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Dual-mode ramjets have design requirements that are distinct from those of other
high speed propulsion systems because they are expected to operate over a wide
range of conditions. Several previously examined combustor designs are evaluated
over a range of operating conditions using a low order model. The designs un-
der consideration are parametrized by three variables: location of fuel injection,
angle of wall divergence and location of wall divergence, and multidisciplinary op-
timization (MDO) is performed to suggest avenues to improve performance over
the entire range, as measured by overall fuel consumption.

I. Introduction

The critical question examined in this paper is that of how to evaluate the performance of high-
speed combustors, including isolators and internal expansion components. A complete approach to
evaluating highly integrated designs requires an “integrated” method. That is, the evaluation of the
design should consider design performance of multiple components over a range of conditions and
compute some scalar metric with this information. Previous work, [1], has shown that a vehicle
designed to have high pressure recovery factor (PRF) at a single design point will be likely to have
poor performance away from that point. Recent work, [1, 2], has attempted to extend this principle
into other components with the end goal of using an integrated optimization approach for the entire
vehicle, including control and trajectory.

To develop this technique we have concentrated on a few combustor designs available in the
literature, which have been examined in experiments, [3, 4, 5]. The performance of these designs as
predicted by the MASIV code, [6], has previously been computed in a trade study that considered
a range of operating conditions[2]. The present study seeks to expand previous efforts by using
mathematical optimization.

It is important to note that the combustors used as a starting point for this optimization are
laboratory combustors that were not specifically designed to produce high thrust or efficient oper-
ation. They simply provide a reasonable place to start, since they are known to be operable, and
they provide data that allow us to validate the model before using it in the optimization study.

We have chosen to examine a space-access trajectory for an airbreathing 2nd stage of a three-
stage to orbit vehicle. This implies a certain starting point (basically a lower limit for operability
of the ram-mode) and stopping point (basically an upper limit for operability of the scram-mode).
Ignoring for the moment the various other components required to actually achieve this trajectory
(such as lifting the vehicle to the initial Mach number and altitude), we examine how an engine
may be optimized for minimal fuel consumption as it flies along a fixed trajectory.
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Fuel consumption was chosen as the objective function, since this is a key component of vehicle
gross weight, hence, cost, of a space access vehicle. A fixed trajectory defined by constant dynamic
pressure was chosen for convenience of parametrization. Previous authors, [7], have used similar
a trajectory because control surface effectiveness and overall lift are assumed to be well-behaved
on a constant dynamic pressure trajectory.

We ignore the possible implications of internal flowpath control systems and other types of
variable geometry (such as variable inlets, cowls or nozzles). Recent air and ground tests have
concentrated on fixed flowpaths, [8, 9]. Of course, the operability range and engine performance
can likely be improved by using variable geometry so there is some tradeoff between complexity,
weight, and development cost that we neglect for now, [10]. A generic engine flowpath with similar
properties to X-43 is shown in Fig. 1.
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Figure 1. An example vehicle design created using automated design tools.

In this paper, we optimize (i.e.minimize) the fuel consumption of a vehicle having a geometry
similar to that of Fig. 1. The axial location of the fuel injector, angle of divergence of the com-
bustor, and axial location of the divergence were the design variables used to optimize the fuel
consumption.

1. Analysis of Available Designs

In order to obtain a starting point for optimization, let us first consider some designs that are
available in the open literature, [3, 11]. These are laboratory scale combustors which are used
for tests of combustion processes such as flame holding and combustion efficiency. These are
not necessarily designed to generate thrust, but they do provide a reasonable starting point for
combustor design because they are known to operate in a stable mode.

Figure 2a shows the geometry of the combustor originally used by Micka et al., [11], which
was used to determine some of the constants used in the MASIV model. Another geometry of the
same family is shown in Fig. 2b, based on the description given in [12]. Thrust information is not
available for either of these geometries.

These combustors were analyzed in a study, [2], that identified a few features of each that
contribute to thrust performance. The overall performance of each design was evaluated over a
range of Mach numbers 6 < M < 8 and altitude from 18 km to 28 km. Operating maps showing
how the differences between the designs contribute to their broad scale performance are shown in
Fig.3. That study found that injector location, number of wall divergences, location of divergences,
and angle of divergences all contribute to overall thrust of a flowpath over a range of operating
points. As can be seen from the operating maps, the flowpath of Fig. 2b produces more thrust than
that of Fig. 2a at every point in the operating map. Using a pointwise average, the thrust in Fig. 3b
IS 7% greater than the thrust in Fig. 3a over the entire range.

More information about the workings of MASIV, MASTrim and the definitions of flowpaths
and design spaces can be found in previous work, [13, 2, 6]
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b) The combustor configuration of Donde et al. [12], due originally to Donohue

Figure 2. The two combustors used as design inspiration for the present work.
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Figure 3. Performance of the baseline combustor and modified combustor of [2] Curves represent different
values of thrust in kN.
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I11. Trajectory Definition

In order to minimize fuel consumption we must define the trajectory we wish the vehicle to
follow. Let us define a trajectory as a series of node points at which state variables and control
variables are prescribed, [14, 15]. In general, the vehicle state, X, consists of position and velocity
vectors and vehicle orientation:

x=L h M P QR' 1)

The position state, r, is defined by longitude, L, latitude, , and altitude, h and the velocity state, v,
is defined by Mach number, M, flight path angle, , and heading angle, . The vehicle orientation
is defined by angle of attack, , sideslip angle, and roll angle, , and the corresponding angular
velocities, P, Q, and R. The choice of longitude, latitude, and altitude is convenient for very high
speed airplanes where Coriolis effects and the curvature of the earth are significant. Also, this
selection is consistent with space access trajectory analysis.

For trajectory purposes, we are not particularly interested in the vehicle orientation, only the
vehicle’s position and velocity. We leave the vehicle orientation states as free parameters, which
supplies extra degrees of freedom during computation of the trim state. The “trajectory state”
consists of those states of the vehicle which are of interest:

=L h M 2
Each node of the trajectory also has an associated control state:
T
U= ER CE DE CR 3)

The control state variables are fuel equivalence ratio gr, common elevator deflection cg,
defined as the average of the left and right elevator deflection angles, differential elevator deflec-
tion pg, defined as the deflection angle of the right elevator minus the deflection angle of the
left elevator, and common rudder deflection cr. We do not allow the rudders to be deflected
differentially.

The trajectory and control consist of n arcs, and time t is our independent variable in each leg,
toi t tgjfornodesi = 0;:::;nsuch that the trajectory state and control state are, [14]

Of course, the vehicle parameters p are also incorporated into the dynamics, so the final equa-
tions of motion for the nonlinear vehicle system are [13]

y=M _ _ P Q R =F(Xup) ©)

where the black-box function for the vehicle dynamics, F, is given by the vehicle analysis code
(MASTFrim, in our case).

It is of interest to note that although most of the vehicle parameters are not functions of time,
some of them (e.g. mass or mass distribution, material temperature and properties) may be, and
this model allows for such possibilities. Equation (5) is the nonlinear equation of motion for the
vehicle. The quantities in Eq. 5 that make up the given state derivative, y, are not the only quantities
that could be selected, [13]. However, representing the state in terms of Mach number, flight path
angle and heading angle makes sense from a navigation point of view and lends itself to trajectory
analysis. Usually we require that R = Q = R = 0 for stability.
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IV. Trajectory Generation

Since we are principally concerned with optimizing the combustor design and not the trajectory
itself or the control law allowing us to follow that trajectory, we have chosen a single trajectory
family for this analysis. In order to fix the mission profile a method is needed to define the trajectory
from a given point in the operating space [hy; M;] to another [h,; M;]. As mentioned earlier,
a convenient way to define a curve that connects these two points is to use a constant dynamic
pressure curve. This implies that hy = h(M;) and h, = h(M,). The 1976 standard atmosphere,
[16], was used to perform this lookup.

Using the trajectory nomenclature of Dalle et al., [13], a trajectory was computed which tra-
verses Mach numbers along constant dynamic pressure lines by selecting appropriate altitudes and
flight path angles:

dh
Wwh=_""_ 6
it (6)

dx"

=y" 7
it (7)
U"=Ucos Wsin (8)

n
tan = o ©)
Here, v" = U"™ V" W" are the velocity components in the navigation frame and v° =

U V W are the velocity components in the body frame. In order to further constrain the

trajectory, we require some reasonable, constant acceleration, U, of the vehicle.
A simple manipulation yields

Ucos sin W sin? U dh
U cos ~ akvbkdM (10)
the first approximation of which is
.U dnh
N = akvikdm (1)

This calculation allows a trajectory to be parametrized by starting and ending Mach numbers,
My and Mg, a constant dynamic pressure, ¢, and desired forward (body-frame) acceleration, U.

V. Performance Estimation

Our previous study, [2], examined the thrust performance of different designs without regard
for their fuel consumption. We now address the question of which combination of properties leads
to the lowest overall fuel consumption needed to complete a given mission profile. In order to
integrate the performance of the vehicle along each trajectory arc, the Hermite-cubic interpolation
with Simpson quadrature method was employed, [15, 17].

In order to exclude controller design and performance from the simulations only quasi-steady
solutions to the equations of motion are considered. This means that at each node point the vehicle
must be trimmed, that is, u is chosen such that y takes on a desired, constant value. This allows us
to determine the remaining vehicle and control states that have not been specified at each node.
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Enright and Conway, [15], suggest the (well-known) Hermite-cubic interpolation for the evo-
lution of the vehicle states on each interval t; ; t t;:

t

Il
~+

i b (12)

(ot D+ FCosuiD) FCau) (13)

NI~

01
I3

Equation (13) approximates the trajectory state ; 1 between two known trajectory states ( ; ;
and ), using the known acceleration resultants y = F at those states.
Next, we employ Simpson’s quadrature to obtain an equation linking statesi 1 and i through
1

the approximated state i~ 3:

h i
t.
= i1 i+?l FOi vui ) +4FC; U ) +F( ) (14)
We then impose the constraint that the defect ~ between statesi 1and i be 0. Thus, (14) can
be re-written to give an equation for the desired state derivative at the midpoint of the arc between
nodesi landi:

2iti i i1 ;11 FCouu)+F( Ui 1) (15)

Yi

NI

The computed state derivative y; L is then used as input to the trim calculation, which in turn
solves for the necessary control input u; 1 required for the vehicle to achieve the next trajectory
point, ;:

F( L5 U %):yi 1 (16)

The quadrature method is used to assure that the control input chosen at the middle of the
interval (i %) is such that it will cause the trajectory state boundary condition at the left- and
right-hand conditions to be met, ensuring that the trajectory is met at each given node point in a
quasi-steady sense. This frees us from considering the dynamic control problem, but nevertheless
allows us to construct and follow trajectories given the assumption that the vehicle performance is
relatively well-behaved on each interval and that it would be possible to generate a controller to
achieve closed-loop dynamic stability everywhere.

Finally, the fuel consumption over the entire trajectory is the integral of the fuel mass flow rate,
Msyer, Which is known at each node and half-node because it is a function of gr a component of
the vehicle control state u. A trapezoidal method is adequate if the values at nodes and half-nodes
are used.

This method requires that the trajectory be defined in advance, as described above. In principle
the trajectory need not be defined continuously; it could simply be a series of nodes. One rea-
son this is advantageous is that the trajectory itself can be optimized external to the performance
calculation routine, with the result being a sequence of discrete nodes.

The general procedure for computing vehicle performance along a given quasi-steady trajectory
is the following:

2. Compute required trim condition at each trajectory node, y; = F( ;; u;), giving u;

3. Interpolate to find midpoint states ( ; %)using (13)
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4. Use Simpson quadrature (15) to determine required acceleration at midpoints, y; 1
5. Compute trim condition at midpoints to determine required control input u; 110 achieve ;

beginning from ; , by satisfyingy; 1 = F( ; 1 U; %)

1
2

6. Approximate vehicle performance metric  myg,e by integrating Msye( gr)

V1. Parametrization

In order to optimize the combustor geometry, three parameters were selected based on our
earlier examination of existing combustors, [2]. The parameters selected are as follows (Fig. 4):

* Location of fuel injectors with respect to the front of the combustor, Xin;
* Location of diverging panel with respect to the front of the combustor, Xgiy
» Angle of diverging panel, gy

Some other important parameters which are not considered in this paper are

Number of fuel injectors

Angle of fuel injectors with respect to the wall

Number of panels in the combustor

Diameter of fuel injectors

Since some of these parameters take only integer values and cannot vary continuously, we ignore
them in order to use a continuous, gradient-based optimization scheme rather than an integer pro-

gramming environment.
Tdiv /}Ihv/

< isolator nozzle J»

! . fuel injector
[<€—Tinj

Figure 4. Parameters of interest for a generic 2-D combustor.
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VII. Optimization

The vehicle is “flown” through a trajectory defined as above, using the 3 vehicle design param-
eters, X = Xinj div Xdiv , as the state vector for optimization. The vehicle model is automat-
ically assembled each iteration based on the updated list of design parameters, X  p, before the
trajectory is flown, as described in [13]. Performance of the design is evaluated based on overall
fuel consumption. Thus, the minimization problem can be stated

Z
minimize Mtyel = Mier( ;%) d (17)
to
_ T
X = Xinj div Xdiv
subject to 0 < Xinj < Lcomb

0< gv< =4
0< Xdiv < I—comb

Note that in this optimization, the trajectory defined in (4) is not considered to be a constraint
as it would be in an optimal control or trajectory optimization problem. Since the trajectory is
satisfied exactly by the solution procedure described above, it can be considered to be part of
the evaluation of m¢ye.i. MATLAB’s fmincon routine was employed to find the minimum of
Eq.( 17), since the actual optimization procedure in this case is relatively simple.

The first trajectory attempted began at M = 5, h = 19800 m (corresponding to the selected
dynamic pressure, ¢ = 100 kPa). We selected an acceleration of U = 0:2 g, believing that this
was reasonable for this type of vehicle. Interestingly, this simple approach proved to be a failure
because the vehicle was unable to trim in ram mode (roughly corresponding to M < 6:5 for this
configuration and trajectory); only the scram cases were able to achieve the required flight path
angle and acceleration. Thus, we present scram-only results.

The scram-only section of the trajectory was approximated by 8 < M < 10,25900m < h <
28900 m (again with ¢ = 100 kPa and U = 0:2 g). An example of the path of the vehicle on this
trajectory is shown in Fig 5. Note that the axes are Mach number and altitude, so angles should
not be interpreted as flight path angle or angle of attack.

The scram-mode-only maneuver uses very little fuel compared to the total amount ( 5:7%),
because it is relatively short in duration (just over 5 minutes). Beginning with the vehicle full of
fuel is somewhat inconsistent because the mission outlined above is intended to begin at a lower
Mach number that might be achieved with a turbojet. However, the baseline vehicle was designed
for M = 8, [13, 6], so this scram-only trajectory corresponds to the baseline configuration.

VIIl. Results

Three optimizations were performed with this fixed trajectory. First, only the axial position
of the injector, Xi,j, was allowed to vary, while gy, Xqiv, and all other properties of the vehicle
and combustor were kept constant. Second, only the axial position of the injector, Xi,j, and the
divergence angle of the panel g, were allowed to vary, while Xg;, and all other properties of the
vehicle and combustor were kept constant. Third, all three of the optimization state variables (the
axial position of the injector, Xin;, the divergence angle of the panel gy, and the axial position
of the front of the panel, Xgiy) Were allowed to vary, while all other properties of the vehicle and
combustor were kept constant.
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Figure 5. Scram-mode-only trajectory path through M  h space, with hin m. The rectangular bars show fuel
consumed compared to overall fuel (22700 kg in this case) and the circles show time elapsed compared to total
maneuver time, with elapsed time printed below. Points marked with circles are trajectory nodes, (i); points
marked with x’s are trajectory arc midpoints, (i %).

Table 1. Scram-mode-only optimization: fine tolerances

Variable baseline value 1 var. optimized 2 var. optimized
Xinj 0:166 m 0:036 m 0:058 m
div 3:99 3:99 3:04
Xdiv 0:831m 0:831m 0:831m
Miyel 1299 kg 1252 kg 1242 kg
% improvement 0 3.5 4.4
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None of the constraints was active in any of the optimizations. However, the upstream limit of
fuel injector location at 0 was invoked because placing the injector farther upstream would cause
some of the fuel to diffuse upstream out of the combustor domain, where it is not accounted for in
the simulation. In effect, this means that the preferred injector position for scram operation was as
far upstream as allowed by the vehicle design, presumably because this gives greater compression
due to confinement in the constant-area section of the combustor.

Using 4 2:4 GHz processors (a quad-core Intel Xeon processor with MATLAB parallel tool-
box), these simulations ran in 5.4 hours and 16 hours for the one- and two-variable cases, respec-
tively. The optimization design vector (x) tolerance was 10 © for each case, and the tolerance on
the search direction was 2 10 ©. The three-variable case was not run at tight tolerances because
the run time was expected to be excessive. Results for these cases are summarized in Table 1.

Table 2. Scram-mode-only optimization: coarse tolerances

Variable baseline value 1 var. optimized 2 var. optimized 3 var. optimized
Xinj 0:166 m 0:042m 0:038 m 0:042m
div 3:99 3:99 2:84 3:56
Xdiv 0:831m 0:831m 0:831m 0:865m
Miyel 1299 kg 1254 kg 1233 kg 1239 kg
% improvement 0 3.5 51 4.6

We also ran simulations with coarser tolerances on each of the variables. The coarse tolerance
simulations ran in 1.7 hours, 4.4 hours, and 12.5 hours for the one-, two-, and three-variable cases,
respectively. The function ( M) tolerance was 10 3, the optimization design vector (X) toler-
ance was 10 4, and the tolerance on the search direction was 2 10 # for each coarse case. Note
that results for the coarse tolerance cases were equally acceptable as fine tolerance results for judg-
ing the merits of this approach, and much less expensive. The reason for the apparent abnormality
for the two-variable, coarse tolerances case having lower fuel consumption than the three-variable,
coarse tolerances case is unknown.

Finally, the operating map of the optimized combustor is shown alongside the previous two
examples in Fig. 6. Note that the performance of the combustor optimized using a single panel is
better than the baseline (Fig. 2a) by 3%, while the performance of the combustor shown in Fig. 2b
IS 7% better than the baseline (by pointwise average). This indicates that combustor shape accounts
for much of the thrust performance, which is to be expected. It is not clear how combustor shape
affects fuel consumption over the entire trajectory, but shape should certainly be included in future
investigations.

IX. Conclusions

In this paper, we integrated the MASIV and MASTrim low-order models were integrated into a
design optimization analysis for a dual mode ramjet-scramjet flowpath. We found that a combustor
flowpath that was designed to properly stabilize flames in ram mode in laboratory experiments was
able to generate sufficient thrust to trim a vehicle along a scram-mode-only trajectory from M = 8
to M = 10. Using conventional trajectory analysis methods and readily-available optimization
routines, we were able to determine values of X = Xinj  aiv Xaiv that minimize fuel consump-
tion. It is interesting to note that combustor designs with divergence angles of 2 to 4 are common
in practice.
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Figure 6. Performance of the baseline combustor and modified combustor of [2], along with performance of
the optimized geometry. Curves represent different values of thrust in kN.
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We also found that a dual-mode combustor that produces adequate thrust for a vehicle when
operating in scram mode may not always produce adequate thrust when operating in ram mode.
This difficulty is exhibited by the fact that our baseline vehicle is incapable of trimming in the ram
mode, so it cannot achieve the scram section of the trajectory when beginning at M = 5.

This investigation supports the conclusion that scram-mode operation of combustors is en-
hanced when fuel injection occurs as far forward in the flowpath as is practical. Since this paper
only considers scram-mode operation due to the difficulties discussed above, this result necessarily
ignores isolator length requirements due to pre-combustion shock train length.

Since this optimization found that the divergence angle of the single panel in the combustor did
not trend to either of the bounds (0 and 45 ), and since a three-panel combustor was previously
found to have better thrust than a single panel combustor (including the optimized geometry used
here), we also conclude that the detailed shape of the combustor is important. It seems insufficient
only to consider overall area expansion ratio, even when operating exclusively in scram mode.
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