worth pointing out is that the derivation of an approximate Riemann
solver is simplified when the wavespeeds in the problem are equal and opposite (), as they
are in GSD. In this case, the viscosity matrix can be simplified thus;

Q= [A] = RJAIL = R(ADL = [AI (7)

and the Roe dissipation reduces to a special case of the much simpler Rusanov dissipation.

Figure 6. A geometrical Riemann problem. To advance the ray QT, we need information from the neighboring
”cells” PQ,QR, which is used to formulate a Riemann problem with m, g(m), 0, as data.

II.B. Propagation into a moving stream

This ought to be a simple extension of this method, to shocks propagating into a stationary
fluid, but it has proved troublesome in the past. Whitham,?® noting that an attempt by
Chisnell* did not satisfy Galilean invariance, abandoned much of the geometrical character
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of GSD. He introduced a function «a(z, y) whose level lines are the snapshots of the shockwave
at t = «, and derived a second-order partial differential equation satisfied by a. He noted
that this could be solved iteratively by methods similar to those used for transonic potential
flow.

This change of viewpoint has three unfortunate consequences. Firstly, a good deal of the
intuitive clarity of GSD is lost. Secondly, the numerical method required is two-dimensional
rather than one-dimensional. The reduction in dimensionality has been lost, and indeed, it
is probably about as hard to write a good code for the a-equation, as to write one for the
unsteady flow equations themselves (and these days, the latter codes are available off the
shelf). Thirdly, and this is particularly relevant to our application, it becomes very hard to
solve flows that are almost steady, because in such cases the shockwave is likely to pass over
the same location (x,y) more than once. The function a(x,y) would be multivalued at such
points, greatly complicating it’s computation.

Fortunately, there is actually a very simple solution that seems to have been overlooked.
We note that propagation into a moving stream, seen by a stationary observer, is the same
as propagation into a stationary fluid viewed by a moving observer. We can think of the
intersection of a particular ray with a particular snapshot of the shockwave as an event that
might be viewed by either observer. All that has to be done is to compute the solution
m(¢, t) as though the fluid were at rest, and then to advance the solution from ¢ to t + dt in

the physical plane by means of
dx

dt
where my is the velocity of the moving stream.

=m + my (8)

III. Modeling shock-vortex interaction

ITII.A. The GSD model

We consider an inviscid vortex convected by a uniform stream toward a normal shock.* When
the vortex arrives at the shock the velocities on one side of the vortex will augment the free
stream, so that the shockwave will in effect be moving faster into a uniform stream, and this
will be reversed on the opposite side. We propose to model the encounter by prescribing an
initial-value problem for m as a function of £. Specifically we prescribe

m(£,0) = mo<1—081ﬂﬁéf€>>, |§|<2£”
= m,, |§| >— 221}

9)

where r, imitates the vortex core radius and L a specific length of the shock considered.
This gave quite realistic results without any accompanying perturbation in €, and since we
can only hope for qualitative predictions it did not seem worthwhile to refine it.

This initial data applies equal but opposite perturbation to the two Riemann invariants,
and this will result in two simple waves propagating to left and right along the shock. If

#The case of an oblique shockwave is handled by superposing a velocity parallel to the shock
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the propagation were governed by linear equations, they would remain equal but opposite.
However, nonlinear aspects of their propagation will be different. On the side where the
vortex augments the free stream, represented here by an increase in m on the left, we have a
compression followed by an expansion followed by a compression. This is the usual N-wave,
but we call it a C-E-C wave to distinguish it from the E-C-E wave on the other side, where
an initial expansion is followed by a compression and then a second expansion. We observed
that the E-C-E and C-E-C waves often displayed quite different asymptotic behavior. A
sample calculation is shown in Figure 7. Note that the C-E-C wave grows in length but the
E-C-E wave does not. Note also that the E-C-E waves decay much faster.
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Figure 7. GSD results : At early times using our closure model for a planar shock of strength 1.7

III.B. The two wave types

To explain this, we examined the difference in behavior for each type of wave in Burgers’
equation. This is justified by the fact that small amplitude waves in any set of equations
satisfy Burgers’ equation in smooth regions, and weak shocks are not very different.'® Burg-
ers’equation is of course

ou 4+ ud,u =0 (10)
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By employing the properties that u = const along characteristics dx/dt = wu, and that shocks
move at a speed dxs/dt = (ur, + ug)/2 exact solutions can be found for the two problems
whose initial data is displayed in Figure 8. We omit the straightforward details, and simply
present results.

u(x) u(x)
u u
dr dr
dy X d X
Ug o
(a) C-E-C wave (b) E-C-E wave

Figure 8. Initial data for the generic wave structure

THE C-E-C wAVE This is the well-known N-wave; both shocks recede outward, and the
solution remains linear between them. Formulas for the shock strengths as a function of

time are;
UL7R(O)t) :| —1/2
dr.r

o) = o) [ (14

In particular we see that both shocks decay at an asymptotic rate of ¢~/2,

THE E-C-E wWAVE This is more complicated, and less well-known. Initially, the solution
is confined within the range —d; < x < dpr, and the shock moves to the right or to the left
depending on the sign of u,(0) —ur(0). However the shock may not always continue moving
in the same direction.There are three cases depending on the value of

Iy = / u(z,0) de = ug(0)d, — ur(0)dg
If Iy, which is integral of the initial data, is negative then the shock, in finite time, leaves
the initial range through the left boundary; if Iy = 0 it remains for all time within the initial
range, and for I, > 0 it leaves on the right. Before the shock leaves, its strength is given by
the monotone decreasing function

ur(t) — up(t) = (ur(0) — ug(0)) [(1 n %fﬁ) (1 . %}S)t)} ~1/2

which decreases for large t like t~1. If the shock is going to leave, it does so at a time given
by
1

A—
[ o]

{UL(O)dR + UR(O)dL} max (ufé%()), U;Z(LO)) + 2deR:|
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At this time, it can be shown that either up(t*) = 0 or ug(t*) = 0. We then have a new
"initial-value” problem, consisting of a single shock and a single rarefaction. The shock
now leaves the initial range, departing from it by a distance proportional to (¢ — t*)l/ 2 and
weakening as (t — t*)~1/2,

In summary, the extent of the wave does not initially increase, and the weaker of the two
initial disturbances vanishes after finite time. The stronger of the two decays initially like
t=1, but after the weaker disturbance disappears, like t~/2. In this final stage, the waves
extend beyond their original support. These distinct behaviors for the two types of wave
correspond quite closely to what we observed in the GSD solutions, and also in at least some
of the Euler simulations.

IV. A note on oblique shocks

The discussion so far has been in terms of a normal shock, and the results will be presented
in this context also. However the interaction of a single vortex with an oblique shockwave
is merely a uniform translation of the normal shock case, and therefore introduces no new
theory. A practical matter is that if the flow is supersonic behind an oblique shock, then
both types of wave are propagated in the same direction as a fast wave and a slow wave. The
decay with respect to time is unchanged, but the fast waves will travel for a greater distance.
For the situation depicted in the figure 2, clockwise vortices interact with the shock, each
encounter producing a fast going E-C-E wave and a slow going C-E-C wave. The distinction
between waves that travel in both directions, or only in one, is made correctly only if the
wavespeed along the shock is correct. That is another motivation for choosing the new
closure (6).

V. Results from GSD

Realizing that the C-E-C waves continually grow in extent and diminish in amplitude
explains the behavior of the waves seen in Figure 3. We now turn to the issue of decay
at larger distances, and present a some long range results obtained from the GSD model,
tracking the disturbances out to about 400r,. We tested a range of shock strengths (the
unperturbed initial value of m), and various values of C' in equation (9), but give here only a
small representative sample. We were particularly interested to determine the rate at which
signals decayed as they traveled away from the site of the encounter. If the decay is slow, then
this phenomenon is more likely to be of practical importance. We made log-log plots showing,
as function of distance from the origin, the maximum and minimum (i.e. most negative)
strengths of the waves. That is, at a given location, what is the greatest perturbation
experienced? The results have been presented in terms of the pressure perturbation. There
was a notable difference between stronger and weaker initial perturbations. In Figure 9d,
we see all of the expected behaviors. Both amplitudes of the C-E-C wave decay consistently
like 7'/2. One branch of the E-C-E wave vanishes and the other eventually decays like ¢~1/2
after decaying more quickly at earlier times. As we expect, the weaker the perturbation, the
later the waves take on their asymptotic behavior. The weakest waves did not decay at all
within the computational domain; the smooth initial profiles had not yet formed shockwaves.
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Figure 9. GSD results : Power law decay of the wave amplitudes with non dimensional distance for shock
with m = 1.7. p* represents the downstream pressure

VI. Results from Euler simulations

Similar experiments were conducted with the Euler equations, using a standard second-
order high-resolution method. A square mesh having 250 by 750 cells was used, with the
vortex core(the edge of which the vortex has the maximum velocity) initially having a di-
ameter of 25 cells. Simple outflow boundary conditions proved satisfactory. This allowed
the vortex to be tracked over a distance of about 257,, not far enough to reach a convincing
asymptotic regime, but far enough to confirm some of our expectations based on GSD. The
calculations were not quite grid-converged, but we felt confident that refining the grid would
not greatly affect our conclusions, although it would have curtailed the number of experi-
ments that we could do. A typical run took about half an hour, compared with less than a
second for a GSD run, confirming 3 orders of magnitude less computation. A plane station-
ary shock was placed halfway across the grid, with a vortex ahead of it having a prescribed
distribution of circumferential velocity till 47, units. The nature of this distribution only
had a small effect on our results, although it is reported to be significant in the near field.’?

To begin with, we visualized the developing flow by drawing contour lines of the flow
quantities. These were not very informative. Particularly it proved very difficult to see any
distortion of the shock shape except close to the interaction. This may account for the fact
that some authors have stated that the waves decay very rapidly. Certainly the perturbations
do decay quickly in the near-field, but there may only be slow decay in the far field. We
experimented with various ways to reveal this, eventually deciding to monitor events in a
single line of cells located five cells behind the initial position of the shock (along AB shown
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Figure 10. Computational domain for the shock vortex interaction with r» the outer radius of the vortex and
r, the radius of the vortex core

in figure 10). Five was not a magic number, and other choices gave similar results, but much
more than five resulted in weaker signals, and fewer resulted in noisier ones.

Again we investigated various shock Mach numbers (M;=1.05, 1.2, 1.4, 1.7, and 2.0)
and varying vortex strengths between 0.1 and 1.0 (defined as the ratio of the maximum
circumferential velocity to the speed of sound in the free stream, and denoted by M, ) To place
these numbers in perspective, we may consider the DNS simulations of shock /boundary-layer
interaction conducted by Pirozolli and Grasso? as shown in figures 2 and 3°. We are grateful
for a private communication to the effect that r.m.s fluctuations of Mach number were
about 0.35 in the region traversed by the vortex. Since the maximum fluctuation will be
greater than the r.m.s. fluctuation, we think that our range of vortex Mach numbers is not
unrealistic.

The near field of the shock-vortex interaction has been studied numerically in
and elsewhere. These authors have observed a classification based on the topology of the
shock deformations. The shock either remained smooth, or formed two intersecting branches,
or the branches connected through a Mach stem. The three different types were found in
three distinct regions of the (M, M,) plane. We verified this classification as one way to
validate our code, but found that this classification had little to say about the far-field
behavior.

A representative sample of our results is presented in Figure 11 showing the pressure
along the line AB at four different times. The results are definitely similar to those from
GSD. Even though they are not nearly as "clean”, we see a distinct asymmetry between
the left- and right-going waves, with the right-going E-C-E waves decaying faster, and the
left-going C-E-C waves growing in extent. In Figure 12, we present plots showing amplitude
decay in the same way that we did for the GSD results®. A much larger set of results in
available in the first authors thesis,'” but these three represent the three broad types of result
that we found. We begin with the combination of a strong shock and a weak vortex (here
M, = 2.0, M, = 0.1).These were the cases that most closely followed the prediction of the
Whitham theory, and where there is strong asymmetry between the two types of wave. We

5-7,10,14,21

PTt was this paper that stimulated our interest in the problem.
¢Although here the pressure amplitude has been measured relative to the pressure difference found in the
initial vortex.
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can see that one branch of the C-E-C wave is decaying like ¢~1/2, while the other branch has
not yet begun its asymptotic decay. Both branches of the E-C-E wave are decaying rapidly.
The opposite case is that of a weak shock and a strong vortex (here M = 1.4, M,, = 0.8)
where, although there is some asymmetry, all waves are decaying roughly like t~1. Results
for an intermediate case (Mg = 1.7, M,, = 0.4) are appropriately intermediate in behavior.
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(a) pressure signal at time t = 2 units. (b) pressure signal at later time t = 3
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Figure 11. Euler results : Monitored pressure along AB for M; = 1.7 and M, = 0.4

As a check on our results, this last case was kindly run by Prof. Farhad Jaberi of Michigan
State University, using a fifth-order method on a mesh of 1500 by 1500 cells. He obtained
similar results for the behavior of the C-E-C wave, but a less rapid decay for the E-C-E
wave. This indicates that this particular result of ours may not have been fully resolved.
However, we definitely stand by our general conclusions.

Much of the literature on shock-vortex interaction deals with the acoustic wave shed by
the vortex. As the circular vortex passes through the shock wave, it is compressed in the flow
direction, taking on a roughly elliptical shape. This rotating ellipse throws off noise that is
initially dipolar, and subsequently quadrupolar. Rault et. al.'* conducted high-resolution
computations verifying theoretical predictions by Ribner!® that the precursor wave decays
like ¢~! and the later wave (second sound) like t=*/2. Simple geometry shows that the waves
that propagate along the shock coincide with the reflection of the precursor wave from the
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Figure 12. Power law decay of amplitudes of the pressure signal with Ap, being the strength of the pressure
disturbance with the vortex before interaction

shock. Further work is needed to uncover the link between the two types of wave, but it
is quite remarkable that so much of the actual physics can be obtained from the simple
Whitham theory. This is enough to encourage the development of GSD in three dimensions.

VII. Three dimensions

We have developed a three-dimensional version of GSD, free from the computational
defects of the original,'® although we are not yet ready to present details of the computational
scheme. Instead, we note some physical features. Figure 13 shows an oblique shockwave on
whose surface an event E is taking place. News of this event is confined to the interior of
the Mach cone centered on ES, but part of this cone is cut off by the shock surface. The
part of the shock that is influenced by E is contained between the rays ER;, ER,. Just as
the waves on a two-dimensional shock behave like one-dimensional waves, the waves on a
three-dimensional shock surface behave like waves in two dimensions. If the surface of an
initially plane oblique shock is described by coordinates &, n then in steady flow there are
characteristic lines

dn 1
g B
analogous to the characteristics of plane flow, for which 52 = M? — 1, but here, from the
geometry of the figure 3% = (u3 — a2)/u? Waves propagate within the shock surface just
as waves propagate through a two-dimensional duct. If we now think of that shock as one

element in a shock train, then it is in contact with a potentially unstable boundary layer on
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Figure 13. Characteristics along the shock surface

every edge. The shock surface can act as a waveguide for low-frequency noise at the resonant
frequency of the separation bubbles.

VIII. Conclusions

We have rebuilt Whitham’s theory of Geometrical Shock Dynamics on its original geo-
metrical foundations, and applied it to the long range behavior of the interaction between a
plane shockwave and a cylindrical vortex. The finding, confirmed for shorter ranges by Euler
computations, is that noise can propagate along a shockwave following interaction with a
vortex, and that under some circumstances it can do so for considerable distances. It is
possible that this mechanism, or a three-dimensional version of it, plays a role in the "un-
starting” of shock trains, by transmitting over a distance the violent fluctuations associated
with shock-induced separation of the turbulent boundary layer.
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