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A nonparametric method for estimating frequency responses in real-time using a method 

based on recursive least squares in the time domain was developed and studied.  The 

proposed method uses sinusoidal functions at selected frequencies known to be contained in 

the input in conjunction with recursive least squares to rapidly estimate Fourier series 

coefficients for input and output time series, and thereby estimate frequency responses.  

Practical problems that arise when applying the discrete Fourier transform in recursive 

form were identified using simple examples.  A general expression for accurate real-time 

calculation of the covariance matrix for recursive least squares parameter estimation was 

developed and used to calculate valid uncertainty bounds for real-time frequency response 

estimates.  Simulation data generated with optimized multi-sine inputs were used to 

investigate the accuracy of the proposed method for real-time frequency response 

estimation, and to validate the calculated error bounds.  The approach was also applied in 

real-time to flight data from a subscale jet transport aircraft.  Comparisons of real-time 

frequency response estimates and error bounds with results from conventional post-flight 

batch analysis showed that results from the real-time method were in statistical agreement 

with post-flight batch estimates, with valid error bounds that properly indicated the quality 

of the real-time frequency response estimates.   

Nomenclature 

ARMAX = Autoregressive moving average with exogenous inputs model �(⋯ ) = Fourier or partial-period Fourier transform �[⋯ ] = expectation operator � = standard deviation on a random variable 	 = imaginary number = 1−  
�, 

, 
� = elevator, aileron, and rudder deflections, rad or deg � = angle of attack, rad or deg � = body-axis pitch rate, rad/sec or deg/sec �� = � body-axis translational accelerometer measurements, g 
I. Introduction 

Efficient flight envelope expansion for modern aircraft can be achieved when control system margins can be 

monitored in real-time, while the aircraft is flying.  Control system margins have been monitored in a quasi-real-

time fashion using frequency-domain methods on various flight test programs, such as the X-29, X-31, Solar 

Pathfinder, X-36, X-38, and X-48B
1-7
.  Taking the approach used in these programs a step further to real-time 

operation would require real-time estimation of frequency responses, as well as their uncertainty, in the presence of 

colored output measurement noise.  This step toward true real-time estimation of frequency responses is of critical 

importance when testing control system designs on subscale aircraft, which have compressed flight times and 

maneuver lengths.  Furthermore, real-time estimates of frequency responses and associated uncertainties would be 

very useful for monitoring the dynamics and control of unusual vehicles in flight, or to characterize the dynamics 

and control of a damaged aircraft for reconfigurable control.  In such cases, a parametric model structure might be in 
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doubt or difficult to ascertain.  Some work has been done on this problem in the past using the Ho-Kalman approach 

to modeling in discrete-time
8,9
, as well as recursive discrete-time ARMAX

10
.  This paper investigates the efficacy of 

a new approach based on applying recursive least squares in the time domain to estimate Fourier coefficients.  

Accurate uncertainty estimates are estimated, then used to compute uncertainty in real-time estimates of frequency 

responses.  Throughout the paper, it is assumed that the input to the system is a known multi-sine and that there 

exists zero-mean, possibly colored output measurement noise.  

In the first section, practical issues associated with implementing the Fourier transform in real-time are 

examined, namely, since the Fourier integral can be updated recursively, the result of evaluating the Fourier integral 

at non-integer multiples of the signal period is analyzed. In the second section, it is shown how least-squares can be 

used to estimate the Fourier transform, and a general framework for batch least-squares and a method for estimating 

the covariance of the least-squares estimates in the presence of zero-mean, possibly colored output measurement 

noise are presented. The next section shows how both the least-squares estimates and their covariance can be 

updated recursively. Following that, it is shown how to convert uncertainty in the least-squares estimates to 

uncertainty in the magnitude and phase of the frequency response estimate. Simulation results are then presented for 

a longitudinal aircraft model, where the recursive least-squares estimates and estimated covariance for the frequency 

response are compared to the true system. In the simulation, a realization of colored noise representative of model 

residuals due to unmodeled nonlinearities is used to corrupt the output signal. Finally, the method is applied to flight 

data from the T-2 subscale jet transport aircraft, where the results are compared with traditional batch post-flight 

analysis, followed by concluding remarks that summarize the results and their significance.  

II. Practical Aspects of the Fourier Transform 

Use of the Fourier transform is common in the system identification literature and remains the basis for most 

nonparametric system identification techniques. However, practical issues arise when trying to implement the 

Fourier transform in real-time. Specifically, because the Fourier integral can be updated recursively, the result of 

evaluating the Fourier integral at non-integer multiples of the signal period needs to be analyzed. This is also 

important for quick estimation because estimates of the Fourier transform are desired before a complete period of 

the signal has concluded. The analysis begins by introducing the Fourier transform and the partial-period Fourier 

transform. 

A. Fourier Transform 

Consider the signal �(�), which is a sum of harmonic sinusoids given by 
 �(�) =��� cos �2�� � + "� 	$%

�&'  

 

(1) 

 

where   is the time length, (  ⁄  is the highest frequency component, and �� may be zero for some � ∈ [1, (].  Then 
the Fourier transform �(,) of �(�) is given by  

�(,) ≜ 2 . �(�)[cos(2�,�) − 	 sin(2�,�)]2�3
4 = 2 . �(�)567(89:;)2�3

4 	
Furthermore, the partial-period Fourier transform �(,, �, <) of �(�) is given by  

�(,, �, <) ≜ 2< − �. �(�)[cos(2�,�) − 	 sin(2�,�)]2� = 2< − �. �(�)567(89:;)2�=



=

 	

Letting , be an integer multiple of 1/ , that is, , = �/ , it follows that the Fourier transform evaluated at the 
frequency , is given by 

 �(,) = ?��57@A , 	1 ≤ � ≤ (0, 	� > ( E 
 

 

(2) 

where the magnitude of �(,) is �� and the argument of �(,) is "�.  
Note that the definition of the Fourier transform requires that the fundamental frequency, or equivalently, the 

period, of �(�) is known. When , is not an integer multiple of the fundamental frequency 1/ , Eq. (2) does not 
hold. In fact, �(,) will in general be nonzero, even when �(�) has no frequency content at the frequency ,. 
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B. Partial-Period Fourier Transform  

Recursively updating the Fourier integral in real-time is tantamount to computing the partial-period Fourier 

transform. It is therefore important to know if the partial-period Fourier transform is a reliable estimate of the 

Fourier transform. Unfortunately, the following example demonstrates that the partial-period Fourier transform is 

not a reliable estimate of the Fourier transform, and that the partial-period Fourier transform will in general be 

nonzero at off-nominal frequencies and have errors even at the nominal frequencies. However, the errors become 

smaller as the time length of the data increases.   

 

Example 1  Let �(�) = � cos(2��4� + "), and consider the partial-period Fourier transform of �(�) evaluated at �4 Hz and F�4 Hz, where F ≠ 1, that is,  
�(�4, 0, �) = 2� . � cos(2��4H + ") [cos(2��4H) − 	 sin(2��4H)]2H;

4 	
�(F�4, 0, �) = 2� . � cos(2��4H + ") [cos(2�F�4H) − 	 sin(2�F�4H)]2H;

4 	
Then	the	real	and	imaginary	parts	of	�(�4, 0, �)	and	�(F�4, 0, �)	are	given	by	

Re[�(�4, 0, �)] = �4��4� [4��4� cos" + sin(4��4� + ") − sin "]	
Im[�(�4, 0, �)] = �4��4� [4��4� sin" + cos(4��4� + ") − cos"]	

Re[�(F�4, 0, �)] = �2��4�(F8 − 1) [(F − 1) sin(2�[F + 1]�4� + ") + (F + 1) sin(2�[F − 1]�4� − ") + 2 sin "]	
Im[�(F�4, 0, �)] = �2��4�(F8 − 1) [(F − 1) cos(2�[F + 1]�4� + ") + (F + 1) cos(2�[F − 1]�4� − ") − 2F cos "] 

From the preceding equations, the partial-period Fourier transform is seen to be generally inaccurate; that is, at 

the nominal frequency �4, typically �(�4, 0, �) ≠ �(�4) = �57@, and at off-nominal frequencies, typically �(F�4, 0, �) ≠ �(F�4) = 0. Specifically, for all F > 1 and � > 0, the partial-period Fourier transform errors are 
bounded by  

 Y�(�4, 0, �) − �57@Y ≤ �2��4�  

(3) 

 

 |�(F�4, 0, �)| ≤ 2�F��4�(F8 − 1)  

(4) 

   

where the error bounds, and hence the true errors, approach 0 as both � and F increase, that is, lim;→\]�(�4, 0, �) − �57@^ = 0	
lim;→\�(F�4, 0, �) = 0	
lim_→\�(F�4, 0, �) = 0	

The upper bound for the error in the partial-period Fourier transform is proportional to  1/�, which in some cases 
may be unacceptably slow convergence. Figure 1 displays the bounds for � = 1, �4 = 1 Hz, and various F and 	�. 
Figure 2 compares the magnitude of the true partial-period errors to the bounds given by Eqs. (3) and (4) when � = 1, �4 = 1 Hz, " = 0	rad, and F > 1. Several F are chosen to exemplify the errors and bounds when evaluating 
the partial-period Fourier transform at the nominal frequency (F = 1), a harmonic multiple of the nominal frequency 
(F = 5), a non-harmonic multiple of the nominal frequency (F = �), and at a very high frequency compared to the 
nominal (F = 100). Note that when �(�) is composed of more than one sinusoid, the partial-period errors are 
additive. In Figure 2, the shading that appears for F = 100 is due to high frequency oscillation of the error.  
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Figure 1. Partial-period Fourier transform error bounds for a = b, cd = b Hz, and various e and f 

 
Figure 2. Comparison of the true partial-period Fourier transform errors to the bounds given by 

Eqs. (3)-(4) for a = b, cd = b Hz, g = d	rad, and various e > 1 
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III. Least-Squares Estimates of the Fourier Transform 

In the previous section, some of the deficiencies of the partial-period Fourier transform were demonstrated. 

However, it is desirable to have estimates of the Fourier transform in real-time, without having to wait for integer 

periods. Hence least-squares is used here to estimate the magnitude and phase of the output indirectly at specified 

frequencies and non-integer periods of the signal. Furthermore, from the approximate linearity of the system and the 

assumption that the input is a known multi-sine, the frequencies at which the output will have content are known 

a priori. 

A. Estimation of the Fourier Transform 

Estimation of the unknown coefficients of a model, such as the amplitudes �', … , �% and phases "', … , "% in 
Eq. (1) is, in general, difficult since the model is nonlinear in the model coefficients. Here, the unknown amplitudes 

and phases are estimated indirectly, by first recasting the model of Eq. (1) into a model which is linear in the 

parameters. Specifically, let the output i(�) be given by Eq. (1) and let j� ≜ �� cos "� and k� ≜ �� sin"� for all 	� = 1, … , (. Then 
i(�) = �j� cos �2�� �$ − k�sin �2�� �$%

�&' = lm(�) 
where l and m(�) are given by 
 l ≜ [j' … j% k' … k%] 

m(�) ≜ ncos �2� �$ … cos �2�( �$ − sin �2� �$ … −sin �2�( �$o3  
 

Next, let �(�) denote a measurement of i(�) which is corrupted by additive zero-mean colored measurement 
noise, �(�) = i(�) + p(�) = lm(�) + p(�)	
Then l can be estimated using least-squares when �(�) is sampled. Furthermore, once estimates of j� and k� are 
obtained, estimates of �� and "� can be found from 

�� = qj�8 + k�8 
"� = tan6' �k�j�$		

B. Least-Squares Estimates and Their Covariance 

Ordinary least-squares and its recursive version are well-understood algorithms. Furthermore, when possibly 

colored output measurement noise is present, the least-squares estimates themselves are random, and it is possible to 

estimate the covariance of the least-squares estimates offline
11,12

. In this section, it is shown how to compute an 

estimate for the covariance of ordinary least-squares estimates in batch mode, in the presence of zero-mean, possibly 

colored output measurement noise. This material is based on work documented in Refs. [11] and [12]. The next 

section shows how this approach can be implemented recursively for real-time operations.   

Begin by considering the linear model  i(�) = �'m'(�) + ⋯+ ��m�(�)	
or simply i(�) = lm(�), where l ≜ [�' … ��] and m(�) = [m'(�) … m�(�)]3 . Furthermore, for simplicity of 
the argument, let m(�) be deterministic.  

Next, let �(�) denote a measurement of i(�) which is corrupted by additive zero-mean colored measurement 
noise,  �(�) = i(�) + p(�) = lm(�) + p(�)	
where p is a realization of the random, stationary, zero-mean, colored noise process r. Then, letting �(�) be known 
at the uniformly spaced times �' = �4 + Δ,… , �t = �4 + uΔ, it follows that  
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vt = lXt + xt	
where vt ≜ [�(�') … �(�t)], Xt ≜ [m(�') … m(�t)], and xt ≜ [p(�') … p(�t)]. Furthermore, if the 
product ytyt3 is nonsingular, then l, the least-squares estimate lzt	of l, and the covariance of lzt, denoted by {|lzt}, 
are given by  l = vtXt3Γt − xtXt3Γt lzt = vtXt3Γt {|lzt} = E[ΓtXtxt3xtXt3Γt] 
where Γt ≜ (XtXt3)6' and, since Xt is deterministic, {|lzt} = ΓtXtE[xt3xt]Xt3Γt	
Note that the least-squares estimate lzt is unbiased since 

E]lzt^ = E[vtXt3Γt]	= E[(lXt + xt)Xt3Γt]	= lXtXt3Γt+E[xt]Xt3Γt	= l+E[xt]Xt3Γt	= l 
Finally, note that E[xt3xt] is the autocorrelation matrix of r,  

E[xt3xt] ≜ ���t = � ���(0) ⋯ ���([u − 1]Δ)⋮ ⋱ ⋮���([u − 1]Δ) ⋯ ���(0) �	
where ���(�Δ) ≜ E[p3(�)p(� + �Δ)]. Furthermore, letting p�(�) ≜ �(�) − lztm(�)	for all � = �', … , �t yields the 
estimated autocorrelation matrix 

�z��t ≜ � �z��t (0) ⋯ �z��t ([u − 1]Δ)⋮ ⋱ ⋮�z��t ([u − 1]Δ) ⋯ �z��t (0) � 
where  

�z��t (�Δ) = �1u$�p�3|�7}p�(�7 + �Δ)t6�
7&'  

Hence the estimated covariance of lzt, denoted by {z(lzt), is given by  {z|lzt} = ΓtXt�z��t Xt3Γt	
Note that the usual definition of �z��t (�Δ) is  � 't6��∑ p�3|�7}p�(�7 + �Δ)t6�7&' . However, for large �, �z��t (�Δ) is 

dependent on only a few samples, and is therefore not a good estimate. The definition given above resolves this 

effect by noting that the autocorrelation function usually tends to 0 for large � anyway. Also, for large u and 
moderate �, u ≈ u − �, that is, for moderate lags, the above definition approaches the usual one as the amount of 
data increases. 

Example 2 Consider the colored noise sequence p(F) = 0.2�(F) + 0.1�(F − 1) − 0.02�(F − 2) − 0.01�(F − 3)	
where � is a realization of the zero-mean stationary white Gaussian process � with variance ��8 = 10. Then the 
autocorrelation function of r is given by 

���(�Δ) =
���
��+0.0505��8 , |�| = 0+0.0182��8 , |�| = 1−0.0050��8 ,									|�| = 2−0.0020��8 ,									|�| = 3																			0,									|�| ≥ 4

E	
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Also, consider the discrete-time system  �(F) = �(F) − 0.7�(F − 1) + 0.3�(F − 2) − 0.1�(F − 3) + p(F)	
where �(F) is the measured output, �(F) is the known input, and p(F) is an unmeasured colored noise sequence. 
Then �(F) = lm(F) + p(F), where l and m(F)	are given by  l = [	+1.0 −0.7 +0.3 −0.1	]	m(F) = [	�(F) �(F − 1) �(F − 2) �(F − 3)	]3	 
Furthermore, let � be a Schroeder-phased signal13 given by  

�(F) =�cos �n2�� o F − ��8( �%
�&'  

where ( = 20 and  = 200. Then as described previously, for each fixed value of u and each realization of the 
colored noise process r, one can compute the least-squares estimate lzt = vtyt3(ytyt3)6' and the estimated 
autocorrelation matrix �z��t . Considering 10,000 realizations of the colored noise process r, and computing the 
estimated correlation matrix for each 	 = 1,… ,10,000, denoted by �z��,7t , yields the sample mean squared error in the 

estimated autocorrelation matrix 

�t(�Δ) = 110,000 � ��z��,7t (�Δ) − ���(�Δ)�8'4,444
7&' 	

Figure 3 displays the sample mean squared error �t(�Δ) for � = 0, … ,5 and various u, from which it appears that 
as u increases, the estimates �z��t (�Δ) approach ���(�Δ), that is, �z��t (�Δ) appears to be a consistent estimate of ���(�Δ). Furthermore, since the covariance estimate {z|lzt} is linear in �z��t , it follows that {z|lzt} is a consistent 
estimate of {|lzt}.  

 
Figure 3. Sample mean squared error in estimated autocorrelation matrix for � = d,… , � and various � 

One major impediment to using recursive least-squares in the time domain is that there is no method for 

accurately computing the covariance of the estimates lzt in real-time for colored noise. The next section shows how 
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IV. Recursive Least-Squares Estimates and Covariance  

In the previous section, a framework for least-squares was developed and a method for estimating the covariance 

of least-squares estimates was given for colored noise. Here it is shown how both the least-squares estimates and the 

estimate of their covariance can be updated recursively by approximating the autocorrelation of the noise with a 

finite number of terms. 

First, suppose that lzt, Γt, �(�t '), and m(�t ')	are known, that is, all of the data up to time �t ' are known, 
including the previous estimate lzt and the inverse of ytyt3, denoted by Γt. Then the updated least-squares estimate 
 lzt ' is given by11  

 

 lzt ' = lzt[¡ − m(�t ')F(�t ')] + �(�t ')F(�t ') (5) 

 

where ¡ is the identity matrix and F(�t ')	is given by 
 

F(�t ') = m3(�t ')Γt1 + m3(�t ')Γtm(�t ') 
 

(6) 

 

Furthermore, from the matrix inversion lemma, the inverse of yt '3 yt ' is given in terms of the previous inverse Γt = (yt3yt)6' by 
 Γt ' = (Xt 'Xt '3 )6' = Γt[¡ − m(�t ')F(�t ')] 

 

(7) 

 

Next, note that the estimated covariance of lzt,  denoted by {z|lzt}, is given by11,12  
{z|lzt} = Γt ���m(��)t

7&'
t
�&' �z��t ([� − 	]Δ)m3(�7)� Γt	

Letting the autocorrelation of r, ���, be approximated by the first ¢ + 1 terms, it follows that 
 

 
{z|lzt} ≈ Γt ���z��t (�Δ)Λt(�)¤

�&4 � Γt 
 

(8) 

 

where Λt(�) is given by 
Λt(�) =

��
�
�� 																																			�m|�7}m3|�7}t

7&' ,								� = 0
�m|�� 7}m3|�7} + m|�7}m3|�� 7}t6�
7&' , � > 0

E	
and Λt(�) can be updated recursively since 
 

 
Λt '(�) = ?																																											Λt(0) + m(�t ')m3(�t '), � = 0Λt(�) + m(�t ')m3(�t '6�) + m(�t '6�)m3(�t '), � > 0E 
 

(9) 

 

Furthermore, since p�(�) ≜ �(�) − lztm(�), for each � = 0, … , ¢, it follows that  
 

 �z��t (�Δ) = 1u |¥t(�) − ¦t(�)vec]lzt^ + §t(�)vec]lzt3lzt^} (10) 

 

where  

¥t(�) ≜ 	��3|�7}�|�� 7}t6�
7&' 	

¦t(�) ≜ 	�]m3|�� 7} ⊗ �3|�7}^ + ]m3|�7} ⊗ �3|�� 7}^t6�
7&' 	
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§t(�) ≜ 	�m3|�� 7} ⊗ m3|�7}t6�
7&'  

and ¥t(�), ¦t(�), and §t(�) can be updated recursively since  
 ¥t '(�) = ¥t(�) + �3(�t '6�)�(�t ')	¦t '(�) = ¦t(�) + [m3(�t ') ⊗ �3(�t '6�)] + [m3(�t '6�) ⊗ �3(�t ')]	§t '(�) = §t(�) + [m3(�t ') ⊗ m3(�t '6�)] 

(11) 

(12) 

(13) 

Refer to Appendix A for a discussion of the vec operator and Kronecker product ⊗. 

Combining Eqs. (5)-(13), the updated estimate lzt ' and its estimated covariance {z|lzt} can be calculated 
recursively. The following algorithm summarizes the approach for updating the least-squares estimates and the 

estimate of their covariance. It is assumed that lzt, Γt, �(�t '), m(�t '), Λt(0), … , Λt(¢), ¥t(0), … , ¥t(¢), ¦t(0), … , ¦t(¢), and §t(0), … , §t(¢) are known, and that the noise autocorrelation can be approximated by the first ¢ + 1 terms. 
 

Algorithm for Recursively Estimating ©ª� b and «ª|©ª� b} for Colored Noise 

 

Calculate F(�t ') from Eq. (6). 
Compute the updated least-squares estimate lzt ' using Eq. (5). 
Calculate Γt ' using Eq. (7). 
Compute Λt '(0), … , Λt '(¢) using Eq. (9). 
Calculate ¥t '(0), … , ¥t '(¢), ¦t '(0), … , ¦t '(¢), and §t '(0), … , §t '(¢) using Eqs. (11)-(13). 
Compute �z��t ' using Eq. (10). 
Calculate the estimated covariance of lzt ', {z(lzt '), using Eq. (8). 

 

V. Frequency Response Estimates and Uncertainty Conversion 

In the previous two sections, a method for computing recursive least-squares estimates and an estimate of their 

covariance in the presence of possibly colored measurement noise was developed. It was also shown how to make 

the Fourier transform model a linear model, namely, by computing the least-squares estimates j¬� = �­ cos "­®  and k�� = �­ sın"­®  instead of directly computing the magnitude �� and phase "� of the frequency components. Here it is 
shown how estimates of the magnitude and phase of the frequency response are computed, along with their 

variances, given j¬�, k��, and the covariance matrix of j¬� and k��. 
First, let the output i(�) and input �(�) be given by  

i(�) = ��� cos �2�� � + "�$%
�&' 	

�(�) =�<� cos �2�� � + °�$%
�&' 	

Then the frequency response ±(,) between the input and output is the ratio of the Fourier transform of the output ²(,) to the Fourier transform of the input ³(,).  Letting , = �/ , ±(,) is given by 
±(,) = ²(,)³(,) = ��57@A<�57´A = ���<�$ 57(@A6´A)			

When the input is known, the estimated frequency response is given by  
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Figure 4. T-2 Subscale Jet Transport Aircraft 
Credit: NASA Langley Research Center 

±z(,) = ����<�$ 57(@ª A6´A)	
where ��� and "z� are computed for the output i(�) from the least-squares estimates j¬� and k��, specifically, 

��� = qj¬�8 + k��8	
"z� = tan6' �k��j¬��	

Next, recall that lzt is an unbiased estimate of l. Hence j¬� and k�� are unbiased estimates of j� and k�, and it 
follows that the variance {(���) is given by  {(���) = {|j¬�} + {(k��) + 2(�� − E[���])�� 	
where �� − E[���] is the bias in the estimate of ��. Assuming that ��� is an unbiased estimate of ��, the variance in the 
magnitude of the estimated frequency response, ���/<�, is thus given by 

{ ����<�$ = 1<�8 ]{|j¬�} + {(k��)^	
Finally, assuming that "z� is an unbiased estimate of "�, a first-order Taylor series approximation of "z� is 

"z� ≈ "� + j���8 (k�� − k�) − k���8 (j¬� − j�)	
Hence the variance of "z� is approximately given by  
 

 {|"z�} ≈ µj�8��¶· {(k��) + µk�8��¶· {|j¬�} − 2 µk�j���¶ · cov(k��, j¬�) 
 

(14) 

 

where, for simplicity, the estimated values are used in place of the true values. Note that, although the sinusoids will 

be orthogonal at integer multiples of the fundamental period, in general, they are not. Hence the covariance term in 

Eq. (14) must be included when computing the estimates at non-integer multiples of the fundamental period. For a 

discussion of the derivation of Eq. (14) along with the coefficients that should be used in practice since the true 

values of j�, k�, and �� are unknown, refer to Appendix B. 
VI. T-2 Subscale Jet Transport Aircraft 

The T-2 aircraft is a 5.5 percent dynamically scaled 

model of a generic commercial twin-engine jet transport 

aircraft.  A photograph of the aircraft in flight is shown 

in Figure 4.  The aircraft has twin jet engines mounted 

under the wings and retractable tricycle landing gear.  

Aircraft geometry and nominal mass properties are given 

in Table 1 below.  Further information on the T-2 

subscale jet aircraft and associated flight test operations 

can be found in Refs. [14]-[16].   

A. Control Surfaces 

Control surfaces on the aircraft are left and right 

ailerons, left and right inboard and outboard elevators, 

upper and lower rudders, left and right inboard and 

outboard trailing-edge flaps, and left and right inboard and outboard spoilers, for a total of 16 independent control 

surfaces.  For the data analyzed in this work, only the elevators, ailerons, and rudders were deflected.  The 

individual elevator surfaces were moved together as a single elevator surface, and similarly for the rudders.  Left and 

right ailerons were deflected asymmetrically, in the conventional way.  Definitions of control surface deflections are 
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given below.  Trailing edge down is positive deflection for the wing and elevator surfaces, and trailing edge left is 

positive for the rudder.   


� = 14 �
�¸¹º»	¼½»¾¼¿ÀÁ + 
�¸¹º»	AÂ¾¼¿ÀÁ + 
�ÀAÃÄ»	¼½»¾¼¿ÀÁ + 
�ÀAÃÄ»	AÂ¾¼¿ÀÁ� 


 = 12 �

ÀAÃÄ» − 

¸¹º»� 																
� = 12 �
�½ÅÅ¹À + 
�¸¼Æ¹À� 

The aircraft can be flown by a safety pilot using direct visual contact and conventional radio control.  A research 

pilot executes flight test maneuvers from inside a mobile control room, using a synthetic vision display drawn from 

telemetry data and a local terrain database. Inputs from the research pilot and a ground-based flight control system 

are used to generate control surface commands which are transmitted by telemetry to the aircraft.   

 

Table 1  T-2 Aircraft geometry and nominal mass properties 

c , ft 0.915 

b , ft 6.849 

S , ft
2
 5.902 

ox , in 57.30 

oy , in 0.000 

oz , in 11.28 

cgx , in 56.63 

cgy , in 0.000 

cgz , in 11.43 

m , slugs 1.585 

xI , slugs-ft
2
 1.179 

yI , slugs-ft
2
 4.520 

zI , slugs-ft
2
 5.527 

xzI , slugs-ft
2
 0.211 

 

B. Instrumentation and Data Acquisition 

The T-2 aircraft was equipped with a micro-INS, which provided 3-axis translational accelerometer 

measurements, angular rate measurements, estimated attitude angles, and GPS velocity and position. Air data probes 

attached to booms mounted on each wingtip (visible in Figure 4) measured angle of attack, sideslip angle, static 

pressure, and dynamic pressure. Measurements from static pressure sensors and ambient temperature sensors were 

used to compute air density and altitude. Engine speeds in rpm were measured and used as inputs to an engine model 

to compute thrust. The engine model was identified from ground test data, with adjustments for ram drag identified 

from flight data. Potentiometers on the rotation axes of the control surfaces measured control surface deflections. 

Mass properties were computed based on measured fuel flow, pre-flight weight and balance, and inertia 

measurements of the aircraft on the ground. The pilot stick and rudder pedal commands and throttle position were 

also measured and recorded. Data from onboard sensors were telemetered to the ground in real time. Sampling rate 

for the flight data was 200 Hz, decimated to 50 Hz for data analysis and modeling.   

VII. Simulation Results 

A linearized longitudinal model for the T-2 subscale aircraft driven by an optimized multi-sine was used for 

simulation testing. The measured outputs were corrupted with colored noise representative of both sensor noise and 

nonlinearities not captured by the linear model. The recursive frequency response estimation algorithm given 

previously was tested to demonstrate the accuracy of the estimates and their 95 percent confidence intervals (2� 
uncertainty bounds) after one and two periods of the input signal. 
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The linearized longitudinal model for the T-2 subscale aircraft was 

 

 n�Ç (�)�Ç (�)o = È−2.4475 0.99709−34.896 −3.8467Ë n�(�)�(�)o + È−0.18174−39.963 Ë 
�(�) 
 

(15) 

 

where � denotes the angle of attack in radians, � denotes the body-axis pitch rate in radians per second, and 
� 
denotes the elevator deflection in radians. The output model was 

 

 i(�) = � �(�)�(�)��(�)� = � 1 00 1−9.8318 −0.011702� n�(�)�(�)o + � 00−0.73005� 
�(�) (16) 

 

   

where �� denotes the z body-axis translational acceleration in g.   
The elevator deflection 
� was chosen to be an optimized multi-sine11 with frequency content spaced uniformly 

at 0.1 Hz intervals between 0.1 Hz and 2.6 Hz. Figure 5 shows the input and states of the longitudinal aircraft model 

over one period of the input, which was 10 seconds.  

Let �(�) denote a measurement of i(�) which is corrupted by additive zero-mean colored measurement noise,  �(�) = i(�) + p(�)	
where � has a signal-to-noise ratio of 10, and p is the sum of a 2 Hz band-limited noise component and a wide-band 
noise component of equal power. As an indication of the type of noise in the output measurements, Figure 6 displays 

the power-spectral density of the 2 Hz band-limited noise component in the measurement of �. Note that this type of 
noise is representative of model residuals seen in practice due to nonlinearities not captured by Eqs. (15)-(16). 

Applying the recursive estimation algorithm presented previously, Figures 7, 8, and 9 show comparisons of the 

true and estimated Bode plots for all three measured outputs after 1 and 2 periods of the input. The estimated 2� 
error bounds are displayed when 11 terms are used in the estimated autocorrelation, that is, ¢ = 10. The figures 
show that uncertainty in the phase is large at points for which the frequency response amplitude is small. This is 

because the variance in the estimated phase is inversely proportional to ��¶, cf. Eq. (14). For an intuitive description 
of this phenomenon, see Appendix C. For several frequency points, after 1 period of the input, the true frequency 

response functions were not within the estimated 2� error bounds. However, after 2 periods of the input, the 
estimated 2� error bounds tend to include the true frequency response functions.  

In this work, ¢ was taken to be 10 because the complete autocorrelation function indicated that the 
autocorrelation function was negligible after the tenth term. However, when estimating the autocorrelation function 

recursively, this approach is not possible, in which case ¢ could be chosen from experience. The choice of ¢ is a 
balance between accuracy and computational burden. Taking ¢ to be equal to the number of data points would allow 
characterization of the most general noise autocorrelation functions, although this choice would not be amenable to 

recursive computation. Conversely, taking ¢ small, such that some significant terms in the noise autocorrelation 
function would not be included, would lead to poor estimates of the covariance. As an alternative, it might be 

possible to model the autocorrelation function accurately with only a few terms by recursively estimating a 

parametric model for the autocorrelation function, if a general form for the autocorrelation function was known.   
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Figure 5. Input and outputs for the longitudinal aircraft model over one period of the input 

 

 

 
Figure 6. Power-spectral density of the 2 Hz band-limited noise component in the measurement of Ì  
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Figure 7. Comparison of the true ('--') and estimated ('x') Bode plots from ÍÎ → Ì after 1 (left) and 2 (right) 

periods of the input; error bars represent the estimated 2Ï error bounds when Ð = bd 
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Figure 8. Comparison of the true ('--') and estimated ('x') Bode plots from ÍÎ → Ñ after 1 (left) and 2 (right) 

periods of the input; error bars represent the estimated 2Ï error bounds when Ð = bd 

4

6

8

10

12

14

16

18

M
a
g
n
it
u
d
e
, 
d
B

10
0

10
1

-260

-240

-220

-200

-180

-160

-140

Frequency, rad/s

P
h
a
s
e
, 
d
e
g

10
0

10
1

Frequency, rad/s



16 

American Institute of Aeronautics and Astronautics 

 
Figure 9. Comparison of the true ('--') and estimated ('x') Bode plots from ÍÎ → aÒ after 1 (left) and 2 

(right) periods of the input; error bars represent the estimated 2Ï error bounds when Ð = bd 
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VIII. Flight Results 

Frequency responses for the T-2 aircraft from the elevator deflection 
� to angle of attack �, body-axis pitch rate �, and � body-axis translational acceleration �� were estimated recursively, in the manner described previously. 
Flight data were gathered from a 10-second multi-axis maneuver, in which the elevators, ailerons, and rudders were 

excited with phase-optimized mutually orthogonal multi-sines
11
. The elevator, aileron, and rudder perturbation 

inputs were chosen to be multi-sines with frequency content uniformly-spaced at 0.3 Hz, where the elevator had 

frequency content from 0.3 to 2.1 Hz, the aileron had frequency content from 0.4 to 2.2 Hz, and the rudder had 

frequency content from 0.2 to 2.0 Hz; hence none of the command inputs had overlapping frequency content. Note 

that the frequency content in each of the inputs was sparser than in the simulation case shown earlier, because the 

time length of the flight maneuver was necessarily short due to test range constraints, and because the frequency 

content was distributed among the three control inputs.  

In the recursive estimation algorithm, as a preliminary step towards obtaining the frequency responses, estimates 

of the magnitude and phase of the sinusoidal components of a signal are computed, allowing one to construct an 

approximate signal. Assuming frequency content at 0 Hz (to account for any bias) and 0.3 to 2.1 Hz at 0.3 Hz 

intervals for the measured signals 
�, �, �, and ��, Figure 10 shows a comparison of the measured and estimated 
signals. Note that none of the measured signals is exactly represented as a sum of sines, even the input signal 
�. 
These small inaccuracies are the result of actuator dynamics and nonlinearities, as well as nonlinear effects in the 

aircraft dynamics and aerodynamics.  Variance estimates for the frequency responses will not incorporate the effects 

of these small inaccuracies. Most of the mismatch is around the peaks of the waveforms, which is characteristic of 

nonlinear effects.   

Applying the recursive estimation algorithm presented previously, Figures 11, 12, and 13 compare the estimated 

frequency response Bode plots after 4 and 10 seconds for all three measured outputs to the Bode plots generated 

from the linearized longitudinal model presented previously in Eqs. (15) and (16). The linear model of Eqs. (15) and 

(16) was identified from the same flight data using conventional output-error parameter estimation in the time 

domain
11,12

. Estimated 2� error bounds are displayed for 11 terms used in the estimated autocorrelation, that is, ¢ = 10. From Figures 11, 12, and 13, it appears that the linearized longitudinal model is in good agreement with the 
frequency response magnitudes estimated in real time, although the frequency response phases appear to be slightly 

biased.  
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Figure 10. Measured and Fourier approximation of elevator deflection, angle of attack, body-axis pitch 

rate, and z body-axis translational acceleration 
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Figure 11. Comparison of the linear ('--') and estimated ('x') Bode plots from ÍÎ → Ì after 4s (left) and 10s 

(right); error bars represent the estimated 2Ï error bounds when Ð = bd 
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Figure 12. Comparison of the linear ('--') and estimated ('x') Bode plots from ÍÎ → Ñ after 4s (left) and 10s 

(right); error bars represent the estimated 2σ error bounds when Ð = bd 
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Figure 13. Comparison of the linear ('--') and estimated ('x') Bode plots from ÍÎ → aÒ after 4s (left) and 

10s (right); error bars represent the estimated 2σ error bounds when Ð = bd 
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IX. Error Sources 

Numerous sources of error arise when implementing the aforementioned algorithm for recursive frequency 

response estimation, which are pointed out here to aid the practitioner in diagnosing any problems that may arise. 

All or some of these factors may have contributed to inaccuracies in the previous section. 

First, the present paper focuses on the use of the Fourier transform for estimating the frequency response. 

Specifically, the frequency response is taken to be the ratio of the Fourier transform of the output to the Fourier 

transform of the input. However, this method of computing the frequency response is technically only valid when 

the output is in steady-state, that is, when the initial condition response of the system has died out. For 

measurements of an aircraft in flight, this is almost never exactly the case, which may account for some of the errors 

in the previous section. The adverse impact of initial conditions is common in nonparametric identification, and 

typically the methods used to address this problem are to either wait for the initial condition response to die out, or 

to employ a parametric model structure, which may be difficult to ascertain. 

Second, the present paper assumes that the system is approximately linear. However, nonlinearities can 

contribute frequency content in the output at frequencies that were not present in the input. For instance, a classical 

example in the literature is when the output is a cubic function of the input, that is, i(�) = [�(�)]Ó	
Then letting �(�) = � cos(Ô� + "), it follows that  

i(�) = 34 �Ó cos(Ô� + ") + 14 �Ócos	(3Ô� + 3")	
Hence a cubic nonlinearity contributes frequency content in the output at the input frequency and 3 times the input 

frequency. Similar expressions can be derived easily for most polynomial nonlinearities.  

Third, the present paper assumes that the autocorrelation function of the noise only has a finite number of terms, 

an upper bound of which should be known a priori. This assumption may break down in the presence of 

deterministic modeling errors, such as unmodeled frequency content.  

Fourth, the estimates of the covariance bounds are themselves based on the estimates of the Fourier transform. 

Poor estimates can therefore lead to poor error bounds. Furthermore, the present paper assumes that the estimates of 

the magnitude and phase are unbiased when determining the variance of the frequency response, although whether 

or not this is a realistic assumption depends strongly on the noise properties of a given problem. Also, when 

computing the variances of the phase estimates, linearization was employed, so that the accuracy of the phase error 

bound is dependent on how close the estimated phase is to the true phase.  

Finally, the properties of the residual sequences will determine how quickly the estimates of the autocorrelation 

function converge. For finite data, there is no guarantee on the accuracy of the estimated autocorrelation function, 

and this impacts the accuracy of the estimated parameter covariances.   

X. Concluding Remarks 

A method for estimating frequency responses in real time was developed and demonstrated.  The method uses 

recursive least squares with sinusoidal regressors, in conjunction with a known optimized multi-sine input design. 

The problem was formulated in a novel way, and solved using conventional recursive least squares and an accurate 

method for recursive calculation of the model parameter covariance matrix. The recursive method for covariance 

matrix estimation in the time domain, described here for the first time, can account for colored residuals typically 

encountered in practical aircraft dynamic modeling problems. Results from simulation testing and flight data 

analysis showed that the approach can be used to achieve accurate estimates of frequency responses in real time 

using short data records. Because frequency response estimates are a nonparametric characterization of dynamic 

systems, this capability has very general applications to tasks such as efficient flight testing for aircraft flight 

envelope expansion, as well as real-time dynamic modeling required by adaptive or reconfigurable control 

algorithms for nominal or damaged aircraft.   
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Appendix 

A.  The Vec Operator and the Kronecker Product 

Let ¥, ¦, and § be matrices, where ¥ is given by 
¥ = ��',' … �',t⋮ ⋮�Õ,' … �Õ,t�	

and ¦ and § are of arbitrary dimensions. Then vec(A) is a vector made by stacking the columns of ¥, that is, letting �Ö� denote the �;× column of ¥, vec(¥) = [�Ö'3 ⋯ �Öt3]3	
The Kronecker product of ¥ and ¦, denoted ¥⊗ ¦, is given by 

¥⊗ ¦ = ��','¦ … �',t¦⋮ ⋮�Õ,'¦ … �Õ,t¦�	
where, in general, ¥⊗ ¦ ≠ ¦⊗ ¥.  

Throughout the paper, the following identity is employed vec(¦¥§) = (§3 ⊗¦)	vec(¥)	
where B, A, and C have conformable dimensions for multiplication.   
B.  Derivation of the Phase Uncertainty and Discussion of Implementable Coefficients 

As previously assumed in the derivation of Eq. (14), assume that "z� is an unbiased estimate of  "�, that is,  E]"z�^ = E µtan6' �j¬�k���· = "� 
Then from the definition of "z�, a first-order Taylor series  approximation of "z� is given by  

"z� ≈ "� + j���8 (k�� − k�) − k���8 (j¬� − j�)	
Hence	the	variance	of		"z� 	is	approximately	given	by		{|"z�} = E È|"z� − "�}8Ë	

																																												= E µj���8 (k�� − k�) − k���8 |j¬� − j�}·8	
= µj�8��¶· E[(k�� − k�)8] + µk�8��¶· E È|j¬� − j�}8Ë − 2 µk�j���¶ · E](k�� − k�)|j¬� − j�}^	

or,	equivalently,	Eq.	(14).	
Next, note that even though j�, k�, ��, the variance of k��, the variance of j¬�, and the covariance of k�� and j¬� can 

be estimated, plugging all of the estimated values into Eq. (14) may not yield an unbiased estimate of the phase 

variance. For instance, the covariance of j¬�8 is equivalently given by  {|j¬�} = E]j¬�8^ − E]j¬�^8 					= E]j¬�8^ − j�8 
Hence an unbiased estimate of j�8 is given by  j�8 = j¬�8 − {(j¬�)	
since �]j¬�8 − {|j¬�}^ = j�8. Similarly, unbiased estimates of k�8 and j�k� are given by  
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k�8 = k��8 − {(k��) 										k�j� = k��j¬� − cov(k�� , j¬�)	
where it is important to note that j¬� , k�� , {|j¬�}, {(k��), and cov(k�� , j¬�) can be estimated from the data. However, to 
calculate an unbiased estimate of �'¶ would require knowledge of the higher statistics of j¬� and k��. Hence if ���¶ was 
used in Eq. (14) in place of �'¶, but all of the other values were replaced with their unbiased estimates, the estimated 
covariance in the phase would be smaller than the true value. Therefore, the estimated values are simply used in 

place of their true values in Eq. (14), even though this may yield a biased estimate of the phase variance. 

C. Phase Uncertainty  

In this work, the magnitude and phase of the Fourier transform are estimated indirectly. Specifically, j� ≜�� cos("�) and k� ≜ �� sin("�) are estimated instead of �� and "� directly, where the relationship between j�, k�, ��, 
and "� is graphically depicted in the following figure. 

 

When there is uncertainty in the estimates of j� and k�, denoted by j¬� and k��, the uncertainty in "	ª � is very 
dependent on the magnitude ��. Specifically, from Eq. (14), the variance of "z� is inversely proportional to ��¶. An 
intuitive understanding for this dependence can be based on the following example.  

Example 3  Let the estimates j¬� and k�� be such that the point ß = j�à + k�á will lie in some circular region in 

the XY plane about the point ß� = j¬�à + k��á. Specifically, consider two cases. In the first case, the point ß� will have 
a phase of "z and magnitude of ��, and ß will lie in a circle of radius â about ß�. In the second case, the point ß� will 
have a phase of "z and magnitude of ��/10	, and ß will lie in a circle of radius â about ß�. This scenario is graphically 
depicted in the following figures, where the shaded regions reflect the areas in which the point ß will lie. 
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Then, for the first case, the phase of ß will lie between "' and "8 with probability 1. However, in the second 
case, where the amplitude is decreased, the phase of ß will lie between "' and "8 with some probability less than 1, 
since in general, the estimated phase could take on any value between 0 and 2�. Furthermore, as an extreme case, 
when the amplitude of ß� is 0 (see the figure below), there could be complete uncertainty in the phase of ß. This 
scenario is captured by Eq. (14), in which, as �� approaches 0, the variance of "z� goes to infinity.  

 

In practice, typically continuous probability density functions are encountered for the estimates j¬� and k��, where 
the probability density function is nonzero over the entire XY plane. However, the finite distribution model of 

Example 3 is helpful for gaining an understanding of the statistical phenomenon when converting uncertainty from 

Cartesian variables to polar variables. 


