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In order to better understand interactions between the plasma and channel walls of a 

Hall thruster, the near-wall plasma was characterized within the H6 Hall thruster using five 

flush-mounted Langmuir probes.  These probes were placed within the last 15% of the 

discharge channel and were used to measure plasma potential, electron temperature, and ion 

number density near the inner and outer channel walls.  These data were then compared to 

prior internal measurements inside the channel using a High-speed Axial Reciprocating 

Probe stage.  Comparison of these data has shown that, at the nominal operating condition 

of 300 V and 20 mg/s anode flow rate, the plasma near the wall begins to accelerate further 

upstream than plasma closer to centerline.  This shift in acceleration zone creates large 

radial electric fields (~ 40-50 V/mm) that tend to defocus ions and drive them towards the 

walls.  The shift is likely caused by large plasma density gradients between centerline and 

the channel walls, creating a significant deviation of equipotentials from magnetic field lines 

near the walls.  Electron temperature axial profiles were found to be largely consistent 

across the channel, supporting the isothermal assumption along magnetic field lines.  The 

experimental results were also compared to simulation results from the hybrid-PIC program 

HPHall-2.  General agreement was found between simulation and experiment for axial 

profiles of plasma potential, electron temperature, and ion number density, with minor 

differences occurring in peak locations.  Slight asymmetries in properties were found 

between the inner and outer channel walls despite the use of a symmetric magnetic field 

topology.  This asymmetry was caused by a difference in the location of the maximum radial 

magnetic field, resulting in axial shifts of acceleration zone and peak electron temperature.  

This result is supported by asymmetric erosion profiles after 334 hours of operation, 

showing increased erosion along the outer wall where acceleration began further upstream. 

Nomenclature 

Ap = probe area 

As = sheath area 

DT,m = mean thruster diameter 

e = elementary charge 

ji,sat = ion saturation current density 

Mi = ion mass 
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a
m&  = anode mass flow rate 

n = plasma number density 

n0 = reference plasma number density 

ni = ion number density 

Pd = discharge power 

rp = probe radius 

T = thrust 

Te = electron temperature 

⊥
u  = ion velocity normal to wall 

⊥
ε  = ion energy normal to wall 

ηa = anode efficiency 

λDe = Debye length 

µ0 = non-dimensionalized wall sheath potential 

µp = non-dimensionalized probe potential relative to wall 

ρp = non-dimensionalized probe radius 

ϕ = electric potential 

ϕ0 = reference electric potential 

ϕprobe = probe potential relative to plasma potential 

ϕwall = wall sheath potential 

I. Introduction 

ALL thruster lifetime models currently in development aim to provide predictive tools that would eliminate or 

substantially reduce the need to perform long-duration, expensive life tests of flight articles [1-5].  A critical 

part of these modeling efforts is the need to understand and characterize the interaction between the plasma and the 

discharge channel walls.  This interaction is composed of several complex processes that are not fully understood, 

and yet significantly affect thruster performance and lifetime.  Several notable advances have been made in recent 

years in understanding plasma-wall interactions in Hall thrusters [6-8], but there is presently a noticeable lack of 

experimental validation.  In particular, measurements of various plasma properties along the ceramic walls and 

comparison to those in the bulk plasma would greatly contribute to the understanding of Hall thruster wall physics, 

as well as provide validation and/or allow refinement of existing models [9-12]. 

Due to the extreme environment of the plasma, obtaining measurements within the channel can be challenging 

due to the low survivability of probes.  This can be mitigated by reciprocating the probe on a high-speed stage [13-

15], or circumvented entirely by interrogating the plasma using laser-induced fluorescence (LIF) [16-18].  Both 

methods have been used extensively with a high degree of success.  However, these techniques are limited in their 

ability to interrogate the near-wall region; probe reciprocation can only get within a few millimeters of the wall due 

to the physical size of the probe, and LIF, while capable of higher wall proximity than probe reciprocation, is unable 

to easily obtain plasma densities and currents.  For these reasons, flush-mounted wall probes are an attractive choice 

for this investigation, and have been successfully used to interrogate the near-wall region of Hall thrusters [9-12,19-

21]. 

In order to characterize the near-wall plasma of a Hall thruster, five flush-mounted Langmuir probes were placed 

within each erosion ring of the H6 Hall thruster.   These probes were placed within the last 15% of the channel, 

where the acceleration zone, region of high electron temperatures, and region of significant erosion were expected to 

occur.  At each location, the plasma potential, electron temperature, and ion number density of the near-wall plasma 

were measured.  These values were then compared to prior measurements taken by Reid [15] closer to channel 

centerline.  The data were also compared to simulation results obtained using the hybrid-PIC code HPHall-2. 

  The paper is organized as follow:  Section II will describe the vacuum facility, H6 Hall thruster, and the 

mechanical and electrical setup of the Langmuir probes used in this study.  Section III then compares axial profiles 

of plasma potential, electron temperature, and ion number density at various radial locations within the discharge 

channel.  Section IV discusses the implications of the results described in Section III, as well as compares the 

experimental results to computational results obtained using the hybrid-PIC code HPHall-2.  Section V summarizes 

the pertinent conclusions of the study.   

H 
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II. Experimental Apparatus 

A. Vacuum Facility 

The study was conducted in the Large Vacuum Test Facility (LVTF) at the Plasmadynamics and Electric 

Propulsion Laboratory.  The LVTF is a 6-m-diamater by 9-m-long stainless-steel clad cylindrical vacuum chamber, 

and is equipped with seven CVI model TM-1200 cryopumps as well as liquid nitrogen shrouds capable of providing 

a pumping speed of 245,000 l/s on xenon.  Facility pressure was monitored with a commercially available hot-

cathode ionization gauge, and a base pressure of 7 × 10
-7

 torr was routinely achieved.  At a total mass flow rate of 

21.4 mg/s, the facility pressure was 1.5 × 10
-5 

torr, corrected for xenon. 

B. Hall Thruster 

The test article for this study is a 6-kW laboratory Hall thruster, the H6, with an approximate throttling range of 

100 – 600 mN thrust, 1000 – 3000 s specific impulse, and 1-10 kW discharge power.  This thruster has been well 

documented and has undergone extensive performance and probe testing [15,22-31].  Research-grade xenon 

(99.999% pure) was supplied using commercially available mass flow controller with an accuracy of ±1% full scale.   

These controllers were calibrated using a constant-volume method that corrected for compressibility effects.  The 

flow rate through the thruster’s center-mounted cathode [32] was maintained at 7% of the anode mass flow rate.  

The discharge was sustained with a 100 kW power supply capable of outputting 1000 V and 100 A.  Separate 

supplies were used to power the magnets, as well as the cathode heater and keeper. 

The discharge channel of the H6 is composed of boron nitride and includes replaceable “erosion rings” at the end 

of the channel to facilitate lifetime studies.  For this particular study, a new set of erosion rings were fabricated in 

order to avoid unnecessary alterations to the original rings.  The new rings were machined with a linear chamfer to 

mimic the erosion pattern observed after approximately 334 hours of operation at an average discharge power of 4.6 

kW (see Figure 1).  This was done to match geometries with the original rings such that prior internal measurements 

[15] could be compared to the results of the present study.  Previous studies have shown that pre-machined erosion 

geometries can give consistent thruster performance to within approximately 2% of the performance at the target 

point in life [33].  The erosion profiles shown in Figure 1 were measured using a MicroVal coordinate measuring 

system with a ruby ball point probe.  Due to the low number of operation hours, a linear chamfer provided an 

excellent approximation to the erosion profile, with differences not exceeding 250 µm.  Prior to the study, the H6 

was operated with these rings at the nominal operating condition of 300 V and 20 mg/s anode flow rate until the 

discharge current and oscillations settled to values that were observed with the original rings, which occurred after 

approximately two hours. 
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Figure 1.  Comparison of measured profiles of the original rings to the linear machined profiles of the new 

rings.  Left: Inner channel ring.  Right: Outer channel ring. 

The magnetic field topology was maintained as a symmetric configuration about the channel centerline [3,24] for 

all operating conditions tested.  The trim coil was not energized, and the strength was chosen to maximize the 

thruster anode efficiency as determined by a thrust stand: 
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where T is the measured thrust, 
a

m&  is the anode mass flow rate, and Pd is the discharge power.  The thrust stand 

used in this study was a NASA GRC null-type inverted pendulum design, details of which can be found in Refs. 

[34,35].  Lastly, the cathode keeper and heater were only used during thruster setup, and were turned off during 

thruster operation and data collection.  

C. Langmuir Probe 

Five Langmuir probes were flush-mounted in each erosion ring near the thruster exit plane in order to measure 

fundamental plasma properties near the wall such as plasma potential, electron temperature, and plasma number 

density.  This section first describes the mechanical design as well as the data collection techniques used in the 

study.  This is followed by a brief description of the analysis methods used to obtain fundamental plasma properties. 

 

1. Probe Design 

The final probe design consisted of 

pure tungsten wire approximately 0.36 ± 

0.025 mm in diameter for the probe tips.  

These tips were sanded down and 

inspected for flatness, then inserted into 

holes within each erosion ring until flush 

with the surface.  High-temperature 

ceramabond (Aremco 813-A) was used to 

hold the probe tips in place as well as 

provide insulation for the first few 

millimeters of the lead wires.  This 

ceramabond was chosen because of its 

excellent ability to bond tungsten to boron 

nitride, as well as its maximum rated 

temperature of over 1900 K.  The 

remainder of the lead wires were insulated 

with high-strength fiberglass cloth tape 

until they were sufficiently beyond the 

thruster body to avoid large heat loads.  

The lead wires for the probes on the inner 

channel wall were routed to the back of the 

thruster through the central opening used to 

place the cathode.  Ceramic beads were 

used as extra insulation for portions of the 

wire in close proximity to the cathode keeper.   Figure 2 shows the final setup with all probes mounted onto the 

thruster.  

Figure 3 shows the axial locations of each probe with respect to the thruster exit plane.  Since this study was 

focused on obtaining properties in the region of large electric fields and electron temperatures, most of the probes 

were placed along the chamfer in the last 10% of the channel where plasma acceleration is expected to occur.  The 

probes were also spaced azimuthally nine degrees apart to avoid probe-to-probe interactions [9] as well as ease 

installation.  Furthermore, the inner and outer erosion rings were offset azimuthally to avoid probe-to-probe 

interactions between the two channel walls.  A sixth probe was placed in each ring to serve as a null probe that 

characterizes the line capacitive effects [36].  This probe was inserted into a blind hole to ensure complete insulation 

from the plasma (see Figure 4). 

Figure 2.  Photograph of the final configuration of flush-

mounted Langmuir probes along the inner and outer channel 

walls of the H6 Hall thruster. 
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Figure 3.  Schematic showing the locations of each probe with respect to the thruster exit plane.  Dimensions 

are in units of channel lengths.  Not to scale. 

 

Active probes Null probeActive probes Null probe
 

Figure 4.  Photograph of all five flush-mounted probes azimuthally spaced along the outer channel erosion 

ring prior to installation on the thruster.  The null probe has no exposed area and is only used to characterize 

line capacitance. 

2. Data Acquisition 

Since direct comparisons of plasma properties between inner and outer channel walls were desired, the 

measurement circuit was designed to simultaneously measure I-V characteristics of four probes (two active probes 

and two null probes).  Figure 5 shows an electrical diagram of the measurement circuit used in the study.  The 

current for each probe was measured using 100-Ω, 500-mW thin-film resistors, while the voltage was monitored 

using a voltage divider comprised of 10-M Ω and 0.24-M Ω thin-film resistors.  Each signal was isolated from the 

data acquisition system (DAQ) using voltage-following isolation amplifiers with a bandwidth of 20 kHz.  Blocking 

diodes were placed in parallel with the current resistors to protect the isolation amplifiers from large current spikes. 
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Figure 5.  Electrical diagram of the measurement circuit used with the wall probes.  Four current sensors 

were used to simultaneously run each pair of inner and outer wall probes as well as the null probes. 

The voltage and current signals were calibrated at DC prior to and following the study and displayed excellent 

linearity and repeatability.  The probes were operated with a bipolar power supply driven by a function generator.  

Voltage was applied using a symmetric triangle waveform at a frequency of 20 Hz, well within the bandwidth of the 

isolation amplifiers.  Data was collected and stored using an 8-channel DAQ capable of scanning at 2 MHz across 

each channel.  For this study, the scan rate was maintained at 40 kHz, resulting in approximately 1000 data points 

per I-V characteristic.  Two hundred traces were taken per probe, per operating condition, and averaged before any 

analysis was performed. 

 

3. Data Analysis Methods 

The analysis techniques used to determine fundamental plasma properties from flush-mounted Langmuir probes 

largely follow simple Langmuir probe theory, and have been previously discussed in detail in Ref. [20].  However, 

the previous method of correcting the ion saturation branch for sheath expansion was deemed inadequate, and a new 

model was formulated specifically for flush-mounted probe geometries in Hall thrusters. 

Sheridan’s model of sheath expansion around free-floating planar probes [37] was previously used in Ref. [20] to 

correct the ion saturation branch and determine the true saturation current.  However, it was found that the presence 

of a dielectric material surrounding the probe significantly affected the sheath expansion characteristics and 

necessitated a new model which accounts for the specific boundary conditions.  The two-dimensional hybrid-PIC 

code CEX2D, originally developed by Ira Katz at the Jet Propulsion Laboratory (JPL) [38], was used to characterize 

the sheath expansion around a flush probe at a variety of bias voltages, electron temperatures, and plasma densities.  

The method of characterization was similar to that of Sheridan:  to determine the area expansion ratio as a function 

of normalized probe radius and bias voltage.  Since the details of developing this model are beyond the scope of this 

paper, only the final sheath expansion formulas will be presented here. 

Based on the results from Ref. [21], the floating potential of the dielectric wall was calculated using the Hobbs 

and Wesson solution of space-charge-limited emission [39], which accounts for the effects of secondary electron 

emission from the wall.  It was found that the sheath expansion was highly dependent on the floating potential of the 

adjacent dielectric material, as well as the electron temperature at which the onset of the charge saturation regime 

(CSR) occurs.  At higher electron temperatures, the secondary electron emission from the wall becomes space-

charge-limited, and the sheath potential of the dielectric material reduces to approximately one electron temperature.  

Due to these features, the following non-dimensional parameters were used to characterize the sheath expansion: 
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where rp is the probe radius, λDe is the Debye length, Te is the electron temperature in eV, ϕprobe is the probe 

potential, and ϕwall is the dielectric wall potential.   All potentials are with respect to the local plasma potential.  The 

final sheath expansion model is 
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where As is the sheath area and Ap is the probe area.  Thus, the above model can be used at each bias voltage to 

“correct” the probe current by determining the amount of ion current collected had there been no sheath expansion.  

This correction is an iterative process since the Debye length, and thus the plasma density, need to be known to 

properly correct the ion saturation branch and calculate the plasma density.  Figure 6 shows an example of this 

correction on a sample I-V characteristic from this study.  It is evident that the corrected data is much flatter, 

allowing the ion saturation current to be easily determined.  Due to the inherent noise in the data, the ion saturation 

current was found by averaging from the lowest applied potential to one electron temperature below the measured 

floating potential. 
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Figure 6.  Comparison of corrected vs. uncorrected data in the ion saturation branch of an I-V characteristic 

from a flush probe.  The corrected data is much flatter, making the ion saturation current easily determined. 
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III. Results 

Relevant plasma parameters were measured near the exit plane of the H6 Hall thruster using five flush-mounted 

Langmuir probes along each channel wall.  Axial profiles of plasma potential, electron temperature, and ion number 

density will be compared to prior internal data [15] taken closer to channel centerline in order to characterize the 

near-wall plasma.  This section will begin with a brief description of internal data taken by Reid [15], followed by 

comparisons of each plasma parameter at the nominal operating condition of 300 V and 20 mg/s anode flow rate. 

A. Prior Internal Measurements 
Spatially resolved distributions of plasma potential, electron temperature, and ion number density were taken by 

Reid [15] inside the discharge channel of the H6 Hall thruster.  Figure 7 shows the spatial domain of these 

measurements with respect to the thruster anode and channel walls. 
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Figure 7.  Diagram illustrating the domain of prior internal measurements taken by Reid.  Corner 

coordinates are given in (z,r) format, with axial units normalized by channel length and radial units 

normalized by channel width.  Not to scale. 

Measurements of electron temperature and ion number density were taken with a cylindrical Langmuir probe, 

while measurements of the local plasma potential were taken with a floating emissive probe.  Both probes were 

mounted onto a High-speed Axial Reciprocating Probe stage (HARP) to minimize residence time and probe heat 

loading in the channel and ensure probe survival.  Each probe was injected into the thruster in the axial direction at 

various radial locations to fully map the measurement domain.  Reid had investigated numerous analysis techniques 

to determine the ion number density, including thin sheath theory, orbit-motion-limited theory, and a blending 

technique of both methods that incorporated a self-consistently calculated Debye length.  The blending technique 

was found to yield the most physically reasonable density distributions at nominal conditions, and therefore will be 

the data presented here. 

In the following sections, comparisons will be made between data taken along the channel walls to those taken 

by Reid within the channel.  Two radial locations have been chosen for comparison to the data along the walls: 

channel centerline, and the location closest to the channel wall.  The radial location of r = -0.4 channel widths will 

be called the “bulk plasma inner bound” while the location of r = +0.4 channel widths will be called the “bulk 

plasma outer bound.” 

B. Plasma Potential 

Figure 8 and Figure 9 show the comparison of axial profiles of plasma potential between the channel walls and 

the two radial locations within the bulk plasma, at the nominal operating condition of 300 V and 20 mg/s.  All values 

reported are with respect to cathode potential; measurements taken with respect to facility ground were corrected for 

the cathode-to-ground potential, typically around -10 V.  Based on the uncertainties associated with determining the 

plasma potential using the derivative method [20], error bars of ±20 V were placed on the data derived from the 

flush-mounted Langmuir probes. 

The acceleration zone is taken to be where the plasma potential rapidly drops, and begins in the last 10% of the 

thruster channel.  Upstream of this zone, the plasma potential is found to be highly uniform in both the axial and 

radial directions, with differences not exceeding 5 V.  This uniformity extends all the way to the channel walls, 

indicating that there are negligible axial and radial electric fields for approximately 90% of the channel.  In the 

remaining 10% of the channel, the plasma near the channel walls appear to accelerate further upstream compared to 
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the bulk plasma.   While this difference in acceleration zone is only ~ 5% of the channel, the rapid drop in plasma 

potential creates large potential differences in the radial direction.  Near the exit plane, the resulting radial electric 

fields approach 40-50 V/mm, which are comparable to the axial electric fields within the acceleration zone [15].  It 

is worth noting that this could be an underestimate of the radial electric field; it is uncertain whether the observed 

potential difference occurs within a shorter distance than between the wall and the bulk plasma bounds. 
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Figure 8.  Comparison of axial profiles of plasma potential at three different radial locations within the 

channel, under the nominal operating condition of 300 V, 20 mg/s anode flow rate.  The plasma begins to 

accelerate further upstream when close to the channel wall. 
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Figure 9. Comparison of axial profiles of plasma potential at three different radial locations within the 

channel, under the nominal operating condition of 300 V, 20 mg/s anode flow rate.  The plasma begins to 

accelerate further upstream when close to the channel wall. 

Figure 10 compares the axial profiles of plasma potential between each channel wall at 300 V, 20 mg/s anode 

flow rate.  Despite the use of a symmetric magnetic field, which largely influences the induced electric field, the 

plasma along the outer channel walls appears to accelerate slightly upstream of the plasma along the inner wall.  

However, this variation is minor and the axial electric fields along inner and outer walls are roughly equal.  The 

observed asymmetry is also present in measured electron temperature profiles, and will be discussed in further detail 

in Section IV. 
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Figure 10.  Comparison of axial profiles of plasma potential between inner and outer channel walls at 300 V, 

20 mg/s anode flow rate.  Despite the use of a symmetric magnetic field topology, the plasma along the outer 

wall begins to accelerate further upstream than the plasma along the inner wall. 

C. Electron Temperature 
Figure 11 and Figure 12 show comparisons of the axial profiles of electron temperature between the channel 

walls and within the bulk plasma, at the nominal operating condition of 300 V and 20 mg/s anode flow rate.  Based 

on the variation of possible lines that could be fit to the electron retarding region of the probe’s I-V characteristic (in 

semi-log form), uncertainty bars of ±15% were placed on the data taken along the channel walls. 

Along both inner and outer channel walls, the peak electron temperature appears to be consistent with those 

found within the bulk discharge.  The location of this peak is also fairly consistent, with differences in location being 

within 2% of the channel length.  However, this location occurs slightly upstream of the beginning of the 

acceleration zone in the bulk discharge, while coinciding with the beginning of the acceleration zone along the 

channel walls.  Given the general agreement of peak value and location between the channel walls and bulk plasma, 

it appears that the isothermal approximation along field lines is valid since they are nearly radial in this portion of 

the channel. 
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Figure 11.  Comparison of axial profiles of electron temperature at three different radial locations, at the 

nominal operating condition of 300 V, 20 mg/s anode flow rate.  The peak electron temperatures are 

comparable, but occur slightly downstream close to the wall. 
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Figure 12. Comparison of axial profiles of electron temperature at three different radial locations, at the 

nominal operating condition of 300 V, 20 mg/s anode flow rate.  The peak electron temperatures are 

comparable at all radial locations. 

Figure 13 compares the axial profiles of electron temperature between inner and outer channel walls, at nominal 

conditions of 300 V and 20 mg/s anode flow rate.  While peak electron temperatures are very consistent across the 

channel, the location of this peak is slightly upstream along the outer wall compared to the inner wall.  This trend is 

consistent with the locations of the acceleration zone along both channel walls.  The peak electron temperature of 35 

eV, roughly 10% of the discharge voltage, is consistent with prior internal measurements [13-15]. 

 

40

30

20

10

0

E
le

c
tr

o
n
 T

e
m

p
e
ra

tu
re

 [
e
V

]

-0.14 -0.12 -0.10 -0.08 -0.06 -0.04 -0.02 0.00

Distance from Exit Plane [channel lengths]

 Inner Channel Wall

 Outer Channel Wall

 

Figure 13.  Comparison of axial profiles of electron temperature between inner and outer channel walls, at 

300 V and 20 mg/s anode flow rate.  Peak electron temperatures are consistent between the two walls, while 

the peak along the outer wall occurs slightly upstream of the peak along the inner wall. 

D. Ion Number Density 

The ion number density in this study was calculated using two different methods.  These methods are only 

briefly described here; further details can be found in Ref. [20].  The first method assumes that the ion saturation 

current is equal to the Bohm current, i.e. ions enter the sheath at the Bohm velocity: 

 

 
i

e

isati
M

eT
enj =

,
, (4) 



 

American Institute of Aeronautics and Astronautics 
 

 

12 

 

where ji,sat is the ion saturation current density, e is the elementary charge, ni is the ion number density, Te is the 

electron temperature in eV, and Mi is the ion mass.  Based on the uncertainty associated with measuring the ion 

saturation current and electron temperature, the uncertainty associated with this calculation is ±47.5%.  This method 

will be called the “Bohm” method. 

The second method takes into account the possibility that ions will enter the sheath supersonically; this will 

typically occur within the acceleration zone of the thruster.  Thus, the ion saturation current is taken to be comprised 

of a beam of ions entering the sheath at a certain normal velocity: 

 

 
i

iisati
M

e
enuenj ⊥

⊥
==

ε2
,

, (5) 

 

where 
⊥

u  is the normal velocity, 
⊥

ε  is the normal energy, and the rest of the symbols have their usual meaning.  

Based on the uncertainty in measuring the ion saturation current and normal energy, the uncertainty associated with 

this calculation is ± 60%.  This method will be called the “Beam” method. 

Figure 14 and Figure 15 show comparisons of the calculated ion number density between the walls and the bulk 

plasma at the nominal operating condition of 300 V and 20 mg/s anode flow rate.  The data at z = -0.095 channel 

lengths along the inner wall are no included due to the probe showing signs of leakage current [40].  The presence of 

leakage current significantly affected measurements of floating potential and ion saturation current, but did not seem 

to affect electron temperature and plasma potential.  Thus, the data from this probe were reported in the previous 

sections, but not in the ion density profiles below. 
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Figure 14.  Comparison of axial profiles of ion number density at three different radial locations, at 300 V 

and 20 mg/s anode flow rate.  Near the thruster exit plane, the difference between the plasma at centerline 

and that at the wall can approach an order of magnitude. 
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Figure 15.  Comparison of axial profiles of ion number density at three different radial locations, at 300 V 

and 20 mg/s anode flow rate.  Near the thruster exit plane, the difference between the plasma at centerline 

and that at the wall can approach an order of magnitude. 

Along both inner and outer channel walls, the ion number density is lower than in the bulk plasma.  Prior internal 

measurements show a significant drop in density even between channel centerline and the bulk plasma bounds.  

While the difference between densities at channel centerline and the wall is limited to 2-3X upstream of the 

acceleration zone, this difference can approach an order of magnitude near the thruster exit plane (see Table 1).  It is 

worth noting that, as expected, the two methods of calculating number density yield identical answers until the 

acceleration zone is reached.  Once the plasma accelerates, the ions begin to enter the sheath supersonically, causing 

the Bohm approximation to differ from the Beam calculation by roughly a factor of two. 

 

Table 1.  Comparison of ion number densities between the inner and outer walls and channel centerline at 

300 V and 20 mg/s anode flow rate.  Number densities at the wall were calculated using the Beam method, 

and the location is in units of channel lengths from the thruster exit plane. 

Location nwall/ncenterline (Inner Wall) nwall/ncenterline (Outer Wall) 

z = -0.143 0.98 0.55 

z = -0.095 N/A 0.39 

z = -0.071 0.36 0.16 

z = -0.048 0.52 0.088 

z = -0.024 0.17 0.12 

 

 Figure 16 compares the axial profiles of ion number density between the inner and outer channel walls at 300 V 

and 20 mg/s anode flow rate.  The calculated number density is consistently higher along the inner wall, with 

differences of approximately 1.5-2X upstream of the acceleration zone.  As the exit plane is approached, the 

difference diminishes and the plasma becomes more symmetric.  This slight asymmetry is once again surprising 

given the use of a symmetric magnetic field topology.  However, differences have been observed in both plasma 

potential and electron temperature, and this asymmetry will be discussed further in Section IV. 
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Figure 16.  Comparison of axial profiles of ion number density between inner and outer channel walls, at the 

nominal operating condition of 300 V and 20 mg/s.  The density along the inner wall is consistently higher 

than along the outer wall, with the difference diminishing as the exit plane is approached. 

IV. Discussion 

 

Five Langmuir probes were flush-mounted into each erosion ring of the H6 Hall thruster, and various plasma 

properties were measured as a function of axial distance near the exit plane.  It was found that the plasma begins to 

accelerate further upstream when closer to the wall, electron temperature profiles are fairly consistent across the 

channel, and the ion number density near the channel walls can differ from the density at channel centerline by an 

order of magnitude.  The implications of these results will be discussed in the following section.  Afterward, the 

asymmetry observed between the inner and outer channel walls will be validated through the use of erosion profiles 

and magnetic field simulations.  Lastly, the data from this study will be compared to computational results from the 

hybrid-PIC program HPHall-2. 

A. “Defocusing” Near the Walls and the Isothermal Assumption 

In Section III, it was shown that the acceleration zone near the wall begins upstream of the acceleration zone at 

channel centerline.  Due to the rapid drop of plasma potential within this zone, this axial shift creates large radial 

electric fields directed towards the channel walls.  This trend is rather surprising given the “plasma lens” magnetic 

field topology.  Neglecting inertial terms, the electron momentum equation along magnetic field lines simplifies to 

the well known Boltzmann relation of thermalized potential [41]: 

 

 







+=

0

0
ln

n

n
T

e
φφ , (5) 

 

 where ϕ is the thermalized potential, Te is the electron temperature in eV, n is the plasma number density, and ϕ0 

and n0 are reference values.  Without inertial terms, the electric field along a magnetic field line is balanced by the 

electron pressure.  Equation 5 assumes that the electron temperature is constant along a magnetic field line.  Based 

upon the profiles presented in Section III, this was found to be a reasonable assumption. 

If the number density is roughly uniform along a magnetic field line, then Eq. 5 shows that the potential is 

roughly constant along that line to within one electron temperature.  Therefore, magnetic field lines can be treated as 

equipotentials within the thruster.  Figure 17 shows the expected axial profiles of plasma potential given the 

assumption that magnetic field lines are equipotentials.  For a plasma lens topology, the acceleration zone close to 

the wall should move downstream, and contain larger axial electric fields.  This shift in acceleration zone will create 

radial electric fields that point towards channel centerline, diverting ions away from the walls.  None of these trends 

are observed in the present study.  However, since the magnetic field lines in the acceleration zone are primarily 

radial, none of these trends are expected to be highly pronounced. 
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Figure 17.  Comparison of expected plasma potential profiles at channel centerline and along the wall, based 

on the assumption that magnetic field lines are equipotentials.  The acceleration zone near the wall moves 

downstream and contains larger axial electric fields, creating radial electric fields away from the walls 

(plasma lens topology). 

If the number density along a field line were highly non-uniform, Eq. 5 shows that equipotentials could deviate 

strongly from magnetic field lines.  Given the large number density differences found between centerline and the 

wall, coupled with the high electron temperature in this region, it is possible to have potential differences upwards of 

70 V along a magnetic field line.  Therefore, the large radial number density gradients could be responsible for the 

observed trends in plasma potential.  These gradients cause the deviation between magnetic field lines and 

equipotentials to be so strong near the wall that they create “defocusing” electric fields that drive ions towards the 

channel walls.  This defocusing effect near the walls has also been observed by Huang et al. [18] in the H6 Hall 

thruster using 2-axis laser induced fluorescence (LIF). 

B. Asymmetry between Inner and Outer Walls 

It was shown in Section III that, despite the use of a symmetric magnetic field topology, asymmetry was 

observed between the channel walls in the plasma potential, electron temperature, and ion number density.  In 

particular, the acceleration zone along the outer channel wall was found to begin slightly upstream of the 

acceleration zone along the inner wall, and a similar trend was found in the peak electron temperature.  If the plasma 

accelerates further upstream along the outer wall, ions should gain more energy and begin sputtering wall material 

further upstream as well.  Figure 18 compares the measured erosion profiles of the inner and outer channel walls of 

the H6 Hall thruster after 334 hours of operation.  It is evident that more erosion is present along the outer wall, and 

the erosion also begins further upstream compared to the inner wall.  This is consistent with the measured plasma 

potential profiles, as ions will have higher energy at each axial location along the outer wall and therefore create a 

higher erosion rate. 
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Figure 18.  Comparison of measured erosion profiles between inner and outer channel walls of the H6 Hall 

thruster after 334 hours of operation.  Increased erosion is observed along the outer wall, consistent with 

measurements of plasma potential in this study. 

Further insight into the source of this asymmetry can be found by looking at the profiles of radial magnetic field 

along each channel wall.  Figure 19 shows the simulated profiles of radial magnetic field along each wall using the 

program MagNet.  It is evident that the location of the peak magnetic field along the outer wall is upstream of the 

peak along the inner wall.  The radial magnetic field strength strongly influences the location of the acceleration 

zone; stronger radial magnetic fields result in increased electrical resistivity du  e to the electrons being more 

strongly magnetized.  From Ohm’s law, this increased resistivity results in a higher electric field to enforce current 

continuity throughout the circuit.  Thus, the axial shift in peak magnetic field is consistent with the observed axial 

shift in acceleration zones between inner and outer walls.  Furthermore, since the electrons gain their energy through 

the axial electric field, this shift is also consistent with the axial profiles of electron temperature.  It is worth noting 

that, even though these asymmetries are observable, the axial shift is only ~ 0.02 channel lengths; therefore, the 

profiles are not highly asymmetric. 
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Figure 19.  Comparison of the simulated profiles of radial magnetic field along the inner and outer walls of 

the H6 Hall thruster.  The peak magnetic field along the inner wall occurs downstream of the peak along the 

outer wall, consistent with plasma potential measurements. 
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C. Comparisons with HPHall-2 Simulations 

The axial profiles presented in Section III are now compared to computational results generated by HPHall-2.  

HPHall-2 is a two-dimensional hybrid-particle-in-cell (PIC) code in cylindrical r-z geometry that simulates the 

performance and plasma characteristics of a Hall thruster under various geometries and operating conditions.  

Details about the original HPHall can be found in Ref. [42], while details of the updates to HPHall-2 by Parra and 

the modifications made by the Jet Propulsion Laboratory (JPL) can be found in Refs. [1,43-45].  The version used in 

this study is the JPL-modified HPHall-2 described in Ref. [1].   The grid geometry of the H6 Hall thruster was 

modified to include the chamfers present in the erosion rings of this study.  Table 2 shows the measured and 

simulated values of performance for the H6 Hall thruster at nominal conditions of 300 V and 20 mg/s anode flow 

rate, showing excellent agreement between the two. 

Table 2.  Comparison of measured and simulated performance values for the H6 Hall thruster at nominal 

conditions. 

Discharge Property Measured Value Simulated Value 

Discharge Voltage [V] 300  300 

Anode Flow Rate [mg/s] 20 20 

Discharge Current [A] 20.1 20.1 

Thrust [mN] 385 388 

Anode Efficiency 0.614 0.624 

 

A comparison of simulated and measured axial profiles of plasma potential at 300 V, 20 mg/s anode flow rate is 

shown in Figure 20.  All profiles show the acceleration zone contained within the last 10% of the channel, and the 

maximum axial electric fields are also consistently around 50-60 V/mm.  Furthermore, the HPHall-2 results indicate 

the plasma near the walls accelerating further upstream than the plasma at centerline.  This is more easily seen in the 

plasma potential contour map shown in Figure 21.  Equipotential lines are nearly radial in the vicinity of the exit 

plane; however, about 0.1 channel widths from the wall the lines curves upstream, creating the defocusing fields 

observed in the experimental data.  These fields tend to bend the ion trajectories towards the wall, which will affect 

overall ion power deposition to the walls as well as the local wall erosion rates. 
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Figure 20.  Comparison of simulated and measured axial profiles of plasma potential at 300 V, 20 mg/s anode 

flow rate.  The acceleration zone location is consistent between the two, but the simulation indicates a 30 V 

drop from anode potential upstream of the acceleration zone that is not present in the experimental data. 
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Figure 21.  Simulated plasma potential contours from HPHall-2 at 300 V and 20 mg/s anode flow rate.  Ion 

velocity vectors have been overlaid to emphasize particle motion.  Defocusing fields are present close to the 

channel walls that drive ions away from centerline, consistent with measurements in this study. 

While the acceleration zone locations are consistent between simulation and experiment, there is a 30 V drop in 

plasma potential upstream of the acceleration zone in the HPHall-2 results that is not present in the measurements.  

This is due to the importance of ion diffusion far upstream of the acceleration zone that is not captured in HPHall-2 

since ions are modeled using particle-in-cell methods [1]. The two-dimensional code Hall 2De, which models the 

ions as a fluid, has been shown to eliminate this potential drop in Hall thruster simulations [3].  Lastly, it is 

interesting to note that while the HPHall-2 results also show asymmetry between the inner and outer walls, the trend 

is reversed from what is found in the measurements (i.e. plasma is accelerated further upstream along the inner wall 

compared to the outer wall).  The source of this discrepancy is unclear at this time; however, based on the discussion 

in Section IV-B, the experimental results likely show the correct trend. 

Figure 22 compares simulated and measured axial profiles of electron temperature at 300 V and 20 mg/s anode 

flow rate.  The maximum electron temperature of 35 eV is consistent across all radial locations and between 

HPHall-2 and experimental results.  The location of the maximum electron temperature, however, occurs further 

upstream in the experiment compared to the simulation.  The discrepancy was found to occur along channel 

centerline as well, by approximately 5% of the channel length.  This result is unexpected due to the excellent 

agreement in plasma potential profiles and acceleration zone location between simulation and experiment.  

Furthermore, the shift in peak location between inner and outer walls is also reversed in the simulation compared to 

experiment.  Since this shift occurs over only 2% of the channel length, it is not highly significant.  This reversal, 

however, is consistent with the observed shifts in acceleration zone.       
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Figure 22.  Comparison of simulated and measured axial profiles of electron temperature at 300 V, 20 mg/s 

anode flow rate.  While the peak electron temperature is consistent between the two, the location of the peak 

along the outer wall is further upstream in the simulation than measured. 

Figure 23 compares the simulated and measured axial profiles of ion number density at 300 V and 20 mg/s anode 

flow rate.  The ion number density calculated from the “Beam” method described in Section III-D was used for the 

experimental results, while the sum of the singly-ionized and doubly-ionized xenon densities was used for the 

simulation results.  It is evident from the figure that HPHall-2 consistently underpredicts the ion density at all 

locations; this was found to be true at channel centerline as well.  However, the simulation reproduces the reduced 

ion densities at the wall compared to channel centerline, with peak values differing by a factor of 4 (inner wall) to 

six (outer wall).   This difference could be responsible for the formation of defocusing fields in the vicinity of the 

walls, as previously discussed in Section IV-A.   Due to limited axial extent of the experimental data, it is unclear if 

the peak location between simulation and measurement is consistent; however, the monotonic decrease in number 

density observed in experiment is reproduced in the HPHall-2 results. 

The large discrepancy between simulation and experiment upstream of the acceleration zone could be due to the 

non-uniform plasma potential between the walls and channel centerline present in the HPHall-2 results.  Using the 

Boltzmann relation (Eq. 5) and an electron temperature of 10 eV, this 10 V drop creates a 2.7X drop in plasma 

density between channel centerline and the walls.  This illustrates the sensitivity of ion number density to small 

differences in plasma potential.  Given this sensitivity and the ±60% uncertainty in the measured ion number 

density, the simulation and experimental results are in reasonable agreement with one another. 
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Figure 23.  Comparison of simulated and measured axial profiles of ion number density at 300 V, 20 mg/s 

anode flow rate.  Measured values are consistently higher than simulated values.  It is unclear whether the 

peak location in the simulation matches experiment due to lack of data. 
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V. Conclusions 

Five Langmuir probes were flush-mounted into each erosion ring of the H6 Hall thruster in order to characterize 

the near-wall plasma and compare its properties to those closer to channel centerline.  Comparison of plasma 

potential profiles at nominal conditions shows that the plasma near the wall begins to accelerate further upstream 

than plasma at centerline, creating large radial electric fields that drive ions towards the wall.  This “defocusing” 

effect was found to be caused by large number density gradients between channel centerline and the walls.  The 

maximum electron temperature was found to be consistent across the radial extent of the channel.  This peak 

temperature occurred at roughly the same axial location, validating the isothermal assumption along magnetic field 

lines since they are nearly radial in the experimental interrogation zone.  Simulation results from HPHall-2 were 

found to generally agree with experimental results near the wall, with only minor differences in peak locations.  

Asymmetries in plasma properties observed between the inner and outer channel wall were created by a small 

difference in peak radial magnetic field location, causing a slight shift in acceleration zone and peak electron 

temperature location.  This resulted in slightly asymmetric erosion profiles between the channel walls, with more 

erosion occurring along the outer wall.  This experimental characterization should further illuminate the interactions 

between the plasma and channel walls within Hall thrusters.  Understanding of these interactions is critical towards 

improving efficiency (by reducing wall losses) as well as extending thruster lifetime. 
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