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Simulation technology is becoming increasingly crucial in the design and optimization of satellites due to
the difficulties in testing and verifying system parameters on the ground. Computationally tractable and accu-
rate methods are required in order to test satellite parameters in the complex and dynamic space environment.
Although various satellite teams have developed simulation tools, many suffer from inaccurate numerical inte-
grators, resulting in their simulations being of low fidelity for long duration simulations. This paper presents
a MATLAB/Simulink-based simulator which includes high fidelity integration and modeling for accurate and
relatively quick results. The simulator includes an energy-preserving variational integrator for both transla-
tional and rotational dynamics. A Lie Group Variational Integrator is used for the rotational dynamics, which
enforces an orthogonality constraint for improved accuracy. This approach requires less computational time
relative to other integration methods such as Runge-Kutta method for the same level of integration accuracy.
The simulator includes perturbations to the orbital motion and attitude, including Earth oblateness, aerody-
namic drag, solar pressure, gravity gradient, and residual dipole. The simulator also includes an advanced
hysteresis model for improved modeling of magnetic attitude control systems. Simulation results are provided
for a representative small satellite mission in low earth orbit with a passive magnetic stabilization control sys-
tem. We compare the novel integration and hysteresis techniques to conventional simulators for long duration
simulations for a realistic mission scenario.

I. Introduction

Spacecraft system design relies on modeling and simulation tools. Simulation is a critical component of the system

design to verify the vehicle and operational design parameters that are difficult to verify with ground-based testing.

The development of a simulation tool which achieves more accurate results will aid the design of more reliable and

capable satellites. However, high-fidelity simulations are hard to achieve because of the accumulation of errors in

the numerical integration of the rigid body dynamics. In this paper, we have developed a MATLAB/Simulink-based

simulator which utilizes variational integration to achieve high-accuracy results for long-duration simulations.

Currently, there are various simulation tools available for satellite design. For example, Satellite Tool Kit (STK),

developed by Analytical Graphics Incorporated, is an excellent tool that can be used for various parts of the satel-

lite design process. However, one drawback of STK and many other commercial simulators developed in MAT-

LAB/Simulink or C++ is that they only provide users with the restricted customizeability. Other configurable simula-

tors, such as CubeSim, are prone to numerical integration errors, which result in decreased simulation accuracy as the

duration of the simulation increases. A small sample of existing simulators include References 1–5.

The simulator developed in this paper utilizes the Lie Group Variational Integrator (LGVI),6 the high-fidelity

magnetic hysteresis modeling,7 and also includes disturbance forces and moments. The LGVI method preserves the

orthonormal constraint on the attitude matrix and also preserves energy. This results in a higher accuracy simulation

when compared to typical methods such as quaternion propagation via Runge-Kutta (RK) integration and brute-force

quaternion normalization. The LGVI method is also advantageous when considering computation time because the

calculation time is faster than RK methods for similar total energy error. For example, to get a similar energy con-

servation level, if the integration calculation was performed with 0.001 second of time intervals over 30 seconds, it is

verified that the LGVI requires over 10 times less CPU time than the RK6 in the rotational motion simulation. The

combination of these advantages make this an improved simulator for long duration testing. A natural use of the simu-

lator is for the design and testing of passive magnetic attitude control systems because such systems can take anywhere
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from days to months to reach the steady state behavior. To further facilitate use with passive magnetic control systems,

we utilize a high fidelity hysteresis model.7

This simulator has been used in the design of the Radio Aurora Explorer (RAX) nanosatellite.8 Although RAX

uses a passive magnetic attitude control system, the control portion of the simulator is modular so a user can implement

a custom control algorithm. The combination of reduced integration errors, a higher fidelity hysteresis model, and the

ability to implement custom control laws makes this an ideal simulator for use by various satellite developers.

In this paper, we present the simulator structure, the implementation of translational and rotational dynamics

with the LGVI integration, the modeling and results of the space environment and disturbances, and also provide

comparisons to RK integration.

II. Simulator Structure

The structure of our simulator is shown in Fig. 1. In this figure, arrowed lines indicate the information transferred

between subroutines. This simulation is based on a discrete time; at every time interval, each block updates and the

results are propagated through the simulator. First, in the orbit dynamics part (left center), the satellite position is

generated using the orbit propagator. With this position information, it is also possible to calculate the magnetic vector

of the Earth and Sun position vectors, the magnetic moment, the hysteresis strip moment, and various disturbance

moments and orbital perturbation forces. These moments and orbital perturbation forces are fed back to the orbit and

attitude dynamics block of the simulator and used to calculate future dynamics. In our simulator, a solar cell power

generation model and a communication model are included. Given the satellite’s position and attitude, the simulator

estimates the power generated by the solar panels and the ground station link opportunities. The novel element of the

developed simulator is the LGVI algorithm which is used to calculate the motion of the satellite. The simulator blocks

are described in the following sections.

Figure 1. The structure of the simulator.

III. Orbit Dynamic and Attitude Dynamics

The orbital dynamics of the simulator are based on Newton’s law and the spacecraft attitude is based on Euler’s

equation for rigid body rotation.

In section III.A, we introduce necessary frames. After that, the orbit dynamics is described in section III.B and
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the satellite attitude dynamics and kinematics based on rigid body dynamics will be introduced in section III.C, and

finally, in section III.D, we decide the simulator integrator as LGVI.

A. Frames

It is convenient to represent the attitude information of the satellite in different reference frames. To provide clarity, we

define and describe our use of reference fames. In the following list of the frames, frame notation for the mathematical

expressions are denoted in the parenthesis. Subscripts are used. For example,�r|A indicates the vector�r is resolved in

frame A. Frame notations are always expressed with capital letters.

• Inertial Frame (denoted as I) : The inertial frame is a non-accelerating frame in which Newton’s laws of motion

apply. We use the conventional Earth-centered inertial frame, for which the origin is located at the center of

Earth.

• The Earth-centered Earth-fixed frame (ECEF, denoted as E) : The ECEF frame also has its origin at the center

of the Earth, but this frame rotates with the Earth. As a result, the coordinates of a point fixed to the surface of

the Earth do not change.

• Local Vertical and Local Horizontal frame (LVLH, denoted as L) : The LVLH frame has its origin at the satel-

lite’s center of mass.The x-axis points in the velocity direction, the z-axis points to the Earth center, and the

y-axis completes the right-hand orthogonal rule.

• Body frame (denoted as B) : The body-fixed reference frame is a moving coordinate frame fixed to the satellite.

The axes are fixed in the satellite where each axes completes the right-hand orthogonal system. The origin is

located at the center of mass.

• The orientation matrix between frames : The orientation matrix O from frame B relative to frame A is denoted

OB/A. This matrix is an element in SO(3), which is defined by Eq. (1)

SO(3) =
{

O|O ∈ R
3×3,OT O = I and det(O) = 1

}
(1)

where R
3×3 is the set of all 3×3 matrices with real elements and I is the 3×3 identity matrix. In general, the

frame change of a vector from one frame to another, can be written,

�v|B = OB/A ·�v|A . (2)

The orientation matrix satisfies Eq. (3)

OB/A =
(
OB/A

)−1
=
(
OA/B

)T
(3)

OB/I is the orientation matrix from the inertial(I) to the body-fixed frame(B), OE/I is from the inertial frame(I) to

the ECEF frame(E) and OB/E is from the ECEF frame(E) to the body-fixed frame(B). Because LGVI calculation

result is expressed with OB/I , this orientation matrix becomes a base for the calculation of other relationships

between frames. Fig. 2 presents these relationships between frames.

B. Satellite Orbit Dynamics

Variational integrators are momentum-preserving and symplectic.9 However, variational integrators can only be de-

fined for Hamiltonian systems derived from the Euler-Lagrange equations of a discretized Hamilton’s principle. Be-

cause of this, Lee et al.9 derived satellite orbital dynamics with a form of the discrete equations in Hamiltonian form.9

The discrete equations of motion for satellite, in Hamiltonian form, are given by Eq. (4).9

�xk+1 =�xk +
h
m
�γk − h2

2m
∂Uk

∂�xk
, �γk+1 =�γk − h

2

∂Uk

∂�xk
− h

2

∂Uk+1

∂�xk+1
(4)

Here, h is a time interval, m is a mass of satellite and
∂Uk
∂�xk

is a variation of potential Energy. The variable�xk and�γk can

be transfered to the position and velocity of satellite�rI and�vI with Eq. (5)

�rI =�xk, �vI =
1

m
·�γk (5)
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Figure 2. The relation between the frames.

C. Satellite Rotational Dynamics and Kinematics

1. Dynamics and Kinematic Equation

We assume the satellite is an ideal rigid body as this simplifies the modeling. For future development, more realistic

model can be adopted. The dynamic model of the satellite is derived using the Newton-Euler formulation, where the

angular momentum change is related to applied moments. The satellite rotational dynamic model is:

J �̇ωB/I

∣∣∣
B
+ �ωB/I

∣∣
B × (J �ωB/I

∣∣
B) =

�M
∣∣∣
B

(6)

where J is the 3×3 inertia matrix, �ωB/I
∣∣
B is the angular velocity of the satellite relative to the inertial frame expressed

in the body frame, and �M
∣∣∣
B

is the torque acting on the satellite, also resolved in body frame. The kinematics describe

the satellite’s orientation in space and are given by Eq. (7),

ȮB/I +S
(
�ωB/I

∣∣
B

)
OB/I = 0 (7)

where OB/I is the orientation matrix describing the body relative to the inertial frame, �ωB/I
∣∣
B is the angular velocity

of the satellite relative to the inertial frame expressed in the body frame and S(·) means the skew symmetric matrix.9

D. Lie Group Variational Integrator (LGVI)

Numerical integration algorithms have been developed for Hamiltonian systems defined on configurations with a Lie

group structure by Lee et al.6 This approach is guaranteed to preserve a energy property and to maintain the Lie group

structure, even over long time periods. A specific Lie group variational integrator for the satellite attitude models has

been developed with MATLAB/Simulink. This Lie group variational integrator provides confidence that the computed

simulation results for the satellite attitude dynamics are accurate, even over many orbits.6 This LGVI is based on the

Lie group integrator developed by Iserless et al.10 and this Lie group numerical integration method is given by the

following integration rule,

Rk+1 = exp

(
−hS

(
�ωk +�ωk+1

2

))
Rk, (8)

where Rk ∈ SO(3), and �ωk ∈ R
3 is the angular velocity of the rigid body in the body fixed frame and h ∈ R is

the constant integration step size, and the subscript k denotes discrete time step at t = kh. To calculate the angular
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velocity, we can integrate the angular velocity and it is possible by choosing any of two different numerical methods: a

Runge-Kutta method or a variational integrator. However, only the variational integrator preserves the energy property

well, and Lee et al.6 mixed this variational integrator concept to Lie group integrator which is useful for the kinematic

equation. The variational integrator is given by the following integration rule,

S (hJ�ωk+1) = FkJd − JdFT
k , (9)

J�ωk+1 = FT
k �ωk. (10)

where Fk ∈ SO(3), the relative attitude between two integration steps, is obtained by solving the linear algebraic matrix

equation, and Jd ∈R
3×3 is a nonstandard moment of inertial matrix defined by Jd =

1
2 tr [Jd ] I3×3−J.11 The variational

integrator preserves both of the conserved quantities to essentially computer supporting precision of the computer

floating point operation.

IV. Simulation of the Orbit Environment

In this section, the environmental models used in the simulator including Earth’s magnetic field, sun position, and

eclipse models are presented.

A. Earth Magnetic Field

The 2005 International Geomagnetic Reference Field (IGRF)12 is used to determine the local Earth magnetic field

vector at all points within the satellite orbit. This model is given by Eq. (11),

�V = a
N

∑
n=1

n

∑
m=0

(a
r

)n+1

(gm
n cosmφ +hm

n cosmφ)Pm
n (cosθ) (11)

where a is the mean radius of the Earth (6371.2km), and r, φ , θ are the geocentric spherical coordinates. r is the

distance from the center of the Earth, φ is the longitude eastward from Greenwich, and θ is the colatitudes equal 90◦
minus the latitude. Pm

n (cosθ) are Schmidt quasi-normalized associated Legendre functions of degree n and order m,

where n ≥ 1 and m ≤ n. The maximum spherical harmonic degree of the expansion is N. Together with the orbit

propagator, an estimate of the magnetic field can be made from IGRF model in ECEF frame.

B. Sun Position and Eclipse

Sun position and eclipse model is important for solar pressure disturbance moment calculations.

1. Solar Model

If the direction of the sun is known, it provides a well-defined reference vector that can be utilized in the satellite’s

attitude estimation. This vector is also required to estimate solar pressure. To be able to estimate the sun’s direction

vector, the relationship between the Earth and the sun has to be known. It is obvious that the Earth revolves around the

sun, but it is more convenient to describe the relationship from the Earth’s point of view, as illustrated in the Fig. 3,

because inertial frames for the satellite motion is Earth-centered. The elevation, εS, of the sun from the Earth’s equator

varies by ±23◦. Kristiansen et al.13 proposed the following relationship to calculate the solar elevation:

εs =
23π
180

sin(
2π
365

Ts) (12)

where Ts is the time elapsed since the first day of spring. The sun’s position, λS (See Fig. 4), in this imaginary orbit

around the sun, is given by :

λs =
2π
365

Ts (13)

Knowing the elevation, εS, and Sun’s position in relation to the Earth, it is possible to calculate a vector pointing to

the sun. The calculation, starts with the initial position given on the first day of spring (vernal equinox).

Ŝ0

∣∣
I =

[
1 0 0

]T
(14)
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Figure 3. Sun elevation in an imaginary orbit around the earth, adapted from Reference 5.

Figure 4. Sun position in imaginary orbit around Earth, , adapted from Reference 5.
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Both the Sun’s elevation and position describe its imaginary rotation around the Earth. The position vector can be

calculated as rotations:

Ŝ
∣∣
I =

⎡
⎢⎣ cos(εs)cos(λs)

sin(λs)

sin(εs)cos(λs)

⎤
⎥⎦ (15)

C. Eclipse Model

While orbiting the Earth, the spacecraft may pass into the Earth’s shadow. The timing of the eclipse conditions depends

on the orbital parameters. To determine when the satellite is in eclipse, we use the cylindrical shadow model.14, 15 With

this model, Earth’s shadow is modeled as a cylinder of infinite length and radius equal to Earth’s radius, RE . Consider

a unit shadow vector ûsh which is antiparallel to the inertial unit Sun vector, as shown in Eq. (16). This shadow vector

lies on the center line of the shadow cylinder, as shown in Fig.5.

ûsh =−Ŝ|I (16)

Figure 5. A unit eclipse vector in the Earth, adapted from Reference 14.

There are two conditions that determine if the spacecraft is in eclipse. First, the spacecraft must be located on the

night side of the Earth. Mathematically, this is given by Eq. (17). Second, the spacecraft must be within the shadow

cylinder, which is the case if Eq. (18) is true. In Eq. 18, selecting RE to be the equatorial rather than polar radius will

generally results in slightly longer eclipse times than in reality14.15

ûsh · r̂I > 0 (17)∣∣R · ||ûsh × r̂ECI ||
∣∣≤ RE (18)

V. Attitude Control

Next, we describe the attitude control block. Initially, we have implemented the model for a passive magnetic

control system, but this block is modular so it can be replaced with other control schemes. The passive magnetic

control system consists of permanent magnets, to align the satellite with Earth’s magnetic field, and soft magnetic

material (hysteresis strips), which dissipate energy via heat to dampen satellite rotation.

A. Passive Stabilization System Modeling

Passive attitude control is very efficient for small satellites from cost, weight, power, and reliability perspectives. For

a small satellite which is passively magnetically controlled with a permanent magnet rod and hysteresis materials, the
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two components of the passive stabilization system serve different purposes, both of which are needed for passive

stabilization. The model presented in this section has been used for the Radio Aurora Explorer (RAX) CubeSat

mission.8

1. Permanent Magnet

The permanent magnet aligns the body z-axis with the Earth’s magnetic field after deployment from the launch vehicle.

As the Earth’s geographic North Pole is its Magnetic South Pole, the north pole of the permanent magnet material will

be pointed toward the Earth’s North Pole. This will ensure that a satellite’s antenna is Earth-pointing over the northern

hemisphere, which is the desired attitude for the RAX mission.

A diagram of the pointing vector of the magnet and antenna is shown below in Fig. 6. Here, the arrow is the

Figure 6. Passive magnetic stabilization description.

direction of the antenna, which is magnetic-field aligned due to the permanent magnet within the satellite. The torque

generated by the permanent control magnet is given in Eq. (19), where �m is the magnetic dipole moment vector and �m
is Earth’s local magnetic field vector.

�M = �m×�B (19)

2. Hysteresis Strips

The hysteresis strips are made of soft magnetic material with high permeability and low coercivity. Materials with

these characteristics induce a magnetic dipole of their own when they spin through a magnetic field. In many small

satellite projects, these hysteresis strips are implemented in two directions, one along the x-axis and one along the

y-axis on body frame FB (assuming the permanent magnet is aligned with the z-axis). In this orientation, the hysteresis

material will dissipate the satellite’s rotational energy into heat while it spins about the body z-axis. Our development

follows the model of hysteresis rods given in Park et al,7 which is based on the arc tangent graph. We provide a general

dynamic description of each hysteresis rod in terms of a single ordinary differential equation that depends on several

physical parameters that describe the magnetic properties of the hysteresis rod materials. The differential equation for

each hysteresis rod clearly identifies the memory, namely the induced magnetic flux density in the hysteresis rod. The

subsequent development assumes that the two hysteresis rods are physically well separated relative to each other and

relative to the permanent magnet to avoid mutual magnetization. The component of the Earth’s magnetic field in the

direction of hysteresis rod i is

Hi = b̂T
i OB/E �H

∣∣∣
E

(20)

where b̂i is the unit vector describing the direction of the i-th hysteresis strip in the body-fixed frame and �H
∣∣∣
E

is the

Earth magnetic field vector resolved in ECEF frame. The induced magnetic flux density in hysteresis rod i is described
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by the differential equation :

Ḃi =
2Bm

Hrπ

⎛
⎝H∗ cos

(
πBi

2Bm

)
−Hr sin

(
πBi

2Bm

)
2Hc

⎞
⎠

2

Ḣi (21)

H∗ = Hi +Hc (Ḣi ≥ 0)

H∗ = Hc −Hi (Ḣi < 0)
(22)

where,

Ḣi = b̂T
i (−S(ω)OB/I(OE/I)

T +OB/I(ȮE/I)
T ) �H

∣∣∣
E
+ b̂T

i OB/I(OE/I)
T �̇H

∣∣∣
E

(23)

Here Bm is the constant saturation value of the induced magnetic flux density of the hysteresis rod, Hc is a constant

coercivity value of the hysteresis material, and Hr is a constant remanence value of the hysteresis material.7 Fig. 7

shows a typical plot of the time evolution of the hysteresis in the Bi versus Hi plane for Hi(t). The magnetic torque
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Figure 7. Typical Hysteresis Loop.

due to the presence of hysteresis rod i, expressed in the body-fixed frame, is

�Mi = �BiVhb̂i ×OB/E �H
∣∣∣
E

(24)

where Vh is the volume of each hysteresis rod. The direction of the moment produced by hysteresis rod i is orthogonal

to the longitudinal axis of that hysteresis rod and to the direction of the Earth’s magnetic field at the satellite’s location.

VI. Disturbance Forces

As motivated in the introduction, for high fidelity long period simulations, disturbance force effects must be consid-

ered. These disturbance forces can be categorized into orbital perturbation forces and rotational disturbance moments.

Orbital perturbation forces modify the orbit trajectory, while rotational disturbance moments modify the attitude.

A. Orbital Perturbation Forces

The most important orbital perturbation forces of a satellite are earth oblateness effects, the aerodynamic drag, and the

solar pressure. In this section, these forces are explained and their implementation to the simulator explained. With

the growing trend toward reducing the size of satellites, careful modeling the perturbation forces is necessary.16

1. Earth Oblateness Effects

The Earth oblateness affects a satellite’s acceleration. We model this effect by taking the gradient of the gravitational

potential function as a function of position to calculate the gravity force in the orbit propagator. The total gravity
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potential function, which includes oblateness effects can be defined at any position as,

Utotal =Ugravity +Uoblate =
μ
r

[
1−

∞

∑
n=2

Jn ·
(

RE

r

)n

·Pn · sin(L)

]
(25)

Uoblate =
μ
r

[
−

∞

∑
n=2

Jn ·
(

RE

r

)n

·Pn · sin(L)

]
(26)

where Ugravity is Newton’s 2-body gravity term, μ = GM is Earth’s gravitational constant, RE is Earth’s equatorial

radius, Pn are Legendre polynomials, L is geocentric latitude, and Jn are dimensionless geopotential coefficients and

the first three term which is most dominant are:

J2 = 0.00108263, J3 =−0.00000254, J4 =−0.00000161

The gradient of the gravitational potential function Eq. (25) can be divided into a gravitational force and gravitational

disturbance terms. We define gravitational disturbance as �Foblate,

�Foblate =
∂Uoblate

∂ r
·�r

r
(27)

where�r is the satellite position vector and r is the magnitude of the vector�r.

2. Solar Pressure

A satellite in low earth orbit (LEO) is affected by three major electromagnetic radiation sources in space. These

sources are the sun, solar radiation reflected by the Earth (termed albedo), and the thermal infrared radiation of the

Earth. In this paper, only the first source, direct sun radiation, is modeled as a disturbance forces as it is the largest

in magnitude. The sun’s electromagnetic radiation exerts a normal force on space objects, known as solar radiation

pressure. The concept of solar radiation force is modeled,

�FSolar =
n

∑
k=1

�FSolar,k (28)

�FSolar,k =−Ps ·Ak · cos(θk)
[
(1− ε) Ŝ

∣∣
B +2ε cos(θk) n̂k|B

]
(29)

cos(θk) = Ŝ
∣∣
B · n̂k|B (30)

In Eq. (28) - (30), n is the number of satellite surfaces which has the effective angle (0−90◦) with the sun vector, Ps
is solar radiation pressure near Earth and its value is 4.56×10−6N/m2 , A is the exposed area of the satellite to Sun,

Ŝ
∣∣
B is a unit sun direction vector on body frame, n̂k|B is the normal vector of exposed kth face on body frame, ε is

reflectivity and Ak is the area of the kth surface.17

3. Aerodynamic Drag

Aerodynamic drag is the restraining force that acts on the satellite surfaces in the direction of the air flow and it can be

calculated,

�FAero =
n

∑
k=1

�FAero,k (31)

�FAero,k =−1

2
CD ·AD,k ·ρ · vr

2�vr

vr
(32)

Here, we define �FAero,k is aerodynamic drags of each surface of the satellite,�vr =�vECI −�ωE ×�rECI and can also assume
�ωE ≈ 15◦/hr based on the simple calculation that the Earth’s rotation period is 24 hours. CD is the drag coefficient

and it depends on the geometry and size of faces of the satellite, ρ is the air density and depends on the altitude and

AD,k is the ktharea exposed to ram directions.

These forces we have introduced can be added and construct total disturbance forces as in Eq. (33)

�FDisturbance = �Foblate +�FAero +�FSolar (33)

By adding these orbital perturbations to the standard Earth gravitational force from the 2-body problem, it is possible

to calculate the position and velocity of the satellite with an improved accuracy.
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B. Disturbance Moments

In this section, we discuss disturbance moments which effect the attitude of the satellite. Disturbance moments include

the moments generated by solar pressure, aerodynamic drag effect, gravity gradient effect and residual dipole. The

solar pressure and the aerodynamic drag generate moments when there is a non-zero distance between the geometric

center and the center of mass, which is true in most practical systems.

1. Gravity Gradient Disturbance

If the mass of the satellite is distributed unevenly about the geometric center, the force from the Earth’s gravity will

pull unevenly on the satellite. This gives rise to the gravity gradient moment,

�τG.G = 3
GM
R3

�unadir × J ·�unadir, (34)

where J is a inertia matrix and�unadir = k̂O. This�unadir is resolved in the body-fixed frame as,

�unadir|B = k̂L
∣∣
B = OB/L · k̂L

∣∣
L ,

= OB/L ·
[

0 0 1

]T
,

(35)

where the subscript B indicates the body-fixed frame and the subscript L indicates the LVLH frame.

2. Solar Pressure Disturbance

If there is a non-zero distance between the geometric center and the center of mass, this pressure causes a solar pressure

disturbance moment. The following method is used to calculate this moment.14

1. Calculate Ŝ
∣∣
B, the unit vector in the Sun direction resolved on the body-fixed frame and n̂k|B, kth the normal

vectors of spacecraft surfaces.

2. Calculate the angle θk between Ŝ
∣∣
B and n̂k|B using dot products.

3. Eliminate the effect of the surfaces which are not illuminated by the Sun. (which could be checked with θk of

the previous step and this lager than 90 degree angle means that this surface is not exposed to Sun).

4. Calculate AS,k, the projected area of each surface to the Sun direction and calculate �FSolar,k, the pressure force

vector of each surface.

5. Calculate �rGC,k/CoM , vectors from the center of mass of satellite to the geometric center of the illuminated

surface.

6. Calculate�τSolar, the moment of each surface with cross product with the pressure force of step 3 and the distance

vector of step 4.

Based on this procedure, we obtain Eq. (36) - (36),14

�τSolar =
n

∑
k=1

(
�rGC,k/CoM ×�FSolar,k

)
(36)

�FSolar,k =−Ps ·AS,k · cos(θk) [(1− ε) ŝ|B +2ε cos(θk) n̂k|B] (37)

where, �rGC,k/CoM is the vector from the center of mass to the area center of the kth surface. n is the number of the

surface which has the effective angle (0−90◦) with the sun vector.
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3. Aerodynamic Drag

Atmospheric drag is a source of disturbance moments on a spacecraft in the low part of LEO due to atmospheric density

of that region. If there is a non-zero distance between the geometric center and the center of mass, this pressure causes

a disturbance moment which can be modeled using the same approach as the one for the solar pressure.

�τAero =
n

∑
k=1

(
�rGC,k/CoM ×�FAero,k

)
(38)

�FAero,k =−1

2
CD ·AD,k ·ρ · vr

2�vr

vr
(39)

For ρ value, we used the Harris Priester model which calculates ρ based on the altitude.

4. Residual Dipole

In LEO, the interaction between the Earth’s magnetic field and the magnetic dipole of a satellite generates a moment.

Many satellites take advantage of this by using either electromagnets or permanent magnets for spacecraft attitude

control. In addition to the designed magnetic dipole, all spacecraft have an unintended dipole, known as a residual

dipole, that is caused by electric currents and magnetic material within the satellite. The moment caused by the

interaction between the residual dipole and Earth’s magnetic field is known as the residual dipole moment, and is

described by Eq. (40).
�Tr = �mr ×�B (40)

In Eq. (40), �mr is the magnetic moment of the residual dipole, and �B is Earth’s local magnetic field. For small satellites,

the residual dipole moment can be the dominant disturbance moment.18

VII. Simulation Results

To show applicability of the simulator, we show simulation results with the representative example, the Radio

Aurora eXplorer (RAX) small satellite from the University of Michigan.8 The satellite orbit is circular with an altitude

of 650 km and an inclination of 72◦. To demonstrate high fidelity simulation results, we show the effect of orbital

perturbations, compare the RK45 and LGVI integration schemes, and show the effects of disturbance moments.

A. Orbital Perturbation Effects

When we only consider the Earth’s oblateness effects in our orbit simulation, the orbital radius is as shown in Fig. 8

and compared to the simulation result which considers all other orbital perturbations such as aerodynamic drag and

solar pressure to asses the impact on orbit propagation. In Fig. 9, the blue graph is the one which only includes the

Earth oblateness effect and the red graph is the simulation result of all disturbance forces are included.

To asses the disturbance force effect clearly, a long simulation period was needed, therefore we show a simulation

period of 2,000 orbits. In the case of RAX, the orbital period is about 98 minutes (5863.7 second) therefore the total

simulation time is about 136 days.

To asses the effect of the aerodynamic drag and solar pressure disturbances on the orbit, we now include these

disturbances in our simulation, and the orbit radius graph comparing the orbit with and without these disturbances is

shown in Fig. 9. When disturbance forces are small, such as in the first 10 orbits, the disturbance effects on the orbit

radius is not visible in Fig 8. However, as simulation time increases, the results with all disturbance forces results in a

difference in orbit radius relative to the simulation result which only includes the Earth oblateness effect, as shown in

Fig. 9. Therefore, we need to consider these disturbance effect on the orbit to accurately estimate the satellite position

and the orbit lifetime of a satellite.

B. Comparison Between Runge-Kutta and Lie Group Variational Integrator

In the passive stabilization system, only a small rate of the kinetic energy is dissipated by hysteresis. However, if the

fidelity of simulator is low, it is not easy to evaluate the performance of the passive stabilization system because the

simulation error can be combined with hysteresis effects of the system. To prevent this, our simulator adopts the LGVI

and to prove the effectiveness of the simulator, we compare the two different integration schemes, Runge-Kutta45

(RK45) and LGVI, with a same configuration. We focused on the kinetic energy level and the stabilization time of the

passive magnetic stabilization system to prove the high fidelity of LGVI.

12 of 20

American Institute of Aeronautics and Astronautics



0 2 4 6 8 10 12 14 16
7000

7005

7010

7015

7020

7025

7030

7035

7040

Time (hour)

O
r
b
i
t
 
R
a
d
i
u
s
 
(
k
m
)

Earth Oblatness Only

Earth Oblatness, Solar Pressure and Aerodynamic Drag

Figure 8. RAX orbit radius simulation (initial 10 orbits). The difference between two case is negligible.
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Figure 9. RAX orbit radius simulation (after 2000 orbits ≈ 136 days). Orbit perturbation forces results in large orbit radius differences.
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1. Without hysteresis effects

We first compare the difference between the quaternion integration based RK45 method and LGVI in the case of no

hysteresis effects. We ran the simulation for 400 orbits to compare the energy preservation property of LGVI and

RK45 integration in Fig. 10 and Fig. 11. The quaternion integration based RK45 results in a loss of kinetic energy

because this method is not sophisticated enough to preserve the angular momentum of the rotational motion. In the

case of RK45, the kinetic energy loss is dependent on the integration time interval width. If the time interval width is

small, the kinetic energy loss ratio of RK45 is also small and shows no difference relative to the higher fidelity LGVI.

However, by increasing time interval, the energy loss ratio grows significantly using the RK45 integration scheme

relative to the LGVI integration scheme. One other merit of the LGVI is integration speed. RK45 can achieve the

same kinetic energy loss as LGVI approach by choosing a small integration time interval. However, with the same time

interval size, LGVI’s integration speed is about 3.8 times faster than that of RK45. Based on this characteristic, the

developed simulator was able to handle long period simulations with a relatively larger time step of 0.2 sec and 0.5 sec.

The simulation for 400 orbits with no hysteresis effect is plotted in Fig. 10 and Fig. 11. If we use a small time interval

such as 0.1 sec, the simulation result difference between LGVI and RK45 will be almost zero, but the integration

calculation time is much longer with the RK45 integrator relative to the LGVI. Table 1 shows the simulation time

comparison between LGVI and RK45.
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Figure 10. The Simulation with no hysteresis effect (Ts = 1.0 sec, 400 orbits).

10 orbits 100 orbits

sample time interval LGVI RK45 LGVI RK45

0.5 sec 157.20 sec 609.78 sec 1598.28 sec 6176.88 sec

0.2 sec 386.57 sec 1487.52 sec 3930.34 sec 15068.12 sec

Table 1. The integration time comparison between LGVI and RK45.

2. Considering Hysteresis Effects

Next we examine the energy dissipation effect when hysteresis in present to estimate the stabilization time of the

passive magnetic attitude control system.

To compare LGVI and RK45 based integration with the hysteresis effect, we have run simulations for 500 orbits

to find the duration of time such that most of kinetic energy is dissipated. The simulation result is presented in

Fig. 12 - 13, where the RK45 integration kinetic energy loss error is combined with the energy dissipation effect of the
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Figure 11. The Simulation with no hysteresis effect (Ts = 0.5 sec, 400 orbits).

hysteresis model. As explained, RK45 do not preserve the kinetic energy, the stabilization time estimation with the

RK45 is different with the LGVI.
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Figure 12. Difference of two integration schemes simulation results with hysteresis (Ts = 1.0 sec).

C. Disturbance Moment Simulation Result

In this section, the disturbance moment simulation result is presented. The expected magnitude range of each dis-

turbance force is given by the simulation results. The simulation depends on various parameters, and the relevant
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Figure 13. Difference of two integration schemes simulation results with hysteresis (Ts = 0.5 sec): The difference between the two integration
schemes is smaller than the difference with a larger simulation time interval in Fig. 12.

parameters are listed below. The mass properties are the pre-flight measurements of the RAX spacecraft.

The aerodynamic drag coefficient comes from the estimated CubeSat drag coefficient of Reference.19. solar

radiation Ref.20, reflectivity effect Ref.21. The RAX residual dipole has not been characterized, so we use the residual

dipole estimate of the PACE spacecraft,22 which is a 1U CubeSat.

• The mass: m = 2.83616 kg

• The moment of inertia:

J =

⎡
⎢⎣ 0.018 0 0

0 0.018 0

0 0 0.006

⎤
⎥⎦(

kg ·m2
)

• The distance between the geographical center and the center of mass:

�rCoM/GC
∣∣
B =

[
0.001 0 −0.009

]T
(m)

• The aerodynamic drag coefficient: CD = 2.0

• The solar radiation pressure near Earth (at 1 AU): PS = 4.56×10−6N/m2

• The reflectivity effect factor: ε = 0.21

• The residual dipole vector:

�Mresidual =
[

0 0.0005 0

]T (
A ·m2

)
1. Norms of Each Disturbance Moments

To evaluate the total effect of each disturbance moment, Euclidean norms moments are calculated. With RAX sim-

ulation configuration, Fig. 14 shows that residual dipole and the gravity gradient moments are most dominant. The

moments generated by aerodynamic drag are almost negligible at the altitude of 650 km.
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Figure 14. Norms of each disturbance moments (10 orbits): The dominant disturbance moments are generated by the residual dipole and
the gravity gradient.

2. Gravity Gradient Disturbance Moment

Fig. 15 shows the simulation result of the gravity gradient disturbance moment. The gravity gradient moment is only

dependent on the moment of inertia.. Many satellites have a boom or antenna which affect to the gravity gradient

disturbance moment. An accurate value of the moment of inertia make it possible to asses the disturbance effect of a

boom or antenna. By checking the range of this moment, we expect that the gravity gradient moment will be one of

the dominant moments in the system as RAX is 3U small satellite which z-axis length is three times longer than x-axis

or y-axis length.

3. Solar Pressure Disturbance Moment

Fig. 16 shows the simulation result of the solar pressure disturbance moment. As explained previous section, the solar

pressure disturbance moment is largely dependent on the distance between the geographical center and the center of

mass. Depending on the assumption about this distance, the disturbance moment varies. Furthermore, solar pressure

is also a function of eclipse, as seen in Fig. 16.

4. Aerodynamic Drag Disturbance Moment

Fig. 17 shows the simulation result for the aerodynamic drag moment. Similar to the solar pressure disturbance

moment, the aerodynamic drag moment is dependent on the distance between the geographical center and the center

of mass. Aerodynamic drag is also a function of the density, which is dependent on the altitude. This simulator makes

it possible to evaluate the influence of different altitude profiles and expected atmospheric densities on aerodynamic

drag disturbance moment. By evaluating the minimum and maximum value of this moment, we note that for the RAX

configuration that the aerodynamic drag moment is almost negligible relative to the others.

5. Residual Dipole Disturbance Moment

Fig. 18 shows the simulation result of the residual dipole moment. This is the most difficult disturbance moment to

evaluate accurately because this is largely influenced by the configuration of the spacecraft hardware and also by time

varying properties such as the electric power usage. The graph illustrates that the moment generated by the residual

dipole only effects the x and y axis after the initial release.
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Figure 15. The gravity gradient disturbance moment (10 orbits).
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Figure 16. The solar pressure disturbance moment (10 orbits).
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Figure 17. The aerodynamic drag disturbance moment (10 orbits).
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Figure 18. The residual dipole disturbance (10 orbits).
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VIII. Conclusion

We have developed a new satellite simulator with high fidelity nominal and perturbation dynamics which uses a

Lie Group Variational Integrator. This simulation approach provides more accurate integration results and information

relative to conventional simulators. In the design of the passive magnetic attitude stabilization system and other

systems which use hysteresis, we can model the effect of hysteresis more accurately with our simulator. In other

simulators, the quaternion integration based on RK45 is often used. This integration method does not preserve energy

therefore, errors may accumulate and interfere with the true hysteresis effects. This high fidelity simulator enables

the accurate estimation of stabilization time for passive magnetic attitude stabilization systems due to our integration

scheme and consideration of disturbance forces and moments. With this simulator, a unified modeling approach to the

satellite design process and dynamic modeling is possible and customizable to enable subsystem optimization. It will

also help the analysis of further acquired data from small satellites, such as the RAX CubeSat. Future research topics

with this simulator include analyzing the disturbance effects on the orbit for small satellites, as the orbits and attitude

of small satellites can be greatly affected by these small disturbance forces.
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