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Averaging of the Nonlinear Dynamics of Flapping
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First order equations of motion for a flapping wing micro-air vehicle are presented. The
first order, longitudinal equations of motion are obtained from the second-order, strongly
coupled, multi-body equations of motion using an approximate inverse. The nonlinear
dynamics of the longitudinal equations of motion are averaged using two different methods:
local averaging over a fully flapping cycle and local averaging over quarter-flapping cycles.
Open loop simulations are presented, near a hover condition, for both averaged systems.
The results for the locally averaged system are not consistent with the solution to the full
system - suggesting that the neglecting of individual contributions to the dynamics, due
to averaging over the entirety of a flapping cycle, is not a valid approach. Better results
are obtained when the equations of motion are averaged over a quarter of a flapping cycle.
The quarter-cycle results show a significant improvement in the accuracy of the position

and orientation of the simulations versus the cycle averaged simulations.

Nomenclature

b wing semi-span, m

Cw wing chord, m

Cn normal force coefficient for force and moment calculations

Cr tangential force coeflicient for force and moment calculations

f flapping frequency of the wings, Hz

Frero aerodynamic forces expressed in the body, B, frame, N

I mass moment of inertia matrix for the ith rigid body, kg-m?

kn normal force coefficient for averaged forces and moments

kr tangential force coefficient for averaged forces and moments

m; mass of the ith rigid body

Megys total mass of the system

Vero aerodynamic moments expressed in the B frame, N-m

Mg gravity moments due to the wings, expressed in the B frame, N-m
Mp, My, aerodynamic moments of the right and left wings in the B frame, N-m
D, q,T angular velocity components of the body, rad/s

PRW,dRW s TRW
PLw,qLw,T"Lw

angular velocity components of the right wing with respect to the right stroke plane, rad/s
angular velocity components of the left wing with respect to the left stroke plane, rad/s

Qrw,Qrw control moment to achieved desired acceleration/motion of the wings, kg-m? /s?
Rp rotation matrix from the inertial frame to body frame
Rr, R, rotation matrix from the right (left) stroke plane frame to the right (left) wing frame
Rj rotation matrix from the body frame to stroke plane frame
U, U, W translational velocity of the central body expressed in the body frame
with respect to the inertial frame, m/s
\Z velocity of the ith rigid body, m/s
XY Z inertial position of the central body, m
Qo amplitude of the pitch angle, rad
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QR,Qr pitch angle of the right and left wings, rad

AR, &, time derivative of the pitch angle, rad/s

Br, BL stroke plane angle of the right and left wings, rad

OR, 0L deviation (elevation) angle of the right and left wings, rad

Cm amplitude of the flapping angle motion, rad

(r,Cr, flapping angle of the right and left wings, rad

éR7 QLL time derivative of the flapping angle, rad/s

0 pitch angle of the central body, rad

Dei reference vector from the wing joint to wing center of mass in body frame, m

Pac,i reference vector from the wing joint to wing aerodynamic center of pressure in wing frame, m
Pci,xs Peiyys Pei,z components of the reference vectors p.;, m

Pac,z> Pac,ys Pac,z components of the reference vectors pgc, m

w angular frequency of the wings, 27 f, rad/s

0; angular velocity of the ith rigid body, rad/s

Wi, sp skew (cross) matrix of the angular velocity of the wings with respect to the stroke plane
Qrw.d, Qow.d desired angular acceleration of the right and left wings, rad/s?

Subscript

i rigid body number

7 generalized coordinate/quasi-velocity number

R right wing

L left wing

I. Introduction

The multibody dynamics of flapping wing micro-air vehicles (FWMAVSs) are strongly coupled and only
numerical solutions exist. The commonly reported approach to the dynamics of FWMAV is to ignore the
mass of the wings, since the mass of the wings typically accounts for less than 5% of the total body mass'
and the wings generally beat/flap fast enough to not excite the rigid body modes of the central body.? In
Ref. 3, we showed that neglecting the mass of the wings may be problematic in dynamics and control studies
- different dynamic behavior is exhibited by flight dynamics models that include the mass of the wings versus
those that do not. Sun and Wang conclude in Ref. 4 that the rigid body approximation may not be suitable
for dynamics models based on larger insects such as the hawkmoth and cranefly. Furthermore, in Ref. 5,
Bolender states that for the proper development of control laws for FWMAVSs, the mass of the wings needs
to be included in the calculation.

The purpose of this study is to approximate the effects of the wings on the central body using averaging
theory. The classic applications of averaging theory is to dynamical systems with ‘small perturbations.” The
multibody equations of motion, through the use of an approximate inverse, can be placed into first order
form similar to the classic form presented in Refs. 6 and 7. The calculation of the first order equations results
in the standard aircraft equations of motion plus perturbations of order ¢ and €2, where the perturbations
contain the inertial and mass effects of the wings on the central body. With proper simplifications based
on an assumption of symmetrical flapping of the wings, with respect to the central body, and limits on
the initial conditions for the system, the equations of motion can be reduced to longitudinal equations of
motion for the FWMAYV central body. The aerodynamic forces and moments generated by the motion of the
wings are included in the standard aircraft equations of motion. The classic applications of averaging theory
to dynamical systems is in the context of studying vibrations. Averaging has recently been applied in the
context of flapping wing micro-air vehicles to the aerodynamic forces and moments in Refs. 8-18. The use of
averaging theory in Refs. 8-18 is applied to the aerodynamic forces and moments to obtain ‘cycle’-averaged
forces and moments for control studies. Averaging theory has been applied to the dynamics of biomimetic
nonlinear systems in Refs. 19, 20.

Averaging theory is applied to the entire flight dynamics equations of motion. Due to the assumption
of symmetrical flapping, the equations of motion reduce to a set of longitudinal equations of motion. The
initial averaging solution is based on local averaging, detailed in Ref. 21, where it is also referred to as ‘crude’
averaging. The local averaging is carried over the entirety of the flapping cycle, where the effects during the
flapping cycle are summed. Averaging over the entirety of the flapping cycle tends to hide the nonlinear
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effects of the system and results in poor accuracy of solutions, when compared to the numerical solution of
the full dynamics. The derivation of ! /4-cycle averaged values and formulation of simpler functions for these
values shows a significant improvement versus crude averaging for a whole flapping cycle. The accuracy of
the numerical solutions improves in both position and orientation.

The paper will be detailed in the following manner. Section II will present a brief overview of the
multibody flight dynamics model. Section IIT will detail the simplifications that can be made to the model
in the case of symmetrical flapping. Section IV will present the averaged results for a hover condition using
‘crude’ averaging. Section V will present the averaged system in the case of a hover condition, but with the
numerical solution calculated on the dynamics model averaged over !/,4-cycles. Section VI will present the
conclusion of the paper and future work.

II. Multibody Flight Dynamics Model

The model used to obtain the equations of motion is derived using D’Alembert’s Principle for Multiple
Rigid Bodies, a treatment of the method is available in Refs. 22-24. We used the method previously to
derive the equations of motion for a two wing FWMAYV in Ref. 25 and compared to a ‘wingless’ model in
Ref. 3, a two wing FWMAYV with a tail and control mass in Ref. 26, and a four wing FWMAYV in Ref.
27. In brevity, the FWMAYV is modeled as a system of three rigid bodies, two wings and a central body,
where each wing is afforded three separate degrees of freedom. The degrees of freedom for the wings are the
flapping angle, the pitch angle (relative to the stroke plane), and the deviation (elevation) angle. The total
degrees of freedom for the system are twelve. The twelve generalized coordinates, q;, associated with the
twelve degrees of freedom are

qJ’:[XYZT/)9¢5R ar Cr 01 af CL}‘ (1)

The associated quasi-velocities of the system are

uj:[u v w p q T PrRW {4RW TRW PLW (LW TLWj|' (2)

The derivation of the equations of motion results in a strongly coupled system of second order equations.
To perform any approximation analysis of the system, the equations need to be transformed into first order
form. The equations of motion can be written in the following form

Foero + Fy — Z?Zl (Vired + Peiyred)
Maero + My — 2?21 (Lior x @; + @; X Loy + mipe; X Vired)
Qrw — (Ix®1 X @a + @2 X Io@a + Mapea X Vo red)
Qrw — (Iswy x @3 + @3 x L33 + M3Pes X V3 rea)

M = , (3)

where M € R'?¥12 and & € R'?*!. The components of 4 are the time derivatives of the quasi-velocities as
defined in Equation 2. The inverse of M is approximated according to

M =(A+eE) ' = A +eATEATY, (4)

where € is the mass of the wings and A is block diagonal. The use of the approximate matrix inversion
results in the equations of motion being transformed to the following form

i = O (@,0) +efD (2,8) + 2P (1), ()

where € is the mass of the wings, as previously defined, and we use the notation used by Bogoliubov and
Mitropolsky.” The superscript in the notation of Equation 5 denotes the order of the term in reference to .

III. Reduced Model - Symmetrical Flapping

If the wings’ motion is symmetrical with respect to the central body, the equations can be significantly
reduced. Furthermore, if the assumption is made that initial body roll angle, ¢, and body angular velocities,
p and r, are zero, then the equations of motion reduce to longitudinal equations of motion. The assumption
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of symmetrical flapping requires several specifications. For one, the stroke plane angles of the wings are equal
with respect to the body frame, such that S = 8. Two, the wings angles are equal, such that dp = dr,,
ar = ap, and (g = (. The resultant aerodynamic force in the body frame in the lateral direction, along
the l;y—axis, is identically zero. The resultant aerodynamic moments causing yaw and rolling motion are
both identically zero. The detailed derivation of the cancellation of the aerodynamic forces and moments
in the B frame is available in Ref. 3. Identical wing angles, and associated time derivatives of the wing
angles, produces angular velocities where prw = —prw, ¢rw = qrw, and —rrw = rrw. Furthermore,
with symmetrical flapping and wings with the same length and mass parameters, the inertia terms for I, .,
and I, ., are equal in magnitude and opposite sign (where the appropriate wing is substituted for w). The
remaining inertia tensor terms (Ipz ., Lzzws Lyy,w.andl; ) are equal in both sign and magnitude.

The right hand side of the equation in Equation 3 contains terms that need to be further defined. The
terms {,i,red and f)’ci’red are the reduced form of the acceleration of the ith rigid body (\72) and the acceleration
of the reference vector for the ith rigid body (p.;). The reduced terms contain only 2 components and not
any & components; the & components are absorbed into M. The reduced form of the acceleration of the
rigid bodies is calculated according to

\L’i’red =1m; ((I)l X \71') . (6)

The reduced form of the acceleration of the reference vector is calculated according to
ﬁc2,red = RBRTRRT‘DQ,SZ)‘IJZspﬁcZ,w + 2@2 X (RBRTRRT‘DQ,spﬁcZw) + Wy X (@2 X ﬁc?) ) (7)

where the formulation for the right wing is used as an example. The terms Qrw and Qw represent the
control moments for the right and left wings. Using the approximate matrix inversion, we can calculate the
control moments, to ¢ precision, required to achieve the desired value for the time derivative of the angular
velocities of the wings. The control moments from the right wing are calculated according to

DRW,d
Qrw = Rg, TR, " |grw,.a — S e (8)
TRW,d
and for the left wing are calculated according to
PLW,d
Qrw =Rp, " LRg, " |drwa — 7220 | (9)
TLW,d
For future reference, we define the following
DRW,d DLW,d
Qrw,a = |qrW,d — Iyyiys (Mp+Mg)| and Qrwa= |dowa— Iy:sys (Mr+ Myp)| , (10)
TRW,d TLW,d

where d in the subscript denotes the desired values of the time derivative of the wing angular velocities.

A. u - longitudinal velocity of central body

The derivative of the longitudinal velocity of the central body, for symmetrical flapping, is calculated ac-
cording to the following two equations. The effects of the translation and rotation of the central body on
the derivative of the longitudinal velocity is

[ F, —mgyeg sinf — (E?;l (Vired + 5ci,red)) by ]
0
) F, 4+ mgysg cosf — (Z?Zl (‘L/'i,red + 5ci,red)> b,
iy = 1000%0} 0 . 1)
Msys (Maem n Mg
— 3 (Lior X @ + @ X Loy 4 Mifei X Vi red) ) b,
0
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The effects of the wings are

ity = ([(ﬁ?zR[aRT +Ra,"Orw ) Rl ' Ra, (5Rs,” + Ry, "0 ) Ry, I ™' Ry, | lgfﬂ) b,

Putting the @ equation in the form of Equation 5, we can write
i1 = 1O (2,t) + ef ) (2, 8) + 2 fP) (2,1) . (13)

The first term, fl(o) represents the standard equations of motion for an aircraft in the absence of yawing and
rolling motion:

1
1(0) = F, —gsinf — quw. (14)

SYs
The second term, fl(l), represents the first order effects of the wings on the motion of the central body:

1

Msys

i = o ((PBR 4 R 0w ) Qawa + (PR, + Ry, Orw) Quwa) b (15)

Mg+ M, 1 . . -
( d L)) - (pCQ,Ted + poB,red) . bw
Msys

+ ((pc2,z + pc3,z)

Mesyslyy,sys

The third term, f1(2) represents the second order effects of the wings on the motion of the central body. The
second order effects are

3
Ca,2 + Co,z v — — — — — i 7
1(2) = M [(Mg — Z (Iiwl X W + w; X Iiwi + MyPei X Vi,Ted)) . by] . (16)

Msyslyy,sys =

B. w - vertical velocity of central body

The equations of motion for the vertical velocity of the central body as in Section A. As with the equation
for 4, we desire to write w in the following form:

iy = f37 (a,0) + efs” (,0) + 2157 (2, 1) (17)

The first term of &5 has the same form as the standard aircraft equations of motion for vertical velocity:

1
2(0) = F. 4+ gcosf + qu. (18)

syYs

The first order effects of the wings on the translation on the vertical velocity of the central body are

1 ~ ) .
W = - ( (pCQRgRT + RQRT@RW) Qrw,a + (chgRﬁLT + RﬁLT@LW) QLW@) b (19)
sys
Mg+ M 1 = I 7
- ((pclz + pc?),w) ( > I L)> a (pCQJ'ed + pC377'€d) b,
Msyslyy,sys Msys

The second order effects of the wings on the vertical translation of the central body are

3
@) (Pea + pes.r) K—Mg + ) L@y x @; + @ x Liw; + mifei x \*r,»,red)> : Byl . (20)
1=2

Mesyslyy,sys

C. ¢ - pitch velocity of central body

The equations of motion for ¢ can be placed in the same form as @ and w, such that

iy = 13 (a,t) + s (2,) + 2 17 (2,1). (21)
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The first term, f?EO), is simply -
0  Mr+ My
3 - .

Iyy,sys

(22)

The first order effects of the mass of the wings on the pitch velocity of the central body are
1

7Y (P2, + pes,z) (Fu = migys (9 500+ qu)) = (pez,e + pese) (Fi +miys (g cos 6+ qu)))
Misyslyy,sys
1 2 .
+I (Mg - Z (Iiwl X Wi +w; X Iiwi + miﬁci X Vi,red)) ' by (23)
Yy,sys i=2
+Iyy » (RﬁRTIQRﬁRTQRW}d + RgLTI;gRﬁLTQLW’d) . By

The second order effects of the mass of the wings on the pitch velocity of the central body are

f(z) R ( (pe2,z + Pe3.z) ((5c2,red + Pesred) I;Z) @9

3 =
MesysLyy,sys

- (pCQ,z + pc3,z) ((ﬁcQ,red + 503,7"611) : 6x> )

D. Periodic System

As detailed in the previous subsections, the approximate inverse when coupled with symmetrical flapping
produces longitudinal equations of motion for the central body. The equations of motion are the standard
aircraft equations of motion plus ¢ and £? perturbations containing the inertial and mass effects of the wings
on the system. The system of equations is periodic, such that

#(t) = 2t + 1), (25)

as long as the wing angles (o, (), are themselves T-periodic. For example, the resultant aerodynamic force

on the central body in the b, direction (the thrust force) with dg = 0 =0, is

Fa: = Fx,R + Fz,L (26)
= (cos frcosarcosCr — sinfrsinar) Frr g + (cosBrsinarcos(r + sinfrcosar) Fn g

+ (cospfrcosapcosCy, — sinfrsinayr) Frr 1, + (cosfrsinaycos(y, + sinfpcosar) Fy, .

which is T-periodic as long as the wing angles are T-periodic. The same periodic result can be shown for the
resultant force in the b, direction, the aerodynamic moment affecting the pitch angle of the central body,
and all of the f() and ) terms in the equations of motion.

IV. Symmetrical Hovering Using ‘Crude’ Averaging

The local averaging of the dynamic equations is obtained from the following equation

T
#t) = 7 / f (@7 dr, (27)

where the implicit functions of time are assumed to remain constant and explicit functions of time are
integrated over a specified period, T'. For a hover condition, we make the assumption that only two degrees
of freedom per wing are needed, such that the deviation angle from the stroke plane will remain zero, e.g.
0r = 6, = 0. The assumption reduces the complexity of several terms in the equations of motion, to include
the resultant aerodynamic forces and moments, the inertia tensors of the wings when expressed in the body
frame, and the orientation of the centers of mass of the wings with respect to the origin of the body frame.

A. Aerodynamic Model

In order to average the equations of motion, an aerodynamic model is required. The aerodynamic model
chosen is based on the model developed and presented by Deng, Schenato, et al. in Refs. 13 and 14. The
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model is a quasi-steady/blade-element model that includes translational and rotational wing effects. We
assume the flapping angle, {, and the pitch angle of the wing, «, have the following form

C(t) = Gmsin (2w ft)  and  «(t) = au,sign (C) . (28)

The angle of attack is constant during each half-stroke. The choice is made to simplify the calculation of the
various integrals used to obtain the ! /4-cycle equations to be presented. It is important to note that a pitch
angle of the form «(t) = a,, cos (27 ft) will produce qualitatively similar results. The normal and tangential
forces on the wing generated by the motion of the wings are calculated according to

1
Fr = ipslAwCT (P2bwwGn)” cos® (wt) (29)

and 1
FN = §pSlAwCN (bewwé.m)Q COSQ (Wt) . (30)

In Equations 29 and 30, 72b,, denotes the aerodynamic center of pressure of the wing for velocity calculations
and w = 27 f, the flapping frequency. The aerodynamic center of pressure is based off of the geometry of the
wing and is detailed in Refs. 13 and 14. The coefficients in Equations 29 and 30 are calculated according to

Cr = —0.4sign (C) cos?(2a) and Cy = —3.4sign (C) sin(a). (31)

In Equation 31, the signum function is used to ensure proper orientation of the forces on the wings. The
flapping velocity of the wings is assumed to be much greater than the velocity of the freestream air, since
the FWMAYV is considered to be at (or near) a hovering condition.

B. Averaged Forces

Rotating from the wing frame to the stroke plane frame will not alter the time average of the aerodynamic
forces, just the orientation of the forces in the body frame. We can examine, individually, the thrust and lift
forces in the body frame for a parallel stroke plane frame without loss of generality. The resultant thrust
and lift forces are

F, = (cosacos() Fr + (sinacos() Fy (32)
and
F, = —(sina) Fr + (cos @) Fy (33)
The average of the forces is obtained according to
o 1 2m . 1 2
F,=— F,dr and F,=— F.dr. (34)
2 0 2 0

The thrust and lift forces are not continuous over the interval [0, 27], but are continuous over each quarter-
stroke. The average of the the lift and thrust forces is calculated by a summation of four integrals, each

integral over a quarter-stroke: [0, %’/TL [%w, |, [, %7‘(], and [%7‘(, 27]. The average of the thrust force in the
stroke plane is identically zero. For simplicity in presentation, the following constants are defined (based on

the averaged values):
kr = 0.2p5 Ay cos2(2am) (fgbwwg“m)Q and kny = 1.7pg Ay sin(ayy,) (fgbwwgm)Q . (35)

The average of the lift force in the stroke plane is calculated according to
— 1 . 1
F,o= —§kT sin(auy,) — §kN cos( ). (36)

The integrals of individual terms are calculated using assistance from Refs. 28-30. Figure 1 shows the
instantaneous lift force and the averaged lift force for a flapping frequency of 21 Hz, a flapping amplitude
of 60 degrees, and a maximum angle of attack of 34.4212 degrees. The wings are considered to be thin, flat
plates with constant chord. The dimensions of the wings are set to 51.9 mm for the semi-span and 18.9 mm
for the chord. The average of the aerodynamic pitching moment is zero, over one flapping cycle, consistent
with Refs. 9 and 11.
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Figure 1.

Instantaneous Lift Force and Average Lift Force

C. Averaged Equations and Simulation Results

To achieve the averaged equations of motion, we assume that the control moments produce the desired
equations of motion of the wings. Therefore, we can define the angular velocity of the wings according to

PRW sin agrCr PLw —sinardr
qrw | = dR and qrLw | = ééL . (37)
TRW 7COSO[RCR rLw COSO[LCL
With symmetrical flapping, prw = —prw and —rgw = rpw. The period for the calculation of the averaged
equations is set to be &, where f denotes the flapping frequency. The local averaging produces the following
equations of motion for the translation of the central body, where the averaged variables are denoted by a
‘bar,’
. F _ 2 si
A —gsinf — quw + Moy Pr W SIN( Uy ) COS B <m(Cm)) q
msys msys 7T gm
n 1
Misyslyy,sys

(38)

My ProT2by SN B (1 — To (26) — T2 (2Gn)) (kr sin(ayy,) — kn cos(am))
and

(39)
. F, _ 2 . . 2sin (Gm) \
Ty = + gcost + qu — Moy Py Sin (v, ) sin B (bm(g)> q (40)
msys msys ™ Cm
1
msys-[yy,sys

My PuToby cos B (1 —Jo (26m) — J2 (2Gn)) (k7 sin(ay,) — kn cos(am))

(41)

and the mass of the wing, respectively. Through the calculation of numerous individual integrals, over the
period T', the majority of the effects of the wings on the central body are zero, which is consistent with

where the terms p,, and m,, denote the distance to the center of mass of the wing from the wing joint
the method and results in Ref. 4. In order to calculate the average of the variable &3, the term I, ¢y is

averaged separately in order to obtain some form of an analytical averaging solution. The time-varying form
of Iy sys, for symmetrical flapping, is

Lyy.sys = Lyy + 2 (Lo, weos®a + Iy ,cosC + . ysinasin®C) .
The averaged result is

I

Yy,sys

(42)

= Iyy1 + 2L c08® (am) 4 Lyyw (1 + Jo (260)) + Loz o (sin® () (1 — Jo (26n)))

. (43)
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As stated previously, the average of the aerodynamic pitching moment, over one flapping-cycle, is identically
zero. Likewise, the average over one flapping cycle of all of the terms in fél) is also zero. Averaging over
one flapping cycle predicts no change in the pitch angle of the FWMAV. Therefore, the averaged equation
for the pitch velocity of the FWMAYV is

23 = 0. (44)
The numerical solution for the perturbed system, to precision of ¢, and the averaged system are presented
in Figure 2. The morphological parameters of the FWMAV are based off a hawkmoth and the parameters
presented in Ref. 31, specifically specimen F1. The FWMAYV is started with an initial height of 5 m, initial
pitch angle of 15°, stroke plane angle of —15°, and zero translational/rotational velocity. The flapping
amplitude of the wings, (,,, is set to 60°. The amplitude of the pitch angle, c,, is 34.4212°. The numerical
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Figure 2. Simulation Results for Local Averaging, § = —15°, 0, = 15°

results in Fig. 2 are poor. The averaged equations do not match the first order equations of motion. Of
special concern is the pitch angle of the FWMAV. Averaging, based on the first order equations of motion,
predicts the change in the pitch attitude of the FWMAV to be zero for symmetrical flapping. The averaged
equations predict a constant pitch angle. Without control, the pitch angle continues to increase The pitch
attitude change is definitely non-zero. Furthermore, the averaged equations predict an increase in altitude
and little change in the longitudinal position.

V. Symmetrical Hovering Solution Using Averaging in !/, Flapping Cycles

The standard form of differential equations for averaging is” 2!

#(t) = ef (z,1). (45)
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According to Ref. 21, crude averaging is not encouraged due to inaccurate results. In order to place an
equation of the form in Equation 5 in the standard form, the analytical solution of the unperturbed system
is required.?! The equation of the form in Equation 5, to ¢ precision, is solved for ¢ = 0 and a given initial
condition. The explicit solution, denoted by x = h(y,t) is then composed into the e portion of the equation
according to the method of variation of constants. The formula is

g 4
8t + ay (:l/,t) dt f (h(yat)>t) +€f (h‘(y7t)7t78) ) ( 6)
where {g—ﬂ denotes the Jacobian of the solution z = h(y,t). The first terms on the left and right sides of

the equation cancel and the resultant perturbation problem in the standard form is?!

= e[g’;@,w]‘ O (g ).t,) (47)

The issue with the perturbation problem in the standard form is the explicit solution of the unperturbed
system. The analytical solution of the longitudinal aircraft equations of motion does not exist. An additional
issue is that the aerodynamic forces and moments are generated by piecewise continuous explicit functions
of time. The approach, presented here, is to utilize the knowledge of dynamic changes during a flapping
cycle and use that knowledge to construct piecewise continuous equations that will accurately approximate
the dynamics of the flapping micro-air vehicle. For example, in Section IV-C, the thrust force, in the stroke
plane, and the aerodynamic pitching moment are identically zero when averaged over a flapping cycle. The
thrust force may be written as

Foop = goin (€) (hr costam) + havsin(am)) (Jo (Gn) + 32 (Gn). (48)

where J,, denotes a Bessel function of the first kind, order n. The aerodynamic pitching moment may be
written as

M = (sinasin ¢) 7oby, Fp — (cos asin €) #2b,, Fiy — sign (Cj) CZ“) (cos() Fiy. (49)
When averaged over the four '/4 cycles, the result is
— . A 1 .
Maero = sign(¢) rgwa—Hl (Cm) (cos(am)kn — sin(am )kr) (50)

+goien (€ cuki (o (Gn) + 32 (Gn).

H; denotes the first order Struve function of the first kind. In the stroke plane, the averaged lift and ! /-
cycle averaged lift are identical. A comparison of the instantaneous thrust, lift, and aerodynamic pitching
moment and the respective !/4-cycle results are in Figures 3 and 4. The lift and thrust forces are resolved
into the B frame of the FWMAV. As a result, the thrust force will not have a time average of zero, nor will
the lift force be constant over a flapping cycle. If the stroke plane were identically zero, or parallel with the
longitudinal axis of the body, then the lift force would be constant and the thrust would average to zero over
the course of one flapping cycle.

The first order equations of motion are averaged, in their entirety, to produce piecewise continuous
functions that will approximate the equations derived in Section III. The !/4-cycle equations of motions are
simulated versus the €' equations presented in Section II. Two sets of simulation results are presented. The
first set of results, in Figure 5, demonstrate the numerical solution from an initial height of 5 m, initial pitch
angle of 0 rad, and zero initial translational and rotational velocities. The solid line is the ! /4-cycle solution,
denoted by QC in the legend, and the dashed line is the ! solution. The simulations are presented for three
flapping cycles, with (,, = 60°, a,, = 34.4212°, and f = 21 Hz.

Figure 5(a) shows the inertial position of the FWMAV. The positions are much closer in magnitude than
the results presented in Section IV-C. Furthermore, a qualitative consistency is demonstrated between the
two numerical solutions that is not present in the comparison between the cycle-averaged solution and the
el solution. Figure 5(b) shows the pitch angle comparison and Fig. 5(c) shows the relationship between
the pitch velocity. The pitch angles match closely for three flapping cycles and also demonstrate a quali-
tative consistency. After three flapping cycles, the error between the two predictions of the pitch angles is
approximately 11.55%.
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Figure 6 shows the results for a stroke plane angle, 3, of —25° and initial pitch angle of 25°. The
simulations are qualitatively consistent and the magnitude is an improvement over the fully cycle averaged
—25 and 0, = 0 : 1 : 25, the average error in the pitch angle
at the end of three flapping cycles is 11.21°. The piecewise continuous equations obtained from the !/,-
cycle averaging methods produces an estimate of the longitudinal dynamics of a FWMAYV that are superior
to the results obtained from averaging the equations of motion over the entirety of a flapping cycle. The
piecewise continuous equations may provide a more efficient basis for the computation of control algorithms

solution. For a range of values of 3 =0: —1:
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Figure 4. Comparison of Instantaneous and !/4-Cycle Averaged Pitching Moment
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and !/4-Cycle Averaged Thrust and Lift

and stability analyses of flapping wing micro air vehicles.
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Figure 5. Simulation results for ' /4-Cycle Averaging, 3 =0, 0, =0

VI. Conclusion

The paper presented the averaging of the longitudinal equations of motion of a flapping wing micro-air
vehicle. Averaging results were presented for two different averaging methods: local averaging over one
flapping cycle and local averaging over ! /4-cycles. Combining the local averaging over !/,-cycles results in a
piecewise continuous description of the dynamics of the FWMAYV. The accuracy of the results obtained by
local averaging are not good, nor should they closely match the behavior. Without averaging in the standard
form, no guarantees can be made about the accuracy of the approximation. Local averaging results in a
time-averaged aerodynamic pitching moment equal to zero. The results lead to the conclusion that averaging
of individual portions of the equations of motion, over the entirety of the flapping cycle, do not produce a
good result when compared with the numerical solution of the full equations. The !/4-cycle averaged results
show an improvement over the full cycle averaged results. The piecewise continuous dynamics will enable
further studies into controlling and stabilizing the dynamics of a flapping wing micro-air vehicle that include
the all important inertial and mass effects of the wings.
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Figure 6. Simulation results for !/4-Cycle Averaging, 3 = —25°, 6, = 25°

Appendix

The following terms, previously listed in the equations of motion defined throughout the paper, are
defined for clarity. The reference vector from the wing joint to the center of mass of the wings are p.s for the
right wing and p.3 for the left wing. The distance from the wing joint to the center of mass of the wing in
the wing frame is defined by p;, where ¢ = 2 for the right wing and i = 3 for the left wing. The skew-matrix
representation of p.; is denoted by pq;. The definition of the skew-matrix and individual reference vectors
are defined for the right wing

0 —Pc2,z P2,y 0
P2 = | Pz, 0 —peel|where poo=Rg, Rr' |ps| . (51)
—pe2y P2 0 0
and
0 —Pe3,2 Pe3y 0
Pe3 = | pe3,z 0 —pe3,x | Where pes =Rg, 'RLT P3| (52)
—Pe3y  Pe3 0 0

The rotation matrix from the right (left) stroke plane to the right (left) wing frame is defined by Rr (Ry).
The rotation matrix from the body frame to the right (left) wing frame is defined by Rg, (Rg,). The
fixed vectors defining the center the wing joint positions in the B frame are 7z and 7;. The associated
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skew-matrices for each of the reference vectors are

TrR= | R, 0 —R, and 7= | L, 0 —L,| - (53)
~R, R, 0 L, L, 0

For the analysis presented, the wing joints are assumed to be mounted such that only R, and L, are non-
zero, with the relation that L, = —R,, in the B frame. The following terms result from the calculation of
the acceleration of the wing center of mass, with respect to an inertial fixed frame, in the B frame. The full
calculation for the right wing reference vector, pes is

pad 8 - - — — — —
Pez = 5 Pez + W2 X Pez + Wa X (W2 X pea)- (54)
In order to construct the matrix M defined in Section II, the following matrices are defined relating the
acceleration of the wing angles (4, (, &) to the translational and rotational acceleration of the body of the
FWMAV. The matrix © gy denotes the contribution of the right wing and ©py, denotes the contribution
of the left wing.

Rz"(1,3) 0 —Rgp*(1,1) “R:.T(1,3) 0 RLT(1,1)
Orw =m2p2 |[Rp" (2,3) 0 —Rp' (2,1)| and Opw =maps |[-R."(2,3) 0 Ry (2,1)]. (55)
Rr7(3,3) 0 —Rgp'(3,1) —-R:7(3,3) 0 R T(3,1

The acceleration of the wing angles is contained in the terms % P2 and o X Pea.
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